

		≩ a	
, ,	1.0	45 2.8 2.5 132 12.2 136 12.0 11.8 1.8	
, 1	1.1		
		SOLUTION TEST CHART U OF STANDARDS-1963-A	
	₩ .		
-			
	•		•.• .
6			

MRL-R-877

· 9

9

7 8

က

AD A 1

DIC FILE COPY

ことですたるのでのないため

DEPARTMENT OF DEFENCE DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION MATERIALS RESEARCH LABORATORIES MELBOURNE, VICTORIA REPORT MRL-R-877

USERSIN - AN INTERACTIVE USER-INTERFACE FOR FORTRAN SIN

E. Northeast

THE UNITED STATES NATIONAL TECHNICAL INFORMATION SERVICE IS AUTHORISED TO REPRODUCE AND SELL THE REPORT

Approved for Public Release

E Conversionalité et Ausside NAINCH, 1983 84 02 14 071

DEPARTMENT OF DEFENCE MATERIALS RESEARCH LABORATORIES

REPORT

MRL-R-877

USERSIN - AN INTERACTIVE USER-INTERFACE FOR FORTRAN SIN

E. Northeast

ABSTRACT

entitled.

This report describes a program Usersin, written to give a quick and ready access to the necessary input data, and to provide a more convenient interactive mode for setting up a problem while the ⁹mnumber-crunching¹⁰ remains a batch-oriented process. It is designed to be as machine independent as possible, to permit transition between computers as may be required.

Approved for Public Release

へ

していたいになけるのないない ひょうちょうちょうちょう

POSTAL ADDRESS: Director, Materials Research Laboratories P.O. Box 50, Ascot Vale, Victoria 3032, Australia SECURITY CLASSIFICATION OF THIS PAGE UNCL

1

UNCLASSIFIED

	DOCUMENT CONTROL DATA S	GHEET
REPORT NO.	AR NO.	REPORT SECURITY CLASSIFICATION
MRL-R-877	AR-003-287	UNCLASSIFIED
TITLE		
USERSIN - A	N INTERACTIVE USER-INTERFAC	E FOR FORTRAN SIN.
AUTHOR (S)	·····	CORPORATE AUTHOR
		Materials Research Laboratories
NORTHEAST, E.		P.0. Box 50,
		Ascot Vale, Victoria 3032
REPORT DATE	TASK NO.	SPONSOR
MARCH, 1983	DST 82/200	DSTO
CLASSIFICATION/LIMITATION	REVIEW DATE	CLASSIFICATION/RELEASE AUTHORITY Superintendent, MRL
		Physical Chemistry Divisio
ANNOUNCEMENT	Approved for Public Relea	
KEYWORDS		
Computer programs USERSIN hydrodynamic	SIN c code	
USERSIN hydrodynamic		
USERSIN hydrodynamic COSATI GROUPS 0902		
USERSIN hydrodynamic COSATI GROUPS 0902		
USERSIN hydrodynamic COSATI GROUPS 0902		

ready access to the necessary input data, and to provide a more convenient interactive mode for setting up a problem while the "number-crunching" remains a batch-oriented process. It is designed to be as machine independent as possible, to permit transition between computers as may be required.

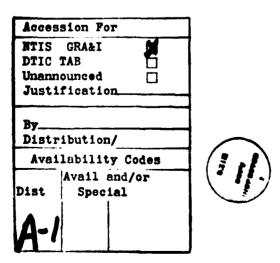
UNCLASSIFIED

CONTENTS

Page No.

1.	INTRODUCTION	1
2.	SIN:	1
3.	USERSIN:	2
4.	MAINTENANCE	2
5.	CONCLUSION	3
6	REFERENCES	3
APP	ENDIX 1	

APPENDIX 2


and in contrast of the

.

t

1

APPENDIX 3

USERSIN - AN INTERACTIVE USER-INTERFACE FOR

FORTRAN SIN

1. INTRODUCTION

An increasing requirement for hydrodynamic calculations to predict explosive behaviour and weapon performance has arisen from the complexity and expense of detailed experimentation in these fields. Many explosive and weapon systems can be simulated by relatively simple one-dimensional computer codes. Phenomena such as explosive-metal interactions, fragmentation and shock studies are ideally suited to this approach.

