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CHAPTER 1 

INTRODUCTION 

The discovery in the late 50's of coherent eddy structures in the viscous 

wall region of a bounded turbulent shear flow, using visualization techniques, 

opened up new horizons for both the theoretical and the experimental worker in 

the field. Dye-as well as hydrogen bubble techniques (Beatty et al (Corrsin 1956), 

Kline et al 1967) revealed the existence of a streaky structure in the viscous sub- 

layer region. These streaks were found to alternate in the spanwise direction and 

to be characterized by a low streamwise velocity fluid, whereas the regions 

between successive streaks were observed to carry an excess of streamwise 

momentum. As these streaks migrate downstream, at the same time, they lift 

away from the wall and when they reach a critical distance they start to oscillate 

and break-up into chaotic motions. The most important finding is that during 

the eruption of the low momentum fluid away from the wall a great deal of tur- 

bulent kinetic energy is produced. Due to the violence of the eruption these 

streaks were given the name "turbulent bursts". It was also found that, if the 

spanwise spacing between the wall streaks and the frequency of occurrence of the 

turbulent bursts are made dimensionless with wall parameters (friction velocity 

u# and viscosity u), they remain constant over a wide range of Reynolds numbers 

(Kim et all971). j    . .; _.       v 



The impact of this discovery was twofold: 

1) It was realized that there is a need for reliable measurements close to the wall 

2) There was a need to develop statistical analysis methods that would be able 

to retain the "phase information" in a turbulent signal. It was realized that the 

conventional long term averaging techniques "smear out" all the characteristic 

features of turbulence. It was this realization that led to the development of 

"conditional averaging" techniques. 

A number of research groups have been involved in investigating the 

coherent structures in the viscous wall region. A review of their work, the 

differences in their experimental methodologies and their results will be presented 

in the next chapter. A detailed summary of the work on turbulent boundary 

layer research has also been given by Laufer (1972) and Willmarth (1975). 

Many attempts have been made to describe analytically the structure in the 

viscous wall region. Taylor (1936) solved the truncated linearized momentum 

equation and related the velocity field to the pressure field. Linearized analyses 

have also been conducted by Sternberg (1982), Schubert and Corcos (1967), 

Gurkham and Kader (1970) and by Hatziavramidis (1978). These analyses don't 

take into account the Reynolds stress terms and thus fail to characterize the 

energy containing motions in the viscous sublayer region. 

Bakewell and Lumley (1967) suggested that the wall streaks result from 

counterrotating pairs of eddies homogeneous in the flow direction. Sirkar and 

Hanratty (1970a) also suggested that the flow in the wall region is dommated by 



a secondary pattern homogeneous in the flow direction that is of the type shown 

in Figure la. According to the model, the streaks observed when dye is injected 

from a wall slot result from the sweeping action of the secondary flow in the 

transverse direction close to the wall. 

Fortuna and Hanratty (Fortuna 1971, Hanratty et al 1977) assumed that, 

on average, the streamlines in the secondary flow have the shape shown in Figure 

la, and used a pseudosteady state assumption to calculate the streamwise velo- 

city component. They pictured the secondary flow to bring high momentum fluid 

to the wall at A, to exchange momentum with the wall as it moved fluid in the 

transverse direction from A and B and to remove low morhentum fluid from the 

wall at B. According to this picture, the streamwise, «,, and the spanwise, a^, 

components of the velocity gradient at the wall should have the phase relation 

shown in Figures lb and Ic.       I 

Hatziavramidis and Hanratty (1979) undertook a computational study to 

explore how the viscous wall region would respond to transverse velocity fluctua- 

tions at its outer boundary, y/(=5:^30-40. The basic model was similar to the one 

used by Fortuna (1971) but it was recognized that his pseudosteady state 

assumption overlooks important aspects of the flow. The flow field in the viscous 

wall region was pictured to be coherent and to be associated with flow deviations 

in a well mixed outer region. The transverse flow at y^ ^^30-40 was taken as 

w=wisijx 2irz/\ cos 27rt/Tg, where X is the spacing of the dye streaks, Tg, the 

period  between bursts  and   wi,  a constant.   Good  agreement was obtained 

I 



(a) 

(b) 

(c) 

Figure 1        Idealized coherent eddy structure. 



between the calculated flow field and experimental results, especially for y"*" <15. 

The initial motivation for the model in Figure la was provided by measure- 

ments of s, 4nd a^ obtained by Sirkar and Hanratty (1970b) by studying the 

mass transfer rates to a pair of rectangular electrodes mounted in a chevron 

atrangement flush with the wall. The results of these experiments showed that 

the transverse flow at the wall is quite large, a^ being about 0.15,. 

Lee, Ek^kelmann and Hanratty (1974) used an array of electrode pairs to 

measure «, and 8^ simultaneously at a number of locations on the wall. Their 

experiments support the existence of a secondary flow pattern of the type visual- 

ized by Sirkar and Hanratty (1970a) and the proposal of Fortuna (1971) regard- 

ing the influence of this secondary flow on the streamwise velocity fluctuations. 

In particular, it was found that the a^ variation in the spanwise direction can, on 

average, be adequately described by a sinusoidal variation of the type shown in 

Figure lb. It was also shown that the a^ pattern is accompanied by a spatial 

variation of », that is out of phase by X/4.  Their measurements of X are in good 

agreement with results of the visual studies, cited above. 
1 

These results of Lee et al established the patterns of «, and a^ at the wall 

which are associated with the wall eddies, but left unanswered the question of 

how well, if at all, events at the wall are related to phenomena occurring at dis- 

tances away from the wall. For this purpose, conditionally averaged velocity 

measurements are needed which reflect in a direct way the relation of the velocity 

field to changes in the eddy structure and which give information on how the 
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eddy structure and velocity field evolve in time. One way of doing this would be 

to combine instrumental measurements of the velocity field with dye pattern 

measurements.   A different approach has been taken in two recent experiments ■ 

performed by Hogenes (1979,1982) and by Lau (1980). 

Measurements of a^ at a number of ^-locations are compared with the pat- 

tern shown in Figure lb to determine whether a strong eddy exists. Probes which ' 

are mass transfer analogues of the hot film anemometer are located over the 

center of this array, defined as 2=0, in order to measure properties of the velo- 

city field. Four aspects of strong wall eddies are defined. Negative or positive M 

values of dsjdz at z=0 indicate respectively that a strong outflow or inflow M 

would be sampled by the fluid probes. Maxima or minima in 8j(z) at a fixed 

time indicate strong positive or negative spanwise flows and, on average, a cou- 

pled inflow and outflow at distances of A2*!=«25 from the center of the wall B 

probe array. 

I 
Hogenes  and  Hanratty (1982)  examined  the influence of these eddies, 

defined in terms of the 8^(z) pattern, on the axial velocity component by study- I 

ing how the 8^{z) pattern and the streamwise velocity profile at 2=0 are associ- 

ated with changes in the eddy pattern. They were able to show that the X* ^100 

eddies are controlling the fluctuations of the streamwise velocity component in 

the viscous wall region. 

Similar investigations have also been carried out by Blackwelder and Eckel- 

mann   (1978,   1979)  and  Kreplin   and  Eckelmann  (1979a).    Blackwelder and 

I 
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Eckelmann (1978, 1979) studied the spanwise structure of the bursting 

phenomenon. They located a fluid probe, sensitive to streamwise velocity 

fluctuations, at y"*" =15 in order to detect bursts and conditionally averaged 

measurements of «, and s^ at one wall location as well as measurements of u and 

u; at a fixed distance from the wall. Their detection scheme was a Variable 

Interval Time Averaging (V.I.T.A.) scheme that had been used by Kaplan and 

Laufer (1969) to study the intermittently turbulent region of a boundary layer. 

They concluded that the "bursting" phenomenon is associated with pairs of 

counterrotating vortices that seem to "pump" fluid away from the wall, thus 

forming a low speed streak. They also found that the streamwise momentum 

defect region is long and narrow, and that the velocity defect is terminated by a 

strong acceleration followed by a high speed region. 

Kreplin and Eckelmann (1979a) investigated the propagation of perturba- 

tions in the wall region of a turbulent shear flow. They used a movable F-probe 

to measure the streamwise and spanwise components of the velocity at a certain 

distance from the wall. They also used a F-probe mounted on a wall plug at a 

wall distance of y* =2.3 in order to measure the same components close to the 

wall. The movable F-probe was located at x"*" =0 and jr'''=5, 10, 20, 40 and the 

wall plug was positioned at ar"*" =-108, 0 and + 144. From the correlation meas- 

urements, Kreplin and Eckelmann deduced that the wall region is dominated by 

pairs of inclined, counterrotating streamwise vortices. The average spanwise 

separation of their centers is about z*^SO and the length of the vortices was 



estimated to be   x"'"«=!l200.   As these vortices are convected downstream the 

angle of their plane of rotation was pictured  to decrease and the average 

minimum distance of the vortex centre from the wall was estimated to be 

y^^ZO.                     ,        I     ■      ,    ,    ■ ■       . ;. ..„ 

The present work has two goals. One is to develop an efifective conditional 

averaging scheme capable of detecting the wall eddy patterns. Using this scheme, 

then, the relation of the wall patterns to transverse velocity fluctuations is stu- 

died by determining the relation of the transverse velocity at different values of 

X, y and z to changes in the eddy structure. For this purpose the experimental 

measurements of Lau (1980) are used. In these experiments the longitudinal and 

spanwbe components of the fluctuating velocity gradient at the wall of a pipe [s^ 

and 8g) and the fluctuating velocity at various distances from the wall (tt and w) 

were simultaneously measured. 

The second goal of this work is to explore a nonlinear model of the flow 

oriented eddies. Similar models have been explored by Chapman and Kuhn 

(1981) and by Hatziavramidis and Hanratty (1979). The difference between this 

work and the previous works is in the kind of the boundary conditions that are 

used at the edge of the viscous wall region.  The secondary flow at y^ =30-50 is 
I 

assumed to be characterized by two harmonics in the spanwise direction. The 

effect of these two spatial wavelengths on the properties of the time varying velo- 

city field is investigated. The case in which one of the two harmonics of the 

spanwise velocity is of infinite wavelength is also analyzed. 



The temporal variation of the secondary flow at the edge of the viscous wall 

region is characterized by single harmonics which are different for each 

wavelength. The case where the signal at the upper boundary contains a wide 

range of frequencies is also studied. 

An attempt is also made to assess the effect of introducing a random phase 

to the signals at the outer boundary, which causes a shifting of the wall patterns. 

Finally the effect of various boundary conditions at y=y, on the calculated 

dynamics is also explored.      j   ^^ 

An important contribution of this work is the development of a conditional 

averaging scheme that is able to capture the wall striictures as they evolve in 

space and time. The application of this scheme to measurements of the spanwise 

velocity close to the wall and in the fluid revealed that the X"*" f^lOO wall eddies 

are associated with a very characteristic behavior of the spanwise velocity at 

y+ =40; that is, a flow reversal, with the return flow having the same magnitude 

as the flow that preceded it in time. 

The most remarkable result of the computations in this work is that the use 

of a fixed cell model with two spatial harmonics can describe the important 

features of turbulence in the viscous wall region. It is shown that small 

wavelengths can account for the transfer of momentum to and from the waU and 

for the production of Reynolds stresses throughout the wall layer. In order to 

describe the intensity of the spanwise flows longer wavelengths become necessary, 

especially at the outer part of the wall region.   As the distance from the wall 
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decreases, smaller wavelengths become more important and completely define the 

dynamics of turbulence in this region. 

An   important  finding of this work is the process by which smaller jB 

wavelengths are generated by the wall. The mechanism for the generation of 

smaller scales appears to be the separation of the flow in the spanwise direction. 

This convective type niotion creates small eddies by the non-linear interaction of I 

larger scales. 

Another striking discovery is a frequency filtering process according to 

which only low frequency velocity fluctuations in the plane perpendicular to the 

flow direction are effective in producing streamwise turbulence. Evidence for this 

selection process comes from an examination of the trajectories of inertia-free 

fluid particles within the wall region. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



CHAPTER 2 

LITERATURE SURVEY 

In recent years there has been a growing interest in studying the coherent 

structures that are found in shear flow turbulence. Flow-visualization experi- 

ments have shown that many examples of boundary shear flows, including mixing 

layers or wakes, boundary layers and jets, have a coherent recurring structure. 

Statistical measuring techniques, however, only provide quantitative information 

on their time-averaged properties, so that much of the detail of such structures is 

lost. Ihis is partly due to the fact that the repeating velocity patterns, when 

viewed at fixed points, are never sufficiently periodic to be clearly recognizable. 

It is also difficult to interpret information obtained at one or two fixed points as 

part of a somewhat complex moving structure. A much clearer picture is 

obtained if a series of transducers is used that can provide simultaneously spatial 

and temporal information about the structures. 

Conditional averaging techniques have proved to be very powerful tools in 

providing more ordered information within which clearly defined patterns emerge. 

They normally depend on some automatic logical process for deciding which parts 

of the signal arise from the flow structures of immediate interest. Results 

obtained by following such procedures must naturally enough be accepted with 

caution unless the logical conditioning process is related to some clearly 

identifiable repetitive physical charabteristic of the flow pattern. 

11 



12 

I 
I 
t 

t 

An attempt to numerically calculate a turbulent flow field by solving the 

full 3-D time dependent Navier-Stokes equations is a very difficult task. The 

mesh-size of a three dimensional finite-difference grid that would be required to B 

resolve the smallest turbulent eddies is so small that the computation is practi- 

cally not feasible even on the largest supercomputers available today. It can be 

shown that for a pipe Reynolds number of 10^ the number of grid points required ■ 

to resolve the Kolmogorov microscale, which is the smallest eddy in a turbulent 

flow, is approximately 10**. 

The ways that the problem has been attacked so far are the following: 

1) Revnolds averaging: This is the classical approach by O. Reynolds according 

to which the Navier- Stokes equations are averaged in time and one then is faced 

with the task of modelling the resulting Reynolds stresses, 

2) Large-eddy simulations: These are time-dependent computations of the three- 

dimensional large eddy structure of turbulence. Due to the limitations on, the 

mesh size the Navier-Stokes equations are spatially averaged and the small 

(subgrid) scale eddies have to be appropriatelly modelled. 

3) Simple eddv modelling of the viscous wall region: According to this approach 

the time dependent Navier-Stokes equations are solved on a plane perpendicular 

to the flow direction that extends throughout the viscous wall region. The tur- ■ 

bulent velocity boundary conditions have to be modelled at the outer boundary 

of the wall layer, then the time-dependent dynamics are computed and finally the 

results are time averaged.  Thus (time) averaging is the last operation perfolroed ■ 
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on computed dynamics rather than the first operation performed on the dynamic 

equations as in the previous two approaches. 

In section I of this chapter a review is presented of the available turbulence 

measurements in the viscous wall region and of the work on coherent eddy struc- 

tures. An account is also given of the different conditional averaging techniques 

that were used in connection with these studies. Section 11 compiles the various 

computational methods for turbulent flows with an emphasis on the use of large 

computers for the time-dependent solution of the Navier-Stokes equations. 

■ I -. ■ . ' 

I. Turbulence measurements and coherent structures 

A. Measurements of turbulence properties in the viscous wall region 

The average statistical properties of the turbulent quantities in the viscous 

wall region have been measured quite extensively in many laboratories. These 

present themeselves in the form of average velocities, intensities and higher-order 

moments of velocity fluctuations, Reynolds stresses, correlations and spectral 

measurements. 

1.  Mean velocity measurements 

■ • ■■ ■ I - . , ■ 

The average streamwise velocity profile has been measured in various kinds 

of turbulent shear flows (boundary layer, pipe, channel).   Laufer (1954) made 

measurements of the mean velocity CT in a pipe.   Ueda and Hinze (1975) carried 

out the same measurements in a plane boundary layer flow and Hussain and Rey- 

n nolds (1975) in a fully developed turbulent channel flow. 

I 
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All these measurements could well be represented by the relations: 

[T =y+    for   j/+<7 

and 

U* =2.Ulny* + 4.9    for   y+>30 

where the superscript +   denotes quantities normalized with wall parameters 

(friction velocity «,, viscosity u). 

In the buffer region 7<y+ <30 Van Driest's (1956) mixing length relation 

is widely used. Spalding (1971) has given a table of empirical formulas that fit 

the experimental data on the mean velocity in various regions of the flow. 

2. Intensities of velocity fluctuations 

The intensities of the fluctuating velocities are defined in terms of the root- 

mean-square (rms) of the fluctuating quantities: 

«'=(;;^»/2, 1 

«;'=(;7)»/2. 

The intensities of the two non-zero components of the velocity  gradient at 

the wall are similarly defined as: 
, „. ,1 ' ■. 

\2-|l/2 

.;=(.7)"'= 

[IF I'-»] j 
^2"|l/2 

dw 
dy   ' '-»l 

The intensities of the three components of the velocity have been measured 

by Ueda and Hinze (1975), Hussain and Reynolds (1975), Schildnecht et al (1979), 
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Kutateladze et al (1977), Clark (1968) and by Laufer both in a channel (1950) 

and in a pipe (1954).        | 

The commom finding among the various measurements is that within the 

viscous wall region u>w'>v'. The streamwise intensity («')+ reaches a max- 

imum at y"*" f^lS-lS and the normal and spanwise intensities start leveling off for 

y+ >25. 

Extensive measurements of a, and s^ have been carried out in this labora- 

tory (Eckelman 1971, Lee 1975, Hogenes 1979) and by other investigators (Py 

1973, Eckelmann 1974, Kreplin 1973). The measurements with the electrochemi- 

cal method show that «,7^!=«0.3 and al/S^^O.l so that a,7a^'=ca3. Measure- 

ments with hot-films give lower values for the streamwise intensity 

(«,/i^ =0.205-0.25 and the value of s^/s'^ has been reported by Kreplin and 

Eckelmann (1979b) to be 3.8. 

3.  Probability distributions and higher order moments 

The probability density distributions have been measured by Klebanoff 

(1954), Zaric (1972), Eckelmann (1974), Ueda and Hinze (1975), Ueda and 

Mitzushina (1977), Elena et al (1979), and Kreplin and Eckelmann (1979b). The 

basic conclusion from these measurements is that the velocity fluctuations in the 

viscous wall region are non-Gaussian. The skewness of the streamwise velocity 

fluctuations is positive close to the wall, has a zero crossing at y"*" =13-15 and 

then becomes negative. Positive skewness means that the most pobable velocity 

is less   than the mean which then implies that close to the wall the streamwise 



1ft 

velocity fluctuations will more often be negative than positive. At y"*" larger 

than 13-15, the opposite is true. The flatness of «-fluctuations has a minimum 

around the same y'*' where the skewness has a zero-crossing. A Gaussian-signal 

has a flatness of 3 and for larger values of the flatness the skirt of the probability 

density curve extends farther away from the average. The flatness is also a 

measure of the intermittency of the signal which then implies that the «- 

fluctuations are more intermittent close to the wall (y"*" <5) and far away from 

the wall (y"*" >30) than in the region 5<y+<30. 

The skewness of v is positive close to the wall (Kreplin and Eckelmann 

1979b) and becomes zero for y'*'>15. The flatness of v fluctuations shows a 

maximum where the flatness of « has a minimum (Ueda and Mitzushina 1977, 

Kreplin and Eckelmann 1979b). The skewness of the spanwise velocity fluctua- 

tions is zero throughout the viscous wall region and the flatness reaches a 

minimum of 3 around y* =25 (Kreplin and Eckelmann 1979b). 

The probability density distribution of the angles a,^ between w,v and the 

flow direction has been measured by Kreplin and Eckelmann (1979c). They find 

that the most probable flow direction is toward the wall. They report 

"max^^SO" (amin^-^O") at y+=3.6 and /^niM^lS" at y+=3.4 (away from the 

wall) y^min^-lO" at y* ^45 (towards the wall). 

4. Reynolds stress 

Measurements of the Reynolds stress -iZF have been carried out by Laufer 

(1954), Gupta and Kaplan (1972), Eckelmann (1974), Kutateladze et al (1977) 
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and by Schildnecht et al (1979). 

The intermittency of the uv signal was confirmed by Gupta (1970) and 

Eckelmann (1974). The average -fTF was found to be rather small compared to 

the peaks in the tiv signal in the sublayer (peak/mean ^=5^30:1). 

Willmarth and Lu (1972) and Wallace et al (1972) sorted the contributions 

to the uv product into the four quadrants of the uw-plane. The main contribu- 

tions to the Reynolds stress -fflT were from regions with «<0, r>0, and 

M>0, t;<0 associated with ejections of low-speed fluid from the wall and 

inrushes of high-speed fluid from the outer flow. On the average ejections contri- 

bute 70% to the Reynolds stress, inrushes contribute another 70% and the rest 

-40% is taken up by motions that give a positive uv product (interactions). 

Higher-order moments of the fluctuating uv product have been measured by 
,      I 

Gupta and Kaplan (1972) and Antonia and Atkinson (1973).  The skewness of uv 

is found to be negative throughout the vbcous wall region and the flatness 
I 

attains values up to 30-40 close to the wall.  Wallace and Brodkey (1977) meas- 

ured the joint probability density distribution p{u,v) on the u-v plane of a tur- 

bulent channel flow. They found that the largest contribution to HIT is not pro- 

duced by the most probable pair of velocities {u,v). 

5.  Correlation Measurements 
I 

The velocity correlation tensor for a stationary random process is defined 
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«,U)«y(l+r) 

If periodicity is also assumed in the streamwise (i) and spanwise [z) directions 

then the correlation becomes 

«-(ar, y, z, t)Uj(x + Ax, y + Ay, z + Az, r) 
Ru,Ay; ^a:, Ay, Az, r)=    wT"^~~rTl  

' U{{y)Uj{y + Ay) 

where (ui, «2, «3)=(«,«,«;). 

The correlations of the fluctuating velocities in bounded turbulent shear 

flows have been measured by various turbulence researchers. Based on their 

measurements these investigators attempted to infer evidence about the existence 

of structure in the flow field. In what follows the correlation measurements are 

presented and the discussion of the conclusions reached by the investigators is 

postponed for part B of this section where the work on coherent eddy structures 

is discussed. ' 

Grant (1958) was the first to obtain the nine correlations for a cylinder 

wake and for a turbulent boundary layer. His measurements of 

^««(yx),^„(yui) and i?«,(y;j:) at zero time delay in the inner part of the boun- 

dary layer are useful in supplying scaling information about the wall structures. 

They show that /2„„(y + ; Ai"*", 0,0) has a much longer tail than 

i?„(y/; Ai+,0, 0) and i?.„{y/; Ax+, 0, 0) where y + «25-50. The correla- 

tions with a spanwise separation are also interesting in that they show that posi- 

tive i?«,„(y/; 0, 0, Az"*") correlations occur for larger values of A^"*" compared to 

^.•(y/;0, 0, Az+) and i?„(y + ; 0, 0, A2+), where now y + «35.   The latter 

I 
I 
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two correlations drop to zero around A^"*" f=i:J60-90 and stay zero for longer Ar"*" 's 

even though there is a hint for negative R^tniVo^'< 0» 0, Az"*") above Az"*"«:*90. 

■ Favre, Caviglio and Dumas (1957, 1958) have made extensive measurements 

of space-time correlations. Although these measurements Are very detailed in 

their coverage of different separations in space and time, they are, on the other 

hand, restricted by being entirely of the type i?„„(y;Ai, Ay, Az, r).. 

Comte-Bellot (1961) carried out correlation measurements in a channel flow. 
I 

The   most   interesting   feature   of   her   results   are   the   negative   values   of 

R^titf, 0, 0, Az) and R,,{y; 0, 0, Az), for sufficiently large Az's, at the lowest y 

station where y/D=0.1i [D being the half-width of the channel) or y'*"=550. 

Tritton (1967) extended the work of Grant (1958).   He measured various 

auto- and cross-correlations with an emphasis on i?«,(2/; Ax, Ay, Az, 0).   His 

I ^»»(y/; 0, 0, Az"*") measurements with y/=40 give zero crossing at Az*^^20 

and negative values extending out to A^''"i=^180 with a peak at A2**=^45. The 

same behavior was measured at y + =174 and 414 with the zero crossing moving 

to larger Az"*" 's. These results were in agreement with Comte-Bellot's (1961) but 

contradict Grant's (1958) measurements for an unknown reason.  Tritton's meas- 
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urements of R„{y', 0,0,Az) and i?„«(y; 0,0,Az) are very interesting as a 

source of structural information for the coherent structures. His measurements of 

R*Ay^'> 0. 0. Az"*") for y + =10, 29 and 93 show zero crossings at Az'^'^S, 38 

and 85 with negative peaks at Az"*" f^35, 70 and 175 respectively and negative 

tails extending up to A2"*'!=«400 for the largest of the above y/'s.   Tritton's 
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measurements of i?„„{y/; 0, Ay"*", A^"*") show maxima at Az'*'^=^52 for y/=19 

and 32 and Ay"'■=4 and -9 respectively (positive Ay"*" is in the direction away 

from the wall) and positive values extending up to Az^f=^S&0. The same 

behavior for i?„^(19; Aar"^, 4, Az"*") was measured with a longitudinal separation 

Aar+«237. ' - 

Lee et al (1974) measured simultaneously the two components of the velo- 

city gradient at the wall 5, and a^ and obtained correlations of the form 

/?,^,JA^), ^,, (A^) and R,^,{AZ,T). Their results show that the s^ pattern is 

accompanied by a spatial variation of «, which is out of phase by X/4. The 

development of the «, pattern was found to lag behind the development of the a^ 

pattern, indicating that the streamwise flow at the wall is largely controlled by 

the spanwise velocity field. 

Kreplin and Eckelmann (1979a) studied the propagation of perturbations in 

the viscous wall region and calculated corfelations of the form 

R^f (Ay,r) i?„, (Ay,T). They interpreted their measurements as being associated 

with vortical flow structures, inclined to the wall, that travel downstream. The 

spanwise dbtance between these structures was found to be A2'*"i=»50 and they 

could be observed over a stfeamwise distance of Ax''">1000. They also attri- 

buted the antisymmetry of the R„, (-40,r) correlation to the fact that the vortex 

centre moves below y"*" =40 as it is convected downstream. 
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6.   Spectral measurements 

The energy spectrum tensor for a stationary random process that is homo- 

geneous in the x and z directions is given as the Fourier transform of the 

corresponding correlation tensor: 

l2Jr)    _oo 

where^=(A:,, kj)^=[x, z) and d£==dxdz. 

The frequency spectra of the streamwise fluctuating velocity within the 

viscous sublayer have been measured by Bakewell and Lumley (1967). The data, 

nondimensionalized   by   y^w,   define   a   single   curve   when   plotted   against 

The spectra of the fluctuating gradients at the wall, Sj and s^, have been 
•■ .■ 1 

measured by Sirkar (1989) and Fortuna (1971) using electrochemical techniques. 

The median frequency of the wall spectra is n''"?=»0.01 and most of the turbulent 
1 

energy is contained in frequencies lower than that. 

Morrison and Kronauer (1969) measured two-dimensional frequency 

wavenumber spectra ^^d/"*"; k^, w"*") and *„«(!/"''; k^, w"*") with y"*" covering 

the whole viscous wall region 0-Cy'*' <4O-50. Their measurements, being limited 

on the streamwise velocity, are nevertheless useful in obtaining information about 

the relation between eddy size and lifetime in the wall region. As the distance 

y"*" from the wall increases, the ridge line of the ^^uit/^'j ^«^i '^^) spectra exhi- 

bits a rotation from a vertical position to one forming an angle with the k^ axis. 

At the same time the peak of $„,  shifts to smaller wavenumbers but the 
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corresponding circular frequency remains around w^ ;=^0.06-0.08. 

Morrison et al (1971) presented more extended measurements of 

^^^{y"^; ijj*, k^) and ^uaCy''"; W", AT/) in the viscous sublayer. They found 

that the characteristic convection velocity is independent of the wavenumber and 

is the same at all positions in the layer (c/!=«8.0). They concluded that sublayer 

turbulence is wave-like. The characteristic dimensions of the sublayer waves 

were found to be X + J=«630 and X + (=«135. 

A summary of pressure spectral measurements at the wall is given by 

Willmarth (1Q75). These measurements are made with flush transducers or with 

pinhole microphones. Emmerling (1973) showed, for the first time, that the 

small-scale wall pressure fluctuations do scale with wall parameters. Bull (1967) 

plotted the variation of intensity of wall pressure fluctuations with Reynolds 

number. It was shown that the larger-scale wall pressure fluctuations scale on 

outer variables and increase in intensity with Reynolds number. 

B.  Coherent structures in wall turbulence 

1. Visual and instrumental studies 

The importance of coherent structures in understanding the mechanism 

that sustains turbulence has been emphasized in CoUoquii and Workshops around 

the world. An account of the Colloquium on Coherent Structures on Turbulence 

held at Southhampton from 26-29 March 1974 has been given by Davies and Yule 

(1975). Summaries of the First and Second Research Specialists Workshops on 

Coherent Structures in Turbulent Boundary Layers have also been presented by 
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Kline (1978) and Kline and Falco (1979) respectively. 

In these meetings the emphasis was placed on the following topics: 

a) Presentation of experimental  results 

b) Reconciliation of the findings of the various laboratories 

c) Posing of questions about the turbulent boundary layer structures. 

In what follows a brief account of the work on coherent structures is 

presented.   The first attempts in deducing information about the existence of 
I 

eddy structures was based on correlation measurements as mentioned in part A 

of this section. The later development and use of conditional sampling and 

averaging techniques provided a more reliable method to extract structure out of 

a turbulent signal. 

Townsend in a series of papers (1957, 1961, 1970) and in his book (1956) 

presented some novel ideas about the structure of turbulence.  He suggested that 

a turbulent flow field has a double structure:   a small scale or "active" motion 

which transfers momentum and produces Reynolds stress and a large scale or 

"inactive" motion which interacts with the active component at points farther 
I 

from the wall where it can also contribute to Reynolds stress.   The important 

point to emphasize here is that Townsend, for the first time, recognized the 

existence and importance of certain coherent structures having a characteristic 

length and time scale and formulated the problem in terms of these. Using the 

rapid distortion theory of Batchelor and Proudman (1954), Townsend (1970) cal- 

culated the nine correlations for a turbulent cylinder wake and compared them 
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with Grant's (1958) measurements. He concluded that the dominant structure is 

a double-roller eddy which can also be described as a section of a linear jet or as 

a diffused vortex-pair. He noted that this structure resembles closely the eddies 

studied in boundary-layer and pipe flow by Kline et al (1967). 

Grant (1958) preferred to interpret his correlation measurements by postu- 

lating that there are stress releasing motions in the inner part of the boundary 

layer. He associated these with a series of jets lined up in the direction of the 

stream. Because of the short extent of i?„(y/; 0, 0, A2'*') he concluded that 

these motions are narrow in the z-direction and that the back-flow appears to be 

in the ar-direction. He reconciled this notion with the negative values of 

Rig„{y^; 0, 0, A^"^) by arguing that they are related to flows toward both sides 

of the displaced fluid. 

Tritton (1967) did not succeed in formulating a simple model of the large 

eddies. He concluded though that his results do give further support to 

Townsend's hypothesis that the large eddies have a characteristic structure of 

their own. He also suggested that the description of the large eddies in the wall 

region as a coherent eruption from the viscous sublayer is unsatisfactory. 

Bakewell and Lumley (1967) carried out an orthogonal decomposition of the 

correlation function of the streamwise velocity component with normal separation 

i?,„(y; 0, Ay, 0) and postulated the existence of counterrotating eddies of 

streamwise extent that give rise to eruptions from the viscous sublayer which are 

coupled with more diffuse return flows. 
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Visualization techniques were extensively used by both the Stanford (Kline 

et al 1967, Kim et al 1971, Offen and Kline 1974) and the Ohio state group 

(Corino and Brodkey 1969, Nychas et al 1973, Praturi and Brodkey 1978). The 

results of these studies provided much information about the wall structures. 

The Stanford group used dye injection through wall slots (Kline and Run- 

stadler 1959, Runstadler et al 1963) or through a flattened Pitot tube placed in 

the outer flow (Offen and Kline 1974). Subsequent studies used the hydrogen 

bubble technique (Kline et al 1967, Kim et al 1971), since this method provides 

both qualitative and quantitative information. In this technique a single plati- 

num wire is used as an electrode to generate small hydrogen bubbles. By pulsing 

the voltage applied to the wire, time lines can be generated, and, by insulating 

spanwise portions of the wire, streaks are formed. The experimental efforts of 

the Stanford group revealed a surprisingly organized structure close to the wall. 

It was found that the dye injected through the wall slots undergoes an 

indentifiable sequence of events: formation of a low-speed streak, lift-up of the 

low-speed streak, oscillatory growth and final breakup. This eruption of low 

axial momentum fluid away from the wall has been given the name "turbulent 

burst". The ejection of low-speed («) fluid from the wall requires, from con- 

tinuity, a return flow in the opposite direction. Such a wallward convective 

motion, called sweep or inrush was observed in almost every case just before the 

beginning of the oscillatory motion of the lifted wall streak.  Two types of vorti- 
1 

cal motions were associated with a sweep.  One is a transverse vortex that brings 
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fluid down toward the wall and then moves it forward in the mean flow direction. 

The other is an upward-tilted streawise vortex (Offen and Kline 1974). 

The Ohio State group started an investigation of the wall flow structures 

(Corino and Brodkey 1969) by suspending solid particles of colloidal size in a 

liquid and photographing their motions with a high-speed motion picture camera 

moving with the flow.   The most important characteristic of the wall region 

{0<y"'" <30) was found to be the intermittent ejection of discrete fluid elements 

outward from the wall.  The actual ejection of fluid was only part of a sequence 

of events.  The first of these events was a deceleration of the axial velocity of the 

fluid within a local region near the waU.  Deficiencies as great as 50% of the local 

mean velocity were observed. While the field was thus decelerated, the next step 

bccurred, which was an acceleration.   This resulted from a mass of fluid coming 

from upstream with approximately the local mean velocity, that entered the 

retarded field, and then accelerated the fluid.   This appeared to be a part of a 

large-scale disturbance carried by the mean flow.   At various times an effect, 

called two-layer velocity, was observed.  This was believed to be associated with 

the spanwise variation reported by Kline et al (1967) but of far smaller scale than 

implied by that observed for the boundary layer flow.  The third event is an ejec- 

tion i.e. an abrupt movement outward from the wall area of fluid originally 

within this region.  At the time of ejection there is often a very sharp interface 

between accelerated and retarded fluid, creating a very high shear layer.   The 

ejection phase ends with the entry from upstream of a stream of fluid directed 
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primarily in the axial direction;  this is the sweep event. 

Nychas et al (1973) photographed the outer region of a turbulent boundary 

layer along a flat plate. The single most important event observed was a large 

scale transverse vortex, which was transported downstream with an average velo- 

city slightly smaller than the local mean. The transverse vortex appeared to be 

the result of a Helmholtz type of flow instability. 

Praturi and Brodkey (1978) photographed the motions of small tracer parti- 

cles in a turbulent boundary-layer flow using a stereoscopic medium-speed camera 

system moving with the flow. This technique allowed the three-dimensional 

aspects of the flow to be studied and in particular allowed axial vortex motions 

in the wall region to be identified. Their results indicated that bulges in the edge 

of the boundary layer are associated with transverse vortex motions. They sug- 

gested that the outer region motions give rise to conditions necessary for the 

dominant wall- region activity of ejections and axial vortex motions. These axial 

vortical motions were intense and lasted for a time short compared with the life- 

time of outer-region transverse vortex motions. The results suggested that the 

wall-region vortex motions are a result of interaction between the incoming 

higher-speed fluid from the outer region and the outflowing low-speed wall- region 

fluid. 

