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3 INTRODUCTION
o This study considers only passive vibration
» Y
50 o . . .
f“ isolation by an optimization algorithm. Most
(O] '
A physical structures designed for dynamic environ-
'~ ments have isolator elements to attenuate the res-
o
‘3g ponse. Examples of engineering problems that
@3 could benefit from this work are ground vehicle
o response and equipment or instrument vibrational
.Q:n
S response. Passive damping might be of use to damp
B
3? out the vibrations of large space structures and
w3. these algorithms could be used for the selection of
5‘*:
oy damping parameters.
S
L@ The constraints considered are displacements or
e accelerations. The frequency constraint has not been
>
L
-;j used since
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.gz it tends to destroy the linear character of the algorithm
24
as discussed in reference (8). The design variables are

Eﬁ ~ linear changes to mass, stiffness or damping matrices.

:f However, only numerical examples are presented for stiff-

' ness changes. The constraints can be expressed in either
o3 the time or frequency domain and the cumulative constraint

is used té measure the amount of constraint violation.

The objective function represents a design variable that

éﬁ restrains displacements or accelerations to be less than
L4

15 a maximum value at a single response point.

ot

It is shown that the variation of displacement or

‘Eé acceleration constraints are shallow in reciprocal design
Eé variables. The optimization problem formulated in Fhis
- space is almost linear. The weight minimization problem
;; has not been considered. However, the form of the dis-
,é placement or acceleration constraints could be used with
- weight minimization algorithms, but this is a nonlinear
t' optimi zation' problem.

. The Jeveloped algorithms have been studied for

-

transient response, frequency response and stationary

random using the direct dynamic solution. The algorithms could be used
Y with a reduced basis of old eigenvectors as well. Multiple response
points and loading conditions may be used.

) ' TRANSIENT RESPONSE

The minimization of displacements or accelerations can

é{ be formulated as a MIN-MAX optimization problem for a single
Seo .

y response point xi.
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A7) a,

(1) MIN (MAX [X, ] ),

(2) MX +CX+KX=FP

(3) MAX |X, (..t) - xjft)lfxu
(f) K =K + LaK;

(5) M= M, o+ zaini

(6) C = C° + Zuici

£q. %
L% %y

.

Only the direct method of solution has been considered

in this study.

Equation (1) minimiées the. maximum acceleration in the
time domain. The objective function could be displacements
instead and the present algorifhms could also be used.
Eqguation (2) is the structural dynamic equations in matrix
form which describe the displacement response X(t). Equg-
tion (3) is the so called relative displacemepnt or rattle-
space constraint. The present algorithms can include this
type of constraint in the analysis. However, no specific

 numerical examples are presented using the rattlespace

constraint. Equations (4), (5), and (6) show the linear

------
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changes to the stiffness, mass or viscous damping matrix
with the design variables a; . The design variables could
contain differing sets in equations (4), (5), and (6).
Equation (7) lists the constraint limits on the design

variables Q.

FREQUENCY RESPONSE

Sometimes, it is convenient to solve vibration problems
in thé‘driving frequency w domain. This is true for pro-
blems which have experimentally available results for
transfer functions. Also, for stationary random analysis,
the frequency domain transfer function must be determined.
Equation (2) is transformed to the steady state frequency
domain by,

(8) X = RE{xoei“t} , P = RE{p_e %)

where RE: denotes real part of

i=/~T

w¢ driving frequency
xoz amplitude of harmonic response
PO: amplitude of harmonic loading

For the harmonic substitution, equation (2) becomes,

2
(9) (-wM + iuC + x)x° = po

The amplitudes xo, P° are complex numbers. Equation (9) may
be solved repeatedly for xo given Po and w- using complex

arithmetic. It is more convenient to use the real displace-

ment components in the analysis. The method of reference (1)
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;f is used to work with the real and imaginary components of
AN ‘
o Xo-
- Xo = U=iV
N
A
N 2
N (10) -w°M + K wC 13} Po
o R =.
by wC w?M + K v o)
1$J
2
Py .
AN The optimization becomes in the frequency domain for one
- response point Ui’ Vi'
o (1) MIN (MAX (02/ 02 % v3)
n,!
= (12) -0?M + K wC v P
- o
N ) =
wC - wM + K | N 0
8,
p <
e (13) MAX | X . (w) - X3 (W) |_ Xy
5\
1%
4 (14) K = Ko +ZaiKi
£3
]
£ -
& (15) M =M +Ia.M,
o
i (16) € = C_ +Ia;Cy
-
b),\
,.1
v A7 oy oy < a5y
N
.'J'
87 :
N Equation (1ll) is the amplitude of steady state accleration

at one point and equation (12) are the structural dynamic

equations to be solved.
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STATIONARY RANDOM

