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ABSTRACT

The propagation of the electromagnetic waves in vacuum is

discussed in terms of the Lorentz Transformation. A simple, but

rigorous, derivation of the Lorentz Transformation is given.

Then, the observed doppler shift, seen by a moving observer, of a

moving target is derived in terms of inertial position and

velocity. This radar doppler equation, given without

approximation, is suitable for analysis of doppler data for

satellite orbit determination.

I"I
k i' .tr , .t ./

Av~t:;. a ' ' cr,',/.

Dist

iiMM

.......



TABLE OF CONTENTS

I. Introduction

II. The Lorentz Transformation 
3

III. Discussion 26

References 
31

A1

V l mm UAmIOTiu



I. INTRODUCTION

Propagation of Electromagnetic Wave is rigorously described

by Maxwell's equations. The description of Electromagnetic Wave

propagation in one reference frame is related to the description

of the same wave in a second reference frame by the General

Lorentz Transformation (GLT), which is a direct consequence of

the Special Theory of Relativity (TSR). The GLT encompasses both

a change in the bases of the reference frames and a relative

velocity of the two reference frames. The GLT is a unitary

transformation of a four-vector, i.e., preserves the length of

the vector. The GLT has all the usual properties, suitably

generalized, of unitary transformations.

In the following development we will discuss the basic ideas

that lead to the GLT, in a superficial but rigorous way. That

is, the results are correct, but many of the fundamental

consequences will not be addressed. These broader consequences

of the GLT are addressed in many classical texts, and need not be

repeated here. However, though the final results given here

cannot be considered new, they are not explicitly given in any

text. Therefore we hope to provide a complete and rigorous

result, with sufficient detail that it can be applied directly in

practical application and without ambiguity.

The radar Doppler equation involves four reference frames:
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1. The frame of the transmitter at the time of

transmission, in which the transmission frequency is

observed.

2. The frame of the target (satellite) at the time of

reflection or retransmission by a transponder, the same

thing in the context of this discussion.

3. The frame of the receiver at the time of reception, in

which the received frequency is observed.

4. The geocentric frame in which the target's trajectory

(ephemeris) is described.

The Lorentz transformation is a mathematical description of

the two basic tenents of the Theory of Special Relativity (TSR),

as stated by Einstein in 1905:

1. All the laws of nature are identical in all inertial

systems of reference. An inertial reference system is

one in which a body, not acted upon by external forces,

proceeds with constant velocity.

2. The velocity of propagation of interaction between

particles, which is the same as the velocity of light

in empty space, is the same in all inertial reference

frames.

The TSR denies the existence of any fundamental reference frame.

Therefore, none of these reference frames is any more fundamental

than another. The principal objective of investigating the Radar

Doppler Equation is for determination of the target's trajectory
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(orbit determination) based on the observed Doppler shift.

Therefore, for the following discussion we will consider the

geocentric frame as the basic frame, and seek to express the

observed doppler shift as a function of the geocentric position

and velocity.

II. THE LORENTZ TRANSFORMATION

We give here a simplified but complete derivation of the

Lorentz transformation. There are a number of lucid developments

of the Lorentz transformation [Refs. 1, 2, and 3] that reveal far

more general properties. However for our purposes, precision

metrology, what follows here allows us to be precisely clear

about each quantity, when we come to practical calculation.

A reference frame is understood to consist of a system of

meter sticks and clocks to define coordinates (x,y,z) and time

(t). Now in a reference frame we can imagine relating the space

and time coordinates by using the travel time (t2 - tj) of

electromagnetic propagation between two points (x2 , Y2 , z2 ) and

(xj, yl, z1 ) as:

c 2 (t2 -tl )2 _ (x2 - X) 2 (y2 - yl)2 (Z2 - Z1)2 = 0 (1)

A fundamental concept in the TSR is an event defined by the four

quantities (t,x,y,z). Now we define the (proper) distance, i.e.,

the interval, between two events (s) as:

3



S 2 = c2 (t 2 - tl)2 - (x2 - x1 )2 - (Y2 - YO2 - (Z2 - z1) 2  (2)

or as differentials:

2 = 2 2 2 2 2ds =cdt -dx -dy -dz . (3)

The electromagnetic propagation in a vacuum is said to have an

interval s = 0 as given by (1). It follows from the second

tenant of the TSR that if the interval between two events is zero

in one inertial reference frame, then it is zero in all other

inertial reference frames.