The interface separating the turbulent and non-turbulent regions of a fully 

developed turbulent boundary layer was explored by Kovasznay et al (1970). 

This was one of the first studies that utilized the concept of conditional sampling. 
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They used the following detector function: 

fb   fc 
\l    fc 

for non-turbulent flow 
^(0 = ii    for turbulent flow 

Once /(/) is known various conditional averages can be obtained.   For 

example, the "turbulent zone average" of any fluctuating quantity b defined as 

_ t.+ ti t.+ t, 

Q= lim ^ /   Q{t) I{t)dt where 7= lim 7- /  I{t)dt = T 
t,-00 Tffl     (, «i-oo h     t. 

The use of this conditional averaging technique allowed Kovasznay et al to 

arrive to the following conclusions: 1) The non-turbulent flow moves slightly 

faster than the turbulent fluid adjacent to the surface, 2) The "front" of an 

interfacial bulge is steeper than the "back". This was consistent with the 

findings that the streamwise velocities at the "front" are higher on the average 

than those in the "back", 3) Conditional zone averages of the normal com- 

ponent of the velocity showed positive values in the turbulent and negative in the 
I 

non-turbulent region. 

Gupta et al (1971) used the VITA (Variable Interval Time Averaging Tech- 

nique) to analyze measurements of the fluctuating streamwise velocity at various 

spanwise locations for y"*" < 12. According to this technique averages of fluctuat- 

ing quantities are taken over short periods of time as follows: 

t.+ T. 

In general Q is a random function of t^. Using the above definition the 

correlation i?a„(0, 0, Az, t^; T,) was computed for various values of T, keeping 
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t^ constant. For large T, the correlation function behaves similarly to the one 

generated by the conventional long time averaging process. On the other hand 

for small T,, large values of the correlation were observed for relatively large 

separation distances, suggesting a structure with a characteristic spanwise 

wavelength of X+ (^100. 

■ Willmarth and Lu (1972) used conditionally sampled measurements of the 

product uv in order to study the structure of the Reynolds stress near the wall. 

They   measured   the  fluctuating  streamwise  velocity   «   using  a  hot-wire  at 

■ y'*"=16.2 and the fluctuating uv product using an X-wire at y'*'=30 located 

directly above the point where « was measured. The signal from the single hot- 

wire provided the triggering information for the conditional sampling process. 

When the value of a at y^ =16.2 crossed a given threshold level T with negative 

slope, the instantaneous uv product was recorded for a certain time interval 

before and after the sampling criteria were met.   The fluctuating uv product is 

I not the fluctuating stress caused by turbulence {which is UV-UV=uV+ vU+ uv] 

but the term ultimately contributing to the average of fluctuating stress i.e. the 

Reynolds stress {=fIU). So large values of the conditionally sampled uv product 

would indicate large contributions to the Reynolds stress. Willmarth and Lu 

found   uvf^SSU with   r=-2.15 u    (where  u    is  the  r.m.s.  value of  u)  at 

tUJ8*=:l. 

I 
I 
I 
I 

Blackwelder and Kaplan (1976) studied the wall structure of a turbulent 

11 boundary layer.  They used two hot-wire rakes in order to study the variation of 

I 
I 
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the streawise velocity in the spanwise direction and the direction normal to the 

waU. They also used X-wires to measure the Reynolds stress. The detector 

probe was a single hot-wire sensitive to streamwise velocity fluctuations and 

located at y+=15. They used the VITA technique in order to obtain a localized 

measure of the turbulent energy according to the relation: 

var(z,, t, r)=«2(x.., t, T)-\ii{xi, t, T)f 

where the" denotes a VITA averaged quantity.  The above quantity is a locaUzed 

variance and is a positive-definite quantity.  The detection function was defined 

as 

U   if var> *«^, 
^(0 = \i otherwise 

where it is an appropriate threshold value. The conditional average of a quantity 

Q was then defined by 

■'>' y-1 

The quantities <y are the points in time where detection occured.   These were 

selected to be midway between the beginning and the end of the period during 

which Z>(07^0. Blackwelder and Kaplan found the detector function to be asso- 

ciated with large streamwise velocity accelerations. The conditionally averaged 

normal velocity was directed outwards in regions of strong streamwise 

momentum deficit and inwards when the streamwise velocity exceeded its mean 

value. The conditionally averaged Reynolds shear stress was approximately an 

order of magnitude greater than its conventionaUy averaged value and decayed 
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slowly downstream. 

Wallace et al (1977) used a pattern-recognition technique to detect a gra- 

dual deceleration from a local maximum followed by a strong acceleration in the 

«-signal. Their technique worked as follows: a short-time temporal average 

(referred to as TPAV) was taken to be the period from one maximum in du/dt 

1 M 
to the next.   TPAV was thus defined as TPAV M-m 

5] M(n) where m and 
«=m 

M are the first and last points in the pattern respectively. This value was sub- 

tracted from the t» signal to obtain the fluctuating « velocity used in the pattern- 

recognition scheme. The basic requirement was for the slope of the «-signal dur- 

ing deceleration to be smaller than the slope during acceleration. Such patterns 

were found in over 65% of the total sample in the region of high Reynolds stress 

production. The imsmoothed data were subsequently normalized to an arbi- 

trarily chosen unit time interval and stored. Conditionally averaged patterns of 

the t; signal were found to be approximately 180" out of phase with the « signal. 

Their interaction produces Reynolds stress in the wall region of a bounded tur- 

bulent shear-flow. 

Eckehnann et al (1977) applied the above described pattern recognition 

technique to signab obtained from a five-sensor probe. Their results agreed with 

those obtained by Wallace et al (1977).  They also obtained conditional averages 
•       I 

of the instantaneous production term as defined by Brodkey et al (1973).   The 

ejection-type motion was found to give the principal positive contribution to tur- 

bulence production.   For y"^ <30 the sweep-type motion also contributes heavily 
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to positive production.  In the outer region, however, the sweep motions are nega- 

tive contributors to the production process. 

Blackwelder and Eckelmann (1978) studied the spanwise structure of the 

bursting phenomenon. The bursts were detected at y^ «15 by using the VITA 

technique on the streamwise velocity component. Conditional averages with a 

time delay were obtained from wall elements having a spanwise spatial separa- 

tion. They concluded that the bursting phenomenon is associated with pairs of 

counterrotating vortices that seem to "pump" fluid away from the wall, thus 

forming a low-speed streak. The length of these vortices was estimated to be 

Ai+f=»10{)0. 

Blackwelder and Eckelmann (1979) studied the vortex structure associated 

with the bursting phenomenon. Two wall elements were used to measure the two 

components of the velocity gradient at the wall. A characteristic function was 

defined as: 

/2(0=-^=-+—=r-+-=r-+—=r- 
«f w{ ui «;| 

where «!, w^ and «2, w^ are the signals from the two wall elements.   This func- 
I 

tion is a measure of the energy associated with the fluctuations.  If the coherent 

eddies are more energetic than the random fluctuations, their related velocity 

fluctuations will have excursions farther from the origin.  The four signals from 

the probes define a single point in a four-dimensional space with each signal 

corresponding to one axis. The 16 different quadrants in this space correspond to 



33 

all combinations of the four signals.  Blackwelder and Eckelmann applied a thres- 

hold level to the function f^{t) and by increasing it were able to show that the 

l' 
percentage of the time, spent in the quadrants associated with the streamwise 

vortices, increased. 

Kreplin and Eckelmann (1979a) measured space-time correlations of the 

form /?.,JAy, r), iZ.,,(Ay, T) and of the form /?„,(y/, Ax, Ay, r) and 

^wviVo'i ^^> ^tff ^)- '^^® *^° components of the velocity gradient at the wall 

were obtained from heated wall elements. The two components of the velocity 

u, w close to the wall were measured by a F-probe mounted on a wall plug at 

y* =2.3 and Ax"*" =-108, 0 and +144.  The same components in the fluid were 

measured by a movable  V-probe at Ay"*" =5, 10, 20, 40 and Ax"*" =0.   From 
I 

these correlation measurements they deduced that the wall region is dominated 

by pairs of inclined, counterrotating streamwise vortices.   Their centres were 

found at an average separation of Az"*" «50 and their lengths were estimated to 

be Ax"*" «1200. 

Hogenes and Hanratty (1982) carried out simultaneous measurements of the 

two components of the velocity gradient at multiple points on the wall and of 

the streamwise velocity at various distances from the wall. They studied the 

influence of the X"*" ^r^lOO wall eddies, defined in terms of the 8g(z) pattern, on the 

axial velocity component. In order to identify maxima or minima and positive or 

negative slopes of the Si{z) profiles, they devised detection coefficients capable of 

detecting such characteristics of the spanwise variation of the «, signal. These 
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coefficients were used to detect the wall events over the middle probe of the waU 

probe array and to define the triggering time for the conditional averaging pro- 

cess. Similar coefficients were used to study the temporal succession of wall pat- ■ 

terns. Their results indicated that the X'*'?«100 wall eddies are controlling the 

fluctuations of the streamwise velocity component in the viscous wall region. 

That provided further support for using the idealized eddy model of Sirkar and ■ 

Hanratty (1070a) to describe momentum transport between the wall and the fluid 

and to account for the origin of the low momentum fluid that has been observed 

to emerge intermittently from the wall region.                                                                      m 

2.  Measurements of the streak spacing, X, and the bursting period   Tg 

The spacing of the wall streaks in the spanwise direction, X"*", can be deter- 

mined either by visually counting the streaks in a large number of pictures or by 

determining the wavenumber k^ that maximizes the spanwise spectra *,u(it/) I 

of the streamwise velocity close to the wall. The spacing can also be inferred 

from correlation measurements (Lee et al 1974). Kim et al (1971) found 

X+=100±20.   Coantic (1967) and Bakewell and Lumley (1967) used hot wire I 

probes and calculated X* from correlation measurements. Coantic found 

X''"^:! 110-130 and Bakewell and Lumley calculated X+«:^100. Gupta et al (1971) 

used a rake of hot-wires and obtained spanwise correlations of « below y"*" =12. ■ 

They found X'''!^95.  Lee et al (1974) used electrochemical techniques to measure 
■ 

the  spanwise  correlation  of  both   «   and   w   at  the  wall.    They  measured 

X"*" !=« 105-107.  From measurements of Schraub and Kline (1965) the value of X"*" m 

I 
I 

I 

I 

1 

I 
I 
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appears to be insensitive to pressure gradient. 

The mean period Tg between bursts has been measured for low Reynolds 

numbers.   Two methods have been used for this purpose: 1) visual counting of 

the bursts and 2) the second mUd maximum of the time autocorrelation of the 

streamwise velocity fluctuations.  Kim et al (1971) presented a plot of T^ scaled 

with waU parameters versus Re, (momentum thickness Reynolds number) using 

the measurements of the Stanford group (Kim et al lOTl-visual and autocorrela- 

tion measurements of T^, Schraub and Kline 1965.visual measurement of F, 

Runstadler et al 1063-visual measurement of F, where F is  a normalized burst 

rate per unit  span).   They also included measurements of   Tg  by Tu  and 

Willmarth (1966) and by Rao et al (1971) who used the autocorrelation method. 

The resulting relation was «2^0.65Re,«".  When the data were replotted as 

U  A versus Re, they feU on the line U^-f^SO (or t/«,-f^5) where 5* b 

the displacement thickness and 6 the thickness of the boundary layer. Kline et al 

(1967) plotted  F+   versus /^(pressure gradient parameter _-^yj—^J-  for 

K=0 i.e. a zero pressure gradient turbulent boundary layer, F+«120XlO-». 

The most reliable data appear to be from direct visual observations (Schraub and 

KUne 1965, Donohue et al 1972, Smith 1978). These are confined however to Re, 

T 
values within a factor of two of Re,=10'.  The scaling law for -f- has been a 

subject of controversy.   During the past decade it generaUy has been thought 
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T 
that —^ scales on outer variables U^ and 6 but some recent measurements of 

^ ...1 

Blackwelder and Haritonidis (1980) covering the range 10'<Re,<10^ have indi- 

cated that —^ scales on wall variables a* and v. 
A 

1 
t 
I 
1 
I 
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n.   Comnntational methods for turbulent flows 

As mentioned in the beginning of this chapter the solution of the full three- 

dimensional time-dependent Navier-Stokes equations is not possible due to the ■ 

lack of computing power, even by the largest computers available today. A                    ^ 

review of the methods that have been used so far, in order to get around this 

problem, is presented in what follows.   Emphasis b given to the Large-Eddy ■ 

Simulations (LES) and the newly developed approach of modelling the viscous 

wall region of a turbulent flow field.   An extensive review of the Reynolds- 

averaging methods ha^ been given by W.C. Reynolds (1976). 

A. Reynolds averaging 

According to this approach the Navier-Stokes equations are averaged in 

time and the resulting Reynolds stresses have to be modelled in order to close the 

problem.  The various models that have been developed for this purpose are the "M 

following: 

1.  Zero-equation models       ' 

These models use only the pde's from the mean velocity field, and no tur- 

bulence pde's.   They are mostly based on the eddy-viscosity and mixing length M 

I 
I 

i 
I 
I 
I 
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t 



37 

concepts.     According    to    these,    the    Reynolds    stress    is    computed    as: 

-fnr=i/r =/^ I —— I ~— and so is completely specified by mean flow pro- 
^  dy dy       dy 

perties, 

2. One-equation models 

These models involve one pde relating to a turbulence velocity scale, in 

addition to the mean-flow pde's.   The model equation for this velocity scale is 
■ I     ■ 

provided by the turbulent kinetic energy equation. 

The difl'erence between zero-equation and one-equation models is that in the 

latter the eddy viscosity i/j, instead of being related directly to the mean-flow 

scales, is modelled by Uj=eyq I where q is the calculated rms turbulent kinetic 

energy and / is given by /=i(!'y[l-exp(-C27y/^')l as in the zero equation models. 

3. Two-equation models I 

These models use an additional pde related to a turbulence length scale. 

Most research groups have achieved considerable success using an equation for 

the isotropic dissipation P,-,. The equation relating Z?,-, to the length scale / can 

be taken to be the one proposed by Norris and Reynolds (1975) which works both 

in the viscous sublayer and the fully turbulent regions.  According to this equa- 

tioD A-,=^.^ 1 + :^ .   At high turbulent Reynolds numbers [ql/u) the 

n3 
limiting relation is Di,=e^-^ i.e. the dissipation is independent of viscosity and 

determined by the properties of the energy-containing eddies.   At very low ql/u 
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the limiting expression is : I>,-,=CiC2 v^ i.e. there is dissipation in the large 

f 
I 
I 
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scales of the flow and is affected by the viscosity. 

4.  Stress-equation models 

These models involve pde's for aU components of the Reynolds stress tensor 

and in general for a length scale as well.  The equations for «,«y can be formally I 

written as: «J«~+ ^«,-«y, =P^- + ^._J.^.,^-/).^. where P^- is the "generatioa ten- 

sor", ^,y is the pressure-strain "redistribution tensor", I>,y is the "isotropic dissi- 

pation tensor" and J^^^ is the transport of «,- u- ( the subscript ,/ denotes M 

differentiation with respect to x^). The redistribution term ^,- has been the sub- 

ject of most controversy and experimentation. In a flow without any mean strain, 

this term is responsible for the return to isotropy. However, in deforming flows W 

the situation is much more complicated. 

There is a basic difficulty in this general approach to turbulence models. 

One would like to model only terms that respond on time scales short compared 

to that of the computed quantities. In general, it seems that higher order statist- 

ical quantities take longer to reach steady state than lower order statistics. Any 

model obtained by truncation at some statistical order would suffer from this 

difiTiculty. What one really needs to do is truncate at some level of scale, and 

thereby take advantage of the fact that the smaller scales adjust faster to local 

conditions. Then, by truncating at smaller scales, one has at least hope of con- 

vergence, a hope that is at best dim when one truncates at higher and higher ord- ■ 

t 

t 

I 
1 
I 
t 
1 
1 

I 
I 



s« 

ers of statistical quantities that have comparable time scales. This is the idea 

behind the LES approach described below. 

B. Large-Eddy Simulations(LES) 

The idea is to do a three-dimensional time-dependent numerical computa- 

tion of the large scale turbulence. It will always be impossible to compute the 

smallest scales in any real flow at high turbulence Reynolds numbers, so they 

must be modelled. 

The first appUcation of LES was made by Deardorff (1970) who in fact 

showed that a three-dimensional calculation is feasible.  The idea of applying an 

averaging operator to the governing equations, with averaging typically being 

over the grid volume of the calculations to filter out the subgrid scale (SGS) 

motions,   had  been  known  since  the  early  work  of Reynolds  (1895).    This 

approach had been employed by several groups of meterologists (Smagormsky et 

al 1965, Leith 1965) for the general circulation of the atmosphere.   Deardorff 

actually tested this meteorological approach upon an interesting case of lab tur- 

bulence: plane Poiseuille flow (channel flow) driven by a uniform pressure gra- 

dient.   He used 6,720 uniform grid intervals and simulated the subgrid scale 

effects using a suggestion of Smagorinsky et al (1965) and Lilly (1967) which is 

appUcable only for large Reynolds numbers.  With his pioneering work Deardorff 

demonstrated the potential of LES for use in basic studies of turbulence. 

The grid-scale averaging operator was defined as: 
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J+1/2A*   jf+l/2Ay  «+l/2A2 

and time.   After applying the overbar operator the Navier-Stokes equations in 
■ 

flux form may be written as: 

t 
I 

^   ""    ' Ax Ay Az    ,_i/2A,    ,-l/2Aj    z-l/2^z V 

A filtered variable, denoted by the overbar, is thus a continuous function of space W 

1 
I 

|-«.y7T)-■£-<?+ 1-77)+ ~-V^«7 (2.1) I 

Here 1,2,3 correspond to x,y,z respectively and the prime quantities are given by: 

t»,=tt~+ «/  and represent deviations from local grid-volume m6ans.   Reynolds' f 

averaging assumption V 

jj75-= 2!^+ «/ii7+ ^1^+ ti/«y = ir«7+ "•■ "/ te 
can be used (otherwise it may be incorporated into later assumptions). If this || 

assumption is used then the remaining as unknowns in (2.1) are the SGS Rey- A 

nolds stresses n[^- jSi^^- The method of evaluation used introduced SGS 

I 
I 

where c  k a dimensionless constant and A={AxAyAz)^''.   If an inertial J 

subrange exists on scales which encompass the grid interval, then the usual 

I 
:     :    :      ^   1-   : .1 

3 

eddy coefficients as follows: 
I   

where iiT was modelled according to Smagorinsky's et al (1965) assumption: 

K{x,y,z,t)={cAf 
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dimensional arguments demand that 

' i(:=cVV/'AV3 (2.3) 

where Tis the rate of dissipation within a local grid volume. But for homogeneous 

turbulence 

Elimination of T between (2.3) and (2.4) gives (2.2). Lilly (1967) showed that if 

c^i^^O.n then (2.2), (2.3) and (2.4) are compatible with the known value of 

Kolmogorov's universal constant for the inertial subrange. However, Deardorff 

found this value to be too large, causing motions to damp until excessively large 

mean shear built up. He, therefore, used the value c^O.lO which seemed to be an 

optimum one. i 

The most distinguishing result of DeardorfTs calculations was the discovery 
: ■ I : 

that the IT eddies are more elongated in the downstream direction than the W or 

ST eddies. The pressure eddies showed no indication of downstream elongation or 

tilt. I 

Leonard (1973) studied the energy cascade in large-eddy simulations of tur- 

bulent flows.   He defined i7,y=«/«y + ti,tiy + «,- Uy and r,y = -(t/,y - -rVkk^ij)- 

So now (2.1) becomes: 
■■   I       .^ 

One can now approximate u,- Uy^u,- Uy (Lilly , 1967) or lump the difference into 
I 

the   definition   of   n,-y   and   model   r,-y   by   an   eddy   viscosity   hypothesis: 
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d«,-      du- 
T:-==K(-r—H  ^ ) where K is the same as DeardorfiTs (1970).  Leonard studied 
' aXj-      ax,- 

the implications of the assumption  «,• «y=«,- «y.   If MJ" is constant over an 

averaging volume then one has to deal with a component «^ which is effectively 

larger than that obtained when Uj^ is defined as a moving average over the grid 

volume.   In the former case the modelling of the subgrid terms is clearly more 

critical. Leonard showed that appropriate handling of the term d{u~uA/dxj can 

provide a significant portion of the large-scale dissipation besides the Reynolds 

stresses of the subgrid scale turbulence.   He showed under certain assumptions 

that  the dissipation  rate  due to 5(«,- «y)/5xy,  egg, has a lower  bound  of 

€j;5>0.3e± O.le where e is the total dissipation rate. The remainder of the losses 

must be taken up by the SGS term 5T,-y/5xy. He concluded that the variations of 

dttj" nT/dXj within an averaging volume should be explicitly accounted for. 

Schumann (1975) developed subgrid scale models for finite difference simu- 

lations of turbulent flows in plane channels and annul!. I£s finite difference equa- 

tions were based on integral conservation equations for each grid volume. As a 

consequence the SGS stresses were defined as surface mean rather than grid 

volume mean values of the fluctuating velocity products. Schumann split the 

SGS stresses into two parts: one accounting for locally isotropic turbulence and 

the other for inhomogeneous effects. He wrote: 

/;;T^=-0/1(257-< Z5r>) _ .v< i5r>+I^..*;j;j- 

where ' ""means the average of any quantity over the surface whose unit normal 

I 
1 
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is in the j— direction. Z),y is the finite-difference analog of the strain tensor I>,y, 

•'/I and *^fi* are eddy viscosities and the brackets < > denote the time mean 

value. The locally isotropic part is set proportional to the fluctuating part of the 

strain tensor in order to get zero time mean values of the SGS stresses for i^j. 

The channel turbulence is inhomogeneous due to the nonzero components of the 

time mean strain. This is reflected by the inhomogeneous part of the above 

assumption. Schumann also developed a SGS kinetic energy transport equation 

which provided the velocity scale in his modelling of ''/i. He accounted for the 

anisotropy of the finite-difference scheme, used larger values for the periodicity 

lengths (x  and  z  directions)  and higher grid resolution (up to 65,536 grid 
r 

volumes). His results for the mean velocity profile and the turbulent intensities 

were in better agreement with measurements by Laufer (1050) and Comte-Bellot 

(1965) than the previous calculations of Deardorff (1970). 

Deardorff (1970) and Schumann (1975) were able to predict some of the 

features of turbulent channel flow with a fair amount of success. However, nei- 

ther work treated the most important part of the flow, namely the region very 

near the wall. It is in this region that virtually all the turbulent energy produc- 

tion occurs. Both Deardorff and Schumann introduced artificial boundary condi- 

tions at some distance from the wall and, thus, effectively modelled the tur- 

bulence production mechanism in this region. 

It was not until the joined efforts of Stanford University and the NASA 

Ames Research Center that the wall region was given its full credit in  the LES 
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calculations of bounded turbulent shear flows. The availability of large and 

effective computing power (CDC 7600, Illiac IV) was very important for these cal- 

culations. 

Moin et al (1978) calculated the three-dimensional time-dependent tur- 

bulence in a channel using the CDC 7600 computer and 16X16X65 grid points. 

They employed arguments similar to DeardorfTs (1970) for the modelling of the 

SGS Reynolds stresses. Their numerical scheme was a semi-implicit scheme that 

treats part of the diffusion terms and pressure implicitly, and the remaining 

terms explicitly. The time advancing uses the Adams-Bashforth method for the 

explicit terms and the Crank-Nicolson method for the implicit terms. The 

lengths of the computational box in the streamwise and spanwise directions were 

selected to include the important large scale eddies. For this purpose the meas- 

urements of Comte-Bellot (1963) were used. Due to storage limitations the mesh 

sizes were selected as: Ax'^=251 and Az'''=168 which was inadequate for 

resolving the scales close to the wall, particularly in the spanwise direction. The 

initial conditions were provided from the governing equations of small distur- 

bances used in hydrodynamic stability theory to obtain a velocity field with nega- 

tive Reynolds stress. The value for c in equation (2.2) that they selected for the 

final calculations was <;=0.2. The numerical results of Moin et al showed reason- 

able agreement with measurements. For the resolvable portion of the streamwise 

and spanwise intensities the ^reement was good but it was only fair for the 

intensity of the normal velocity fluctuations.  It was found that, especially in the 

I 
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vicinity of the walls, a large fraction of the vertical turbulent intensity lies in the 

subgrid scale motions. The mean velocity profile agreed with measurements by 

Comte-Bellot (1963). A quantity of interest to turbulence modellers is the 

pressure-velocity gradient interaction. Moin et al's computations showed that 

over most of the channel the streamwise component of resolvable turbulence 

intensity transfers energy to the other components. In the vicinity of the wall 

(y"*" <30) there is a large transfer of energy from the vertical component of tur- 

bulence intensity to the spanwise component. 

Kim and Moin (1979) carried out a three-dimensional time-dependent cal- 

culation of turbulent flow in a channel using the ILLIAC IV computer and 

64X64X64 grid points. Their modelling of the eddy viscosity was similar to 

Moin et al's (1978). They used a semi-implicit finite difference scheme with 

implicit time advancement for all the viscous terms. The size of their computa- 

tional box was the same as in Moin et al (1978) but because of the larger number 

of grid points the resolution in the streamwise and spanwise directions was 

better: Az''"=63, Az"*" =42. Kim and Moin devised numerical tricks in order to 

efficiently manage the flow of data between the core memory and the disk 

memory where the entire data base resided. Due to core size limitations they had 

to develop a special algorithm for the solution of the block tridiagonal matrices 

resulting from the finite-difference formulation. The numerical results of Kim 

and Moin revealed most of the structure observed experimentally. They found 

the wall layer to consist of coherent structures of low-speed and high-speed 
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streaks alternating in the spanwise direction. Hot-spots, small localized regions of 

very large values of turbulent shear stress WfJ were frequently observed. No evi- 

dence of a direct relationship between streaks and streamwise vorticity w, was 

observed.   Very close to the wall w, was not the result of large-scale revolving 

fluid motions but was rather due to the spanwise velocity gradient . Though 
dy 
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strong vortical   regions were observed away from the wall (y'''!=»30)  (wj)'/^ 

attained its maximum value at the wall.   Their profiles for the pressure-velocity Jt 

gradient interaction showed the same effect as calculated by Moin et al (1978); 

namely, a significant tranfer of energy from the normal to the spanwise com- 

ponent of  turbulent kinetic energy in the inunediate neighborhood of  the wall ■ 

("splatting" effect). 

Moin and Kim (1081) simulated fully developed turbulent flow in a channel 

using the ILLIAC FV computer and up to 516,096 grid points. They employed 

Schumann's (1975) modelling of the eddy viscosity but had to choose a value for 

j/f (anisotropic eddy viscosity) from numerical experiments. They showed that 

the so called Leonard stress-term X,-y=«,- «.--«,• «,- can be quite significant, hence 

including it with T,y is not recommended. Their agreement of the computed 

mean velocity profile and turbulence statistics with experimental data was good. 

The regions of large-amplitude streamwise vorticity w, were found to be concen- 

trated near the wall. Slightly above the wall, these regions contained revolving I 

fluid elements induced by strong shear layers in the cross-stream plane. In the 

immediate neighborhood of the wall the "splatting" effect led to large magnitudes 

t 
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of w, and instigated transfer of energy from the normal to the span wise com- 

ponent of turbulence. 

C. Simple eddy modelling of the viscous wall region 

This newly developed approach focuses in the viscous wall region of a tur- 

bulent shear flow. The flow field is assumed to be homogeneous in the stream- 

wise direction and the time-dependent Navier-Stokes equations are solved on a 

plane perpendicular to the mean flow. 

Hatziavramidis (1978) was the first one to explore such a non-linear model 

of the X"*" =100 wall eddies. He visualized the flow to be coherent for 0<y'*" <40 

and well mixed for y"*" >40. The boundary conditions, that were used at 

y + =40, specified the fluctuating spanwise component of the velocity (w), zero 

stress (--—=0) and zero intensity for the streamwise component of the velocity 

(ii'=0). The period of the spanwise velocity fluctuations at y/=40 was taken to 

be r+=100. 

The computed streamline patterns showed the flow field to alternate 

between strong convective motions (outflows and inflows) and periods of relative 

quiescence (streamwise vortices associated with low w- and v- velocities). The 

most interesting finding of the calculations was that the flow on the y-z plane 

can create streamwise velocity fluctuations whose magnitude agrees with experi- 

mental measurements especially in the region 0<y<20. The calculated mean 

streamwise velocity profile also agreed with measurements throughout the viscous 

I 
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wall region. The intensities of the velocity fluctuations on the y-z plane showed 

fair agreement with experiments. The calculated (u )"•" intensity attained higher 

values in the region 20<jr''"<40 and the (w )■*■ intensity exhibited lower values 

in the region 15<y'*" <35. 

These calculations showed for the first time, that by using simple boundary 

conditions at y/=40 one can compute most of the important features of the 

viscous wall region i.e. momentum transport to and from the wall by the spatial 

and temporal coupling of inflows and outflows and creation of high intensity velo- 

city fluctuations in the streamwise direction. 

Chapman and Kuhn (1981) followed up the work of Hatziavramidis by 

using more realistic boundary conditions at y/ =40. The vbualized the flow in 

the viscous wall region to result from the interaction of the X"*" =100 eddies with 

eddies that are associated with a "pulsating" type of flow at jf/=40, on a plane 

parallel to the wall. Their calculated Reynolds stress and intensity profiles 

showed better agreement with experiments than the computations of Hatziav- 

ramidis, especially in the region 20<y''" <40. The calculations of Chapman and 

Kuhn introduced for the first time the effect of outer flow eddies on the computed 

wall layer dynamics. However, the modelling of these eddies and the selection of 

the various model parameters are open to question and need to be improved with 

the help of more detailed experimental measurements in the viscous wall region. 



CHAPTER 3 

EXPERIMENTAL METHODS 

The experimental results analyzed in this work were obtained by Lau 

(1080) in a 20 cm flow loop built by Sirkar (1969). Deftails about its construction 

and operation can be found in theses by Hogenes (1979) and Lau (1980). 

The test section was made from an acrylic pipe, with an internal diameter 

of 20 cm and a length of 2 m. The fluid probe sensors were manufactured by 

TSI, Inc. Each pair was separated by a dbtance of 1 mm and was constructed 

from elements with a length of 1 mm and a diameter of 0.05 mm. Forty pairs of 

multiple V-shaped wall electrodes were aligned perpendicular to the mean flow 

direction. Only nine pairs were used in this work. Single V-shaped probes were 

located at various positions in the streamwise direction. A drawing of the test 

section and a schematic diagram of the arrangement of the measuring sensors can 

be found in Lau (1980). 

All outputs from the electrode circuit were adjusted to have values between 

± 5 volts. This was necessary because all analog signals were digitalized by an 

A/D converter having a resolution of only 16 bits. The A/D converter was con- 

trolled by an IBM 1800 computer. Before digitalization, the signals were filtered 

by a fourth order low pass Buttersworth filter with a cut-off frequency of 15 Hz, 

which corresponds to a dimensionless frequency of n"'"=l.   The sampling fre- 

40 
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quency wiis 20 Hz and the sampling time 400 seconds. The data were stored in 

integer form in magnetic discs. Each disc has a capacity of approximately 

400,000 words. These raw data were then transferred to magnetic tapes and 

analyzed in a CDC Cyber computer. 

Both the wall and fluid probes were electrodes operated under conditions 

that the current flowing in the circuit is directly proportional to the rate of maiss 

transfer to the electrodes. The electrolyte used in the experiments was a solution 

of iodine in potassium iodide with a concentration of 0.1 M KI and 0.001 M 12- 

Detaib regarding these techniques can be found in theses by Lee (1975) and 

Hogenes (1979). 

The mass-transfer rates to the wall were related to «, and s^ through 

analytical expressions developed by Sirkar and Hanratty (1970b). Special calibra- 

tion techniques had to be developed in order to describe the response of the wall 

electrodes to low flow rates (Nikolaides 1981). The relation of the mass transfer 

rites to fluid probes to the velocity components U and w was obtained empiri- 

cally using the following expressions: 

where i4 is a constant and V^i, V21 are the linearized voltage outputs from sen- 

sors 1 and 2; i.e., Vn=Ef, V^i^E^, where Ei, E^ are the voltage drops across 

the respective resistors.  The calibration runs were carried out at the center of 
!. •   - ,      .   .,   - -_  ■,.    ...     ■ 

the pipe at different Reynolds numbers. The value of p obtained in this work is 

in agreement with the one measured by Hogenes (1979).  It was found that, in 
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order to ensure that WOT^O and w^^O, the angle formed by flow direction and 

the line that bisects the sensor- angle had to be readjusted approximately 2*. 



CHAPTER 4 

THEORY 
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I.  Conditional averaging scheme ■ 
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Kaplan (1973) defines the process of conditional sampling as "the eduction 

of information about an event with respect to the time reference defined by its 

detection function." A detailed account of the various sampling techniques in 

turbulence measurements has been presented by Van Atta (1974). The impor- 

tance of conditional averaging, as a way of extracting structure out of a tur- 

bulent signal, has been widely recognized among turbulence researchers. Several 

of the schemes that have already been used in studying the coherent structures of 

wall turbulence were presented in Chapter 2. 

The development of an effective detection scheme requires knowledge of the 

general and specific features of the patterns that are to be condition?"y sampled. ■ 

In the case of the wall region of a bounded turbulent shear flow the situation is 

quite complicated. The wall structures evolve both in space and time and this 

has to be accounted for in the sampling procedure.   Observations of the instan- M 

taneous signatures of the wall eddies, as characterized by the spanwise variation 

of »,, show a number of interesting characteristics. There are periods of time 

that the wall is dominated by eddies that grow in size and wander back and forth ■ 

in the spanwise direction.   There are also time intervals during which nothing 
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spectacular occurs close to the wall. 

Hogenes (1979, 1982) used the idealized sinusoidal variation of s, shown in 

Figure lb to define four distinct eddy patterns related to the midpoint of the wall 

probe array, MP. For two of them, the s, profile exhibits a maximum or 

minimum above MP and, for the remaining two, it shows a zero crossing at MP 

with either a negative or positive slope. 

We have adopted this same classification even though it is an extremely 

I ■ ■ . 
simpHfied approach to the problem.   Since the patterns shift in the spanwise 

direction and the wavelength varies in time, the above selected eddy patterns 

represent limiting modes of the spanwise variation of s,. The selection of the 

center of the probe array as a reference point for the classification of the eddy 

patterns is dictated by the fact that the fluid probe is located directly above MP. 

In order to measure the strength of the eddy pattern the following function 

was employed: 

1-1 i-l 

where i refers to the ith probe, it to the instant t,, in the data set, and »,_ is 

made dimensionless using (aTJ'/^. It is easily seen that 5^>0 for all f* and that 

5. =0 when all the a^ are either positive or negative. An ideal eddy pattern 

similar to the one shown in Figure lb with an amplitude equal to {s^yf^^Q.ll 

and a wavelength of X+«:'10O would give a value of 5^ approximately equal to 

4.7. 
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The function 5^ is plotted in Figure 2 for 1,000 data points or l/8th of the 

data set.  One can easily identify periods of activity associated with the peaks of 

5^ and periods of relative quiet when S^ decreases towards zero.  If a threshold 

level Sj is applied to S^, then for the time instants ti^ that S^^'^S^ a strong eddy 

pattern, similar to the one in Figure lb, occurs over the wall probe array. 

In order to be able to identify this eddy pattern with one of the four limit- 

ing modes of the s^ profile defined by Hogenes, additional information is needed. 