A Frequency Response solution is first analyzed to de-
termine the transfer function H(w) which is either the dis-
placement or acceleration at a response point of interest.
The spectral density of the output is given in terms of the
spectral density of the input for a single input/output

system is given in reference (2).
S (o) = |H(w) ] 25, (w
o I
The same reference also lists techniques for analyzing

multiple input/output systems. The mean square value can be

calculated for any frequency interval,

2 'z
z = Js,(w) du.
Wy

Various performance measures have been proposed for
random analysis sgch as using either the spectral density
or mean square value. The optimization problem for sta-
tionary random becomes,

(18) MIN (MAX so)

(19) —w2M+K wC U P
2 =
wC w'M+ K v ] (o}

2
(20) s, = |H(w)|s;

(21) K = K, *+ Za,K.
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(22) M =M, + Lok,
(23) C =C_ + ZaM

(24) oy < a;< a5y

The maximum displacement or acceleration spectral den-
sity is the objective function to be minimized in equation
(18) . Only the single input/output case is used to calculate
the spectral density by equation (20)- The objective function
is converted to a set of equivalent integral constraints and
the minimization is done then on the mean square response in
'i effect. However, the algorithm can also be used for multiple

input/output with minor modifications.

MIN-MAX PROBLEM

The objective function (1), (11) or (18) can be converted
to a simplier algebraic form. Consider equation (1),
MIN(MAXIE(}t) 1)
This minimization is equivalent to minimizing an addi-
tional design variable a such that
MIN a
|§&(t)| - a 30 for all t.
The cumulative constraint has been used in the optimal
control literature (3) to convert many discrete constraints
in the time domain into one equivalent integral constraint

+  which measures the total amount of constraint violation. 1In

terms of the cumulative constraint, the MIN-MAX part of the

-------
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optimization becomes,

MIN a

(25) I < |§;(t)l- a >dt =0

The objective functions (11) or (18) in the frequency
domain are computed in thé same manner with frequency re-
placing time in the. integral. .

The inner problem or the maximization in this research
was done by function evaluation. This is efficient for the
transient problem, but the frequency response problem re-
quires a decomposition for each driving frequency in equa-
tion (12). It.would be required to reduce the basis of
equation (12) by using the real normal modes for efficient
solution in locating the maximum. Reference (1) recommends
performing a one dimensional search on the variable w to
locate the maximum. This one dimensional search would re-
quire several initial stérting points to insure convergence

to the maximum of the nonlinear problem in w.

ANALYTIC DERIVATIVES

For stétically determinate structures, stresses and de-
flections are proportional to design variables that are
linear changes to stiffness such as areas of rods in truss
members. For indeterminate siructures, this is only an
approximation. It was investigated in references (4,5) and
found that high quality explicit expressions for stresses
and deflections could be generated using a first order

Taylor series expansion in reciprocal design variables.

--------
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That is, the design variable space for stress and static de-

flection is shallow in reciprocal design variables. The
linearized Taylor series expansions represent lines that are
very good approximations to the exact constraints. The ex-~
pansion of a response quantity ¢ is done in the reciprocal

design variables Bi of the direct design variables <§.

_ 9
¢ = ¢° + I s%iéei
B; = 1
ai

The direct solution of the dynamic response equations in
the time domain uses an efficient implicit equation solver
such as Newmark integration.

