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CHAPTER 1 

INTRODUCTION 

When a turbulent fluid interacts with a sinusoidal solid wave 

spatial variations of the pressure and the shear stress occur at the 

surface.  If the wave is of small enough amplitude a linear response 

can be expected in that the hydrodynamic quantities can be described 

by single harmonics with characteristic phases and amplitudes.  The 

analysis for this case is, therefore, greatly simplified.  The principal 

theoretical problem is the determination of the Reynolds stresses close 

to the surface.  In previous studies by Cook [15] and Thorsness [70] it 

was shown that the phase angle associated with the spatial variation of 

the surface shear stress provides a particularly sensitive test of the 

theory used. 

The primary purpose of this thesis is to obtain surface shear stress 

measurements for turbulent flow over small amplitude solid waves, over a 

wide range of conditions and to compare these measurements in a meaningful 

way with predictions derived from various turbulence models.  These 

measurements provide a particularly sensitive test of current turbulence 

models in the neighborhood of a solid boundary.  The results find appli- 

cation in understanding the generation of water waves at a gas liquid 

interface. 

Various attempts have been made to measure surface shear stress and 

pressure profiles over a solid wavy surface. Motzfield [49], Larras and 

Claria [36] and Zagustin et_ al. [76] measured pressure profiles.  Their 

measurements indicate a linear response for amplitude, a,, to wavelength. A, 

ratios ofl&JX   ^ 0.05.  Kendall [34], who was concerned mainly with moving 
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waves, made a limited number of pressure and shear stress measurements 

at zero wave speed.  A wave of X = 4 inches and 2 a^/X= 0.062 was used in 

this study.  Sigal [65], using two geometrically similar waves with 

2a /X = 0.055 and wavelengths of 6 and 12 inches, measured both surface 
d 

shear stress and pressure profiles.  Hsu and Kennedy [26] carried out a 

similar set of experiments to Sigal using waves of 2 a^/X= 0.022 and 

0.044 on the wall of a pipe.  In this laboratory Zilker [77] and Cook [15] 

used electrochemical techniques to determine shear stress profiles over 

waves with 2 a JX = 0.0312, 0.05, 0.125 and 0.2 and a wavelength of 
d 

X - 2 inches.  The major limitation of the above measurements, with the 

exception of the shear stress measurements of Zilker and Cook, is that 

they were not carried out over a large enough range of flow conditions 

to be suitable for testing solutions of the momentum equations. Another 

limitation is that the height of the waves was such that the appearance 

of higher order harmonics in the shear stress profiles made comparison 

of these measurements with linear theory difficult. 

Thorsness [70] and Morrisroe [48] obtained a set of shear stress 

measurements using a wave surface with 2 a^/X= 0.012 and a wavelength, 

X = 2 inches.  These experiments provide the first detailed set of 

measurements appropriate for testing models of the wave induced variation 

of the Reynolds stress. 

The analysis carried out by Thorsness indicates that for thick 

boundary layers the phase angle characterizing the shear stress variation 

is a unique function of a wave number, a = 2uv/Xu*, made dimensionless 

with the kinematic viscosity, v, and the friction velocity, u*.  The 

amplitude of the shear stress variation, made dimensionless using v and 

u*, is found to vary linearly with a = au*/v.  The ratio of this 

I 
I 
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dimensionless amplitude to a is an unique function of a. A major 

limitation of the measurements of Thorsness is that they were obtained 

in a range of a which was not entirely suitable to discriminate amongst 

various turbulence models.  Analysis suggests that the variation of the 

shear stress phase angle passes through a well defined maximum and 

that the prediction of this maximum should provide a sensitive test of 

turbulence models.  The experiments performed in this research are an 

improvement over the work of Thorsness in that they covered a wide enough 

range of o to determine this maximum.  This was accomplished by using 

the same wavelength, solid waves of A = 2 inches, and by increasing the 

maximum value of u by a factor of four. 

Many turbulence models use the kinetic energy of the turbulence 

fluctuations as a primary variable in estimating the Reynolds stress. 

Very few measurements are available of this quantity close to a solid 

surface.  This lack of experimental data makes the evaluation of these 

models more difficult.  Therefore, additional experiments were carried 

out to determine the streamwise component of the turbulent kinetic 

energy at the wave surface. 

The measurements of the time average shear stress and root mean 

square value of the fluctuations were obtained in a rectangular channel 

two inches high and twenty four inches wide.  The measurements were 

obtained utilizing an electrochemical technique developed in this 

laboratory by Reis [57], Mitchell and Hanratty [58] and Cook [15]. 

This technique makes use of an electrochemical solution as the trans- 

ducing medixim.  The solution flowed over a train of eleven waves 

comprising the bottom wall of the test section.  Each wave had an 

amplitude of 0.014 inches and a wavelength of 2 inches. 



The presence of waves on the solid surface causes differences in 

the turbulence properties from what would exist for turbulent flow over 

a flat plate.  This is due to the wave induced pressure variations and 

the wave induced curvature of the streamlines. A periodic pressure 

variation occurs along the wave surface due to the compression of the 

streamlines at the wave crest and the rarefaction of the streamlines 

at the wave trough.  Experimental studies of Jones and Launder [32] and 

Anderson, Kays and Moffat [3] have shown that these negative and positive 

pressure gradients lead respectively to a damping and enhancement of the 

turbulence.  Similarly the alternating positive and negative curvature 

of the streamlines can also lead to alternating enhancement and damping 

of the turbulence.  The problem of predicting the influence of a wavy 

surface on the turbulence is further complicated in that the turbulence 

does not adjust instantaneously to the change in the pressure gradient 

and the streamline curvature. 

Two approaches are explored to evaluate the Reynolds stress.  The 

first is an extension of Thorsness [70] Model D in which he applied the 

ideas of Loyd, Moffat and Kays [42] mixing length theory to flow over waves. 

The second is a modification of the Jones and Launder [31] K-e Model. 

The advantage of the Loyd et al. mixing length approach is the simple 

manner in which the effects of the pressure gradient, streamline curvature 

and the relaxation can be taken into account.  The disadvantage of this 

approach is the ad hoc manner in which the relaxation effects are 

introduced.  The K-e Model avoids the arbitrary approach of introducing 

relaxation phenomena by solving transport equations for the turbulence 

properties which define the turbulent viscosity. 



CHAPTER 2 

LITERATURE 

(a) Effects of Pressure Gradient and Curvature 

Experiments carried out in order to understand the effects of 

pressure gradient and streamline curvature on a turbulent boundary layer 

have led to the development of turbulence models which have been applied 

to flow over wavy surfaces. A short review of these experiments, the 

models developed, and their applications is also presented. 

An extensive review of momentum and thermal boundary layers subject 

to pressure gradients and transpiration has been given by Kays and 

Moffat [33].  Jones [28], Launder and Stinchcombe [37], Badri Narayanan 

and Ramjee [4], Julien, Kays and Moffat [32], Launder and Jones [39], 

Loyd, Moffat and Kays [42] and Jones and Launder [30] have measured 

velocity profiles and skin friction in a turbulent boundary layer which 

has been accelerated by flowing through a plane-walled convergent 

channel.  The interest in these flows stems from the fact that they 

approach a state in which the local Reynolds number, the skin friction 

and the shape factor are invariant with flow direction and therefore 

constitute one of the simplest flows in which to study the effect of 

pressure gradient.  These flows are a special case of an equilibrium 

boundary layer and are often referred to as sink flows or asymptotically 

accelerated boundary layers.  The strength of the acceleration is charac- 

_2 
terized by the magnitude of the parameter,K, defined as U v(dU/dx), 

where U is the local free-stream velocity and v is the kinematic viscosity 

of the fluid. 

The velocity measurements indicate that for moderate acceleration, 

K s 1 X 10  , the boundary layer remains turbulent; however, the viscous 



sublayer becomes thicker in terms of the distance, y,  made dimensionless 

with wall parameters.  The velocity profiles lie above the universal 

logarithmic law of the wall.  As the acceleration is increased the 

deviation from logarithmic behavior becomes more evident with distinction 

between the viscous sublayer and the fully turbulent region of the velocity 

profiles becoming less clear. Eventually a state is reached in which a 

turbulent boundary layer can no longer be sustained and the flow is said 

to have undergone relaminarization. 

Anderson, Kays and Moffat [3] have measured velocity profiles and 

skin friction in unfavorable pressure gradients without separation.  In 

contrast to accelerating flows, the velocity profiles remain logarithmic 

and experience a thinning of the viscous dominated sublayer in terms of 

the dimensionless distance, y. 

The effect of streamline curvature on a turbulent boundary layer 

has been thoroughly reviewed by Bradshaw [8] and later by Gillis et al. 

[24].  Bradshaw [7] has shown that a flow subjected to mild longitudinal 

curvature with a ratio of boundary layer thickness, 6, to surface curvature, 

R of 6/R = 1/300 can significantly effect the length scale distribution, 
c'     c 

So and Mellor [66] have demonstrated that a convex surface inhibits 

turbulence while a concave surface enhances it.  Eskinazi and Yeh [19] 

found that the wall shear stress is larger on the concave wall than on 

the convex wall of a curved duct.  Ellis and Joubert [18] have shown that 

the width of the logarithmic region is curvature dependent.  Convex 

curvature causes the velocity profiles to become wake like at a lower 

value of y than does concave curvature.  Ramaprian and Shivaprasad [56,57] 

have shown that the effects of curvature are far more significant on 

the outer region of a boundary layer than on the region close to the wall. 
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Gillis et al. [24] carried out experiments to determine how a boundary 

layer responds to strong convex curvature followed by a flat section. 

The experiments show that both the shear stress in the outer part of the 

boundary layer and the wall shear stress are strongly diminished on 

encountering the curved surface. When the surface becomes flat again 

both wall shear and shear stress profiles recover very slowly to flat 

plate conditions. 

The first models of turbulent boundary layers close to a solid wall 

have used Van Driest's [73] modification of Prandtl's mixing length 

hypothesis.  This approach, which assumes a universality of the wall 

region in terms of wall parameters, fails to predict flows subject to 

mild pressure gradient and streamline curvature.  Various workers have 

proposed modifications to the Van Driest formula to better account for 

these effects. 

Patankar and Spalding [53] proposed that the local value of the 

shear stress rather than the wall value be used in the exponent of the 

Van Driest damping function.  This modification has the correct quali- 

tative behavior.  In favorable pressure gradients the shear stress 

decreases from its value at the wall, so that this formulation does 

result in a thickening of the viscous wall region.  However, calculations 

carried out using this formulation show that it does not produce a 

large enough effect. 

Launder and Jones [38], Cebeci and Smith [12], Julien et al. [32] and 

Loyd etal. [42] began experimenting with the idea that the constant A in the 

Van Driest mixing length model is related to the thickness of the viscous 

sublayer in wall coordinates which in turn depends on the dimensionless 

pressure gradient,-r^ .  These workers deduced a functional dependency 
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of A on -^ by examining a large number of equilibrium velocity profiles 
dx 

subject to both positive and negative pressure gradients. 

In nondlmensional  flows where the pressure gradient is changing 

rapidly Loyd et al. [42], Julian et al. [32] and Launder and Jones [38] 

have proposed that a first order lag equation be used to predict an 

effective sublayer thickness, A^ff 

Bradshaw [7] has modified the Van Driest mixing length ptoposal to 

account for the effect of streamline curvature on the turbulence.  The 

flat wall mixing length is multiplied by an empirical function built 

around the curvature Richardson number.  In a situation in which the 

surface curvature is not constant, Bradshaw suggests that an effective radius 

of curvature be computed from a first order lag equation. 

Jones and Launder [29,31] abandoned the mixing length approach by 

arguing that the prediction of nondlmensional flows could not be achieved 

with a transport hypothesis based so firmly on equilibrium notions.  They 

assumed that the turbulent viscosity is the product of the square root of 

the turbulent kinetic energy and an appropriate length scale.  The turbu- 

lence length scale is calculated by solving transport equations for the 

turbulent kinetic energy and the turbulent dissipation rate.  Launder 

et al. [40] have modified this model to account for streamline curvature, 

by redefining the curvature Richardson number in terms of turbulence 

quantities.  Several workers have developed alternate higher order closure 

schemes.  These have been reviewed by Reynolds [59,60] 

(b) Models for Flow Over Wavy Surfaces 

Benjamin [6] and Miles [46] considered the wave induced flow caused 

by small amplitude waves.  They formulated the problem in a curvilinear 
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coordinate system and included the effects of turbulence only in the 

specification of the mean velocity profile. 

Hussain and Reynolds [27] incorporated the effects of turbulence 

on the perturbed flow.  The eddy viscosity distribution is assumed to 

be set up by the mean flow.  The mean eddy viscosity is then assumed 

to act on the perturbed velocity gradient generating a wave induced 

Reynolds stress. 

Other workers to examine flow over wavy surfaces include Davis [16] 

and Townsend [72].  Their models have been reviewed by Thorsness [70]. 

Thorsness [70] formulated the problem in a curvilinear coordinate 

system and investigated several turbulence models for the wave induced 

Reynolds stress.  Three particular models are of interest.  They are 

labeled as Model A, Model C, and Model D. Model A is essentially the 

quasilaminar model of Benjamin described above. Model C evaluates the 

wave induced Reynolds stress by using the Van Driest mixing length model. 

A wave induced eddy viscosity results because the shear stress used in 

the damping function is the local wall shear stress. Model D is an 

adaptation of the mixing length model of Loyd et al.  This model uses 

the wave Induced pressure gradient and wall shear stress in evaluating 

the mixing length. 

Markatos [44] solved the full nonlinear problem using a curvilinear 

coordinate system.  In order to avoid the difficulty of modeling the 

turbulence in the viscous wall region the high Reynolds number form of 

^the Jones and Launder two equation model is matched to the logarithmic 

law of the wall. 

Gary et al. [11] have used the mixing length model of Loyd et al. 

and the two equation model of Jones and Launder.  Their study is 
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primarily concerned with the investigation of a wavy surface as a 

possible drag reducing device.  Their analysis suggests that neither 

of the two models describe flow over large amplitude waves. 

Caponi _et al. [10] have developed a model for laminar flow over 

an arbitrarily shaped periodic surface.  An orthogonal transformation 

is used to map the physical domain under consideration to a rectangular 

region.  Because of the periodic nature of the problem, the dependent 

variables are expanded in terms of Fourier series.  The model sucess- 

fully predicts viscous flow over both a moving liquid and solid wave 

surface. 

Mclean [45] has extended the laminar flow calculations of Caponi 

et al. to include turbulent flow by using the mixing length model of 

Loyd et al.  A comparison of this theory with the shear stress measure- 

ments of Thorsness and Zilker indicates that the model successfully 

predicts flow over small amplitude waves.  However,in the case of 

large amplitude waves the discrepancy between the theory and experiments 

is more apparent. 
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CHAPTER 3 

THEORY 

In this chapter a theoretical framework for the description of 

turbulent flow over a small amplitude wave surface is presented.  The 

problem is formulated in a boundary layer coordinate system.  A number 

of models for the wave induced Reynolds stresses are developed.  The 

results of the alternate approaches and their comparative success in 

predicting the experimental results is reserved for presentation in 

Chapter 6 and Chapter 7.  The various numerical techniques used in 

integrating the equations are presented in Chapter 5. 

(a)  Coordinate System and Basic Equations 

The boundary layer coordinate system used in formulating the 

problem is shown in Figure 3.1.  The x direction is taken parallel to 

the wave surface while the y axis is perpendicular to it.  For con- 

venience X = 0 is taken as the wave crest with the positive x axis 

being in the direction of flow.  The flow field is assumed to be two 

dimensional. 

Unless otherwise stated all the variables are made nondimensional 

with respect to wall parameters.  Velocities are made dimensionless 

*   /= ',— with respect to the friction velocity, u = /T  /p .  Lengths are w^ 
A 

made dimensionless with respect to v/u , where v is the kinematic 

viscosity.  Pressure, stresses and the turbulent kinetic energy are 

*2 
considered multiples of p u . i 

The time averaged continuity and momentum equations in the boundary 

layer coordinate system with surface curvature, K, are: 
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(3.1) 

3P 
1 + Ky 3x 

2 2 
1    3 U 3 U 

2  2 2 
(1 + Ky)  3x 3y 

3U y     in m     K 
(1 + Ky)^ 3x 9x  1 + Ky 3y  (i + ^y)^ 

(1 + Ky) 3 3x 
iiiv +   ^'^ 3V 

(1 + Ky)  3x 

rT77 ^ <- "•>''' ^ w <-"'"'' ^ r^ <- "'"■' • "•'> 

1   „ II + V »^ 
1 + Ky   3x    9y  1 + Ky 

y2 

3P 
3y 

2    2 3 V   rv 
.2 „ 2  „ 2 (1 + Ky)   3x   3y   (1 + Ky) 

_2  3K ^ 
3 3x 3x 

3V 

1 -^ "y ^y  (1 + Ky)2     (1 + Ky) 
^   U 

3 3x 

^K  3U 

2 3x (1 + Ky) 
rr^ ^(-u'V)+^(-v'v') 

1 + Ky (- u'u') + 
1 + Ky (- v'v') . (3.3) 

where U and V are the velocities in the x and y directions respectively. 

The quantities, -u'u' , -u'v' and -v'v' are the Reynolds stresses and P 

is the static pressure. 
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(b)  Linearized Equations 

The necessary conditions for the flow field to be described by a 

linear form of the Navier Stokes equations are that the wave amplitude 

be small compared to both the wavelength and the boundary layer 

thickness.  These conditions are developed in Appendix A, 

The time averaged velocities, U, V, the turbulent stresses, R.., and 

the pressure gradients, 9P/3x, 9P/3y, are assumed to be the sum of a 

component averaged over a wavelength at a constant value of y and a 

periodic spatially varying wave induced component.  The general form 

of the wave induced component is ane   where n is a complex number 

whose real and imaginary parts are at most functions of y.  Thus the 

velocities, stresses and pressure gradients are given by 

U = U(y) + aa(y)e^°'^ (3.4.1) 

V = av(y)e^'"' " (3.4.2) 

u'u! = R.. = R, .(y) + af, .(y)e^°'^ (3.4.3) 
*i"j  "ij  "ij^^' ' °^ij 

9P  3P ^  dp(y)  iax /-, / /\ T—=T-+a \        ^ (3.4.4) 3y  3y     dy 

|| = ||+aiap(y)e^"^^ . (3.4.5) 

If the equations (3.4.1)-(3.4.5) are substituted into the continuity and 

2 
momentum equations (3.1)-(3.3) and the terms of 0(a ) are neglected, a 

system of equations which is linear in the wave induced components results. 

The continuity, the x momentum and the y momentum equations are respectively 

a [ iaG + v' ] 6^°^^ = 0 , (3.5) 
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a [ iaUG + vU'] e^'^'' =   -|^   + U" + R' 
3x xy 

2 /\ 2  2      3P 
+ a [ -lap -au + a   U'   +   ay 1- u" 

+ 2R      a^ + iar      + ?'    ] e^°"^   , (3.6) 
xy XX        xy 

r , —- 2 —2 ,    iax 3P    ,   —, 
a [ iaUv -aUJe =--7—  +R' 3y    yy 

+ a [ v" - a^v - ia^ U - p' + f'  + R a^ + iaf 
yy   yy     xy 

a^ R  ] e^'^^. '        (3.7) 
XX 

The primes denote differentiation with respect to the y direction.  The 

continuity equation (3.5) can be satisfied by the Introduction of the 

stream function 

y = 
y_ 
U(y)dy + aF(y)e^'''' , (3.8) 

with 

y 

and 

V = ::iill n 9 9) h 3x u.y.^; 
X 
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where h and h are the metric functions.  The linearized metrics 
X     y 

are: 

h = 1 (3.10.1) 
X 

and 

h = 1 + actV''- (3.10.2) 
y 

Substituting equations (3.10.1) and (3.10.2) into equations (3.9.1)- 

(3.9.2) and using the definition of the stream function equation (3.8), 

the U and V velocities to 0 (a) are respectively, - 

U = if + aF'e^"^ (3.11.1) 

and 

V = -aiaFe^'*'' . (3.11.2) 

The linearized momentum equations (3.6) and (3.7) can be combined 

to eliminate the pressure terms in the following manner.  Equation (3.6) 

2  ic(x 
is multiplied by (1 + act y e  ) and then differentiated with respect 

to y.  Equation (3.7) is differentiated with respect to x and multiplied 

by (-1).  The resulting equations are then added.  Substituting the 

definitions of the velocities in terms of the stream function (3.11.1) 

and (3.11.2) into the resulting equation and collecting terms of similar 

order the following equations defining F(y) are obtained: 

U'" + R"  = 0 ,  - (3.12) 
xy 
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ia [U(F" - a^F) - U"F + a^U^] 

= F"" - 2a^F" + a^F + 2a^ U" - a^ U + /? , (3.13) 

/?= ia^ R  +3a^R'  + ia ( r'  - £' ) + a^ ?   +r"  - la^ R  .  (3.14) 
XX      xy      XX   yy      xy    xy      yy 

Equation (3.13) is similar to the well known Orr—Sommerfeld equation 

used in stability calculations except for the appearance of additional 

terms which arise due to the use of the curvilinear coordinate system 

and due to the inclusion of the Reynolds stresses. 

Solution of equations (3.12) and (3.13) requires the specification 

of the Reynolds stresses and the boundary conditions.  The average 

velocity profile, U(y), and the average Reynolds stress, R  (y), appearing 

in equations (3.12) and (3.13) are taken to be the same as would exist if the 

surface were flat.  This specification is consistent with the linearization 

assumption in that the leading order wave averaged terms are the same in 

both a boundary layer and cartesian coordinate system.  Furthermore it 

is assumed that the wave averaged shear stress, T(y), does not vary in the 

y direction.  This implies that the wave averaged pressure gradient, 

3P/3x is zero.  Equation (3.12) can therefore be integrated once to yield 

U" + R"'   =0. (3.15) 
xy 

The specification of the Reynolds stress is dealt with in the next section. 