To make this more concrete, consider an inertial reference

frame (K') moving with uniform velocity (V) with respect to an

inertial reference frame (K) along the x axis as illustrated in

Fig. 1. The differential interval between two events (ds) in the

K frame is given by (3). The same two events viewed in the K'

frame would have an interval (ds'):

(ds') 2  c2 (dt')2 - (dx')2 - (dy')2 - (dz')2 . (4)

We know that if ds = 0 in the K reference frame, then ds' = 0.

Therefore, in general ds and ds' must be proportional, i.e.:

ds a ds' (5)
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where a can depend on V, i.e., a = a(V). But since the role of K

and K' can be reversed, i.e., K is moving the K' is not, then

ds' = a ds (6)

and therefore a = 1. Landau and Lifshitz [Ref. 2] give a more

general discussion along these lines including among other things

the possibility that a = -1. In any case we must have ds = ds'

and therefore s = s'. Therefore, the interval between two ents

(s or ds) is the same in all inertial reference frames, i. it

is invariant under transformation from one inertial syster o

another. In particular, this invariance is the mathematic

expression of the constancy of the velocity of light. Finally we

have:

ds2 = c 2dt2 _ dx2 _ dy
2 - dz2

= c 2 (dt') 2 - (dx') 2 - (dz' )2

= (ds') 2 . (7)

To obtain the mathematical form of the GLT we first consider

a clock fixed in the K' system (dx' - dy' = dz' = 0) and

therefore moving with respect to the K system along the x axis

with velocity V. Now this clock, viewed in the K system would be

at position dx, dy, dz, after time dt. The time dt would be

measured with an identical clock. We have then:

6
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dx 2 +d d
dt' = dt 1 dy~tdz2  (8)c dt 2

But

dx2 + dy2 + dz2  (9)
Vx (

dt2

so we have:

dt' = 1-(/)dt (10)

This represents the "twin paradox," i.e., moving clocks "appear"

to run slower than stationary clocks.

We now seek the transformation of an event recorded in the K

system to the same event as it would be recorded in the K'

system. We restrict the discussion to motion of the K' system

along the x axis of the K system as one can always rotate the x,

y, z coordinates to a system with the motion of the K' system

along the x axis of the K system. In this case, the y and z

coordinates are unaffected and we have y = y' and z = z'. Now we

can seek a linear transformation:

[ [aIt' + a,2x' ]=[aij] [
x a2ct' + a22x()

Clearly, we must have:

fa ii [ai] I (12)

= " "l " I II"i .. . = 7



where I is the unit matrix. From the moving clock experiment

above we have immediately:

1 1

all =  - y . (13)
Nri - (V/c)2  4 -

Now consider the motion of the K' origin as seen in the K

system. We have x' = y' = z' 0. and

t = allt' = yt'

x = a 21ct'

a _ x V =a1" a - c t (14)

Since the roles of K a K' can be reversed, we must have:

[ i(V)I-1 = [ .(-V)j , (15)

1Y~ al1J)ali.e., a

8



which immediately gives:

'a 12(S) - Cc

a2 2 = y (17)

Therefore the Lorentz transformation can be written:

t:]
or [~:]= -r/c][:1(18)

We can write these expressions in a more symmetrical form by

introducing a notation that considerably simplifies the writing

of equations and makes quite clear the nature of the

transformation. We deal with the three space variables as a

(contravariant) vector:

]2 = (19)

(Since we are dealing with flat space-time, we need not be

concerned with the distinction between covariant and
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contravariant vectors and tensors.) The time coordinate can be

given in the same units as:

x0 = ct (20)

Therefore the Lorentz transformation to the K' system moving with

velocity V along the x axis is:

x ° ' Y -By 0 0 x

xi -By Y 0 0 x

2 0 0 (21)

3, 3x ' 0 0 0 1 Lx

In the following we will label the spatial (three-vector) as X,

and a Lorentz four-vector as r. Therefore the Lorentz

transormation along the x axis is:

x= L,(B) 7 (22)

where

y -By 0 0

-By y 0 0
LI(B) = (23)

0 0 1 0

0 0 0 1

10



In general the velocity of K' will be in an arbitrary

direction. fherefore, we must make a transformation by rotation

of the three spatial axes such that the motion of K' is along the

positive x axis. After the Lorentz transformation, we can then

reverse the rotation to obtain the general transformation. Let U

be the unit three-vector in the direction of motion seen in the K

system. We can chose arbitrarily the other two unit three-vector

bases for the transformed system. For our case with satellite

trajectories we take the natural base vectors as the across track

(W) and approximate radial (R) directions. If the satellite

position and velocity three-vectors are r and r, then:

LU1

W1W W2] =r x r/ (r x r) .(r x r

rRl"
R = R 2 = U x W (24)

LR3J

Then the desired transformation of a four-vector is:

11 '
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x= A(r, r)T (2)

where

10 0 0

S 0U 1 U 2 U 3

A(r, r) = (26)
0 W 1 W 2 W 3

0 RI R 2 R 3 .

and the inverse is:

1 0 0 0

0 U1 WI R,
A-1 i, -F) = (27)

0 U 2 W 2 R 2

0 U 3 W 3 R 3

We are now in a position to write down the general Lorentz

transformation to a moving frame, but a frame with its space

basis three-vectors parallel to the original frame. This is

called boost without rotation by Moller [Ref. 41, and is

analagous to Fermi-Walker transport in the General Theory

[Ref. 5]. This transformation is simply:

,= A_'Cr, ir)L1(O)A(i, Y) T

= [S]T (28)

12



where 82 =F . F/C 2

With a little algebra one can write:

y -8yU, -ByU 2  -ByU 3

-OyU, 1+(y-1)UI2  (y-I)UlU2  (Y-1)UIU 3S =S(U, 8) = (29)
-SyU 2 (y-1)UlU 2  1+(y-)U 2

2 (y-I)U 2U3

-BYU3 (Y-1I)UlU 3  (Y-i)U 2 U 3 1+(y-1)U 3
2

Note that this transformation is in fact independent of the basis

vectors W and R, as it should be.

We now define the frequency four-vector that describes

propagation of electromagnetic plane waves. A plane wave

propagation in the direction of the unit three-vector £ is a

function of

"- r £ (30)

The Ii are the direction of cosines of the normal to the plane

wave in the direction of propagation. The vector potential of

such a wave can be written as the real part of a complex

expression:

A = Re{A 0 exp(-iw(t- r 1))
e c

RelA 0 exp(-il.(x - x £1 - x2£2 - x 3Z 3 ))} (1

13
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which can be written in terms of a frequency four-vector:

r1 " .V 0l

S I = 2 (32)c 12 V

as:

A = e AO exp(i+) (33)

where the phase is:

1 0 0 0 x0

[VOV1V2 310 -1 0 0 x i  (4
* = [v 0 V1 V2 v 3 ] (34)

0 0 -1 0 x2

0 0 0 -1 x3

The matrix

1 0 0 0

0 -1 0 0
[g I = (35)

ij 0 0 -1 0

0 0 0 -1

is in fact the flat space-time metric, and the occurrence of

gij in (32) has a fundamental significance that is beyond the

14
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scope of this discussion. Now in a moving reference frame, the

phase would be viewed as:

± =1 [1 1, -2 , 3, [g ij) T

_ [1 11 12 t3] [g 1j ] ' (36)

which, using (28), can be written as:

f _ ,_I[11 11]gij[S - l "X (7

* * , = _u [1 t,1 t2 ,3J ( 1 ] ' (37) =

c _

Now using the relation:

[giJ][S] - I = [Sl[giJ] (38)

we have

* = '= L- [ 1 2 t3][S]gij

- [iL A2  L'I ](g
[z( / 1 , 12z , t, 3 , 1 i ] F

= [v O' 'u 1 ' v2 x (39)

This shows that the frequency four-vector (32) is indeed a

four-vector and transforms like any four-vector.

15



The frequency four-vector contains all the information about

the frequency and direction of propagation of a plane wave. The

Lorentz transformation describes how this frequency four-vector

is viewed in various reference frames. Before proceeding with

the radar doppler we can now easily demonstrate some classical

results, which can provide some insight into the deeper meaning

of the Lorentz transformation.

If we consider the geometrically simple situation, where K'

system is moving along the x axis of the K system. If the

direction of transmission in the K system is 6, then the

four-vector in the K system is:

cOSO]c(0I
V = V V=- (40)

This four-vector transformed to the K' system is:

I - a Cos 1

-B +OS8 1OSC

Vt = =V c1 (41)
sin e/Y sin e'

0 0

The apparent frequency is:

V= v(1 - 8 cos e) (42)

16



with the wave moving in the direction 8' given by:

tan 01 v1 sin el sin e (43)v' cos 6' Y(-0 + cos 8)

Of course the moving frame sees the wave coming from the

direction 6a' = - e'. The moving observer would deduce that

the wave was actually coming from the direction 8a i- 8

using:

sin 8

t(o + Co s ) (44)

These are the classical expressions for the doppler shift and

aberration as seen in a moving frame.

