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... Abstract

. The problem considered here is that of a finite, rigid insert partially

" embedded in and adhesively bonded to an elastic half plane. Two distinct

problems are investigated: the shear pullout of the insert without rotation,

which takes into account the adhesive's resistance to shear deformation, and

an opening problem which incorporates the adhesive's resistance to normal

h deformation. This latter problem assumes the presence of an edge crack in the

L. half plane subjected to opening pressure which equals in magnitude the normal

stress distribution due to the pullout problem. These mixed boundary value

problems are governed by singular integral or integrodifferential equations.

Numerical results are obtained via a technique introduced by Gerasoulis and

Srivastav. Several important physical quantities are calculated, such as the

shear and normal stress distributions along the bonded interface, and the

crack opening displacements.

4,(
w

a,.

9..

d I.



1. Introduction

The problem of a rigid insert partially embedded in and adhesively bonded

* to an elastic half space is considered within the context of plane elasto-

statics. The thickness of the insert is assumed to be negligible. It is also

assumed that the adhesive's deformation remains in the linear elastic range.

The thickness of the adhesive is small, but not negligible.

Loading is applied to this insert so that it translates in the vertical

direction without rotation (Fig. 1). Of interest here are the shear and

normal stresses generated along the bonded interface. These stresses will

cause the adhesive to undergo both shear and normal deformation. Twb distinct

problems are considered: the shear pullout problem already described, which

takes into account the adhesive's resistance to shear deformation, and the

opening problem, described next, which considers the adhesive's resistance to

normal deformation. The opening problem assumes an edge crack in a half space

subjected to opening pressure which is equal in magnitude to the normal stress

distribution resulting from the pullout problem. In this case, the adhesive

material's resistance to normal deformation is- used to reduce the opening

pressure's intensity. The physical quantities of interest in this problem are

5 ~ the crack opening displacements.

The problems considered here can be viewed as appropriate idealizations

for studying two separate, yet similar, classes of problems. In the context

.5; in which they have been presented thus far, they are problems in plane

-~ strain. As such, they are appropriate for investigating the mechanics of

interface failure in fiber-reinforced composite materials. The more realistic

case of adhesive failure (adhesive material allowed to deform non-linearly) is

currently being considered by the authors. As pointed out by Brussat and

*



Westmann LI] and by Chamis [2], interface damage is believed to be one of tne

earliest forms of damage in such composite materials. The subject of fiber
o

debonding has attracted several investigators over the last several years (see

C1], [2] for summary). One fundamental question that seems to remain still

unanswered, and which is addressed in this paper, is whether tne surfaces of a

crack at the fiber-matrix interface are traction-free, or remain in contact.

It is suggested in (1] that the debonded surfaces may be open or closed

depending on the relative magnitude of the applied versus the residual

stresses.

In the generalized plane stress context, these problems deal with finite

rigid inserts of. negligible width, partially embedded within a semi-infinite

elastic sheet. In this case, the results obtained may serve to better under-

stand the stress distribution at the bonded interface of dissimilar materials,

where one is significantly more rigid than the other. More importantly, an

extension of this work which will be addressed in the near future will

consider the case of an elastic insert of finite width embedded in an elastic

half plane. That problem would be applicable to several physical situations,

-5, such as the primary adhesively bonded aircraft fuselage being considered by

the U.S. Air Force C3).

The problems are formulated as mixed boundary value problems. This leads

['p to singular integral or integrodifferential equations, which are solved numer-
.5.

ically for the desired physical quantities by use of a numerical technique

introduced by Gerasoulis and Srivastav [4], [5]. The material constants

selected for the adhesive and for the adherend material correspond to

materials commercially available.

-2-
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2. Formulation and Basic Equations

The formulation of the problems considered in tnis investigation makes

use of certain results obtained in two earlier papers [6], [7]. Those papers

considered the problem of a finite, rigid block embedded in an elastic half
•space [6], and that of a rectangular trench in an elastic half plane [7]. The

problems were formulated by superposition of the solutions for rigid line

inclusions and cracks, respectively, parallel and perpendicular to the free

surface of the half plane. The results which pertain to the present work are

those derived in [6] for a rigid line inclusion perpendicular to the free

surface of the half plane, and the ones derived in [7] for an edge crack.

