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CHAPTER 1

INTRODUCTION

When a turbulent fluid interacts with a sinusoidal solid wave
spatial variations of the pressure and the shear stress occur at the
surface. If the wave is of small enough amplitude a linear response
can be expected in that the hydrodynamic quantities can be described
by single harmonics with characteristic phases and amplitudes. The
analysis for this case is, therefore, greatly simplified. The principal
theoretical problem is the determination of the Reynolds stresses close
to the surface. In previous studies by Cook [15] and Thorsness [70] it
was shown that the phase angle associated with the spatial variation of
the surface shear stress provides a particularly sensitive test of the
theory used.

The primary purpose of this thesis is to obtain surface shear stress
measurements for turbulent flow over small amplitude solid waves, over a
wide range of conditioqs and to compare these measurements in a meaningful
way.with predictions derived from various turbulence models. These
measurements provide a particularly sensitive test of current turbulence
models in the neighborhood of a solid boundary. The results find appli-
cation in understanding the generation of water waves at a gas liquid
interface.

Various attempts have been made to measure surface shear stress and
pressure profiles over a solid wavy surface. Motzfield [49], Larras and
Claria [36] and Zagustin et al. [76] measured pressure profiles. Their
measurements indicate a linear response for amplitude, ays to wavelength, A,

ratios of 2 ad/k £ 0.05. Kendall [34], who was concerned mainly with moving



waves, made a limited number of pressure and shear stress measurements

at zero wave speed. A wave of A = 4 inches and Zad/k= 0.062 was used in

this study. Sigal [65], using two geometrically similar waves with
Zad/A = 0.055 and wavelengths of 6 and 12 inches, measured both surface
shear stress and pressure profiles. Hsu and Kennedy [26] carried out a
similar set of experiments to Sigal'hsing waves of Zad/x= 0.022 and
0.044 on the wall of a pipe. In this laboratory Zilker [77] and Cook [15]
used electrochemical techniques to determine shear stress profiles over
waves with Zad/k= 0.0312, 0.05, 0.125 and 0.2 and a wavelength of

A = 2 inches. The major limitation of the above measurements, with the
exception of the shear stress measurements of Zilker and Cook, is that
they were not carried out over a large enough range of flow conditions
to be suitable for testing solutions of the momentum equations. Another
limitation is that the height of the waves was such that the appearance
of higher ordeg harmonics in the shear stress profiles made comparison
of these measurements with linear theory difficult.

Thorsness [70] and Morrisroe [48} obtained a set of shear stress
measurements using a wave surface with Zad/A= 0.012 and a wavelength,

A = 2 inches. These experiments provide the first detailed set of
measurements appropriate for testing models of the wave induced variation
of the Reynolds stress.

The analysis carried out by Thorsness indicates that for thick
boundary layers the phase angle characterizing the shear stress variation
is a unique function of a wave number, o = 2nv/ku*, made dimensionless
with the kinematic viscosity, v, and the friction velocity, u*. The
amplitude of the shear stress variation, made dimensionless using v and

u*, is found to vary linearly with a = au*/v. The ratio of this



dimensionless amplitude to a is an unique function of a. A major
limitation of the measurements of Thorsness is that they were obtained
in a range of a which was not entirely suitable to discriminate amongst
various turbulence models. Analysis suggests that the variation of the
shear stress phase angle passes through a well defined maximum and

that the prediction of this maximum should provide a sensitive test of
turbulence models. The experiments performed in this research are an
improvement over the work of Thorsness in that they covered a wide enough
range of a to determine this maximum. This was accomplished by using
the same wavelength, solid waves of A = 2 inches, and by increasing the
maximum value of u* by a factor of four.

Many turbulence models use the kinetic energy of the turbulence
fluctuations as a primary variable in estimating the Reynolds stress.
Very few measurements are available of this quantity close to a solid
surface. This lack of experimental data makes the evaluation of these
models more difficult. Therefore, additional experiments were carried
out to determine the streamwise component of the turbulent kinetic
energy at the wave surface.

The measurements of the time average shear stress and root mean
square value of the fluctuations were obtained in a rectangular channel
two inches high and twenty four inches wide. The measurements were
obtained utilizing an electrochemical technique developed in this
laboratory by Reis [57], Mitchell and Hanratty [58] and Cook [15].

This technique makes use of an electrochemical solution as the trans-
ducing medium. The solution flowed over a train of eleven waves
comprising the bottom wall of the test section. Each wave had an

amplitude of 0.01l4 inches and a wavelength of 2 inches.