For some years, MRL has had access to SIN⁽¹⁾, a Lagrangian onedimensional hydrodynamic program, used extensively overseas for problems including chemical reactions, material failure and phase transitions. Fortran SIN was developed at the Los Alamos Scientific Laboratories in 1964 for a CDC6600 computer and has been modified to run on the CSIRO computer network which is based on a Cyber 7600.

Running the SIN code⁽¹⁾ directly on the Cyber 76 clearly demonstrated the inherent difficulties in compiling the input data for a batch run. This Report then describes USERSIN (Fig. 1), a program developed to create interactively the input data deck for SIN.

2. SIN:

The SIN code requires a large amount of input data defining material properties, the number of cells over which the calculations are to be made, as well as the time increment to be considered. Further input data include the parameters for elastic-plastic calculations on the solids and those parameters defining the equation of state of the detonation products, the latter constants being evaluated by the BKW code⁽³⁾. (Appendix 1 lists the input data required for SIN).

As it is necessary to collect and format correctly all the data before SIN can be run, such a procedure is both a time-consuming and errorprone operation.

3. USERSIN:

The user interface usersin written in extended Fortran 4 IV. Usersin takes advantage of the computer's connected input/output subsystem (CIO) to create interactively the data deck for subsequent use by SIN.

The program is menu driven. This means that it displays a table of options, to which a user is able to select any option by entering the corresponding key. The user moves from one menu to the next being promoted with a suitable message to enter the required data. These data are then validated and written into the data deck. The program also assumes default values which may be changed by the user.

The equation of state parameters and other physical material constants are stored in a data base file. This file is a sequential file with the name of the material its key (i.e. TNT). The file is automatically searched after the components name is entered. If the component is on file, the appropriate parameters are retrived and placed into the data deck, otherwise the user is solicited for these parameters.

Users of this program are requested to store the components they use into this data base file when prompted, thus increasing the usefulness of this data base to future users.

The Usersin package is simple to master, making SIN a more reliable and efficient research tool.

A typical run of Usersin for an expanding steel casing is shown in Appendix 3.

4. MAINTENANCE

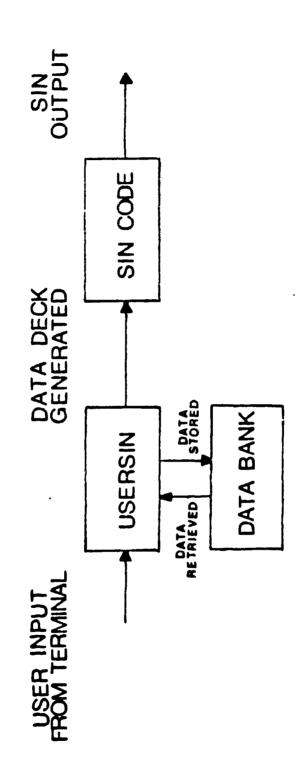
For ease of maintaining USERSIN the program has been fully commented, each subroutine having one particular function which is explained in detail at the routines beginning. The program was written to be as machine independent as possible and a comment appears where it was not possible. The input/output variable names have been kept the same as those used in SIN so the maintenance programmer can easily swap from one to the other.

The data base file is under the format of

(1HZ, 2A6, 2X 15,/, 2(1X, E18.11), /, 9(4(1X, E18.11)/)

KEY:- NAME

2A6 EXPLOSIVE OR SOLID (1 OR 0) 15 E18.11 DENSITY MASS FRACTION E18.11 C,S C1, S1, CV SPALLP, USP, SPA, F, G, H, I, J, Mo, 2/3 YO, Y, MINV, VSW, PLAP, A, B, C, D, E, K, L, M, N, CV1, Q, R, S, T, E18.11 U, ZO, VFACT, EO, Z


5. CONCLUSION

Development of USERSIN has been completely justified by its ease of operation, its data-storage capability and its use.

REFERENCES 6.