A. Rigid Insert Pullout: The Shear Node

A rigid line inclusion is partially embedded in and bonded to an elastic

half plane, y>O, so that it occupies the line segment 0<_.h, x:O in the half

plane. The inclusion is loaded by a force P acting along the negative y-axis

4. as shown in Fig. 1. The material properties of the half plane are taken

as R and t; u is the shear modulus, while K is related to Poisson's

./ ratio v by I - 3-4v (plane strain), or i - (3-v)/(l+v) (generalized plane.

stress). The inclusion is assumed to be bonded to the half plane by use of

some adhesive material in such a manner that there are no discontinuities in

the application of the adhesive to the inserted inclusion, and no significant

variations in its thickness, which is also assumed to be negligibly small

(less than 5x10 3 in.). The adhesive is assumed to behave as a number of

l linear springs, subjected to shear in this case. The stiffness of these

springs, ks, is computed using the mechanical properties of the adhesive.

4. -3-
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This is discussed in detail in a later section.

.- The shear stress developed in the adhesive (and transferred to the half

plane) may be written as follows:

T X xy) - ks CUy(X,y) - u0] ; x - 0, 0 < y < h (2.1)

Here, uo is a constant representing the y-displacement of t."e rigid inclusion,

*.. while u designates the y-displacement of the half plane material. Thus, the
y

quantity in the brackets gives the displacement of the insert relative to the

half plane, which is also the shear deformation of the adhesive. The constant

ks is, as defined earlier, the stiffness of the adhesive modeled as a shear

spring.

The displacement uo cannot be calculated. Differentiation of (2.1) with

respect to y yields the following equation:

U i ,y)] . - (x,y)] ; x - 0, 0 < y C h (2.2)
7y Ty xy

The rlyht-hand side of eqn (2.2) is given in terms of a singular integral

equation derived in [6] using integral transform techniques [8], [9]. When

that result is used, equation (2.2) takes on the following form:

I c h D(t)dt + h 0(t) [ ( -)2 212t-K(y+t)]
4w(Ki+) o y-t 0 y+t (y+t)2

+ 8 t) - (x,y)] x - 0, 0 < y < h (2.3)
,..-t ]k ay xy

The function 0(y) is the unknown shear stress discontinuity associated with

the rigid inclusion and it is defined as follows:

1-.
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0()aT(2). _ I T x > 0, 0 < y f h (2.4)a an. O (y a . Axy A x  . . .

.-' The superscripts (1) and (2) denote the regions to the left and to the right

-"a of the inclusion, respectively. The symmetry of the problem requires

tha T; (2) T y(1). Clearly then, the following relatir must hold

. .between Txy and D:

Sy(yy) O(y) ; < y < h (2.5)

Substitution of eqn (2.5) into eqn (2.3) leads to the following integrodif-

ferental equation in the unknown Dy):

h D(t)dt + fh .~)~~td r(K+)k i- [O(y)] ;x=O, 0 < y <h (2.6)fo t-y 0/' OK)kytd - < s  ay--

,.5°

Here, the function K~y,t) is given as follows:

K(yNt) 1 212t-(( t)] + 8 t (2.7)

y+t (y+t) (yht.

It should be noted here that the expression for -uy substituted in eqn (2.2)

xy

to obtain eqn (2.3) was derived in [6] so that the following conditions are

satisfiedq:

h 0,~d 0 < y__ h (2.)

• o

u 2)(y t) )yt0

Itsol entdhr htteepeso o ysbtttdi q 22
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T0 , y 0, 0 < lxi < - (2.9)

Equation (2.8) requires that the displacements on either side of tne inclusion

be continuous, while eqn (2.9) clears the half plane surface of stresses.
° 4

Equilibrium in the y-direction is satisfied by requiring that the follow-

ing relationship hold:

fo O(y) dy 2 P (2.1J)

Thus, the solution of the shear pullout of the rigid insert problemn consists

of solving the governing integrodifferential equation (2.6) for the unknown

D(y) subject to the equilibrium condition (2.10). The solution is obtained by

means of numerical methods as will be discussed in the numerical analysis

section.

