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A STUDY OF THE MOTION AND STABILITY

OF TORPEDOES IN 3 DEGREES OF FREEDOM

I'.

1 • INTRODUCTION

In this paper, the dynamical elements which are necessary for the
analytical development of motion and stability of a torpedo, or slender body
are presented.

From classical mechanics it is well known that the translational
motion of a body is described by the equation of linear momentum while the
rotational motion is given by the equation of angular momentum. In general
the translational and rotational motion of a torpedo, or slender body are
coupled and need to be considered simultaneously. The general treatment of
this problem is complicated since the motion is described by six degrees of
freedom. It is possible however to obtain criteria for stability for
example, in the horizontal plane by considering just three degrees of freedom,

Ja that is, by considering the motion of the centre of gravity, parallel and
orthogonal to the longitudinal axis of the torpedo and rotational motion about
a horizontal transverse axis through the centre of gravity. A similar
procedure can also be used to derive the equations of motion in the vertical
plane. These equations are all highly non-linear. However, on linearizing
and decoupling the motion, a set of ordinary differential equations for the
pitch and yaw angles are found. The Laplace transform of these differential

*" equations yield criteria for stability in the vertical and horizontal planes.

S..In the case of a torpedo moving through fluid at rest at infinity,
the linearized equations can also yield details of the trajectory. Analysis
of the torpedo trajectory will be discussed elsewhere (1].

2. EQUATIONS OF MOTION IN THE VERTICAL PLANE

The equations of motion discussed in this section describe the
dynamical behaviour of a torpedo in the vertical plane, moving with



rectilinear motion through a stationary ideal fluid of infinite extent. The
question of dynamic stability and the derivation of the equations of motion
will be addressed under the following assumptions:

(a) the thrust, velocity and weight of the torpedo are constant,
with the thrust tangential to the trajectory,

* (b) the shape of the torpedo is taken to be a prolate spheroid of
finesse ratio L/d (t > d), where I is the length of the

). torpedo and d its diameter; and

(c) cavitation and free surface effects are assumed to be
negligible.

'9'

The reason for assuming the torpedo is a prolate spheroid is to
enable the mass accession (or added mass) due to the motion of the torpedo
through the fluid to be incorporated into the dynamical equations of motion.
Moreover when a body accelerates in a fluid, then not only does the torpedo
accelerate but the fluid around the torpedo generally also moves. This means
that the torpedo has to do work to increase the kinetic energy of both the

-4. torpedo and the fluid.

The nomenclature to be used throughout this paper in writing
equations of motion is that the translational velocities will be denoted by

*, components (u,v,w) and the rotational velocities by (t,&, ). () denotes
differentiation with respect to time.

A torpedo in rectilinear flight is subject to a number of
hydrodynamic and hydrostatic forces as a consequence of the water pressure
acting externally on the torpedo. A force-moment diagram is shown in Figure
2.1, for a torpedo on a steady course at set depth in the vertical plane. In
this diagram T is the thrust generated by the propulsion unit in newtons (N)
and is directed along the longitudinal axis with no resultant torque or
misalignment. L and D are the resultant lift and drag forces in newtons
respectively, acting parallel and orthogonal to the velocity V (m/s) in the
(x,z) plane. B is the buoyancy (N) and represents the nett force of the
hydrostatic pressures. W is the weight (N), and Mo the measured moment
(N.m). N& represents the damping moment which is proportional to the angular
velocity and 7& is the transverse force associated with the damping moment in
the vertical plane. a is the orientation angle in pitch, 8 is the attack
angle in pitch and 6 is the elevator angle in the vertical plane.

In order to find the equations of motion for a torpedo moving
through an incompressible fluid, we firstly derive the kinetic energy of the
fluid. When the velocity u of the fluid is irrotational, we may introduce a
velocity potential * satisfying:

u

2
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and because, for incompressible flow, (V.u = 0) it follows that

v2 , = 0.

For an irrotational flow characterized by the potential * , the kinetic energy
EF in the fluid domain A is given by [2]:

F 2P- U * dA, 01i = 1, 2, 3)
A

where * denotes differentiation of 0 with respect to u E Iquivalently:

EF - -/*.an %*dS, (2.1)

where n is a unit normal to the surface S of a slender body and p the density
of the fluid. Let the translational velocity components of the torpedo or
slender body be given by:

(ulu2,u3 ) - (uv,w),

and the rotational motion by:

(u4 ,u5,u6 ) 1

For each component of the motion there exists a corresponding velocity
potential for the fluid. That potential, per unit uv , will denoted by *.
Hence

d*

-u.%,; (v - 1,...,6) , (2.2)

i.e.,

,*, 1 u + 2v + 3 w + f 4  + 5& + 06 (2.3)

Substitution of (2.2) into (2.1) yields:

3



i, EF -1l/2A uut ; ( ,v = 1,...,6) , (2.4)

'[.
'1 !' where the cartesian tensor A is defined by:

.
S

and satisfies the symmetry condition:

A -P1W0.l[iv]= o.