At the wave surface no slip and no penetration boundary conditions 

are invoked. 

F = 0 and F' = 0    at y = 0. vi.lo,> 
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The outer boundary condition is such that the flow field far away from 

the surface is unaffected by the presence of the wave.  Therefore the 

velocity field in the boundary layer coordinate system must be equated 

to an undisturbed velocity field that would exist if the wave surface 

were not present.  This is accomplished in two steps.  Firstly the 

velocity field in the boundary layer coordinate system is transformed 

into cartesian coordinates.  Secondly the transformed velocity field 

is then equated to a linearized velocity field in cartesian coordinates, 

see Appendix B.  The linearized boundary conditions for the flow far 

from the wave surface are then obtained as 

F = U and F'= U'   for large y. (3.17) 

The shear stress at the surface is evaluated from the component of 

the rate of strain tensor, S  , 
xy 

T = 2 S 
w    xy 

h      ^ 
X 3y 

U 
h ^ 

y=0 ^ "^   y=o 
h  3x 
X 

(3.18) 

2 
Neglecting terms of 0(a ) and using the surface boundary conditions 

equation (3.16), 

T = T(0) + aT(0)e^°"' = U'(0) + aF"(0)e^°"' .        (3.19) 
w 

The wave induced variation of the wall shear stress is 

39(0)6^°"" = aF"(0)6^"'' . (3.20) 

The wave induced variation of the pressure at the solid surface is 

found by evaluating equation (3.6) at y = 0 
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ap(0)e^'''' = — [F"'(0) + a^U'(O)] ae^""". (3.21) 
(X 

(c) Models for Turbulent Stresses 

c.l Constant Reynolds Stress Assumption Model A 

The simplest assumption to make is the quasi-laminar assvimption of 

Miles and Benjamin that the effects of turbulence enter the problem only 

in the specification of the mean velocity profile U(y).  In this case 

/? = 0.  A slightly different approach is taken here in that only the 

fluctuating component of the Reynolds stress, r. , , is set equal to zero. 

Consequently 

^= 3a^ R ' (3.22) 
xy ' ■ 

if the normal stresses, R  and R , are neglected. 
XX     yy 

For a thick boundary layer 

U" = -R' (3.23) 
xy 

so 

/?= -3a^U" (3.24) 

Thorsness [70] has argued that the constant stress model formulated 

in a boundary layer coordinate system, which he designated as Model A, 

is closely related to the assumption that the Reynolds stresses are 

frozen along a streamline as discussed by Davis [16].  In a cartesian 

coordinate system the constant stress assumption reduces to the quasi- 

laminar model of Miles and Benjamin. 
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A major shortcoming of the constant stress model (Model A) is 

that there is no interaction between the wave and the turbulence.  Several 

models are now explored which take this interaction into account.  These 

models are all based on the assumption that the Reynolds stresses are 

described by a Newtonian constitutive equation of the form 

I 

2 
where q is the turbulent kinetic energy and v is a turbulent or eddy 

viscosity and S.. is the rate of strain tensor defined in Appendix C. 

Since turbulent stresses are important only close to the wave 

surface, use is made of the boundary layer assumption that the normal 

stresses, R  and R .can be neglected.  Here the only component con- 
XX     yy 

tributing to the Reynolds stress tensor is R  where 

R  = — 2S   . (3.26) 
xy   V   xy 

In order to account for the spatial variation of the turbulence properties 

along the wave surface the concept of a wave induced eddy viscosity is 

introduced ' 

V    V V    . 
t     t ,     t  ^laX                                                ,-, 97X 
— = — + a— e   .                             (j.z/; 
V    V V 

Decomposing the rate of strain S  into its wave averaged and fluctuating 

components 

S  = S  + a a  e^'"'' (3.28) 
xy   xy     xy 
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the Reynolds stress, R , is related to the eddy viscosity and the rate 

of strain as follows , 

I  = — 2 S 
xy   V    xy 

+ a — 2 S   + -^ 2 s 
V    xy   V   xy ^ 

lax (3.29) 

The wave induced variation of the Reynolds stress is 

iax 
are   = a 

xy 
'"t  - — 2 S + -^ 2 s 

xy   V   xy 
iax (3.30) 

The average and wave induced rates of strain are respectively 

2 S   = U' 
xy 

(3.31) 

2a s  e   = a (F +oc F-aU)e 
xy 

(3.32) 

The Reynolds stress term,R , equation (3-14), can now be written as 

R^  3a 

e—   'I 

V 
+ a 

^r ?     2-   ^t - 
— (F" + a F - a U) + — U' 
V ■     V 

^t       2     2-   ''t- 
— (F" + a F - a U) + — U' 
V V 

(3.33) 

Before equation (3.12) to (3.14) can be solved for the fluctuating flow 

the eddy viscosity must be specified.  Two approaches are explored. 

c.2 Zero Equation Models 

At this level of turbulence modeling the Prandtl mixing length 

hypothesis is frequently used. 
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V    = l^   \2  S      \ ■ (3-34) 
t   o '  xy ' 

where I    is "the mixing length." Close to a solid boundary where 
o 

viscous effects are important several workers have adopted the Van Driest 

mixing length model 

£ = Ky [1 - exp (-D )] (3-35) 
o 

where K is the Von Karman constant and, D , is a damping function introduced 

to account for the effects of the wall in suppressing turbulent transport. 

Van Driest's original proposal was that D^ = A" "^w  "^"^ ^ ^^""""^ °^ 

A = A = 26 is suggested for flow over a flat plate.  Thorsness [70] has 

applied this formulation of the Van Driest mixing length hypothesis, which 

he labeled as Model C, to flow over small amplitude waves.  This formu- 

lation is not expected to be correct for flow over wavy surfaces because 

the presence of pressure gradients causes a large variation of T with 

distance from the boundary and a drastic change in the production of 

turbulence in the wall region.  This can be taken into account by redefin- 

ing the damping function as 

D^=^T^/^y) (3.36) 
A 

where the local shear stress, T(y), is used instead of the value at the 

surface.! .  The local shear stress is the sum of viscous and turbulent 
w 

stresses 

^ = 2 S  +— 2 S   . (3.37) 
xy   V    xy 
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For small amplitude waves the local shear stress can be separated 

into an average and a wave induced component.  The average shear stress 

is simply equal to its value at the surface 

T = 1 + 2 S xy = 1 

and the wave induced component of T is 

(3.38) 

-^ / . iax   „ 
aT(y) e   = 2a 

V xy 1 + -^ 
V xy 

iax 
(3.39) 

The mixing length to 0(a) is 

I    = i    + a £ e 
o   o    o 

iax 
(3.40) 

Using the definitions of v^, Z^  and D^,  equations (3.34), (3.35) and 

(3.36) respectively, and neglecting terms of O(a^) the average components 

of the mixing length, l^,  and the eddy viscosity, v" , are respectively 

£^ = Ky [ 1 - exp (- y/A ) ] (3.41) 

and 

v^ = Jl^ U' 
t   o (3.42) 

The wave induced components of £ and v are respectively 

ale        = aKy exp (-y/A) r ,iax 
(3.43) 

and 
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av t lax 
— e  = a 

'xy     2 exp (-y/ A) 

_ ^xy [1 - exp (-y/A)] 

(     1 ^ ■ 

z T 

IAJ 2 
t lax — e (3.44) 

where 

^xy ^ F" + g^F - g^ U 

xy 

(3.45) 
U' 

Eliminating the eddy viscosity, v , between equations (3.39) and (3.44) 

an explicit result for the variation of the wave induced shear stress 

is obtained. 

aT(y)e iax 
2— + 1 2i 

xy iax 

— 2 S  exp (-y/A) y 
V xy 

(3.46) 

1 - 
[1 - exp (-y/A)] A 

Equation (3.44) and (3.46) defining v and T respectively are designated 

as Model C .  If T is evaluated at the wall Model C reduces to Model C. 

For equilibrium boundary layers Loyd et al. suggest the following 

functional dependence of A on pressure gradient 

A = A -^il£ + k. 
dP 
dx 

(3.47) 

where A is the flat plate value. 

For flow over small amplitude waves A can be expressed as 

A = A + aAe 
iax (3.48.1) 
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where 

j iax   —,  . ^, . iax 
aAe   = aAk iap(o)e (3.48.2) 

The damping function is 

Dm = y 

r, ^ . iax 1/2 
[1 + aTe  ] 

A + a A e 
(3.49) 

Using equation (3.35) and (3.36) and neglecting terms of 0(a ) the wave 

induced mixing length and eddy viscosity are respectively 

iax r_„/A^ J. al e        -  aKy exp (-y/A) 
° A 

1 _A 
2 ~ A 

iax (3.5D) 

aixi' 

\ iax    \ a — e   = a — 
V V 

xy     2 exp (-y/A) 
S"     [1 - exp (-yA)] 
xy 

Z 
A. 

T_  A_ 

2 ~A 
e^'^^. (3.51) 

Eliminating the eddy viscosity between equations (3.39) and (3.51) the 

wave induced shear stress is 

aT(y)e iax 

2-^+1 
V 

2s 
xy 

2 -^U' exp (-y/A) 

[1 - exp(-y/A)] -' iax - e 

1 - 
-^ U' exp (-y/A) 

[1-exp (-y/A)] 

(3.52) 

Equations (3.51), (3.52 and (3.48.2) represent an equilibrium eddy 

viscosity model for flow over a small amplitude wave. 
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In situations where the pressure is varying rapidly Loyd £t al. 

[42] (see literature survey) have suggested that the flow close to the 

wall sees an effective pressure gradient. 

_d_ 
dx 

dP 
dx 

dP _ dP 
dx   dx 

^ (3.53) 
eff       k^ 

where k is a lag constant. 
LI 

Solving for a periodic pressure gradient 

-   iax 
lax ape  ,o   c, % 

ape        =  '^  (i. 34; 
"* [1 + iak^] 

and thus replacing p with p ^^ equation (3.48.2) becomes 

a Ak^ i a p 
aA ^^e   =   e   . (J.Do; 
^"      [1 + iak 1 

Li 

Thorsness [70] has labeled the above formulation for A^^^ together with 

equation (3.51) and equation (3.52) evaluated at the wall Model D.  Abrams, 

Frederick and Hanratty [2], using the local value of the shear stress 

equation (3.52) together with equation (3.51) and (3.55), have labeled this 

it formulation Model D . 

A slightly different approach is also explored in this research. 

Instead of accounting for the nonequilibrium effects in the boundary 

layer by relaxing the pressure gradient, the complete Reynolds stress term, 

/7,1s relaxed, by introducing an effective, ^^fj, satisfying the following 

first order rate equation. 
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dx 

R lax 
eff 
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i ^eff^        iax (3.56)  —    a e 
\ 

Solving for a periodic variation yields, 

^ .. . (3.57) 
^"       [1 + ictk^] 

Equations (3.52), (3.51), (3.48.2) and (3.57) for v^., T , A, and ^^^^ define 

a nonequilibrium relaxation model for flow over a small amplitude wave. 

The mean velocity profile to be used with the above turbulence 

models is obtained by integrating the wave averaged momentum equation 

(3.15).  This results in the well known Van Driest velocity profile. 

U(y) = 
2 dy ^^^^^^^_^_ (3.58) 

o 1 + /(I + 4K^y^[l - exp (-y/A)]^) 

c.3 K-E Model 

The basic high Reynolds number K-e model used in this thesis is 

the model proposed by Jones and Launder [29,31].  Several workers have 

extended the basic model to include the low Reynolds number viscous wall 

region.  Patel et^ al. [54] have tested many of these models against data 

sets obtained in a variety of external pressure gradients.  The most 

successful low Reynolds number model tested is the one proposed by 

Chien [13].  This is the model adopted for use in this thesis. 

The K-e model requires that a partial differential equation be 

developed for the turbulent kinetic energy 

K = 2 u^u^ ' (3.59) 
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and for the isotropic turbulent energy dissipation rate 

e = 
3u'. 8u: 

1  1 

3x. 3x. 
J  2 

(3.60) 

Equations for the kinetic energy and dissipation rate are presented in 

Appendix C together with the necessary closure assumptions.  The closed 

form of the energy and dissipation equations in boundary layer coordinates 

are respectively 

II II 

U   9K _^ ^ ^ ^ 
(1 + Ky) 3x    3y  (1 + Ky) 3x [(1 + Ky) 3x J  (1 -i- Ky) 3y 

3K 
(1 + Ky) 

3K 
3yJ 

III III 

t  3K 
(1 + Ky) 3x [(1 + Ky) vojj 3x (1 + Ky) 3y 

M ^  ^  t  3K (1 + Ky)  r— 
•" va^ 3y 

'3U 

.3y 

IV 

KU 1    ^ 
(1+ Ky)   (1 + Ky) 3x 

IV IV 

-u ,2 
3U .  KV 

[(1 + Ky) 3x  (1+ Ky)J 
- V 

3V 
3y 

- e - 
2K 

and 

(1 + Ky) 3x    3y 

II 

1   _3_ 
(1 + Ky) 3x 

3e 
(1 + Ky) 3x 

1    3 
(1 + Ky) 3y 

II 

(1 + Ky) 
3£ 
3y 

(3.61) 

III III 

(1+Ky) 3x 
t 3e 

(1 + Ky) va 3x (1 + Ky) 3y 
(1 + Ky) 

t 3e 
va  3y 
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IV 

+ C 1 K (-u'v') 
au KU 3V 
3y   (1 + Ky)   (1 + Ky) 3x 

- u 
9U _j_   icV 

(1 + Ky) 9x   (1 + Ky) 

IV 

-2 ^ 
v'^  3y 

^ C f  - ^ f 
K ^2 o    2 *d 

(3.62) 

where 

f = 1-0.4/1.8 exp (-K^/36e^) 

f d = ^""P ^"^4 y ^w^ 

(3.63.1) 

(3.63.2) 

Terms I  = advection of K or e by time averaged flow 

Terms II = viscous diffusion of K or e 

Terms III = turbulent diffusion of K or e by pressure 

and velocity fluctuations 

Terms IV = production of K or e by time averaged flow 

Terms V  = dissipation of K or e 

The eddy viscosity v is defined as 

v^  C K 
^  [1 - exp (-C3yT^)] (3.64) 

In summary, the turbulence model is assumed to be governed by equations 

(3.61)- (3.64) with the constants a    = 1, a = 1.3, C = 0.09, C^ = 1.35, 
K'e       V 1 

C„ = 1.8, C_ = 0.0115, and C, = 0.5.  The values used are those suggested 

by Chien [13]. 
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For flow over small amplitude waves it is possible to define a 

mean and fluctuating component of the turbulent energy and dissipation 

rate 

K = K(y) + ak(y)e 
lax (3.65) 

e = e(y) + ae(y)e 
xax (3.66) 

Substituting equations (3.65) and (3.66) into equations (3.60)-(3.61), 

2 
collecting terms of like order and neglecting 0(a ) terms, the following 

equations for the mean and fluctuating energy and dissipation rate 

result. 

Mean energy equation: 

[' 0 = I (1 + Vj./vOj^) K' + R   U'- I - ^ (3.67) 

Mean dissipation equation: 

0" [d + v^ /vo ) e' 
•  C,e C-jf e    2ef, 

K   ^y K 
(3.68) 

where 

f   = o 
0.4 

[1 - 1.8 "^P l36e^ 

^d"^ jxp   (-C^y) 

(3.69.1) 

(3.69.2) 

_t = C^A_ [1- exp(-C3y)] (3.69.3) 
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are 

K=e: = 0   at   y = 0 (3.70) 

and at large y the energy and dissipation distribution must be such as 

to yield a constant stress region 

K = C 
-1/2 

for large y.       (3.71) 

e = 1/Ky 

Fluctuating energy equation: 

a[ictUk + K' v]e 
lax = a 

+ 
V V 

—^ K'- +—^ k' 
va      va 

K K 

+ K' a^ + k" + Pj^ - e + 2 ic/y^ 
iax (3.72) 

Fluctuating dissipation equation : 

lax 
a[iaUe + e'v]e        =a 

r V.    ^ 

1 + 
va va 

+ £"   + e'    + 
va va 

— e' + ^!^    R        U' 
K ^y 

_^   _ k_ 

C e C ^2   _    <- 

+   ^    P,   - -^    f 
K       1^ K ° 

2e        k 

? K 



^2^  (.22) 

36 
exp 

-K 

36 e 

4k   2£ 

K    7 
K' 
72 

where 

C K^ 
[1 - exp (-C^y) ] 

2k  e 1 

K £ J 

and 

P, -2R   s   +2r  S K     xy  xy     xy xy 

Assuming that the normal stresses are small and using equation 

(3.30) the production term becomes 
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-2" f^ + — exp (-C^y) C^y -y— 
lax (3.73) 

+ C^C -^ exp (-C_y) |- F"(0) 
^3 y - 3^' 2 

(3.74) 

+ R   s   + R  s 
XX  XX   yy yy 

(3.75) 

t  - 2 
P, = — (U')^ 
k  V 

f2s 
JEZ 

I. ^xy 
(3.76) 

The velocity field is obtained by solving the stream function equation 

(3.13) simultaneously with equations (3.71)-(3.76). 
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The boundary conditions at the wave surface and at large values of y 

for the fluctuating energy and dissipation are 

k.= e = 0        aty = 0 (3.77.1) 

and 

k = e = 0        for large y (3.77.2) 

Since equations (3.72) and (3.73) are singular at y = 0 the boundary 

conditions at the wave surface cannot be used in the form presented in 

equation (3.77.2).  If a Taylor series expansion is made on equations (3.70) 

and (3.71) about y = 0 the following boundary conditions are arrived at 

k - -^ =0 (3.78.1) 

at y = 6^ 

6,e' 
£ - -4-= 0 (3.78.2) 

where 6. is a small distance from the wave surface, 
d 

(d)  Streamline Curvature ' 

The influence of streamline curvature is taken into account at the 

zero equation level of turbulence modeling by modifying the plane shear 

mixing length relation equation (3.35) in the manner suggested by Bradshaw. 

i = Z     a - ^   R.   ) ' (3.79) 
o      c 1 

C   ■ ■    ; 

Here g is an empirical constant and R,  is the curvature Richardson 
c 

nxjmber defined as 

R. = -^ (3.80) 

c 3y 
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where 1/R is the curvature of the streamlines.  For small amplitude waves 
c 

c        u 

in boundary layer coordinates.  The details of this derivation are 

given in Appendix D. 

Bradshaw suggests that an effective radius of curvature, R ^^j 

satisfying a first order lag equation be used 

R    R 

f^  =-J !i£i . (3.82) 
dx R , 

eff c 

Here k is the curvature lag constant.  Solving the above equation for 

a periodic variation, the effective radius of curvature of the streamlines 

is 

R      R (1 + iak ) 
Cgff    c c 

(3.83) 

2 
Using, 1/R    in equation (3.80) and neglecting terms of 0(a ), the 

'^eff 

curvature Richardson number can be written as 

R,  = aR. e'-°"' (3.84) 
i     1 ■ c     c 

where 

-  iax     a 2(F - U ) g      ^iax ., „c>j 
a R. e   = e    . (J.OD; 

"■c        U' (1 + ictkc) 



The wave induced mixing length, eddy viscosity and shear stress 

distribution incorporating the effect of curvature are respectively 
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ale 
iax Ky exp (-y/A) T 

o *^c i 
iax (3.86) 

t iax a — e   -a 
V 

xy _j_ 2 exp (-y/A) 

L xy [1 - exp (-y/A)] 
-26^R, — e^"^, (3.87) 

ax e 
iax 

(2v^/v + 1) 2 s 
t        xy 

2v^/vU' exp (-y/A) 

[1 - exp (-y/A)] A        c 

1 - 
-^U' exp (-y/A) 

[1-exp (-y/A)] 

iax 

(3.88) 

(e) Finite Boundary Layer Calculation 

The calculations thus far have assumed that the boundary layer is 

sufficiently deep such that in the region where the wave induced flow 

is negligible the average velocity profile is still logarithmic. The 

problem has therefore been characterized by a single parameter the wave 

number, a.  In this section the requirement of an infinite boundary layer 

thickness is relaxed. 

e.l Mean Flow 

The average velocity profile is assumed to be given by the Coles 

proposal (see Cebeci and Smith [12]). 
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f y 

u = 
2 dy 

1 + /l + 4 K2y2(l - exp (-y/A))2 

, 2n .2 1 Z 
2 5 

(3.89) 

where H = 0.55 for a zero pressure gradient boundary layer and 5 is the 

boundary layer thickness. 

e.2 Eddy Viscosity 

A finite boundary layer consists of two parts:  a fully turbulent 

inner region, where the Reynolds stress distribution is calculated from 

equations (3.51) and (3.52) for the average and wave induced flows 

respectively and an outer region, where Cebeci [12] suggests that the 

mixing length is given as 

I    = Y 5 
o 

y < y < 6 (3.90) 

Here y is an empirically determined constant approximately equal to 

0.075 and y is obtained from the continuity of l^.     The eddy viscosity 
c o 

is found using (3.34) to be 

2 2 1 
= Y 5  I 2 S xy' 

y < y < 6 
c ~ 

(3.91) 

Neglecting terms of 0(a ) the average eddy viscosity is 

= Y^6^ U' y < y < <S 
c 

(3.92) 

and the wave induced  eddy viscosity is 

iax 2.2 „ -       ^iax e        =aYo2s       e ' xy 
y    < y <  5 (3.93) 



Using equation (3.30) the wave induced Reynolds stress in the outer 

region of the boundary layer becomes 

a v^ . , 
lax            t ,   " lax                                   .                                              / o  r, / X are        =   4s e                    y<y<6                                           (3.94) xy                   V             xy -^ c      ^ 

The details of the finite boundary layer calculation are presented in 

Appendix E. 