Once O(y) has been determined the stresses generated along the bona line

are readily obtained. The shear stresses are computed using eqn (2.5), while

the normal stresses are obtained from the following [6]:

Z.(IC+1) 0 (0 0(t) L(yt) dtl 0 < y < h (2.11)

-•The function L(y,t) is defined as:

C'. (y+t) 2  (y+t)

p-"-6
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B. Rigid Insert Pullout: The Opening Mode

The normal stress distribution generated along the bond line of the

insert during pullout is now applied as opening pressure on an edge crack in

the half plane. It is assumed that the crack extends from y=O to y=h and it

is located at the bond line, x=O. The adhesive material in this case behaves

as a number of linear springs of stiffness k subjected to tension. Thus, it

resists the opening of the crack by providing a stress equal to k(COD/2) which

reduces the intensity of the applied opening pressure. The crack opening

displacement (COD) is the distance between the crack surfaces.

S' The normal stresses within a half plane containing an edge crack are

given in (7]. The bond line stresses are given in terms of the dislocation

density B(y) as:

T~~ -rO.' T (f h B(t)dt + fh B( t) - +2ty) d) 0<y h
0(Y+t)

(2.13)

Here, p and K are the half space material constants given earlier. The super-

script c is used to distinguish these normal stresses from the ones associated

with the shear pullout problem. The dislocation density 8(y) is defined as:

B(y) Cu (u2) - (l)] x 0 a, 0 < y (h (2.14)3 x

The superscripts (1) and (2) refer to the half plane regions to the left and

to the right of the crack, respectively. The singular integral equation

" (2.13) was derived in [7] using integral transform techniques.
1cThe governing equation for this problem is formulated by replacing c

xx

-- 7-
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in eqn (2.13) by the diifference between the opening pressure and the spring

U- induced resisting stress. This leads to the following equation:

jhoBlt)dt +n i t(-t)

t--- - SoB(t) [ + 't dt
Jo t-y 0 B y+t (y-t) 3

'." E-rxx(O"y) +s- k(COD)] ; x=O, 0 < y < h (2.15)

As stated earlier, the opening pressure T is the one obtained from the shear

pullout case, and k is the equivalent spring constant for the adhesive.

Following eqn (2.14) the crack opening displacement at y is given by:

COD(y) -U(
2 ) _ u =y "h B(t)dt ; 0 < y < h , x - 0 (2.16)

' .: Equations (2.15) and (2.16) are solved numerically for the crack opening

displacements and the dislocation densities. The procedure is discussed in

"' 'S detail in the next section.

-.A
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3. Numerical Analysis

The procedure for obtaining numerical results for the shear pullout of

the rigid insert problem is discussed first. The governing integrodifferen-

tial equation, (2.6), and the equation of equilibrium, (2.10), are normalized

by introducing the following variable changes:

y h( + 1) t - h( + 1) (3.1)

The function D(t) is non-dimensionalized and given appropriate square root

singularities at its ends by making the following substitution:

0(t) M 2 D(t)(1 - t2)-.5 (3.2)

With these changes, equations (2.6) and (2.10) take on the following forms:

1:.. l D(t)( )O*5 dt+ 1(t)(i-t2)

2 0.5) _j2-0- 5 ( Jd

2w(, +)u 2_ [D(5)(1j 2 )-0 5 ] ; x 0, -1 < , < 1 ; (3.3)

Ak h aj

i-I D(I)(1- 2 ) 5 d - 1 ; X 0, -1 < < 1 (3.4)

The function R(i,t) is as given next:

+(2) 2 ( +l)-K(;+t+2)] 8(;i+1+I (35
T*- ; - i+2 (;~+i+2) 2(;+E+2)3(.5

The spring constant ks Is estimated from the mechanical properties of adhesive

-9-



matc ,als representative of the ones used in industry [3]. A simple dimen-

sional analysis carried out on eqn (2.1) shows that the appropriate units for

the equivalent spring constant are Lforce/(length)3]. If G is the shear

26 modulus of the adhesive and t is its average thickness when applied to such

materials as aluminum or titanium alloys, then ks is given by:

k X (3.6)5 t

Numerical results were obtained for several values of ks . The range of values

considered was based on two adhesives which are used in industry. Their

properties will be discussed in the next section.

The kernel of the right-hand side of eqn (3.3) has a Cauchy-type singu-

larity. The numerical method introduced by Gerasoulis and Srivastav [4], [5]

is used here to reduce the right-hand side of (3.3) to a system of linear

algebraic equations. The method consists of replacing the integral equation

by integral relations at a set of points. Piecewise linear functions are then

used to approximate the integrand at a finite set of (collocation) points.

N:. The values of the unknown function at those points are then obtained via

closed form integration.