The presénce of waves on the solid surface causes differences in
the turbulence properties from what would exist for turbulent flow over
a flat plate. This is due to the wave induced pressure variations and
the wave induced curvature of the streamlines. A periodic pressure
variation occurs along the wave surface due to the compression of the
streamlines at the wave crest and the rarefaction of the streamlines
at the wave trough. Experimental studies of Jones and Launder [32] and
Anderson, Kays and Moffat [3] have shown that these negative and positive
pressure gradients lead respectively to a damping and enhancement of the
turbulence. Similarly the alternating positive and negative curvature
of the streamlines can also lead to alternating enhancement and damping
of the turbulence. The problem of predicting the influence of a wavy
surface on the turbulence is further complicated in that the turbulence
does not adjust instantaneously to the change in the pressure gradient
and the streamline curvature.

Two approaches are explored to evaluate the Reynolds stress. The
first is an extension of Thorsness [70] Model D in which he applied the
ideas of Loyd, Moffat and Kays [42] mixing length theory to flow over waves.
The second is a modification of the Jones and Launder [31] K-e Model.

The advantage of the Loyd et al. mixing length approach is the simple
manner in which the effects of the pressure gradient, streamline curvature
and the relaxation can be taken into account. The disadvantage of this
approach is the ad hoc manner in which the relaxation effects are
jntroduced. The K-¢ Model avoids the arbitrary approach of introducing
relaxation phenomena by solving transport equations for the turbulence

properties which define the turbulent viscosity.



CHAPTER 2

LITERATURE

(a) Effects of Pressure Gradient and Curvature

Experiments carried out in order to understand the effects of
pressure gradient and streamline curvature on a turbulent boundary layer

have led to the development of turbulence models which have been applied

to flow over wavy surfaces. A short review of these experiments, the
models developed, and their applications is also presented.
An extensive review of momentum and thermal boundary layers subject

to pressure gradients and transpiration has been given by Kays and

/- -

Moffat [33]. Jones [28], Launder and Stinchcombe [37], Badri Narayanan
and Ramjee [4], Julien, Kays and Moffat [32], Launder and Jones [39],
Loyd, Moffat and Kays [42] and Jones and Launder [30] have measured
velocity profiles and skin friction in a turbulent boundary layer which
has been accelerated by flowing through a plane-walled convergent
channel. The interest in these flows stems from the fact that they
approach a state in which the local Reynolds number, the skin friction
and the shape factor are invariant with flow direction and therefore
constitute one of the simplest flows in which to study the effect of
pressure gradient. These flows are a special case of an equilibrium
boundary layer and are often referred to as sink flows or asymptotically
accelerated boundary layers. The strength of the acceleration is charac-
terized by the magnitude of the parameter,K, defined as U_zv(dU/dx),
where U is the local free-stream velocity and v 1is the kinematic viscosity
of the fluid.

The velocity measurements indicate that for moderate acceleration,

K=z 1x 10—6, the boundary layer remains turbulent; however, the viscous




sublayer becomes thicker in terms of the distance, y, made dimensionless
with wall parameters. The velocity profiles lie above the universal
logarithmic law of the wall. As the acceleration is increased the
deviation from logarithmic behavior becomes more evident with distinction
between the viscous sublayer and the fully turbulent region of the velocity
profiles becoming less clear. Eventually a state is reached in which a
turbulent boundary layer can no longer be sustained and the flow is said

to have undergone relaminarization.

Anderson, Kays and Moffat [3] have measured velocity profiles and
skin friction in unfavorable.pressure gradients without separation. In
contrast to accelerating flows, the velocity profiles remain logarithmic
and experience a thinning of the viscous dominated sublayer in terms of
the dimensionless distance, y.

The effect of streamline curvature on a turbulent boundary layer
has been thoroughly reviewed by Bradshaw [8] and later by Gillis et al.
(24]. Bradshaw [7] has shown that a flow subjected to mild longitudinal
curvature with a ratio of boundary layer thickness, §, tosurface curvature,
Rc,of 6/Rc= 1/300 can significantly effect the length scale distribution.
So and Mellor [66] have demonstrated that a convex surface inhibits
turbulence while a concave surface enhances it. Eskinazi and Yeh [19]
found that the wall shear stress is larger on the concave wall than on
the convex wall of a curved duct. Ellis and Joubert [18] have shown that
the width of the logarithmic region is curvature dependent. Convex
curvature causes the velocity profiles to become wake like at a lower
value of y than does concave curvature. Ramaprian and Shivaprasad [56,57]
have shown that the effects of curvature are far more significant on

the outer region of a boundary layer than on the region close to the wall.

