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83-911GLOBAL PNS SOILUTIONS FOR LANMINAR AND TULEIINT FLOW

S.(. Rubin and D.R, Reddy

University of Cincinnati
Cincinnati, Ohio 45221

Abstract Alternatively, an eigenvalue analvsis
1 3 has

sonthat the p term can he structured so that
A multi-sweep relaxation procedure is applied siow ) + Px ) er e 01) s tht

for inviscid and parabolized (pressure-eli iptic) Px 
=  (px) p 

+  where .(M) is a function

Navier-Stokes (PNS) equations. Boattail, finite of a local Mach number M and 0 1, (O) = 0,
flat plate and NACA 0012 airfoil geometries art, , (1) = 1. The term .(pX)p represents the parabolic
considered for incompressible and subsonic inviscid, (
laminar and turbultnt flow. The equations are xc

written in a conformal bode fitted coordinate frame sents the elliptic contribution to P ." This latter
and differenced on a staggered grid in order to term contains the upstream influence. If included

*', give second-order accuracy for the Inviscid flow in a marching calculation where the M - 1, th ill-
and somewhere between first and second-order posedness of the initial value problem is once

accuracy for the PNS solutions. A full second- ag, in apparent with the appearance of th. dcoarture
order scheme is also discussed. Separation, solutions that reflect different downstream
tratiling edge and stagnation point flow are evali- boundary conditions for the pressure. The (.%x)mii
ate"d. The effects of normal pressure gradients and .. (p descriptinns can be reconciled be defin-
for laminar and turbulent flows are compared. A p
miilti-grid procedure is applied in order to speed ing Ax as Ax/. in the general marching analysis.
convergence rates for fine meshes and/or large For given Ax, ,(M) and therefore ". vary across
computational domains, the subsonic layer in order to obtain departure

free marching solutions. This procedure is incon-
I Itdcosistent for flows where p is important.
1. IntodcIn recent papers by the authors 1-5 it has

The reduced form of the Navier-Stokes equations been shown that for incompressible flow, ')mi n
originally termed parabolized Navier-Stokes (PNS) is proportional to the total extent of th

and more recently semi-elliptic, partially parabolic computational boundary Yv in the surface normal
or thin layer are considered herein be relaxation direction. This implies that for Y , ' (x) m.
methods for the evaluation of incompressible and m1i

or with .,(0) = 0 the entire Px contribution is
subsonic flows with strong pressure interaction elliptic and therefore must IL neglected for depar-
and/or separation. Previous analvsis be the lure free single sweep marching procedures. For
authors and solutions for laminar incompressible subsonic flows, - I over a range of y values so
flow for trough and boattail configurations are that (Ax)m ' 1. However, from the px split of
given in references 1-4, for subsonic and transonic
flow over a cone-cylinder-boattail geometry in reference 13, shown previously, it is seen that
references 6, 7 and for supersonic flow over a (.X)m i n for subsonic flow is reduced by the factor
cone in reference 8. The present procedure is (1- ) over the value obtained in references 2-5 for
applicable to inviscid as well as viscous inter- incompressible flow, i.e., (.'x)min 0 - )(. )m
acting flow and can be classified as intermediary ii mn/.'hO
between interacting boundary layer theory and con- In order to c:irc'umvent thu i ll-posedness of
vent ional Navier-Stokes or PNS technique. single sweep PNS methods, a joba

tion or multiple marching procedure has been pro-The PNS equations were first applied for beler- p yh
sonic problems' , 0 where the contribution of the ps btha or.rtenie cluerange, i1., f~~j ussible to supirsonic flow.
pressure gradient p in the longitudinal (x) momen- I'MT i-e___.-.,i-ressible-t---uj-yr-----c------
turn equation is negigible and can be neglected. This requires an appropriate and exact "forward"

nanor mid-point difference treatment of the P5 con-
The system is then mi'hematicallv parabolic and tribution since this term alone (for att ached flow)
can be solved as an initial value problem by march- cintains the upstream or elliptic iiflunce.
ing techniques. For lower Mach numbers, where p5  SvticantIv, onl the pressure (.nd velocities in
must be retained, an elliptic influence associated st-r----
with the pressure interaction through th subsonic the relaxation process. flwi m esdto rignifi-
portion of boundary layer appears in the PNS
system.