- Mader, C.L. and Gage, W.R. (1967). 1. "FORTRAN SIN", Los Alamos Scientific Laboratory Report LA-3720.
- Mader, C.L. (1967) 2. "FORTRAN BKW" Los Alamos Scientific Laboratory Report LA-3704
- 3. Mader, C.L. (1979). Numerical Modelling of Detonations, University of California Press.

FIG. (1): USE OF SIN.

APPENDIX 1

- Sector

ł

DATA REQUIRED FOR SIN

Variable name	Defaul† value	Units	Definitions
TITL	Time - date	-	A sultable title for the run (0-80 char
IHC	No	-	Is a heat calculation required [Y/N]
ALPHA	SLAB		The geometry of the system
			SLAB – slab geometry
			CYL - cylindrical geometry
			SPHER - spherical geometry
IPINC	400	-	Every IPINC cycles are printed
IGINC	200	-	Every IGINC cycles are graphed
I LB	CON	-	Left hand boundary conditions
			CON – Continuum
			FRE - free space
			INIT – initial-final piston
			A+BT - A + BT piston
			STDY - steady state reaction zone piston
IRB	CON	-	Right hand boundary conditions
			CON - continuum
			FRE - free space
			INIT - Initial-final piston
			A+BT - A + BT piston
	Only required if	ILB, IRB is equa	al to INIT "Initial-final piston"

ALB,LRB	-	cm/µs	Initial piston velocity
8L8, 8R8	-	cm/µs	final piston velocity

ston" A
٨
В
זע
lls initially in the the left, right re taken.
NC cycles a cell a the left, right
oonent (0-12 char)
increments for this
lls
e increments
t a gas or explosive
scosity off form orm
0
ture
-

ورجاني والمحدثة

Variable name	Default value	Units	Definitions
00	0	cm/µs	initial velocity
RH00	0 <rh00<50x< td=""><td>g/cm³</td><td>initial density</td></rh00<50x<>	g/cm ³	initial density
WO	0 <w0<1 td="" x<=""><td></td><td>initial mass fraction</td></w0<1>		initial mass fraction
VSW	0.01	-	-
		Solid paramete	rs
C,S	- x	-	Co-efficients to a linear set of Us and Up used from the initial pressure to the switch pressure.
C1,S1	- x	-	Second set of comefficients to the linear fit of Us and Up used from the switch pressure to the max, pressure
cv ⁺	×	Cal/g/Degree	Heat of capacity of the component
V0	1/DENS	cm ³ /g	initial volume of the condensed component
АГЪН	- x	-	Linear co-efficient of thermal expansion
F,G,H,J,1,	- x	-	Constants used in the Hom condensed components equation
GAMMA	- x	-	γ−!aw gas constant
	Not requested i	f the component is	a gas or an explosive
SPALLP	- x	MBa r	Interface spalling pressure
USP	- x	MBar	Ultimate spalling pressure
SPA	- x	-	Spalling constant to relate pressure and tension rate
SHEAR	- x	MBar	Shear modulus
		·	

;

Varlable name	Default value	Units	Definitions
Z	1E15 X		Frequency factor for an Arrhenius burn
E	4.5E4 X	cal/mole	Activation energy for an Arrhenius burn
vcJ	x	cm ³ /g or cm/µs	Volume of the component for a C-J burn or the C-J detonation velocity for a Gamma-Law Taylor wave.
A,B,C,D,E K,L,M,N,O Q,R,S,T,U	- x - x - x	-	Parameters defining the equation of state of the detonation products. Parameters obtained from the BKW code ²
Z1	- x	-	A constant used to change the standard state to be consistant with the solid explosive standard state usually \simeq 0.1
1BRN	ARR X	-	ARR – Arrhenius burn C-J – C-J volume burn GAMMA – Gamma-Law Taylor wave burn FOREST – Forest Fire burn (when availab)

and the second se

in the second second

All variables with an "X" marked in the default value column are store: on the data base file.

APPENDIX 2

USE OF THE SIN COMPUTER CODE ON THE CYBER 7600

cussed elsewhere in this report a user interface has been the data deck for the SIN code.

Lied binary version of USERSIN are stored on the library **conly necessary** to execute this file to run USERSIN. This must **an interactive** subsystem of the Cyber, once logged on.