Equation (3.3) is thus reduced to a system of linear algebraic equations

*which may be written in matrix form as follows:

1. [A] {D(E)) - - (3.- [D)()I 2 ) 0 "5 ]} (3.7)

Here, the symbol £ ] denotes a two-dimensional matrix, while ( } denotes a

column matrix. The integration points E k-1, 2, ..., 2N+1, are chosen to be

equally spaced in the interval -1 < i k < 1, and the collocation points yj are

:.-10-
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chosen in the same interval such that E. < < Ti+' jal, 2, ... , 2N. The

matrix A contains the coefficients of the unknowns 0(f k) and thiy are as given

in 5]. The constant cl is given by

; 211M c+ ) h (3.8)

The solution is obtained using an iterative method. As a first approxima-

tion, O(Ek) are set equal to the results obtained from the solution of the

.e problem which assumes that the insert is perfectly bonded to the half plane,

* i.e., the case where the spring stiffness ks tends to infinity. Simple matrix

multiplication leads to numerical values for the slopes of the normalized

stress discontinuities at the collocation points j. These results are fitted

using cubic splines, and then numerically integrated using Gauss' formula

(see, e.g., [10], [11]) to obtain values for 0 at Ik ' These values are

normalized so that the equilibrium equation (3.4) is satisfied, and the

results are substituted back into eqn (3.7) for the next iteration. This

process is repeated until a convergence criterion is satisfied. Upon converg-

-; ence, the results are used to compute the stresses generated in the contact

region. The shear stresses are obtained from eqn (3.2). To compute the

normal stresses, equation (2.11) is first normalized using eqns (3.1) and

(3.2); this yields the following expression:

xx10 ) " " {-1 -

1 J1 DM (1-1 )'O'(. ,E)d ) x U, -1 < 1 (3.9)

The function t(5,t) Is given by

'w',
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%j 1 3K-1 + 2Cj+i)-Pc(+I1 8(;+1)(!+1) (3.10)
y+t+2 (;+i+2) (-+i+2)

Equation (3.9) may now be written as a system of linear algebraic equations

exactly as it was done with the left hand side of eqn (3.3). Numerical values

for the normal stresses at collocation points are obtained by multiplying the

matrix of the coefficients of this system of equations by the solution

* vector 0(M)}.

The Gerasoulis-Srivastav technique [4] is also used to obtain numerical

results for the opening case. First, equation (2.15) is normalized and the

dislocation densities are given appropriate singularities at the ends by

making the following substitutions:

y 2 h(+J) ; t s h(t+l) ; (restated) (3.1)

BM P MX)i.t2 )-0.5 (.1

With these substitutions, equation (2.15) becomes:

1 (+) (;++2 )3 2 IFi x()1- -.

~The equivalent spring constant for the adhesive in tension, k, is given by the

~following relation:

1 -12-
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k-E (3.13)

Numerical results were obtained for values of E corresponding to the range of

i G values used in the shear case. A detailed discussion of this is presented

in the results and discussion section.

Equation (3.12) is reduced to a system of linear algebraic equations [4],

and then placed in matrix form as follows:

SEM] ( (IM)} = C2 {-Txx(O,y) + k( (3.14)

The matrix [M] contains the coefficients of the unknown normalized dislocation
-a,

*' densities, and c2 is given as

c+I h. (3.15)

Premultiplication of both sides of eqn (3.1.4) by the inverse of [M] leads to

the following relation:

'COD

{'11 c2[M]'! (-Txx(O,.) + k(-T) (3.16)

The solution for this equation is also obtained via an iterative method. A

first estimate of the values in the column matrix {-.rx(O,;) + k(- O)} is made

by setting them equal to some percentage of the opening pressures Txx(O,0.).

The matrix multiplication indicated at the right-hand side of eqn (3.16) leads

to the initial estimate for the dislocation densities B(tk). These values areI- next used to compute the corresponding crack opening displacements from eqn

(2.16). First, equation (2.16) is normalized by making the substitutions

-13-



given in (3.1) and (3.11). The resulting expression may be written in the

following form:

1. EcoD] ( (2) - u- d- P 1 <2CI Z Ux X 4u• . (3.17)

The values of/2(COD) are needed 
at the collocation points Values

of 8(f) have been calculated at the integration points %; these values are

numerically interpolated using cubic splines. Then, by settirg a - ;it

Gaussian integration leads to the desired values of 1/2 (COD) at ; J. These

results are then substituted Into the right-hand side of (3.16) for the next

iteration. This procedure Is repeated until a convergence criterion Is

satisfied.