10 ,1 1 
Single sweep marching then leads to cant reducti over convent ional Navi r-Stokv. and

an ill-posed initial value problem -12 and xpo- PN methods.
nentiallv growing departure solutions appear for Consistent (',x arbitrary), de,irture fret-
step sizes :'.x (.x)m in, where (.x) mill is propor- (',x - 0) and rapidlv convergent solutions hact-
ttonal to the extent of the subsonic portion of pre Viouslv been obtained for laminiar incomprss i-

the flow. 8
'

1 2  blt, 1 - 5 
subsonic,

6 
trainsouic' and wt'aklv initer-

acting supersonil flows. Stro.g pressure inti'r-
actions and separation have been captured with the
global PNS prot-odure. Several diffe rtuic in, pro-
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In the present paper, the difference equations As explained in gr.,ater deLai I i cAr I ir
describing the PNS equations are defined on a studies2

,'
3 

the version of the PNS equitilns defined
partially staggered grid. This leads to a m dified lere net lects lolg itudinal diffsi,ion vtfects it
interpretation of the discrete px approximation, the \-momentum equation (2), as well is all diitu-
A multi-grid line relaxation procedure that reduces sion terms in te normal ('i) imomentum equation (3 ;
computer effort and storage is outlined. The these terms, iii tile appropriate st reaml ilt' coor-
convergence properties and the accuracy of the dinate frame, are no more important thin those
discrete system is discussed for inviscid, laminar already neglected in (2). The continuity (1) and
and turbulent modelling. The applicability of the normal momentum equations are then first-order in
relaxation procedure is demonstrated for inviscid (for v and 1), so that two-point trapezoiidai rile
flow. Convergence studies are presented for an differencing is applied. (inventional thrtC-loint
axisymmetric boattail configuration. Incompressible differences are considered for -momentum1 (2).
and low speed compressible flow results are then Equations (1-3) are coupled for the vriablte"
discussed for laminar and turbulent flow over a (u,v,p). The density is obtained through an itera-
finite flat plate and a NACA 0012 airfoil at zero tive process at each -, location, see references
incidence. Of particular interest is the behavior 6-8. This allows for a s-implification in tire
near the trailing edge, the stagnation point and treatment of the px , "m and works quite well tip to

in regions of separation. In addition, the impor- transonic speeds.
tance of the normal pressure gradients in these

regions will be compared for laminar and turbulent
flow conditions. 3. Difference Equations and Solution TechnifuLLe

The equations (1-5) are diffforenced on tire
2. Governing Equations staggered grid of figure 1 as shown for incompres-

sible flow.
The governing PNS system considered here is

written in a conformal coordinate frame ( ,n) for - -
the primitive variables, pressure p, density c,
temperature T, viscosity coefficient p, and velo- j+l (u.) v (u,p) v (u,p)
cities u,v. The transformed cartesian coordinates I

= (x,v) along the surface and r, n(x,y) normal - 'I

to the surface are related to the (x,v) physical j (u,p) (i, p) v (u,p)
coordinates through the transformation i = f(z), LO1
where = '+i', and z = x+iv. The metric h = f'(z)j 1 @©OJ
and h_- ih = h(f"/f). The metric h = yE, where j-1 (u,p)

3
I = for axisymmetry. _ _ _

Continuity u i-l i ) i+l

(hv u) + (:,hvkv)r 0 (0) v i i+l

p 1 i+l i+2

%-momentum

- (; hvu 
2
) + _ (uvhy ) + (,uvh) /h Fig. 1. Staggered Grid - Incompressible Flow.

hv he

) 2 Both first- and second-order accurate systems of

(.uv) C v h)/h + (.v )r discrete equations have been developed.
3- 5 

Signi-
ficantly, the first-order system given below, is

1u j(2 equations (6-8), is, in fact, second-order accurate
- + -5 L (flu) ] (2) for incompressible inviscid flow. This is parti-

-" I h2 "cularly important as the PNS systCm is used to
evaluate both viscous and inviscid regions. thcre-

-- momentum fore, we would expect that overall aCCUracV will

fall somewhere between first and second order.
-p uvhV')/hV" + (.uvh) /h -(;uv), This will be demonstrated in the fitllowing sections.