This would be the most general capability for
solution of the dynamic equations. The Newmark integration
equations presented in reference (6) are listed for one set
of integration parameters, § = ¥ and a= %. Given the response
at t,, the response at t, can be calculated from the following:

(26) MX + cxt + KX =P

(27) KK = K +

~~~~~~ e T Tt T T Ta e T - R e
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(29) KK - X, = PP_

2 2
Y ) . L] L)
(30) X, = 4 (X -X_ )- 4 X =-X_-
t —_— t - “t t
2 42 t, 1 At 1 1,
& L] oQ [ X ]
(31) X, =3X_ + At X_ + At X
t, 't T Y TO%

The displacements at the hext time step are calculate’
by equation (29). The matrix KK is only factored when t
time step At changes. The acceleration and displacement
are recovered by equations (30) and (31). The deriyatiVeE
of the response quantities are found by diffeientiating
equations (26) through (31) as was done in reference (7).
This is the pseudo loads teachnique. The derivatives with

respect to the reciprocal variables are,

ax, 9PB,
(32) RK__ "2 _ _ 9K, 2
28 ®; t, B,
(33) KK _ 3K_, 4 M _ 2 3C
3B; _ 9B, ' g2 9By ' Bt 3B,
apP ap ax ax ax,
(34) b e SR B TR N T S
38, 38, 2 98, | Bt 38, ' 36,
®_ AX,
PP S S
it 38, = 98,
O)E . oo
3 ax aX aX 3X
13s) _ "2 _ _4 f2__ % 4 _ 0 51
a8, 2| 8; %, it 3B; 96,




PRl SRt St et it St iy 3
.......... R AR s D A St et s

Using this technique, the derivatives of displacement,
velocity and acceleration must be calculated and saved for
all &egrees of freedom in the finite element model at two
neighboring points in time. The KK matrix in (32) was de-
composed in the response calculations and would not be
factored again in this step.

The pseudo loads technique was applied to the structural

equations (12) in the frequency domain. The required deriva-

tives are,

= — - -
on e ] Ta ] AR el (T
N v
, o 0§ W' _ 3
L(:ﬁ oMK —\' L * - ] * aBl aBi - b -l
dPo
9B,
0

LINEARIZED CONSTRAINTS

The acceleration cumulative constraint has the following

first order Taylor series expansion in the reciprocal variables.

T =
(38) jo I dt=20

where I = x°j+ I b‘B’i_GBi -8, for X 2 8
11

e Dl s St St o dats b 4
I e
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This constraint is numerically integrated by a modified
trapezoid law which finds those response points above a line
for which the constraints are violated. The algorithm inter-
polates to find the points where the actual constraint is
violated.

The steady state acceleration amplitude in the frequency

domain is,

(39) A = m2 JG- + V&

J J

The first order Taylor series expansion for the accelera-
tion amplitude magnitude is,

(40) fﬁI dw = 0

2 U av .

J J
where I = A + w L (g5= + s=5=)8B8, - B
o 5 7 EBi B, i
Uj + Vj

The spectral density acceleration is calculated like

equation (40). The square root spectral density of the out-

put S is minimized,

s = w?|H(w | /5  (w)

3
.

t.‘l A

R

This is the form of equation (39) and equation (40)

r

."

ﬁ: would be modified by multiplying mz by /SI(w) . A formula

> _ .

& could be derived for multiple sources with cross correlation
f 12
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’
e
|
;|
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correlation in a similar manner.

SEQUENTIAL LINEAR PROGRAMMING

The problem considered in this study of minimizing
a linear design variable subject to constraints on displace-
ments or accelerations in the time or frequency domain is an
almost linear problem in reciprocal design space. It is only
natural to use sequential lineér programming as the optimiza-
tion algorithm. A primal-dual linear program which is listed
in reference (10) was used as the optimizer. Sequential

linear programming is described.in reference (11l).

NUMERICAL APPLICATIONS

Transient Response:

The model of reference (1) shown in figure 1 was sub-
jected to the displacements inputs fl(t) and fz(t) shown in
figure 2. This model represents a vehicle running over a
bump. The transient step size used was .l sec and 39 time

aln intervals were calculated. The five springs were used as de-

sign variables with limits shown on figure 1. The objective |

function was a design variable which represented the maximum

AL
o f
]

(Y

acceleration at point 1 in the model over the 3.9, sec time

Py
D)

of response. The acceleration constraints were made active