I 
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CHAPTER 4 

EXPERIMENTAL MEASUREMENTS AND RESULTS 

I 
I 
I 
I 
I 
I 
I 

The purpose of the experimental effort was to obtain data which 

can be used to compare the various turbulence models developed in 

Chapter 3 for the wave induced Reynolds stresses.  The data consist of 

time average shear stress profiles and profiles of the root mean square 

value of the fluctuating velocity gradient at the wave surface.  The 

nieasurements were made in the large aspect ratio channel used by Thorsness 

[70]. Wall stresses were measured with electrochemical techniques. 

To test the theory developed, data had to be obtained over the range 

of dimensionless wave numbers of 0.0005 < a = |^ < 0.01.  It was | 

possible to meet the above requirement by modifying existing equipment 

in one of two ways.  The facility could be redesigned so as to increase 

the range of friction velocities attainable by a factor of four or waves 

of four times the previously used wavelength could be employed.  Cook [15] 

has shown that for a given channel the minimum channel height to wave- 

length ratio that can be used before the upper wall interferes with the 

measurements at the wave surface is | - 1.  This condition would have | 

required the construction of a new channel if waves of longer wavelength 

were to be used.  For this reason it was decided to use the existing 

channel and to install a pumping network that would provide the necessary 

range of friction Velocities. j 

Since the measurements are to be compared with linear theory, the || 

amplitude of the wave model used in gathering the data had to be 

sufficiently small so as to prevent the appearance of higher order 

harmonics in the data.  Zilker has demonstrated that provided the 

I 

I 

I 
I 

1 
I 
I 
I 
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a, u 
dimensionless amplitude,  < 30, the contribution of second and higher 

order harmonics to the total shear stress profile is negligible. 

(a)  Flow Loop 

The flow loop used in this study was originally built by G. W. Cook 

and modified by D. P. Zilker.  The modifications necessary to carry out 

the experiments reported in this thesis are reported in detail by 

J. J. Buckles [9].  Consequently the description given here is limited 

to the essential features. 

The flow loop shown in Figure 4.1 consists of a rectangular channel 

having a cross sectional area of 2 in. x 24 in. and a length of 27.5 ft. 

The channel was originally designed to handle liquid flows for which 

the velocity profiles could be considered fully developed in the neigh- 

borhood of the test section.  This portion of the channel consists of a 

24 in. X 27 in. removable section located at the far end of the 27.5 ft. 

run.  It is here that the wave model used in the experiments was inserted. 

Two pumps connected in parallel were used in the experiments.  The 

smaller pump is a Worthington 6 CNG84 centrifugal, 316 stainless steel 

model.  It was driven by a 5 h.p. motor.  This pump was used to deliver 

flow rates of up to 800 (g.p.m.) corresponding to a channel Reynolds number, 
Ub h/2 
  "  42,000,at room temperature.  The larger ptimp constructed from 

316 stainless steel is a Worthington model 1050-D centrifugal pump and 

is driven by a 60 h.p. motor.  This pump is able to deliver flow rates 

U. h/2 
of up to 2700 (g.p.m.) corresponding to -^  = 120,000.  The range of 

friction velocities obtained with the two pumps is 2.93 x 10  ft/sec < 

* -1 
u < 5.86 X 10  ft/sec.  The pumping network is shown in Figure 4.2. 

All piping and fittings were either 6 in. or 8 in.  Celanese schedule 
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Figure 4.1.  Schematic Diagram of Flow Loop 

1. Down stream rectangular to round diffuser 
2. Removable wave surface 
3. Test section 
4. Channel 
5. Honeycomb 
6. Up stream rectangular to round diffuser 
7. Annubar flow meter 
8. Butterfly throttling valve 
9. Removable blanking plate 

10. Diaphragm valve 
11. Small pump 
12. By pass diaphragm valve 
13. Large pump 
14. Cooling coils 
15. Reservoir tank 
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Figure 4.1.  Schematic Diagram of Flow Loop 
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80 P.V.C.  Provisions were available for flow rate and temperature 

control.  An additional set of cooling coils had to be installed in the 

recirculating tank to maintain temperature control when running with 

the large pump.  The flow rate was monitored by using an annubar 

connected to either a mercury or mirriam oil filled manometer. 

(b)  Test Section 

2 a 
A wave with a   ratio of 0.014 and a wavelength of 2 in. was 

used in this study.  Six cutting tools were made for the fabrication of 

the wave surface.  Four of the cutting tools were used to construct 

complete waves. Figure 4.3, while the remaining two. Figure 4.4, were 

used so as to mesh the leading and lagging waves into the flat portion 

of the wave section which lined up with the channel.  The cutting tools 

were made from hardened steel using a new approach.  A computer controlled 

mill which automatically compensated for the radius of curvature of the 

mill was used to generate the tools.  The tools were 2 in. in length 

and machined according to the relationship y = a, sin (Zir x/A).  The 

cutting edge of the tools had a 9*5° slope and therefore the amplitude 

of the tools had to be compensated for in order to provide the required 

wave amplitude.  The formula used to calculate this compensation is 

a,(actual wave) = a, (cutting tool)/cos (6), where 9 is the angle of the 
d a 

cutting tool edge. 

The tools were placed in a rotary cutter assembly and a wave train 

consisting of ten complete wavelengths was machined into a 27 in. x 24 in. x 

2 in. thick plexiglass section.  The waves were machined perpendicular to 

the mean flow direction. Finally the two waves which meshed into the 

flat portions of the wave section were machined.  A cross sectional view 

of the wave pattern is shown in Figure 4.5. 
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Amplitude of Cutting Tool Exaggerated 

lO 

1 

9-1/2° 

-H   (—1/4 

Figure 4.3.  Cross Sectional View of Cutting Tool 

Amplitude of Tool Exaggerated 

lO 

Figure 4.4.  Cross Sectional View of End Cutting Tool 

I 
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Figure 4.5.  Cross Sectional View of Wave Surface 
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Holes for the electrodes were drilled into the wave surface 

according to the following pattern.  Twenty-one holes of 0.025 in. 

diameter were drilled into the third and sixth waves respectively while 

a combined total of forty-one holes were drilled into the eighth and 

ninth waves.  The electrode pattern shown in Figure 4.6 was chosen so 

as to minimize the interference between the electrodes and to test 

whether a fully developed flow field existed. 

Platinum electrodes, 0.020 in. diameter, were epoxied into each 

of the holes using Techkits A-12 epoxy as follows.  The epoxy was 

injected into a hole.  Before the epoxy dried, a two inch piece of 

platinum wire, soldered onto a twelve inch coated copper wire, was 

inserted into the hole from the back of the wave section.  A small 

amount of platinum wire was allowed to protrude on the wave side.  The 

platinum wire was coated with a thin layer of epoxy prior to insertion 

into the holes. 

Once dry the electrodes were filed down flush with the wave surface 

using a soft file.  This had the advantage of not damaging the plexi- 

glass while removing the excess platinum.  Once the electrodes were 

flush, the surface was sanded down with progressively finer grades of 

sandpaper, polished with DUPONT 0861N Rubbing Compound, and DUPONT 

0761N Polishing Compound, and finally polished with Mirror Glaze Plastic 

Cleaner and Polish.  On completion of the polishing, the profile of the 

waves was checked using a dial indicator. 

The shear stress measurements were made over the sixth, eighth and 

ninth waves.  Figure 4.7, 4.8 and 4.9 show the profiles of the above 

waves respectively as a function of x/X, taking the wave trough to be 
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zero.  The amplitude of each wave was estimated by performing a least 

squares analysis of the wave profile data.  The maximum relative phase 

shift among the three wave profiles is less than 3°.  The tabulated wave 

profile data is listed in Appendix F.  Figures 4.10 and 4.11 show the 

front and back view of the completed wave section. 

(c)  Electrochemical Technique - 

The electrochemical technique which uses a diffusion controlled 

electrode for the measurement of wall shear stress was developed by 

Reiss [58] and Mitchell and Hanratty [47]. A chemical reaction occurs 

on an electrode which is embedded flush with the surface.  The resulting 

reaction current is related to the wall shear stress.  The electro- 

chemical reaction employed is an oxidation reduction couple employing 

a large excess of supporting electrolyte.  The cathode which is the 

shear stress probe is much smaller than the anode which makes the cathodic 

reaction the limiting step.  By suitably adjusting the applied potential 

the concentration of active specie at the surface can be made equal to 

zero.  The result is that the reaction rate and hence current flow 

becomes a function only of the rate of diffusion to the cathode.  Con- 

sequently the current flow can be related directly to the mass flux at 

the surface and the physical properties of the system. 

The redox reaction used in this study is the potassium iodide and 

iodine reaction system, in which the following reactions occur. 

I~ + 2e~  »- 3I~ (cathode) 

3I~  y  ^3 "•" 2e (anode) 

The approximate concentrations of I~ and the potassium iodide supporting 

electrolyte were 0.0015m and 0.2m respectively.  The properties of the 

electrolyte are summarized in Appendix G. 
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Figure 4.10.  Photograph of Front View of Wave Section Ln 



Figure 4.11.  Photograph of Back View of Wave Section 
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Under these conditions a mass transfer coefficient may be defined 

by the relationship   .   " 

\      n F A C, e a e b 
(4.1) 

where I is the current at the cathode,n^ is the number of electrons 

involved in the reaction, F is Farraday's constant, A^ is the area of 

the electrode and a is the bulk electrolyte concentration.  Through a 
b 

solution of the mass balance equations Mitchell and Hanratty [47] have 

shown that the instantaneous mass transfer coefficient is related to 

the wall shear stress as follows 

^w 

2r(4/3)K 
m 

9L  M e 
D2 

(4.2) 

where y is the viscosity of the fluid, D is the diffusion coefficient for 

the reacting species and L is the equivalent length of the electrode, 

equal to 0.816 times the diameter of the electrode. Using equations 

(4.1) and (4.2) and neglecting the transverse component of the fluctu- 

ating stress T'  the current measured can be related to the wall shear 
^d 

stress as follows 

I = C ( T. + T' ) 
"d   ^d 

1/3 
(4.3) 

where C is a proportionality constant and x^ and x^ are the time averaged 
d     d 

and fluctuating wall shear stresses respectively.  Furthermore if 

(T' /T  )  « (X- /X ) 
^d  "d 

X,   W. 
(4.4) 
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I = CT-^^^ (4.5) 

and 

' '.■■■'■' 

i^  .  -^ "     ,      : .      (4.6) 

Equations (4.5) and (4.6) are the design equations used to determine 

the average and root-mean square value of the wall shear stress respectively. 

(d)  Data Acquisition 

The electronic equipment used to measure the electrode currents was 

the same as that described in previous work, (Zilker [77]).  Figure 4.12 gives 

a schematic representation of the basic electronics.  A 118 A amplifier 

was used to apply a negative potential to the alternate electrodes and 

to act as a current to voltage converter.  The applied potential was 

set by the adjustment of a Helipot so that the potential was always kept 

in the mass transfer controlled plateau region. A feedback resistor, 

R^, was used such that the output voltage, V ,was between 2.5 and 3.5 volts. 

The output voltage was sampled with an Isaac-Cyborg twelve bit analog to 

digital, A/D, converter.  The A/D converter was in turn linked to an    . 

Apple II plus computer.  Up to sixteen channels could be sampled simul- 

taneously at a sampling rate of 1 KH .  A block diagram representation 

of the data acquisition process is shown in Figure 4.13. 

Data was stored in an integer basic format which allowed the Apple II 

to store approximately 22,000 data points in memory. A 6502 assembly 

language program was written for the purpose of analyzing the data.  The 

program is able to calculate the mean and the variance of the output 



lOpf 

,—(9—oV 
        Point Electrode 

500a 
'^•s/Nr— 

I 
-'V>w'>v- 

-I5V 

IKA 
Helipot 

Figure 4.12.  Electronic Circuit for Shear Stress Measurements 

01 
ON 



Figure 4.13.  Schematic Diagram of Data Acquisition System 
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voltage minus the applied voltage,(V - V  ).  Using these values and 

the design equations, (4.5) and (4.6) the average shear stress and the 

root mean square value of the fluctuating shear stress can be obtained 

as described in Appendix H.  Provision was also made to transfer the raw 

data to a floppy disc so as to allow for further analysis if necessary. 

(e)  Shear Stress Measurements 

Shear stress measurements were obtained using the previously described 

wave surface.  Before each run was made the wave surface was cleaned with 

soapy water using a soft sponge.  This was followed by thoroughly rinsing 

the wave surface with deionlzed water.  The channel was filled with 

electrolyte and allowed to run for a period of time in order to remove 

any entrapped bubbles.  The temperature was maintained at (26 ± 0.2) C°. 

At the conclusion of a run a sample of fluid was taken and the required 

chemical and physical tests were performed as outlined in Appendix G. 

Figures 4.14 through 4,34 show the measured time average shear stress 

profiles of selected number of runs. Measurements of the root mean square 

level of the fluctuating shear stress are shown in Figures 4.35 through 

4.40.  The average and fluctuating shear stress measurements are 

normalized with the wave averaged shear stress.  The data are plotted 

with respect to a cosine wave such that x/A = 0 corresponds to the upstream 

crest and x/X = 1 corresponds to the downstream crest.  On each plot a 

line is drawn through the points representing the best sinusoidal fit 

of the data.  The curves were obtained by performing a least squares 

analysis of the data.  The details of this analysis are presented in ' 

Appendix I. 



Figure 4.14.  Shear Streaa Distribution for Re = 5,970 
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Figure 4.15.  Shear Stress Distribution for Re = 6,680 



Figure 4.16.  Shear Stress Distribution for Re = 8,450 
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Figure 4.17.  Shear Stress Distribution for Re = 9,650 
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Figure 4.18.  Shear Stress Distribution for Re = 13,000 
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Figure 4.20.  Shear Stress Distribution for Re = 15,700 
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Figures 4.41 and 4.42 summarize the average shear stress data by 

plotting the phase angles and amplitudes of the sinusoidal curves 

fitted to the wall shear stress measurements as a function of Reynolds 

nvunber.  The phase angle is measured with respect to the wave surface, 

with shifts in the direction opposite the flow direction taken as 

positive.  The magnitude of the variation of shear stress decreases with 

Reynolds number while the phase angle increases initially, passes through 

a maximum at about a Reynolds number of 35,000 and then decreases. 

Figures 4.43 and 4.44 summarize the phase angles and amplitudes of 

the fluctuating shear stress measurements.  An error in the amplitudes 

of these measuremtns is expected due to the spatial averaging of the 

velocity fluctuations over the surface of the electrode and due to the 

problem of frequency response. Mitchell and Hanratty [47] have shown 

how to correct for both of these effects.  Figure 4.47 also shows the 

corrected amplitudes.  The details of the corrections are given in 

Appendix J.  The magnitudes of the fluctuations decrease with increasing 

Reynolds number while the phase angles increase with Reynolds number. 

The shear stress and intensity data are tabulated in Appendix F. 
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number of points in the range x , ..., x . This leads to a system of, 

n, algebraic equations which can then be solved for the coefficients,c,. 

The system of algebric equations will be linear provided the differential 

equation being solved is linear.  Villadsen and Michelsen [74] provide 

a detailed review of this method. 

Galerkin's method (Strang and Fix [68]) is based on the orthogonality 

of functions.  If y(x)  represents an exact solution to 

^-^ = g(f(x). ..., f^(x), v(x)) , 
dx 

(5.3) 

then y(x) has an associated residual, r(x)j defined as 

(X) =1JLM  _ g(y(x),  ..., y"(x), v(x))  , (5.4) 
dx 

which is identically equal to zero for all x, (since y(x) represents 

an exact solution).  Therefore, the residual, r(x), is orthogonal to 

every function and in particular it would be orthogonal to the set of 

basis functions.  Hence 

'a 
r(x) <j)^(x) dx = 0   i = 1, . . .n. (5.5) 

Since, y(x), is a linear combination of basis functions it is not 

expected to be an exact solution of the differential equation being 

solved.  What Galerkin's method does is to choose a y(x) which has a 

residual that is orthogonal to all basis functions, <t), (x), ..., (^   (x), 
1 n 

respectively.  This procedure, which requires the vanishing of a number 

of integrals, again leads to the solution of a system of algebraic 
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equations for the unknown constants,c..  Further details regarding 

the above projection methods can be found in Prenter [55], Lucas and 

Reddisen [43], Russel [6], and Ortega and Poole [52]. 

The next class of methods are the so called shooting methods where 

the basic aim is to always solve an initial value problem by using any one 

of the standard forward integration techniques.  This is achieved by 

guessing any parameters which are needed to make this possible, and by 

adjusting the guesses, directly with linear problem or iteratively with 

nonlinear problems, such that all the boundary conditions are satisfied. 

There are many variations of the basic idea.  These include direct 

shooting or the method of superposition for linear problems, (Scott and 

Watts [ 63], Na [ 50]).  For nonlinear problems direct shooting must be 

used in conjunction with Newtons method, (Na [50]).  Alternatively 

several workers including Bellman and Kalaba [ 5 ] and Scott and Watts 

[62 ] have suggested using the method of superposition together with 

quasilinearization. 

In the final class of methods low-order finite difference formulae 

are used and applied as approximations to the differential equation at 

a number of discteet points in the range.  The boundary conditions are 

satisfied exactly if they do not involve derivatives or approximately 

if they do.  The result of approximating the differential equation by 

finite difference formulae, is a set of linear algebraic equations in 

the case of a linear differential equation and a set of nonlinear algebraic 

equations in the case of a nonlinear differential equation.  The method is 

then, to solve the resulting set of algebraic equations directly for 

linear problems and iteratively for nonlinear problems, to give 
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approximations to the solution of the differential equation simultaneously 

at all mesh points.  The method had been reviewed by Ortega and Poole 

[52]  and Fox [20 ]. 

The linear differential equations (3.13)-(3.17) and (3.72)-(3.77) 

which specify the wave induced stream function, F(y), for the Zero Equation 

and K-e Models were solved using a modified version of the method of super- 

position to be discussed in the next section.  The main advantage of the 

method of superposition (direct shooting) is the existence of very good 

and well programmed methods for solving systems of initial value problems. 

These integrators are programmed to adjust the step by step intervals so 

as to provide the desired level of accuracy required by the user. 

The nonlinear differential equations (3.67)-(3.71) which specify 

the mean flow field when using the K.-e Model were solved by combining 

finite difference techniques with quasilinearization, to be discussed in 

a subsequent section.  Initial attempts were made to solve this problem 

using direct shooting and Newton's method.  However, due to the nature 

of the equations, if the initial conditions are not known accurately the 

solution blows up very fast. An alternate method suggested by Scott [64], 

but not tried, is the method of parallel shooting. 

(a) Numerical Solution of the Wave Induced Flow 

A linear boundary value problem such as equations (3.13)-(3.17) or 

equations (3.72)-(3.77) may be written as a system of first order equations 

and expressed in the following form, (see Appendix K), 

y'(x) = F(x) y(x) + g(x), (5.6) 
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Ay(a) = a , (5.7) 

By(b) = 3 , (5 8) 

where y(x) is a column vector of length n, F(x) is an n x n matrix of 

rank k, A is an (n - k) x n matrix of rank (n - k), B is k x n matrix 

of rank k, and a and g are column vectors of (n - k) and k components 

respectively. 

Applying the method of superposition any solution of equations 

(5.6)-(5.8) can be expressed as 

12        k 
y(x) = v(x) + Cj^y (x) + C2y (x).., Cj^y (x) (5.9) 

= v(x) + U(x)c (5.10). 

where c is a vector with k components, v(x) is a solution of the 

nonhomogeneous system 

v'(x) = F(x) v(x) + g(x), (5.11) 

Av(a) = a ' (5.12) 

1       k and U(x) is an n x k matrix whose columns y (x)..., y (x) are solutions 

of the homogeneous system 

U'(x) = F(x)U(x) , (5.13) 

AU(a) =0. (5.14) 

The constant vector c is determined by satisfying the final boundary 

condition at x = b, equation (5-8). 

By(b) = BU(b)c + Bv(b) = g (5.15) 
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It should be mentioned that in classical superposition n homogeneous 

solutions would have to be generated.  However by suitably choosing the 

initial conditions, equations (5.12) and (5.14), it is possible to 

generate only k homogeneous solutions.  If the direction of integration 

is reversed (i.e. from b to a) then (n - k) solutions are required.  For 

simple boundary conditions  [equations (3.16), (3.17) and (3.77)] the 

initial matrix, U(a), can be chosen by inspection (see Appendix K).  For 

complex boundary conditions Scott and Watts [62 ] have developed a 

general procedure for generating the initial matrix, U(a). 

It often happens that the exact mathematical procedure for obtaining 

the solution of equations (5.6)-(5.8) leads to poor or even completely 

incorrect results when applied as a numerical procedure.  This occurs 

when the matrix F(x) has eigenvalues whose real parts are well separated. 

In this case the various homogeneous solutions and the particular solution 

all grow at vastly different rates.  As a consequence of the finite word 

length associated with digital computers the rapidly growing solutions 

eventually swamp all other solutions, making them proportional to these 

growing solutions or combinations of them.  In this case the matrix U will 

become increasingly ill conditioned such that the vector c determined by 

equation (5.15) will yield incorrect results.  The above mentioned 

problem arises in the solution of equations (3.13)-(3.17) and (3.72)- 

(3.77). 