For this purpose, the product Pk=>zt{^k)'^zji^k) ^ formed using the signals from 

probes 4 and 6 that are at equal distances from the middle probe 5 of the wall 

probe array.   When Pk>0, the sign of s^J^tig) is checked and, when Pk<0, the 
i 

difference J?A=«i^('fc)-«r,('fc) is computed. 

The objective of the scheme is to relax the stringent requirements, used in 

earlier efforts from this laboratory, of having a zero crossing of s^ or a maximum 

(minimum) exactly at probe 5. Four different aspects of the eddy motion are 

then recognized at probe 5: 

(a) Pt>0,«^,(<4)>0: positive transverse flow (PTF) 

(b) F;t>0.«n(^*)<0: negative transverse flow (NTF) 

(c) i't<0,I>jk>0: outflow , 

(d) Pt<0,£>^<0: inflow       ' 

For cases (a) and (b) when, also aij^jfc)«,,(^i)<0 (or «i,(^i)3i,(fjt)<0), the smal- 

lest resolvable wavelength is detected. 



Figure 2 Plot of the detection function S^  vs   T* 
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It is clear that S^^ defines a strong event and (a) through (d) distringuish 

the type of eddy pattern. The function S^^ is similar to the one used by 

Kovasznay et al (1970) as a turbulence detector. The parameter 5^ detects 

periods of time that the wall is dominated by strong eddy patterns and time 

intervals that the wall activity subsides. It is to be noted that S^ is not used to 

define any reference time for the conditional averaging procedure. Time zero for 

the averaging scheme is defined as the midpoint of the duration time of each pat- 

tern. 1 

If, for example, Pt>0 and sj«t)>0 for t„,<tk<t„ and S^>Sj for some 

ti, where <„<*/<<„ and S^ is a suitable threshold level, then a strong positive 

transverse flow occurs over the wall probe array and zero time is selected as 

For an idealized eddy pattern S^^^A.!, as mentioned before.   The average 

value 5j =      X) -^^Z '^'^ ^°^ ^^ *^® experimental runs {K is the total number of 

data points).   It seems reasonable to select a threshold level Sj that is close to 

the above two characteristic values of the detection function 5^.   The effect of 

varying S^ will be discussed later. 
.■■■'"■■-■' ' 

An example of how the conditional sampling scheme works is shown in Fig- 

ure 3. It is seen that Pt<0,Z)t<0 for 4.6<f+<13.3 and Pk>0, »^,<0 for 

13.3<<''" <28 where t*=0 is some arbitrary time instant. If 5^=4, then 5^>5'^ 



— °\^°'h. 

Figure 3        Example of how the detection scheme works. 
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for S.b<t'*' <28.8 and the scheme would detect an inflow followed by a negative 

transverse flow. Time zero for the inflow eddy pattern would be selected as 

< + =8.95 and for the NTF pattern, f+ =20.65. 

In previous work from this laboratory, Hogenes constructed a scheme to 

analyze multiple wall probe measurements which is quite different from what is 

presented above. Detection coefficients that are sensitive to the symmetry or 

antisymmetry of the eddy patterns, as characterized by the s^ variation, were 

used to conditionally sample strong eddies at the wall. The time instant that a 

detection coefficient attained its maximum value was defined as zero time. 

The scheme described in the present work is considered to be an improve- 

ment over the one used previously by Hogenes for the following reasons: The 

strength and type of pattern are recognized by two independent processes. The 

use of conditions (a) through (d) eliminates the effect of the "shifting" of the 

eddy pattern and defines a reference time based on more than one time instant. 

The use of one threshold level on 5^ gives equal weight to all four types of eddy 

motion. 

Hogenes developed extra detection algorithms to study the temporal succes- 

sion of the eddy patterns. This is avoided in the present detection scheme. Once 

the various modes of the a^ signature are isolated in the time axis it is easy to 

explore their temporal relation. 

Some comments are also necessary regarding the number of events included 

in the conditional averaging procedure.  When a positive (or negative) transverse 
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flow occurs over MP, an outflow takes place at a distance of approximately 

A^"*" ^=«25 from MP. So it is seen that an outflow is associated with three of the 

four limiting modes of the a^ variation, as discussed above. If an attempt is 

made to relate outflows to the observed "bursts" (Runstadler et al 1963) one 

should recognize that not all outflows might eventually evolve into a burst. 

According to measurements by Kline et al (1967), the frequency of streak 

breakup per unit of span made dimensionless with wall parameters is approxi- 

mately equal to 10"^ for flows with negligible pressure gradient.  For a spanwise 

length of X+ =100 the bursting frequency is thus 10-^100«:!0.01. 

;_ _    .'  ■ I 

Since the time duration of the experiments described in this study is 

r"*"=5600 the number of bursts over the wall probe array should be equal to 

5600X0.01=56.   One would, therefore, expect that the sum of outflows, positive 

and negative transverse flows detected by the detection algorithm would at least 

be equal to 56. 

These types of considerations provide an independent check on the number 

of the events selected for the averaging process.   They would also help in con- 
I 

structing a technique for measuring the "bursting" frequency. 

n.  Eddv model for the viscous wall region 

A. Continuum equations and boundary conditions 

The eddy model in this work assumes that the flow in the viscous wall 

region is homogeneous in the axial direction and coherent on a plane perpendicu- 
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lar to the direction of the mean flow. Very close to the wall, where the low-speed 

dye-streaks have been observed, the eddies are characterized by certain length (X) 

and time {T) scales. The characteristic length in the spanwise direction is the 

distance between dye-streaks (X"*" J^lOO) and the characteristic period corresponds 

to the frequency of the most energetic velocity fluctuations close to the wall 

(r* (=5(100). As the distance from the wall increases, eddies with larger length 

and time scales become more important. These eddies, associated with the flow 

far away from the wall, interact with the wall eddies and their interaction com- 

pletely specifies the dynamics of the viscous wall region. 

In contrast to the model of Hatziavramidis (1978), where the flow outside 

the viscous wall region is assumed to be well-mixed, the present model attempts 

to define the interaction of the outer flow with the wall layer at a certain dis- 

tance from the wall (y/^40). The specification of this interaction, which results 

in the creation and maintenance of wall turbulence, is the most important part of 

the calculations is this work. 

The continuum equations that describe the flow field are the time- 

dependent Navier-Stokes equations, for a flow homogeneous in the axial direc- 

tion, along with the equation that describes conservation of mass (continuity 

equation): 

il + A^,V2) -H -^vw) = --^ + M^ + M (4.1) dt       Ir a? ^ dy       Re \dy'i ^   dz^] ^    ^ 
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dw   ,     dj    .  , ^ 'wy2) = __i£- 
dz "^   Re[dy2 ^   dz\ 

dU  ,   AJ rn^  AJ   rn      1   1^^^ ^   ^^^ 

5z        5y 

(4.2) 

(4.3) 

(4.4) 

All the variables above and in the rest of the work are dimensionless with 

respect to a characteristic length X and a characteristic velocity U^. These are 

selected so that X"*"=100 and U^=2{v )■•■ where {v )* is the rms value of the 

normal velocity fluctuations at y=y^ expressed in wall variables.   With these 

values, the Reynolds number is Re= 
U.    X 

1/ 
^ TT+\ + f;+X+=182. 

The boundary conditions that were used to solve the above system of equa- 

tions are the following: 

U=v=w=0   (no slip condition)   at   y^O 

u?=0,    ^ —0,    ^   —0   (synuBetry conditions) 
{0=0 

. = .. dz dz 

where z^ =X2/2 and X2 is the (dimensionless) wavelength of the outer flow eddies. 

At the upper boundary of the computational domain (jf=jf^) the following 

boundary conditions were prescribed: 

w—wii{l)3m-—+ wi2{t)sm-— 

»=»Xi(Ocos-—+ Vi2{t)cos-— 

(4.5) 

(4.6) 
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«=«£l(0cOS—— +   Ui2(0cOS-  (4.7) 

V^*=? (4.9) 

, dw      dv      , a* 5* where   f = — •—— and w=——, v= —-— 
ay     az ay oz 
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and   U=U(y^)+ «, where u,v,vo are the fluctuating components of the velocity 

at y=y^ that are associated with the coherent flow and TJ{yg) is the average 

streamwise   velocity   at   the   same   location.    The   components   with   scales 

^«,i ^»,) ^w, ^e associated with the X'*"i=»100 eddi6s, while the components with 
I 

scales X,j, X,^, X.^ reflect the contribution of the outer flow eddies in the viscous 

wall region dynamics.   The specification of the temporal part of «,v and w at ■ 

y^'Vo *°^ *^6 selection of the relevant scales and the relative energies are dis- 

cussed in part C of this section. 

If the pressure gradient is elimated from (4.1) and (4.2) the following 

vorticity-stream function formulation of the problem is obtained: 

I 
1 
I 

I 
I 
I 

The advantage of the above (*, f) formulation as opposed to the primitive 

variable formulation {v,w,p) is that the pressure is eliminated from the problem. 

The system (4.8) and (4.9) can be solved for * and f and the velocites v,w can B 

subsequently be obtained from the stream function.   Another advantage of the 

(*, f) formulation is that the continuity equation (4.4) is satisfied by definition. I 
I 
I 
I 
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The implementation of the boundary conditions, however, is a more 

difficult task in the vorticity-stream function formulation. The way that the 

boundary conditions are translated from the {v,w,p) to the (*, f) formulation is 

as follows: 

*=0»  ?=-T^   at    y=0 
dy' 

'=0,  f=0   at    1^^^^ 

*= -/«(e, Vo, t)d^, f =—— - —   at    y=y, 
o dy      ^^ 

where f is a dummy variable. 

It can be seen from (4.8) and (4.9) that the vorticity equation and the 

stream-function equation are coupled through the convective terms, which is a 

manifestation of the nonlinear character of the Navier-Stokes equations. It can 

also be seen from the boundary conditions that there is an extra coupling 

through the boundary vorticity, which is inherent in the vorticity-stream function 

formulation and would be absent if a primitive variable (v,«j,p) formulation were 

used instead. 

Once the velocities v and w are known, from the solution of (4.8) and (4.9), 

the streamwise velocity U can be obtained from the solution of equation (4.3) 

which is a linear partial-differential equation. 

The initial conditions for the system (4.1), (4.2) and (4.4) were supplied by 

the inviscid-irrotational solution on the y-z plane.   The initial profile for the 
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streamwise velocity component (equation (4.3)) was taken to be the Van-Driest 

profile for the time-averaE|:ed axial velocity in the viscous wall region (Hinze, 

1975)0<y+<40. 

The set of boundary conditions desciribed above correspond to the case 

where the outer flow eddies have statistically definable length and time scales and 

finite energy. The case where all the energy of the velocity fluctuations in the 

viscous wall region is associated with the X''"f=«100 eddies was also investigated. 

The results for these two cases are presented in Chapter 5. These calculations, 

where the nodes of the spanwise variation of the velocity components at y=y^ 

are fixed in space, are referred to ds "fixed cell runs". 

Two other cases were studied during the course of this work. One is a pul- 

sating type of flow on a plane parallel to the wall at y=yo, that is associated 

with the outer flow eddies. The other one is a random shifting of the X'*"«:^100 

eddies, with negligible energy attributed to the large scale eddies. In both cases, 

the nodes of the spanwise variation of the velocity components at y=y^ are not 

fixed but vary in time. These calculations are referred to as "moving cell runs" 

and are presented in Appendices B and C. 

Various boundary conditions, different from the ones described above, were 

also explored for the X'*"P»100 eddies. These boundary conditions attempted to 

use a nondescript relation for the normal component of the velocity at y=y„, by 

prescribing the vorticity or the flux of the vorticity along with the spanwise com- 

ponent of the velocity at the upper boundary of the computational domain.  The 
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results of these calculations are discussed in Chapter 5. 

B. Numerical methods 

Two numerical schemes were used in this work for the time advancement of 

the vorticity equation. That used in the fixed cell runs was the Alternating 

Direction Implicit scheme, which is currently the most popular method for the 

solution of viscous fluid flow problems. The moving cell runs necessitated the 

development of a semi-implicit finite-difference scheme which is implicit in the 

viscous terms and explicit in the convective terms. The development of this 

method was also motivated by the desire to study the propagation of high fre- 

quencies in the secondary flow pattern, from the edge of the viscous wall region 

towards the wall, during the fixed cell runs. 

1. ADI-scheme 

A spatial and temporal discretization of (4.8) and (4.9) results in the follow- 

ing finite difference approximation for the vorticity-stream function formulation: 

(At/2) 2Az 2Ay 

+ 1  K..n.y -2^y liLLi— .   ^y-n " ^^'7 ^ ^'H\      (410) 
Re I Az^ Ay2 J 

^n+l _ *"+l/2 

{At/2) 
{w^)r:,f - {w^ny^  {v^)r,u\ - Mi^ti 

2Az 2Ay 

1      ?.>!.;•   -2?.y +  C-iy ^iJ+l-Ki      +  ?.-.y-l j^jj. 
Re I Az2 Ay2 J    ^ "   ' 

and 
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so 

%-n.y -^'*'iy     + '*'t-i,y ^   '*'«,;+1    ^^'j     ^ ^',;-i ^ .n+1 (4.12) 

Equation (4.10) can be solved for f,""''^''^ and subsequently f,"-** can be 

obtained from (4.11). Then (4.12) can be inverted to give ^.y'^^ In order to 

solve equations (4.10) and (4.11), though, we need the values for the velocities 

wPt^^^, vPt^ and the values for the boundary vorticities ^1"+^/^, ^M+I''? 

and ^Pi ^,^"pfl 1. where M and N are the number of panels in which the com- 

putational domain is divided in the z and y directions respectively. It appears 

then that for the solution of the system of equations (4.10), (4.11), (4.12) an itera- 

tive scheme is required. According to this iterative procedure, the values for v,w 

and for the boundary vorticity would have to be guessed and then equations 

(4.10) and (4.11) would be solved for f,"''" ^ The stream function *,"''" * could 

thus be obtained by solving (4.12) using the calculated values of $",*■*■ ^ The 

guessed values of t;,u; and the boundary vorticity can then be revised using the 

calculated values of '^■^'^ * and the whole procedure is repeated until the values 

of ^,^'*" * (or f,^"*" ^) don't change between two successive iterations. 

It has to be noted that the above procedure takes place within a given time 

step. In other words it takes a certain number of iterations to advance from time 

step n to time step n+1. This is important in unsteady state computations 

where the value of * and f at a given time t have to be accurately calculated. 

The iteration pattern used in this work is described in what follows: It is 

noted that in the fixed cell runs the vorticity on the vertical boundaries is zero at 
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all times. So it is only the vorticity on the horizontal boundaries and the veloci- 

ties t; and w that have to be guessed during the iterative procedure. If the sub- 

scripts w and o denote the wall and the upper boundary of the computational 

domain, then the velocities t;,u; and the boundary vorticity are calculated as fol- 

lows for each iteration: 

(«")*+» = -^^y , («;*+ V2)*+1 = 9^^^ 
dz dy 

and   («•+»)*+» = dW* + 1 

dz 
(4.13) 

where W^"^   is taken to be the arithmetic average of *" and the Jt-th iterate of 

*"+^:  ^+*=l/2[*»-|-(*»+^)*]and: 

I {^+V+i=r(C+»)*4-(l-r){v'*-^*)* (4.15) 

It is to be noted that equations (4.13) are one of a number of possible alter- 

natives for the approximation of v,w through the iteration procedure, as cited in 

Roache (1982).  Peaceman and Rachford (1055) in their original formulation used 

^■^*=T*"+ T(*»+')* at the half-time step and ^+»=J-*«-|. l(*«+i)* at 
4 4 4 4 

the full-time step. Another alternative is to approximate the velocities as follows: 

(«-) »\*+i ., (.- -Z^)'*. = ^ a-d (."- ■)'-' = -il*pl where 
az dy ' dz 

¥*+' is again given by: ^+ * = ■i-[*«4- (*»+1)*].  All the three aforementioned 

alternatives were investigated during the course of this work and it was found by 

numerical experiments that they don't influence the calculations.  For the results 



presented in this work the relations (4.13) were used. 

The form of iteration (4.14) and (4.15) on the boundary vorticity has been 

suggested by Israeli (1970, 1972) and by Dorodnitsyn and Meller (1968). The 

relaxation constant r is introduced in order to smooth out any instabilities that 

could result from a poor guess of the boundary vorticity. In general r can be 

different at the two boundaries and can also change with the spanwise coordinate 

and from iteration to iteration. In thb study r was chosen to be constant and 

the same for the two boundaries. Its optimum values were found to depend on 

the kind of boundary condition at y=y^, on y^ and on the wavelength X in the 

spanwise direction. These values were determined from numerical experiments 

and were subsequently used throughout the computational runs. When t; and w 

were specified at y=y^ then, for the range of wavelengths investigated, r was 

found to depend on y* according to the following table: 

Table 1 

?; r 
40 
20 
15 

0.35 
0.65 
0.73 

The finite-difference approximation to (4.15) is obtained as follows: 

<v»-'.-(^^^): 
^2^*+ 

V dz 
»+i (4.16) 

dv 
where -r— \  "'^'^ is known and is obtained by differentiating the specified v 
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condition at y=y» with respect to z.   The term  ;— |  * is calculated at 

y=yt, for the Jb-th iteration as follows: From a Taylor-series expansion at y==y^ 

we get I 

where now o is replaced by i,7V+ 1. By rearrangement we get: 

So (4.16) now becomes 

Ay2 Ay 

{V^*"+^)* = 2 
(^"i(f¥-»; ."+ *\*   _   !&»+ 1 W 

»+l 

Ay^' Ay 
dv 
dz 

»+i + 0(Ay){4.17) 

The finite-difference approximation to (4.14) is similarly obtained : 

(V^*-^^)i = -^T^I.^ 
dy' 

where «; is now replaced by i,l. 

From a Taylor-series expansion at y=0 we get 

(4.18) 

V.-,3   -V.-,i    + 2Ay    ^^      I .,, -H      2        5y2      I •.! + 

6 ay»      ' •■•^ ■"  ""^^^ ^ 

Eliminating 
ay' •M results in 
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<»■ ! 

Since ^ "i    = —r  | ,-,i = 0, equation (4.18) becomes 

2Ay^ 
Using (4.17) and (4.19), equations (4.14) and (4.15) become: 

(4.19) 

( »+ 1)*+ 1 = ,( -^ 1)* ^ (i_,)_L_iA_L_iIl:2_L (4.20) 
2Aff2 

(f;+»)*+l = r(fr>)* + 

where it  is  to be noted  that  the superscript  k  is  absent  from the terms 

*fl^*. wr"*"* and —— I  "■*■' since these terms don't change during the iteration 
az 

procedure, being known for the time step n+l. 

Equations (4.20), (4.21), and (4.13) are iterated along  with (4.10), (4.11) 

and (4.12) until max | (*,^+V+' - (*,^+^ \ <€, where c is a prescribed 

tolerance. A tolerance of 6=10"*** was used for all the runs described in this 

thesis. This value was found from trial runs to be adequate for the convergence 

of the boundary vorticity. Once convergence is attained, the same iteration pro- 

cedure is repeated for the next time step. As it was mentioned before, since a 

steady-state solution is not sought, it is essential to make sure that we achieve 
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the desired convergence for a given time step. 

Equations (4.10) and (4.11) are solved by inverting tridiagonal matrices. 

These matrices result from a rearrangement of (4.10) and (4.11) as follows: 

Half-time step 

where: 

A=|^^.-i.;>.-^M,y-i)+   ' Re 

^ _  Of JL .  A£.^ 

A = 
Az 

8 

Ay 

1   Az^      Az^ 

—{%^ i.;-i - ^•-i./-i) - R 
4   A^2.., 
e Ay2 '^••^■-* "^ 

[Re Ay2      Af 

or in matrix form 

•02  C2 

n ~   Ay^^'"^ ^•"''* * ~ '^•-*-'+ *^ "*" 
4   A^^ 

Re Ay2 

A3 B3 C3 

0 ^Af-l   ^Af-1   ^W-1 

ft,/ 

f3,y 

fM,y 

D2-A,uT^' 
D, 

Full-time step 

D Ml 

^M-^M'^MX ij 



n 

^y^-/-i+ ^;^-^'+ '^;CVi = ^/. 2<y<iv 
where 

A^, 4   A2= 

Re Ay^ At 

r' — ^w w       \ j.   4 ^^^ 

^^r + 8(^ 
•• 1 

Re Ay2 

1       A22 
Re       At 

»/2 

)fj .».+ V2 

or in matrix form 

B2   C2 

An   Bn      Ca 

0 Aj^^i Bff_i  Cff_i 

B 

f.-.2 

D' 

D 'N-\ 

^N-CN^?,N+ 1 

It can be seen therefore that one iteration of the vorticity equation involves 

the solution of (M-l)+(^-1)=M+iV-2 tridiagonal matrices where M-l and 

iV-1 are the number of interior points in the z and y directions respectively. 

The inversion of the tridiagonal matrices was implemented by the use of the sub- 

routine LEQTIB from the IMSL package. 
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The values of ^,"-''" ^ at the completion of each iteration, which are needed 

for the revision of the guessed velocities and boundary vorticities according to 

t4.20), (4.21) and (4.13), are obtained by inverting the Poisson equation (4.12). 

This was achieved by the use of the subroutine HWSCRT from the FISHPAK 

package developed at the National Center for Atmospheric Research in Colorado. 

This subroutine is a direct Poisson-solver and uses a cyclic-reduction scheme in 

order to invert the resulting block-tridiagonal matrix (Sweet, 197*7). 

■-.    I   ■■ 
In summary, then, the computational labor at a given time step and for k 

iterations involves the inversion of k(M-\-N-2) tridiagonal matrices and the 
I       .     .  ■■   -       ■ '      ■        ... 

inversion of it Poisson equations. 

The main advantage of the ADI-scheme is its unconditional stability with 

respect to the selection of the time step. It has to be pointed out though that a 

very long time step would result in an increased number of iterations and a loss 

of accuracy. 

2. Semi-implicit scheme 

As mentioned earlier in this chapter a semi-implicit scheme was developed 

in order to study the propagation of high frequencies in the viscous wall region 

for the fixed cell runs. The reason for developing a semi-implicit scheme is the 

desire to have a finite-difference approximation that preserves the speed of signal 

propagation in the continuum equation.   For a pure convective motion as, for 

dA dA example, one characterized by the equation -—— + U--—=0, a disturbance in 
at ox 
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the scalar quantity A travels in the ar-direction with a finite speed U.  For pure 

viscous action as for example in -—- = a—-- a disturbance in A propagates in 
at dx^ 

the z-direction with infinite speed. 

The ADI-scheme, being a fully implicit scheme, calculates all the velocities 

at a given time step simultaneously throughout the computational domain. 

This implies that a certain disturbance at the boundary affects all the calculated 

velocities at the same time. This is in agreement with the infinite speed of signal 

propagation for a purely viscous motion but contradicts the fact that a convec- 

tive motion travels with finite speed in a continuum. According to the latter 

only the velocities that are in the neighborhood of the boundary should be 

affected by the disturbance within a given time step. From the above it is thus 

seen that a correct finite-difference approximation to the convective terms in the 

equation of motion would require an explicit formulation. 

The semi-implicit scheme developed was used for the fixed cell runs when 

the boundary disturbances contained i, wide-spectrum of frequencies. It was 

found that the results did not differ from the ones obtained with the ADI-scheme. 

All the fixed cell runs then were carried out with the ADI-scheme because of the 

freedom in selecting the time step. 

The semi-implicit scheme was found to be necessary for the moving cell 

runs because the resulting numerical algorithms are simpler than those resulting 

from the ADI-scheme.   In the case of periodic b.c's the use of the ADI-scheme 
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results in non-tridiagonal matrices for the inversion of which special splitting 

techniques would be required. Due to the unavailability, during the present 

work, of numerical codes that can effectively invert such matrices, all the moving 

ceU runs were carried out using the semi-implicit scheme described below. 

The time advancement of the vorticity equation is carried out by the use of 

the Adams-Bashforth formula for the convective terms and the Crank-Nicolson 

scheme for the viscous terms. Both are second-order schemes and the Adams- 

Bashforth method is both stable and accurate according to Lilly (1065). A simi- 

lar semi-implicit scheme has been used by Kim and Moin (1979) and by Moin et 

al (1978) in their large-eddy simulations of incompressible turbulent channel flow. 

The resulting finite difference approximation of the vorticity equation is: 

^^^jf- = -(f^^ - jH*-') + "i^VV+' + VV) + O(At^) (4.22) 

where H==-T-^W^)+ -T-{V^). Rearrangement of (4.22) results in 
oz ay . 

2Re 

or vV-''-^rV+'=Q Lt (4.23) 

2Re where (J = Re(3i/" - H*~^) - f - vV depends on time steps n and n-1. 

Equation (4.23) is a Helmholtz-equation and when discretized in space requires 

the inversion of a block tridiagonal matrix (Sweet 1977). As in the ADI-scheme 

the boundary vorticity is not known a-priori and has to be iterated. Since the 

convective terms are expressed in an explicit form the velocities don't need to be 
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iterated but one has to store both //* and H^~^ in order to calculate the source 

term in (4.23). 

The iteration pattern used with the semi-implicit scheme was exactly the 

same as with the ADI-scheme. The only difference is that equation (4.21) now 

becomes: 

(^.+ i)*+i = ,(^«+i)*+ (i_,) 
I   I Aff2 Ay 

where the superscript   it appears on ^*jv+i since the values of ♦"+! are not 

known a priori at y=yo, for a moving cell, as it will be discussed in Appendix B. 

The inversion of the discretized form of (4.23) was attained by the use of 

HWSCRT from FISHPAK, which was subsequently used to invert the Poisson 

stream-function equation. From numerical experiments it was also found that 

the optimum values of r are much smaller compared to the ones used in the 

ADI-scheme. 

A disadvantage of the semi-implicit scheme is that there is a restriction on 

the allowable time step due to the explicit formulation of the convective terms. 

From linear analysis the following relation for the Courant number has to be 

i satisfied: C{t) = A<{-^ + ~-j < 1 (Roache, 1982). 

For all the runs using the semi-implicit scheme a variable time step was 

f I «'./ i          I v,y I  1 
used which was adjusted so that C{t) = maxj        ''^       + -^-^ JA<<0.2 

was true for all time steps. 
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3. Pressure solution 

It can be shown that by taking the y-derivative of (4.1) and the z- 

derivative of (4.2) and by adding the resulting equations, the following Poisson 

equation for the pressure is obtained: 

«!£.+ £l. = 4t"l7'- (4.24) 
dy^   '    dz^ 

where again all the quantities are normalized with respect to U^ and X.   Since 

nature doesn't provide any boundary conditions for the pressure, these are 

obtained directly from the equations of motion applied at a specific boundary and 

are of the Neumann type. 

Fived cell 

At y=0 (4.1) gives: 

dp ^   1   ^v ^     1   d<: 
dy       Re dy^ Re dz 

At y= 

dy 

dv_ 
dy 

dz 

dp 1 , di^v        d^v.     dv     .  dv   ,      dv.    , 
-y* (4.1) results m .   Qy - ^ ^^2 ^   Q^I^     dt     ^  dy dz' 

1   d^ _ dv 
Re dz     dt dy 

—) where -r^, v, w and -r— are known and 
dz dt oz 

dw 
' dz 

1   d^tv 

is    also    known.     At    z = 0    and    z — z^     (4.2)    gives 

J-ds_ 
Re dz^       Re dy 

= 0. 

MoYJDg ceU 

The boundary conditions at y=0 and !f=y„ are the same as for a fixed 

cell. At z=0 and z=z^ periodicity is used: p(z„) = p(0). 
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It can be seen from (4.24) and from the boundary conditions that once ♦ 

and f have been calculated for a given time step then p can be obtained by 

mverting (4.24). Inversion of (4.24) is not straightforward. It can be shown that 

a solution to (4.24) subject to Neumann conditions or to a combination of Neu- 

mann and periodic conditions does not exist in the usual sense but rather in a 

least squares sense (Swartztrauber, 1074). 

The solution to (4.24) was obtained by using HWSCRT from the FISHPAK 

package. In order to ensure that a solution to the problem exists, the right side 

of (4.24) is perturbed by subtracting a constant c. The solution that HWSCRT 

returns is not unique since that solution plus any constant is also a solution. The 

solution can be checked by differencing it and comparing with the right-side S. 

For the runs reported in this work the constant c Was found to be very small 

compared with the right hand side. In order to fix the constant of integration 

the pressure was arbitrarily specified to be zero (p=0) for a point at z=z^/2. 

All the computations were carried out on the University of Illinois CDC- 

CYBER 175 machine. A listing of the computer programs used is given in 

Appendix A. The mesh sizes used in the calculations were Az'*'=4 and 

Ay"*" =1.25 in the spanwise and lateral directions respectively. The time step for 

the ADI-scheme runs was set to Af"*"=l which was found to optimize the accu- 

racy and the number of iterations per time step. For the semi-implicit scheme 

runs, A<+ was set so that C{t)<0.2 where C{t) is the Courant number. The 

resulting At* was approximately 0.1.  The computations were carried out until 
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an equilibrium state was attained. 

For the computational runs where the outer flow eddies have negligible 

energy this stationary state is reached after three cycles. When the large scale 

eddies have finite energy the time scale of the computations increases substan- 

tially due to the longer periods involved.   In the present work the calculations 

■I 
were carried out for three cycles of the outer flow-eddies and the statistical 

results were obtained during the fourth cycle. 

C. Selection of model parameters 

The most important step of the calculations is the selection of the relevant 

parameters for the representation of the flow at the outer boundary (y=y<,) of 

the computational domain. These boundary conditions reflect the way in which 

the outer flow eddies interact with the eddies close to the wall, the net result 

being the creation of wall turbulence. 

The way that the three components of the velocity are represented at 

y=yg is described by equations (4.5), (4.6) and (4.7) for a fixed cell. It can be 

seen from these equations that at any instant the fluctuating velocity components 

receive their energy from two spatial scales X,i and X»2 where the subscript * is 

one of a, v, to. The selection of these two scales and the specification of the 

temporal behavior of «, v and w can completely determine the fluctuating velo- 

city field at y=y«. 

In selecting these parameters use is made of the available correlation and 

spectral measurements along with information from the work on coherent wall 
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structures. From these measurements it can be inferred that the selection of the 

model parameters should depend on y„. For this reason two different positions of 

the outer boundary of the computational domain are considered in this work. 

The first one is right outside the edge of the viscous sublayer (10<y/ <20) and 

the second one is farther away from the wall {y^'^^O) where according to Kline 

et al (1967) the low-speed wall streaks break-up into chaotic motions. The selec- 

tion of the model parameters for these two cases will be described in what fol- 

lows. An important concern of the computations in this work is the agreement of 

calculated wall patterns with measurements from this laboratory (Eckelman 1971, 

Lau 1980). 
i 

For most of the computational runs, single harmonics were used in order to 

specify the temporal variation of «, r and w at y=ya: 

«'ii(0=«'iicos——,  u;i2(0=«'z,2Cos|-^+ <i>„2\ 
ft--^ 

By combining the above relations with (4.5), (4.6) and (4.7) we obtain: 

2nt.   2nz_ ,    . f 2;r<   ,^   ,    1 •   2nz ,     ^, 
«;=«;£iCOs——sm-—+ «;2;2Cos|--—+ ^«,2|sm-— (4.25) 

i^l A,i y^mi ]       ^w2 

f2irt   ^    ,   \ 2xz ,  . (2irt   ,   j^   ]     2irz ,   ^^, 
— + ^*i\l ^■«'X2Cos|Y—+ 0.2|cos— (4.26) 
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(2irt 
+   <l>ul\ 

and U=U(y^)+u. j 

The selection of the length scales, that are chosen to be representative of 

the wavenumber spectrum of the velocity fluctuations at y=y„ is achieved with 

the use of measurements right at the wall and at y+ «:^40. As it wiU be seen, the 

position of the outer boundary of the calculations affects the relative amount of 

energy in the outer flow eddies and the phases ^,i and ^„i in (4.26) and (4.27). 

From measurements of the spanwise scale of the coherent wall structures 

(Kline et al 1967, Gupta et al 1971, Lee et al 1974) X^i, X,, and X., are selected 

so that X+j = X+i = X+, = 100. All the available correlation measurements 

indicate that there is an increase of the spanwise scale with increasing distance 

from the waU (Grant 1958, Comte-BeUot 1961, Tritton 1967). Even with a com- 

plete knowledge of the correlation function the form and distribution of the 

eddies cannot be calculated without some ambiguity (Townsend 1956). One can, 

nevertheless, infer from such correlations the existence of long or smaU scales, 

define a range for their size and examine their behavior with distance from the 

wall. 

Grant's (1958) measurements at y/=35 of R^JVo^^O, 0, Az+) indicate a 

zero crossing at A2+«175 and weak negative values up to A2+«600. Tritton 

(1967) did not measure i?,.(y/; 0, 0, A2+) but i?«„(y + ; 0, Ay+, Az+) with 

y + =32 and Ajf+=-9.   Hb results show a maximum at Az^^52 and positive 
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values persisting up to Az"*" «::'400.   For a combination of two spatial harmonics 

as in (4.25), (4.26), (4.27) the correlation with spanwise separation will resume the 

value of 1 at A2''"=X,2 where * is «, t; or to.  In reality the presence of a wide 

spectrum of wavenumbers with various phases smears out any such periodicity. 

If one attempts to extract length scales from the above measurements then an 

estimation of the range of eddy sizes can be obtained as follows: For single har- S 

monies the auto-correlation with spanwise separation has a zero-crossing at X/4 

and the cross-correlation shows a maximum at X/4, where X is the wavelength. 

Grant's measurements would then indicate a wavelength of 4X175!=«700 and m 

Tritton's a wavelength of 4X52f=«208. That means then that for the streamwise 

and spanwise components of the velocity at  y'^=y^     there is  appreciable 

amount of energy in eddies whose wavelength X"*" ranges from 200 to 700 in wall M 

units. These estimates are also supported by the measurements of Morrison and 

Kronauer   (1960) of the streamwise velocity fluctuations   that were outlined in 

Chapter 2.   In particular their frequency-wavenumber spectra at y''"=49 and V 

y* =27.8 show that there is no appreciable energy for wavelengths smaller than 

X;'"=160 and X;'"=70 respectively, for any frequency.   For the same y"'"s the 

peak of the P(w"'", k^) spectrum function occurs around Xj"'"*=«400, which lies in j| 

the middle of the range estimated from the correlations.   It has to be noted, 

though, as pointed out by Morrison et al (1971), that there might be a Reynolds 

number effect on these measurements.   Morrison et al compared their spectral 
■ ■ ■■ ■ I 

measurements inside, and at the edge of, the viscous sublayer and concluded that 

» 

I 

I 

I 
I 
I 
I 
I 
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an increase of the Reynolds number has the effect of increasing the relative 

amount of low-frequency low-wavenumber {k^) energy. From an analogous com- 

parison of the position of the peak of P{u)^, k^), no appreciable Reynolds 

number effect can be seen. At positions farther away from the wall, examination 

of Morrison and Kronauer's data indicates that there is a small shift of the peak 

position to lower wavenumbers [k^) with increasing Reynolds number, but this 

is rather inconclusive due to the small amount of data. So the estimate that the 

X^2 = ^w2 =" ^^ eddies contain most of the energy on a plane parallel to the 

wall at y'*"!^40 appears to be substantiated by both correlation and spectral 

measurements. 

In order to estimate the spanwise scale of the normal velocity fluctuations 

the measurements of Tritton (1967) are used. As mentioned in Chapter 2 his 

R„(y^; 0, 0, Az) with y/ =40 shows a zero crossing at Az'*'f^20. Using similar 

arguments as above, an estimate for the wavelength of v at y/=40 is 

4X20=80. The existence of long negative tails in the correlation would suggest 

that there is some energy in scales larger than X"*" *=5^80. 