We call the elements of A v the components of the added-mass tensor [2].

When there is only motion in the vertical plane (i.e., the (x,z)
plane) the velocity potential is spanned by just three degrees of freedom and
may be written in the absence of torpedo roll (non-rolling coordinate system)
as:

1 lU + 3 + f5. (2.5)

It follows from (2.4) that the quadratic form of the kinetic energy of the
fluid in this coordinate system is:

EF m1/2{A11U2 + A33w
2 + 2A35wd + A 552, (2.6)

with all other components of A zero when * is given by (2.5). This results
from the symmetry of the torpeso ie., replacing u by -u should leave energy
invariant; so A1 3 - A15 - 0.

The kinetic energy ET of the torpedo can similarly be expressed as a
- quadratic form, i.e.,

E9T- 1 / 2 BVu Au V; B -j,0,
. T- uvuv u -o,

*4



where

M 0 0 0 Mzo  -Myo

0 M 0 -Mzo  0 Mxo

'# 0 0 M My, -Mxo  0 (2.7)

0 Mzo -Myo i 112 -13

-MZo  0 Mxo  -121 122 -123

Myo  -Mxo  0 -131 -131 133

In (2. 7), 1i are the components of the moment of inertia tensor, xo , yo and
zo the coordinates of the centre of mass and M the mass of the torpedo. For
motion in the vertical plane with the centre of gravity of the torpedo located
directly below the longitudinal axis (a distance zo ) the kinetic energy of the
torpedo is given by:

ET - 1/2 {Mu 2 + Mw2 + 122a2 + z 0 u&1, (2.8)

and hence the total energy by:

E -1/2{(A11 + M)u2 + (A 33+ M)w2 + (I 22+ A55)&2 + 2A 35w& + 2Mz U&. (2.9)

->' If G and H are the linear momentum and total angular momentum respectively
then:

G - 3 E (( + A )U + Mz &,0,(M + A 33)w + A 35&) j-1,2,3, (2.10)G e4 j ( 11) + 33z3

and

H - = {0,(I +A )& + Mz u + A w,O ; k=4,5,6 . (2.11)
-" uk  22 55 o 35

Furthermore if F* and L* are the resultant external force and momentum
respectively of both the torpedo and the fluid and if an inertial reference

frame is fixed to the torpedo moving with velocity u (u,o,w) and angular
velocity w - (o,&,o) then:

F* + XG, (2.1 2a)

5



and

L* + WXH + uXG , (2.1 2b)

where X is the vector product. More explicitly:

_ ~~2,0,( 3) 3 -(M+A11)ud Mz 2}F*-{(M + A + Mz 0a+ ( + M + A+ + M

11 A3 )w& 35 a
2 0C 33) A35  -(+ 1 1)u 02

(2.13)

and

L_* - {0,(122 + A5 5)a + MZod + A3 5  - uw(A3 3 - A11 ) - A35 a + MZow, 0}.

(2. '0)

Resolution of the forces in Figure 2.1 acting parallel and

orthogonal to the direction of motion yields:

F* - {T - Dcos0 + (B-W)sina-Lain8,O,-DsinB-(B-W)cosa-LcosB + Fal. (2.15)

Similarly, the resolution of torques acting about the centre of gravity
yields:

- (0,M 0- A& + BX COSa - WZo sina,0}. (2.16)

Equating (2.13) and (2.15), (2.14) and (2.16) the equations
governing the notion of the torpedo in the (x,z) plane can be expressed as:

T - DcosB + (B-W)sina - LsinB - (M + A 11) + Mz o + (M + A3 3)wa, (2.17a)

-DsinB - (B-W)cosa - LcosO + F& - (M + A 33)* + A35& - (M + A11 )ud - Mzo& 2

(2.17b)

M 0-A& + Bxocosa - Wz sina (122+ A 5 5 )& + Mz + A 35 ' - uW(All - A3 3 )

-A 35u + Mz W0&, (2.17c)

where (u,o,w) - (VcosB,O,Vsin$), and V is defined in Figure 2.1.