Consider equations (3.13) and (3.14) at large y such that the 

derivatives of the mean velocity profile U'and U" are small and the 

turbulence term, R ,   is negligible.  Then 

F"" - (2a^ + iaU) F" + (a^ + ia^ if) F - ia^ U^ - a^ U = 0 (5.16a) 



97 

Upon application of the standard method of solution for linear 

ordinary differential equations with constant coefficients and keeping 

the two solutions which are bounded at large y there results 

''^^'■'H/^P • (5.16b) 

= A^ exp (-ay) + A^ exp (-gy) + U, (5.16c) 

2    _ 1/2 
where        3 = (a + iaU) (5.16c) 

Assuming infinite precision the two homogeneous solutions exp (-ay) 

and exp (-3y) could be generated by solving the homogeneous form of (5.16a) 

subject to the initial conditions 

^H = ^'    ^H = (-"^^    y = yco (5.16d) 

\ = ^' ^\  = (-e>"    y = y» (5.16e) 

where F denotes the nth derivative. 

In fact these initial conditions will produce the following 

homogeneous solutions: 

Fjj = exp (ay^) exp (-ay) (5.17a) 

F  = exp (By ) exp (-gy) . (5.17b) 
"2 

Since computers do not have infinite precision let the total amount 

of round off and truncation error, e, (Lightfoot [41]) enter the problem 

in the initial conditions as follows: 



F„ = 1 + e    F  = (-a)     at y^ 
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(5.18a) 

_  = 1 + e    F^ = (-3) at y (5.18b) 

The numerical solutions that would be generated using the above 

boundary conditions are: 

ee ctBe 

1 + 
2(e - a) 2(6^ - a^) 

e^y- e-«y 

a Be ape 

2a (a + B) (3^ - a^) 

-ay       ay 
e     ■'00 e 

2 
a e 

2 2 2(e^ - a^) 

2 
ci  e „ „ 

e^y-e-^^ -—, ^e-^y-e^y 
2(e^ - a^) 

(5.19a) 

H, 

ae ape 
1 + 

2(a -  6) 2(a^ - g^) 
e^y- e-^y 

age age 
    + 

2g(a + g) (a^ -  g^) 

^-gy. ^gy 

g^e 

2 2 
2(a^ -  g^) 

^ay» 3-ay 
3^ 

2 2 
2(a^ -  g^) 

^-ay.   ^ay (5.19b) 

The behavior of F„ and F  as y—>-0 yields 
^1     "2 
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r, -g £   „3y= -ey (5.20a) 
^H       2   2 

r.  _^ eyoo -By ' (5.20b) 

^2 

since | g | » 1 a | . 

Hence F  and F  are no longer independent solutions of the homo- 
"l     ^2 

geneous form of equation (5.16a).  The point at which loss of independence 

occurs depends on the word size of the computer being used. 

Several workers have recognized this difficulty and have proposed 

methods for maintaining the linear independence of the solutions.  These 

include Kaplan's filtering technique [22], Davey's [17] complete ortho- 

normalization procedure, and the method of compound matrices Ng and 

Reid [51].  The most widely used and tested method is the Gram-Schmidt 

orthonormalization procedure. 

The use of the Gram-Schmidt orthonormalization procedure was first 

proposed by Godunov [25] and independently by Bellman and Kalaba [5]. 

The method has been discussed and used by Conte [14], Gersting [23] 

and Scott and Watts [63].  Scott and Watts [62] have refined the basic 

method and incorporated these modifications into an excellent code 

named Suport [62]. 

In this thesis the Suport code was used together with an indepen- 

dently written code.  The latter was developed to obtain a better 

understanding of the orthonormalization procedure.  The advantage Of 

the Suport code is its extreme efficiency and the modifications which 

have been added that take advantage of the complex structure of problems 

like the Orr-Sommerfeld equation (see Watts, Scott and Lord [75]). 
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(b)  Orthonormallzation Procedure 

The orthonormallzation procedure outlined here is the method 

suggested by Scott and Watts [63 ], Conte [14 ] and Godunov [25 ]. 

At the points where orthonormallzation is necessary the previous 

independent set of base solutions are converted into a new orthonormal 

set.  The orthonormallzation is achieved by employing the "modified" 

Gram-Schmidt precedure described below.  Scott and Watts [62 ] have 

suggested that the modified Gram-Schmidt procedure be used since it is 

(1) more stable (2) easier to code (3) more economical on storage. 

Thus at any point where orthonomalization is judged necessary 

U , , = PU (5.21) old    new K-"   ■•-/ 

where U ,, is the old independent set, U   is the new orthonormal old " new 

basis and P is an upper triangular matrix (defined in the next section) 

that is constructed from the columns of U ,,.  At each orthonormallzation 
old 

point the particular solution is turned into the orthogonal complement 

of the base set 

V   = V 1, - U  w (5.22) new   old   new new y-'-'^^j 

where w   is defined in the next section.  The terms v , , and v 
new old     new 

refer to the old and new particular solutions respectively. 

Let the points at which orthonormallzation has been carried out be 

denoted by x,, x„, .... x and let x = a.  Now consider the first -L  ^       n o 

interval defined in the range [x , x ]. Let the particular solution, 

homogeneous solutions and overall solution be denoted by v (x), U (x) 

and y^(x)  repsectively.  Then v (x) satisfies 
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v'(x) = F(x)v (x) + g(x),   Av(a) = a, (5.23) 
O O ' 

and U (x) satisfies 
o 

U'(x) = F(x)U (x),    AU (a) = 0 . (5.24) 
o o o 

The general solution on this interval is obtained using the method of 

superposition.  Hence, 

y (x) = V (x) + U (x) c (5.25) 
■'O O 00 

where c is a constant to be determined by matching y^(x,) with y (x ). 
O O  X X  X 

In using this representation U (x,) and v (x ) are the old independent 

set of base vectors and the old particular solution at x .  The new 

orthonormal set of base vectors and orthogonal complement to this set 

at x^ are denoted by U^(x ) and v^(x ) respectively.  Using U (x^) and 

v^(x ) as initial conditions on the interval (x , x„) the above procedure 

is repeated by solving 

v[(x)  = F(x)vj^(x) + g(x) (5.26) 

subject to the initial condition 

v^(x^) = v^(x^) - U^(x^)w^ (5.27) 

and by solving the system 

U^(x) = F(x)U^(x) . (5.28) 

subject to the initial condition 
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U^(x^) = U^C^i)?! • , (^-29) 

The general solution on this interval is 

y^(x) = v^(x) + U^(x)c^ , (5.30) 

where the vector c^ is determined by matching y,(x2) with y^Cx^), 

y^Cx^) = 72(^2) . (5-31) 

Hence, on the interval (x., ^..■,)   the solution is bbtained as 

y^(x^) = v^(x) + U.(x)c^ , (5.32) 

provided that the condition of continuity is met 

^i-l^V = yi(Xi) . (5.33) 

Thus from the above condition of continuity 

^i-l^^i) + "i-l(^i> Vl = ^i^^i) ^  "i^^i^^i (^-^^^ 

but 

v^(x^) = v._^(x^) - U^(x^)w^ (5.35) 

and 

U^_3^(x.) = U^(x.)P^ . (5.36) 
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Therefore equation (5.34) becomes 

VlK^ + "l^^'i^^l'^i-l " ^i-l'^\'^  ^  U.(x.)(c. - w.) .       (5.37) 

This provides the basic recursion formula for the vector c._^ in 

terms of P , w. and c 

Vi-1 = (^i - ^^ ^'-''^ 

At the final point, x = b, on the interval (x , x, ) the solution 

of the differential equation must satisfy 

yJ^^  = ^m(b) + U^(b)c^ . (5.39) m      m      mm 

Hence, using equation (5,8) the constant c can be determined. 

By (b) = Bv (b) + BU (b)c = 6 (5.40) m      m      mm 

or 

BU (b)c = 3 - Bv (b) . (5.41) 
mm       m 

Having determined the constant vector c  (and providing all the 

orthonormalization information, such as P^, P„, ..., P have been 

retained) the vectors c ,, c „,..., c can be found by solving the ' m-1  m-2'   '  o 

systems, equation (5.38), 

PCT=C-W      r=m, m-1 1    (5.38) 
r r-1   r   r ' 

by back substitution.  If the initial values U^(x^), v^(x_j^)  i = 0, 1, 

2, ..., m have also been retained the solution y(x) can be calculated 
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at any point xe (x., x^^) by integrating forward from x. and using 

the relation / 

y(x) = v.(x) + U.(x)c.  . (5.42) 

In the formulation presented above the particular solution is not 

normalized (i.e. not made into a unit vector).  Scott and Watts [62] 

have shown that the final solution representation with and without 

normalizing the particular solution are mathematically equivalent.  If 

the particular solution is normalized then the recursion formula equation 

(5.38) is not valid.  Scott and Watts [62] have developed a recursion 

formula valid for this case.  They mention that a possible advantage of 

normalizing the particular solution is that it is then well scaled. 

(c) Gram-Schmidt Orthogonalization Procedure 

In this section the modified Gram-Schmidt procedure is outlined 

together with a set of criteria that must be met to prevent the solution 

vectors from becoming dependent. 

Scott and Watts [ 62 ] have suggested that the old independent set 

of vectors Y ^ , be reorganized such that the vector with the largest 

norm appears in the first column.  This involves postmultiplying the 

vector Y ,j by a pivot matrix E such that 
old 

Y T , = Y', , E = U   P (5.43) 
old   old     new 

where Y ,, is the reorganized matrix.  The term Y' . is the matrix 
old Old 

obtained directly from integration, E is the permutation matrix, U 

is the orthonormalized basis and P is an upper triangular matrix defining 
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the transformation.  If the permutation matrix is included in the 

algorithm then the recursion formula equation (5.38) must be modified. 

Consider the interval (x._,, x^). 

^i-l^) = "i-l(^> + Vl^V ^i-l^i-l 
(5.44) 

where 

Vl^Wl = "i^V^ 
(5.45) 

Also 

y^(x.) = v.(x.) + U^(x.) E. S. , (5.46) 

= v.(x.) + U.(x.)c. . (5.47) 
1^ i'   1 1 1 

Equating (5.44) and (5.47) at, x^, yields 

Vl^^^ ^ "i-1^^^ Vl^i-1 = ^^"i^ '" ^i^'i^'i ^^'""^^ 

Eliminating v.  (x.) and v^(x^), the following recursion relation is 

obtained: 

^i^i-1 " ^''i ■ V ' ^^'^^^ 

where 

c.  = E. -c. ■ (5.50) 
1-1   1-1 1-1 

The modified Gram-Schmidt procedure defines the matrix P (see 

Stewart [67]) as,       ' 



p = 

„f) „r, uf. 
""i i-r'. "J 

4'' .<», u,; [";:". »J 
.   .. uf) K^'- "3) 

(k-l) 
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(5.51) 

and the matrix U by 

„(0) _ ^  . = T      1, u   - y. > j - -L. . . . , K. 

"1     1  ' 
.(0) 

(i)   (i-l)  , (i-l)   ^ 

J   J 
,(j-l) 

i = 1, k-l 

j = i + 1, ..., k 

(5.52) 

new 

The subscript notation refers to the corresponding column vectors 

,, and U   [see equation (5.43)]. 
lid     new 

The particular solution v ^ , is turned into the orthogonal complement 

e new base set U   (i.e. the vector,v ^,, is converted into a vector 
new old 

such that V   is orthogonal to all the components of U  ) 
new new 

V   = V T , - U  w 
new   old   new new 

(5.53a) 
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where w^ the i-th component of the vector w is defined to be 

"i = ^L "i • <5.53b) 

new 

T 
Here v   is the transpose of v ,, and u. is the i-th column of U 

w-i-u oj_u     i j- 

It should be noted that the above operation simply makes use of the 

Gram-Schmidt procedure. 

Several tests have appeared in the literature to determine whether 

an orthonormalization is necessary (Scott and Watts [52 ] Gersting and 

Jankowski [22]). Scott and Watts have suggested a check which is described 

below.  The algorithm has been implemented in the code developed for 

this thesis.  A slightly different version is used in the Suport code 

[62 ]•  The basic idea is to avoid using solutions that violate a 

condition which implies that linear dependence may not be present. 

The conditions chosen are 

II "j""^ll < e II yj II  j = 1, 2, ... k (5.54) 

and 

ll^ewll < ^11 Vdll (5-55) 

where e = 10  and L is about three-fourths of the number of significant 

decimal digits available in the computer wordlength.  Scott and Watts 

[62 ] present the following justification of the above criteria. Suppose 

that a vector in the old set is dependent, then the orthonormalization 

procedure will turn it into a null vector.  This provides the motivation 

for comparing the size of P.. with that of P   where P  = || u° || is 
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used since the vector u has the largest magnitude of the vectors in 

the old set as a result of the pivoting process. 

Since the magnitude of the vectors in the original set may vary 

these vectors are appropriately scaled by producing a set of unit vectors, 

YS.  Hence 

YS = UPS = UP (5.56) 

where S = diag  (  l/ll y^ll,   ...,l/|i 7^11} 

and 

P. .  = 
32 

P. . 

II y, 
(5.57) 

The linear dependence test on the diagonal now requires that 

P. . 
-21. <   e 

11 
= e 

^J II llyill 
(5.58) 

The above expression is the required linear dependence test. 

(d) Numerical Solution of the Mean Energy and Mean Dissipation Equations 

The system of equations (3.67)-(3.71) describing the mean energy 

and mean dissipation can be written in the form 

_d_ 
dy 

1 + 
dK 
dy 

+ G- (K, e, y) = 0 (5.59) 

_d_ 
dy 

1 + 
va 

de 
dy 

+ G- (K, e.y) (5.60) 
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These differential equations are subject to the boundary conditions 

K=0, e=Oaty=0 (5.61a) 

K = —r ,  e = — for large y (5.61b) 

where K  is the Von Karman constant.  The boundary conditions at large y 

are simply that the mean flow is described by a constant stress layer. 

In the above equations G-=- and G— appear as source terms and represent 

the combined effects of production and dissipation. 

These highly nonlinear equations are solved using finite difference 

techniques and Newton's method.  In order to derive the discretization 

equations a control volume is set up on a variable step grid such that 

the boundaries are midway between the grid points (see Figure 5.1). 

Equations (5.59) and (5.60) can then be integrated across the control 

volume to yield - 

1+^5 
fn   ^t^ dK f,  "t^ dK r 
1 + —=• m- 1 + —^ + 

V 
±-^^^ 

i+H 
I   ^J i-^^^ i-^    ^ 

G_dy =0 , 
i-35  K 

(5.62) 

1 + 
va 

dE de . 1+—=■ + 
dy va dy 

±+H ±+^    ' 
e ±-h ±-h 

i-H>5 

G_ dy = 0 (5.63) 

The derivatives in equations (5.62) and (5.63) are approximated by using 

a piecewise linear profile.  The integral terms are estimated by using 

the average value of the functions G and G_ respectively. 
K     e 
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Figure 5.1.  Grid Used for Integrating Mean K-e 
Model Equations 
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Since the grid consists of m + 2 levels and since the energy and 

dissipation are known at both boundaries, finite difference equations 

need only be written for the grid points 2 ^ i S m + 1 , 

l+-t 
V 

(^i+1 - ^i> 

i+^   Ay. 
1 + 

^i - ^-1> 

±-H Ay i-1 

+ G 
(Ay^ + Ay^_^) 

0, 
K, 

(5.63a) 

1 + vo 
J±-¥h 

^^i+1 - "i^ 

Ay. 

V 

1 + -^ 
va e 

(e. - e. i) 1   1-1 

±-h        Ay i-i 

+ G.   ^^yj ^ ^^i-l) , e.  = 0 . (5.63b) 

Kj^ = 0,    e:^ = 0 , (5.63c) 

^iir(-2 " "T ' ^m+2 ' ^ ^iiH-2 
(5.63d) 

The above system represents 2 m nonlinear algebraic equations in 

2 m unknowns K „ , £2 , K„ , e^ ' •••> ^m+o' ^m+2" '^^^  algebraic equations 

were solved using Newton's method, Abrams [ 1 ].  The solution procedure 

was to linearize the source terms G_ and G_  as follows ,  ' 
K.     e,- 

G5^ + 

dG_ n-1 
K. 

dK, 
(K.^-^^-^) + 

 1 

dl. 

n-1 

n  -n-1 
(e. - ^i  ) , (5.64a) 
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dG_ n-1 dG_ 

dSj 

n-1 

,—n  —n-1. 
(^i - e^  ) (5.64b) 

and to linearize the diffusion terms as follows, 

1 + -^ *ii - ^") - 1 + 
V ^n-l 
t 

±+^ 
i4^ ^^i+1  '^i   ^ 

+ 1 + 
V  -1 
t 

n-1 

i+^ 
(^iV-^iTi')- 1 + -^ 

V 

V \n-l 
t 

i+>5 
1    1 

(5.65a) 

1 + 
VCT, ^^i+1 £-. ) 

±-^ 

- >,n-l 
V. 

1 + 
vcr. 

.-n-1 
^^i+1 

-n-1- 
^i  ) 

i+^ 

1 + va. 

n-1 

i+^ 
^^i+1 

— n-1, . 
1 + va. 

n-1 

i+^ 
(^i 

-n-1, 
e.  ) (5.65b) 

Similar expressions to (5.65a) and (5.65b) can be derived for the 

diffusion terms (1 + v^/v)^_, (K^'^ - Kj^.^) ^^'^   (^ + ^t'^'^e^^i-^ ^^i ~ ^i-1^" 

In the above equations the superscript, n, refers to the nth iterate 

while the superscript, n-1, refers to the previously known iterate.  For 

convenience the following notation is introduced 

6_ = K,^ - K^-^ 

^i   '    ' 

2 ^ i ^ m + 1 , (5.66a) 

6_ =7." 
-i   " 

- e 
■n-1 

2 < i < m + 1 , (5.66b) 
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6_ = 5_ = 0 , (5.66c) 

S_       = 6_   = 0. (5.66d) 

\+2   ^m+2 

If equations (5.66a)-(5.66d) are substituted into equations 

(5.64a)-(5.65b) and the resulting equations substituted into equations 

(5.63a)-(5.63d) a linear system of 2m equations for the unknown iterates 

&=,&—,...,&—      ,   S—      , is obtained.  These iterates are 
2   2        m+1   m+1      -n-1  -n-1     -n-1  -n-1 

then used to update the values of K«  , e«  , ..., K   , e , . 

This procedure is repeated until a satisfactory level of convergence 

is obtained. 
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CHAPTER 6 

RESULTS 

In this chapter the results of the calculations made with the 

various models developed in Chapter 3 are presented.  An interpretation 

and discussion of the results is made in the final chapter of this 

thesis. ' 

The solution of equation (3.13) provides detailed information on 

the velocity, shear stress and pressure fields.  It is found that the 

flow field in the immediate vicinity of the wave surface and the wave 

induced surface shear stress are particularly sensitive to the type of 

turbulence model employed.  Therefore, emphasis will be placed on the 

prediction of the measured surface shear stress profiles presented in 

Chapter 4.  These profiles are characterized by a dimensionless amplitude 

a |T(O)| and phase angle 8 such that Real (aT (O) e  ) = a|T(o)| cos 

(ax + 9).  For thick boundary layers both |T(O)| and 6 are functions of 

a single parameter, a, the dimensionless wave number. 

Where possible the predicted wave induced surface pressure is also 

compared with the available measurements.  However, the considerable 

scatter in the pressure measurements makes the comparison difficult.  The 

wave induced pressure is also characterized by a dimensionless amplitude 

a |p(o)| and a phase angle 9 such that Real (ap(o)e  ) = a|p(o)| cos 

(ax + 9 ). 

(a) Quasi-Laminar Model; Model A 

The simplest model developed in Chapter 3 is the Quasi-Laminar 

Model (Model A), for which the effects of turbulence enter the problem 
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only in the specification of the mean velocity profile,  Thorsness [70] 

has examined several velocity profile relations and concluded that the 

calculations are insensitive to the choice of a velocity profile function 

provided it gives a reasonable fit to the experimental measurements. 

Consequently the calculations were carried out using the Van Driest velocity 

profile with the Von Karman constant, K = 0,41, and the viscous thickness 

parameter, A = 26,  Figures 6,1 and 6,2 compare the predicted values of the 

magnitude and phase angle of the wave induced shear stress with measurements 

as a function of ct.  For large values of a, corresponding to small wave- 

lengths , experiment and theory are in fair agreement; however, as the wave 

number decreases the deviations between experiment and theory increase. 

This is expected since the influence of the wave surface extends further 

into the flow as the wavelength increases (decreasing a.).     For large values 

of a the effects of the wave surface are confined to the viscous wall 

region.  Since the fully turbulent part of the boundary layer is undisturbed 

i ■ 
the effect of turbulence on the wave induced flow is not important.     j 

Figures 6.3, 6.4, 6.5 and 6.6 show the wave induced velocity profile    I 

function, Real (u(y) e^"^), for ct = 0.1, 0.01, 0.0045 and 0.001 respectively. 

These show how the disturbance caused by the wave is confined closer to 

the surface as a increases. 

Figures 6.7 and 6.8 compare the predicted magnitude and phase angle 

of the surface pressure with the available data. 
t 

(b) Model C* 

The first turbulence model tested. Model C*, employs the Van Driest 

mixing length hypothesis to estimate a turbulent viscosity and ultimately 

a turbulent shear stress.  The model uses the flat plate value of A = 26 

for the viscous sublayer parameter.  To account for the effects of pressure 
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gradient on the thickness of the viscosity dominated sublayer the 

local value of the wall shear stress is used in the Van Driest damping 

function.  Figures 6.9 and 6.10 compare the amplitude and phase angle 

of the shear stress with measured values.  The model predicts a maximim 

in the phase angle of the shear stress at a = 0.007 which is not what 

is observed experimentally.  The model also fails to predict the sharp 

decrease in the phase angle of the wave induced shear stress. 