So for a two wavelength spatial approximation of turbulence at y/ «:^40 as 

in (4.25), (4.26), (4.27) a large fraction of the u^energy should be in the X^j^^^O 

eddies, most of the tr energy should be associated with the X^i=100 eddies and 

most of the vr energy with the XjJ^2=^^ eddies. It should be noted that the 

wavelength X^2=^^ should be taken more as a representative of a range and 

not as a very precise estimate of the size of the tr-eddies in the spanwise 

,<   v« 
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direction. As mentioned before, when the distance from the wall decreases the 

relative amount of energy associated with the outer flow eddies decreases. Thus 

it would be expected that, close to the edge of the viscous sublayer (y/^15), 

most of the energy of the velocity fluctuations is associated with the X"*'=100 

eddies, the outer flow eddies being unimportant in defining the dynamics of the 

flow. 

The periods of the two scales (T*i, T^ , T^i and T^2 > ^»2 > ^v2) '^^^ ^^ 

estimated from various arguments. If it is assumed that, at distances away from 

the wall, where viscosity is not very important, the transient terms of the 

Navier-Stokes equations are of the same order of magnitude as the convective 

terms, we obtain 

and 

dw       dw 
dt   "" dz =>Tr => T:^\: 

dv       dv «* n} => r+-x; 
dt       dz -^ T: K 

since all the velocity fluctuations scale with the friction velocity «,. 

So an estimate of the period of the velocity fluctuations on the y-z plane 

gives T*{=T^)'^\^{=\^). This indicates that the larger scales have longer 

periods and for the selected wavelengths at y"*"=y+ we obtain 

r+  = T,\  = d -100 and T+g = T,% = T+j ~400. 

The estimate T'*' '~100 for the small scale eddies agrees with measured fre- 

quency spectra of velocity fluctuations close to the wall.  Bakewell and Lumley 
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(1967) measured the frequency spectra of streamwise velocity fluctuations at 

?■*■= 1-25, 2.50 and 5.00. Their measurements show that the normalized spec- 

trum function data if plotted against w"*" (where w is the circular frequency) col- 

lapse on a single curve with a median frequency of n+^O.Ol. The same results 

have been obtained by Fortuna (1971) for the fluctuations of the streamwise velo- 

city gradient at the wall of a pipe and for Re=15,500, 16,100 and 17,000. Sirkar 

(1969) measured the «,-spectra at Re=68,940 and 37,170 and obtained median 

frequencies of 7.61X10-^ and 8.54X10"^ respectively. He also measured the 

spectra of the spanwise velocity gradient fluctuations and found median frequen- 

cies of 7.75 X10-* and 1.1 X lO'^ for Re=68,940 and 37,750 respectively. 

An estimate of the time scale of the X"*" = 100 eddies can also be obtained 

from bursting frequency arguments. If it is assumed that throughout the viscous 

wall region the turbulent bursts, which contribute to the production of Reynolds 

stress, are associated primarily with the X* = lOO eddies then equations (4.5) 

and (4.6) provide for two bursts through a period of T"*" = r+, = T,\ and over 

a spanwise length of X+ = X+, = X+, = 100. The above assumption seems to 

be supported by the fi,,(y/; 0, 0, A^+) measurements of Tritton (1967) at 

y/=29, that Were described in Chapter 2.   As indicated in the same chapter. 

Kline et al (1967) plotted the normalized burst rate f^ versus K=— dU^ 
i/2       dx 

and obtained F+i=5^ 120X10-* for K=0. /'+ is defined as 
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/r+ -- (# of bursts) 
(time)(span) 

so equations (4.5) and (4.6) give : 

f+ = —2  ^^   j,+ ^ 

orr+ = ——~ = 166.6 = r.t =b= rJ; 

I 
I 
I 
I 

The above estimate of T,\ {=T^i) is close to the ones obtained from order of 

magnitude analysis and spectral measurements, especially if one takes in account 

the experimental differences involved (spectral measurements-visual observations 

of bursts). For a coherent motion, one can finally take T^j = T,\ = T+i for 

the specification of the periods of the velocity fluctuations that are associated 

with the X+1=100 eddies. Some thoughts related to the connection of T+j to the 

bursting frequency will be presented during the discussion of the results. 

The estimation of T^^ where * is «, t; or w from coherent structure experi- 

ments is a more difficult task. During the computational runs it was found that 

the value of T,% {== T+2) affects the intensities at the wall and especially the I 

correlation i?,,,,(0, 0, Az+). With the rest of the parameters fixed, T,^ could be 

varied so that the calculated R,,^ agrees with experimental measurements (Eck- 
i 

elman 1971, Lau 1980). From streamwise auto-correlation data the mean period 

of the large scale ti-eddies measured by Badri Narayanan and Marvin (1978) is A 

7'"'"=5-r—.   For a  fully developed flow in a pipe, with 6=:R (radius of the 

pipe) and  U^=U^  (centerline velocity), it can be shown that the estimate 

T"*" !=«400 from scaling arguments would correspond to a pipe Reynolds number 
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of 80,000 and that T"*" should increase with increasing Reynolds number. It is 

not certain, though, whether the eddies measured by Narayanan and Marvin 

correspond to the outer flow eddies of the present work. 

With set values for the wavelengths \^i, \*i, \^i and X^2> ^«2> ^»2 ^ ^®^^ 

as for the periods TJi, T^i , T^i and T^2. T^ , T^2 > ^^^ remaining parame- 

ters in (4.25), (4.26), and (4.27), that are to be estimated, are the relative tem- 

poral phases and relative energies of the small and large eddies in each velocity 

component. As mentioned earlier these parameters depend on the position of the 

outer boundary {y=y^) of the computational domain. 

We define a N% closed flow in the wall region of a turbulent shear flow as 

the flow whose streamline pattern is similar to the one in Figure 4a for N% of 

the time and looks like the one in Figure 4b for {100-N)% of the time. 

Figure 4a 100% closed flow Figure 4b 0% closed flow 

Figure 4        Percentage of closed flow. 
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So a 100% closed flow is represented by Figure 4a for 100% of the time while a 

0% closed flow appears like Figure 4b for 100% of the time. 

We will attempt to extract information about the type of flow (percentage 

of closed flow) of the wall and the outer flow eddies from long-term and condi- 

tionally averaged measurements. This information, under certain conditions, can 

be used to specify the relative phases between tvii{t), Vii{t) and ^2,2(0) *'I2(0- 

The same measurements can also be used to estimate the percentage of w^ energy 

that is associated with the X"*"=100 eddies. We will also relate the phases ^,i 

and ^,2 ^= ^»2~^»2 *° *^® slope of the (w )"*■ intensity profile in order to obtain 

an additional constraint on the range of the selected variables. We will finally 

use Reynolds stress arguments in order to select the phases <f>^i = <f>ui~^ii ^^^ 

ij>'^2 ^ ^«2~^t2 ^ ^®U ^ *^® percentage of tr energy associated with the 

X+ =100 eddies. 

N = 100X{1-^) (4.28) 

and   N2   can   provide   us   with   the   relative   phases   <f>,i   and   ^,2   between 

I 
I 
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I 
I 
t For the type of signals as in (4.25) and (4.26) the percentage of closed flow 

for each wavelength depends on the periods r,'^ , T^i (or T^ , Tjjj) and the 

relative phase 4>,i {or 0»2—^t2~^»2)- ^^^ signals of the same period T,^  = T^i m' 

(or 7',2 = Tj'2) it  is easy to show that the percentage of closed flow Ni% (or 

I 

N2%) is given by : 
1 
t 

where N=Ni or N2 and ^=^,1 or 0,2-  I* ^ ^^^^ seen that specification of iV^ m 

I 
I 
i 
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vii{t), tvii{t) and t;£2{0> «'i2(0 respectively. For signals of different period, 

where T^ = MT^y and M is an integer, the percentage of closed flow depends 

on M. It can be shown that if A/=even integer, the flow is 50% closed for anv 

^,1 and if A/=odd integer the percentage of closed flow varies between 33.3% 

and 66.6% depending on 0,1- 

Long-term correlation measurements by Kreplin and Eckelmann (1979a) 

and Nikolaides et al (1983) indicate that the spanwise flows at y'''^40 show a 

weak negative correlation with spanwise flows close to the wall, at zero time 

delay. Similar correlations for jf"*" <20 show strong positive values at zero time 

delay and exhibit maxima for positive values of the time delay. As it will be 

shown in Chapter 5, the use of conditional averaging techniques shows that the 

conditionally averaged spanwise velocity <«>> has a very characteristic tem- 

poral signature during the time that the X''"=100 eddies are evolving at the 

wall. When the fluid probe is at jf"*"=40, the <u;> profile shows a reversal of 

sign of the same amplitude as the flow that preceded it in time, as can be seen in 

Figure 6. It is also seen that <t»> b of opposite sign to Ks^^ for most of the 

time that the X'''=100 eddies are evolving at the wall. When the fluid probe is 

located at y''"=20, the conditionally averaged <«;> profile has the same sign 

with <8f> during most of the lifetime of the wall eddies. It has to be noted 

that the w and s^ profiles obtained from the application of the detection algo- 

rithm should show a loss of correlation for time instants for away from time zero. 

This is expected to have an effect on the calculated lifetimes of the conditionally 
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averaged <«;> and <.Sj> profiles and, subsequently, to affect the estimation of 

the percentage of closed flow of the X"^ =100 eddies from such measurements. A 

rough estimate from Figures 5  and  6 gives for Ni, as defined above, the follow- m 

ing relations:  At y+=40, N{>7Q% and at y+=20, iVj<20%.   The percentage 

of closed flow at y^ =y^ is the percentage of the time that the center of the 

eddy spends below y"*" =y^.   Therefore, the above estimates of Ni support   the 

notion that the X'*'^100 eddies have their effective centres below y+=40 for 

more than 70% of the time and below y"*" =20 for less than 20% of the time. On 

an average, then, the "eye" of these eddies would lie in the region 2Q<y^ <40. m 

Similar measurements, with the ones described above, are not available for the 

outer flow eddies. We visualize these eddies to have their effective centers very 

far from  the  wall,  so  that  for  any   y"*" <40, iVj,  as  defined  above,  is  zero • 

(A^2 = 0%).  Using, then, relation (4.28) we obtain the following estimates for the A 

1 
phases <j>^i and (l)^2- 

y+=40   :     0<fli,l<54^    <i>\r=-^^^' 

y+=20    :     144''<<6,,<180'' 

From the measurements of Nikolaides et al (1983), that are described in 

more detail in Chapter 5, the following estimate of the w energy associated the 

X'*'=100 eddies can be obtained: The amplitude («;„) of the conditionally aver- 

aged <ty> profile at y'*'=40 is a>^=0.5 w , where w is the r.m.s. of the w- 

fluctuations. This value for w^ is expected to be lower than the amplitude of 

individual w profiles, that are selected to be conditionally averaged, since the ■ 
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detection algorithm focuses on large amplitude a^ patterns at the wall. If <«;>, 

then, is approximated by a single harmonic in time, the percentage of the energy 

J?^j associated with the X"*" =100 eddies would be: 

1    2 

f:., = ^ = |<-f)2 = i2.5%. 

This value is, therefore, taken to provide a lower bound for the ttr energy contri- 

buted by the X'*"=100 eddies (E^i>12.5%). This estimate is consistent with the 

measurements of Grant (1058) and Tritton (1967) which indicate that at y'''=40 

most of the energy is associated with eddies whose wavelengths are larger than 

X+=100. 

The energy E,i of the X"'"=100 eddies at y"*"=:40 cannot be estimated a 

priori due to the lack of appropriate measurements. The available correlation 

measurements of Tritton (1967) show that R„(Az*) at y+=40 show a zero 

crossing at Az'*'^20, which would imply scales of X^«:!4X20=80, but long 

negative tails out to Az'^'^lSO indicating the existence of scales longer than 

X+sslOO. The energy E^i was found to have an effect on the profile of the span- 

wise intensity and on the wall turbulent characteristics. For X^ = ^w2 = ^^ 

the value of E^i=7b% was found to give good agreement in relation to all the 

affected turbulent properties. 

Outside the edge of the viscous sublayer {y* *=«15) we will assume that all 

the energy of the velocity fluctuations on a plane perpendicular to the flow b 

associated with the X+ =100 eddies {E,i — E„i = 100%). 
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It can be shown that, for the signals in (4.25) and (4.26), the slope of the 

,.'\+ {v )■*■ profile is given by: 

s = MiJL^ -IT- 

 ^OS^.j +   -— C0S^,2 
4 ^2 x,+ 

V^iV + «iV 
or 

5=-jr 
y/KlKx 
 cos^.i + 

y/^^^x<i^L2 

X,+ 
cos^ v2 (4.29) 

Xi A2 

For the selected parameters X,"*'=100, X2+=400, and E^i=lh%, (^^2=180" the 

following table gives values of S (in degrees) for pairs of ^,i_ ^,i 

Table 2 

E„,% <t>. 1 (deg) 

20 30 40 50 
0 -1.25 -1.68 -2.04 -2.38 

10 -1.22 -1.64 -2.01 -2.33 
20 -1.14 -1.55 -1.89 -2.21 
30 -1.01 -1.39 -1.71 -2.00 
40 -0.84 -1.17 -1.46 -1.73 
50 -0.62 -0.91 -1.16 -1.38 

that fall in the ranges estimated before. The values of the slope S thus obtained 

appear to be close to the experiments, which show that the (v )'*' profile tends to 

level  off  for   y"*" >30.    Close   to   the  edge  of  the  viscous   sublayer  where 

^fi=^« 1=100%   (4.29)   becomes   S—~^^^   cos^,i   and   for   X,+ =100, 
Al 
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(«;')+ =1.06 the following values of S are obtained (in degrees): 

Table 3 

<f>v\ S 
150 
160 
170 
180 

3.30 
3.58 
3.75 
3.81 

The above values also appear to agree qualitatively with experiments, which 

show the (v)"*" profile to increase at the edge of the viscous sublayer, but with a 

slope rather higher than the ones calculated above. This would then indicate 

that smaller scales Xi"*" would give higher values for S, a conclusion which is also 

discussed in Chapter 8. 

For the signals in  (4.26) and (4.27) the Reynolds stress is  given  by: 

57=—{iiiViiCos<l>'^i+Ui2H2^^^'^u2) whcr® the overbar now denotes a space- 
4 

time average and ^«i=^t,i-^,i,  ^«2^^^»2~^»2-   T^® correlation coefificient is 

•I 
given by: 

^«»—~   /— /— (4.30) 

where again the overbar denotes a space-time average. Most of the available data 

(Laufer 1954, Kim et al 1971, Schildnecht et al 1979) indicate that C„,«::!0.45 for 

10<y'*"<50, but Kutateladze et al (1977) obtained lower values throughout the 

viscous wall region. For the signals in (4.26) and (4.27), then (4.30) becomes: 
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^- = -—7=F=?=-7=^=^^ = °-^5 (4.31) 

If it is assumed that the X"*" =1(K) eddies contribute a fraction x of the Rey- 

nolds stress and that J?,| and E^i are the ti^and tr energy contributions of these 

eddies, equation (4.31) becomes: 

y/E^y/E;;cos<l>'^l+ ^/r^y/r^cos<l,[2 = -0.45 (4.32) ]| 

or 
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I 

V^N/^COS^^^I =-0.451 (4.33) 

From the correlation measurements of Tritton (1967) we see that the ■ 

R^,{y*; 0, 0, Az"*") correlation for jf/==29 shows a zero crossing at Az'*'>=^38. 

This would then indicate that most of the Reynolds stress production comes from 

eddies with wavelength X'''=100, and that there is a small contribution from A 

larger eddies. Wallace et al (1977) conditionally averaged the u and v signals, on 

the condition that there is a gradual deceleration in the u-signal followed by a 

strong acceleration.   Their results indicate that the v-signal is approximately I 

180* out of phase with the u-signal. This can be interpreted as tit;>0 for 100% 

of the time in an analogous fashion with the percentage of closed flow notion 

presented before. That means that the Reynolds stress producing eddies will be 

producing an ejection (u <0, «>0) for 50% of the time and a sweep (a >0, t;<0) 

for the rest 50% of the time. If this is taken to be the case for the X'''=100 

eddies at y'''=40, then ^^x=180 and with £',i=75% we can use (4.32) to obtain M 

pairs of J?,| and ^^2 ^^^^ satisfy this equation. Then from (4.33) we can calcu- 

late X. These values are shown in the following table: 
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Table 4 

£:„, (%) X <^ni (deg) 

5 .43 121.7 
10 .61 111.8 
15 .75 104.4 
20 .86 98.1 
25 .96 92.2 

From the above table it can be seen that when £'„i=20%, for example, 

then 86% of the Reynolds stress comes from the X'''=100 eddies and ^^.f=^^.\ 

("12(0 ^^^ ^'12(0 ^® almost uncorrelated). There appears to be a contradiction 

between the data of Morrison and Kronauer (1969) and the correlation measure- 

ments of Tritton (1967) in that we need energies of E^{>\h% in order to have 

the X"*" =100 eddies contribute more than 75% to the Reynolds stress at y"*" =40. 

Nevertheless, there is qualitative agreement in that small energies E^^ can give 

an appreciable fraction of the Reynolds stress. Note that if x^=\ (^,2=^^*) ^'^'^^ 

E^i==27% from (4.33). 

The data of Willmarth and Lu (1972) that were discussed in Chapter 2 

indicate that at y"'"=30 the ejection and sweeps (Mt;<0) cover 65.11% of the 

time, whereas the interactions (ttt;>0) cover the rest 34.89% of the time. 

According to these measurements and using relations similar to the ones 

developed for an N% closed flow, it can be shown that 0,i=117.2* instead of 

180*. For such a value of <f>^i the values of E^i, 0„2 ^^^ * *^*^ satisfy (4.32) 

and (4.33) are shown in the following table: 
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Table 5 

E.,% X 0«2(deg) 

10 0.28 133.2 
20 0.39 127.6 
30 0.48 123.9 
40 0.56 121.0 

50 0.62 118.8 
60 0.68 117.0 
70 0.74 115.7 
80 0.79 115.4 
90 0.83 118.1 
95 0.86 125.0 
97 0.87 134.0 
98 0.87 145.3 
100 0.88 no solution 

It is thus seen, that in order to have the X"*" =100 eddies to contribute more 

than 75% of the Reynolds stress, £^,1 should be greater than 70% which contrad- 

icts Morrison and Kronauer's data.   So for the calculations in this work, when 

y/=40   the   following   values   are   selected   for   E^i<f>^i,    ^^j • ^ui^^^^' 

^;,=180%  ^^2= 104.4. 

At y'*'^=^l5 the situation is different. From Morrison and Kronauer's data 

we can argue that most of the energy is associated with the X'*'=100 eddies 

(£J„i!=«100%). We also assume, since there are no data available, that the Rey- 

nolds stress comes solely from the wall X''"=100 eddies (ar=l). Then since 

E,i=l, as mentioned earlier, (4.33) gives cos^|,i=-0.45 => ^,i=116.7 which 

is very close to the value obtained from the Willmarth and Lu (1972) data at 

y+=30.   There is also an indication in the data of Wallace et al (1977) that at 
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■   ■■ 

^■•■=15 the « and v signatures have a phase difference less than 180* which can 

be clearly seen to be the c^e with their results at y"*" =:45.  Wallace et al (1972) 

in an earlier paper calculated the auto-correlation of the classified stress {uv) with 

distance from the wall.   Their results on the respective integral time scales are 

reproduced below: 

Table 6 

y* Total Ejection Sweep Wallward 
interaction 

Outward 
interaction 

3.4 0.4 0.8 0.5 0.4 0.2 
15 0.2 0.4 0.5 0.2 0.2 
45 0.2 0.3 0.2 0.1 0.1 

187 0.1 0.2 0.2 0.1 0.1 

It can be seen that both the ejections and the sweeps are larger in their 

time scale and period of correlation than the interaction events. From these 

results, it is difficult to obtain an estimate of <f>„i from the percentage of the time 

over which the interactions (or the sweeps and bursts) are important, because the 

respective time scales are not additive. Nevertheless, we can find a qualitative 

agreement between the assumption that £'^j=100% from Morrison and 

Kronauer's data at y'^!=«15 and the data of Wallace et al (1972) at y''"=15 and 

Willmarth and Lu (1972) at y''"=30. So for the calculations at y+«15, 

E^ 1=100% and ^^ ,=116.7. 
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downstream direction. Theodorsen argued that the "horseshoe" gives a positive 

production term in the balance equation for J^ and provides a mechanism for the 

most efficient macroscopic momentum exchange. Lighthill (1963) observed that 

flows towards and away from a wall would stretch and compress, respectively, 

the vortex lines close to the wall. Kline et al (1967) used Lighthill's arguments to 

suggest a plausible physical explanation for the formation of wall-layer streaks. 

filT 
Since the spanwise component of the vorticity is primarily due to ——, the 

dy 

inflows (stretching) would act to increase the local U in the sublayer whereas the 

outflows (compression) would tend to decrease it. Hence a spanwise variation in 

U can develop naturally as a result of the inherent three-dimensionality of the 

coexisting turbulence. Kline et al argued that the streamwise vorticity thus gen- 

erated accounts for the lifting of the low-speed wall-layer streaks observed experi- 

mentally prior to the breakup process. 

Ofi'en and Kline (1975) proposed that the streamwise and transverse vor- 

tices observed by Kim et al (1971) could merely indicate different parts of a 

stretched vortex. The hydrogen-bubble time-line experiments are essentially two 

dimensional (on a plane defined by the velocity vector and the wire). If the plane 

cuts the centre, or tip, of the stretched vortex, the time-lines will show a 

transverse vortex, whereas if it passes through one of the legs, the image will look 

like an upward-tilted streamwise vortex. Oflfen and ICline developed a model cen- 

tered around a "lifting flow module" and pointed out its striking resemblance to 

some aspects of the ''horseshoe structure" model proposed by Theodorsen (1952). 

I 
t 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



101 

Recent experimental support about the existence of horseshoes vortices has 

been given by Head and Bandyopadhyay (1981).  They used combined flow visu- 
j 

alization  and  hot-wire measurements in  a boundary layer at values of the 

momentum thickness Reynolds number (Re^) in the range 1000-7000. Over this 

range of Re| they found that the most significant feature of the boundary layer is 

the  horseshoe  (or  hairpin)  vortex   postulated  by  Theodorsen  (1052).    They 

observed a general inclination of smoke-free fissures or smoke-filled filaments at a 

characteristic angle to the wall, which appeared to be in the region of 40*. Their 

visual evidence suggested that this angle is characteristic of the flow in the outer 

part of the layer.   Based on this observation they made measurements of the 

streamwise velocity at y"*" !^40 and at less than half the boundary layer thickness 

using two hot-wires in a staggered arrangement.   Their measurements showed 

that the two signals were virtually identical supporting their visual observations 

that arrays of hairpin vortices, inclined at an angle of about 40* to the surface, 

are being convected past the wires. 

In what follows we will discuss the vorticity dynamics of the model flow, 

presented in part A of this section, and in particular we will focus on the vortex- 

stretching term of Equation (4.36).   As mentioned earlier for a two dimensional 

dx 
flow (e.g. C/=0, -£7=0, v.Wf^O) F,=Py=P^=0 from (4.37), (4.38) and (4.39). 

If however -^"=0 and U,v,wj^Q, as in the model flow, we obtain from the same 
ax 

equations the following results: 
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^*='^»17+'^.17 (4.40) 

D dv ,       dv ,      ^ 

*j r T Si T T 

where now 0;^=——, 0;^= -—— and the x-component of equation (4.36) is ident- 

ical to equation (4.8) where now w,=— (==?)• 

Substituting these expressions in (4.40), (4.41) and (4.42) we get: 

• dU dU     dU dU 
"s '^     " -      -     — 0 dz dy dy  dz 

dU dv dU dv 
dz dy dy dz 

dU dw dU dw 
■ = -87^-^-87^" (*•«) 

It is thus seen that even though the model flow is three-dimensional 

{U, V, w f^O) the instantaneous vortex-stretching term in the streamwise vorti- 

city equation is zero due to the assumption of homogeneity. Thus the model flow 

provides source terms only for the lateral and spanwise components of the vorti- 

city.  It is also interesting to note that at the sides of the cell (^=0 or z„) where 

il f T Si Q 

„   — „  — -   —0, equations (4.43) and (4.44) become: 

where a;,= —r—<0 close to the wall. 
dy 

dU dw dw 
dy dz ~'^' dz 
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This means that, for inflows, close to the wall where u;^<0 and ■7J">0. 

P <0 and from (4.36) —^<0 i.e. the spanwise vorticity is intensified (increases 

dw ^^i 
in magnitude). For outflows, "T—<0 and  P^ >0, so   ^^>0 and the spanwise 

vorticity decreases (in magnitude). So it can be seen that the "fixed cell" model 

flow provides for intensification or dampening of the spanwise vorticity at the 

sides of the cell and close to the wall as discussed by Lighthill (1963). It is also 

seen that there b no intensification of the lateral vorticity at the sides of the cell. 

Let us now examine what the fluxes of the three components of the vorti- 

city are at the boundary of our computational domain. If we consider the "fixed 

cell" model flow to define a control volume, then the fluxes at y=0, insjdg the 

control volume, are diffusional and given by: 

a;,-vorticity : -i/— | ,.o = "^"^ I ,-0 = "-^^ I ,-o 

duy 8Sg 
w,-vorticity  : -i/-^ | ,.o = -^-^ 

I 
I 
I ,. ., duj 1 dP  . _ 

a;,-vorticity  : -u— | ,.o = JJ^ 1 ,-0 = 0, 

■ where 5, is the instantaneous streamwise velocity gradient at the wall and all the 

quantities are now dimensional. It is thus seen that the solid boundary is a 

source (or sink) of streamwise and lateral vorticity but does not allow the span- 

■ wise vorticity to diffuse inside or outside the control volume. 
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If we assume that the control volume extends over an even number of half- 

wavelengths, to assume periodicity, then it is easy to show that the net 

diffusional flux at the vertical sides of the control volume is zero and that the 

convective flux of vorticity {ivZ5) is zero because «;=0 at 2=0 or z^. 

At the outer boundary of the control volume the diffusional fluxes are negli- 

gible. The convective flux of vorticity is vSJ and for each component we obtain 

at y=y^: 

w,-vorticity :   «(-—--—) 
ay      dz 

dU w_-vorticity  :   tr—— 
dz 

w^-vorticity : -t 
dU 
dy 

So there is a convective flux of vorticity at the outer boundary of the com- 

putational domain that is associated with the normal component of the velocity. 

In summary, then, the model flow, presented in part A of this section, pro- 

vides the following picture regarding the vorticity dynamics of the viscous wall 

region: The spanwise and lateral components of the vorticity can be amplified 

due to vortex stretching but there is no source (or sink) for the streamwise com- 

ponent. The streamwise vorticity, then, for the model flow is created at the solid 

boundary and can also be convected inside the viscous wall region through the 

outer boundary at y=y^. Since the pressure gradient in the x-direction is 

assumed to be negligible, there is no flux of spanwbe vorticity through the wall. 

I 
I 
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It is thus seen that important elements of vortex-dynamics, that have been 

related to the existence of the wall streaks as discussed earlier, are not precluded 

by the model flow. It is also seen that the assumption of homogeneity does not 

affect the three-dimensional nature of the model as far as the vorticity dynamics 

picture is concerned. 

We will now conclude this part of section 11 by deriving the balance equa- 

tions for the mean flow energy, the non-zero components of the Reynolds stress 

tensor and for the turbulent kinetic energy in the model flow. 

According to the classical theory of turbulence (Tennekes and Lumley, 

1977) the internal dynamics of turbulence transfer energy from large scales to 

small scales. For a fully developed turbulent flow in a pipe (or channel) the 

energy supplied to the flow comes from the imposed pressure gradient. This 

energy is supplied to the mean flow eddies whose size is comparable to a charac- 

teristic dimension of the container (pipe radius or channel height). Turbulence, 

then, extracts energy from the mean flow eddies and by nonlinear interaction cas- 

cades it from large to small eddies, down to the Kohnogorov microscale eddies 

where the energy is dissipated into heat. 

For a fully developed turbulent flow in a channel the following equation, 

describing the mean flow energy balance, can be obtained from Hinze's (1975) 

general expression, after eliminating all the terms that are equal to zero (all the 

variables are dimensionless): 
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The term on the left hand side of equation (4.45) represents the rate of energy 

dF 
supply to the mean flow by the imposed pressure gradient (~).  The first term 

on the right hand side is the amount of energy extracted from the mean flow by 

dU 
the working of the Reynolds stress (-37) against the mean shear (—).  The last 

term on the r.h.s. is the energy that is directly dissipated from the mean flow into 

heat. The remaining two terms are transfer terms and redistribute the mean flow 

energy between different regions of the flow field. If equation (4.45) is integrated 

over half the cross-section of the channel (due to symmetry), the transfer terms 

drop out because U is zero on the boundaries and the following equation is 

obtained: 

f F<., = /^^.-/i^f)'.'» (4.46) I 
Where H is the dimensionless half-height of the channel. Equation (4.46), then, 

shows that the total amount of energy given to the mean flow by the pressure 

gradient, goes partly into turbulent kinetic energy and partly into direct viscous | 

dissipation. The impUcations of equation (4.46) can be made more clear if one 

divides the whole flow field into two regions: one extending from the wall to the 

edge of the viscous waU region (y+ «40) and the other extending from y+ «:*40 to 

the axis of the channel (core region). If now equation (4.45) is integrated 

separately over these two flow regions, the foUowing equations are obtained: 



I 
I 
I 
I (viscous wall region)    —r- fUdy = JUv—;—dy - [inrl7]„_„ - /——{—r-)^dy 
• rfx  0 0      «y '   '•     0 Re    rfy 

I 

I 
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dF^ (core region)   ——■ JUdy = [fTuUl^^y^ 

During   the   above   integrations   the   following   assumptions   were   made:    1) 

Sv—r-f^Q in the core region because the mean shear is very small,   2) CF=0 at 
I 
I 

y=H and 3) the two viscous terms on the r.h.s. of equation (4.45) are negligible 

m in the core region and at the edge of the viscous wall region.   The above two 

equations can be rewritten as follows: I 
I 
I (waU region)  ^y, <U>,,,_ = Jfn^dy - [mU\„„,^ - jj-{^fdy     (4.48) 

(core region)    ■j^H-y,)<tr>, = [flvU]^^,^ (4.47) 

where now <.U>g and <n^>,.». are the average mean streamwise velocities in 

the core and the viscous wall region respectively.   Since H-yg»y^, especially 

p for high Reynolds number, and <U>g   >   <I7>,^  it is clear from (4.47) and 

(4.48) that most of the energy supply from the pressure gradient to the mean flow 

takes place in the core region.   The very small amount of mean flow kinetic 

il energy production in the viscous wall region justifies, then, the omission of the 

dP — term —-— in equation (4.3).   It can also be seen now that the term [tnTt7)__ 

I 
provides the link between equations (4.47) and (4.48). This term represents the 

■ total amount of energy transferred from the core region, where it is mainly pro- 

fl duced, into the viscous wall region. It is also to be noticed that the sum of equa- 

I 
I : 
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tions (4.47) and (4.48) gives back equation (4.46). So the picture that emerges for 

the balance of the mean flow kinetic energy is the following: Almost all of the 

mean flow kinetic energy is produced by the pressure gradient in the core region, 

according to equation (4.47). This energy is transferred by the term on the r.h.s* 

of equation (4.47) to the viscous wall region, where it is expended in two ways: 

Part of it is extracted by the turbulent motion and the rest of it goes into direct 

viscous dissipation. 

In order to complete the picture for the energy balance of the flow field we 

have to consider the equation that expresses the conservation of turbulent kinetic 

energy. For this purpose we first develop the balance equations for the non-zero 

components of the Reynolds stress tensor. The equation for the turbulent kinetic 

energy can subsequently be obtained from the trace of the Reynolds stress tensor. 

If we start from the N-S equations that describe the fluctuating flow field 

«,• and multiply both sides by the fluctuating velocity tty we obtain the following 

equation: 

d      _ a       f 9Ui      dUA 

d 

2 

P + + 

bu, bu^ 

where o,= {/,—C^-, Ui=U, U2=v, U^=v}.  In this equation all the variables are 

dimensionless and the overbar denotes a quantity averaged both in space and 
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time.   The first term on the r.h.s. of (4.49) is a production term and the last one 

is dissipative.  The rest of the terms on the same side of the equation are transfer 

terms  except  p{ 
dx; dXi 

-).    The diagonal terms of this  tensor would  be 

2p 
5«i 

dxt 

du« dvL-, du. 
, 2p—— and 2p—— and   the trace 2p|—— + 

dx dx dxt 

dur 

dxn 
+ 

dut 

dXi 
is zero 

because of continuity.   So this term does not contribute anything to the tur- 

bulent kinetic energy budget but redistributes the energy among the three com- 

dUj 
ponents of the velocity.  If, for example, p——<0 and p——>0,   p——>0 (so 

ai| 0X2 0X3 

that continuity is satisfied)   turbulent kinetic energy is transferred from the «i 

component of the velocity to the U2 ^^^ ^3 components. 

If, now, in (4.49) we substitute a,v and w for Ui,«2 a^nd U3 and U, 0, 0 for 

r^i, [7*2, U^ respectively, and use the assumption of homogeneity, we obtain the 

following equations (stationary state) for u^tr and vr: 

0= -Utr-r- - -r~v—T" + 
I    d^ .^ 

<-^) dy      dy    2   Re dy^    2 Re \dy 
+ du 

(4.50) 

0= ^—-tr— - —-pv + p—- + 
^,\\dy    2  dy dy 

1 ^  fV^,        1 

Re dy^   2 '     Re 
dv 
dy 

\dv_ 
\dz 

dy^^      ^ dz        Re a^ 2 ^     Re 

and for the Reynolds shear stress ffF: 

\dw 
\dy 

+ m 
(4.51) 

(4.52) 
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dy      5y 5jf dy       Re 5y2 

I 
I 

Re 15y 5y       dz dz m 

So the model flow views the turbulent kinetic energy to be produced in the 

streamwise component of the velocity by the working of the Reynolds stress -CF 
I 
I 
I 

tion to the y-z plane.  However, since p— and p——7^0, there can be transfer ■ 

I 
I 
I 
I 
I 

on the mean shear  .   Since the p—— transfer term is absent, due to the 
dy ax 

assumption of homogeneity, there  is no transfer of energy from the axial direc- 

dv      j    dw 

of energy between these two components of the velocity.  The Reynolds stress is 

produced by the term -V^—T" which is negative because M<Q.   At the outer 
dy 

boundary, y=yg, of the model flow there are convective fluxes of ti^,v^ and w" 

energy {vu^,v^,vw^) as well as transfer of ir^ energy by pressure diffusion {pv). 