-14-
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4. Results and Discussion

* o V

The numerical analysis was carried out for N = 9 and N = 17, correspond-

ing to 19 and 35 integration points, respectively. There was no significant

,. *J difference between the two sets of results. The applied load P and the depth

h were set equal to I for all cases. Results were obtained for a range of

tensile and shear elastic moduli E and G. The values considered were set

according to the properties of two commercially available adhesives. The

first Is a relatively rigid one, known as FM-73, manufactured by American

Cyanimid, Bloomingdale Division. It is an elastomer modified epoxy

material. Its properties were experimentally determined by the Kearfott

Division of Singer [12]. The second adhesive material is of relatively low

rigidity; it is an experimental one component urethane adhesive produced by

Goodyear coded AX37J922 [13]. The average value of G for FM 73 is given in

[12) as 84,000 psi. The corresponding value for the Goodyear urethane system

is 15,000 psi [13]. Average values for the Installed adhesive thickness, t,

are given as 0.0047 inches (FM 73) and 0.005 inches (AX37J922). Thus,

following eqn (3.6) the corresponding ks values are 1.789 x 107 lbs/in 3 and

0.3 x 107 lbs/in 3 , respectively.

The value of E for the AX37J922 adhesive is given as 43,600 psi [13].

This makes the ratio E/G equal to 2.907. Poisson's ratio for this material is

approximately equal to 0.45. These values are in good agreement with the

theoretical relation between E, G, and v:

E - 2(1+v)G (4.1)

9,.

However, the experimentally computed value of E for FM 73 [12], does not
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correspond to the value given for G; the average values reported are E =

360,000 psi, G = 84,0U0 psi. When these values are substituted in eqn (4.1),

the resulting value for v is 1.14. Since v cannot be Vredter than 0.5, the

, value used for E in this case was adjusted to be consistent with the one for

the shear modulus. Taking v - 0.35 and G = 84,00U psi, equation (3.14) gives

E - 226,00U psi. The average adhesive thickness t is yiven as 0.0045 inches

for FM 73, and as 0.005 inches for AX37J922. Thus, the corresponding k values

are 5.022 x 107 lbs/in 3 and 0.872 x 107 lbs/in 3 , respectively. Numerical

results were obtained for four intermediate sets of ks, k values equally

spaced between the ones already given, as well as for two sets of ks, k values

one lower than the AX37J922 ones, and the other higher than tne FM 73 ones.

The values used are given in Table 1.

Table 1. Shear and Tensile Spring Constants

Code ks (lbs/in
3) k (lbs/in 3)

A 0.0022 x 107 0.042 x 107

B 0.3UO0 x 107 0.872 x 107

C 0.5878 x 107 1.702 x 10/

0 0.8956 x 107 2.532 x 107

E 1.1934 x 107 3.362 x 107

F 1.4912 x 107 4.192 x 107

G 1.7890 x 107 5.022 x 107

H 2.0868 x 107 5.852 x 107

Two adherend materials were considered: The 7075-T6 aluminum alloy and the

Ti-6A1-4V titanium alloy. Both of these materials find widespread application

in aircraft structures. Material constants for the aluminum alloy are taken

as E - 10.4 x 106 psi, u 3.75 x 106 psi, and v =0.33; the ones for the

titanium are E - 16 x 106 psi, 6.4 x 106 psi, and v * 0.34. All results

-16-
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* plotted here are the ones obtained for the plane strain case with N =17, and

with Ti-6A1-4V being the adherend material.

The normalized shear stress distribution generated during the shear pull-

out of the insert is plotted in Figure 2 for all ksvalues considered, as a

function of the (non-dimensional ized) distance from the free surface. As

given in Table 1, the curve identified by A corresponds to the case where the

adhesive has the least rigid shear spring constant ks= 2.2 x 104 lbs/in3. At

the other extreme, curve H gives the shear stress distribution for the case

where the most rigid adhesive is used. This figure shows that the shear

p stresses attain their maximum values near the tip of the insert, and that they

dare smallest near the free surface of the half plane. In the lower limiting

case, A, the variation is not detectable and the stresses are constant along

the insert. The difference between the shear stresses near the tip and those

near the free surface is most pronounced for the case involving the most rigid

adhesive. As the rigidity of the adhesive increases these results converge to

the ones obtained for the "perfectly bonded" case [6]. It is also interesting

.P to note that the curves seem to "pivot"M about a point near which the value of

y is approximately 65% of h. This behavior of the shear stresses is predicted

by a simple 1-0 model analysis.*

These results show that the adhesive will tend to fail (yield) near its

tip first. This will result in a redistribution of the stresses along the

bond line. This type of non-linear behavior will be investigated in future

work.