The phase angle and amplitude of the wave induced surface pressure 

are shown in Figures 6.11 and 6.12.  Figures 6.13, 6.14 and 6.15 show 

the wave induced velocity profiles for a = 0.01, 0.0045 and 0.001 

respectively. 

(c)  Equilibrium Turbulence Model 

The next model tested is similar to Model C* except that the effect 

of pressure gradient on the viscous sublayer is accounted for by allowing 

the sublayer parameter, A, to be composed of a mean value and a wave 

induced valve, Ae^°"', which is a function of the pressure gradient.  This 

formulation is referred to as the Equilibrium Turbulence Model since the 

model assumes that the turbulence adjusts instantaneously to changes in 

the pressure gradient. 

The implementation of this model requires the specification of a 

single constant, k^, defined in equation 3.47.  Kays et al. suggest a 

value of -30 < k., < -20 be used.  Figure 6.16 shows the effect of this 

constant on the calculated phase angle of the wave induced shear stress. 

For an equilibrium situation the pressure gradient would tend to 

Shift the maximum in the wall shear stress in the downstream direction 

because an adverse pressure gradient which tends to enhance turbulence 

exists on the downstream side of the wave.  Therefore for small values 
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of a  the consequence of including pressure gradient effects in an 

equilibrium model is to give lower values of the phase shift than would 

be obtained with Model C*(k^ = 0), Figure 6.16. 

(d) Model D* and Relaxation Turbulence Model 

The turbulence is not expected to be in a state of equilibrium with 

the local pressure gradient. Two approaches which are extensions of the 

Equilibrium Turbulence Model are explored. 

The first assumes that the turbulence only in the viscous wall region 

is not in equilibrium with the local pressure gradient.  To account for 

this an effective wave induced sublayer parameter, kk        e        ,  defined 

in equation (3.55) is used.  This formulation has been designated as 

Model D* (see Chapter 3). 

The implementation of this model requires the specification of an 

additional constant, k,, defined in equation (3.53).  Figures 6.17 and 

6.18 compare the predicted phase angle and amplitude of the wave induced 

shear stress with measurements.  Figures 6.19 and 6.20 compare the 

predicted phase angle and amplitude of the pressure with measurements. 

The constants used in these calculations are k = -35 and k, = 1800. 

Figures 6.21-6.24 show the effect of a on the wave induced velocity field. 

The values of a  are 0.01, 0.0045, OiOOl and 0.0006 respectively. 

The second approach differs from Model D* in that the turbulence 

throughout the boundary layer is not considered to be in equilibrium with 

the pressure gradient.  To account for this the complete Rejmolds stress 

A.  ictX 
term defined in equation (3.33 ) is relaxed, rather than only Ae 

The implementation of this model, previously referred to as the Relaxation 

Model, also requires the specification of a second constant, k , defined 

in equation (3.14). 



134 

•o 

a O <   o 

CD ^ 
-h 
^ ^ 

•o 

lO 

'O 

'o 

lO 

S' 
'o 

u 
Q 

a 

o 
S o o 
U 00 
O   .H 

4-1 
II 

< -a 
c 

CO 
n) m 

PLC    I 

o 
•^      r- 

01 
M 
3 
00 

•H 
fa 

(o) 2. p 9|6uv asoqd 



135 

mill I  I—|iniii    I—|iiin I I I—|iiiii I I I—|iiiii I I  I —j 'o 

8 
00 
li 

X 
Q •» 

in 
"B ro 

1 •a o II 

CM 

'o 

'o 

in 

'O 

en 
I 

o 

« a 

o 
^§ 
U   00 
O   r-i 

II 

o J* 

  CO 

M 



136 

- 2 o 

o o 
00 

II 

03 

U 
O 

>4-l 

Q 

-a 

u o 

60 

V 
CQ 
cd 

Xi 

o 
< a 

0) 
M 
3 
60 

•H 

(o) d p a|6uv"asDMd 



137 
I 
I 

Ulll I I |ll| I I I   I |iiii I I I—r 

~Q 
(VI 

(•) d 

'o 

(VI 

'o 

•o 

o o 
00 

TO 

cn 
I 

M 
O 

* 

0) 

o 

at 



138 

K a 

o 

o 
a> 

20.00       HO.00       60.00       80.00        100.00 

Figure 6.21.  Real (ue  ) for Model D* for 
k^ = -35, k^  = 1800 and a = 0.01 



139 

I 
I 

a: 

0-00 20-00  ,    40-00       60.00       80.00       JOO.OO 

Figure 6.22.  Real (u e^"'^) for Model D* for 
k = -35, k = 1800 and a = 0.0045 

X LI 



140 

O' 

O 

o 

M 
o 
"0) 
o 

O 

cr 

o 

LO o 

^—¥i—¥i—^ 

Crnt Trough CfMt 

D.OO 20.00       40,00       60.00       80.00       \m,m 

Figure 6.23.  Real (d e^"^) for Model D* for 
k » -35, \  = 1800 and a - 0.001 



00 c 

c 

a> 

o 

CO o 
Cmt Trough CrMt 

141 

0-00 20.00       40.00       60.00       80.00 

y 

100.00 

,'>   lax Figure 6.24. Real (G e'""'') for Model D for 
k « -35, k^ = 1800 and a  = 0.0006 

I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
i 
I 
i 
I 
1 
I 
1 
I 



142 

An excellent fit of the measurements of the phase angle and amplitude 

of the wave induced shear stress Figures 6.25 and 6.26 is obtained with 

k - -20 and k„ = 4200.  Figures 6.27 and 6.28 show the effect of the 
1 R 

constants k. and k_ on the model by comparing the predicted values of the 

fluctuating wall shear stress with measurements for three sets of values 

of the constants.  Figures 6.29 and 6.30 compare the predicted phase 

angle and amplitude of the wave induced pressure with measurements.  The 

effect of a on the wave induced velocity field is shown in Figures 6.31- 

6.34 for a - 0.01, 0.0045, 0.001 and 0.0006 respectively. 

(e) K-e Model 

The last model to be tested is the K-e Model.  In this model the 

effects of pressure gradient and relaxation are accounted for in a natural 

way through the defining differential equations.  The mean velocity profile 

used in calculating the wave induced flow is not the Van Driest profile, 

but rather one generated using the mean momentum, mean energy and mean 

dissipation equations.  The profiles of these quantities are shown in 

Figures 6.35-6.37 respectively. 

Figures 6.38 and 6.39 compare the calculated phase angle and amplitude 

of the wave induced shear stress predicted by the K-e Model.  The calculated 

maxlmxim in the phase angle occurs at a = 8 x 10  .  The sharp decrease in 

the phase angle as a function of a is not as apparent as that predicted 

by either Model D* or the Relaxation Model.  The K-e Model also under- 

predlcts the magnitude of the maximum phase shift of the shear stress. 

Figures 6.40 and 6.41 compare the predicted phase angle and amplitude of 

the wave Induced pressure with measurements. 
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In Appendix L it is shown how the wave induced turbulent kinetic 

root mean square level of the fluctuating velocity gradient. 

energy, ak(y)e   , is related to the wave induced variation of the 

X    " 

Figures 6.42 and 6.43 compare the phase angle and amplitude of the 

predicted wave induced kinetic energy with the experimentally determined 

values.  In the range of the experiments the predicted amplitude is in 

fair agreement with the data.  Poor agreement between the measured and 

predicted phase shifts of a k(y)e    is obtained.  However both theory 

and experiment predict a phase shift such that the maximum occurs on 

the upstream side of the wave. 

(f)  Curvature Effects 

Model C was modified to include curvature effects by multiplying 

the plane flow mixing length expression equation (3.35) by a curvature 

correction equation (3.79).  This model was chosen as opposed to either 

the Relaxation Model or Model D* in order to isolate the effect of 

curvature on the turbulence.  The straightforward application of the 

curvature correction requires the specification of one constant, g , 

and assumes that the local turbulence is always in equilibrium with the 

streamline curvature. 

Figures 6.44, 6.45, 6.46 and 6.47 show the phase Angle and amplitude 

of the Wave i9d,uced pressure and shear stress for different values of 

3 respectively.  For small values of a the effect of curvature is to 

shift the phase angle of the shear stress in the upstream direction. 

This may be explained since the effect of the wave on the turbulence 

(from curvature considerations) is to enhance the turbulence at the 

trough and suppress the turbulence at the crest.  For large values of 
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a the effect of curvature is to shift the maximum in the pressure and 

hence the minimum in the pressure gradient in the downstream direction. 

This in turn (from laminarization arguments) causes the shear stress to 

move in the downstream direction. 

Since the turbulence is not expected to respond instantaneously to 

changes in the streamline curvature Bradshaw suggests that an effective 

radius of curvature defined in equation ( 3.82 ) be used.  This requires 

the specification of a curvature lag constant, k .  Figures 6.48, 6.49, 

6.50 and 6.51 show the effect of this constant on the phase angle and 

amplitude of the wave induced pressure and shear stress respectively. 

Recent pressure measurements from Langley Field [35 ] not included 

in this thesis indicate that the phase angle measurements of Kendall 

are the most reliable.  It is concluded (see Figure 6.48)that inclusion 

of curvature with S =1.5 provides the best fit of the available 

pressure data.  Consequently calculations were made using Model D* with 

a curvature correction.  This model was chosen since it allows the 

turbulence to adjust at different rates to the effect of pressure gradient 

and streamline curvature.  Figures 6.52, 6.53, 6.54 and 6.55 compare the 

wave induced phase angle and amplitude of the shear stress and pressure 

with measurements.  The constants used in these calculations are k, = -30, 

k- « 1550, 3 = 2 and k =- 0. 
L        c        c 
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CHAPTER 7 

DISCUSSION OF RESULTS 

In this chapter the major points which have emerged from the 

experiments and the calculations are presented. 

The measurements of wall shear stress have been shown to provide 

an extremely sensitive test for turbulence models.  Consequently the 

reliability of any theory should be tested by examining its ability to 

predict the variation of the wall shear stress over a wide range of 

conditions rather than its ability to predict the shear stress profiles 

for some fixed flow condition. 

Figures 7.1 and 7.2 compare the calculated values of the amplitude 

and phase angle of the wave induced shear stress of the Quasi-Laminar 

Model with those of several turbulence models.  For a > 0.07, the Quasi- 

Laminar Model and all turbulence models yield similar results since the 

disturbance field introduced by the wave surface is contained in a region 

where the effects of turbulence on the wave induced flow are small. 

For o < 3 X 10  all turbulence models predict similar vari?f-fons of the 

shear stress.  In this range the effect of pressure gradient: on the flow 

is small.  The flow can be visualized as one over a surface with radius 

2        ' 
of curvature 1/R = -a a cos (ax), art external velocity U = U^(l + a cos (ax)) 

2 2 s 
and a pressure gradient, 3P/3x = -a a U^ sin (ax).  In the range 3 x 10~ 

< a < 0.03 the Equilibrium Turbulence Model over predicts the effect of 

pressure gradient and the only models which reliably predict both the 

magnitude and phase angle of the shear stress are Model D* and the 

Relaxation Model (not shown in Figures 7.1 and 7.2),  Therefore this rise 

is associated with relaxation effects.  In fact for a > 7 x 10~ relaxation 

effects are such that the calculated effective pressure gradient can be 



177 

« u 
a 
Hi 

JS 
«J 

x: u 
•H 
» 
n 

•o 
S 
t3 
O 

(0 

60 

i) 
CO 

CO   to 
U XI 

> 
0)    CO 

C/1    CO 
(U 

<*-»  u 
o w 

a 
O   VI 
n (d 

•H   (U 

(It  CO 

0) 
u 
3 
00 

•H 

(o) j. p a|5uv asDMcj 



178 

0) 

s 

m 

.u 
"O 

i 

? 
9) 

<U 
"V 
o 

G o 

.« 

-u 
H 

CO 

(•) V 

in 

t 
■ • 



179 
I 
I 
I 
I 

t 
I 

as much as 90° out of phase with the calculated local pressure gradient 

(Figure 7.3) causing the maximum in the wall shear stress to shift in 

the upstream direction. 

Measurements of the streamwise component of the turbulent kinetic 

energy (see Figure 6.42) show that the kinetic energy close to the wave 

surface reactes a maximum on the upstream side of the wave.  This ^ 

finding provides further evidence that the turbulence close to the wall 

in the range 3 x lo"^ < a < 0.02 is not in equilibrium with the local 

pressure gradient, since (from laminarization arguments) it is expected 

that the turbulent energy would reach a maximum on the downstream side 

of the wave due to flow deceleration in this region. M 

The inclusion of curvature effects in Model D causes a significant 

improvement in the calculated phase angle of the wave induced pressure 

(Figure 7.4 in the range 1 x lO"^ < a < 0.5).  These results are of 

particular importance in the prediction of instabilities at a gas liquid 

interface where recent calculations of Frederick [ 21] have indicated M 

that Model D* may be underpredicting the pressure. 

In summary the presence of waves introduces two complications that 

would not be present at a flat surface: Wave induced variations of the 

pressure gradient along the wave surface can cause a thickening and 

thinning of the viscous wall region.  Wave induced curvature of the 

streamlines can cause a change in turbulent transport which results in 

a periodic enhancement and damping of the turbulence.  Calculations 

have shown that the wall shear stress measurements and in particular 

- , , iax jm 
the sharp change in the measured phase angle of, ax (o; e  , at j| 

a = 0.0015 provide an excellent test of turbulence models.  Significant 

I 
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I 
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errors are obtained in predicting the wall shear stress if the influence 

of the wave induced pressure gradient is ignored. 

The sensitivity of Model D* to the value of the relaxation parameter, 

k , points out the need to introduce relaxation effects in a more funda- 
J-i 

mental way.  Work, along these lines using the K-e Model reveals qualitatively 

the same behavior as Model D*.  However Model D*, modified to include the 

effect of streamline curvature on turbulence, provides the best overall 

fit of the available pressure and shear stress measurements to date. 
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APPENDIX A 

CONDITIONS FOR LINEARITY 

dU   du     dU , /A 3-) 
"    dy ' dx     dy ' 

mean flow by an amount, a ^, to a first order of approximation.  From 

t 

I 
I 
I 

The necessary conditions for flow over a wavy surface to be    ' ^ 

described by a linear form of the Novier Stokes equations are developed. ■ 

The flow field is considered as the sum of a mean and a wave 

induced quantity. 

f 
U(x,y) = U(y) + ii(x, y)   ., (A-D » 

V(x. y) = v(x, y) (A-2) | 

where the over bar and tilda represent a mean and a wave induced quantity ■ 

respectively.  The wave Induced streamwise velocity and velocity gradient 

scale as p 

I 
since the presence of the wave surface with amplitude, a, displaces the J| 

I 
I 
I 

On integrating CA.4) from 0 to 6, where 6 is a boundary layer thickness " 

dy 

I 
I 
I 
I 
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If V — is taken as a typical linear term, a comparison of the 

ratio of nonlinear to linear terms yields 

~   3u 

"9y a 
  s 

~   dU 
V — 
^ dy 

~   3u 
u ■;"" 3x a 

  (S 
~   dU 
V  -;— 

dy    . 

(A. 6) 

(A. 7) 

Therefore in addition to a a being small, the additional requirement that 

a/6 < 1 is necessary for the flow field to be described by linear equations. 
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APPENDIX B 

. FORMULATION OF OUTER BOUNDARY CONDITION 

The outer boundary condition is such that the flow field far from 

the surface is just that which would be present over a flat surface. 

This requires that the velocity field in boundary layer coordinates at 

y^, see Figure (&.l)be equated to the undisturbed flow in cartesian 

coordinates. 

For a a small the velocity field in boundary layer coordinates at 

y^  can be transformed into cartesian coordinates as follows: 

U^(x, y^) = U(x, y^) - V(x, y^) iaae^"^ (B.l) 

^o^^' ^m^ = U(^' yni> iaae^'"^ + V(x, y^) (B.2) 

where the subscript, o, denotes cartesian coordinates.  If U and V 

are written in terms of average and wave induced quantities, equations 

(B.l) and (B.2) neglecting o(a ) terms become 

iax 
o   'm     ^m 
U„(x,yJ = U(y^) + aGe' (B.3) 

V,(x, y^) = U(y^)iaae^'^^ + vae^"^ .       -     '     (3.4) 

The cartesian description of the flow at (Y + ae^^^) is obtained by a 

Taylor series expansion at Y as follows 
m 

8U(x,y) 
U (x, y ) = U (x, Y ) + —^-  
o    m    o    m      3y 

Y 

iax 
ae (B.5) 

I 
I 

m 
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nirfac* 

Figure B.l.  Diagram for Development of Outer Boundary 
Condition 



av (x,y) 
V (x, y ) = V (x, Y ) + ——  
o    m    o    m      9y 

Y 
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ae   . (B.6) 

m 

Since the flow at Y is considered undisturbed 
m 

U (x,Y ) = U(Y^) (B.7) 
o    m      m i    w 

V (x,Y ) = 0 . (B.8) 
o   m 

Equations (B.3) and (B.4) can now be equated to (B.5) and (B.6) 

respectively to yield 

U(y ) + aGCy )e^°"' = U(Y ) + ^ (Y )ae^°"' (B.9) m       m m   dy  m 

and 

U(y )iaae^"^ + vae^'^'' = 0 . (B.IO) 
m 

On equating terms of similar order and introducing the stream function, 

1Q(X aFe  , the following relations are obtained , 

U(y^)  = U(Y^) (B.ll) 
m       m 

^'(V=f<V <^-^2^ 

F(y^)  =U(y^). (B.13) 

Equation (B.ll) implies that the average flow field is not disturbed 

by the presence of the wave surface and equations (B.12) and (B.13) are 

the required boundary conditions for the wave induced flow for large 

values of y. 



188 

APPENDIX C 

DERIVATION OF TURBULENT ENERGY AND DISSIPATION EQUATIONS 

Consider a flow over a two dimensional curved surface.  Use general 

orthogonal coordinates with x measured along the surface, y normal to 

the surface and z at right angles to the x-y plane which is the plane 

of motion.  The curvature of the surface K(X) = 1/R(x), is taken as 

positive for convex curvature and negative for concave curvature where, 

R(x), is the radius of curvature of the surface.  The elements of length 

along the parallel curves and along the normal are h^ = 1 + Ky and 

h = 1.  The element of length along the z direction is h^ = 1.  If 

u, v, and w are the velocity components along the x, y, and z directions 

repectlvely the following equations for u, v, and w are obtained (see 

Bradshaw [ 8 ]). 

continuity 

|H   +   A{(1    +    ^y)v}     +    A    {(1    +    ,y)„}     =     0 (C.I) 

X momentum 

3u 1 9u <       3u ^ Kuv ^ 1 3p 
9t       (1 + Ky)  ^ 3x 3y 8z       (1 + Ky) ~  (1 + Ky)     3x 

3T           3T           3T.          2 K T 
. 1 XX xy xz       xz ,    2-) 
+  (1 + <y)       3x    +    3y    +    3z    "^  (1 + <y) ^^'^^ 
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8v     1     3v    av    9v    K u 
at  (1 + Ky) " 3x    3y    3z  (1 + Ky) 3y 

3T    3T    3T 

(1 + Ky)  3x     3y    3z   (1 + Ky) ^ xx   yy (T „ - T_)     (C.3) 

z momentum 

3w ,    1      3w ^  3w ^  3w    3p 
3¥-'(l + Ky)"^+^37"'"3^= --st 

3T    3T    9T    KT 
JSZ + yz  +  zz II. 

(1 + Ky)   3x    3y    3z   a+Ky) (C.4) 

where 

T  = 2S '2 
XX      XX 

3u _j_    Kv 
(1 + Ky)  3x  (1 + Ky) (C.5) 

T  = 2S  - 2 1^ 
yy   yy   3y 

(C.6) 

T  « 2S  = 2 1^ zz    zz    3z (C.7) 

T  - 2S„^ - (1 + Ky) xy    xy  ^    ■'' 
_3_ 
3y [(1 + Ky) 

3v 
(1 + Ky)  3x (C.8) 

r  » 2S 
yz    yz t3z  3yJ (C.9) 

T  = 2S  = -^ 
xz    xz 

3u ^   1 3w 
3z  (1 + Ky) 3x (CIO) 
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Consider a turbulent flow that is two dimensional in the mean. 

Therefore, the mean flow in the z direction is zero and all -^ of the 
3z 

mean flow quantities vanish.  If the equationsof motion are decomposed 

into mean velocities U, V plus fluctuating velocities u', v', w' and 

their corresponding pressures P and p' the following equation for the 

turbulent kinetic energy can be derived (see Bradshaw [8]). 

15 +   U    11    ^ 
3t   (1 + Ky)  9x  ^ 3y 

II III 

1  3  ^u'-^ + u'v'^ + u'w'^ + u' 
(1 + Ky) 3x 

P - U'T' - V'T'  - W'T' XX    xy     xz 

tv 

3  U'u'^ + v'^ + v'w'^ + V'D' - U'T' 
3y xy yy 

W'T'  ) yz 

VI VII 

(1 + Ky) 
W'u'^ + v'^ + v'w'^ + v'p' - U'T'  - V'T'  - W'T' } xy     yy     y? 