Now we sit in the moving (K') system, and reflect the

incoming wave (o) back along the direction of propagation

(rr). This could be done with a cube corner. Mathematically

this is expressed as:

1 1-8cos 8

-cos 8' 8-cos 8= r'=., (45)

r -sin e' -sin e/y

L 0 - 0

If we then view this reflected wave in (i.e., transform to) the

stationary (K) system we obtain:

17



1 - 20 COS 8 + 0 2

-cos e(i + 82 ) + 20
V Ll(-8)7 = vy2  (46)
r r -sin 6/y

0

Now the frequency is perceived to be shifted by:

V -V
r (-28 cos 0 + 282) (47)

and propagated in the direction er:

sin e
tan 8 = (48)

y (cos e(1 + s2) - 28)

appearing to come from the direction:

sin 6tanO = f a (49)
ra =,2 (cos a(1 + 8 2 ) + 20)

Note that this is not the original direction of outward

propagation (+180 deg) in the K system, though the wave was

reflected along the transmitted direction in the K' system. This

effect is known as velocity aberration. In this case the

refected wave will not return to the transmitter. For a

18
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satellite at the height of Lageos (7503901, 8820) the return

would be 120 m away from the transmitter. Therefore the cube

corners mounted on Lageos and other satellites for laser ranging

must be imperfect, spreading the return pulse such that some

energy will return to the transmitter site.

From the point of view of the moving frame (K') one would

have to reflect the plane wave along the direction:

1

-(cos 0 + B)/( 1 + 8 cos 0) (0r-V, = VY(1 - Cos 0) (50)'

r -sin e/(y[l + 8 cos 8])

L 0

to return to the transmitter. In this case the apparent

frequency would be:

r-n = 22(

V vy2 (1 - 28 cos 0 + 282 Cos2 0) (51)r

One could also return the plane wave along the direction:

1

-(8 + cos 0(1 - 282))/(1 - 8 cos 0)V, =YV(1 - Cos 9) (52)

r -sin 0/y

0

19
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which would exactly cancel the effects of Special Relativity in

observed frequency. One notes that all these effects are of

second order in the small quantity S. This is why the effects of

TSR are experimentally difficult to observe, and that some care

must be used in the details of computation.

These examples assume the moving target controls the

direction of reflection; more precisely the direction of

retransmission. In the case of radar reflection, the target is

expected to return some radiation to all directions in the half

space normal to the incoming wave direction in the stationary

system. One can express the returned four-vector in terms of the

four-vector in the stationary system. That is how (50) was

obtained.

Within this framework we can now formulate the radar Doppler

equation. Recall that we ultimately need to write expressions

for the transmitted and observed frequency in terms of the

inertial geocientric position and velocity. Let us introduce the

following notation. The time of transmission, the time of

reflection at the target, and the time of reception are

respectively: ti, t2, t3 as defined by a clock in our inertial

geocentric system. From (10) we see that the (TSR) correction of

the time measured at the transmitter and receiver to inertial

geocentric time is negligible. The position and velocity of the

transmitter at tI are denoted are R1 , R1 , the position and

velocity of the target at t2 are r2 , r2 , and the position and

velocity of the receiver are R 3 , R 3 ; all expressed in the

20



inertial geocentric reference frame. The unit three-vector of

each velocity is denoted U. the magnitude of each velocity

vector is 0 in units of the speed of light (c). Therefore we

have R, = cB1 Uj, r2 = cB2U2 and H3 = c8 3 U3. We have the vector

from transmitter to target P12 = r2 - R1 and from target to
receiver 23 = R- ~2- The ranges are (P12) 2 = P12 "12 and

(P2 3 )
2 - P23 * P23. Now we can define the four-vector wave

propagating between transmitter and target in the inertial

reference frame as:

Vt t V 2 (53)

where

£12 P12/P12

Now this wave as seen by the (moving) transmitter is:

S(U1 , B1) t (54)

and the target sees this wave as:

t (U2 , 02)Vt (5

Using (54) we have:

21



7= S(U2 , 02 )S(U1I, -~u~(

The same reasoning relates the received frequency four-vector as:

V" S(U2, 02)S(U3 , -B3)v' (57r r

Since the transmitted frequency seen by the target (Vt l) and

the reflected frequency at the target (yr )aetesmw

can equate the first element of these four-Niectors and obtain the

desired relation between the transmitted (v't) and received

(V? r) frequency in their respective frames.