6
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3. LINEARIZED EQUATIONS OF MOTION IN THE VERTICAL PLANE

In general, analytic solutions to (2.17) are not possible, however
-S. upon linearizing these equations, solutions can be found. lb do this we

assume that the hydrodynamic forces and moments are approximately linear in
attack angle and turning rate.

The forces and moments appearing in (2.17) are both functions
of 8 and 6 which can be taken to be independent and small (less than 100).
Expanding L and Mo in a Maclaurin series and neglecting all but first order
terms yields:

S(8,6) = S(OO) + S6 6 + S88,

where S for example denotes partial differentiation of S with respect to 6.
If the iorpedo is highly symmetrical we can assume without loss of generality
that S(O,O) = 0. Furthermore if a is also small then we have:

Cosa = Cosa 1,

sina- , sin$=$

Incorporation of the above approximations into the equations of motion yield
the following set of linear equations

(T - D) + (B - W)a = Mz , (3.1a)
N.o

' -(D + L )8 - A35 - (B - W) - L6 + F& = -MT V& + ML V, (3.1b)

M6 + M 8 + M2 & + Bx - Wz 0 - A 35V6 Ea (3.1c)

where

m.. 1T: M + All, (3.2a)

m: M + A (3.2b)
L 33,

2MI:1 M - V (A1 1 - A3 3 ), (3.2c)

M2 : -(A-VA 35), (3.2d)

:I + A5 (3.2e)

%22 

55*

7



In terms of the coefficients of inertia for a prolate spheroid (3,41
(3.2 a,b,c,e) can be expressed as:

%"' mT  - M + k inf ,

ML - M + k2M f ,

MI  MB  V 2 Mf(k I1 - k 2)

E I22 + k'Mf,

where Mf is the displaced fluid mass and kI, k2 and k' the coefficients of
inertia:

j -1
k - o(2-0)

1 0 0
* -1

Ic2 -8(o2-8) ,

k' - (a2-b2) 2(8-) (a 2+b2 )[2(a 2-b) - (a 2b )(o-o)] }-

* where a is the semi-major axis and b the semi-minor axis of the prolate
spheroid. Furthermore:

1-e 2 (1 + e)
a o - e)

"1- 20 0, + 1/e) 1
S( 3 1/21 -e)

where e is the eccentricity.

*' If p is the density of the fluid, and A, £ and V the cross-sectional
area, the length and velocity of the torpedo respectively, then (3.1b) and
(3.1c) can be expressed in terms of the hydrodynamic coefficients which are
defined below on dividing (3.1b) by:

A :- 1/2 PAV2  (3.3a)

and (3.1c) by
I8
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A 2 :- 1/2 PAV2, (3.*3b)

together with a change in the independent time variable t 1.., the time
variable t is changed to the dimensionless arc length parameter &,proportional
to t and defined by:

"-p:" t -1 ,
'-p ~:itt~c

where tc is called the characteristic time. On substitution of (3.3a) and
(3.3b) into (?.lb) and (3.1c) respectively it becomes apparent that t c is best
chosen as Iv , where I is the length of the torpedo. This yields:

- A 35al + (C P'+ m LW - MT0' -(C + C )a + C 6 6 B - 0, (3.4a)

and

cl'' - C cl + A 35' -C 0 - C M a B + W Z = 0, (3.4b)

where ' denotes differention with respect to E. In the vertical plane the

hydrodynamic coefficients, corrected for the effects of entrained water are:

CD := DA- , is the drag coefficient,D1

CL LA- the lift coefficient,
L 0 1

C:- FO/2 PAVt)-1 the transverse force coefficient,
Ft

C MI2 , the moment coefficient

C.:M 2 /2PAVI the damping moment coefficient
I C~~~~Md '2/2Pe)-

CL6 : L6A 1  , the elevator lift coefficient,

C 6  MA21 the elevator moment coefficient.

Other terms appearing in (3.4) are defined as follows:

';0



* *

A 5- 350/2PA/-1 * * MT(1/2P -- /' ); mfi = L1/ TA oT=

B: (B-W)A ; E*:- ) ; B : x oBA ; W WA

4. EQUATIONS OF MOTION IN THE HORIZONTAL PLANE

The equations describing the motion in the horizontal plane can be
derived following a similar procedure to the one given for deriving the

* equations in the vertical plane. A number of minor changes are all that are
necessary so not all the details are given here. For example, in the
horizontal plane the gravity terms, weight and buoyacy can be equated to zero
in both the force and moment equation.