VIII 

3U- K U 3V 
3y   (1 + Ky)   (1 + Ky)  3x 

VIII VIII 

- u ,2 3U 2KV 
(1 + Ky) 3x  (1 + Ky) 

,2  3V 
3y 
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XX 3u' ,  ,  3u'  ,  h X   -z   + .1  3v' 
(1 + icy)  3x    xy 3y    (1 + Ky)  xy dx 

IX 

3v' 1^   t I 

'yy 3y ' (i + Ky)   xx 
+ T' ir- + 

(1 + <y)   xy 

IX 

\z     9^' 
- T 

3w' 
'   + 

3w' 
W'T'    - T (l+Ky) 9x    yz 3y   (1+Ky)   yz    zz 3z (C.ll) 

Jones and Launder [29] and Chien [13] have suggested the following 

assumptions 

■?      2      9 
u'  + u'v'  + u'w'^ 

+ u'p' t  3K 
(1 + Ky) va      3x (C.12) 

r'u   + V   + V W . —t—r    t 3K + V p' = —— 
va^    3y 

(C.13) 

The terms involving the fluctuating shear stress, x.., are generally 

written as the "sum of a term representing viscous diffusion of kinetic 

energy and a term representing the isotropic dissipation of kinetic energy, 

Tennekes and Lumley [69]. 

Ill + V + VII + IX = 
(1 + Ky) 3x 

3K 
[(1 + Ky) 3x J 

3   3K 
3y [ 3y j 

(1 + Ky)  '^  ^   2  ' 
y 

(C.14) 
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2K 

where the term —j  is included in order to balance the viscous diffusion 

y 
of turbulent kinetic energy y at the wall. 

Equations for the velocity fluctuations u', v' and w' can be written 

in cartesian tensor notation as follows (Tennekes and Lumley [69]). 

3U.     3U,     3U.     3u' 
 i ,  .  i .  ,  1 ,  ,  i 
-3r-'"k3^-'"k^ + '^k — ^ 

!1 
3x^ 

3u: 

"k 3x. k 3x, 

32uj 
(C.15) 

3u]^  3u' 
An equation for the isotropic dissipation rate  -— -— can be 

3x.  oX, 
3 j 

obtained by differentiating (C.15) with respect to x , multiplying the 
3u; 

resulting equation by -— and taking the time average 
oX 
n 

III i II 

3e        .      3e   ^     3 
3t   ■   "k 3x,.       3x, 

3e 
3x, ]s.        3x 3x  . 

n  n 

IV 

3U, 
- 2 

3u! 3u; 3u' 3u' 
 i  k     n  n 
3x 3x 3x. 3x, 
n n i k 

VI VII 

- 2 u'    ^"1 
"3x    - n 

2  ^'^l K '-[ 
5^k ^^n ^^n 

-  2 

-T2 

(C.16) 

Jones and Launder [29] and Chien [13] have suggested the following 

closure assumptions. 
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Term III:  Turbulent diffusion by velocity and pressure fluctuations, 

III =T^-^^ , (C.17) 
3Xj, va^ 3x^ 

Terms V and VI:  Generation by mean motion. 

V + VI = ^^        , - (C.18) 

where P.. is the production of turbulent kinetic energy, 

Term VII:  Dissipation of e. 

y 

where the second term is included to balance viscous diffusion of E at 

the wall.  The functions f and f , are defined in Chapter 3 [see equations 

(3.63.1) and (3.63.2)]. 

Term VI: Generation by self stretching action of turbulence.  The erfect 

of this term is accounted for in the modeling of term IV (see Reynolds 

[59]). 

The dissipation equation with closure assumptions is then transformed 

into boundary layer coordinates, euqation (3.62). 
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APPENDIX D 

DERIVATION OF STREAMLINE CURVATURE 

In this appendix an expression for the curvature of the streamlines 

in boundary layer coordinates is derived. Let ^(x) be a position vector 

describing the streamline ij;(x, y) = C where 

\i>(x, y) = 
— J-CLX 
U (y)dy + F ae (D.l) 

b(s) = (x(s), y(s)) (D.2) 

db(s) 
If s is a measure of the arc length, then -^ is a unit vector and the 

magnitude Of the curvature of the streamlines ^{x, y) = C is given by 

d^^(s) 

ds 

In boundary layer coordinates 

4^= h x'i +h^y'i^ , 
ds   X   X   y   y 

(D.3) 

where t and i are unit vectors along and perpendicular to the wave surface 
X    y 

respectively.  The metrics h^ and h are defined as 

(D.4.1) 

and 

h = 1 + Ky 
X 

h = 1 
y 

(D.4.2) 

where K  is the curvature of the wave surface.  The primes denote differ- 

entiation with respect to s, such that 

dx(s) 
ds 

(D.5.1) 
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^. = dy(s) (D.5.2) 
^    ds  ' 

Therefore 

ds 

Also 
->■      ->■ 

3x      91 
t- = x' —^+ y' —^ (D.7.1) 
X ""     3x ^ ^  9y 

31      31 
p   = x' —^ + y' —^ (D,7.2) 
y     3x   '       dy 

at        31 
_Ji= _ ^t . __x = 0 (D.8.1) 
3x      y '  3y 

3$ at 
3x   " X '  3y 

Hence (D.7.1) and (D.7.2) become 

1' = -KX'i 
X      y 

(D.9.1) 

t- = Kx't  . (D.9.2) 
y _      X 

Equation  (D.6)  can now be written as 

^-  (h   x" + h'x'  + h   y'K)  t+  (h^y- - h   K(X')2)   1        , (D.lO) 
,2x X y xy X y 
ds 
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where  to 0(a) 

, , .3      iax     ,   ,       2      lax     , h    = aiot ye        x+aaye        y (D.11.1) 

and 

h' 
y 

(D.11.2) 

Since ij;(x, y) = C 

•T^=iJjx'+iJ;y'=0 
ds  '^x     ^y' 

(D.12) 

On differentiating (D.12) with respect to s and rearranging, x" and y" 

can be written explicitly in terms of x' and y' 

tl) x" + ijj y" =• -ijj  (x') - i|)  (y') - 2^     x'y' , 
Tj.    Yyj ^xK yy        xy ■'      ' (D.13.1) 

= G. (D.13.2) 

Since 
db 
ds = 1 and using equation (D.3) 

ihx')^        +       (y')2  =  1.  ; (D.14) 

Now on differentiating (D.14) with respect to s 

, I „t „ll  1  „I „II  _   u I ,■• I h' x' x" + y' y" = -h' x' , 
X 

(D.15) 

(D.13.2) and (D.15) can now be solved simultaneously for x" and y". 



Now to 0(a) 

Gy' - ^^(-h- x') 
x" =  2  

i)  y'   - \b h    x' 
X y X 

XX 

l 
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(D.16) 

i|; h' x'   - Gx' 
y"  = _iLJE        .      . (D.17) 

^ y'   - \b  h   y' 
X y X 

ii    = Fiaae^""" (D.18) 

^       = -Fa^ae^'^^ (D.19) 

4i    = U + F* ae^"'^ ' (D.20) 

^      = U'   + F"ae^"^ (D.21) 
yy 

^^    = iaF' ae^'*'^ (D.22) 

ijj  /ij)    =Ir iaae^"^. (D.22) 
X ^y      U 

Substituting (D.18)-(D.23) into (D.12) and (D.14) and neglecting 

2 
terms of 0(a ) x' and y' can be expressed in terms of the stream function, 

aF e  , as follows: 

x' = (1 - aa^ye^"^) (D.24) 

y' =^ iaae^"^ (D.25) 
U 

Substituting (D.18)-(D.23) into (D.16) and (D.17) and neglecting terms 

of O(a^), 
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(D.26) 

F 2  iax 
— a ae (D.27) 

d^^ 
Substituting (D.24)-(D.27) into the expression for —^ and keeping terms 

ds 
of 0(a) the following equation for the magnitude of the curvature is 

obtained 

d^^ 

ds2 
= F - u" 

.   u    . 
2 iax 

aa e (D.28) 

In this study the sign of the curvature is defined such that a 

convex surface has a positive radius of curvature and a concave surface 

has a negative radius of curvature. With this convention 

(F - U)   2 iax 
 r:  aa e 

U 
(D.29) 

At the wave surface F —^ 0 and therefore 

1    2 iax 
-= aa e 
c 

(D.30) 

which is simply the curvature of the wave surface.  For la;rge y 

F —»■ U and here ■=— —+ 0 
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APPENDIX E        .  ■ 

FINITE BOUNDARY LAYER CALCULATION *  '    . 

In this appendix the details of the finite boundary layer calculation 

are presented. As explained in Chapter 3 a finite boundary layer consists of 

two layers.  In the inner layer the mixing length is given by equation 

(3.35) and in the outer layer the mixing length is given by equation (3.90). 

In order to provide for a smooth transition between these two layers the 

following composite expression is used across the entire boundary layer 

1/2 — 
a    = Y<S tanh (Ky/Y6)(l - exp(-yT  /A)), (F.l) 

The expression for l   has the correct asjonptotic behavior since 

Y6 tanh (Ky/Y<5) —*■ Ky Y6 (E.2) 

and -)>. 

yS  tanh (Ky/YiS) —*" Y<5 
ys (E.3) 

The wave induced components of £, , v and T, using equations 

(E.l), (3.34) and (3.36), are found to be respectively 

al  e 
o 

lax 
= aY6 tanh (Ky/Y^) exp (-y/A) 

iax 
av e   = a 

s     2 exp (-y/A) 

S^  [1 - exp (-y/A)] 

T_  _A_  iaj 

. 2 " A J^ 

y   T A 

AJ I 2 AJ _ 

(E.4) 

-^e^°'^  (E.5) 
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* lax 
ate   = a 

r V 
2— + 1 

V 
2 s 

xy 

2^ ,U' exp (-y/A) 

[1 - exp (-y/A)] 

A 

A 

1- 
— U' exp (-y/A)y 

[1 - exp(-y/A)]  A 

lax 
(E.6) 

For large values of y equations (E.4) - (E.6) are respectively 

ail e   =0 
o 

(E.7) 

t     lax 2 ^ 2 „ -        lax 
a — e =aYo2s      e 

V xy 
(E.8) 

-  lax „   2,2—j  ,„ -     .    lax 
axe        =a2Y5   .U(2s      )e 

xy 
(E.9) 

Calculations were made using the finite boundary layer form of 

ft 
Model D , equations (E.4)-(E.6).  For boundary layer thicknesses 6 < 500, 

it is not possible to sustain a turbulent boundary layer (see Cebeci 

and Smith [12]).  Therefore, this was the smallest value of 6 considered. 

The calculations show that the effect of 6 on the wave induced 

phase angle and amplitude of the shear stress and pressure is small 

for any realistic boundary layer thickness. Figures (E.l), (E.2), (E.3) 

and (E.4) respectively. , 
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Figure E.2.  Effect of Finite Boundary Layer Thickness on 
I T (o) I for Model D* k = -35 and k = 1800 
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"I 1 \ 1—I   I' I  I > I 1—f—I—r—r 

Model D    Finite Boundary Layer Calculation 
k, =-35, kL=l800 
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Figure E.4.  Effect of Finite Boundary Layer Thickness on 
I p(o)| for Model D* k = -35 and k = 1800 
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APPENDIX F 

TABULATED DATA 

This appendix presents in tabulated form the wave profile, 

average shear stress and fluctuating shear stress distributions 

reported in this work. 

The wave profile data are reported in inches.  The shear 

stress and fluctuating shear stress data are reported in the 

dimensionless form as discussed in Chapter 4. 
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Table F.l Wave Profile Measurements 

Wave 9   Wave 8  Wave 6 

I   in. X 10-^ in. x 10^ in. xlO"^ 

0.00 29.00 30.00 30.00 

0.05 28.00 29.00 28.50 

0.10 26.00 28.00 28.00 

0.15 24.00 22.50 22.50 

0.20 20.00 22.00 22.00 

0.25 16.00 17.00 17.00 

0.30 12.00 13.00 13.00 

0.35 8.00 9.50 9.50 

0.40 5.00 6.00 6.00 

0.45 1.50 3.00 3.00 

0.50 0.00 0.00 0.00 

0.55 0.50 0.50 0.50 

0.60 2.00 3.00 3.00 

0.65 6.00 6.50 6.50 

0.70 10.00 10.00 10.50 

0.75 14.00 15.00 15.00 

0.80 18.50 19.00 19.00 

0.85 23.00 23.00 23.50 

0.90 26.00 27.00 27.00 

0.95 28.00 29.00 29.00 

1.00 29.00 30.00 30.00 
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Table F.2. Summary of Average Shear Stress Measurements 

Run No, 
U^h/2 

V 

2ll_v 
e 
T 

T - T 
W   W 

A u 
w 

1 5970.00 .00871 56.82 0.40 

2 5970.00 .00871 56.00 0.40 

3 5970.00 .00871 56.70 0.43 

4 6680.00 .00787 50.00 0.38 

5 6680.00 .00787 54.50 0.43 

6 6680.00 .00787 52.00 0.39 

7 8450.00 .00621 57.20 0.38 

8 8450.00 .00621 59.00 0.42 

9 8450.00 .00621 60.00 0.39 

10 8950.00 .00607 60.00 0.36 

11 8950.00 .00607 63.40 0.39 

12 8950.00 .00607 63.12 0.36 

13 9650.00 .00566 60.30 0.41 

14 9650.00 .00566 63.00 0.41 

15 9650.00 .00566 56.50 0.36 

16 11400.00 .00489 65.00 0.32 

17 11400.00 .00489 65.50 0.35 

18 11400.00 .00489 65.70 0.34 

19 13000.00 .00435 55.46 0.29 

io 13000.00 .00435 61.00 0.34 

21 13000.00 .00435 64.14 0.37 

* «. 
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Table F.3. Summary of Average Shear Stress Measurements 

Run No. 
U^h/2 

V 

2nv 
e 
T Xu* % 

22 14600.00 .00389 69.80 0.31 

23 14600.00 .00389 71.47 0.34 

24 14600.00 .00389 65.00 0.36 

25 15700.00 .00367 70.00 0.31 

26 15700.00 .00367 76.50 0.33 

27 15700.00 .00367 69.00 0.32 

28 19800.00 .00297 73.40 0.27 

29 19800.00 .00297 76.00 0.27 

30 19800.00 .00297 76.00 0.25 

31 19800.00 .00297 67.00 0.29 

32 19800.00 .00297 76.00 0.29 

33 19800.00 .00297 69.00 0.24 

34 20600.00 .00287 74.00 0.23 

35 20600.00 .00287 66.00 0.29 

36 20600.00 .00287 71.00 0.27 

37 27950.00 .00218 78.50 0.20 

38 27950.00 .00218 80.60 0.21 

39 27950.00 .00218 78.30 0.20 

40 30620.00 .00201 86.40 0.16 

41 30620.00 .00201 84.80 0.18 

42 30620.00 .00201 86.00 0.17 
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Table F.4. Summary of Average Shear Stress Measurements 

Run No. 
V 

2 n V 

9x 
^w- ^w 

1 * A U ^w 

43 34700.00 .00181 84.90 0.19 

44 34700.00 .00181 77.38 0.20 

45 36000.00 .00174 81.65 0.16 

46 36000.00 .00174 81.00 0.14 

47 36000.00 .00174 80.00 0.16 

48 36000.00 .00174 81.20 0.17 

49 36000.00 .00174 83.00 0.16 

50 58000.00 .00135 78.35 0.13 

51 58000.00 .00135 73.27 0.15 

52 58000.00 .00135 70.00 0.12 

53 58000.00 .00135 73.00 0.11 

54 64000.00 .00139 72.00 0.23 

55 64000.00 .00139 73.00 0.11 

56 71000.00 .000951 76.20 0.11 

57 71000.00 .000951 67.00 0.13 

58 71000.00 .000951 69.00 0.09 

59 73500.00 .000912 71.00 0.10 

60 73500.00 .000912 65.70 0.08 

61 73500.00 .000912 68.50 0.09 

62 73500.00 .000912 68.15 0.08 

63 84500.00 .000813 58.65 0.08 
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Table F.5. Summary of Average Shear Stress Measurements 

Run No. 
U^h/2 

V 

2 n V 
e 
T 

r - T 
w  w 

X  u 
\ 

64 84500.00 .000813 54.10 0.07 

&5 84500.00 .000813 57.00 0.06 

m 102500.00 .000683 45.00 0.09 

67 114500.00 .000618 28.00 0.06 

m 122500.00 .000582 17.00 0.06 

69 42500.00 .00151 79.00 0.17 

70- 50000.00 ..00129 77.00 0.13 
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Table F.6. Sunmary of Fluctuating Shear Stress 
Measurements 

Tj , , _.  XT _, Uj^h/2 

V 

2n V 
0 /s 

Run No. 
'2 /I 
X     X Au* 

5 6680.00 .00787 77.00 .0523 

6 6680.00 .00787 86.00 .0402 

7 8450.00 .00621 80.86 .0448 

8 8450.00 .00621 91.40 .0497 

9 8450.00 .00621 90.00 .0501 

13 9650.00 .00566 84.00 .0502 

14 9650.00 .00566 91.00 .0560 

15 9650.00 .00566 90.00 .0351 

20 13000.00 .00435 96.00 .0316 

21 13000.00 .00435 92.00 .0416 

25 15700.00 .00367 109.00 .«0300 

26 15700.00 .00367 119.00 .0347 

27 15700.00 .00367 108.00 .0267 

32 19800.00 .00297 117.00 .0211 

35 20600.00 .00287 100.00 .0196 

36 20600.00 .00287 119.00 .0264 
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Table F.7. Average Shear Stress Measurements 

T /x w w 

Y     Run 1   Run 2   Run 3   Run 4   Run 5   Run 6 
A 

0.00 1.31 1.20 1.10 1.17 1.15 1.21 

0.05 1.12 1.02 1.21 1.12 1.11 1.14 

0.10 0.91 0.99 0.97 1.05 0.96 1.00 

0.15 0.82 0.86 0.87 1.04 0.92 0.94 

0.20 0.77 0.75 0.78 0.76 0.75 0.78 

0.25 0.66 0.70 0.68 0.76 0.71 0.70 

0.30 0.62 0.62 0.62 0.61 0.64 0.62 

0.35 0.61 0.61 0.61 0.66 0.60 0.65 

0.40 0.63 0.63 0.59 0.59 0.55 0.60 

0.45 0.65 0.68 0.63 0.65 0.61 0.66 

0.50 0.68 0.77 0.72 0.68 0.66 0.72 

0.55 0.85 0.82 0.79 0.78 0.78 0.79 

0.60 0.99 0.93 1.07 0.94 0.99 0.88 

0.65 1.15 1.15 1.12 1.11 1.18 1.19 

0.70 1.27 1.28 1.31 1.20 1.31 1.24 

0.75 1.35 1.34 1.32 1.33 1.42 1.34 

0,80 1.35 1.40 1.45 1.34 1.35 1.39 

0.85 ^ 1.40 1.42 1.32 1.44 1.42 1.40 

0.90 1.37 1.34 1.46 1.35 1.42 1.29 

0.95 1.31 1.31 1.23 1.28 1.32 1.27 

1.00 1.18 1.22 1.12 1.14 1.15 1.21 
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Table F.8.  Average Shear Stress Measurements 

T /T w w 

Y Run 7   Run 8   Run 9   Run 10  Run 11  Run 12 

0.00 1.26 1.13 1.10 1.24 1.14 1.14 

0.05 1.08 1.08 1.06 1.10 1.05 1.07 

0.10 0.95 0.92 0.91 0.97 0.92 0.95 

0.15 0.83 0.85 0.85 0.85 0.84 0.85 

0.20 0.70 0.73 0.76 0.73 0.74 0.71 

0.25 0.69 0.65 0.69 0.70 0.66 0.66 

0.30 0.61 0.60 0.69 0.62 0.63 0.64 

0.35 0.62 0.64 0.63 0.67 0.63 0.66 

0.40 0.65 0.67 0.66 0.65 0.62 0.68 

0.45 0.68 0.70 0.69 0.70 0.68 0.72 

0.50 0.76 0.74 0.72 0.76 0.77 0.81 

0.55 0.89 0.81 0.74 0.91 0.88 0.88 

0.60 1.03 1.14 0.98 1.05 1.10 1.01 

0.65 1.13 1.09 1.21 1.20 1.20 1.20 

0.70 1.25 1.34 1.34 1.25 1.32 1.32 

0.75 1.35 1.41 1.39 1.33 1.33 1.34 

0.80 1.35 1.30 1.46 1.30 1.39 1.35 

0.85 1.26 1.41 1.39 1.33 1.35 1.33 

0.90 1.38 1.46 1.34 1.31 1.36 1.27 

0.95 1.33 1.15 1.26 1.21 1.23 1.24 

1.00 1.21 1.20 1.15 1.13 1.15 1.16 
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Table F.9. Average Shear Stress Measurements 

T /T 
W  W 

X 
A 

Run 13 Run 14 Run 15 Run 16 Run 17 Run 18 

0.00 1.16 1.12 1.16 1.20 1.18 1.09 

0,05 1.06 1.04 1.08 1.08 1.02 1.04 

0.10 0.94 0.91 0.97 0.95 1.04 0.93 

0.15 0.81 0.81 0.88 0.84 0.83 0.83 

0.20 0.71 0.74 0.78 0.72 0.67 0.69 

0.25 0.67 0.66 0.68 0.70 0.67 0.68 

0.30 0.60 0.64 0.65 0.66 0.67 0.67 

0.35 0.63 0.63 0.65 0.71 0.66 0.69 

0.40 0.62 0.62 0.68 0.71 0.69 0.72 

0.45 0.66 0.63 0.72 0.74 0,71 0.77 

0.50 0.73 0.76 0.77 0.83 0.83 0.83 

0.55 0.88 0.80 0.81 0.95 0.97 0.96 

0.60 1.03 1.07 0.95 1.09 1.02 1.04 

0.65 1.17 1.22 1.14 1.18 1.20 1.22 

0.70 1.32 1.37 1.29 1.27 1.31 1.30 

0.75 1.37 1.39 1.30 1.31 1.33 1.32 

0.80 1.37 1.45 1.36 1.25 1.35 1.31 

0.85 ^ 1.39 1.41 1.34 1.29 1.29 1.31 

0.90 1.39 1.34 1.34 1.26 1.31 1.28 

0.95 1.30 1.26 1.27 1.15 1.18 1.19 

I.00 1.19 1.14 1.16 1.11 1.08 1.13 
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Table F.IO. Average Shear Stress Measurements 