The non-dimensionalized normal stress distribution is shown in Figure 3 as

a function of the normalized distance from the free surface. For clarity,

*This 1-0 model comparison was pointed out by Professor P.J. Torvik, Air Force
Institute of Technology.
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only the two extreme cases are plotted. These figures show that the maximum

normal stresses occur near the free surface, and they tend to zero as y

approaches h. It is also observed that these stresses vary significantly with

k only at their extreme values near y = 0. There, the stress increases with

increasing k5. Away from y - 0, the normal stress distributions seem to be

independent of the rigidity of the adhesive.

These results are significant, especially when viewed in light of the

shear stress results (Figure 2). When the adhesive fails in shear, initially

near the tip, residual compressive stresses, such as those encountered in

fiber reinforced composite materials [1], C14], would tend to keep the

debonded surfaces in contact, thus inducing friction forces in the failed

region. This in turn would tend to counter shear propagation of the crack at

the fiber-matrix interface. Since the normal stresses In this region are

negligible, the residual stresses would dominate and the crack surfaces would

remain in contact. However, as the adhesive's damaged zone increases in

length, thus moving away from the tip, the normal stresses increase, and at

some distance from the tip they will balance the residual compressive

stresses, thus eliminating friction. Beyond that point, the growth of the

damaged zone may accelerate under the combined action of the shear stresses

and of the opening pressure, until complete debonding is reached. This sug-

gested failure process seems to be In very good agreement with the experi-

mental results obtained by Atkinson, et al. [15] for the axisymmetric case.

The results obtained from the solution of the problem involving the edge

crack subjected to opening pressure are plotted in Figure 4. The crack open-

ing displacements are symmetric about the x - 0 axis (see Fig 1). The curves

shown represent the opening at either side of the insert as a function of

(normalized) distance from the free surface. Thus, these are the displace-

V
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ments which are multiplied by the tension spring constant, k, to obtain the

resistance to opening due to the adhesive.

These results show that the opening displacements increase with decreasing

adhesive stiffness, k. This is what one would expect, considering the opening

pressure, Txx, does not vary substantially for different adhesive materials

(ks), as shown in Figure 3, while the resistance to opening, k(CO0/2),

increases considerably with increasing k. Thus the magnitude of the right-

.. hand side of eqn (2.15) is very sensitive to the magnitude of k. This is

shown in Figure 5, where the "net" opening pressure, -[-T + k(CO isxx 2

plotted for all cases as a function of distance from the free surface. This

figure shows good agreement between the applied "net" opening pressures

(increasing with decreasing k) and the crack opening displacements shown in

Figure 4.

It should also be noted that the crack opening displacements near the tip

(y = h) are between one and two orders of magnitude smaller than the ones near

the surface (y - 0). This behavior is consistent with the variation in the

net opening stresses plotted In Figure 5. Thus, the crack Is essentially

closed over a portion of its length near the tip of the insert, and the length

of the closed segment increases with k. It should be emphasized here that

this analysis does not account for any residual compressive stresses that may

be introduced during the manufacturing processes. The presence of any such

stresses would clearly tend to increase the length over which the crack Is

closed.
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LIST OF SYMBOLS

A, B, C, 0, E, F, G, H Adhesive Materials Designations

A Coefficient Matrix

B(y) Dislocation Densities

c1, C2  Constants

COD Crack Opening Displacements

OW(y Stress Discontinuities

E Young's Modulus

G Shear Modulus of Adhesive Materials

h Embedded Length of Insert

k Equivalent Adhesive Spring Constant (Tension)

sk Equivalent Adhesive Spring Constant (Shear)

K(y,t); L(y,t) Inteyrand Functions

M Coefficient Matrix

N Half the Number of Collocation Points

P Applied Load

t Adhesive Thickness

U0 Rigid Insert Displacement

uX, uy Half Space Displacements

x9 y Coordinates

Half Space Material Constant

Half Space Shear Modulus

Poisson Ratio

T xx Tx Normal and Shear Stresses

Tcx Crack Opening Pressure
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