SN W G I S v am e



Gillis et al. [24] carried out experiments to determine how a bound;ry
layer responds to strong convex curvature followed by a flat section.
The experiments show that both the shear stress in the outer part of the
boundary layer and the wall shear stress are strongly diminished on
encountering the curved surface. When the surface becomes flat again
both wall shear and shear stress profiles recover very slowly to flat
plate conditionms.

The first models of turbulent boundary layers close to a solid wall
have used Van Driest's [73] modification of Prandtl's mixing length
hypothesis. This approach, which assumes a universality of the wall
region in terms of wall parameters, fails to predict flows subject to
mild pressure gradient and streamline curvature. Various workers have
proposed modifications to the Van Driest formula to better account for
these effects.

Patankar and Spalding [53] proposed that the local value of the
shear stress rather than the wall value be used in the exponent of the
Van Driest damping function. This modification has the correct quali-
tative behavior. In favorable pressure gradients the shear stress
decreases from its value at the wall, so that this formulation does
result in a thickening of the viscous wall region. However, calculations
carried out using this formulation show that it does not produce a
large enough effect.

Launder and Jones [38], Cebeci and Smith [12], Julien et al.[32] and

Loyd etal. [42] began experimenting with the idea that the constant A in the

Van Driest mixing length model is related to the thickness of the viscous
sublayer in wall coordinates which in turn depends on the dimensionless

pressure gradient,%% . These workers deduced a functional dependency



8

of A on %E— by examining a large number of equilibrium velocity profiles
subject to both positive and negative pressure gradients.

In nondimensional flows where the pressure gradient is changing
rapidly Loyd et al. [42], Julien et al. [32] and Launder and Jones {38]
have proposed that a first order lag equation be used to predict an
effective sublayer thickness, A ¢¢.

Bradshaw [7] has modified the Van Driest mixing length proposal to
account for the effect of streamline curvature on the turbulence. The
flat wall mixing length is multiplied by an empirical function built
around the curvature Richardson number. In a situation in which the
surface curvature is not constant, Bradshaw suggests that an effective radius
of curvature be computed from a first order lag equation.

Jones and Launder [29,31] abandoned the mixing length approach by
arguing that the prediction of nondimensional flows could not be achieved
with a transport hypothesis based so firmly on equilibrium notioms. They
assumed that the turbulent viscosity is the productAof the square root of
the turbulent kinetic energy and an appropriate length scale. The turbu-
lence length scale is calculated by solving transport equations for the
turbulent kinetic energy and the turbulent dissipation rate. Launder
et al. [40] have modified this model to account for streamline curvature,
by redefining the curvature Richardson number in terms of turbulence

quantities. Several workers have developed alternate higher order closure

schemes. These have been reviewed by Reynolds [59,60]

(b) Models for Flow Over Wavy Surfaces

Benjamin [6] and Miles [46] considered the wave induced flow caused

by small amplitude waves. They formulated the problem in a curvilinear



coordinate system and included the effectsof turbulence only in the
specification of the mean velocity profile.

Hussain and Reynolds [27] incorporated the effects of turbulence
on the perturbed flow. The eddy viscosity distribution is assumed to
be set up by the mean flow. The mean eddy viscosity is then assumed
to act on the perturbed velocity gradient generating a wave induced
Reynolds stress.

Other workers to examine flow over wavy surfaces include Davis [16]
and Townsend [72]. Their models have been reviewed by Thorsness [70].

Thorsness [70] formulated the problem in a curvilinear coordinate
system and investigated several turbulence models for the wave induced
Reynolds stress. Three particular models are of interest. They are
labeled as Model A, Model C, and Model D. Model A is essentially the
quasilaminar model of Benjamin described above. Model C evaluates the
wave induced Reynolds.stress by using the Van Driest mixing length model.
A wave induced eddy viscosity results because the shear stress used in
the damping function is' the local wall shear stress. Model D is an
adaptation of the mixing length model of Loyd et al. This model uses
the wave induced pressure gradient and wall shear stress in evaluating
the mixing length.

Markatos [44] solved the full nonlinear problem using a curvilinear
coordinate system. In order to avoid the difficulty of modeling the

turbulence in the viscous wall region the high Reynolds number form of

‘the Jones and Launder two equation model is matched to the logarithmic

law of the wall.
Cary et al. [11] have used the mixing length model of Loyd et al.

and the two equation model of Jones and Launder. Their study is
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primarily concerned with the investigation of a wavy surface as a
possible drag reducing device. Their analysis suggests that neither
of the two models describe flow over large amplitude waves.

Caponi et al. [10] have developed a model for laminar flow over
an arbitrarily shaped periodic surface. An orthogonal transformation
is used to map the physical domain under consideration to a rectangular
region. Because of the periodic nature of the problem, the dependent
variables are expanded in terms of Fourier series. The model sucess-
fully predicts viscous flow over both a moving liquid and solid wave
surface.