MIT (USERSIN)

quit edit subsystem gain entry to CIO excute USERSIN

and a brief description of the program should then be

questions asked and at the end of the session the data cards will have been created and will only require

> quit CIO subsystem gain entry to EDIT copy the data deck into work space excute SIN

tin is a menu driven program, for example the Ing initial menu. The user simply enters the

ENU

DEFAULT

ter title ations the system undary conditions cundary conditions Date and Time Not included SLAB CONTINUUM CONTINUUM

option at least the first three characters current value of the option is given on the

ntered the following options are offered.

LLOWING:

CEOMETRY DRICAL GEOMETRY CAL GEOMETRY The program will validate the reply and return to the initial menu changing the default value as requested.

INITIAL MENU

DEFAULT

TITL	-	80 char title	Date and Time
HEAT	-	Heat calculation	Not included
GEOM	-	Geometry of the system	CYLINDRICAL
LHB	-	Left hand boundary conditions	CONTINUUM
RHB CONT	-	Right hand boundary conditions	CONTINUUM
CONT	-	to continue	

To move to the next menu CON (continue) must be entered. The user works his way through the menu's specifying each parameter, Usersin reads and validates his reply before creating the data deck.

APPENDIX 3

System ? : cio Cio version 15/10/82 :submit,usersin Enterins 7000 mode...wait

THIS IS THE FRONT END PACKAGE FOR SIN. A ONE-DIMENSIONAL HYDRODYNAMIC CODE FOR PROBLEMS WHICH INCLUDE CHEMICAL REACTIONS, ELASTIC-PLASTIC FLOW ,SPALLING, AND PHASE TRANSITIONS.

IT IS A QUESTION ANSWER TYPE PROGRAM, CONTROL 'H' WORKS AS BACKSPACE IF THE WRONG DATA IS ENTERED EITHER AN ERROR MESSAGE WILL APPEAR OR YOU CAN EDIT THE ENTERED DATA AT THE END OF EACH SECTION

ENTER ONE OF THE FOLLOWING

DEFAULT

TITLE	- FOR THE TITLE OF THIS RUN (0-80 CHAR)	CURRENTLY
	04/03/83 16.58.48.	
HEAT	- IF HEAT CALCULATIONS ARE REQUIRED	NOT INCLUDED
GEOM	- FOR THE GEOMETRY	SLAB GEOMETRY
LHB	- LEFT HAND BOUNDARY CONDITIONS	A CONTINUUM
RHB	- RIGHT HAND BOUNDARY CONDITIONS	A CONTINUUM
CONT	- TO CONTINUE	

:tit

ENTER A TITLE FOR THIS RUN : :cylinder test comp b steel 4.225, 5.225 cm dimensions

ENTER ONE OF THE FOLLOWING

DEFAULT

	TITLE	E - FOR THE TITLE OF THIS RUN (0-80 CHAR)	CURRENTLY
CYLINDER	TEST	COMP B STEEL 4.225, 5.225 CM DIMENSIONS	
	HEAT	- IF HEAT CALCULATIONS ARE REQUIRED	NOT INCLUDED
	GEOM	- For the geometry	SLAB GEOMETRY
	LHB	- LEFT HAND BOUNDARY CONDITIONS	A CONTINUUM
	RHB	- RIGHT HAND BOUNDARY CONDITIONS	A CONTINUUM
	CONT	- TO CONTINUE	

ENTER GEOMETRY

:cyl

SLAB - FOR SLAB GEOMETRY CYLIND - FOR CYLINDRICAL GEOMETRY SPHER - FOR SPHERICAL GEOMETRY

ENTER ONE OF THE FOLLOWING

DEFAULT

TIT	LE - FOR THE TITLE OF THIS RUN (0-80 CHAR)	CURRENTLY
CYLINDER TEST	COMP B STEEL 4.225, 5.225 CM DIMENSIONS	
HEA	T - IF HEAT CALCULATIONS ARE REQUIRED	NOT INCLUDED
GEC	DM - FOR THE GEOMETRY	CYLINDRICAL GEOMETRY
LHE	- LEFT HAND BOUNDARY CONDITIONS	A CONTINUUM
RHE	- RIGHT HAND BOUNDARY CONDITIONS	A CONTINUUM
CON	T – TO CONTINUE	