-p iv n -t . "u) Tire ful I second-order system is give in refrernces

3-5, and will not be repeated here. This system is
+ -C v hy') u 2h) /11 + C . (3) mor (' m1plex, requires many mo~re operations and iI

h%' 'vere sensitive to coordinate transform, tion,
r(2ions (f large curvature, or +,r, longitudinl

Energy gradients as in the trailing edge flow. Thie
acc-uracv of this vystem has been ttest,-d , r i

2 +v2 sumi-infinite flat plalte whtrc- these tilc rc

H = C T + u- H = constant (4) nerl i p b It. The second-,trder cha;racte r of the rrttrp has htvn couf irmed. 5 However, for ti a-rc,~ons

already c'ited, thet "I irst"-,,rder or ",)i,ne ] od nel-

State Vis, ,sitv hllf"-trdr systemi
- 8  is con idt-reid more slit.1l11

for tire present applications. lie L'c itir,1 ls ire
= ,r; . N(T) (5) shown here for simplicity iii tln-cotnsurvat in

cartesian coordinates for thc laltt plrit eteomttrv
. For th' present s;tud;i only adiabatic condiions and i linirm mesh il x and v. in fr-i, ntl-liti rm

ie i o n sid e r e d . m c -h , , o n s r v t i , , n e q a t i o n s ll (] ( o 11 r m al
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coordinates are used throughout. treated iteratively, as in tht art ii ciai compres-
sibility procedure for transonic flow, it is
possible to consider the fully eliiptic (=0) form

Continuity: centered at (on figure 1 for p . This has been applied for subsonic, 6

transnic
7 
and supersonic cases. For supersonic

i,j U i-il,j + I,j-1 (Ou) il,j- 1 2 flows with A./YM " 1, convergence will however

be slower than with the exact treatment of (9).

+ I(v) i j - (v) i,j- I o (6) In this procedure pij and pi+l,j are always

located at the positions shown on figure 1. For

supersonic regions the exact differencing would be
7' °'-momentum: centered at Z) r= n nimoentum:-entered t= (+I-P,)/A:, so that the error is of the

1+1 .J1 1,1
x form (n n-i

("u). (u -ui )+ (v) -Y (u -ui +lUijl) (pi+l,j-Pi+l,j )/ q i.e. an iterative time
I ' i~ Iterm that vanishes when convergence is achieved.

n-i
+ P - P If the exact treatment (9) is used with

density iteration, then it is appropriate to

= i rewrite (9)
U "-Ui,j y2 ( ,i,j

Ay22 ij -I) n-i n n-i *n +pn
(7) p i+I~ -- 1 Pi.j Pi.lLt 2 pi) (10)

-momentum: centered at
where the (*) denotes the latest local iterative

[(+u) +(:u) i  value during the nth global iteration. For ..=l,

I 4Ax ]IVli-Vi- l +v i,j--Vi- ,j-1 at local convergence

n n

+ ( -v ) + - - P r = '

2Lv )(Vi,j-vi,j-I Ay

In this procedure, the pressure at the ui, j location

of figure 1 becomes wpi j+(1-..)P+l,j and global

The equations (6-8) represent a coupled system for convergence is accelerated for supersonic points.

u Both methods have been applied successfully here

the vector (v) As seen from the unknown and in references 6-8. Equation (10) is directly
obtainable from (9), if n is approximated by

%p i,j +, sapoiae %

bracketed vector in figure 1, on the staggered grid 2 _ p so that the two approaches differ
1" the pressure p. is evaluated one grid point i'J i-l,j

only in truncation error.
' upstream of the unknown velocity ui .. This re-

flects the upstream influence or elliptic effect The density, temperature and viscosity coof-

of the pr term. The superscript n-1 for p. . in ficient are obtained from (4) and (5). A linear
t+l ,j L(T) relationship has been assumed herein. Then

(7) denotes the value of the previous global itera- -11\

tion or sweep. The current iteration is designated these quantities have been updated the vector .,)

by n; although, this superscript has been dropped p/ 1,

throughout. It is significant that only the is re-evaluated until some specific degreof

pressure term p"' is relaxed during the itera- convergence, usually 10
- 4 

in sequential step.-, i'. -' achieved. The nonlinear system is quasi-Ilint,ri/, j

tion procedure. Therefore, only pi,j need be in a standard mannerd
- 5 

and nonlinear terms arc

stored. For separated flow the convective terms updated at the same time as the density, i',itv,

1-I n-1 etc. After final convergence at locat io i , th,
are upwinded so that u ilj and vi 1l,j are also procedure continues to i+l, etc.

required, but only in the limited regions of
reverse flow. The tridiagonal linearized system (h-) i-.