^w^ T W 

X 

X 
Run 19 Run 20 Run 21 Run 22 Run 23 Run 24 

0.00 1.22 1.16 1.14 1.18 1.07 1.06 

0.05 1.15 1.09 1.06 1.02 1.04 1.02 

0.10 1.00 0.96 0.94 0.95 0.90 0.91 

0.15 0.91 0.85 0.83 0.79 0.80 0.81 

0.20 0.78 0.77 0.75 0.74 0.76 0.70 

0.25 0.75 0.69 0.68 0.68 0.66 0.68 

0.30 0.71 0.66 0.67 0.67 0.68 0.67 

0.35 0.69 0.69 0.67 0.70 0.67 0.72 

0.40 0.71 0.71 0.65 0.76 0.69 0.75 

0.45 0.79 0.74 0.63 0.81 0.77 0.78 

0.50 0.81 0.76 0.75 0.85 0.87 0.85 

0.55 0.90 0.85 0.89 0.96 0.94 0.95 

0.60 1.03 1.01 1.12 1.13 1.15 1.09 

0.65 1.03 1.20 1.19 1.16 1.20 1.23 

0.70 1.26 1.30 1.35 1.34 1.33 1.32 

0.75 1.26 1.31 1.33 1.25 1.31 1.30 

0.80 1.20 1.35 1.38 1.29 1.34 1.31 

0.85 1.26 1.30 1.31 1.24 1.26 1.30 

0.90 1.^2 1.27 1.37 1.25 1.29 1.23 

0.95 1.21 1.20 1.21 1.15 1.17 1.18 

1.00 1.10 1.14 1.07 1.10 1.10 1.14 
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Table F.ll. Average Shear Stress Measurements 

T /T w w 

X Run 25 Run 26 Run 27 Run 28 Run 29 Run 30 

0.00 1.10 1.05 1.09 1.13 1.08 1.10 

0.05 1.04 0.98 1.07 1.02 0.95 1.00 

0.10 0.92 0.86 0.94 0.91 0.93 0.95 

0.15 0.81 0.81 0.84 0.81 0.81 0.86 

0.20 0.73 0.74 0.73 0.76 0.77 0.79 

0.25 0.69 0.69 0.63 0.71 0.71 0.71 

0.30 0.67 0.70 0.68 0.71 0.74 0.72 

0.35 0.74 0.72 0.70 0.75 0.76 0.74 

0.40 0.74 0.75 0.78 0.81 0.81 0.81 

0.45 0.77 0.80 0.81 0.84 0.83 0.87 

0.50 0.83 0.86 0.84 0.87 0.93 0.92 

0.55 1.00 0.98 0.92 1.01 1.01 0.97 

0.60 1.11 1.15 1.09 1.08 1.12 1.17 

0.65 1.23 1.23 1.24 1.19 1.16 1.15 

0.70 1.25 1.31 1.32 1.21 1.25 1.27 

0.75 1.26 1.34 1.34 1.28 1.22 1.30 

0.80 1.26 1.31 1.23 1.21 1.29 1.17 

0.85 1.26 1.28 1.29 1.27 1.23 1.26 

0.90 1.26 1.32 1.16 1.19 1.21 1.08 

0.95 1.25 1.18 1.15 1.18 1.13 1.06 

1.00 1.07 0.95 1.14 1.04 1.07 1.11 
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Table F.12. Average Shear Stress Measurements 

T h w w 

Y     Run 31  Run 32  Run 33  Run 34  Run 35  Run 36 
A 

0.00 1.16 1.05 1.10 1.12 1.12 1.14 

0.05 1.02 0.98 1.04 1.06 1.07 1.09 

0.10 0.94 0.88 0.93 0.94 0.91 0.93 

0.15 0.80 0.83 0.88 0.85 0.88 0.86 

0.20 0.77 0.76 0.80 0.76 0.77 0.78 

0.25 0.70 0.75 0.74 0.78 0.74 0.66 

0.30 0.72 0.75 0.75 0.75 0.71 0.69 

0.35 0.74 0.75 0.81 0.80 0.76 0.67 

0.40 0.79 0.75 0.80 0.83 0.71 0.86 

0.45 0.80 0.85 0.83 0.87 0.75 0.86 

0.50 0.85 0.90 0.89 0.87 0.84 0.88 

0.55 0.95 0.97 0.95 1.02 0.94 0.94 

0.60 1.08 1.13 1.03 1.08 1.12 1.10 

0.65 1.14 1.19 1.22 1.15 1.17 1.23 

0.70 1.22 1.25 1.14 1.20 1.26 1.25 

0.75 1.25 1.31 1.24 1.23 1.28 1.29 

0.80 1.25 1.28 1.27 1.18 1.26 1.21 

0.85 1.25 1.25 1.25 1.23 1.19 1.20 

0.90 1.25 1.29 1.16 1.18 1.25 1.10 

0.95 1.21 1.16 1.09 1.11 1.14 1.20 

1.00 1.12 0.93 1.08 0.98 1.12 1.07 
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Table F.13. Average Shear Stress Measurements 

V-^w 

X 
Run 37 Run 38 Run 39 Run 40 Run 41 Run LI 

0.00 1.08 1.03 1.02 1.05 0.99 0.87 

0.05 1.00 0.99 0.98 1.02 1.00 1.03 

0.10 0.93 0.89 0.91 0.90 0.88 0.91 

0.15 0.84 0.86 0.85 0.86 0.88 .0.8^ 

0.20 0.80 0.81 0.80 0.81 0.82 0.81 . 

0.25 0.81 0.79 0.79 0.85 0.84 0.84 

0.30 0.80 0.79 0.83 0.80 0.81 0.84 

0.35 0.86 0.84 0.87 0.91 0.87 0.92 

0.40 0.88 0.87 0.89 0.88 0.90- 0.91 

0.45 0.89 o.9i ■ 0.84 0.93 0.93 0.92 

0.50 0.92 0.95 0.94 0..98 0.96 0.98 

0.55 1.00 0.99 0.97 1.04 0.99 1.02 

0.60 1.10 1.11 1.09 1.08 1.10 1.06 

0.65 1.14 1.13 1.16 1.14 1.13 1.12 

0.70 1.19 1.21 1.20 1.17 1.18 1.16 

0.75 1.19 l.il 1.18 1.19 1.20 1.18 

, 0.80 1.16 1.19 1.20 1.10 .1.18 las 

0.85 1.16 1.16 1.17 1.15 1.18 1.17 

0.90 1.16 I4I8 1.14 1.10 1.16 1.10 

0.95 1.08 1.08 1.10 1.03 1.08 1.08 

1.00 1.01 1.00 1.05 1.00 0.92 1.03 



Table F.14. Average Shear Stress Measurements 

T /T 
w w 

219 

X 

X 
Run 43  Run 44  Run 45  Run 46  Run 47  Run 48 

0.00 0.97 1.01 1.07 1.00 1.05 1.02 

0.05 0.98 1.01 1.01 1.01 0.97 0.97 

0.10 0.86 0.89 0.92 0.91 0.90 0.91 

0.15 0.89 0.92 0.87 0.92 0.85 0.90 

0.20 0.81 0.87 0.84 0.85 0.83 0.86 

0.25 0.87 0.87 0.85 0.89 0.84 0.82 

0.30 0.84 0.85 0.82 0.86 0.86 0.86 

0.35 0.86 0.92 0.90 0.93 0.90 ■ 0.85 

0.40 0.87 0.86 0.91 0.90 0.90 0.91 

0.45 0.89 0.88 0.93 0.93 0.91 0.96 

0.50 0.91 0.96 0.96 0.96 0.95 0.99 

0.55 0.99 0.98 1.01 1.00 1.01 0.97 

0.60 1.07 0.99 1.08 1.03 1.06 1.06 

0.65 1.17 1.18 1.12 1.14 1.12 1.07 

0.70 1.14 1.06 1.15 1.13 1.15 1.18 

0.75 1.26 1.19 1.18 1.16 1.17 1.19 

0.80 1.16 1.16 1.14 1.12 1.14' '1.14 

0.85 1.21 1.21 1.13 1.16 1.15 1.11 

6.90 1.16 1.08 1.11 1.08 1.13 1.19 

0.95 1.12 1.06 1.06 1.07 1.09 1.06 

1.00 0.97 1.05 0.96 1.00 1.01 0.99 



Table F.15, Average Shear Stress Measurements 

T /T 
W  W 
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X 
A 

Run 49  Run 50  Run 51  Run 52  Run 53  Run 54 

0.00 1.01 1.06 1.01 1.03 1.02 1.06 

0.05 0.96 1.00 1.02 1.03 1.04 1.00 

0.10 0.91 0.95 0.92 1.00 0.98 0.99 

0.13 0.89 0.87 0.87 0.92 0.92 0.92 

0.20 0.86 0.85 0.90 0.87 0.90 0.89 

0.25 0.84 0.92 0.92 0.89 0.90 0.95 

0.30 0.86 0.82 0.91 0.89 0.91 0.90 

0.35 0.90 0.92 0.92 0.93 0.94 0.91 

0.40 0.90 0.93 0.82 0.91 0.93 0.94 

0.45 0.93 0.92 0.84 0.93 0.93 0.92 

0.50 0.95 0.95 0.86 0.94 0.95 0.96 

0.55 0.98 0.98 0.91 0.95 0.96 0.97 

0.60 1.07 1.04 1.00 0.96 1.03 1.03 

0.65 1.07 1.08 1.07 1.11 1.08 1.07 

0.70 1.15 1.16 1.19 1.12 1.09 1.12 

0.75 1.15 1.15 1.18 1.12 1.12 1.10 

0.80 1.16^ 1.08 1.18 1.12 1.12 1.04 

0.85 1.16 1.13 1.19 1.11 1.11 1.10 

0.90 1.15 1.11 1.21 1.07 1.05 1.10 

0.95 1.09 1.09 1.12 1.05 1.01 1.06 

1.00 1.02 0.98 0.99 1.05 1.00 0.98 
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Table F.16, Average Shear Stress Measurements 

^w^V 

X 
Run 55 Run 56 Run 57 Run 58 Run 59 Run 60 

0.00 0.99 1.04 1.02 1.07 1.04 1.01 

0.05 1.00 0.98 1404 1.04 1.01 1.02 

0.10 0.94 0.93 0.94 1.02 0.97 0.97 

0.15 0.95 0.88 0.89 0.94 0.92 0.98 

0.20 0.93 0.90 0.98 0.89 0.91 0.97 

0.25 0.92 0.94 0.93 0.92 0.90 0.94 

0.30 0.90 0.85 0.92 0.90 0.90 0.92 

0.35 0.95 0.93 0.84 0.93 0.94 0.96 

0.40 0.94 0.95 0.86 0.89 0.94 0.93 

0.45 0.92 0.94 0.87 0.94 0.94 0.92 

0.50 0.96 0.91 0.84 0.96 0.96 0.93 

0.55 0.97 0.97 0.87 0.99 0.96 0.96 

0.60 0.98 1.01 0.96 1.05 1.02 0.99 

0.65 1.09 1.05 1.05 1.08 1.04 1.07 

0.70 1.10 1.16 1.16 1.08 1.10 1.08 

0.75 1.11 1.16 1.16 1.07 1.08 1.09 

0.80 1.13 1.07 1.21 1.07 1.10 1.11 

0.85 1.09 1.12 1.16 1.08 1.10 1.07 

0.90 1.06 1.11 1.19 1.03 1.11 1.05 

0.95 1.04 1.09 1.09 1.01 1.07 1.03 

1.00 1.04 1.00 1.02 1.02 0.99 1.02 
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Table F.17. Average Shear Stress Measurements 

i ■ T /T w w 

•7      Run 61  Run 62  Run 63  Run 64  Run 65  Run 66 
A 

0.00 1.06 1.00 1.03 0.97 0.98 1.06 

0.05 1.01 1.01 1.03 1.01 1.03 1.01 

0.10 0.99 0.97 0.98 0.93 0.99 1.03 

0.15 0.91 0.96 0.96 0.93 1.00 0.97 

0.20 0.92 0.96 0.91 0.91 0.97 0.95 

0.25 0.95 0.95 0.99 0.97 0.96 0.94 

0.30 0.90 0.92 0.89 0.92 0.94 0.91 

0.35 0.93 0.96 0.95 0.94 0.98 0.93 

0.40 0.95 0.93 0.91 0.96 0.93 0.95 

0.45 0.93 0.92 0.95 0.91 0.92 0.91 

0.50 0.95 0.94 0.96 0.92 0.93 0.92 

0.55 0.96 0.96 0.96 0.97 0.93 0.94 

0.60 1.02 0.97 0.97 1.05 0.93 0.99 

0.65 1.06 1.07 1.04 1.09 1.05 1.01 

0.70 1.10 1.09 1.07 1.12 1.04 1.07 

0.75 1.08 1.09 1.09 1.12 1.09 1.04 

0.80 1.03 1.12 1.00 1.15 1.09 1.08 

0.85 1.09 1.07 1.12 1.15 1.10 1.10 

0.90 1.10 1.06 1.09 1.09 1.04 1.11 

0.95 1.08 1.05 1.11 0.97 1.04 1.10 

1.00 0.99 1.00 0.98 0.93 1.06 1.05 
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X 

A 

Table F.18. Average Shear Stress Measurements 

T h w w 

Run 67  Run 68 

0.00 1.03 1.04 

0.05 1.08 1.09 

0.10 1.06 1.06 

0.15 1.02 1.03 

0.20 0.97 0.97 

0.25 1.01 1.00 

0.30 0.93 0.93 

0.35 0.96 0.97 

0.40 0.94 0.94 

0.45 0.96 0.92 

0.50 0.94 0.94 

0.55 0.93 0.93 

0.60 0.95 0.96 

0.65 0.98 1.01 

0.70 1.03 1.03 

0.75 1.05 1.03 

0.80 1.02 1.03 

0.85 1.03 1.03 

0.90 1.02 1.02 

0.95 1.04 1.03 

1.00 1.02 1.01 
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Table F.19. Fluctuating Shear Stress Measurements 

; /s'^/S X    X 

Run 5 Run 6 Run 7 Run 8 Run 9 Run 15 

0.00 0.29 0.31 0.32 0.28 0.28 0.30 

0.03 0.29 0.31 0.30 0.30 0.29 0.30 

0.10 0.27 0.29 0.27 0.26 0.26 0.29 

0.15 0.30 0.30 0.27 0.27 0.26 0.28 

0.20 0.25 0.27 0.24 0.24 0.25 0.27 

0.25 0.27 0.26 0.26 0.25 0.25 0.26 

0.30 0.26 0.26 0.24 0.24 0.28 0.26 

0.35 0.25 0.28 0.26 0.26 0.27 0.28 

0.40 0.24 0.26 0.27 0.28 0.27 0.28 

0.45 0.27 0.29 0.29 0.31 0.29 0.30 

0.50 0.28 0.31 0.29 0.28 0.29 0.31 

0.55 0.28 0.31 0.31 0.29 0.28 0.31 

0.60 0.32 0.32 0.32 0.34 0.33 0.31 

0.65 0.36 0.38 0.33 0.34 0.36 0.33 

0.70 0.37 0.35 0.34 0.36 0.36 0.34 

0.75 0.37 0.34 0.36 0.36 0.36 0.34 

0.80 0.33 0.34 0.34 0.31 0.36 0.34 

0.85 0.35 0.34 0.30 0.34 0.34 0.32 

0.90 0.34 0.31 0.34 0.36 0.33 0.32 

0.95 0.33 0.52 0.34 0.28 0.32 0.32 

1.00 0.30 0.31 0.31 0.31 0.30 0.29 
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Table F.20. Fluctuating Shear Stress Measurements 

ys'2/s 
/  X   X 

X 
A Run 13 Run 16 Run 20 Run 21 Run 25 Run 26 

0.00 0.30 0.29 0.29 0.28 0.27 0.25 

0.05 0.29 0.28 0.29 0.29 0.29 0.25 

0.10 0.28 0.27 0.28 0.27 0.26 0.25 

0.15 0.26 0.25 0.27 0.27 0.25 0.25 

0.20 0.25 0.26 0.27 0.26 0.24 0.24 

0.25 0.25 0.24 0.26 0.25 0.25 0.24 

0.30 0.25 0.25 0.26 0.26 0.25 0.25 

0.35 0.27 0.26 0.27 0.27 0.28 0.2^ 

0.40 0.26 0.27 0.27 0.26 0.28 0.28 

0.45 0.28 0.26 0.28 0.26 0.29 0.30 

0.50 0.28 0.31 0.29 0.28 0.29 0.28 

0.55 0.31 0.27 0.31 0.29 0.30 0.30 

0.60 0.33 0.34 0.32 0.34 0.32 0.32 

0.65 0.35 0.35 0.33 0.33 0.31 0.31 

0.70 0.36 0.38 0.33 0.35 0.32 0.31 

0.75 0.35 0.36 0.32 0.34 0.31 0.32 

0.80 0.35 0.35 0.33 0.33 0.29 0.30 

0.85 0.35 0.34 0.31 0.32 0.29 0.29 

0.90 0.34 0.33 0.30 0.33 0.30 0.30 

0.95 0.33 0.31 0.30 0.30 0.30 0.29 

1.00 0.31 0.29 0.29 0.27 0.26 0.24 
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table F,21. Fluctuating Shear Stress Measurements 

/s-^/S 
/  X     X 

X 
X 

Run 27 Run 32 Run 35 Run 36 

0.00 0.28 0.25 0.26 0.26 

0.05 0.28 0.25 0.26 0.26 

0.10 0.27 0.23 0.24 0.25 

0.15 0.25 0.24 0.25 0.25 

0.20 0.25 0.24 0.24 0.25 

0.25 0.23 0.25 0.24 0.21 

0.30 0.25 0.26 0.24 0.24 

0.35 0.26 0.25 0.27 0.24 

0.40 0.28 0.26 0.26 0.28 

0.45 0.29 0.29 0.26 0.27 

0.50 0.29 0.27 0.25 0.29 

0.55 0.30 0.26 0.27 0.28 

0.60 0.30 0.28 0.29 0.30 

0.65 0.32 0.28 0.27 0.30 

0.70 0.32 0.28 0.29 0.29 

0.75 0.31 0.29 0.30 0.29 

0.80 0.27 0.28 0.28 0.27 

0.85 0.29 0.27 0.26 0.26 

0.90 0.27 0.28 0.28 0.25 

0.95 0.26 0.26 0.26 0.27 

1.00 0.28 0.21 0.26 0.25 
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APPENDIX G 

ELECTROCHEMICAL MEASUREMENTS 

The physical and chemical properties of the elctrochemical solution 

are given in this appendix. 

Physical Properties 

All the electrochemical measurements required the determination of 

the kinematic viscosity, density, concentration of active specie and 

mass diffusivity.  The viscosity was measured after each run with a 

No. 50 Otswald viscometer.  The density was determined by hydrometer 

immersion.  The concentration was  obtained using standard titration 

for potassium iodide.  The diffusion coefficient for the iodine was 

calculated from the following correlation (see Zilker [77]), 

log ^QD = -1.07291 log^Q V -7.15278 (G.l) 

where v is the kinematic viscosity.  Table G.l summarizes the physical 

and chemical properties of the electrolyte. 
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Table G.l. 

Physical and Chemical Properties of Electrolyte 

Property 

Viscosity (P) 

3 
Density (g/cm ) 

2 
Kinematic Viscosity (cm /s) 

2 
Mass Diffusivity (cm /sec) 

Schmidt Number 

KI Concentration (moles/liter) 

I_ (I-) Concentration (moles/liter) 

Temperature (C°) 

,-5 

0.00858 

1.023 

0.00839 

1.188 X 10 

707 

0.103 - .2 

0.00131 - 0.00146 

26 
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APPENDIX H 

ANALYSIS OF RAW DATA 

In this appendix the method used in analyzing the raw data is 

outlined.  All electrodes, are assumed to have the same area.  The 

instantaneous current measured at the jth electrode is 

E. 
I. =^ (H.l) 

where E = (V - V  ..  Here V is the instantaneous measured voltage 
2 o   app)       o 

and V   is the applied voltage.  The term R^ is the feedback resistance, app       ff ^ f 

The average current at the jth electrode is given by 

R n 
(H.2) 

where E. is the ith voltage sampled by the A/D converter and n is the 

total number of samples gathered.  The average shear stress at the 

jth electrode is obtained from equation (4.5) 

(T ) . = C- 
^d J 

r     V     E. 

i=l 

nR. 
(H.3) 

= C 
3(E^ 

(H.3) 

where E. 
J 

1    E^/n. 
i=l 



230 

The wave averaged shear stress is obtained by summing (x ). over 
V 

all j, 

;T > = ^ 

m    _ 

Id ). 
=1 ^d J 

w. 
m 

(H.5) 

where m is number of electrodes.  The dimensionless quantity, 

(T^^ /T ) = (T  )./<T  >, is then 

r T w 

V 
^ 
m 

j=l  ^ 
m 

(H.6) 

(E.)^ 

(E^ w 

(H.7) 

where 

m 

(I\   =-i^ 
I (E,)- 

w 
m 

(H-8) 

The local intensity of the fluctuating shear stress is found using 

equation (4.6) to be 

'^ii . z'hill 
T 

^  W 
(H.9) 
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The local root mean square value of the fluctuating shear stress is 

[z:^] 
w 

= 3 ±^ 1/2 (H.IO) 

and the absolute root mean square value of the fluctuating shear stress 

is obtained by multiplying equation (H.9) by equation (H.6) 

/7^ 
■ w 

= 3 

—  -2 1/2 

^\ 

(H.ll) 

/I^ 

where s' = 9u'/3y and S = 9U/3y are respectively, the dimensionless 
X X 

fluctuating and wave averaged velocity gradient evaluated at the wall. 
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: APPENDIX I      . 