:cont

OUTPUT MENU

ENTER ONE OF THE FOLLOWING

DEFAULT

PRINT- CYCLES PRINTED400GRAPH- CYCLES GRAPHED.400E+03DUMP- CYCLES DUMPED.200E+07IPRFOR A PLOT OF PRESS VS RADIUSITR- FOR A PLOT OF TEMP VS RADIUSIWR- FOR A PLOT OF MASS FRAC VS RADIUSIIR- FOR A PLOT OF VOLUME VS RADIUSIUR- FOR A PLOT OF PART VEL VS RADIUSIUR- FOR A PLOT OF PART VEL VS RADIUSIUR- MOR A PLOT OF PART VEL VS RADIUS

CONT - TO CONTINUE

:print

ENTER N, WHERE EVERY N CYCLES ARE PRINTED :100

OUTPUT MENU

ENTER ONE OF THE FOLLOWING

DEFAULT

PRINT - CYCLES PRINTED 100 GRAPH - CYCLES GRAPHED .400E+03 DUMP - CYCLES DUMPED .200E+07 IPR - FOR A PLOT OF PRESS VS RADIUS ITR - FOR A PLOT OF TEMP VS RADIUS IWR - FOR A PLOT OF MASS FRAC VS RADIUS IIR - FOR A PLOT OF VOLUME VS RADIUS IUR - FOR A PLOT OF PART VEL VS RADIUS NO GRAPHICAL OUTPUT REQUESTED

:iur

and the second se

CONT - TO CONTINUE

PRINT - CYCLES PRINTED

OUTPUT MENU

ENTER ONE OF THE FOLLOWING

DEFAULT

100 .400E+03

GRAPH - CYCLES GRAPHED DUMP - CYCLES DUMPED .200E+07 IPR - FOR A PLOT OF PRESS VS RADIUS ITR - FOR A PLOT OF TEMP VS RADIUS IWR - FOR A PLOT OF MASS FRAC VS RADIUS IIR - FOR A PLOT OF VOLUME VS RADIUS IUR - FOR A PLOT OF PART VEL VS RADIUS A GRAPH OF PART VEL VS RADIUS

WILL BE PLOTTED EVERY .400E+03 CYCLES

:cont

ENTER THE NAME OF COMPONENT 1, OR A QUESTION MARK '?' FOR A LIST OF THE COMPONENTS ON FILE :?

THE COMPONENTS ON FILE ARE :-

COMPONENTS ON FILE

CONT - TO CONTINUE

STEEL RDX TNT H6 COMP B AIR PETN POLYETHYLENE WATER PETN(RHO=1.4 PENTOLITE

COMMENT

PETERS PROBLEM RDX FILLED PETERS PROBLEM RDX FILLED INITIATION OF TNT (WATER ONLY) MARK 82 H6 FULL SIZE 4.5 INCH SHELL/BARREL/JACKET

DAVID'S PROB DAV'S DAV'S DAV'S DAV'S

THERE ARE 11 COMPONENTS ON THE COMPONENTS FILE

ENTER THE NAME OF COMPONENT 1 :comp b

COMP B HAS BEEN FOUND ON THE COMPONENTS FILE

ENTER THE NUMBER OF SPACE INCREMENTS FOR COMP B :50

ENTER THE SPACE INCREMENT SIZE FOR COMP B [CM] :0.0845

A GOOD APPROXIMATION OF THE TIME INCREMENT IS 0.2 OF THE CELL WIDTH WHICH IN THIS CASE IS .1690000E-01 IS THIS APPROXIMATION VALID [Y/N] :y