Mclean [45] has extended the laminar flow calculations of Caponi
et al. to include turbulent flow by using the mixing length model of
Loyd et al. A comparison of thistheory with the shear stress measure-
ments of Thorsness and Zilker indicates that the model successfully
predicts flow over small amplitude waves. However,in the case of

large amplitude waves the discrepancy between the theory and experiments

is more apparent.



CHAPTER 3

THEORY

In this chapter a theoretical framework for the description of
turbulent flow over a small amplitude wave surface is presented. The
problem is formulated in a boundary layer coordinate system. A number
of models for the wave induced Reynolds stresses are developed. The
results of the alternate approaches and their comparative success in
predicting the experimental results is reserved for presentation in
Chapter 6 and Chapter 7. The various numerical techniques used in

integrating the equations are presented in Chapter 5.

(a) Coordinate System and Basic Equations

The boundary layer coordinate system used in formulating the
problem is shown in Figure 3.1. The x direction is taken parallel to
the wave surface while the y axis is perpendicular to it. For con-
venience x = 0 is taken as the wave crest with the positive x axis
being in the direction of flow. The flow field is assumed to be two
dimensional.

Unless otherwise stated all the variables are made nondimensional
with respect to wall parameters. Velocities are made dimensionless
with respect to the friction velocity, n /?wa/p . Lengths are
made dimensionless with respect to v/u*, where v is the kinematic
viscosity. Pressure, stresses and the turbulent kinetic energy are

2
considered multiples of p u*”.

11

The time averaged continuity and momentum equations in the boundary

layer coordinate system with surface curvature, «, are:
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where U and V are the velocities in the x and y directions respectively.

The quantities, —u'u', -u'v' and -v'v' are the Reynolds stresses and P

is the static pressure.
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(b) Linearized Equations

The necessary conditions for the flow field to be described by a
linear form of the Navier Stokes equatiomns are that the wave amplitude
be small compared to both the wavelength and the boundary layer
thickness. These conditions are developed in Appendix A.

The time averaged velocities, U, V, the turbulent stresses, Rij’ and
the pressure gradients, 3P/9x, 9P/dy, are assumed to be the sum of a
component averaged over a wavelength at a constant value of y and a
periodic spatially varying wave induced component. The general form
of the wave induced component is afieio'x where n is a complex number
whose real and imaginary parts are at most functions of y. Thus the

velocities, stresses and pressure gradients are given by

T o el e (3.4.1)

vV = a\'}(y)eimx (3.4.2)
~ujul = Ry, = Ry, +ady, (y) e 1% (3.4.3)
g—§=§§-+a9§§(’ﬂemx (3.4.4)
%E = %’;—- + aiap(y)el™ (3.4.5)

If the equations (3.4.1)-(3.4.5) are substituted into the continuity and

momentum equations (3.1)-(3.3) and the terms of O(az) are neglected, a

system of equations which is linear in the wave induced components results.

The continuity, the x momentum and the y momentum equations are respectively

alicd +9']e** =0, (3.5)
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The primes denote differentiation with respect to the y direction. The
continuity equation (3.5) can be satisfied by the introduction of the

stream function

y_ q
Y = J U(y)dy +aF(y)e ™ | (3.8)
(o]
with
1 oy
Gt (3.9.1)
y
and
-1 oy
vV = E;'a? (3.9.2)
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where hx and hy are the metric functions. The linearized metrics
are:

hx =1 (3.10.1)
and

2 idax

hy =1 + an"ye . (3.10.2)
Substituting equations (3.10.1) and (3.10.2) into equations (3.9.1)-
(3.9.2) and using the definition of the stream function equation (3.8),
the U and V velocities to O (a) are respectively,

U=T+ aFe®™ _ (3.11.1)
and

, iax
V = —aiaFe . (3.11.2)

The linearized momentum equations (3.6) and (3.7) can be combined
to eliminate the pressure terms in the following manner. Equation (3.6)
is multiplied by (1 + aazy'eiax) and then differentiated with respect
to y. Equation (3.7) is differentiated with respect to x and multiplied
by (-1). The resulting equations are then added. Substituting the
definitions of the velocities in terms of the stream function (3.11.1)
and (3.11.2) into the resulting equation and collecting terms of similar

order the following equations defining F(y) are obtained:

Env + i‘;{v =0, . (3.12)

y
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Equation (3.13) is similar to the well known Orr —Sommerfeld equation
used in stability calculations except for the appearance of additional
terms which arise due to the use of the curvilinear coordinate system
and due to the inclusion of the Reynolds stres<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>