LEAST SQUARES ANALYSIS 

The surface shear stress data are fitted with a Fourier series. 

The computer program Data is set up to calculate the first four harmonics 

if necessary, however, onlyone harmonic was used in fitting the data.  The 

Fourier coefficients are obtained by performing a least squares analysis 

as follows: 

let f(x) be a function that has a period Zir/a.  Then the Fourier series 

representation of f(x) is 

N 
(I.l) f(x ) » f + ^ (a cos (anx ) + b sin (anx.)) 

j        1 j    ^       J 

f . -i  (1.2) 

where x. is the location of jth electrode.  The spacing between the 

electrodes is assumed constant in the analysis that follows. 

The error function E is defined as 

(1.3) 

where 

-  N 2 
e. «• [f(x,) - f - y (a cos (ctnx.) + b sin (anx.))] (I-^) 
J      J       I      °- J    n       j 



233 

spect  to a and b n 

5^   =  0 
3a        "' 

n 

BE 
3b 

n 
= 0 n = 1, 2, ..., N. (1.5) 

Substituting equation (1.4) into (1.3) and using equation (1.5) 

yields 

J       _ J N 
y (f (x.) - f ) cos (nax.) = 7 T (a cos (anx.) +b sin (anx.)) cos (nax.) (1.6) 

J       _ J N 
y(f(x.)-f) sin (nax.) = J 7 (a cos (anx.)+b sin (anx.) ) sin (nax.) .(I. 7) 

I 
The constants a and b are found by minimizing the error function with I 

n     n -^ ° B 

I 
I 
I 
I 
I 
I 
I 

Equations (1.6) and (1.7) represent 2N equations in 2N unknowns, 

a and b  (n = 1, . . . , N).  The function f(x), can be written as follows I 
n     n ■ 

I 
I 
I 
I 
I 
I 
I 
I 
I 

_  N        1/2 
f(x) = f + y (a + b )   cos (anx + 6 ) (1.8) 

4'  n   n n 

where 

6 = tan"-"- (-b /a ) (1.9) n n n 
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APPENDIX J 

CORRECTION OF INTENSITY DATA 

In this appendix the measurements of /s  /S are corrected 
V  X     X 

for both frequency and spatial averaging as suggested by Mitchell and 

Hanratty [47].  The results are summarized in Tables J.l and J.2, 

where L is the effective electrode length, W = 211 (0.009) is the 
m 

median frequency of S in pipe turbulence, Sc is the Schmidt number 

and A is the circumferential scale for mass transfer fluctuations. 

Mitchell and Hanratty have suggested that for pipe turbulence A S 12. 

They have presented curves of 1/A vs. (L\''"SC  )  and /k^ / /k^ 
m 

2 1/2 
vs. (1/A)  where (1/A )   is the correction factor which accounts 

for frequency averaging and /k'^ //k^2 ^g ^he correction factor which 

accounts for spatial averaging. Here k'  is the corrected intensity 

2 
of the mass transfer fluctuation and k'  is the measured intensity of 

m ■^ 

the mass transfer fluctuations. 

It should be noted that the values of /s' /S listed in this 
r  X  X 

appendix refer to the wave induced components of the fluctuating 

shear stress. 
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Table J.l. 

Correction of Fluctuating Shear Stress Measurements 

a L^ 
+ +3/2      1/2 

L W           Sc 
m 

L/A 

'   m 

1 

A2 

0.00787 6.442 3.355 .5369 - 1.09 

OJ00621 8.162 4.25 .6802 ■ -■ 1.22 

0.00565 8.974 4.674 .748 - 1.26 

0.0045 11.267 5.868 .939 1.07 1.29 

0.00367 13.816 7.915 1.151 1.11 1.40 

0.00297 17.07 8.9 1.422 1.15 1.48 

0.00287 17.66 9.201 1.472 1.155 1.5 

I 



Table J.2 

Correction of Fluctuating Shear Stress Measurements 
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Sx 

/^ M 
s  * 
X 

s 
X 

^   /^i 
a 

\   /^ 

0.00787 0.0462 0.0462 0.0483 0.048 

0.00621 0.0482 0.0482 0.053 0.053 

0.00565 0.0465 0.0465 0.0528 0.0528 

0.00435 0.0366 0.0392 0.0416 0.0445 

0.00367 0.0305 0.0338 0.0374 0.0397 

0.00297 0.0211 0.0243 0.025 0.0295 

0.00287 0.0230 0.0265 0.0280 0.0325 
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APPENDIX K 

NUMERICAL FORMULATION OF WAVE INDUCED EQUATIONS 

In this appendix equations(3.13)-(3.17) are set up in a suitable 

form for numerical solution using the techniques described in Chapter 5. 

The differential equation describing the wave induced flow using 

the zero equation turbulence models is a fourth order equation.  Since 

the dependent variable, the stream function, F, is a complex quantity 

the differential equation is solved as an eighth order system.  This 

is achieved by splitting F into its real and imaginary parts and 

introducing the following variables, 

*1 
=: 

^R *5 — ^I 

*2 = ^R -         *6 = n 
*3 = ^R *7 

= p.. 

U = ,., 
*8 = T?" ' 

I (K.l) 

Equation (3.13) can be written as follows: 

F"" = aQ(y)F + a^(y)F' + a2(y)F" + a3(y)F"' + g(y) (K.2) 

where a„(y), a,(y), a„(y) and a-(y) are the complex coefficients of 

the derivatives of the stream function and g(y) is the complex non- 

homogeneous term.  Equation (K.2), can be expressed in real and 

imaginary form as follows. 



R X 
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(K.3.1) 

\\ -  -O/I ■" \^k -  \'[ ^ -2/R -  ^2/1 ^ ^3/R'   -  ^3/1' 

+ i L^O/R ^ \h "■ \'k ^ \'[ ^ -2/R ^ -2/1 ^ ^3/R'   ■" X'l 

+    gR    +    igl (K.3.2) 

where 

a„ = 
\"'\ 

a,   = a,     + i a 

a„  = 

h h 
a      + ia 

■R I 

a^  = 'a.    + i a_ 
R I 

g    = %    +iSl 

(K.4.1) 

(K.4.2) 

(K.4.3) 

(K.4.4) 

(K.4.5) 

Equation (K.3.2) can be written in a form similar to equation (5.61), 

_d_ 
dy 

1 

-e
- 

*2 

*3 

*4 

*5 

*6 

*7 

*8 

01000000 

00100    0    00 

00010000 

^0   ^1   ^2   ^3  "^0  ~^1      ~^2      ~^^ R   R   R  -^R  ^I  h      ^1      ^1 
0    0    0    0    0 0    0 

0    0    0 0    0 

0    0    0    0    0    0    0 

^0^  ^1   \      \      ^0,  ^1   ^2   ^ 
I    I    I    I    R    R    R   ^R 

\h" '0 

*2 0 

*3 0 

*4 + SR 

*5 0 

*6 0 

*7 0 

*8 H 

(K.5) 



The boundary conditions are 
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F=0    F'=0    aty=0 

F = U    F' = U'   at large y. (K.6) 

In matrix notation these conditions are:  at y = 0, 

1 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 1 0 0 

'1 
0 

0 

0 

0 

(K.7) 

and at large y, 

1 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 1 0 0 

' h 
h 
*3 

n 
*5 

*6 

h 

>. 

u 

u' 

0 

0 

(K.8) 
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Since the number of boundary conditions at the wave surface and 

at large y are both equal to two, there is no preferred direction of 

integration.  In the computations carried out in this thesis, the 

direction of integration is toward the wave surface.  Hence y = 0 = b 

and y —>■ y^ = a. 

The particular solution F  is generated by solving the system of 

equations (K.5) subject to the boundary condition 

U 

U' 

0 

0 

0      at large y. 

0 

0 

0 
(K.9) 

The required solution to equation (K.3.2) could be obtained by 

generating a particular solution satisfying equation (K.9) and eight 

independent homogeneous solutions.  The required solution would then be 

obtained by forming a linear combination of the eight homogeneous 

solutions and the particular solution.  However by suitable choice of 

the homogeneous solutions at y  it is necessary to generate only four 

homogeneous solutions.  This is demonstrated below. 



Let the eight homogeneous solutions at y satisfy 
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^H^^^oo) = F„ (y ) F„ (y ) 
H  °o 

F„ (y ) 
4 

0 

0 

0 

0 

0 

0 

0 

1 

\^yJ = 
o 

\^yJ V^^") 

0 

0 

0 

0 

0 

1 

0 

0 (K.IO) 

The required solution is, 

F  = F+cF       +cF       +cF       +cF       +cF       +c,   F 
" pi    H, 2    H„ 3    H. 4    H, 5    H, 6    H, 

12 3 4 5 0 

+ c     F       +  c    F 
^    7    H^ ^    8    Hg 

(K.ll) 



The above combination must satisfy the boundary conditions at 

y , equation (K.8), hence using these conditions. 
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00001000 

00000100 

00000010 

00000001 

"u u " 
u' W' 
0 = 0 

0 0 

(K.12) 

In order for the above equations to be satisfied c^, c,, c 

and c„ must be zero.  Therefore, it is necessary to generate only 

four independent homogeneous solutions.  The constants,c- - c ,are 

determined once F„ - F^ and F have been integrated to y = 0, by 

satisfying the boundary conditions at y = 0. 

The K-e Model equations (3.72)-(3.77.2) was solved using the same 

technique outlined above.  The K-e Model requires the solution of an 

eighth order complex differential equation which is then converted 

into a sixteenth order real system.  This is achieved by splitting 

the stream function, F, the kinetic energy, k, and the dissipation 

rate, E, into real and imaginary parts and introducing the following 

variables: 
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*3=^R *11=^I   - 

*5 = ^R *13 = ^I  . 

*6=^R *14=^i 

*7 = ^R *15 = ^I 

*8 = ^R *16  4 ^^-^3) 

The K-e Model equations (3.13), (3.72) and (3.73) can be organized 

in a similar manner tio equation (K-3) 

F"" = aQ(y)F + a^(y)F' + a2(y)F" + a^F'" 

+ a^(y)k + a^(y)k' + a^(y)e + a^(y)e' + g  , (K.14) 

k" = bQ(y)F + bj^(y)F' + b^(y)k + b^(y)k 

t b^(y)e + b^(y)e' + f  , (K,15) 

e" = CQ(y)F + c^(y)F' + c^(y)k + c^(y)k' 

+ Cg(y)e + c^(y)e' + h  , (K.16) 

where the a,(y), b.(y) and c,(y) are the complex coefficients such 

that 
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a . (y) = a  + ia. 
R    ^I 

(K.17.1) 

b.(y) = b  + ib 
R    ^I 

(K.17.2) 

c (y) = c  + ic 
R     I 

(K.17.3) 

The system of equations (K.14)-(K-17) can be written in a form 

similar to equation (5.6) 

_d_ 
dy 

"*l" 

*2 
• 
• =: 

• 

*15 

.*16. 

■R 
- F, 

R 

'h" 0 

h 0 

• 
+ h « ^R 

• 
• 

*15 • 

*16 /j. 

(K.18) 

where 

^R = 

0 1 

0 0 

0        0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 0 

0 0 

0 0 

a        a        a        a.      a        a        a,       a 
°R      ^R       \      \      ^R       \      \      h 
00000111 

b        b        0        0        b        b        b        b 
°R      h ^R      \      6^      7^ 
00000010 

0        0 c c^ 
°R      h 

c c c c 
\     \     'R     \ 

(K.19) 
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0 0 

0 0 

0   0 

^0  ^1 I   I 

0   0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0   0   0   0   0   0 

I 
0   0 

0 

0 

0 

^1  ^/   ^=;  ^A  ^7 
^I  "^I  ^I  ^I  h 

0 0 

0 

0 0 

0 

b,    b,    b,    b^ 
^I   ^   ^I   ^ 

0 0   0 

'^I \ \ "h 

(K.20) 

The boundary conditions at y = 0 cannot be applied directly since 

equations (K.15) and (K.16) are singular.  Therefore, this boundary 

condition is applied at a small distance, y = 6,, from the wave surface. 

In order to apply the boundary condition a Taylor series approximation 

is made: 

F - 
6jF' 
d 

0. F' - 6 F" = 0 
d 

at y = 6^ 

k - ^d^' 0. 
6,e' d     _ 

e 7,— = 0 

F=U,  F'=U',  k=0,e=0 at large y. 

(K.21) 

(K.22) 

In matrix notation the conditions at y = y„ are. 

\ 
-A, 

\ 

'*1 
' U 

U' 
- • 

• 
• 

L^16j _0 _ 

(K.23) 
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A 
% 

1 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 0 

(K.24) 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

(K.25) 

and at y =" 6,, 

^R -^I 

^I \ '16 

(K.26) 

1 2 0 0 0 0 0 0 

0 1 -«d 0 0 0 
6 

0 0 

0 0 0 0 1 d 
2 

0 0 
6 

0 0 0 0 0 1 
d 

2 

(K.27) 

^I    - (K.28) 
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The required solution to equations (K.18)-(K.28) is obtained by 

generating a particular solution and eight homogeneous solutions.  The 

particular solution is chosen to satisfy the known boundary conditions 

at y .  The initial vectors needed to generate the eight homogeneous 
00 

solutions are obtained in a similar manner described for equation (K.5) 
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'   -   \ APPENDIX L 

RELATIONSHIP BETWEEN TURBULENT ENERGY 

AND VELOCITY GRADIENT AT THE WAVE SURFACE 

In this appendix the wave induced kinetic energy is related to 

the root mean square level of the fluctuating velocity gradient, 

/s'2 / s .  All quantities are made dimensionless with wall parameters. 

The fluctuating velocity close to the wave surface is related to the 

fluctuating velocity gradient as 

(L.l) 

where 

s' 
u-   =    -    y. 

.S*_ 

Therefore, 

/n'2      ^      '^     ^ 

% 

y 

"■'   ■ -^^- 

Now R  can be decomposed into a wave averaged and fluctuating 

component 

Hence: 

a.2) 

(L.3) 

,2 = - (R  + ar  e^"^) . (L.4) 
U XX       XX 

I/O    ^   iax /z=- _     1/2   r  e 

XX 
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a r 
,  XX     lax  .  ^, where      -  — r-jx-    e     is the wave 

2(-R r'^ 
XX 

induced component of,  y /s'^ /S  .  The turbulent kinetic energy 

,2 
K is related to u  as follows 

2    2    2 

.2    ,2        ,2     ,2 , 
W       U V        u 

Since   <   and   <<   in the neighborhood or the wall 

u'2 
K '-   . (L.7) 

The turbulent kinetic energy can be written in terms of a wave averaged 

and fluctuating component as 

K = K + ake^"^ . (L.8) 

Therefore, 

/C:^.2^/2-1/2 ^ ^ 
.IJT^JT kae^"^"^ . a.9) 

Equations (L.5) and (L.9) gives the desired result 



or 

where 6, is the phase angle of the wave induced variation of 

/ 
,2 
X  / S 

X 
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a k e 
lax 

-r 

2 (-R ) 
XX 

1/2 
„l/2-l/2  iax 
2   K   ae (L.IO) 

Real (a k e  ) = 
-ar 

XX 

2(-I )l/2 
XX 

2l/2j^l/2^^g (ax + e^) (L.ll) 
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NOMENCLATURE 

a Dimensionless wave amplitude 

a, Wave amplitude (in.) 

A Van Driest parameter, see equation(3.47) 

A Average value of Van Driest parameter 

A       Complex function related to the wave induced component 
of the Van Driest Parameter, see equation (3.48.1) 

2 
A       Electrode area (cm ) 

C, Constant associated with K-e Model defined in equation (3.62) 

Cj Constant associated with K-e Model defined in equation (3.62) 

C3 Constant associated with K-e Model defined in equation (3.64) 

C^ Constant associated with K-e Model defined in equation (3.63.2) 

C Constant associated with K-e Model defined in equation (3.66) 

C, Concentration of diffusing species in bulk (moles/liter) 

D Diffusion coefficient for mass (cm/sec) 

D Damping function, see equation (3.35) 

f, Function associated with K-e Model 

f       Function associated with K-e Model o 

F       Dimensionless complex; functioti related to the wave induced 
stream function 

F Faradays constant (coulombs/equivalent) 

h Channal height (in.) 

h Dimensionless metric in the x direction 

h, Dimfensionless metric in the y direction 

I Cathode current (amps) 

k       Dimensionless complex function related to the wave induced 
turbulent kinetic energy 
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k. , k.„ Coefficients defined in equation (3.47) 

k^ Lag parameter defined in equation (3.53) 

k^ Lag parameter defined in equation (3.56) 

k Lag parameter defined in equation (3.82) 

K Dimensionless turbulent kinetic energy 

K Dimensionless wave averaged turbulent kinetic energy 

K Mass transfer coefficeint defined in equation (4.1) 
m 

!, Dimensionless mixing length; modified for streamline 
curvature 

t    : ' Dimensionless complex function related to the wave 
induced mixing length; modified for curvature 

£ Dimensionless plane shear mixing length 
o 

l Dimensionless complex function related to the 
o 

9P 
ax 

3x 

3P 
3y 

3P 
3y 

wave induced plane shear mixing length 

L Equivalent length of electrode (cm.) 

n Number of electrons transferred in reaction 
e 

p Dimensionless instantaneous pressure 

p' Dimensionless fluctuating pressure 

p   : Dimensionless complex function related to the 
wave induced pressure 

Dimensionless time averaged pressure 

Dimensionless value of pressure gradient 
in X direction 

Dimensionless average value of pressure gradient 
in X direction 

Dimensionless value of pressure gradient 
in y direction 

Dimensionless average value of pressure gradient 
in y direction 

2 
q       Dimensionless trace of Reynolds stress tensor 

r,.      Dimensionless function related to the wave induced 
components of the turbulent stress tensor 
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R       Dimensionless components of the turbulent stress tensor 

R       Dimensionless average components of the turbulent 
stress tensor 

R       Dimensionless radius of curvature of streamlines 
c 

Re      Channel Reynolds number based on U and channel half width 

R^      Feedback resistance (ohms.) 

R.       Dimensionless curvature Richardson number defined 
c      on equation (3.80) 

R.       Dimensionless complex function associated with the 
c     wave induced Richardson number 

R Dimensionless composite term representing turbulent 
stress terms, see equation (3.14) 

s       Dimensionless fluctuating component of velocity 
gradient at the wall 

s        Dimensionless complex function related to the wave 
j     induced rate of stress tensor 

S.       Dimensionless components of the rate of strain tensor 

S,       Dimensionless average rate of strain 
J 

S       Dimensionless velocity gradient at the wall 

S       Dimensionless wave averaged velocity gradient at the wall 

u       Dimensionless instantaneous velocity in x direction 

u'       Dimensionless fluctuating component of turbulent 
velocity in x direction 

u       Dimensionless complex function related to the wave 
induced velocity in the x direction 

u* Friction velocity (ft/sec) 

U Dimensionless time averaged velocity in the x direction 

U Dimensionless wave averaged velocity in the x direction 

U, Bulk average channel velocity (cm/sec) 

V Dimensionless instantaneous velocity in the y direction 
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v'       Dimensionless fluctuating component of turbulent 
velocity in the y direction 

V Dimensionless complex function related, to the wave 
induced velocity in the y direction 

V Dimensionless time averaged velocity in the y direction 

V Applied voltage (volts) 

V Instantaneous measured voltage (volts) 

X       Dimensionless boundary layer coordinate along wave 

y       Dimensionless boundary layer coordinate perpendicular 
to wave 

Greek 

a       Dimensionless wave number 

0        Coefficient defined in equation (3.80) c 

Y Coefficient defined in equation (3.91) 

5       Boundary layer thickness      .  i  . 

6,       Small distance from wave surface defined 
in equation (3.78.1) 

f 

A 

e       Dimensionless complex function associated with wave 
induced turbulent dissipation rate 

e Dimensionless turbulent dissipation rate   ' 

e Dimensionless average turbulent dissipation rate 

0 Phase angle (°) 

K Curvature of wave surface 

K Von Karman constant used in equations (3.35), 
(3.41), (3.43), (3.50), (3.58), (3.71), (3.86) 
and (3.^9) 

X       Wave length (in.) ' 

y       Viscosity of fluid (poise) 

2 
V Kinematic viscosity (cm /sec) 
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2 
V Turbulent viscosity (cm /sec) 

V Complex function related to the wave induced turbulent 
t viscosity (cm/sec) 

V Average turbulent viscosity (cm/sec) 

II Coefficient defined in equation (3.89) 

3 
p Density of fluid (gm/cm ) 

T Dimensionless shear stress 

T Dimensionless complex function related to the wave 
induced shear stress 

T Dimensionless wave averaged shear stress 

T Dimensionless wall shear stress 
w 

T Dimetisionless wave averaged wall shear stress 
w 

T' Dimensionless fluctuating shear stress in x direction 
X 

2 
T Instantaneous wall shear stress (dynes/cm ) 
_ d 2 
T Time averaged wall shear stress (dynes/cm ) 
*d 

T' Fluctuating component of turbulent shear stress in 
d the X direction (dynes/cm^) 

lb Dimensionless stream function 
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