PLEASE ENTER ONE OF THE FOLLOWING

DEFAULT

VISC - FOR THE VISCOSITY FACTOR	2.00
BURN - FOR TYPE OF BURN	- ARRHENIUS BURN
FORM - FOR TYPE OF VISCOSITY	PIC VISCOSITY
PRES - INITIAL PRESSURE	.100E-05 MBAR
TEMP - INITIAL TEMPERATURE	.300E+03 K
ENGY - INITIAL INTERNAL ENERGY	0. MBAR-CC/G
VELC - INITIAL VELOCITY	0. CM/MICROSEC
FREQ - FREQUENCY FACTOR	.100E+16
ACTV - ACTIVATION ENERGY	•450E+05
NUMB - NUMBER OF CELLS	50
SIZE - SIZE OF THE CELLS	.845E-01 CM
TIME - TIME INCREMENTS	.169E-01 MICROSEC
MASS - MASS FRACTION	0. G
DENS - DENSITY	.165E+01 G/CC
PAR - PARAMETERS RELATING TO THE EQU	OF STATE
CONT - TO CONTINUE	

:cont

ARE THERE ANY MORE COMPONENTS ? [Y/N] :y

ENTER THE NAME OF COMPONENT 2, OR A QUESTION MARK '?' FOR A LIST OF THE COMPONENTS ON FILE :steel

STEEL HAS BEEN FOUND ON THE COMPONENTS FILE

ENTER THE NUMBER OF SPACE INCREMENTS FOR STEEL :40

ENTER THE SPACE INCREMENT SIZE FOR STEEL [CM] :0.025

A GOOD APPROXIMATION OF THE TIME INCREMENT IS 0.2 OF THE CELL WIDTH WHICH IN THIS CASE IS .5000000E-02 IS THIS APPROXIMATION VALID [Y/N] :y

PLEASE ENTER ONE OF THE FOLLOWING

DEFAULT

VISC - FOR THE VISCOSITY FACTOR	2.00	
FORM - FOR TYPE OF VISCOSITY	PIC VISCOSI	t T Y
PRES - INITIAL PRESSURE	.100E-05	MBAR
TEMP - INITIAL TEMPERATURE	.300E+03	K
ENGY - INITIAL INTERNAL ENERGY	0.	MBAR-CC/G
VELC - INITIAL VELOCITY	0.	CM/MICROSEC
NUMB - NUMBER OF CELLS	40	
SIZE - SIZE OF THE CELLS	.250E-01	CM
TIME - TIME INCREMENTS	.500E-02	MICROSEC
MASS - MASS FRACTION	.100E+01	G
DENS - DENSITY	.792E+01	G/CC
PAR - PARAMETERS RELATING TO THE EQU OF STATE		
CONT - TO CONTINUE		

:cont

ALC: NO.

ARE THERE ANY MORE COMPONENTS ? [Y/N] :y

ENTER THE NAME OF COMPONENT 3, OR A QUESTION MARK '?' FOR A LIST OF THE COMPONENTS ON FILE :air

AIR HAS BEEN FOUND ON THE COMPONENTS FILE

ENTER THE NUMBER OF SPACE INCREMENTS FOR AIR :10

ENTER THE SPACE INCREMENT SIZE FOR AIR [CM] :1.0

A GOOD APPROXIMATION OF THE TIME INCREMENT IS 0.2 OF THE CELL WIDTH WHICH IN THIS CASE IS .2000000E+00 IS THIS APPROXIMATION VALID [Y/N] :y

PLEASE ENTER ONE OF THE FOLLOWING

DEFAULT

VISC - FOR THE VISCOSITY FACTOR 2.00 BURN - FOR TYPE OF BURN ARRHENIUS BURN FORM - FOR TYPE OF VISCOSITY PIC VISCOSITY PRES - INITIAL PRESSURE .100E-05 MBAR TEMP - INITIAL TEMPERATURE .300E+03 K ENGY - INITIAL INTERNAL ENERGY 0. MBAR-CC/G VELC - INITIAL VELOCITY 0. CM/MICROSEC FREQ - FREQUENCY FACTOR 0. ACTV - ACTIVATION ENERGY 0. NUMB - NUMBER OF CELLS 10 SIZE - SIZE OF THE CELLS .100E+01 CM TIME - TIME INCREMENTS .200E+00 MICROSEC MASS - MASS FRACTION .100E+01 G DENS - DENSITY .129E-02 G/CC PAR - PARAMETERS RELATING TO THE EQU OF STATE CONT - TO CONTINUE