__ The treatment of p. in (7) as (pn-l n s e for by the standard 1.1' d-nw l
i+l1 l (V

corresponds to a fully elliptic approximation. tion. The total I ine- relaxa t ion p)r ct'durc ,ni Ti,,.
From previous studies by the authors, as well as to the right hand boundorv. TI. (n-1) t-.rm-. it
the eigenvalue analysis of reference 13, this then updated and the marching pro, - , rp. it,.
description is exact only for incompressible (0=0) The solution procedure is terminated wh,n th,

flow. For subsonic flow, the structure discussed changes in maximum pressure and -k in I r i. tIn
in the Introduction, where p, is of the form between global iterations is less thin 1 . 1 no

relaxation is considered most e f i i I' I I tli

n n -+ n (n~ present analysis as it minimizes stra,, r,,ntir.
Pq= (P,. j- Pi-I )/. 1-_)(Pi p, ments. More efficient procedurt-, su .-. AlI

(9) CSIP would require increased stora~w t,,r the

should apply if the density is coupled with the velocities as well as the pressuur-. in t .o ,

(u,v,p) calculation. However, if the density is is to reduce storage requ ir-mnts I .r t lut i.r th,

e: 196
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dimensional applications, simply linc rclaxition Is .1 , 't$ - ' itt r I,,r t , i l il rtl.x. i i
with a multi-grid corrector, to be discussed pro 'tdur. As nott d in tit' pl,.'i,, i i,

shortly, was chosen. trom tilt g ,,i- ,nva lutt 1n . -li,,r iS' t l,.w,
it .l be inftrrted that tit , nv,.r v ,- 'l- c,,nditi,,n

wil I t o tiit t, I t Al for I. Il
4. Boundary Conditions l(

For the primitive variable system (6-8) on the impl its m,, r rai pid c-oinvergent-' wit I I I iv regions
tif highi sustOiri icOr supt'rsoi K Macli rrtmbc'rs andt

staggered grid of figure 1, the following boundary fixed Sinct I a S M
conditions apply:,

In order to improve tit, c rnvt,-rgenc rate, a
At (5+( infl, wil're tirie-dinensi onaI (ill 5) 1u1 it i-grid irocedurt

v(.10,) = V(n). V('-) ("' where following the full approxinmit ion scheMe Of
reference (14) has been aplil itd . This approach

is the inflow vorticitv; for oniform conditions is less efficient, in terms Of storage requirements,

U I and V - 0 (zero vorticitv). A condit ion for than a full two-dimensional mui: -grid appl hati,,n
the pressure is not required for incomirressible htv , rlatinf ion in te -dirttin

h,*'flow. As seen from figure 1, the- how,,ver, relaxatiin for 1) ony in the -dire.tion
icaut fsatd the calculation is fullv implicit in -. Also,
is-- a highly non-uniform mesh is requir'd to accuratt, lv

At the u pper ' = I , 1) = I describe the boundary laver, trip'l dct,'k and
-_Athe uper surface u=, 

=
inviscid regions. This is tt id:lJlv suilted tfr

i.e., free-stream conditions art applied. Tb is re- i nterpl it ion required by t be mi Iti-grid prOct'dur.
quires that - be sufficiently large, e.g., Outside Of particular note, error transf'r from coarse to
of thet, domain of tie triple d eck interaction. 3-5 fill. grids is applied onill\, for the pre'ssure, even
Tie outer bomndarv could be moved closer to the in regions of reversed flow where ti'' Vt-bC itit's
Th uccn-I ri-I
surface by applying conditions similar to those of Ui -nd v are alst reIax-d. These ,.Illues

interacting boundary layer theory; however, for tite 1+ ' il
are fixed on each grid from til' previous global

present calculat ions, tet! fiIlII i nviscit
1 

evaluation (ti-I ) iteration. Since the separation zones art
was included. A boundary condition on v is not of cotsiderablv different eXttrt Ott eat grid,
required. the transfer process for the velocities was con-

sidered to be a source of possible difficulty. TheA ;t thet out flIt'w "= " •ttniv the itressureAt 'h- .... _ - present procedure works quite well fir most of tht
p(1I - or derivative p:(' 1 ,, ) are prscrijbed. For problems considered here and is discussed in

t - t creater detail in references 4,5.t h,- ,rv'enit e,;11u, lat ionTs, both p =0 and p). = 0

wir,, appl i, ablt'. There art' only slight -Tfh effects Of the muIl ti-grid procedure oti tilt'
! t renl, -; inl the