Since there is no »^and «J^ energy produced, the energy on the y-z plane should 

come from the outer boundary. There is, however, a significant transfer of 

energy from the normal to the spanwise component of the velocity through the 

transfer term p =-p-r~", as will be seen in Chapter 6. ■ 
dz ay • 

The balance equation for the turbulent kinetic energy can be obtained from ■ 

Hinze's (1975) general expression when applied to the channel flow being con- 

sidered. The same equation results after summing both parts of equations (4.50), 

(4.51)  and (4.52),  but we prefer to use the general expression in order to ■ 

emphasize the different formulations of the terms that depend on the viscosity 

(Reynolds number).  The resulting expression is the following: 

I 

I 
I 
I 
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0= 
dy 

vlp + ^\-m^ + .dU 
dy 

idu-        duj 

1 
Re 

(4.53) 

where the last two terms have been kept in indicial notation in order to preserve 

the compactness of equation (4.53). In this equation q^=v}+ w^-f w^ is twice the 

instantaneous turbulent kinetic energy. The explanation of each term of the 

above equation is the following: The second term on the r.h.s. represents the 

production of trubulent kinetic energy. This term appears with opposite sign in 

equation (4.45). The last term b the dissipation of turbulent kinetic energy into 

heat. The other two terms are transfer terms and redistribute the turbulent 

kinetic energy between different regions of the flow.   Sometimes the last two 

1 
terms in equation (4.53) are written as follows: 

Q2    ^^^       1   dUidu'i 
<-^) Re dxjdx^ ' 2 Re dx^dxj 

(Hinze, 1975). In this formulation the last term is not the true dissipation but 

the dissipation that would exist in an isotropic field and is thus called "isotropic" 

dissipation. The first term is similar to the one that would exist in a heat flow 

equation and, thus, represents viscous diffusion of turbulent kinetic energy. The 

same terms are obtained from a summation of (4.50), (4.51) and (4.52) because 

these equations were formulated in terms of the "isotropic" dissipation. From 

now on we will be using D to denote the true dissipation and £>,-, for the "isotro- 

pic" dissipation. By compuring the "isotropic" formulation of turbulent kinetic 

energy to the sum of (4.50), (4.51) and (4.52) we can see that for the model flow: 
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+ flif + {i4 + N' + f ^'^ 
2 

Ht 
If equation (4.53) is integrated over half the cross-section of the channel the fol- 

lowing equation is obtained: 

H       — H 

Jm^dy= -j^Ddy (4.54) 

Equation (4.54) then shows that the total amount of turbulent kinetic energy 

produced is converted into heat by viscous dissipation. If now, in equation (4.46) 

we substitute the first term on the r.h.s. using equation (4.54) we obtain: 

dL]udy=-]^Ddy-]^^fdy 
dxQ 0 ^e Q Re    dy 

This equation expresses the fundamental conservation law that all the available 

energy from the pressure  gradient is finally converted into heat by direct viscous 

dissipation and by dissipation through the turbulent motion. 

A better insight into equation (4.53) can be obtained if we integrate it over 

the viscous wall region of the flow field. If the viscous transfer term is neglected 

at y=y^, the following equation results: 

This equation shows that the total amount of turbulent kinetic energy produced 

in the viscous wall region is partly dissipated and the rest is transferred to the 

core region by the last term on the r.h.s. This term represents a combined 

diffusion  of kinetic   energy  by  pressure-normal  velocity  interaction   (pressure- 
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diffusion) and convection of energy by the v-component of the velocity. 

Iri summary, then, the overall picture for the energy balance of the model 

flow is as follows: The mean flow kinetic energy is produced by the pressure gra- 

dient in the core region of the flow field. This energy is then transferred to the 

viscous wall region where part of it goes into turbulence and the rest is converted 

into heat by direct viscous dissipation. The turbulent kinetic energy is produced 

into the viscous wall region. The mean flow energy that is necessary to produce 

the turbulence does not result from a direct action of the pressure gradient but is 

transferred into the viscous wall region from the core where the pressure gradient 

produces almost all of the mean flow energy. Part, then, of the turbulent kinetic 

energy produced is dissipated into heat and the rest is transferred back to the 

core region. 



CHAPTER  5 

RESULTS 

I. Analysis of experimental data 

A. Relation of wall patterns to transverse velocity fluctuations in the fluid 

Figures 5 and 6 show results of experiments in which the 8^ patterns 

detected at the wall are associated with transverse velocity fluctuations in the 

fluid at y^=20 and 40. The fluid probe was located at Ai"*'=25, and this 

separation causes only a small delay time of T'^^^1.5 in detecting events at 

1+ =0 at the same y"*". Lag times between events at the fluid probe and the 

array of wall probes therefore can be associated primarily with the separation 

normal to the wall. 

The s^-patterns shown in Figures 5 and 6 were conditionally averaged for a 

positive transverse flow at z^ =0 using condition (a) of Chapter 4 with 5^=4. 

Data points were actually taken every AT"*" =0.7 but the results are presented 

every AT"*" =2.1. Fifty events were averaged for y''"=40 and forty-nine events 

for y^ =20. The effect of the threshold level S^ on the number of events 

obtained is shown in Table 7. 
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<S^>/(s?)'/2 <S7>/(S7)'''2 

Figure 5 Conditionally averaged data for positive transverse flows at 
the wall; the fluid probe at y^ =20 
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<S.>/(s^'/2 /(s!)'/2 

Figure 6        Conditionally averaged data for positive transverse flows at 
the wall; the fluid probe at y"*" =40 



117 

Table 7 

s, Fluid Probe at y+ =40                       1 

# of PTF's # of NTF's # of OUTFLOWS 

3 
4 
5 
6 

59 
50 
43 
37 

62 
56 
42 
38 

59 
S2 
•4*    . 
38 

It is seen that even large threshold levels one obtains a sufficient number of 

events according to arguments presented in Chapter 4. 

As seen in the run with the fluid probe at y* =20, a s^ profile with a max- 

imum at z'^=0 and a wavelength of X+^lOO starts to develop at r'*"=-9.1, 

reaches its maximum amplitude of l.OfsTJ'/^ at r+=0.7 and dies out at 

r+=9.8. It is to be noted that the «, profiles lag the development of the s, 

profiles by A T"*" «::!7.7. These are sine waves with a maximum at z"*" =-25 and a 

minimum at 2"^ =25, corresponding to coupled inflows and outflows at these loca- 

tions. ' 

The arrows in Figures 5 and 6 represent the magnitude and direction of the 

conditionally averaged z and x velocity components at y"*" =20 or 40. An arrow 

extending to r+=60 indicates a value of <w>/{w^)^^^ or of <«>/(a^)*/^ of 

plus one. An arrow extending to z"*" =-60 indicates a ratio of the conditionally 

averaged to the root mean squared fluctuating velocity component of minus one. 

It is noted that positive transverse flows at the wall are associated with positive 

transverse flows at y"*" =20.   The transverse flow at y"*" =20 attains a maximum 
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value of 0.6(«r)'/^ at r"^=-3.5, indicating that the flow at the wall lags that at 

j/+=20. This is consistent with the finding by Hatziavramidis and Hanratty 

(1979) and by Kreplin and Eckelmann (1979a) that it takes a finite time for dis- 

turbances in the outer flow to propagate to the wall. 

The conditionally averaged s, and s^ profiles obtained in the run with the 

probe at ^"'"=40 are very similar to those shown in Figure 5, as would be 

expected if the experiments were reproducible. The arrows in Figure 6 represent 

the magnitude and direction of the conditionally averaged z and x velocity com- 

ponents at y"*" =40. It is noted that at y"*" =40 the conditionally averaged 

transverse component is positive before the flow at the wall starts to build up 

and has a maximum value of 0.5(«r)*/^ at r"^=-12.6. Around T"^ =Q where s^ 

reaches its maximum amplitude of 1.15(aj^)^/^, the conditionally averaged w 

changes sign. We interpret these results as indicating that the flow at the wall is 

caused by transverse velocity fluctuations of the same sign at y"*" =40. Because it 

takes a finite time for disturbances at y"*" =40 to propagate to the wall the flow 

at y'*'=40 has, on average, changed direction when activity at the wall is a max- 

imum. 

Kreplin and Eckelmann (1979a) made measurements of the correlation 

between 9^ and the transverse component of the velocity at y"*" =5, 10, 20, 40 

and at Aar"*" =-108, 0, + 144. The results shown in Figure 6 agree with their 

measurements in that they found that disturbances propagate to the wall and 

that the correlations at y"*" =40 are negative.   However, Kreplin and Eckelmann 
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interpreted their results differently. As mentioned in Chapter 2, they deduced 

that the wall region is dominated by pairs of inclined, counterrotating streamwise 

vortices with an average transverse separation of their centers of about z"*" !=«50 

and a length of x"*" ?«1200. They envisioned that as these vortices are convected 

downstream the angle of their plane of rotation decreases and that the average 

minimum distance of the vortex center from the wall is y"*" «::J30. 

B. Streamwise variation of the eddy structure 

Correlations calculated from the measurements of Lau (1980) cover a much 

wider range of Ai"*" than the measurements of Kreplin and Eckelmann and do 

not agree with the physical picture of the wall eddies presented by them. The 

correlation coefficients were measured as a function of the three spatial coordi- 

nates (x"*", y"^, z"*") and time delay {T*). The origin of the coordinate system 

(x+=0, y^=0, 2^=0) is the projection of the fluid probe on the wall. When 

r"*" <0 the signal from the wall probe leads the one from the fluid probe and vice 

versa. The correlation coefficients i?„,J-25, y+, 0; r+) and i?„, (-25, y"*", 0; r+) 

calculated for y^ =20 and 40 are in qualitative agreement with measurements by 

Kreplin and Eckelmann (1979a). The chief difference is that the peaks appear at 

smaller time delays because the probes are separated in the streamwise direction. 

The correlation /?„, (-25, 40, 0; T+ ) attained negative values during the period 

-15<7''' <2 and a maximum value of 0.124 at r^=14.7. 

However, as shown in Figure 7 the correlation Ry„^{x'^, 40, 0; 0) is negative 

only for x"*" =-25 and is positive for all other values of x"*".  When the fluid probe 
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Figure 7        Measurements of i?„,Jx+, 40, 0; T+ ) and i?„,,(x'*', 40. 0; T+ ) 



in 

is delayed negative values appear only at x''"=75 and   x'^=25.   When the wall 

probe is delayed (T"^ >0) i?„,   is positive at all i"*"   stations.   For the results 

shown in Figure 7   to be consistent with the vortex model it would be necessary 

for i?^, (i"*", 40, 0; T"*") to be negative  for a longer extent in the direction of the 

flow for 7+ <0. 

I 

We prefer to interpret these correlation measurements by assuming that the 

flow at the wall is caused by flow disturbances in the same direction at y"*" «^40. 

These disturbances have a convection velocity in the streamwise direction of 

c/«:^15 and in a direction normal to the wall of c^^^2 at y"*'=40, c^f=^l.5 at 

y+ =20 (Kreplin and Eckelmann, 1979a). According to this type of interpreta- 

tion it takes a period of Ar'*"=20 for a disturbance to travel from y+=40 to 

the wall. Over this same period the disturbance would be convected downstream 

a distance of Ax'*' =300. Thus it would be expected that large positive or nega- 

tive transverse flows at x"*" =0, y+ =40 would be associated with large positive or 

negative values of s^ at x"*'=-300. The observed peak in /?^, (i+, 40, 0; r"*") 

shown in Figure 7 is consistent with this picture. The correlation coefllcient 

i?„, (x"*", 40, 0; r"*") also shows a peak around x"''=-300 at T+=0, which moves 

toward the fluid probe (x'*'=0)  for positive time delays. 

Correlation measurements of /?„, (x*, y"*", 0; r"*") and i?„, (x"*", y+, 0; r+) 

with y"*" =20 are shown in Figure 8. These show a similar behavior to those for 

y+=40 in Figure 7. The only difference is that for y+=20 /?^,^ is positive at all 

x"*" stations for any T+ and the peaks at r'*"=0 appear closer to the origin.  This 
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-1200^ 

Rws. 

Figure 8 Measurements of i?„,Jx'^, 20, 0; r+) and R^g^ix'*', 20, 0; r"*") 
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is  consistent with the above physical picture since it takes a shorter time, 

A T"*" !^13, for disturbances at y"*" =20 to propagate to the wall. 

Measurements of the conditionally averaged streamwise variation of s^ 

shown in Figure 9 are consistent with the correlation measurements. The events 

that triggered the conditional averaging in Figures 5 and 6, a s{z) profile at 

x+ =0 which indicated a strong positive transverse flow centered at z"^ =0, were 

used to define T"*" =0. The arrows indicate th magnitude and the direction of 

the transverse flow either at y'^ =20 or y"*" =40. An arrow length of + 750 indi- 

cates a value of <.w>/{vr)^^^ or <M>/(«^)*/^ equal to plus one. 

The salient feature of the conditionally averaged s^{o,x) profiles is the 

appearance of a peak which, as time progresses, moves to x'^=0 at a velocity 

given approximately by e^ =15. 

It is seen that a strong transverse flow at the wall at x"*" =:0 is on average 

accompanied by a strong spanwise flow at y'^ =20, T'^ =-4.2, x'*'=-25 and at 

y+=40, T"^ =-12, a:■''=-25. As estimated earlier, disturbances at y"''=40 and 

y'^=20 require time intervals of AT"*" =20 and A 7+=13 to reach the wall. 

Again, if it is assumed that the convection velocity in the streamwise direction is 

c/=15, the maximum in <w> at y''"=40, T'*'=-12; y+=20, T^ =-4.2 

should be accompanied by maxima in s^ at a:'*'=-15 X 20=-300 and at 

^'^^-15Xl3=-200. This is in approximate agreement with the conditionally 

averaged measurements of s^(o,i). 

I 
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<sy>/{s;) 

1+      -10.5 
+ 

•1500    -900      -300 
-8.4 

-1500  -900      -300 __i 
-14 -^ 

Figure 9 Conditionally averaged data for positive transverse flows at the 
wall; arrows indicate conditionally averaged transverse velocity, 
<w>, at y+=40 (right side of figure) and j/+==20 (left side of 
figure). Arrow length of + 750 indicates <w>/{w^)^f^ equal to + 1 
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The flow reversal at y'^=0,  T'^'^Q is not necessarily associated with a 

reversal of the flow at the wall.   There is a hint of a negative flow developing at 

I ar''"=-325 for -2.8< T"*" <4.2 but this is not considered to be conclusive.   The 

spatial variation of «; in the spanwise direction at y+=40, and not just its direc- 

tion at a single point, determines the type of wall pattern seen by a fixed obser- 

verd at the wall. It is necessary for the flow at y"*" =40 to reverse itself over a 

sufficient spanwise length in order that the spanwise flow at the wall will change 

its direction. Therefore, all positive transverse flows at the wall are not neces- 

sarily followed by negative transverse flows and- vice versa. 

C. Coherency normal to the wall 

The correlation coefficients /?„,(-25, y'*', z'^; r+), /?„,,(-25, y+, 2+; T+), 

^«,(-25, y'^, Z'^;T+)  and i?„,J-25,y+ ,z+ ;r+)  for y+ =40 and 20 are shown in 

I Figures 10 and 11 respectively.   At y*=40, R^,^ shows again an interesting 

behavior. At zero time delay, the i?„,,(2"*") profile shows a wavelike variation 

with z"^, that has a wavelength of approximately Az"*"«:;90. Negative values 

appear around z"*" =0 at r+ =0, but at positive time delays the pattern reverses 

and positive values appear for all z"^ 's. The wavelength is not so well defined for 

T"*" >0; this is attributed to the fact that there is a certain amount of "jitter" 

associated with the wall patterns, as abeady mentioned in Chapter 4. 

I The cross correlations i?„,^ and /?„,^ are very well defined at r+ =0. They 

both show a wavelike variation with a wavelength of about 100 wall units and 

they are consistent with the flow picture presented in the previous part of this 

I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

I 
I 
I 



Y*=40 

R USx 

-60 

0.5 "WSz 
T+=-l4 

60 

•0.5 
-7 

^USz 
-14 -14 

Rwsx 
-14 

-7 

0 

:■■  7 

14 
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Figure    11       Measurements    of    i?„,J-25, 20, 2+; T+),  i?„, (-25, 20, 2+; T"*" ), 
i?..,(-25, 20, 2+; r+)  and    i?..,(-25, 20, z+; T+) 
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section.   Notice the change in the R^,^  pattern around 7+^:^14 which arises 

because w reverses direction at y'^ =40. 

At y* =20, the situation is different. The correlation H^,^ is positive for all 

^+'s and time delays around r"*'=0. The correlations R^,^ and R^,^ are again 

well defined wavelike patterns and the difference in the R„,^ pattern, from what 

was obtained with the probe at y+=40, arises because u; is in phase with the 

flow at the wall. | 

All the correlation coefficients are in agreement with the flow model 

presented in the previous section. In particular, the cross-correlation coefficients 

show a behavior that is similar to the one obtained at the wall. The present 

measurements agree well with measurements obtained by Lee et al (1974) using 

only wall probes (note that i?tt,,(-25,y+,^+;0) is analogous to /?,, (0,0,2■•■ ;0) at 

the wall) supporting the assumption of coherency up to y"*" =40. 

Any conclusion about the wave-number variation of w at y"*" ==40 or 20 is 

not possible since the calculation of a correlation coefficient involves some sort of 

filtering (spatial filtering in this case). There is an indication that a wavelength 

selection occurs whose details are still unknown, and there is a definite need for 

an elucidation of this process. 

n. Numerical computations 

The solution of the vorticity and stream-function equations, subject to the 

boundary conditions (4.25), (4.26) and (4.27), is presented for y/=40 and 15. 
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When the outer boundary of the computational domain is set at y^+=40, two 

cases are considered: In the first one, all the energy of the velocity fluctuations b 

associated with the X"*" =100 wall eddies. In the second case, a certain fraction of 

the tt^ v^ and v^ energy at y/ =40 is attributed to the outer flow eddies. All 

the relative parameters that are needed to completely specify (4.25), (4.26) and 

(4.27) are selected according to arguments presented in Chapter 4. 

For each case the results are presented in the following sequence: Contour 

plots of the stream-function, the streamwise vorticity and the streamwise com- 

ponent of the velocity are shown first for various points in time. Secondly, the 

three components of the velocity and the vorticity are cross-plotted for a fixed 

spanwise or lateral location in the cell as a function of time. Finally, space and 

time averaged statistical quantities are presented. Because of the unsteady 

nature of the calculations, path-line and streakline computations are also 

presented. The calculated path-lines are trajectories of inertia-free fluid particles 

in the cell. The streaklines, at each instant of time, constitute the locus of the 

endpoints of path-lines that originated from the same point, which will be 

referred to as "injection point". The calculated steaklines are, thus, helpful in 

comparing the numerical results of the present work with dye-visualization exper- 

iments. 

The parameters that were used to specify the boundary conditions in the 

fixed cell runs presented below are summarized in Table 8. 
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Table 8 

T:, r„2 T + Tr% ^;i T,^ 

Single harmonic 
Double harmonic 
Single harmonic 

40 
40 
15 

100 
100 
100 

400 
400 

100 
100 
100 

400 
100 
100 
100 

400 

^«i ^f\ ^trl <f>.\ <i>n1 ^.1 ^T2 <Au2 

Single harmonic 
Double harmonic 
Single harmonic 

.2025 

.15 
1.00 

1.00 
.75 

1.00 

1.00 
.40 

1.00 

252 
216 
269.7 

150 
194.4 

72 
36 

153 
90 270 

where the energies E^i,E,i,E„i express the fraction of ^^ir^ii;^ energy respec- 

tively in the X+ =100 eddies and all the phases are measured in degrees. 

A. Upper boundary at y^ =40 

1.  One harmonic in the spanwise direction 

In these calculations all the energy on the y-z plane is associated with the 

X+ =100 eddies {E,\ =E*i —I). The outer flow eddies contain most of the 

energy of the streamwise velocity fluctuations and negUgible amount of energy in 

the t; and w components of the velocity. The outer flow «-eddies were assumed 

to have an infinite wavelength in the spanwise direction. Such eddies can be 

accommodated by a cell with z + =50, which is sufficient to calculate the v-w 

motion, otherwise z+ would have to be increased in order to account for «- 

eddies of finite wavelength longer than X+ =100. This will be the case, when two 

harmonics are used in order to describe the flow on the y-z plane. 
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The temporal variation of the three components of the velocity was 

specified using a single harmonic in time. A case with a wide range of frequencies 

was also considered. In this case the velocites at y^ =40 were specified using the 

experimental data of Lau (1980). 

When single frequencies are used for «,t; and w the energy of the X'''=100 

«-eddies at y/=40 can be calculated from Reynolds stress arguments, as shown 

■ in Chapter 4. Since in this case the outer flow eddies don't contribute to the Rey- 

nolds stress, the phase ^^2 cannot be estimated from similar arguments. It was 

found during the course of the computations that <f>^2 afifects the calculated skew- 

1^ ness of the streamwise velocity fluctuations and the Reynolds stress close to the 

outer boundary 25<y'^<40.   For <f>^2 ^ *^® range 150 '-200 ' the «-skewness 

and the Reynolds stress were found to have the best agreement with experimen- 

■ tal data. It is to be noted that the value 0,2=194.4 calculated in Chapter 4, 

falls in the above range. ^ 

The results of the calculations are shown in the series of Figures 1? ihioagh 

60. The evolution of the secondary flow pattern is shown for a period of time that 

is equal to the lifetime of the X+ =100 eddies {T* =100). Figures 12 through 21 

show the streamline pattern of the flow for a case where the percentage of closed 

flow Ni is 60%. It can be seen that, as expected, the flow at y + =40 is closed 

M during the periods 15</'''<45 and 65<f''<95, which constitute 60% of the 

total time.   This closed flow is associated with a spinning mass of fluid which 

appears as a streamwise vortex. At <'*"=20 the vortex occupies the whole cell in 

I 
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f=5 

f=10 

Figure 12      Streamline contours for a single harmonic run at t'*'= 5 and 10; 
upper boundary at y* =40 
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f=15 
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Figure 13      Streamline contours for a single harmonic run at f*" = 15 and 20; 
upper boundary at y^ =40 
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f=25 

f=30 

Figure 14       Streamline contours for a single harmonic run at t'*'= 25 and 30; 
upper boundary at y/=40 
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f=35 

f=40 

Figure 15      Streamline contours for a single harmonic run at <+= 35 and 40; 
upper boundary at y/ =40 
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f=45 

t=50 

Figure 16      Streamline contours for a single harmonic run at /"•" 
upper boundary at y/ =40 
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f=55 

/ 
\ 
\ 

^ 

t"=60 

Figure 17       Streamline contours for a single harmonic run at i^ = 55 and 60; 
upper boundary at y^=40 , , 
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f=85 

f=90 

Figure 20      Streamline contours for a single harmonic run at <"*■ = 85 and 90; 
upper boundary at if/=40 
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^—-- y I 
\ 
V \ 

e=95: 

t'=100 

Figure 21       Streamline contours for a single harmonic run at <'*'= 05 and 100; 
upper boundary at y/ =40 
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Figure 22b     Plots of the spauwbe velocity gradient at the wall versus 2+ frmn^ 
f+=44tof+=80 



T+-24 

Figure 22a    Plots of the spanwise velocity gradient at the wall versms z* from 
t^=4to<+=40 
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Figure 22b    Plots of the spanwbe velocity gradient at the wall versus z+ from 
f+=44to /+=80 
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Figure 22c     Plots of the spanwise velocity gradient at the wall versus z* from 
/+=84to <+=100 
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Figure 23      Plot of the R,,^ correlation versas A2"*"; single harmonic run. 
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Az"*" =25 and with a value of -1 at Ar"*" =50. It is, however, seen that the com- 

puted Rf, correlation gives a zero-crossing at A2^=19.5 and has a value of 

-0.435 at A2+ =50. 

Contour plots of the streamwise vorticity are presented in Figures 24 

through 33. These plots have two main characteristics. The first one is that high 

values of the vorticity occur close to the upper boundary and close to the wall. 

The close spacing of the vorticity contours close to the outer boundary also 

reveals the existence of large gradients in the y-direction. The second feature of 

the vorticity contours is the location of the f=0 curve. It can be seen that there 

are periods of time (5<f^ <20, 60<f'" <85), in which there is an almost irrota- 

tional core, surrounded by the f=0 line, that occupies a large portion of the cell. 

On the other hand there are time periods (30<f+ <55, 90</"*" <100), in which 

the j=0 line separates two regions of large values of vorticity and of opposite 

sign. These features will become more evident later, when plots of the stream- 

wise vorticity versus the lateral coordinate, for a fixed spanwise location in the 

cell, will be presented. 

Contour plots of the instantaneous streamwise velocity are presented in 

Figures 34 through 38. These plots are very illustrative of the dynamic sequence 

of inflows of high streamwise momemtum fluid and outflows of momentum 

deficient fluid, on the two sides of the cell, that are caused by the flow on the 

y-2 plane. At f^ =10 an inflow occurs at z"*" =50 and an outflow at z"*" =0. As 

time goes on an inflow develops at z'*'=0, and for f*" >40 there is an inflow at 
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e=5 

t=^o 

Figure 24      Streamwise vorticity contours for a single harmonic run at t^^^S 
and 10; upper boundary at y/ =40 
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f=15 

f=20 

Figure 25       Streamwise vorticity contours for a single harmonic run at t'*'=15 
and 20; upper boundary at y/ =40 



150 

f=25 

t=30 

Figure 26      Streamwise vorticity contours for a single harmonic run at f+ 
and 30; upper boundary at y/ =40 
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f=35 

f=40 

Figure 27      Streamwise vorticity contours for a single harmonic run at <"*"=35 
and 40; upper boundary at y/=t=40 
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f=45 

f=50 

Figure 28      Streamwise vorticity contours for a single harmonic run at t*=45 
and 50; upper boundary at y* =40 
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f=55 

f=60 

Figure 29      Streamwise vorticity contours for a single harmonic run at <"•" =55 
and 60; upper boundary at y^ =40 
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f=65 

f=70 

Figure 30      Streamwise vorticity contours for a single hannonic run at /"'■=65 
and 70; upper boundary at y^ =40 
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Figure 31      Streamwise vorticity contours for a single harmonic run at t"^ =1=75 
and 80; upper boundary at y/ =40 
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f=85 

f=90 

Figure 32      Streamwise vorticity contours for a single harmonic run at <'*'=85 
and 90; upper boundary at y/ =40 
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f=95 

f=100 

Figure 33      Streamwise vorticity contours for a single harmonic run at t'*'=9S 
.    ■;    ,    and 100; upper boundary at y +=40 
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f=10 

f=20 

Figure 34      Instantaneous streamwise velocity contours for a single 
harmonic run at *"*"=10 and 20; upper boundary at y + =40 
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f=30 

f=40 

Figure 35      Instantaneous streamwise velocity contours for a single 
harmonic run at /■*"=30 and 40; upper boundary at if/=40 
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f=50 

f=60 

Figure 36      Instantaneous streamwise velocity contours for a single 
harmonic run at t* =50 and 60; upper boundary at y/ =40 
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f=70 
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Figure 37      Instantaneous streamwise velocity contours for a single 
harmonic run at <■•■ ==70 and 80; upper boundary at y +=40 
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Figure 38      Instantaneous streamwise velocity contours for a single 
*        harmonic run at <+=90 and 100; upp6r boundary at y/«=40 
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r+=0 coupled with an outflow on the other side of the cell.   For f ■•" >80 the 

same sequence occurs at z"*" =50. 

In order to get a picture of the relative temporal variation of the flow vari- 

ables, plots of the three fluctuating components of the velocity and the stream- 

wise vorticity are presented for a fixed spanwise or lateral location in the cell. 

Figures 39 through 42 show plots of u,v,to and f versus time for fixed spanwise 

locations and various distances from the wall. The characteristic feature of the v 

and w plots is that the period of the fluctuations throughout the cell is equal to 

the period of the imposed fluctuations at the outer boundary (r''"=100). The 

amplitude of these fluctuations diminishes as the wall is approached and that of 

the normal component of the velocity goes to zero at a faster rate. At y"*" =40 

the period of the streamwise velocity fluctuations appears to be T* =400. This 

is expected since most of the energy of these fluctuations at y^ =40 was attri- 

buted to infinite wavelength «-eddies of period T*2 =400. Nevertheless, periods 

of r'*'=100 are still discernible and superimposed on the lower frequency 

r"*'=400 fluctuations. As the wall is approached the picture is completely 

different. The dominant period is r"*'=100 and there is no sign of lower fr^ 

quency velocity fluctuations. The plots of the streamwise vorticity in Figure 42 

present in another way the main features of the f-contour plots that were shown 

before. It is easier to see from these plots that large values of the streamwise 

vorticity occur close to the upper boundary and close to the wall. At jf+=10 

and y"*" =15 there are hardly any fluctuations of the streamwise vorticity .  This 
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Figure 39       Plots of   v''' versus   t^ at z^ = 42.   Single harmonic run; upper 
boundary at yj*" =40 
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Figure 40      Plots of   «;+ versus   t+  at z+ = 30.   Single harmonic run; uppCT 
boundary at «/ =40 
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Figure 41       Plots of   «"*■ versus   f*" at z"*" = 42.   Single harmonic run; upper 
boundary at y/ =40 
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Figure 42      Plots of ;+ versus t* at z+ =30.  Single harmonic run; upper boun- 
dary at y/ =40 
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is the region that the almost irrotational core, identified previously from the ^- 

contour plots, occupies for most of the time. These features of the streamwise 

vorticity were found to be characteristic of all the "fixed cell" calculations. In 

particular, the lateral profile of the streamwise vorticity which, will be shown 

later, constitutes the characteristic vorticity "signature" of the fixed cell. 

Similar plots of «,«,«; and f are shown in Figures 43 through 46 but for a 

fixed distance from the wall and various spanwise locations in the cell.   These S 

plots also show the characteristic period of the fluctuating flow variables to be 

T"*" =100. The plots of the normal component of the velocity are indicative of a 

slight degree of asymmetry in the t; profiles with respect to the spanwise coordi- S 

nate which is a consequence of the nonlinearity of the flow. 

Figures 47 through 50 show plots of the three fluctuating velocity com- 

ponents and the streamwise vorticity versus the lateral coordinate for a fixed 

spanwise location in the cell and for various points in time. Figure 47 shows the 

lateral profiles of the streamwise vorticity for z"*" =18, throughout a cycle of the 

X'*"=100 wall eddies. These plots confirm the observations made when the f- 

contour plots were discussed. The existence of an almost irrotational region dur- 

ing 4<f'"<20 and 64</"'"<84 is verified. During the rest of the time the f- 

profile attains an 5-shaped form with a zero-crossing at y^^lO. This is the 

characteristic signature of the streamwise vorticity that was observed in all the 

"fixed cell" computations. As will be discussed below the form of the lateral 

profile of the streamwise vorticity has a bearing on the distribution of the v and 
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Figure 43      Plots of a/a   versus t* at y*= 10.   Single harmonic run; upper 
boundary at y^ =40 
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Figure 44      Plots of v/v   versus t^ at y"*" 
boundary at y/ =40 

= 20.   Single harmonic run; upper 
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Figure 46      Plots of f/f versus f"*" at y'^ =5.  Single harmonic run; upper boun- 
dary at y^ =40 
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Figure 47a    Plots of f+ versus y"*" at z+ = 18  from t* =4 to /"•" =40. Single 
harmonic run; upper boundary at y^ =40 



40<^ 

TH 

20\- - 

ha+- V —1 

1+=44. 

40. 

T+-48 

20 

5   -.5 
1^ 

5   -.5 

40. 

T+=52 

20 

40. 

T+=56 

20 

\ 

40 
^ 

T+=64. 

20. r 

40 ^ 

5   -.5 .5   -.5 

T+=60 

T+^68 

40. 

T+=72. 

40 ^ 

T+-76. T+^SQ, 

20. • - 20. 

0L 

-.5 
i 1        H^ 

.B   -.5 .5   -.5 
0. 

H 
.5 

h^a-f 

20. 

a. 

0. 0 

H        1-^ 
.5   -.5 

0 0. 

Figure 47b     Plots of f"*" versus y+ at r+= 18  from <+=44 to /■♦■=80. Single 
harmonic run; upper boundary at y* =40 
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Figure 47c     Plots of f+ versus y+ at z+=18  from /+=84 to <+=100. Single 
harmonic run; upper boundary at y/ =40 
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Figure 48a    Plots of w'*' versus y* at z'*"= 18  from t'*'=4 to <*=40. Single 
harmonic run; upper boundary at y^ =40 
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Figure 48b    Plots of w* versus y+ at z* = 18  from <"•" =44 to <+ =80. Single 
harmonic run; upper boundary at y^ =^40 
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Figure 48c     Plots of w+ versus y+ at 2+=18  from f^ =84 to <+=100. Single 
harmonic run; upper boundary at y/ =40 
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Figure 49a     Plots of v"*" versus y"*" at «■•■= 42   from f'"=4 to <"''=40. Single 
harmonic run; upper boundary at y^ =40 
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Figure 49b    Plots of «"•" versus y+ at z+= 42  from <+=44 to <+=80. Single 
harmonic run; upper boundary at y/ =40 
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Figure 48c     Plots of v+ versus y+ at r+ =42  from <+ =84 to <+ =100. Single 
harmonic run; upper boundary at y^ =40 
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Figure 50b     Plots of «+ versus y"*" at 2''"= 42  from f"'"=44 to <+=80. Single 
harmonic run; upper boundary at y/ =40 
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w components of the velocity normal to the wall. 

Figures 48 and 49 show the lateral profiles of t; and w at 2*^=42 and 18 

respectively, where their ampilitudes are expected to attain large values. It is 

interesting to note that during'the time periods that the streamwise vorticity 

exhibits a region of very small values, the spanwise velocity profile shows i costy 

distribution in the same region. This behavior which is expected from inviscid- 

irrotational theory is evident' during 8<<+ <20 and M<f*^ <80 for 10<y"*" <30. 

During the same periods of time and for the same range of y'*"s, the u-profile 

exhibits a sinhy distribution, as can be seen from Figure 48. When the stream- 

wise vorticity attains its characteristic "sigiiature" with the zero crossing at 

y+«10, a zero-crossing appears in the «;-profiles which Starts moving towards 

the wall.  At the same time the spanwise. velocity distribution normal to the wall 

attains a maximiirfi ( „   —0), which lies in the region 10<y"''<25    and also 
dy 

* •        . * 
moves towards the wall. Duriflg the same periods of tirtle the normal velocity 

profiles beud over from the sinhy distribution and approach the upper b> >. ;i.iry 

with either positive or negative slope. 

The lateral profiles of the streamwise velocity distribution for ^"^=42 are 

shown in Figure 50. An inflow of high streamwise momentum fluid can be 

identified during 4<<^<32 and 80<<'*"<100, and is associated with a sharp 

maximum at y'''i=^ 10. An outflow develops during 36<<'*'<72 and is character- 

ized by a milder maximum that gives almost a plug-flow character to the u- 

velocity profile. 
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In order to study the unsteady nature of the flow field on the y-z plane 

path-line calculations •Were carried out. The trajectories of two fluid particles 

along with the respective residence times in the cell are shown in Figure 51. The 

solid line corresponds to a particle whose initial position is at y"''==1.25 and the 

dash line is the trajectory of a particle that was located at y'*'=5, at t'*'=0. It 

can be seen that the fluid particle that originates at y'''=1.25 needs a much 

longer period of time, than the other particle, in order to escape from the cell. It 

can also be seen that this particle spends almost four cycles (T"*'=400) in the 

region below y"*" =5. This can be explained by the fact that the normal velocities 

in this region are very small and the weak spanwise flows cause the particle to 

travel back and forth in the spanwise direction. 

The streakline calculations are presented in Figure 52. The shape of a cal- 

culated streakline is representative of a dye^streak that would originate from a 

pointwise injection in a dye-visualization experiment. The streaklines are plotted 

every A<'^=40 and cover a period of time equal td r"'"=400. The characteristic 

of this plot is the initial spreading of the dye in the spanwise direction followed 

by a gradual lifting ahd an ejection towards the upper boundary. 