:cont

ARE THERE ANY MORE COMPONENTS ? [Y/N] :n DO YOU WISH TO PLACE ANY OF THE COMPONENTS ON THE FILE [Y/N] : ## REPLY SHOULD BE 'Y' OR 'N' ## TRY AGAIN: :n

THERE ARE 3 COMPONENTS INCLUDED IN RUN CYLINDER TEST COMP B STEEL 4.255, 5.225 CM DIMENSIONS AND THEY COMPRISE OF :

COMPONENTS

COMP B STEEL AIR

ENTER ONE OF THE FOLLOWING

CREAT - TO CREATE THE DATE FILE FOR 'SIN' DEL - TO DELETE A COMPONENT FROM THE ABOVE CONT - TO CONTINUE IE. ADD MORE COMPONENTS ALT - TO ALTER ANY OF THE ABOVE COMPONENTS START - TO START FROM SCRATCH AGAIN EXIT - TO EXIT THE PROGRAM

:creat

THE DATA FILE 'SINDATA' HAS BEEN CREATED

ENTER ONE OF THE FOLLOWING

CREAT - TO CREATE THE DATE FILE FOR 'SIN' DEL - TO DELETE A COMPONENT FROM THE ABOVE CONT - TO CONTINUE IE. ADD MORE COMPONENTS ALT - TO ALTER ANY OF THE ABOVE COMPONENTS START - TO START FROM SCRATCH AGAIN EXIT - TO EXIT THE PROGRAM

:exit

I.

THE DATA FOR 'SIN' HAS BEEN PRODUCED AND IS IN YOUR DEFAULT ED LIB 'SINDATA' 7000 job existing CIO active mode :q,ed ED version 15/10/82

```
SIN(T400)
GETSET(DFC4522)
PURGE(SINRUN, SN=DFC4522, ID=DFCEDN)
EXIT(U)
REQUEST(TAPE2, *PF, SN-DFC4522
ATTACH(SINBIN,SINBIN,SN=DFC4522,ID=DFCEDN)
SINBIN.
EXIT(U)
REWIND(TAPE2)
CATALOG(TAPE2, SINRUN, SN=DFC4522, ID=DFCEDIN)
*FOS
    3 100
              0
                   0
                        0
                             0
                                  0
                                             0
                                                  0
                                                       0
                                        1
                                                            0
CYLINDER TEST COMP B STEEL 4.225, 5.225 CM DIMENSIONS
  .20000000000E+01
                    .100000000E+03 .400000000E+03 .200000000E+07
COMP B
  50
              0
                   0
         1
                                      .2000000000E+01
                                                         .1650000000E+01
  .8450000000E-01
                    -1690000000E-01
  .1000000000E-05
                    .3000000000E+03 0.
                                                        0.
                                      .1000000000E-01 0.
  .2310000000E+00
                    .1830000000E+01
 0.
                   -.86482267660E+01 -.76497948971E+02 -.14330798590E+03
 -.12260697623E+03 -.34139045850E+02 .2660000000E+01
                                                         .2530000000E+00
  .606060606E+00
                    .5000000000E-04 0.
                                                        0.
  .3000000000E+03
                    .1000000000E-05 0.
                                                        0.
0.
                   0.
                                      0.
                                      .4500000000E+05 0.
0.
                    .1000000000E+16
 -.35222141110E+01 -.24959474720E+01
                                       .25411585450E+00
                                                         .25589619270E-01
 -.10990541300E-01 -.15437672010E+01
                                       .51978884760E+00
                                                         .79918603550E-01
  .65029983420E-02
                    .21499074120E-03
                                      .75567098200E+01 -.45930275520E+00
                    .18767838090E-01 -.13302603210E-02 .5000000000E+00
  .66679850240E-01
  .1000000000E+00
STEEL
  40
              0
        0
                   0
  .2500000000E-01
                    .5000000000E-02 .2000000000E+01
                                                         .7917000000E+01
  .1000000000E-05
                    .3000000000E+03 0.
                                                        0.
  .4580000000E+00
                    .1510000000E+01
                                       .1000000000E-01 0.
 0.
                   -.38238258745E+04 -.70321195402E+04 -.48367021389E+04
                                                         .1078000000E+00
 -.14667840212E+-4 -.16639161598E+03
                                       .20000000005+01
  .12631047114E+00
                    .1170000000E-04
                                      .7000000000E-01
                                                         .1500000000E+00
  .300000000E+03
                    .10000000000E-05
                                      .5000000000E-02
                                                         .97800000000E+00
  .5000000000E-01 .1000000000E-05 0.
  .1000000000E+01 0.
                                      0.
                                                        0.
AIR
  10
         1
              0
                   0
  .1000000000E+01
                    .2000000000E+00
                                      .20000000000E+01
                                                         .12929000000E-02
  .1000000000E-05
                    .3000000000E+03 0.
                                                        0.
  -3320000000E-01
                    .10461000000E+01
                                       .1000000000E-01 0.
0.
                    .5703000000E+01 0.
                                                        0.
 0.
                   0.
                                      0.
                                                        0.
  .77345502359E+03 0.
                                      0.
                                                        0.
  .3000000000E+03
                    .1000000000E-05 0.
                                                        0.
 0.
                   0.
                                      0.
  .1000000000E+01 0.
                                                        0.
                                      0.
 0.
                   0.
                                      0.
                                                        0.
 0.
                   0.
                                      0.
                                                        0.
                   0.
0.
                                      0.
                                                        0.
                   0.
0.
                                      0.
                                                        0.
  .1000000000E+00
```