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when the acceleration bound was 99% of the maximum. Figure

3 presents the decrease in acceleration at point 1 in the
model versus the required number of structural analyses.

The linear program uses design variables that are changes
from a reference and the change can be positive or negative
which requires two variables be subtracted to keep all
variables positive. So the total number of design variables
used in the linear program was eleven. Initially, the reci-

procal variables were constrained by a move limit to lie

within ¥ 25% of the initial values. Convergence was obtained

at iteration three. The spring rates found at the optimum

were,

k1 = 51.2 1b/in
k2 = 200.1b/in
k3 = 200.1b/in
k, = 1600.1b/in
ks = 1000.1b/in

The minimum acceleration obtained was 228.8 in/secz.
Figure 4 presents the initial response versus the optimal
one.

Frequency Response: |

The model shown in figure 1 was subjected to equal in-

phase displacement inputs fl(t) = fz(t) = 5 coswt at the
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N
{g tire. This would represent a vehicle on a shaker table. The
:ﬁ five springs wui.e used as design variables with the limits
{3_ shown of figure 1. The acceleration amplitudes were evaluated
fﬁ between 5 RAD/SEC and 44 RAD/SEC in steps of 1 RAD/SEC as the

' driving frequencies. The objective function was the maximum
Sl steady state acceleration amplitude at point 1 over the range
{5 of driving frequencies. The acceleration constraints were made
ﬁi active when the acceleration was 99% of the maximum. Figure 6
A presents the decrease in acceleration amplitude at point 1
‘§§ in the model versus the required number of structural analyses.
'§' Initially, the reciprocal variables wére constrained by a move
ﬁ:  limit to lie within % 25% of the initial values. When a step
E; was not minimizing, the percent move limit on the reciprocal
;: variables was decreased by 50% and the linear program was fe-
‘:4 solved at the pre&ious design point. Convergence was achieved
EE at iteration 7 which was close to the value found at iteration
2 5.
?; The spring rates at the optimum were as follows:
z
A k, = 52.9 LB/IN
: k, = 231.2 LB/IN j
é: k3 = 215.1 LB/IN
s k, = 1000.LB/IN

k. = 1311.LB/IN
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T’E The minimum acceleration amplitude was found to be

iz 318.7 IN/SEC2. Figure 7 compares the initial acceleration

;H amplitude in the frequency domain versus the optimized res-

2; ponse.

&

- Stationary Random Response:

ff The model shown in figure 1 was subjected to a random

ég displacement at the tire patches as discussed in reference

- (13) with parameters that correspond to a smooth highway.

ﬁ A Frequency Response solution is first comple;ed with a unit

;&E harmonic displacement with phase lag el (wt=®)¢ the rear

,;} ' tire with phase angle ¢ = %. The spectral density of the

,i? output in terms of the spectral density of the inpuﬁ and

2:3 transfer function is,

= So(w) = [H(w) | 2 Sy (w) .

;: The transfer function is determined by using the accelera-
Z; tion output of the frequency response solution due to the unit
.f harmonic input. The spectral density acceleration was eva-
luated between 5 RAD/SEC and 44 RAD/SEC in steps of 1 RAD/SEC.
.;i The objective function was the design variable representing the
o maximum acceleration spectral density.

_E; The acceleration constraint was made active when it was

:i 99% of the maximum. Figure 8 presents the decrease ‘in the ob-
;j jective function versus the required number of structural ana-
i} lyses. The reciprocal spring rates were constrained by ha 25%
%5 of the current value as move limits. At the detection of each
%f infeagibility, the move limit was reduced by 50% of the current
Eé percent.

- | 16
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Convergence was achieved at iteration 3.

The spring rates at the optimum were,
Kl = 51.2 LB/IN

= 200. LB/IN

K, = 200. LB/IN

= 1000. LB/IN

= 2000. LB/IN

The minimum spectral density was 49.61 (IN/SEC2)2/Hz.
The initial and optimized spectral densities are presented

in figure 9.

REDUCED BASIS

The dynamic equations are usually reduced from physical
degrees of freedom to some set of generalized freedoms. The
following transformation is used.

X = YZ
v Tz + (vTenrz + (vTkvdz = ¥Tp

Most solutions use the matrix Y as the collection of eigen-