Take 6 to be the rudder angle, 0 the orientation angle in the
horizontal plane (i.e: yaw angle) and T the angle of attack in yaw.
Furthermore w - (0,0,0) and u = (u,v,o). with no displacement of the centre
of gravity in the (x,y) plane, the total kinetic energy of both the fluid and
torpedo can be expressed as:

E -1/2{(M + Al1)U2 + (N + A22 )v2 + (A66 + 133(2 + 2A264} (4.1)

From (4.1) the linear momentum and total angular momentum have the form:

..
{(N + A11)u,(M + A22)v + A26i, 01,

.- and

- {0,0,(A 66+ 133); + A26v}

respectively. From (2.12) it further follows that the external force F* and
momentum L* are given by:

..'

F* - {(M + A11ll -(M + A2 2)v; - A2 6 *
2, (M + A2 2) + A26j + (M + A11)u;, 0}, (4.2a

44 and

10
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L* -0,0, (A6 6 + 133) * + A2 6(' + iu) + uv(A2 2 - Al1 1)}, (4.2b

respectively. Expanding the left side of (4.2) in a Maclaurin series,
neglecting all but first order terms gives:

12 2.
F - (u,,6), F2 (v,,6),O) (Flu + F.O + F'6, F v + F + F6O60) (4.3a)

and

-. - (O,O,L 3(v,;,6)) (o,O,I. v + .? + L 6) ( (4.3b)

Equating (4.2) and (4.3) yields:

Fuu + F.4p + FS6 mL - mTV - A 26 
2 , (4.4a)

Fvv +  F.T 262 + F6 n- + A" + mou (4.4b)

Lv+L?* + LS ~ + A 26 + fu) + uv(A2 2 -All) (4.4c)

where

aL- M + A 1 1

OT - M + A2 2

.." e I33+ A66 ,

.. and

(u,v,o) - (Vcosl,- Vsinf,0), V = constant.

5. LINEARIZED EQUATIONS OF MOTION - HORIZONTAL PLANE

Following the method of Section 3, equations (4.4b) and (4.4c) can
be expressed as:

5-"" 4 11
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,., i ad-C L, I. (C Ft ML) )t + CL A - 26 ) + .mT't 0 ,  
(1a)

p,."

c Y + (C + 26 +CL -A 6 *' * aand L t6+Tf

C T+ CM *u + A T' +c CM 0 . (5.1b)
K Md 26 4

p% In the (x,y) plane the hydrodynamic coefficients corrected for the effects of
% entrained water are defined by:

F V
C v the lift coefficient,

-.I/ 2 PAV
2

C : F 0/2PAVI)- , transverse force coefficient,
.5., t

.CL F 2 A -1 rudder lift coefficient,

L LM 61 rudder moment coefficient,

3 -2

CMd L, 20/2 AVI damping moment coefficient,

C 2 Ld 0/2PAV2Z) - , moment coefficient,

where Li:- VL3  V2(A2-A 1 1 ), L 2 :- L. - A 26 V, A2 6 :- A 2 6 (1/ 2 PA - 1

and 0:= O/2 PA
3)- . The coefficients mT and mL  have the same algebraic

form as given in Section 3.

6. STABILITY CRITERIA FOR MOTION IN THE HORIZONTAL AND
VERTICAL PLANES

The problem of determining stability of a linear system is one of
finding roots of the characteristic equation, found on taking the Laplace
transform (L-transform) of the equation governing the motion. In general if
the characteristic equation of the transformed equation is given by [5]:

O8 + a12 + S.. + an-1 s + an  (6.1)

,, 12
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then the criteria for stability are that the coefficients of the

characteristic function (6.1) have roots that lie in the left half of the s-
plane. This is both a necessary and sufficient condition and is equivalent
to saying all the determinants:

a 
0

a a a

1z ,0Ia ~
... D ,a, D2 -,,2' D3  0,3 0z2 Oil ,..

5 4 3

mast be positive, i.e.,

D > 0, D > 0, D > 0,
1 2 D3 >

If any coefficient of any power.of s is either negative or zero, then there is

at least one root in the right half of the s-plane or on the imaginary axis of
a. the s-plane in which case the system is unstable. A more complete
,, description of the otion is unnecessary since all that is required is a

knowledge of whether or not the system is stable, i.e., whether a response to
a perturbation remains bounded or grows as t (or E) + -.