MRL-R-877

DISTRIBUTION LIST

MATERIALS RESEARCH LABORATORIES

DIRECTOR Superintendent, Metallurgy Division Dr J. Eadie Library Mr E. Northeast

(2 copies)

DEPARTMENT OF DEFENCE

ĵ,

Chief Defence Scientist/Deputy Chief Defence Scientist/ (1 copy) Controller, Projects and Analytical Studies/ Superintendent, Science and Technology Programme Army Scientific Adviser Air Force Scientific Adviser Navy Scientific Adviser Officer-in-Charge, Document Exchange Centre (17 copies) Technical Reports Centre, Defence Central Library Central Office, Directorate of Quality Assurance - Air Force Deputy Director Scientific, and Technical Intelligence, Joint Intelligence Organisation. Librarian, Bridges Library Librarian, Engineering Development Establishment Defence Science Representative, (Summary Sheets Only) Australia High Commission, London. Counsellor Defence Science, Washington D.C. (Summary Sheets Only) Librarian, (Through Officer-in-Charge), Materials Testing Laboratories, ALEXANDRIA, N.S.W. Senior Librarian, Aeronautical Research Laboratories Senior Librarian, Defence Research Centre Salisbury, S.A.

DEPARTMENT OF DEFENCE SUPPORT

Deputy Secretary, DDS Head of Staff, British Defence Research & Supply Staff (Aust.)

OTHER FEDERAL AND STATE DEPARTMENTS AND INSTRUMENTALITIES

NASA Canberra Office, Woden, A.C.T. The Chief Librarian, Central Library, C.S.I.R.O. Library, Australian Atomic Energy Commission Research Establishment

(MRL-R-877)

DISTRIBUTION LIST

(Continued)

MISCELLANEOUS - AUSTRALIA

Librarian, State Library of NSW, Sydney NSW University of Tasmania, Morris Miller Library, Hobart, TAS.

MISCELLANEOUS - OVERSEAS

Library - Exchange Desk, National Bureau of Standards, U.S.A. UK/USA/CAN/NZ ABCA Armies Standardisation Representative (4 copies) The Director, Defence Scientific Information & Documentation Centre, India Military, Naval and Air Adviser, High Commission of India, Canberra Director, Defence Research Centre, Kuala Lumpur, Malaysia Exchange Section, British Library, U.K. Periodicals Recording Section, Science Reference Library, British Library, U.K. Library, Chemical Abstracts Service INSPEC: Acquisition Section, Institute of Electrical Engineers, U.K. Engineering Societies Library, U.S.A. Aeromedical Library, Brooks Air Force Base, Texas, U.S.A. Ann Germany Documents Librarian, The Centre for Research Libraries, Chicago I11. Defense Attache, Australian Embassy, Bangkok, Thailand Att. D. Pender