;S vectors. When the equations are differentiated, the derivative
‘ - ' -
y of the eigenvector must be calculated. An alternate approach

would use direct Ritz vectors as in reference (15). When small

changes are made to a structure as would be the case in vibration
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isolation an old eigenspaée could be used as in reference (9).

When old Ritz vectors are used, the eigenvector derivative
is not calculated and the previously developed algorithm can be
applied with the same éequential linearity. Sparse matrix mul-
tiplications should be used if small changes are made AG to a
matrix G.-

Y76y + ylaGy
where G° is the unchanged part of the matrix and is calculated
initially. .

LOCAL MINIMA

The algorithms presented coverage only to a local minima

+ and it is necessary to use several initial designs to identify
all minima. The method tends to converge to the minima which is
the strongest resonant peak that is closer to the initial design
than other strong peaks. The following table lists the initial

design and optimized with the minimum transient response of

figure 1.
TABLE I
INITIAL OPTIMUM  INITIAL OPTIMUM INITIAL OPTIMUM
(LB/IN) K, 100 51.2 300 204.8 I 200 161.8
X, 300 200 800 1200 500 200
K, 300 200 800 200 500 200
K, 1500 1600 1200 102y 1800 1138
Ké 1500 1000 1200 2000 1800 2000
MIN X 5
(IN/SEC*) 228.8 238.4 238.4 ‘
18

-----------

5. .'l L) -- e et e ., A . . ..~_.. L. e ) e N -'_ e e e s e .
. . . TAGRE AT NI U o, . . AR R ) . P AP S T T I S J
PR VIR A-‘\l_&&n{‘l-‘n .'r.)"; 'L‘L‘.L'.FAA}&L“;‘I__{L&'J:.‘; R o Nl e Rt S I R R S




- L
o
o

5

87 N %
R
v ."."."n

Y

4
0.0, ¢

.
B
.
. >
. -

4
.

L,

LD

7

PPN P

iy

~

‘.T -

[ Y

b AN
I

--'.Q"“ PRSP I A o ag . ..."
G G SR L LV N (S SR

MULTICRITERIA OPTIMUM

For multiple response points and loading conditions, the
techniques of multiobjective‘optimization is required and multi-
objective programming is descrioed in reference (l4). The simul-
taneous minimization of all objectives is in general not possible.
Individual optimization is done on one objective function at a
time with the remaining objectives treated as constraints and
bounds determined by the analyst. A multitude of solutions are
generated depending on the constraint bounds on the objectives.

As an example, the minimization of response for the mddel was
considered using all of the three previous loading conditions. This
problem has three different objective functions with each having
different units. Each objective should be minimized subject to con-
straints bn the other two. To illustrate the method, the transient
response was minimized subject to constraints on frequency response
and stationary random. The constraints were made active at 99% of
the initial design or the minimum of the maximum response of any
previous iteration during the sequential linear programming. Conver-
gence was achieved at iteration 6 which was very close to the results

of iteration 4. The results can be presented in a table.

TABLE 11
Iteration 4 Iteration 6

Ky 102.8 65.8

K, 200 200

Ky 200 200

K, 1280 1217

K¢ 1000 1778
Transient 237.5 235.7
Frequency Response 377.2 322.0
Random 49.4 50.1
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An infinite number of solutions can be generated in this same
manner and results can be found minimizing the other objectives.
Some engineering judgment is required to interpret the generated
solutions.

CONCLUSIONS

An almost linear optimization problem of importance in
vibration isolation has been identified and algorithﬁs were
developed to minimize the forced vibrational response of structural
systems. These algorithms should replace the very inefficient
one presented in reference (9) which solves a series of practical
problems. The linearity depends on using displacement or accelera-
tion as the only constraints in the time or frequency domain. The
frequency constraint is inherently nonlinear as discussed in re-
ference (8) and it has not been considered in this study.

Only the direct dynamic solution has been used, but a reduced
basis of old eigenvectors could be implemented as well. Only
local convergence has been shown and several initial design points
should be used to search out other local minima. Multiple response
points and loading conditions may be used.
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