S(a) Conditions for stable motion in the horizontal plane

On differentiation of (5.1) it is not difficult to show that the
decoupled equation for yaw angle # in the E domain can be expressed as:

4'' + C3'' 3 +a2 + a 1 + a 0 0, (6.2)

where

a 4 m T 26'

L a3 -mT + A (C F m) - CMA 6
3 T d 2 Ft LIP2

a2 -(m -C )C + C (6.3)
2 L F M LCM

t d

a 1 A 26C La- n C S

a 0 C MC L + Cn cM
.,1
S..

d"

"-5, 13



Without loss of generality we assume that the desired heading is *-0, then
(6.2) represents the error in heading. For stability it is necessary
that #*.

The L-transform of (6.2) yields:

*(c 4
3 + + a2 ) + 1(a a + a - 2 + + +

4 3 2 1 0 0(%4 +s(a 4*' 3 0 a4 o

+ CL0 + a + ) , (6.4)

where s is the transform variable and 0, *0, *° 60, initial conditions.

The stability of the torpedo in the horizontal plane, can be
inferred provided the rudder response 6 is known. For example if cl is a
real constant ie., 6 = c1*, then (6.4) becomes

SS a + Ma a3 + C4 9' + a3' +a2 + 16
o 4 0 3+ 3o0 ;'+Y l 2 0 1 0 P

a 43 + a 3s 2 + (a2 + c1Q1 )S + aC 1  - : c- "

. For stability the degree of the polynomial Q(s) must be greater than P(s) and
the roots of Q(s) in the complex s-plane should lie in the left half.
Furthermore the determinants:

a3 a4
3 2 ao3  2 c 1 ( a 2 + cla11  3 1 2

should all be positive.

V. If the torpedo has neutral rudder response, that is 6-0 and further
If the oliqin of the coordinates is at the centre of the prolate spheroid,
(i.e., A26- 0 as well as c1 - 0) then the above determinants reduce to:

a >0 and a >0 . (6.5)
3 241

For small angles of attack the stability criteria for a torpedo without
controls can be expressed in terms of the hydrodynamic coefficients as:

C, cG + TCmd < 0 (6.6a)

and

*14



CC - -(M CF) C M > 0 , (6.6b)

d LTt

The general solution of (6.2) for neutral rudder response and A26 = 0 can be
expressed as:

.- a+¢ a

-()-Ae + Be

where

21/
a3 * (a3 - 4a2M4

' a 2c4
a 2 4

are the roots of the auxiliary equation of (6.2). For dynamic stability
P4 )0 which means the roots a must have negative real parts, as well

as a2<4a a . This will be the ase only if (6.5) is satisfied, since a is
always posftive.

A second case of interest refers to the motion of a torpedo with
zero attack angle in yaw ($-0) and no controls. In such cases the above
stability analysis yields C > 0 for the transverse damping moment
coefficient. Md

(b) Condition for stable motion in the vertical plane

Following a method similar to the one described for stability in the
vertical plane, on decoupling (3.4) the equation for the pitch angle a is:

I

. 6 a''' + 5 a'' + B4 a' + B3 a + 826 + 016 + Oe - 0 , (6.7)

.where

• . 2  *
0 6 A35 + mTZ

S*5 A 35 (C)Ft+ mL) mTCMd A A + Z(CD + C ,

S*4 MT z 0 - CM(CFt + mL CM d(CD +CL )

83"- W zo(C D + CL )

15



0-A C ~mC
2 35L a TCM6

. 4: -CC -CM (C + C )
1 MCL M D L

0Vq BCM -B (CD + CL)

As in case (a), stability criteria can be found if the response 6 is known.
For example if 6 - c 2a, the L-transform of (6.7) yields:

.3 a6 + s2 ( o + a's6 ) + s(a'86 + a ' 5 + a 8 + C a82)-8
o 6 0 5 0 60 6 0 o 04 2o02 o"-" {663 65 2

8(8 6s +8 + s(84 + c2 2 ) + 83 + 81 c 2

and a necessary condition for stability is that all the determinants

D 13 6

2  3 + c821 54+ c26 2

D3  D1 D2 ,

be positive.
.

7. DISCUSSION

The model described above considers some basic aspects of torpedo
motion and stability in both the vertical and horizontal planes. The
question of accessibility of the stability criteria depends on a knowledge of
the hydrodynamic coefficients for a particular torpedo body. In the
foregoing discussion no explicit studies were made of torpedo stability due to
lack of data relating to hydrodynamic coefficients of the torpedo to which
this report was directed. Therefore this study should be considered as a
first step only in developing a knowledge of motion for submerged bodies.
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