In order to be able to compare the average properties of the computed field 

with experimental data, space and time averages of the flow variables are calcu- 

lated and plotted versus the distance ffom the A^all. These kinds of averages are 

needed in order to compare the results from the "fixed cell" calculations with 

what a fixed probe would measure in a real turbulent field.   Figures 53 through 
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Figure 51       TrajectoFies of fluid particles in. the cell. Single harmonic run. 
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Figure 52       Streaklines for a single harmonic run.   iQJection point at 2,'*'=25, 
y.+ =1.25 
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57 present the average mean velocity profile, the Reynolds strfess, the intensities 

of the three fluctuating components of the velocity and the skewness and flatness 

of the streamwise velocity component. It can be seen that, overall, the agreement 

with the experimental data is satisfactory, except the calculated intensity of the 

spanwise component of the velocity. In particular the calculated Reynolds stress, 

both in wall variables and as a correlation coefficient, shows a very good agree- 

ment with experiments for 0<y"'' <40. The calculated v-intensity profile attains 

somewhat lower values than what the experiments indicate close to the wall, but 

agrees with the experimental data quite well in the region y"*" >25. The w- 

intensity profile agrees with experiments close to the waU (0<y''" <5) but exhi- 

bits a plateau region fOr 10<y'''<25 and then rises up in order to satisfy the 

imposed boundary condition. It was found throughout the computations, that 

such a profile of the u;-intensity is characteristic of all the X'''=100 single har- 

monic  "fixed cell"  runs. 

The skewness of the streamwise Velocity component shows satisfactory 

agreement with experiments up to y'*"=20 but assumes larger values in the 

region 20<y'*' <40. As it Will be seen latef, this is caused by the fact that therie 

is no energy in scales longer than X"*" =100 on the i/-z plane and especially in the 

spanwise component of the velocity for the single harmonic ruiis. The flatness of 

the «-"component of the velocity is seen to agfee with experiments throughout 

the viscous wall region. 
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Figure 53      Mean streamwise velocity for a single harmonic run; upper boun- 
dary at y/ =40 



u 
V A 

1    - u D □ 
R ^tT '""^^/^ 
E y'^^ o       ^o 

Y ^^^K 

N ay 
0 ^ 
L     ^ / ■•■ 

D   ■^- ^ 's A7 

!s 
T 

U 
^/ 

c- 0. - 1 1 
C                 1 

S        0. 
1 1 

40. 
s 20. 

  YPLUS 

u 1-1 
V 

c 
0 
R 
R 

A 
T 

I 
0.   - 

O 

o       o 

r 

/O      A^       OO       '^ 

V 
V 

1 

0 
1 

20. 

1 

40. 

YPLUS 

Figure 54      Reynolds stress and -Wjn v  correlation for a single harmonic run; 
upper boundary at y/ =40 
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Figure 55      Intensity of streamwise velocity fluctuations for a single 
harmonic run; upper boundary at y/ =40 
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a single harmonic run; upper boundary at y^ =40 
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Figure 57       Skewness and flatness of streamwise velocity fluctuations for a sin- 
gle harmonic run; upper boundary at y/ =40 
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n In all the above calculations the temporal variation of the X"*" =100 eddies 

at y^ =40 was approximated by a single harmonic with a period of T'^ =100. 

In what follows, we will present some results of calculations in which experimen- 

IH tal data were used in order to prescribe the time signature of the three com- 

ponents of the velocity at y/=40. The statistically averaged results of these 

calculations were similar to the ones presented above.   The most interesting 

in feature of the computed time signals is a filtering mechanism, according to which 

the streamwise velocity appears to contain much lower frequencies than the velo- 

city fluctuations on the y-z plane.   This is evident in the plots of v and « 

H presented in Figures 58 and 59. The low frequency streamwise velocity fluctua- 

tions contrast the normal velocity fluctuations which clearly contain higher fre- 

quencies.   The spanwise velocity fluctuations, which are not shown here, were 

H found to have a similar behavior to the fluctuations of the normal component of 

the velocity. The filtering effect that appears on the streamwise velocity com- 

ponent can be elucidated, if one observes the path-lines of fluid particles in the 

II cell.   Such path-line calculations are shown in Figure 60.  It can be seen that for 

a fluid particle starting very close to the wall (y''"=1.25) the trajectory is ahnost 

a straight line parallel to the wall. The residence time for this particle in the cell 

is longer than f+=700 which is the total duration of the run. If such a particle 

carried high streamwise momentum as a result of an inflow at 2"^ =0 then it will 

take a very long time for the particle to travel along the wall, exchange its 

momentum and emerge as a momentum deficient particle.   It is this fact, then. 
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Figure 58      Plots of v/w' versus t'*' at y''"=10. Signals at y/=40 contain a 
wide range of frequencies. 
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Figure 60      Trajectories of fluid particles in the cell.  Signals at y/ =40 contain 
a wide range of frequencies. 
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that causes the streamwise velocity component to contain much lower frequencies 

than the velocities on the y~z plane.  For another particle starting at y"*" =5 the 

I residence time is t'*'=371 which is much shorter than the one for the particle 

I 

I 
I 

close to the wall. 

Before closing the presentation of the results for the single harmonic case 

m 
H we will discuss the effects of different boundary conditions at y/=40, for the 

SX"*" ^100 eddies, on the computed dynamics. Two boundary conditions that were 

nondescript in the normal velocity component at y/ =40 were explored. These 

were the specification of zero vorticity or zero normal flux of vorticity along with 

the spanwise component of the velocity at the upper boundary of the computa- 

tional domain. These boundary conditions were found to affect greatly the calcu- 

lated lateral profiles of the streamwise vorticity. In particular, it was found that 

the vorticity stayed close to zero in a region extending from the outer boundary 

down to y"*" «:!10. These profiles were, thus, very different from the characteristic 

signature of the streamwise vorticity, presented earlier, when both v and w are 

specified at y^ =40. 

2. Two harmonics in the spanwise direction 

In these calculations a certain fraction of the energy on the y-z plane was 

associated with the X"*" =400 outer flow eddies according to arguments presented 

in Chapter 4. The results of the calculations are presented in the series of Fig- 

ures 61 through 87. Figures 61 through 70 show the streamline contours for a cal- 

culation with Ni=SO% and E„i=40%.  The streamlines are plotted for a period 
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Figure 61       Streamline contours for a double harmonic run at f*'=10, 20, 30 
and 40; upper boundary at y^ =40 
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Figure 62      Streamline contours for a double harmonic run at f^ =50, 60, 70 
and 80; upper boundary at y^ =40 
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Figure 63       Streamline contours for a double harmonic run at ^'"=90, 100, 110 
and 120; upper boundary at y,,^ =40 
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Figure 64      Streamline contours for a double harmonic run at <"*■= 130,140 150 
and 160; upper boundary at y^ =40 
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Figure 65      Streamline contours for a double harmonic run at f"*" 
and 200; upper boundary at y/ =40 
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Figure 66      Streamline contours for a double harmonic run at t"^ = 210,220,230 
and 240; upper boundary at y/ =40 
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Figure 67      Streamline contours for a double harmonic run at f "•" = 250,260,270 
and 280; upper boundary at y * =40 
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Figure 68 Streamline contours for a double harmonic run at /+ 
and 320; upper boundary at y + =40 = 290,300,310 
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Figure 69      Streamline contours for a double harmonic run at f^ = 330,340,350 
and 360; upper boundary at y/ =40 
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Figure 70      Streamline contours for a double harmonic run at f*" = 370,380,390 
and 400; upper boundary at y/ =40 



210 

of time that is equal to one cycle of the outer flow eddies (T"*" =400).  The most 

interesting characteristic of these plots is the alteration of small scale and large 

scale velocity fluctuations in the viscous wall region. It is seen that at f"''=30 

large scale spanwise flows start to develop in the cell and last until f*'=80. 

These flows have a wavelength of X"*" =400, which is the longest wavelength that 

can be handled by the computational domain.   At f*"=90 smaller scale flows 

start to appear and these are associated with eddies of X"*" =100.   These eddies 

last until <'''=200 and from then on the same sequence is repeated until a full 

cycle is completed.   The streamline patterns presented above were  found to be 

characteristic of the two harmonic "fixed cell" computations and are consistent 

with the prescribed boundary conditions at y*=40.   These boundary conditions 

view the flow in the viscous wall region to result from the dynamic interaction of 

the X'^'sslOO wall eddies and the outer flow eddies that are of longer wavelength. 

The calculated f- and U- contours were found to have the same characteristics as 

for the single harmonic runs.   These characteristics will be presented later in 

plots of the vorticity and the streamwise velocity versus time at various distances ' ,  | 

from the wall. As mentioned in Chapter 4, an important concern of this work is 

the agreement of calculated wall patterns with experimental results.  This would 

then reflect the degree to which the X"'"=100 eddies or the longer wavelength I 

outer flow eddies are important in the immediate vicinity of the wall. A measure 

of the dominant scale of the velocity fluctuations very close to the wall can be 

provided by the correlation of the spanwise velocity gradient at the wall in the fl 
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spanwise direction {R,,{Az)). The computed correlation is shown in Figure 71. 

This correlation has a zero crossing at Az'*' =35 and attains small values for 

H longer separations. The general shape of the curve for 0<Az'*" <100 is in good 

agreement with experimental results (Lau 1980). If the X'''=400 eddies were 

important at the wall then the zero crossing would be expected to be close to 

Az"*" !=«100. So the calculated R,, correlation shows that the X"*" =100 eddies 

are the important eddies close to the wall, in agreement with experiments. 

Figure 72 through 75 show the three components of the velocity and the 

vorticity at a fixed spanwise location plotted versus time for various distances 

W from the wall.  The main features of these plots are similar to the ones presented 

for the single harmonic runs. The dominant period is T* =100 and the stream- 

wise vorticity exhibits again very low fluctuations at y"*" =10 and 15. 

Similar plots, but for a fixed lateral location in the cell are presented in 

Figures 76 through 79. Again the dominant period of r'*'=100 is identified in 

these plots. 

The spanwise velocity component is plotted in Figure 80 for a fixed span- 

■ wise location versus the distance from the wall and for various points in time.  It 

is seen that the zero-crossing of the spanwise velocity profile is not the sole 

feature of these plots since there are periods of time that w attains large values 

throughout the viscous wall region. These periods of time are associated with the 

predominance of the X"*'=400 outer flow eddies. Since these eddies have their 

eye above y* =40 for 100% of the time they induce spanwise velocity profiles of 
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Figure 71       Plot of the /?, ,  correlation versus A?* ; double harmonic run. 
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Figure 72       Plots of    v"*" versus /+ at z"^ = 40.   Double harmonic run; upper 
boundary at y^=40 
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Figure 73       Plots of    w'*' versus f^ at 2"*" = 32.  Double harmonic run; upper 
boundary at y^ =40 
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Figure 74       Plots of    ti"*" versus f"*" at z"*^ = 40.   Double harmonic run; upper 
boundary at y^ =40 
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Figure 75       Plots of    f+ versus t+ at 0+ = 16.   Double harmonic run; upper 
boundary at j/ + =40 
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Figure 76      Plots of v/v  versus t+ at y+ = 20.  Double harmonic run; upper 
boundary at y^ =40 
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Figure 77       Plots of w/w  versus t^ at y"*" = 20.  Double harmonic run; upper 
boundary at y^'*'=40 



Figure 78       Plots of a/a' versus f*" at y"*" 
.,     boundary at y^ =40 

= 10.  Double hannonic run; upper 
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Figure 79       Plots of    f/f versus /+ at y+ =5.   Double harmonic run; upper 
boundary at y^ =40 
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Figure 80a    Plots of u;+ versus y+ at z+=S2 from /■•■=10 to <+=100.  Dou- 
ble harmonic run; upper boundary at y/ =40 
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Figure 80b     Plots of «;+ versus y+ at 2+=32 from <+=110 to f+=200.  Dou- 
ble harmonic run; upper boundary at y + =40 
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the same direction from the wall up to the outer boundary. 

The path-line and streakline calculations are presented in Figures 81 and 

82. The same observations that were made for the single harmonic runs apply in 

this case too. 

The  statistically  averaged  flow  variables   are  presented   in  Figures  83 

through 87.   The most important result is the much better   agreement of the 

■ spanwise intensity profile with experimental data.  The w-intensity profile shows 

the same behavior as in the single harmonic runs. The skewness of the u-velocity 

profile is very much improved compared to the runs with one harmonic in the 

I spanwise direction.  Both skewness and flatness show very good agreement with 

experimental data.  The Reynolds stress, again, agrees with the experiments very 

well and the same applies for the average streamwise velocity profile. The calcu- 

Ip lated ti-intensity profile shows a somewhat large peak compared to the runs with 

a single harmonic . 

B. Upper boundary at y*=l5 
I 
I '" In these calculations all the energy in the three components of the velocity 

11 was associated with the X+=100 eddies.   The results of the computations are 

shown in Figures 88 through 105. 

The streamline contours are shown in Figures 88 through 92 for a calcula- 

tion with ^^1=15%. The flow at y + =15 is thus, seen to be open for 85% of the 

time. A streamwise vortical motion is only evident at f*" =20 and 70 and disap- 

pears quickly from the computational domain. 
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Figure 81       Trajectories of fluid particles in the cell.  Double harmonic run. 
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Figure 82       Streaklines for a double harmonic run.  Injection point at c,'*' =100, 
y,+ =1.25 
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Figure 83      Mean streamwise velocity for a double harmonic run; upper boun- 
dary at y^ =40 
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Figure 84      Reynolds stress and  -OF /«' w'    correlation for a double harmonic 
run; upper boundary at y/ =40 



Figure 85       Intensity of streamwise velocity fluctuations for a double harmonic 
run; upper boundary at y + =40 



Figure 86       Intensitites of the normal and spanwise velocity fluctuations for a 
double harmonic run; upper boundary at y/ =40 
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Figure 87       Skewness and flatness of streamwise velocity fluctuations for a dou- 
ble harmonic run; upper boundary at y/ =40 
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Figure 88      Streamline contours for a single harmonic run at t'*'=10 and 20; 
upper boundary at y^ =15 
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Figure 89       Streamline contours for a single harmonic run at <+=30 and 40; 
upper boundary at y* =15 
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Figure 90      Streamline contours for a single harmonic run at /+=250 and 60; 
upper boundary at y "*■ =15 
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Figure 91       Streamline contours for a single harmonic run at ^+=70 and 80; 
upper boundary at y/= 15 i   ' 
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Figure 92      Streamline contours for a single harmonic run at f+=^flO and lOO; 
upper boundary at y/ =15 
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The f-contour plots shown in Figures 93 through 97 are dififerent from the 

single harmonic runs with y/ ==40, in that they show large values of the vorticity 

for most of the time. There is no identifiable "irrotational" core and the f=0 

line lies close to the upper boundary or disappears completely from the computa- 

tional domain causing values of the streamwise vorticity to have the same sign 

throughout the cell. 

Characteristic time signatures of the three components of the velocity and 

the streamwise vorticity are shown in Figures 98 through 101. The main feature 

is the period of T"*" =100 for all the above flow quantities. 

The statistically averaged variables are shown in Figures 102 through 105. 

It is seen that very good agreement with experimental data is obtained. In par- 

ticular the w-intensity profile agrees very well with experiments in this region. 

The Reynolds stress correlation appears to be low close to the wall. It was found 

during other runs that higher values can be obtained if a slightly longer period 

(T* =120) for the velocity fluctuations at y/ =15 is used. 
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Figure 93      Streamwise vorticity contours for a single harmonic run at /+=10 
and 20; upper boundary at y^ =15 
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Figure 94       Streamwise vorticity contours for a single harmonic run at /+=30 
and 40; upper boundary at y/=15 
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Figure 95       Streamwise vorticity contours for a single harmonic run at f^ =50 
and 60; upper boundary at y/ =15 
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Figure 96      Stream wise vorticity contours for a single harmonic run at <+=70 
and 80; upper boundary at y * =15 
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Figure 97      Streamwise vorticity contours for a single harmonic run at f"*"=90 
and 100; upper boundary at y/=15 
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Figure 98      Plots of    «/«'    versus t^ at 2+ =6.  Single harmonic run; upper 
boundary at y^ =15 
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Figure 99      Plots of    v/v     versus f^ at z"^ = 6.   Single harmonic run; upper 
boundary at y/=15 
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Figure 100     Plots of    w/w  versus /"*■ at z"*" = 30.  Single harmonic run; upper 
boundary at y/=15 



.5 

8. 

5-. 

ZPLUS-30, Y+-t5. 

Y+-7.5 

8 
0, 

.B 

20 
40. 

60 
80. 

100 

Y+=3.75 

100 

100 

Figure 101     Plots of    f/f     versus t* at z* = 30.  Single harmonic run; upper 
boundary at y/=15 
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Figure 102     Mean streamwise velocity for a single harmonic run; upper boun- 
dary at y/ =15 



Figure 103     Reynolds stress and -UW/u v  correlation for a single harmonic run; 
upper boundary at y/=15 



Figure 104     Intensity of streamwise velocity fluctuations for a single harmonic 
run; upper boundary at y/=15 
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CHAPTER 6 

j    ENERGY CALCULATIONS FOR THE MODEL FLOW 

The results of the numerical computations for the terms appearing in the 

energy balance equations (4.50), (4.51), (4.52) and (4.53) will be presented in this 

chapter. The terms that were calculated are the ones appearing in the "isotropic" 

formulation of these equations because of the most straightforward physical 

interpretation of the viscous terms. On the other hand, the difference between the 

true and the "isotropic" dissipation in the turbulent kinetic energy balance was 

found to be negligible.       ' 

The results for the single and double harmonic runs were found to show no 

significant differences. Figures 106 through 110 present the energy calculations for jV 

the single harmonic run described in the previous chapter. All the terms are 

expressed in wall variables and the explanation of the various symbols used 

appear in Figure 106. Figure 106 shows the calculated term for the balance of tr. 

As mentioned in Chapter 4, the production of tr is large throughout the viscous 

wall region. The production curve reaches a maximum of 0.25 at y'^ =12. This is 

expected because the production is the product of the turbulent and viscous 

stresses, whose sum is equal to 1 in wall variables. This means that the product is 

maximized when the two stresses are equal to each other and attain the value of 

0.5 in wall units. At the wall the dissipation is equal to the viscous diffusion of «^ 
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energy. The viscous diffusion is positive for 0<y+<6 and becomes negative for M 

the rest of the viscous wall region showing a (negative) maximum at y"'"!=«10. fm 

The dissipation has fairly large values throughout the wall layer and the tur- 

bulent convection term is positive for 0<y+<12 and attains small negative | 

values for the rest of the field. Figures 107 and 108 show the calculated balances M 

of tr and vr. It can be seen that for ir the turbulent convective term is positive 

I for 0<y'*'<32 and that the pressure-velocity gradient interaction terin (p—^) is 
dy 

negative throughout the viscous wall region attaining higher values close to the H 

t 

I 

upper boundary. The dissipation is very small and the pressure-diffusion term 

assumes large values close to the upper boundary. The picture for w^ is different. 

The turbulent convective term is negative for 0<y'^ <35 and the pressure- velo- m 

city gradient interaction term is positive throughout the viscous wall region. The M 

dissipation term, while negligible close to the wall, attains large values close to 

the upper boundary. For both tr and or the viscous diffusion term is very small 

throughout the wall layer. As mentioned in Chapter 4  the pressure-velocity gra- I 

dient interaction terms represent transfer of kinetic energy between the two com- 

ponents of the velocity on the y-z plane. The calculations show that the direc- 

tion of this energy transfer is from the v to the w component of the velocity. In I 

order to remove the effect of the amplitude of the pressure fluctuations the corre- 

—3—       i9 
lation coefficient p-r—/p'(-r—)' is shown plotted in Figure 109 and the primed 

dy        dy 

variables are the respective r.m.s. values of the quantities in the numerator. It is 
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Figure 108    Balance of th« spanwise component of the turbirient kinetic energy. 
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seen that large values of the correlation are obtained close to the wall and close 

to the upper boundary. For comparison purposes we mention that the -UW/u v 

correlation has a value of 0.45 throughout the viscous wall region. 

Figure 110 shows the balance for the turbulent kinetic energy. It can be 

seen from a comparison with Figure 106 that almost all the terms are the same 

with the ones appearing in the balance equation for u^. The pressure-diffusion 

term is seen to have very small values in relation to the rest of the terms. The 

same comments that were tnade about Figure 106 apply in this case too. 
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CHAPTER 7 

SCALING FOR THE MODEL FLOW 

In this chapter we will attempt to relate the various parameters that are 

important in defining the structure of the wall layer and to construct guidelines 

for an optimization scheme in order to predict the characteristics of the optimal 

eddies. . 

For a  Gaussian signal the zero-crossing scale defined as A^—-— (where 

N^ is the frequency with which the signal crosses zero) is equal to the Taylor 

microscale Xp (Rice, 1954). Measurements of the ratio A/\-p by Antonia et al 

(W76) and Sreenivasan et al (1977), in several turbulent shear flows, suggest that 

A/Xj?«l (the value for a Gaussian signal) 

We will now assume that the wall eddies, calculated in Chapter 5, are 

related to the Taylor microscale Xj- as follows: Since there are two zero-crossings 

2 X* 
over a wavelength of X"*", N^= and A"*" = .  So for the dominant eddies in 

X+ in 

the viscous wall region of a turbulent shear flow we obtain the following relation: 

X?=^ (7.1) 

At the edge of the viscous wall region, which lies in the logarithmic portion 

of the velocity profile, the production of turbulent kinetic energy is equal to the 

dissipation (jP=e).   If we use the inviscid estimate e=Ci-^ for the dissipation 
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(Tennekes and Lumley, 1977 ) the equality of production and dissipation gives us 

the following relation: -utr——=Ci~- where q is the r.m.s. turbulent kinetic 
ay I 

energy and / is the characteristic size of the large eddies.  In the above equation 

we notice that for the log-region uv=C2U^ and    ',   — ^^   where K is the von- 
'■ ay     Ky 

Karman constant.  If we also assume that l=Ky (from mixing length arguments) 

we obtain that q^c^u^ or that q"*" is constant at the edge of the viscous wall 

layer.   We now assume that the dissipation at the same location is given by the 

q^ • 
isotropic relation e = 15i/-^.   By equating this form    of the dissipation with 

the one used above we obtain 

Since   we    found    previously    that    q=e^Ut,    the   above   relation    becomes 

15 
X^^= /■•■  and if assume again that l=Ky we obtain for the edge of the 

C,C3 

viscous waU region (y=y<,) the following relation : 

\ + 2        15/V      j. 

The constants appearing in equation (7.2) are K^=QA, Ci=0.8 (Tennekes 

and Lumley, 1977) and C3=2.72 (Laufer, 1954). Substituting in equation (7.2) 

we obtain X J^=2.76y/ and using equation (7.1) we get 

X+2=435.8y+ (7.3) 

If we now take y + =40 the above equation gives X'''=130  a value which is very 
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close to the value measured experimentally (X"*" !=5:^100). 

It thus appears that the dominant eddies in the viscous wall region are 

indeed characterized by the Taylor microscale.   It is to be noted that the Taylor 

A J" 
microscale is not a dissipative scale but that the ratio  is a dissipative time 

scale. Therefore the wall eddies are not Necessarily dissipative but they are 

related to the Taylor microscale through the zero crossing scale A. The relation 

obtained above i.e. X''"^=cy/, where c is a constant, implies that if y/ is con- 

stant, independent of Reynolds number, then X"*" will also not vary with the Rey- 

nolds number. For fully developed flows in pipes or channels and for zero- 

pressure gradient boundary layers y/ is indeed independent of Reynolds number. 

There are indications in the literature though that it may vary with non-zero 

pressure gradients (Kline et al 1967). 

A major goal of a theory of the wall eddies would be to predict X"*" without 

specifying a priori a value for y/. In such a ease, then, we would need to find an 

optimization criterion that would allow us to select the optimum value of X"*". 

The optimization process could make use of the computational model described 

in Chapter 4 in the following way: A value of X"*" can be selected and y/ is sub- 

sequently picked so that equation (7.3) is satisfied. The period of the wall eddies 

is selected so that r''"=X''' from arguments presented in Chapter 4. In order to 

implement the calculations we need to know the energy of the v-w motion at 

y"*" =y^.   If this were known then we could calculate the average streamwise 
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velocity Ui at y+=:y^+, at the end of the computation, by enforcing Newton's 

law of viscosity at the wall. By repeating, then, the same calculation we could 

obtain pairs of \^ ,Ui and the optimum X"*" would have to satisfy a certain cri- 

terion. For the above described optimization process such a criterion could be 

the maximization of Ui . This would then mean that the optimal eddies are the 

ones that are the most effective in transporting streamwise momentum to and 

from the wall. Similar optimization processes could be constructed using different 

criteria (e.g. maximization of the production of turbulent kinetic energy etc.) but 

the details for such calculations are not known at the present time. We, 

nevertheless, can conclude that the dominant wall eddies are associated with the 

Taylor microscale Xj- and that equation (7.3) is an important relation for the spa- 

tial structure of these eddies. 



CHAPTER 8 I 

DISCUSSION 

In this chapter we will discuss the results of conditional averaging on the 

experimental data of Lau (1980) and we will elaborate on the calculated tur- 

bulent characteristics of the viscous wall region. On the basis of this discussion 

we will propose a physical picture of the flow field that we believe is capable of 

describing the energy and vorticity dynamics of the viscous wall region and its 

interaction with the outer flow. 

I.  Conditional averaging 

Thfe use of conditional averaging techniques revealed that strong spanwise 

flows at the wall are closely associated with strong spanwise flows at j/"*" =40 and 

20 that have the same direction and occur at an earlier instant in time. A charac- 

teristic feature of the flow field was found to be the reversal of the spanwise flow 

at y+ =40 during the time that a strong spanwise flow occurs at the wall. At 

j^+=20 the conditionally averaged spanwise velocity, leads but always has the 

same phase, as the flow at the wall. 

The measurements of the conventional correlation coefficients as a function 

of the three spatial coordinates and time are consistent with the above observa- 

tions. In addition they provide support for the notion that the flow is coherent 

from the wall out to y^ =40. 

2S4 
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Various other models, that attempt to account for the kinematics of the 

viscous wall region, have been proposed in the literature. Prominent among these 

is the suggestion that the flow is dominated by counterrotating vortices, whose 

length in the flow direction is of the order of Ax"*" f=«1200. Their extent in the 

direction normal to the wall doesn't seem to be well defined but conventional 

correlation measurements and conditionally averaged measurements suggest that 

the eye of such vortices would not move, on average, below y"*" ^5^20-30. Such 

vortices are visualized to be "pumping" low momentum fluid away from the 

wall and thus influencing the streamwise velocity field. 

The results of the present work agree with this model in that they support 

the notion that the wall structures transfer negative momentum fluid away from 

the wall and thus influence the dynamics of the flow in the streamwise direction. 

However, the conditionally averaged results at y"^ =40 indicate that the spanwise 

flow patterns at the wall are caused by flow deviations outside the viscous wall 

region thatt are in the same direction. The appearance of streamwise vortical 

structures is, therefore, considered to be a consequence of the lag time for a span- 

wise disturbance to travel from y"*" =40 to the wall. 

According to the flow model used in this paper the streamwise extent of 

this "vortical" structure should be Ax'''!=«-300 : If it is assumed that a spanwise 

m disturbance originates at y"*" =40,x"'" !=«-300 and T"'" =0 and travels both down- 

stream    and    towards    the    wall,    then    it    reaches    x'''^0,y'*"=40    and 

x+!=«-300,y+=0 at about the same time {T'^^20). The flow at the wall at 

I 
I 
I 
I 
I 

I 
I 
I 
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1+ «iO, T"*" !=«20 will, on average, be in the opposite direction, having been caused 

by a spanwise flow that occurred earlier in time. So when the flow changes direc- 

tion at i+=0,y'''=40 and T'*'^20, the flow at the wall is expected to be in the 

opposite direction for -150<i<150, which is consistent with the results of Fig- 

ure 7. Similar conclusions were reached, lately, by Kim (1983) from an analysis of 

a large-eddy simulation of turbulent channel flow. This work will be discussed 

later in more detail in connection with the structure of vorticity in the viscous 

wall region. 

Blackwelder and Eckelmann (1979) used a conditional averaging scheme 

that is triggered by a sharp acceleration of the flow in the streamwise direction 

following a streamwise momentum deficient flow at y'^=l5. Their results difi'er 

from the results presented in this work in a number of ways and this could par- 

tially account for their different viewpoint on the wall eddies. The wavelength of 

their wall patterns is not very well defined and there is a loss of correlation at 

s"*" =34, especially with the <«> velocity profile. Their measurements of 

<«>> at ^■'■=40 don't show the characteristic signature of the spanwise com- 

ponent of the velocity that our measurements revealed; that is, a flow reversal, 

with the return flow having the same magnitude as the flow that preceded it in 

time. 

Their measurements, especially at z'*"=34, would also imply that a vortical 

structure appears as a suddenly spinning mass of fluid and not because of the lag 

time  between   flow   changes   at   y'*'=40   and   j/"*'=0.   We  believe  that   these 
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differences arise because the detection scheme used by Blackwelder and Eckel- 

mann has the disadvantage, that a single fixed detection probe does not use 

information regarding the spatial development of the patterns under investiga- 

tion. 

It is also our contention that the event that triggered the conditional 

averaging scheme used by Blackwelder and Eckelmann is just one aspect of the 

evolution of the coherent structures in the wall region. Consequently, they were 

not able to focus sharply on the spanwise variations in w or s^ that give evidence 

of flow flow oriented wall eddies. . '       . 

n.   Numerical computations 

The purpose of the numerical computations, described in Chapter 5, was to 

calculate the turbulent characteristics of the viscous wall region by specifying 

realistic boundary conditions at the edge of the wall layer. The primary objective 

was to obtain the best agreement between the calculated statistically averaged 

flow variables and experimental measurements in the viscous wall region. 

When the upper boundary of the computational domain was set at y^ =^\h 

a single harmonic, of X"''=100, was used in order to describe the spanwise varia- 

tion of the velocity fluctuations. The calculated streartiwise contours show that 

the flow at j//=15 is open for most of the time and is, therefore, in phase with 

the flow very close to the wall. This is an agreement with the conditionally aver- 

aged results at j/"^ =20 where the <«;> signal was found to be in phase with the 
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<s^> patterns at the wall. The very good agreement of the calculated average 

streamwise velocity, Reynolds stress and turbulent intensities with experimental 

data indicates that the X'''=100 eddies are, indeed, the dominant eddies from the 

wall up to y^ =15. In this region, therefore, these eddies create a turbulent flow 

field which can account for momentum transport and for the production of Rey- 

nolds stress, and whose intensity, in all thre^ directions, agrees very well with 

experiments.      • 

When the upper boundary of the computational domain is set at y^ =40 

the situation is different. The results of the single harmonic, X'^=100, calcula- 

tions show that the computed average properties of the flow have good agreement 

with experiments, except the intensity of the spanwise component of the velocity. 

As mentioned in Chapter 5, the main feature of the lateral profiles of w? is a 

zero-crossing which moves, as time progresses, towards the wall. This behavior 

causes the development of large stresses {dw/dy) close to the upper boundary 

and the appearance of a local maximum {dw/dy=0) in the region 10<y"*"<25, 

which also moves towards the wall. The low values of the spanwise intensity 

profile in the region lOKy"^ <25 are a consequence of the zero-crossing in the w 

profiles. This in turn is related to the streamwise vortical structures that were 

found to be the main feature of the flow in the viscous wall region. These struc- 

tures are associated with strong spanwise flows at y^ =40 which are of opposite 

sign to the spanwise flows at the wall, in accordance with the conditionally aver- 

aged results. The "eye" of the streamwise vortices spends most of the time below 
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y + =40 in the central region of the cell, where the spanwise distribution of w is 

expected to show a maximum. This does not prevent the normal component of 

the velocity from attaining high values, since v is expected to reach a maximum 

close to the sides of the .cell. Therefore, the presence of the "eye" of the stream- 

wise vortical structures below y/ =40, for most of the time, affects only he 

amplitude of the calculated spanwise flows. The implication of these results is 

that the X'*'=100 wall eddies can not account for the large amplitude spanwise 

flows in the region 15<j/''"<40, that have been observed experimentally. They 

can, however account for the momentum transport and the Reynolds stress pro- 

duction throughout the viscous wall region. Moreover, the calculated «- and v- 

intensity profiles agree well with experiments and this is reflected by the good 

agreement of the computed -uvju v  correlation with measurements. 

The characteristic signature of the streamwise vorticity in the y-direction 

was found to be associated with large values of the vorticity close to the upper 

boundary and at the wall that are of opposite sign. Kim (1983) calculated, 

recently, conditional averages of the streamwise vorticity in the viscous wall 

region by applying the V.I.T.A. technique to data obtained from a large eddy 

simulation of turbulent channel flow. Based on his results, he proposed a charac- 

teristic profile for the streamwise vorticity which is in good agreement with the 

one calculated in the present work. He found that there are two distinct groups 

of vortical structures that contain opposite signs of streamwise vorticity: one near 

the wall and the other slightly away from the wall. These findings are in agr ^'> 
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ment  with  the results  shown  in Figure  42,  where  these two  groups  can  be 

observed around y''":=30 and close to the wall. • - 

The dynamic picture of the streamwise velocity field agrees with the meas- 

urements of Hogenes (1979) in regard to the dynamic sequence of inflows and 

outflows. Figure 50 shows the temporal succession of inflows and outflows for a 

fixed spanwise location in the cell. Both the temporal and spatial coupling of 

inflows and outflows is evident from the contour plots in Figures 34 through 38. 

The results agree with the findings of Hogenes and Hanratty (1982), in that they 

show that the v-w motion affects the dynamics of the flow in the axial direct on 

by creating large fluctuations of the streamwise velocity component. 

The calculated «^-profiles at the wall and the correlation /?,, „ (Az) ind cate 

that the separation of the flow in the spanwise direction from the wall is responsi- 

ble for the creation of smaller scale velocity fluctuations close to the wall and for 

the shifting of the 5^-patterns. The separation of the flow also appears to be a 

precursor for the shrinking of the streamwise vortical structures and the move- 

ment of their centre towards the wall. 

The path-line and streakline calculations are important because they 

emphasize the unsteady nature of the flow field. It can be seen from Figure 51 

that the fluid particles that are close to the wall stay there for a long time com- 

pared to the period of the imposed velocity fluctuations at the upper boundary. 

This then implies that dye injected close to the wall would tend to stay in the 

same region for a long period of time. This observation is made more clear by the 
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streaklines shown in Figure 52. It is seen that the dye initially tends to remain 

close to the wall. Because of the very small normal velocities in thb region, the 

changes of the v-w field result in only a spanwise spreading of the dye-particles. 

As time goes on the dye lifts up gradually away from the wall and is finally 

ejected outward, towards the upper boundary. This picture of the flow agrees 

very well with the flow visualization experiments of Kim et al (1971) in which 

they injected dye through a slot at the wall of a turbulent boundary layer. The 

dye was observed to be pushed in the spanwise direction, thus forming the well 

known "wall streaks". As the streaks migrated downstream they lifted up away 

from the wall and created turbulent "bursts" of low-streamwise velocity fluid. 

The streakline calculations of the present work represent a two-dimensional pic- 

ture of the flow field. If the streamwise motion were taken into account, the 

dye-streaks at the wall would look like elongated filaments meandering in the 

spanwise direction and ejecting low-streamwise velocity fluid from the wall 

towards the upper boundary. 