For calculation we need not compute the whole Lorentz

transformation matrix. We can write out the elements of

S(U, O)S(U', 8') =[S.. (58)

as:

SO = yy' + OO'YY'(U * U') (59)

S i=-[,~i+ O'- + a'$Uj(U .U')] i =1,2,3

So= -Y'[Byui + B'Ui + ao'ui(u U) i = 1,2,3

OUi + Ot'(U'2  + UiU!(OYBY, + aact( U . U')] i = 1,2,3

S. = 00'YY'U.U, + czU U. + a'U!U' + aci'U!U (U - U') i > j .1.) i ii i

= 'jOYY'U1 U! + MUi + a'UlU! + a'uiu~ (U .U') *j > i >' 1

22



where Ui are the three components of U and U' i are the three

components of U', and a = (y - 1) - 02/2 is a small quantity of

second order. Note that we have used positive 8' in (58).

Therefore in (56) 0' = -81, and in (57) 8' = -03.

Let us call sij Sij(U2, 82, U1 , -01) and

S3ij = Sij(U 2 , 82, U3 , -83). Then we have:

ri 3
53 1 3~J1 ~ S .£2Vr [ o3 [S0  + i 121 (60)r O0 23] 00 oo lO1

or:

3
S 0+ s 1 £12

V, =V (61)

s3 + s . £2
S00 0 i12.

The frequency shift seen is therefore:

3 3
s - s3 + s'. 12- S 1  3

V , 00 00 01 or Vt - i=l i=l (62)3i 363)

S 00 + 1 3 23
1=1

This expression is the desired result, without approximation, and

no assumption that the transmitting and receiving site are the

same. For purposes of computation (62) should be used. To see

23
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the meaning of the terms, we note the following. First, B' is

the velocity of the transmitter (receiver or station) and is in

general smaller than B for ground based observations. If we

consider a' B'2/2 negligible and if we therefore take a' = 1,

then:

Sol= -Yf{'u' + IU i = 1,2,3 (63)

Recall that 8' = 01 or -B3 and we see that the Lorentz

transformation depends on the difference in velocity of the

observer and target, which is consistent with the first tenent of

TSR. Further, if we assume the station motion is rectilinear

(i.e., unaccelerated) then 81 = 83, 6 1 = U 3 and S 0 = S300

and S'o = S3 0 i. Therefore the observed frequency shift

becomes:

3 1 oi(112 -13
'= + - (64)

Vi 3
%0 + - 123

This approximation ignores the Lorentz boost due to the station

velocity, but preserves the different pathes of transmission. If

finally one takes the mean station-target vector

22= (r 2 - R2 )/P2 2  (65)

24
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with

£12 1 £22 -123 (66)

and

S = Y, S = -y(r - R)/c (67)

we have:

V - V -2(r R * 22
r =t ,.(68)

t c(1 + ( )
Ye

or

V1 - V1  ) 2 + [
c r t

- = -(r - R) * 122 + [(r 122 /) (60)

the classical approximation.

If one wants an approximation with the accuracy of (64),

but in terms of the mean geometric station-target vector one has

V' - vs
c r t 1 22 +121

-~ -(r - R) " + [(i - R) "*2
2 t

-(r -R) • f-R/p (70)

where fi'R - =R
I 'R3 - R2.

Since the second and third terms of (70) are terms of second

order they could be calculated with a predicted trajectory. We

25
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can then define the mean geometric range rate in terms of the

observable as:

r I

.. V - IT . 1.] 1
122 i - 2- ) °

2 2 /cvt

+ (r - R) / (71)

or

- c r Vi c r 2t
-(r 1 £22 = 2 Vt r V

+ (r - ) P (72)

11. DISCUSSION

In all cases we have expressed the frequency shift as viewed

in a moving frame (the observable) in terms of positions in our

interial geocentric reference frame (the computable). Therefore,

the vector quantities in (62), (64), and (69) are considered

geometric quantities and are the three-space quantities used with

Newtonian Mechanics. The correction terms for the Newtonian

three-space are small. The elaboration of a trajectory is

considerably simplified if done in three-space, allowances being

made with small corrections. Therefore, the meaning of (62),

(64), and (69) is as follows. A trajectory or orbit

determination is made in convenient Newtonian three-space. Radar

26



ti

observations are used to determine the orbit state vector

Iteratively by, say, the method of Least Squares. In this

calculation, the observed-computed difference is needed. In this

case (62), (64) or (69) is used to obtain the computed frequency

shift. Then appioximating the difference 4s an error in the

geometric range rate (- ) * £22 an observation equation is

formed to improve the satellite state vector.

The discussion thus far has employed the TSR. We know that

the space-time is in fact not flat but curved due to the presence

of mass or energy. This is known as the General Theory of

Relativity (GTR). For our purpose we can approximate the local

space-time curvature with the Schwarzschild Metric [Ref. 5].

There will be effects due to the Sun and the Earth. We know that

based on the GTR, there are a number of effects that must be

considered. First, the dynamics of a particle must be modified.

This is most easily accomplished with a small "correction" term

to the Newtonian model. For close earth satellites, this is

trivially accomplished [Ref. 6]. Second, the velocity of light

is slower in the presence of a gravity field, than it is in flat

space time. Using a light travel time of electromagnetic

propagation to measure distance therefore requires a correction.

In this case the effect of the earth's mass is very small, but

the sun's mass is not. The correction can be estimated as

follows. The space-time relation between the proper time of

radial transit of a photon (dt) and the metric distance (r - r0 )

in the Schwarzschild metric can be shown to be

27
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cdt = r - r0 + 2- in(r/r0) (73)
c

where ro is the radius of the transmitter, r is the radius of the

target, and GM is the gravitational constant multiplied by the

mass. GM/c2 has the units of length and is sometimes referred to

as the Schwarzschild radius. The first two terms of the right

hand side of (73) are the flat space-time (Newtonian) distance,

and the last term can be viewed as a General Relativity term.

Examples of the correction are given in Table I.

TABLE I

SPACE TIME CURVATURE EFFECT ON RANGE MEASUREMENT

Mass Range Measurement To Correction

Earth Lageos 0.6 cm
Earth Synchronous Satellite 1.6 cm
Earth Moon 3.6 cm
Earth Sun 8.9 cm
Sun Lageos 12.5 cm
Sun Synchronous Satellite 62.8 cm
Sun Moon 741.0 cm
Sun Sun (ij) 16.9 km

Now the conventional value of the speed of light in vacuum (c =

2.99792458 = 0.000000012 x 1010 cm/sec) is based on laboratory

measurements at the earth's surface. Therefore measurements of

distance near the earth implicitly use the appropriate value of

c. in other words, a measurement of dt at the earth's surface

correspond to r - ro if the absolute speed of light is reduced by

6c 2 GM

c c2r0
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Therefore, the speed of light at infinity Is greater by ths

value. For AJ and ao, 6c/c = 2 x 10-8. We can summarize the

situation as follows. The choice of a particular value of c

depends on the reference frame chosen. Discussion of data in the

near earth environment, i.e., where one can ignore the change in

c due to the change in distance from the sun, the constant

obtained in terrestial laboratory measurements is correct. In

this case, only the variation in the space time metric

represented by the earth's mass should be used. Since ranges to

the moon need be corrected by less than 5 cm, this can be ignored

in most applications. However, when considering general solar

system measurements, then a frame with c defined at infinity mnust

be used. The metric distances in the earth's environment will of

course then have to be expressed in this new system. Therefore.

for earth orbiting bodies, within the moons orbit, the

corrections given in Table I are not applicable. Finally, the

frequency of our standard clocks will change in a potential

field. This is potentially the most significant effect with

Doppler measurements. The appropriate description includes a

transformation from station to satellite. This transformation is

the change in frequency along the geodesic path from station to

satellite.

It is found that the frequency would change by a factor

1 + Af, where A* is the difference in potential between the

transmitter and target. The reverse change takes place on the
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return path. If the transmitter and receiver are at the same

potential (e.g., at the same geopotential height) then the change

up and down would be exactly the same. However, if the

measurement is of an oscillator onboard the target, then such a

term should be included in (62) [Ref. 8]. The consequences of

this effect for multistation observatories must be examined

further.
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