The implications of the above observations can be appreciated more in the 

case where a wide range of frequencies is used for the signals at y + =40. It can 

be seen from Figures 58 through 60 that even though the v-w field changes 

direction with high frequency, much lower frequencies are obtained in the stream- 

wise velocity component. Since the period of the streamwise velocity fluctuations 

is related to the bursting frequency, it can be seen that bursting arguments may 

fail to specify the period of the velocity fluctuations on the y-z plane.  It is not 

I 
I 
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clear, however, whether the higher frequency v and w fluctuations should be 

associated with the X"*" =100 eddies or with eddies of much smaller scales that are 

probably not so important in transferring momentum to and from the wall. 

Similar calculations to the ones described above have been carried out by 

Hatziavramidis (1978). In these calculations the outer flow was visualized to be 

well mixed and the boundary conditions at y^ =40 specified the spanwise velo- 

city component of the X''"=100 eddies and a zero stress ( =0). The calculated 
dy 

streamline patterns showed that the flow at the upper boundary is open for most 

of the time. Therefore, the streamwise vortical structures, that were found in 

this work to be the main feature of the flow field, lasted for a shorter time. The 

advantage of prescribing both v and w at y^ =40 is that the percentage of the 

closed flow can be defined a priori, in accordance with the results of conditional 

averaging. 

The spanwise intensity profile, in the calculations of Hatziavramidis, was 

found to have fair agreement with experiments, exhibiting low values in the 

region 15<y'''<30. The intensity of the normal component of the velocity 

assumed high values especially in the region 30<j/''"<40. In the present work 

the u-intensity profile shows good agreement with experiments in the same 

region. There is an indication that the slightly lower values (when compared to 

experiments) of the v-intensity close to the wall, that were calculated in this 

work, could be improved by the introduction of smaller scales. It is not clear, 

however, what fraction of the tr energy these eddies should contribute to the 
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flow. As mentioned earlier, the "eye" of the vortical structures affects only the 

spanwise intensity profile giving rise to a plateau region from y* =10 to y"*'=25. 

This was found to be the characteristic profile of all the fixed ceil single harmonic 

runs. 

The most important achievement of the computational work is the use of 

two spatial harmonics in order to represent the velocity field at y^ =40. The 

limited amount of experimental data indicates that the scale of the important 

eddies in the viscous wall region increases with distance from the wall. The 

specification of two length scales at y^ =40 actually defines the interaction of 

the viscous wall region with the outer flow. As will be discussed later, it is this 

interaction that controls the energy and vorticity dynamics of the flow and pro- 

vides the ground for the creation and maintenance of wall turbulence. 

The difference between these calculations and the single harmonic runs is 

that a fraction of the tr and vr energy at y/ =40 is attributed to scales of 

X+=:400. Most of the «^ energy at the upper boundary is also associated with 

eddies of X'*'=:400. These eddies are visualized to have their effective centres 

above yj'=40 for 100% of the time and, as a result, the induced flow field is 

100% open. 

The results presented in Chapter 5 show that the average properties of the 

calculated flow field are in good agreement with experimental measurements. 

The most noticeable result is that the spanwise intensity profile has good agree- 

ment with experimental data throughout the viscous wall region.  It is thus seen 
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that the introduction of longer scales at y/ =40 induces the necessary flow con- 

ditions for the creation of large spanwise flows, whose magnitude agrees with 

measured values of the spanwise intensity. That leads us to the conclusion that 

the experimentally measured spanwise intensity profiles are not associated with 

the X"*" =100 wall eddies. If this were the case, then the experiments should give 

us a profile similar to the one obtained from the single harmonic, X"*" =100, fixed 

cell runs. 

The rest of the statistically averaged flow quantities show the same 

behavior as in the single harmonic runs. The only difference is that the values of 

the skewness of the streamwise velocity component are greatly improved dose to 

the upper boundary. This is believed to be caused by the large scale spanwise 

flows which were absent in the single harmonic runs. These flows provide span- 

wise mixing on the same range of scales that are characteristic of the large scale 

«-eddies. 

As mentioned above the spanwise intensity signature of the X'^=:100 wall 

eddies is completely masked by the larger scale spanwise flows. One then might 

wonder whether this is also true right at the wall, where it has unambiguously 

been established experimentally that the X"^ =100 eddies define the scale of the 

velocity fluctuations (Kim et al 1971, Lee et al 1974). The calculated R,,^{Az) 

correlation in Figure 71 shows that, indeed, the X"*" =100 eddies are the dominant 

eddies close to the wall. It is thus seen that even though the outer flow eddies 

are important in defining the level of spanwise mixing in the viscous wall region, 



275 

their importance close to the wall is negligible. It is the X'''=100 eddies that 

contain most of the energy of the velocity fluctuations close to the wall and con- 

trol the momentum transport to and from the solid boundary. 

In order to compare the results of the single and double harmonic calcula- 

tions, the statistically averaged flow variables are reproduced in the series of Fig- 

ures 111 through 115. The solid lines represent the results of the double har- 

monic runs and the dashed lines are the results of the single harmonic computa- 

tions. These plots emphasize the similarities and differences in the results of the 

two calculations. It can be seen that there is no essential difference in the predic- 

tion of the average velocity profile, the Reynolds stress, the «- and v- intensity 

profiles and the flatness of the streamwise velocity fluctuations. As discussed 

previously, the spanwise intensity profile from the double harmonic calculations 

II shows good agreement with experiments.  It can now be seen that the small "wig- 

gle" at y/=40 is not computational but is a "remnant" of the characteristic 

spanwise  intensity  profile  of the single  harmonic  runs,  where large stresses 

II [dw/dy] are developed at the upper boundary. The improved values for the «- 

skewness  in the region 20<y+ <40 are also made clear in Figure 115. 

Similar calculations with the double harmonic runs described above have 

III been carried out by Chapman and Kuhn (1981). The main difference is that the 

outer flow eddies were visualized to be associated with a "pulsating" type of flow 

at y/ =40 on a plane parallel to the wall with negligible amount of energy in the 

normal component of the velocity.    These calculations,  with  different    model 
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parameters, were reproduced during the course of this work and are presented in 

Appendix B. Even though good agreement is obtained with experiments, wall 

correlations show that the wall s,- patterns are greatly affected by the pulsating 

spanwise flows at the upper boundary. If is thus concluded that the outer flow 

eddies have to be modelled as eddies with finite wavelengths contributing a frac- 

tion of the v^ energy at y/ =40. 

The calculated energy balances for the model flow show a number of 

interesting characteristics.   The turbulent convective transport of «^ energy is 

positive close to the wall and attains small negative values for the rest of the 

viscous wall region.   The same term for the tr energy is positive up to y+^32 

and for the w^ energy it is negative up to y+!^35.   This, then, means that ^ 

energy is convected into the region 0<y+<32 and i?" energy is convected out- 

side the region 0<y+ <35 by the fluctuating normal component of the velocity. 

On the other hand there is convective transport of tr energy in the region 

0<y+<12 and outside the region 12<y+<40.  The calculated pressure-velocity 

gradient interaction correlation coefficient shown in Figure 109 indicates that 

there is significant transfer of energy from the v to the w component of the velo 

city.   It is to be noted that the same behavior was observed in the large-eddy 

simulation calculations of Kim and Moin (1979) and Moin and Kim (1981). 

They,   also, found that there is considerable transfer of energy from the normal 

to the spanwise component of the velocity by what they called "splatting efl-ect". 
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The calculations presented in Chapter 5   have established the notion that 

the v-w motion creates large amplitude streamwise velocity fluctuations.  Figures 

106, 107 and 108 show that there is production of turbulent kinetic energy only 

in the streamwise component of the velocity.   The fact that this energy is pro- 

duced by the flow field on the y-z plane is supported by the calculations of 

Hatziavramidis (1978).   In these calculations zero-energy was prescribed to the 

«-component of the velocity at y + =40.  The results of the computations showed 

that the calculated M-intensity profile had good agreement with experiments for 

0<2/+<25. 

The results of the calculations discussed earlier and the computed energy 

balances for the model flow can now help us to construct a physical model that 

describes the interaction of the viscous wall region with the outer flow.   A 

schematic of this interaction is shown in Figure 116.  The dominant eddies at the 

wall are the X+=100 eddies.  It was shown before that these eddies can account 

for momentum transport, Reynolds stress production and the creation of « and v 

velocity fluctuations whose intensity agrees with experiments.   Since there is no 

production of i)^energy in the viscous wall region, this energy should come from 

the outer flow.   The positiveness of the turbulent transport term for Q<y+ <32 

shows that indeed i;^ energy is transferred into this region from the outer flow. 

Part of the v^ energy transferred into the wall region is converted to iiJ energy 

through pressure-velocity gradient interactions.  The positiveness of the turbulent 

convective transport term, in the ii;^energy balance, for y+ >35 shows that there 



creation of v^ a w^ energy 
through piy. Interactions 

creation of uj^ vorticity 
through stretching 1 

. t      I transport of oi^ vorticity | 
transfer of u^ energy J ~-    —    to the outer flow 
into the outer flow transfer of v a w^ i 

1 edge of viscous energy to the wall region   ' ^''^^isport of Wj^ 
wall region >^ I vorticity to the 

creation of u"" energy       j     V creation of <JJ^ vorticity 
from V, w. motion   y+ft. 30-50 from v, w motion 

r-v 
X^ « 100 

^A  ^ V \ 

I 
I 
I 

00 

Figure 116     Energy and" vorticity traiisport from interaction of the wall and the 
outer layer. 
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is w^ energy transferred in this region. It is not clear, however, whether this 

ccimes from the outer flow or from the flow in 0<y+<35, where this term is 

negative. The v-w field that is, thus, set up creates iP^ energy by producing 

Reynolds stresses and m^an shear. The ii^ energy produced is transferred to the 

outer flow by turbulent transport.  In this region energy is  transferred from the 

flit 
u to the V and w components of the velocity through p~ interactions. As dis- 

cussed in Chapter 4, these interactions are absent in the viscous wall region due 

to the homogeneity assumption. The subsequent transfer of v^ and possibly w- 

energy from the outer flow into the wall region closes the cycle of events. 

An analogous picture for the interaction of the wall layer with the outer 

flow can be constructed in terms of vorticity and is also shown in Figure 116. As 

discussed in Chapter 4  there is no production of streamwise vorticity in the wall 

region.   The v-w motion creates spanwise vorticity U—  which is transported 

to the outer flow. In this region streamwise vorticity is produced by the stretch- 

ing of the spanwise vorticity and is subsequently transported into the wall layer. 

In the wall layer the streamwise vorticity induces a v-w field that produces span- 

wise vorticity and the cycle of events is completed. 
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CONCLUSIONS 

Iff Conditionally averaged measurements of the flow in the viscous wall region 

showed that strong spanwise flows at y"*" =40 are related to strong spanwise flows 

at the wall that are of opposite sign. At y"*" =20 the spanwise flows are always in 

phase with the flows at the wall. 

The characteristics of the dominant eddies at the wall were explored by 

performing numerical computations using a fixed cell in space. Close to the edge 

of the viscous sublayer (j/+=15) the use of a single spatial harmonic (X'*'=100) 

was found to be adequate in predicting all the important features of turbulence. 

At the edge of the viscous wall layer two spatial harmonics were found to 

be necessary for the description of the flow field. The longer scale outer flow 

eddies produce most of the spanwise mixing in the wall region. The smaller scale 

X"'"=100 eddies can account for momentum transport, Reynolds stress produc- 

tion and the creation of u^and tr energy in this region. 

H A mechanism for the generation of smaller scales at the wall appears to be 

the separation of the flow in the spanwise direction. This convective type of 

motion creates small scales by the non-linear interaction of larger eddies. 

Evidence for a frequency filtering process results from calculations where a 

11 wide range of frequencies is used to describe the flow on the plane perpendicular 
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to the mean flow direction. According to this process the streamwise velocity 

fluctuations are of much lower frequency content than the fluctuations of the nor- 

mal and spanwise components of the velocity. 

The physical picture of the flow that results from the interaction of the wall 

with the outer layer is the following: The mean flow energy is primarily produced 

in the outer layer by the mean pressure gradient and is subsequently transferred 

into the viscous wall region. All the turbulent kinetic energy is produced by the 

v-w flow in the wall layer and is concentrated in the streamwise component of 

the velocity. This energy is convected out of the wall layer into the core region, 

where part of it is transferred to the motion on the y-z plane. The cycle of 

events completes with the transport of tr energy into the wall region and the 

set-up of the v-w field, whereby energy is transferred from the v to the w com- 

ponent of the velocity by means of pressure-velocity gradient interactions. 
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NOMENCLATURE 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Symbol Description Units 

C Courant number 

C'„ Reynolds stress correlation coefficient 

c. Convection velocity in the ar-direction cm {sec 

Cp Convection velocity in the y-direction cm/sec 

D{t) Dectection function 

Z?,-y Rate of strain tensor sec"* 

Di, Isotropic dissipation cm^/sec^ 

D* DiSerence 8,lt^)-8,Jitk) sec"* 

Ei,E2 Voltage drops across resistors 1 and 2 Volt 

E^i,E,i,E„i Percentage of energy in the u,v and w 
components of the X"*" =100 eddies 

/(/) Detection function 

F Number of bursts per unit 
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span per unit time cm~*sec~* 

H Convective terms in the vorticity transport 
equation; channel half-height 

I(t) Indicator function 
I . 

Jifl Transport of «,• uy 

h. Wavenumber vector 

kg,kg Wavenumber components in the x and z directions   cm~^ 

K Von-Karman constant; SGS eddy -coefficient 

/ Length scale cm 

M Number of panels in the i:-direction 

n Frequency sec"^ 

N Number of panels in the y-direction; 
percentage of closed flow 

N^ Frequency of zero-crossings sec~^ 

O Order of magnitude 

P Fluctuating pressure dyn/cm^ 



I 
I 
II 
II 
I 

I 
I 
I 
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p{-,) Joint probability density function 

P Power spectral function; production of 
turbulent kinetic energy 

Mean pressure dyn/em'^ 

III Pfj Production of M,- «y 

II Pk Product «J<*)-a,.(/A) 

Relaxation constant for the iteration on 
the boundary vorticity 

£ Physical space vector 

Rj^g Correlation coefficient between A and B 

Turbulent Reynolds number ( ) 

Re Reynolds number 

_2 
sec ' 

III Pj^Py^Pz Production of a;„a;,,a;, 

I (jf* Instantaneous turbulent kinetic energy cm^/sec" 

I Q Defined in equation (4.23) 

II (^ Conditionally averaged Q 
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Re^ Momentum thickness Reynolds number 

«, Streawise component of the fluctuating 
velocity gradient at the wall sec~^ 

«, Spanwise component of the fluctuating 
velocity gradient at the wall sec"^ 

Source term defined in equation (4.24); 
slope of the (v )"•■ intensity profile 

S^ Threshold level for 5^ 

5^^ Average value of S^ 

Sj^ Detection function 

Sg Instantaneous streamwise velocity 
gradient at the wall sec' 

Time 

1 

sec 

t^ Time reference point for 
conditional averaging sec 

Period of velocity fluctuations sec 

T^i,T^i,T^i Periods for the velocity fluctuations of 
the X+ =100 eddies sec 

r,2, ^»2) ^t»2 Periods for the velocity fluctuations of 
the outer flow eddies sec 
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^B Bursting period sec 

Period of time for conditional averaging sec 

Fluctuating velocity component in 
the i-direction cm/sec 

™ «* Friction velocity ( A/-^) 

I 
I 
I 
I 
II 
I 
n 
I 
I 
I 
I 
I 
I 

cm/sec 

«ii«2)*'3 Fluctuating velocity components in 
directions 1, 2 and 3 cm/sec 

«£,,M£2 Amplitudesof «£i(<),«i2(0 cm/sec 

U Instantaneous streamwise velocity cm /sec 

Ui,U2,U^ Instantaneous velocity components in 
directions 1, 2 and 3 cm/sec 

U^ Streamwise velocity at infinity cm/sec 

Ug Characteristic velocity; centerline velocity cm/sec 

Fluctuating velocity component in the 
y-direction; Kolmogorov velocity scale cm/sec 

Vii,vi2 Amplitudes of W|;i(0,«£2(0 cm/sec 

Vii,V2i Linearized voltages 
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w Fluctuating velocity component in 
the z-direction cm/sec 

V'li,v)i2 ALmplitndes of Wii{t),wi2{t) cm/sec 

Coordinate in the mean flow direction; 
fraction of Reynolds stress contributed by 
the X+ =100 eddies at y + =40 

Position vector 

Coordinate in the direction normal 
to the wall em 

y^ Edge of the viscous wall region cm 

« Coordinate in the span wise direction cm 

2^ Length of computational domain in 
the spanwise direction tm 

Greek Letters 

■V* "   . ■ '" 

a Angle between w and the flow direction 

ff Angle between v and the flow direction 

7 Average value of/(f) 

S Boundary layer thickness em 
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II 
I 
I 
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I 
I 
I 
I 
I 

aw: 

6* Displacement thickness cm 

5,- • Kronecker delta 

A Length scale for LES 

A-,A^ Space increments in computations cm 

At Time increment in computations sec 

C Dissipation rate , cm^sec^ 

£gg Resolvable-scale dissipation rate in LES cm^/sec' 

f Streamwise vorticity sec"^ 

17 Kolmogorov length scale cm 

X Wavelength cm 

X,l,X,i,X^i Wavelengths for the X"*" =100 eddies cm 

X„2,X«2A«2 Wavelengths for the outer flow eddies cm 

Xj Taylor microscale cm 

A Zero-crossing scale cm     ^ 

•'/i Isotropic eddy-viscosity coefficient 
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''/I* Inhomogeneous eddy-viscosity coefficient 

u Kinematic viscosity cm^/sec 

Vj Eddy v^cosity cm^/sec 

p Density glcm^ 

E Summation sign 

Time delay for correlation coefficients; 
Kolmogorov time scale sec 

T,y Stress tensor 

^,-y Pressure-strain "redistribution" tensor 

^iiii^«2>^»i Phases relative to the phase 
<^f2.^.2   . ofw'iilO 

$ Power spectra density function 

♦ Stream function 

w Frequency , 2;rn sec~^ 

<jg,<jj^,tjjg Instantaneous vorticity components see"* 
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Subscripts, superscripts, and overhead symbols 

- Space and time average quantity 

' ' Root-mean-squared quantity 

+ . Quantity made dimensionless with 
11 wall parameters, u, and v 

11 0 Quantity calculated at the upper 
boundary of the computational domain 

II 
D 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

v) Quantity calculated at the wall 

Conditional average 

\ 
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APPENDIX A 

COMPUTER PROGRAM 



PROGRAM CLADIR(INPUT,OUTPUT,TAPE2,TAPE4,TAPES,TAPE21, 
$TAPE24,TAPE?,TAPES,TAPE9,TAPE13,TAPE15,TAPE16,TAPE17, 
$TAPE18,TAPE19,TAPE20,TAPE22,TAPE23,TAPE25,TAPE26,TAPE27, 
$TAPE28,TAPE29,TAPE30,TAPE31,TAPE32,TAPE88) 

C .  '.     ■ ■■* 

c 
c************************************************************ 
c * 
C THIS PROGRAM CALCULATES THE STREAMLINES PATTERN * 
C      FOR A FIXED CELL OF THE MODEL FLOW IN THE * 
C ; VISCOUS WALL REGION * 
C * 

C 
C   BOUNDARY CONDITIONS AT ¥=¥0: 
C 
C   W=WO(Z,T)   V=VO(Z,T) 
C 
C   INPUT FILES 8 

C TAPE2»PSI(NBEF): CONTAINS PSI,ZETA AND UCOM FROM 
C PREVIOUS RUN 
C TAPE4=UVWINP: CONTAINS THE THREE FLUCTUATING 
C COMPONENTS OF THE VELOCITY AT THE 
C UPPER BOUNDARY 
C TAPE5=DAT(NBEF): CONTAINS STATISTICAL STORAGE 
C ARRAYS PROM THE PREVIOUS RUN 
C TAPE21=PAR(NBEP): CONTAINS THE COORDINATES OF TIffi 
C PARTICLES IN THE BEGINNING OF THE 
C RUN 
C TAPB24-STK(NBEF> i   CONTAINS THE ENDPOINTS OF THE 
C PATH-LINES IN THE BEG^ NING OF 
C THE RUN 
C************************************************************ 
C OUTPUT FILES 
C************************************************************ 
C TAPE7=RES(NT0T): CONTAINS INFORMATION RELATED TO THE 
C EXECUTICMJ OF THIS RUN 
C TAPE8=PSI(NT0T); CONTAINS PSI,ZETA AND UCOM AT THE 



C END OF THIS RUN 
C TAPE93DA,T(NT0T) : CONTAINS UPDATED STATISTICAL STORAGE 
C ARRAYS 
C TAPE13»DPL(NT0T): CONTAINS STATISTICAL QUANTITIES 
C THAT ARE TO BE PLOTTED USING GCS 
C TAPE15»UVE: CONTAINS THE STREAMWISE VELOCITY 
C COMPONENT AT YPLUS»» (Jl-1) *DY, (J2-1) *DY, (J3-1) *DY 
C TAPE16«PIE: CONTAINS THE WALL PRESSURE 
C TAPE17-UVG: CONTAINS THE STREAMWISE VELOCITY 
C GRADIENTS AT THE WALL 
C TAPE18«WVG: QOSTAINS THE SPANWISE VELOCITY 
C GRADIENTS AT THE WALL 
C TAPE19»WVE:, C(MJTAINS THE SPANWISE VELOCITY 
C COMPONENT AT YPLUS=(Jl-1)*DY,(J2-1)*DY,(J3-1)*DY 
C TAPE20«VVE: CCHSITAINS THE LATERAL VELOCITY 
C COMPONENT AT YPLUS=(Jl-1)*DY,(J2-1)*DY,(J3-1)*DY 
C TAPE22«TRA: C(MJTAINS THE COORDINATES OP THE 
C PARTICLE TRAJECTORIES THROUGHOUT 
C THE RUN 
C TAPE23=PAR(NTOT): CONTAINS THE COORDINATES OF THE 
C PARTICLES AT THE END OF THIS RUN 
C TAPE25-STR: CONTAINS THE COORDINATES OP THE PATH 
C LINES THAT START PROM THE INJECTI(»J 
C POINT 
C TAPE26=STK(NTOT): CONTAINS THE ENDPOINTS OF THE PATH- 
C LINES AT THE END OP THIS RUN 
C TAPE27=UTAt CONTAINS THE STREAMWISE VELOCITY COMPONENT 
C AT ZPLUS»(I1-1)*DZ, (12-1) *DZ, (13-1) *DZ, fI4-l)*DZ 
C TAPE28=VTA: CONTAINS THE LATERAL VELOCITY COMPONENT 
C AT ZPLUS«(I1-1)*DZ, (12-1) *DZ, (13-1) *DZ, fI4-l)*DZ 
C TAPE29»WTA: CONTAINS THE SPANWISE VELOCITY COMPONENT 
C AT ZPLUS=(I1-1)*DZ, (12-1) *DZ, (13-1) *DZ, (14-1) *DZ 
C TAPE30»ZETi CONTAINS THE STREAMWISE VORTICITY 
C AT YPLUS=(J1-1)*DY, (J2-1)*DY,(.T3-1)*DY 
C TAPE31-V0R: CONTAINS THE STREAMWISE VORTICITY 
C AT ZPLUS=(I1-1)*DZ, (12-1) *DZ, (13-1) *DZ, (14-1) *DZ 
C TAPE32=PLO: CONTAINS PSI AND/OR U AND/OR ZETA 
C AND/OR PIESH DATA WHICH ARE TO BE PLOTTED 
C USING CONREC PROM NCAR 



c 

s 

c 
C        READS   INPUT  PARAMETERS 
C 



C B- DIMENSIONLESS LENC3TH OP THE COMPUTATIONAL 
C DOMAIN IN THE SPANWISE DIRECTION 
C D- DIMENSIONLESS LENGTH OF THE COMPUTATIONAL 
C DOMAIN IN THE LATERAL DIRECTION 
C NBEFl NUMBER OF TIME STEPS IN PREVIOUS RUN 
C NCB: TOTAL NUMBER OF POINTS USED FOR 
C STATISTICAL CALCULATIONS IN PREVIOUS 
C RUN 
C NINDEX: NUMBER OF TIME STEPS IN THIS RUN 
C ITERM: MAXIMUM NUMBER OF ITERATIONS OF ADI 
C SCHEME AT EACH TIME STEP 
r E- ACCURACY OF ^CONVERGENCE OF ADI SCHEME 
C NPLOT: T?ME STEP WHERE PLOTTING OF PSI STARTS 
C ^LOT; TIME STEP INCREMENT FOR PLOTTING OP PSI 
C OTLOTZ:ilME STEP WHERE PLOTTING OF-ZETA STARTS 
c SLOTZ TIME STEP INCREMENT FOR PLOTTING OP ZETA 
C NPLOTU: TIME STEP WHERE PLOTTING OF U STARTS                                    „ 
C SLOTU TI^ STEP INCREMENT FOR PLOTTING OP U                                   | 
C ^LOTP TI^ STEP WHERE PLOTTING OP PIESH STARTS 
C ^LOTP: Tim  STEP INCREMENT FOR PLOTTING OF PIESH 
C NSTAT: TIME STEP WHERE STATISTICAL 
C CALCULATIONS START 
C KSTAT: TIME STEP INCREMENT FOR STAT.CALCS 

C  *NOTE* THE PRESSURE FIELD HAS TO BE CALCULATED AT LEAST 
C NOTE  ^^^Q^^g^ ^g ^gg STATISTICS ARE CALCULATED 

C NPRES: TIME STEP WHERE PRESSURE FIELD 
C CALCULATIONS START 
C KPRES: TIME STEP INCREMENT FOR PRESSURE 
C FIELD CALCULATIONS 
C ULPLUS: MEAN STREAMWISE VELOCITY AT Y^YO 
C IN WALL PARAMETERS 
C NU: PARAMETER THAT FIXES THE WAVELENGTH OP THE 
C LARGE SCALE U-EDDIES AT Y=YO 
C IP NU=0   ALU2=FINITE 
C IF NU=1   ALU2=INPINITE           ,.„„«„ 
C CUl CU2: CONSTANTS THAT ADJUST THE STREAMWISE 
C INTENSITY AT THE UPPER BOUNDARY 



C  CV1,CV2: CONSTANTS THAT ADJUST THE LATERAL 
C INTENSITY AT THE UPPER BOUNDARY 
C  CW1,CW2: CONSTANTS THAT ADJUST THE SPANWISE 
C INTENSITY AT THE UPPER BOUNDARY 
C  ALU1,ALU2: DIMENSIONLESS WAVELENGTHS OP THE U-PLUCTUATIONS 
C  ALV1,ALV2: DIMENSIONLESS WAVELENGTHS OF THE V-FLUCTUATIONS 
C   ALW1,ALW2: DIMENSIONLESS WAVELENGTHS OF THE W-PLUCTUATIONS 
C   NRT2: CONSTANT FOR THE CHARACTERISTIC VELOCITY 
C   VELINT: INTENSITY OF CHARACTERISTIC VELOCITY 
C AT YO IN WALL PARAMETERS 
C  DTE: EXPERIMENTAL TIME STEP IN WALL PARAMETERS 
C  MPAR: NUMBER OF FLUID PARTICLES WHOSE TRAJECTORIES 
C ARE TO BE CALCULATED 
C   NSB: THE NUMBER OF PATH LINES FROM THE PREVIOUS RUN 
C        IF NSB=0 THEN A NEW STREAKLINE CALCULATION 
C       STARTS 
C  NST: TIME STEP WHERE STREAKLINE CALCULATIONS START 
C   KST: TIME STEP INCREMENT FOR STREAKLINE CALCULATIONS 
C   YINJ: Y-COORDINATE OF INJECTION POINT g 
C   ZINJ: Z-COORDINATE OF INJECTION POINT 
C   RELCON: RELAXATION CONSTANT FOR THE ITERATION ON THE 
C ADI-SCHEME 
C   J1,J2,J3: Y-COORDINATE FOR THE ROWS OP THE DATA TO BE 
C PRINTED 
C   11,12,13,14: Z-COORDINATE FOR THE COLUMNS OF THE DATA 
C TO BE PRINTED 
C 
C 

READ*,B,D,NBEP,NCB,NINDEX,ITERM,E,NPLOT,KPLOT,NPLOTZ,KPLOTZ, 
$NPLOTU,KPLOTU,NPLOTP,KPLOTP,NSTAT,KSTAT,NPRES,KPRES,ULPLUS,NU,CU1, 
$CU2,CV1,CV2,CW1,CW2,ALU1,ALU2,ALVl,ALV2,ALWl,ALW2,NRT2,VELINT,DTE, 
$MPAR,NSB,NST,KST,YINJ,ZINJ,RELCON,J1,J2,J3,II,12,13,14 

C 
C   PARAMETERS FOR THE MODEL FLOW 
C 

A=0.0 
C«0.0 
M=25 
N=32 



IDIMF»M-i-l 
MPl-M+1 
PMP1»PL0AT(MP1) 
MMl-M-1 
NPl-N+1 
NMl-N-l 
NM2»N-2 
MM2-M-2 
CHARVEL«SQRT(2.)**NRT2*VELINT 
CHARLEN^lOO. 
RE=C3IARVEL*CHARLEN 
ACON«CHARVEL/CHARLEN 
ALPHA-1./(0.4*D*CHARVEL) 
UL=ULPLOS/CHARVEL 
WRITE(7,101) M,N,RE 

101  PORMAT(29X,"M=",I3,2X,"N=-,I3,5X,"RE=",P7.2,///) 
DZ«(B-A)/PLOAT(M) 
Dy= (D-C) /PLOAT (N) 
TDY«2.*Dy 
TDZ=2.*DZ 
Dy2=DY**2 
DZ2=DZ**2 
R*DZ/Dy 
PI=4.*ATAN(1.) 
TPI=2.*PI 
DTV=RE*DZ2/(2.*(1.+R**2)) 
DTE=DTE*ACON 
DT=DTE 
DTS=FLOAT(NBEP)*DTE 
BETAM=8.*(l./RE-DZ**2./DT) 
BETAP=8.*(l./RE+DZ**2 /DT) 
GAMAP«8 *(R**2.   +DZ**2./DT) 
GAMAM=8.*(R**2./RE-DZ**2./DT) 
P0VRE=4./RE 
P0VRE1=R**2*P0VRE 
IP(NSB.EQ.O) GO TO 333 

C 
C   READS COORDINATES OP THE END POINTS OP 
C   ALL THE PATH LINES PROM THE PREVIOUS RUN 



C  AMD COORDINATES OF THE INJECTION POINT 
C 

READ (24) (XS(K) ,K"1,NSB) 
■READ(24) (yS(K),K=1,NSB) 
REAI>(24) (ZS(K) ,K"1,NSB) 

333  NSB1»NSB+1 
DO 338 INR»NSB1,250 
XS(INR)=0. 
YS(INR)«yiNJ 
ZS(INR)»ZINJ 

338  CONTINUE 
C 
C   READS PARTICLE COORDINATES IN THE 
C  BEGINNING OF THE RUN 
C 

READ(21) (X1(K),K»1,MPAR) 
READ(21) (Y1(K),K«1,MPAR) 
READ(21) (Z1(K) ,K«1,MPAR) 

C 
C  GENERATES MESH COORDINATES 
C 

DO 543 I»1,MP1 
Z (I)=A+FLOAT(I-l)*DZ 

543 CONTINUE 
DO 544 J=»1,NP1 
Y (J) =C+FLOAT (J-1) *Dy 

544 CONTINUE 
C 
C   READS TEMPORAL PART OP THE 
C  VELOCITY COMPONENTS PROM 
C   UVWINP FILE 
C 

VPRIN1«1. 
VPRIN2=0. 
IP(NBEP.EQ.O) GO TO 788 
NSKIP=NBEP-1 
DO 671 NB=1,NSKIP 
READ(4,787) 

787  FORMAT 0 



671     CONTINUE 

??R?N1=J?iiv^?5f' "^^^^^^ ''^^^''^ '"^""^^^' "^^"''^, VPRIN2 
VPRIN2=CV2*VPRIN2 

788 READ(4,789)   WVELl,UVELl,WELl,WVEL2,aVEL2.WEL2 0VEL1=CU1*UVEL1 -6,vvr.i.z 
UVEL2=CU2*UVEL2 
WEL1=CV1*VVEL1 
WEL2=CV2*VVEL2 
WVEL1=CW1*WVEL1 
WVEL2=CW2*WVEL2 

789 FORMAT(6E14.7) 
C 
C   READS STREAM FUNCTION,VORTICITY AND 
C   STREAMWISE VELOCITY PROM TIME STEP N 
C 

READ (2) PSI,ZETA,UCOM 
C 
C  ZEROES ALL THE COUNTERS 
C 
C THE VALUE OF IFLAG DENOTES WHETHER 
C THE SENSE-SWITCH 1 HAS BEEN TURNED 
C ON BY THE OPERATOR 
C       IP IFLAG==2   SWITCH IS OFF 
C       IF IFLAG=1   SWITCH IS ON 
C 

-  IFLAG=2 
MSF=NSB 
IFL=0 
NC=0 
ITERS=0 
MPL=0 
MPLU=0 
MPLZ=»0 
MPLP=0 
MPRES=0 
NCOUNT=0 

C .■■'■,.■,..:... 

C  NEW TIME STEP 



33  NC00NT»NC0UNT+1 
NTOT-NBEF+NCOUNT 
DTS-DTS+DT 

C 
C   CALCOLATI(»l OP V AT THE UPPER 
C   BOUNDARY FOR TIME STEP N. 
C 

DO 11 I«1,MP1 
VBEP(I)=VPRIN1*C0S(TPI*Z(I)/ALV1)+VPRIN2*C0S{TPI*Z (I)/ALV2) 

11  CONTINUE  I 
C 
C   CALCULATION OF U,PSI,W AND DV/DZ 
C   AT THE UPPER BOUNDARY FOR TIME STEP N+1. 
C 

DO 10 1=1,MPl 
WTAX{I)»W7EL1*SIN(TPI*Z (I)/ALW1)+W7EL2*SIN(TPI*Z (I)/ALW2) 
UTAX(I)«UL+UVEL1*C0S(TPI*Z(I)/ALU1)+UVEL2*{NU+(l-NU)* 

$COS(TPI*Z(I)/ALU2)) 
PSIUP(I)=-(VVEL1*ALV1*SIN(TPI*Z(I)/ALV1)+VVEL2*ALV2* 

$SIN(TPI*Z(I)/ALV2) )/TPI 
DVDZ (I)*-TPI* (VVEL1*SIN (TPI*Z (I)/ALV1)/ALV1+WEL2* 

$SIN(TPI*Z(I)/ALV2)/ALV2) 
10  CONTINUE 

C 
C GUESS FOR STREAM FUNCTION AND BOUNDARY VORTICITY 
C IN THE FIRST ITERATION OF THE CURRENT TIME STEP. 
C 

DO 922 1=1,MPl 
DO 923 J=1,NP1 
PSI1(I,J)=PSI(I,J) 

923  CONTINUE 
922  CONTINUE 

DO 701 J=2,N 
ZETA1(1,J)=ZETA(1,J) 
ZETAl(MPl,J)»ZETA{MPl,jy 

701  CONTINUE 
DO 702 1=2,M 
ZETA2(I,1)=ZETA(I,1) 



ZETA2(I,NP1)»ZETA(I,NP1) 
702  CONTINUE 

ITER-0 
C 
C   NEW ITERATION AT THE CURRENT TIME STEP 
C 

34  ITER=ITER+1 
C 
C   ADI-SOLVER FOR THE V-W VELOCITY FIELD 
C 

CALL VWS0L2..(PSI,PSI1,ZETA,ZETA1,ZETA2,IER) 
IF(IER.EQ.129) GO TO 136 

C 
C   POISSON-SOLVER FOR THE STREAM FUNCTION 
C 

DO 441 I»2,M 
DO 442 J=1,NP1 
ZETA1(I,J)«ZETA2(I,J) 

442  CONTINUE 
441  CONTINUE 

DO 801 1=2,M 
ZETA2(I,1)=0. 
ZETA2(I,NP1)=PSIUP(I) 

801 CONTINUE 
DO 802 J=1,NP1 
ZETA2(1,J)=0. 
ZETA2(MP1,J)=0. 

802 CONTINUE 
CALL HWSCRT(A,B,M,1,BDA,BDB,C,D,N,1,BDC,BDD,0.,ZETA2,IDIMF, 
IPERTRB,IERROR,WORK) 
IF(IERROR.GT.O) GO TO 55 
IP{ITER EQ.li   GO TO  131 
AMAXI=0. 
DO  401  1=1,MPr 
DO  402 J=1,NP1 
DEV=ABS{ZETA2(I,J)-PSIl(I,J)) 
AMAXI=AMAX1(AMAXI,DEV) 

402  CONTINUE 
401  CONTINUE 



IP(AMAXI.LE.E) GOTO 132 
IP(ITER.EQ,ITERH) GO TO 135 

C 
C   STORES ESTIMATE OF STREAM FUNCTION AND UPDATES 
C   BOUNDARY VORTICITY FOR THE NEXT ITERATION 
C 
131 DO 501 I«1,MP1 

DO 502 J=1,NP1 
PSIl(I,J)-ZETA2(I,J) 

502  CONTINUE 
501  CONTINUE 

DO 901 J«2,N 
ZETA1(1,J)»0. 
ZETA1(MP1,J)»0. 

901 CONTINUE 
DO 902 I»2,M 
ZETA2(1,1)»RELC0N*ZETA1(1,1)+(1.-RELCON)*(8.*PSI1 (1,2)-PSIl(1,3)) 

$/(2.*Dy2) 
ZETA2(I,NP1)»RELC0N*ZETA1(I,NP1)+(1.-RELC0N)*(2.*((PSI1(I,N)- S 

$PSI1{I,NP1))/Dy2+WTAX(I)/DY)-DVDZ(I)) " 
902 CONTINUE 

GO TO 34 
132 ITERS=ITERS+ITER 

WRITE (88)- ITER,AMAXI 
C 
C   ADI-SOLVER FOR THE U-VELOCITY FIELD 
C 

CALL USOL3(PSI,ZETA2,UCOM,UTAX,IER) 
IF(IER.EQ.129) GO TO 137 

c  • 
C   UPDATES THE VORTICITY FOR THE NEXT TIME STEP 
C 

DO 473 I»2,M 
DO 474 J»2,N 
ZETA(I,J)»ZETA1(I,J) 

474  CONTINUE 
473  CONTINUE 

DO 475 J=1,NP1 
ZETA(1,J)=0. 



ZETA(MP1,J)=0. 
475     CONTMNOE 

DO 476 1=2,M 
ZETA(I,1) = (8.*ZETA2(I,2)-ZETA2(I,3) )/(2.*DY2) 
ZETA (I ,NP1) =2 . * ( (ZETA2 (I ,N) -ZETA2 (I ,NP1) ) /Dy2-»WTAX (I) /DY) -DVDZ {1} 

C ' -- ■ 

C   UPDATES THE STREAM FUNCTION FOR THE 
C   NEXT TIME STEP 
C 

DO 471 1=1,MPl 
DO 472 J=1,NP1 
PSI(I,J)=ZETA2(I,J) 

472  CONTINUE 
471  CONTINUE 

C 
C   CALCULATES THE PRESSURE FIELD IF NCOUNT=NPRES 
C 

IF(NCOUNT.EQ.NPRES) GO TO 3077 " 
GO TO 3078 * 

3077 NPRES=NCOUNT+KPRES • 
C 
C   CALCULATION OF V AND DW/DZ AT 
C   THE UPPER BOUNDARY FOR TIME STEP N+1. 
C 

DO 294 1=1,MPl 

VTAX(I)=VVEL1*C0S{TPI*Z(I)/ALV1)+VVEL2*C0S(TPI*Z(I)/ALV2) 
DWDZ(I)=TPI*(WVEL1*C0S(TPI*Z(I)/ALW1)/ALW1+WVEL2* 

$COS(TPI*Z(I)/ALW2)/ALW2) 
294  CONTINUE 

CALL PRES(PSI,ZETA,VTAX,WTAX,DVDZ,DWDZ, 
$VBEP,IERROR,DEVMAX) 
IF(IERROR.GT.O) GO TO 56 
MPRES=MPRES+1 
WRITE(88) DEVMAX 

c "■   ■' '  ■■■':'• 
C   PRINTS FILE PIE 
C 

WRITE(16) (PSI1(L,1) ,L=1,MP1) 



c 
c 
c 
c 
c 

CALCULATES THE STREAMWISE VELOCITY GRADIENT 
AT THE WALL AND PRINTS PILES UVE.OVG.WVG. 
UTA,ZET AND VOR 

3078 DO 675 I»1,MP1 
OGR(I)«(4.*aCOM(I,2)-UCOM(I,3))/TDy 
WGR(I)«ZETA(I,1) 

675  CONTINUE 
WRITE(15) (UC0M(L,J1) ,L-1,MP1) 
WRITE(15) (UC0M(L,J2),L»1,MP1) 
WRITE{15) (UC0M(L,J3),L»1,MP1) 
WRITE(17) (UGR(L),L=1,MP1) 
WRITE(18) (WGR(L),L=1,MP1) 
WRITE(27) {UC0M(I1,L),L«1,NP1) 
WRITE(27) (UC0M(I2,L),L=1,NP1) 
WRITE(27) (UC0M(I3,L),L=1,NP1) 
WRITE(27) (UC0M(I4,L),L«1,NP1) 
WRITE(30) (ZETA(L,J1),L»1,MP1) 
WRITE(30) (ZETA(L,J2),L=1,MP1) 
WRITE(30) (ZETA(L,J3) ,L=1,MP1) 
WRITE(31) (ZETA(I1,L),L=1,NP1) 
WRITE(31) (ZETA(I2,L),L=1,NP1) 
WRITE(31) (ZETA(I3,L) ,L=1,NP1) 
WRITE(31) (ZETA(I4,L) ,L=1,NP1) 

M 

STORES PSI IF NCOUNT=NPLOT 

C 
C 
C 

IP(NCOUNT.EQ.NPLOT) 
GO TO 999 

998  NPLOT=NCOUNT+KPLOT 
WRITE(32) PSl 
MPL«MPL+1 

GO TO 998 

STORES U IP NCOUNT-NPLOTU 

999  IP{NCOUNT.EQ.NPLOTU) GO TO 8881 
GO TO 8882 

8881 NPLOTU=NCOUNT+KPLOTU 



WRITE(32) UCOM 
MPLU=MPLU+1 

c   '       ■ 
C   STORES ZETA IP NCOUNT=NPLOTZ 
C 
8882 IF(NCOUNT.EQ.NPLOTZ) GO TO 8883 

GO TO 8884 
8883 NPLOTZ=NCOUNT+KPLOTZ 

WRITE(32) ZETA 
MPLZ=MPLZ+1 

C 
C   STORES PIESH IF MPRES=NPLOTP 
C 
8884 IF(MPRES.EQ.NPLOTP) GO TO 8885 ' 

GO TO 8886 
8885 NPLOTP=MPRES+KPLOTP 

WRITE(32) PSIl 
MPLP=MPLP+1 

c Si 
C   CALCULATES STATISTICS IF NCOUNT=NSTAT * 
C 
8886 IF(NCOUNT.EQ.NSTAT) GO TO IHO 

GO TO 2077 
mo NSTAT=NCOUNT+KSTAT I 

NC=NC+1 
C 
C   CALCULATION OF DU/DZ AT THE UPPER 
C   BOUNDARY FOR TIME STEP N+1. 
C 

DO 297 1=1,MPl 
DUDZ(I)=-TPI*(UVEL1*SIN(TPI*Z(I)/ALU1)/ALU1+UVEL2*(1-NU)* 
$SIN(TPI*Z(I)/ALU2)/ALU2) 

297  CONTINUE 
CALL SSWTCH(1,IFLAG) 
CALL STATIS(PSI,ZETA,UCOM,DUDZ,VTAX,DVDZ,WTAX,DWDZ, 
$UGR,WGR,NC,NSTAT,IFLAG) 
IP(IFLAG.EQ.l) GO TO 134 

2077 IF(NCOUNT.EQ.NINDEX) GO TO 134 
VPRIN1==VVEL1 



VPRIN2=VVEL2 
READ (4,789)   WVEL1,UVEL1,VVEL1,WVEL2,UVEL2,WEL2 UVEL1»CU1*UVEL1 ^fvvoiiz 
OVEL2»CU2*UVEL2 
VVEL1=CV1*VVEL1 
VVEL2«CV2*VVEL2 
WVEL1=CW1*WVEL1 
WVEL2=CW2*WVEL2 
GO TO 33 

C 
C   PRINTS PILE RES 
C 
134  WRITE(7,533) NCOONT^NTOT 
533  FORMAT(//////,2X,-NUMBER OF TIME STEPS IN THIS RUN-VI5 

$//,2X,"TOTAL NUMBER OF TIME STEPS=-.I5) 
DT-DT/ACON 
DTS=DTS/ACON 
WRITE(7,597) ITERS,DT,DTS 

597  FORMAT(//,2X,-TOTAL « OP ITERATIONS--,15,//,2X,"TIME STEP-" F12 5 S 
$2X,-TOTAL TIME ELAPSED--,P12.5//)    '=»'///^*r ^^nts biisp  ,F12.5, M 

WRITE(7,849) MPL,MPLU,MPLZ,MPLP 
849  FORMAT(///,2X,"NUMBER OP PSI PLOTS-",13,// 2X 

$"NUMBER OF  U  PLOTS-",13,//,2X,"NUMBER OF'ZETA PLOTS-- 13 // 2X 
$"NUMBER OF PIESH PLOTS-",13,///) ,1J,//,2X, 

C   PRINTS FILE PSI 
C 

WRITE(8) PSI,ZETA,UCOM 
IP(NC.EQ.O) GO TO 17 

C 
C   PRINTS FILE STK 
C 

WRITE(26) (XS(K),K»1,MSF) 
WRITE(26) (YS(K),K»1,MSF) 
WRITE(26) (ZS(K),K«1,MSP) 

C 
C   PRINTS FILE PAR 
C 

WRITE(23) (X1(K),K=1,MPAR) 



WRITE(23) (Y1(K),K-1,MPAR) 
WRITE(23) (Z1(K),K-1,MPAR) 
IP(IPL.EQ.l) GO TO 17 

eSJeo^iZ^iJ^i NC,NCTOT,SXBAR,SZBAR,SZBARA,SZBARB,SXSB, 
$SZSB,SZSBA,SZSBB,UINTy0(33),VINTy0(33),WINTY0(33) 

443  FORMAT(/////,5X,"NUMBER OP POINTS POR STAT.CALC. IN THIS RON=- 15 
$//,5X,-TOTAL NUMBER OF POINTS POR STAT.CALcT»-,i5 /// 5X      '  ' 
$"STREAMWISE VELOCITY GRADIENT AT THE WALL=" E12 5 // 
$5X,"SPANWISE VELOCITY GRADIENT AT THE WALL«-,3Ei2 5 // 5X 
S-STREAMWISE WALL INTENSITY-" ,E12.5 // 5X    '^«J-«-S#//»5X, 
&"SPANWISE WALL INTENSITY-",3E12.5,//.5x/ 
$"STREAMWISE INTENSITY AT Y0«",E12.5.// 5X 
$"LATERAL INTENSITY AT Y0»",E12.5,// 5X   ' 
$"SPANWISE INTENSITY AT Y0»",E12.5.///i' 
WRITE(7,445) • f///J 

445 FORMAT(5X,"AVERAGE VELOCITY DISTRIBUTIONS".// 5X 
$"STREAMWISE VELOCITY",//) r//,3A, 
WRITE(7,446) (UAVE (L) ,L»1,NP1) 
WRITE (7,448) 6, 

448  FORMAT(//,5X,"LATERAL VELOCITY",//) o 
WRITE(7,446) (VAVE (L),L«1,NP1) 

446 FORMAT(8E12.5) 
WRITE(7,447) 

447 FORMAT(//,5X,"SPANWISE VELOCITY",//) 
WRITE(7,446) (WAVE(L),L«1,NP1) 
WRITE(7,670) 

670  FORMAT(///,5X,"VELOCITY R.M.S. VALUES IN WALL PARAMETERS" 
$//,5X,"STREAMWISE R.M.S. VALUES",//) ^-AWAWCiiiKb , 
WRITE(7,446) (UINTYO(L),L=1,NP1) 
WRITE(7,672) 

672 FORMAT(//, X,"L. TERAL r M.s  VALUES",//) 
WRITE (7,446) (VINTYO(L),L=1,NP1) 
WRITE(7,673) 

673 FORMAT(//,5X,"SPANWISE R.M.S. VALUES",//) 
WRITE(7,446) (WINTYO(L),L-1,NP1) 
GO TO 17 > I        ,        } 

C 
C   ERROR MESSAGES 
C 



135 WRITE(7,598) NCOUNT 
ITERS-ITERS+ITER 
IPL»1 

598  FORMAT(2X,"ADI SCHEME DID NOT CONVERGE AT NCOUNT-".15.///) 
GO TO 134 

55 WRITE(7,888) NCOUNT,ITER,IERROR 
888  FORMAT(5X,"ERROR DETECTED WHEN CALLING HWSCRT FOR THE SOLUTION", 

$" OF THE PSI FIELD",//,5X,"NCOUNT»",I3,2X,"ITER=",I2,2X,"IERROR=", 
515,///) 
ITERS=ITERS+ITER 
IFL=1 
GO TO 134 

136 WRITE(7,997) NCOUNT,ITER,IER 
997  FORMAT(5X,"ERROR DETECTED WHEN CALLING LEQTIB FOR THE V-W FIELD", 

$" ADI-SOLVER",//,5X,"NCOUNT-",13,2X,"ITER=-,12,2X,"IER»",15,///) 
ITERS-ITERS+ITER 
IFL=1 
GO TO 134 

137 WRITE (7,996) NCOUNT,lER J3 
IFL-1 •- 

996  FORMAT(5X,"ERROR DETECTED WHEN CALLING LEQTIB FOR THE U-FIELD", 
$"  ADI-SOLVER",//,5X,"NCOUNT=",I3,2X,"IER=",I5,///) 

GO TO  134 
56 WRITE(7,887)   NCOUNT,lERROR 

IFL-1 
887     FORMAT(5X,"ERROR DETECTED  WHEN  CALLING HWSCRT  FOR THE  SOLUTION", 

$"   OF  THE  PIESH  FIELD",//,5X,"NCOUNT-",13,2X,"IERROR=",15,///) 
GO TO  134 ##//// 

17     STOP 
END 
SUBROUTINE VWS0L2(PSI,PSI1,ZETA,ZETA1,ZETA2,IER) 

C 
c 
c************************************************************ 
c                                                                                                   - * 
C THIS   SUBROUTINE  CALCULATES  THE VORTICITY * 
C FIELD  USING A  CONSERVATIVE  FINITE-DIFFERENCE * 
C SCHEME  AND     *   LEQTIB   *     FOR THE   INVERSION * 
C OF  THE  RESULTING TRIDIAGONAL  MATRICES * 



C       BOUNDARY CONDITICftJ AT  Y-YO     ZETA=ZETAO(Z,T) * 
C * 
C************************************************************ 
C 
C 

DIMENSION PSI(26,33),PSI1(26,33),ZETA(26,33) 
DIMENSION ZETA1(26,33),ZETA2(26,33),P(31,3),Q(31),XL(80) 
COMMON/AREA1/R,P0VRE,P0VRE1,BETAP,BETAM,GAMAP,GAMAM 
C0MM0N/AREA3/M,MP1,MM1,MM2,N,NP1,NM1,NM2 
COMMON/SCRA/P,Q,XL 
DO 40 J=2,N 
DO 30 K=1,MM1 
PSIMlIXr=(PSI(K,J+l)-PSI(K,J-l)+PSIl(K,J+l)-PSIl(K,J-l))*0.5 
PSIPIDJ"(PSI(K+2,J+1)-PSI(K+2,J-1)+PSI1(K+2,J+1)- 
$PSI1(K+2,J-1))*0.5 
PSIM1DI=(PSI(K+2,J-1)-PSI(K,J-1)+PSI1(K+2,J-1)-PSI1(K,J-1))*0.5 
PSIP1DI=(PSI(K+2,J+1)-PSI(K,J+1)+PSH(K+2,J+1)-PSI1(K,J+1))*0.5 
P(K,1)=R*PSIM1DJ+F0VRE 
P(K,3)=-R*PSIP1DJ+F0VRE g 
P(K,2)=-BETAP » 
Q(K)=(R*PSIM1DI-F0VRE1)*ZETA{K+1,J-1)+GAMAM*ZETA(K+1,J)- 

$(R*PSIP1DI+F0VRE1)*ZETA(K+1,J+1) 
30  CONTINUE 

Q(1)«Q(1)-P(1,1)*ZETA1(1,J) 
Q (MMl) =Q (MMl)-P (MMl, 3) *ZETA1 (MP1,J) 
P(lrl)=0. 
P(MM1,3)=0. 
CALL LEQT1B{P,MMl,1,1,31,Q,1,31,0,XL,lER) 
IF(IER.EQ.129) GO TO 136 
DO 50 1=2,M 
IA=I 1 
ZETA1(I,J)=Q(IA) 

50  CONTINUE 
40  CONTINUE 

DO 60 1=2,M 
DO 70 K=1,NM1 
PSIM1DI=(PSI{I+1,K)-PSI(I-1,K)+PSI1(I+1,K)-PSI1(I-1,K))*0.5 
PSIP1DI=(PSI(I+l,K+2)-PSI (I-l,K+2)+PSIl (I+l,K+2)- 
$PSIl(I-l,K+2))*0.5 



PSIMlM.(PSI(I-l,K+2)-PSt(I-l,K)+PSIl(I-l,K+2)-PSIl(I-l,K))«0.5 

P(K,3)»R*PSIP1DI+P0VRE1 
P(K,2)«-GAMAP 
Q (K)»-(R*PSIMlIXr+POVRE) *ZETA1 (I-l,K+1)+BETAM*ZETA1 (I ,K+1) + 

$(R*PSIP1DJ-F0VRE)*ZETA1(I+1,K+1) v #   ; 
70  CONTINUE 

Q(1)=Q(1)-P(1,1)*ZETA2(I,1) 
Q (NMl) =Q (NMl)-P (NMl, 3) *ZETA2 (I ,NP1) 
P(1,1)"0. . 
P(NM1,3)=0. 
CALL LEQT1B(P,NM1,1,1,31,Q,1,31,0,XL,lER) 
IP(IER.EQ.129) GO TO 136 
DO 80 J=2,N 
JA»J-1 
ZETA2(I,J)=Q(JA) 

80  CONTINUE 
60  CONTINUE w 

136  RETURN « 
END 
SUBROUTINE US0L3(PSI,ZETA2,UC0M,UTAX,IER) 

C THIS SUBROUTINE CALCULATES THE STREAMWISE 
C VELOCITY FIELD USING A CONSERVATIVE 
C FINITE-DIFFERENCE SCHEME AND  * LEQTIB * 
C FOR THE INVERSION OF THE RESULTING 
C TRIDIAGONAL MATRICES 
C BOUNDARY CONDITION AT Y=Y0 IS   U=UO 
C 

DIMENSION PSI(26,33),ZETA2(26,33),UCOM(26,33),UHAL(26,33) 
DIMENSION P(31,3),Q(31),XL(80),UTAX (26) 
COMMON/AREAl/R,FOVRE,FOVREl,BETAP,BETAM,GAMAP,GAMAM 
C0MM0N/AREA3/M,MP1,MM1,MM2,N,NP1,NM1,NM2 
C0MM0N/AREA5/CHARVEL,CHARLEN,ACON,ALPHA 
COMMON/AREA6/RE,DY,DZ,DT,TDY,TDZ,DY2,DZ2 
COMMON/SCRA/P,Q,XL 
COMMON/ONE/UHAL 
DO 161 J=2,N 



DO 162 K=1,MM1 
PSIM1DJ= (PSI(K,J+1)-PSI(K,J-i)+ZETA2{K,J+l)- 
$ZETA2(K,J-l))*0.5 
PSIPIDJ"(PSI (K+2,J+1)-PSI (K+2,J-1)+ZETA2(K+2,J+1)- 
$ZETA2(K+2,J-1))*0.5 
PSIM1DI»PSI(K+2,J-1)-PSI(K,J-1) 
PSIP1DI=PSI(K+2,J+1)-PSI(K,J+1) 
P(K,1)=R*PSIM1DJ+F0VRE 
P(K,3)=-R*PSIPlDJ+POVRE 
P(K,2)=-BETAP 
Q(K)=(R*PSJMIDI-POVREI)*UCOM(K+1,J-1)+GAMAM*UCOM(K+1,J)- 

$ (R*PSIP1DI+P0VRE1)*UC0M(K+1,J+1) 
162 CONTINUE 

P(l,2)=P(l,2)+4.*P(l,l)/3. 
P(l,3)»P(l,3)-P(l,l)/3. 
P(MMl,l)«P(MMl,l)-P(MMl,3)/3. 
P(MMl,2)=P(MMl,2)+4.*P(MMl,3)/3. 
P(1,1)»0. 
P(MM1,3)=0. M 
CALL LEQT1B(P,MMl,1,1,31,Q,1,31,0,XL,lER) "^ 
IF(IER.EQ.129) GO TO 136 
DO 163 1=2,M 
IA=I-1 
UHAL(I,J)=Q(IA) 

163 CONTINUE 
161  CONTINUE 

DO 194 J=2,N 
UHAL(l,J)=(4.*UHAL(2,J)-UHAL(3,J))/3. 
UHAL(MPl,J) = (4.*UHAL(M,J)-UHAL(MMl,J))/3. 

194  CONTINUE 
DO 164 1=2,M 
DO 165 K=1,NM1 
PSIM1DI=ZETA2(I+1,K)-ZETA2{I-1,K) 
PSIPlDI=ZETA2(I+l,K+2)-ZETA2{I-l,K+2) 
PSIM1DJ=(PSI(I-l,K+2)-PSI (I-1,K)+ZETA2 (I-l,K+2)- 
$ZETA2(I-1,K))*0.5 
PSIPlDJ=(PSI(I+l,K+2)-PSI(I+l,K)+ZETA2(I+l,K+2)- 
$ZETA2(I+1,K))*0.5 
P(K,1)=-R*PSIMlDI+FOVREl 



P(K,3)»R*PSIP1DI+P0VRE1 
P(K,2)«-GAMAP 

Q{K) —(R*PSIMlDJ+FOVRE)*OHAL{I-l,K+l)+BETAM*UHALfI  K+l^ + $(R*PSIP1DJ-F07RE)*UHAL(I+1,K+1) "i^iAM UHAI.(I,K+1) + 
165 CONTINUE 

Q(1)»Q{1)-P(1,1)*UC0M(I,1) 
Q (NMl)-Q(NMl)-P (NM1,3) *UTAX(I) 
P(l,l)-0. 
P(NM1,3)=0. 
CALL LEQT1B(P,NM1,1,1,31,0,1,31,0,XL,lER) 
IP(IER.EQ.129)   GO TO 136 
DO  166 J=2,N 
JA«J-1 
UCOM(I,J)»Q(JA) 

166 CONTINUE 
164  CONTINUE 

DO 718 1=2,M 
UC0M(I,NP1)-UTAX(I) 

718 CONTINUE 
DO  719  J=1,NP1 
UCOM(l,J)=.(4.*UCOM(2,J)-UCOM(3,J))/3. 
UCOM(MPl,J) = (4.*UCOM(M,J)-UCOM(MMl,J))/3. 719 CONTINUE '   ii/^* 

136     RETURN 
END 
SUBROUTINE  PRES(PSI,ZETA,VTAX,WTAX,DVDZ,DWDZ, 

$VBEF,IERROR,DEVMAX) '        ^» 
C 

C        THIS   SUBROUTINE  CALCULATES  THE   PRESSURE  FIELD * 
C FOR A  FIXED  CELL  OF  THE  MODEL  FLOW * 
C IN THE VISCOUS  WALL  REGION * 

C 

DIMENSION PSI (26,33) ,ZETA(26,33) ,VTAX(26),WTAX(26),yn3) 
DIMENSION PIESH(26,33) ,BDA(33) ,B6B (33) ,BD6 (26^800 Je^^BEF (26) 



DIMENSION WORK(600),RHS(26,33),DVDZ(26),DWDZ(26),Z(26) 
C0MJK)N/AREA2/A ,B>C ,D , IDIMF 
C0MM0N/AREA3/M,MP1,MM1,MM2,N,NP1,NMX,NM2 
COMMON/AREA4/W0RK,BDA,BDB 
COMMON/AREA6/RE,DY,DZ,DT,TDY,TDZ,DY2,DZ2 
COMMON/AREAIO/Y,Z,KSTAT,DTE 
COMMON/ONE/PlESH 
COMMON/TWO/RHS 
TWDELZ=2./DZ 
TWDELY=2./DY 

C 
C       BOUNDARY CONDITICWS  FOR THE 
C       PRESSURE  FIELD 
C 

DO 10 1-2,M 
BDC(I)-(-l./RE)*(ZETA(I+l,l)-ZETA(I-l,l))/TDZ 

10  CONTINUE 
BDC(1)-(-1./RE)*(-3.*ZETA(1,1)+4.*ZETA (2,1)-ZETA(3,1))/TDZ 
BDC(MP1)»(-1./RE)*(ZETA(MM1,1)-4.*ZETA(M,1)+3.*ZETA(MP1,1))/TDZ 
DO 20 J=1,NP1 
BDA(J)=0. 
BDB(J)=0. 

20  CONTINUE 
DO 30 1=2,M 
BDD(I)»(-1./RE)*(ZETA(I+1,NP1)-ZETA(I-1,NP1))/TDZ-(VTAX(I)- 
$VBEP(I))/DTE-(-VTAX(I)*DWDZ(I)+WrAX(I)*DVDZ(I) ) 

30  CONTINUE 
BDD(1) = (-1./RE)*(-3.*ZETA(1,NP1)+4.*ZETA(2,NP1)-ZETA(3,NP1))/TDZ- 

$ (VTAX(l)-VBEF (1) )/DTE-(-VTAX(l) *DWDZ {1)+WTAX (1) *DVDZ (1) ) 
BDD(MPl)=(-1./RE)*(ZETA(MM1,NP1)-4.*ZETA(M,NPl)+3.*ZETA(MP1,NP1)) 

S/*PDZ- (VTAX (MPl) -VBEF (MPl) ) /DTE- (-VTAX (MPl)   DWD   (MPl) +1712" K fMPl) * 
$DVDZ(MP1   ) 

C 
C        CALCULATION  OP THE  SOURCE  TERM 
C        IN THE  POISSON  EQUATION  FOR 
C       THE  PRESSURE  FIELD 
c 

DO  40  1=2,M 
DO  50 J=2,N 

w 
9 



PIESH(I,J)-2.*((PSI(I,J+1)-2.*PSI(I,J)+PSI{I,J-1))* 
$(PSI{I+1,J)-2.*PSI(I,J)+PSI(I-1,J))/(DY2*DZ2)-((PSI(I+1, 
$J+1)-PSI{I+1,J-1)-PSI(I-1,J+1)+PSI(I-1,J-1))/(TDY*TDZ))**2) 

50  CONTINUE i i      '■i 
40  CONTINUE 

DO 60 I«1,MP1 
PIESH(I,1)»0. 

60  CONTINUE 
DO 70 J=2,N 
PIESH(1,J)—2.*((-3.*(PSI(l,J+l)-PSI(l,J-l))+4.*(PSI(2,J+l)- 

$PSI {2,J-1) ),- (PSI (3,J+1)-PSI (3,J-1) ))/ (TDY*TDZ) )**2 
PIESH(MP1,J)»-2.*(((PSI(MM1,J+1)-PSI(MM1,J-1))-4.*(PSI(M, 

$ J+1)-PSI (M, J-1) )+3. * (PSI (MPl, J+1)-PSI (MPl, J-1))) / 
$(TDy*TDZ))**2 X   f   //// 

70  CONTINUE 
DO 80 1=1,MPl 
PIESH (I ,NP1) —2.* (DWDZ (I) **2+DVDZ (I) * (ZETA (I ,NP1) +DVDZ (I) )) 

80  CONTINUE 
DO 310 1=1,MPl g 
DO 320 J=1,NP1 •• 
RHS(I,J)=PIESH(I,J) 

320  CONTINUE 
310 CONTINUE 

DO 311 J=1,NP1 
RHS (1,J)"PIESH(1,J)+BDA(J)*TWDELZ 
RHS(MPl,J)=PIESH(MP1,J)-BDB(J)*TWDELZ 

311 CONTINUE 
DO 312 1=1,MPl 
RHS(1,1)=PIESH(I,1)+BDC(I)*TWDELY 
RHS (I,NP1)=PIESH(I,NP1)-BDD(I)*TWDELY 

312 CONTINUE 
C 
C   POISSON-SOLVER FOR THE PRESSURE FIELD 
C 

CALL HWSCRT(A,B,M,3,BDA,BDB,C,D,N,3,BDC,BDD,0.,PIESH,IDIMF, 
$ PERTRB,IERROR,WORK) 
RHSAVE=0. 
DO 90 1=1,MPl * 
DO 100 J=1,NP1 



RHSAVE-RHSAVE-fABS (RHS (I,J) ) 
100  CONTINUE 
90  CONTINUE 

RHSAVE=RHSAVE/FLOAT(MP1*NP1) 
DEVMAX-ABS(PERTRB)*100./RHSAVE 
PCON=(PIESH(13,1)+PIESH(14,1))/2. 
DO 313 I»1,MP1 
DO 314 J=1,NP1 
PIESH(I,J)=PIESH(I,J)-PCON 

314  CONTINUE 
313  CONTINUE  . 

RETURN 
END  • ~  ^  ~ 

M 
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APPENDIX B 

PULSATING FLOW AT THE UPPER BOUNDARY 
OF THE VISCOUS WALL REGION 

(Moving cell runs) 

The difference between this approach and the one described in Chapter 4 is 

the form of the boundary conditions at y=y,. The outer flow eddies are visual- 

ized to have infinite wavelengths on a plane parallel to the wall a d negligible 

amount of energy in the normal component of the velocity. The boundary condi- 

tions that are consistent with this picture at y/ =40 are the following 

2]d.   2nz   ,    . ,21^1       ^   . 
w=Wi^cos——s\n-—-f- «;i2Cos(--—+ ^i^g) (B.l) I 

I 
I 

^,=7r(I———) where AT, is the percentage of closed flow of the X   =100 wall 

f=«lCos{-—+ <^,)cos—— (B.2) 

a=riiiCos(—--I- ^,i)cos-—+ «igcosf^=—-I- 0„2) (B.3) 
^«l '"'t.l ^ti2 

and    U=U{y,)+u    where   X+,=X + =X+j=100,    r+, = r/ = r„+, =100   and 

100 

■ eddies. It can be seen from {B.2) and (B.3) that all the Reynold stress at 

y/=40 is produced by the X+=100 eddies and this can be used to specify the 

phase ^.1 and the energy £",1 of these eddies.  The periods r„"^ and T+j can not 

■ be determined from scaling arguments since the wavelength of the outer flow 

eddies is assumed to be infinite. For the calculations described below these 

periods were selected as r„"^ =r+2=400 as in the case of finite wavelengths and 
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^„2 ^^ taken to be 150* as in the case of the single harmonic runs. 

The boundary conditions used at the sides of the computational domain are 

periodic conditions for all three velocity components and at the wall the no-slip 

condition is enforced. These boundary conditions along with (B.l) through (B.3) 

can be translated for the stream function-vorticity formulation as follows: 

*=0,  f=-^ at  y=0     *(^J=*(0),  j(z, j=$(o) at r °^ 

-^w{z,y,,t),    ^—-— at  y==y. 

It is to be noted that a Dirichlet boundary condition cannot be used for the 

stream function at y=yg in the moving cell runs because the mass flow rate in 

the ^-direction at 2=0 is not known.  The stream function at y=yg is given by: 

« y 

*=-/t;(^,y^,0</C+*o  which at z=o  becomes *=*^=/w(0,^,0</C-   For a 
0 « 

fixed cell w{0,y,t)=0 for 0<y<y^; so '^'^=0.   Since *^ is not known a priori 

for a moving cell, a Newmann condition is necessary. 

It was found during the calculations that the energy E^i in the spanwise 

component of the velocity of the X''":=100 eddies had to be greater than 60%, 

otherwise the calculated s^-intensity at the wall was too large. This value is 

higher than the value of 40% that was used in the case of finite wavelengths 

described in Chapter 5 and appears to contradict the experimental results of 

Tritton (1967). Evenmore, the calculated /?,, (A2) correlation at the wall indi- 

cated that the pulsating spanwise flow at y=ya  affects greatly the wall s^- 
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patterns in a manner inconsistent with available experimental data (Lau 1980). 

A plot of the calculated R,,{Az) correlation for a case where ^„i=60% and 

Ni=70% is shown in Figure B-1. It can be seen from this plot that the correla- 

tion exhibits no zero-crossing and assumes large values for large separations. 

This means that the pulsating spanwise flow imposed at y=y^ has a very big 

effect right down to the wall, which contradicts the experimental observations 

that the X+ =100 eddies are the dominant eddies at the wall. 

The statistically averaged results of the calculations are shown in Figures 

B-2 through B-6 . It can be seen that the agreement with experimental data is 

satisfactory. The important difference between these calculations and the double 

harmonic runs is that, even though the "pulsating" spanwise flows at y^ =40 

give the correct magnitude of spanwise mixing throughout the wall layer, they 

wipe out the importance of the X+ =100 eddies close to the wall in contradiction 

to experimental measurements. 
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APPENDIX C 

SHIFTING OF THE X+=100 WALL EDDIES 

(Moving cell runs) 

In these calculations a random phase <l>{t) was used in order to shift the 

spanwise profiles of the three velocity components at y=yg. The boundary con- 

ditions at y=yo in this case have the following fcrm: 

tt;=«;iCos-^in[-p--0(0] (C.l)' 

v=VLCOsi^+ <t>,)cos{^-m] (C.2) 

«=«lCos(—+ <l>uihos[-^ - <f>{t)] + «£2Cos(-^+ <^„2) (C.3) 

It turns out that the phase <l>(t) does not influence the selection of the relevant 

parameters, therefore these were selected to be the same as the ones used in the 

single harmonic fixed cell runs. In order to specify a realistic signal for <l>{t) the 

experimental measurements of Lau (1980) were used. These measurements pro- 

vide instantaneous spanwise a^-profiles at the wall. As mentioned in Chapter 4, 

the «j-patterns evolve both in time and space and shift in the spanwise direction. 

These patterns were fitted with sine waves X'''=100 and <^{t) was adjusted at 

each instant of time so that the error was minimum in the least-squares sense. 

The purpose of these calculations was to assess the effect of the shifting of 

X'''=100 wall eddies on the calculated profile of the w-intensity.  The calculated 
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statistically averaged flow variables showed no difference from the single har- 

monic runs.   In particular, the profile of the spanwise intensity attained, again, 

III low-values in the region 10<y"*" <25 and was not affected by the shifting of the 

cells. That leads us to the conclusion that the shifting of the X"''=100 wall 

eddies is not enough to account for the spanwise mixing observed e perimentally 

in the viscous wall region. 
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