+ 
sol]utions. convergence properties are shnwn in figure 2 for

a trough geometrv discussed previouslv in
Atlit' wal LI__- _= : lr visecous flow i(.,O) - references 4,5. Similar results were f''rird for

v( ,l) = 0 is spclified. For inviscid flow onlv the flat plate configuration. When large rt gions
-v( - ) = 0 is required. A boundary condition on of separate] flow t--hr, the coarse grid corrections

th,- r,- ,tre is not required. are less effective and the multi-grid procedure

appears to enter a limit c' It'. For this reason,
Si cii i',antlv pr,.-urt- boundarv cinditiots art' tite coarse grid siilutions wtre Sit11plv anpiCd as

I , -p, it , -i t tht- tipper antd octflow boundarit'es.
A- 0 +w, in r,-t trenc k" -,5, tire equations (6-8)

itI ,- m.r ipiul.it,-i t . provide in effectivt poissont

-r, 1:t-r tit' rim- iitintg prt'ssire boundarv Ii "
'rt'; -, ,! N,r'inn tv'e art' impl iti tlv imposed

!, ,nt, rr.'t dirt'' tIc from the o riginal
' Il I I r-h,-r, is ni reed to appl '

t': t P ,, + it r-. r I + t w ,}+ ti - ,n~l equationl an~d

*, - ' iI'lt r'itl indir tly , a1 is timmotli'
iL ' r m,.,t Irn, ,mprt- sV ible flow proic -

I WI 111(10 Ml 11 'Pji

A
I, d I i Il tt IU -,, id 11r,- edu

1 1' t- s i i n ltr ,f etii rtt n e1
t. , t Ini],l-, f r.Iferries iI

I-'

- ' ' , - -, - h, it-c I I riit r x

r" ,+ r i. t . n pr , .dur,.- isf of

titit I I' 1 t 1 1 t I I I ll I I.. 11

I tit -~t - ). i - 1 PHAi t i rii I1 PAlit II h ,'t,'
.1

- t',l" t, . . . IIl,,w. .i..6 l, ads..t

Ie- -. h - .- ad,; t, lip. 2. Convergence Rte with Multi-;rid Scheme
wtp m.thi, (Tr~ligh - = -0. 015, Re 8 : I0 ).
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fine grid initializations. This uni-directional

process was still a considerable improvement over ,0

direct calculations on the finest grid. Figure 2 " '.
depicts the significant reduction in iteration I.,
count with the multi-grid procedure. Figure 3 k - ...

depicts the sensitivity of the pressure solution
to mesh width for the trailing edge triple deck
interaction. The skin friction is much less grid

dependent. This behavior was found for other '
geometries as well.

4 ,  
Finally, the convergence s i

rate, for a fixed , mesh, as a function of the r -
outer boundary location YM is shown in figure 4.

The results are consistent with the prediction 0 ]
that convergence will deteriorate as (Ar/y ) ,

decreases. With the multi-grid correctionNhowever 0o 6-

:- ,< (figure 2), this sensitivity is greatly reduced

and the parameter (Aj/y) is less critical.

I- I. I I fl ] IVIII

' I i (IJAJ I I ';

Fig. 4. Convergence Rate for Different (.x/y9)

, =g (Semi-Infinite Flat Plate).

6. Solutions

"- " (i) Inviscid Flow - Boattail

=5 R - Since the PNS equations are applied here for
C / the evaluation of the complete viscous/inviscid

COARSE GRID (0.1) interaction, the effectiveness of the relaxation
* FINE GRI (0.01) procedure, for the discrete system (1-5), for in-

SF Rviscid flow is important. For supersonic flow with

"- a fitted shock boundary,
8 

the inviscid region is
relatively small; however, for subsonic

6 
or tran-

sonic
7 

flows, these regions can be quite extensive
and the overall convergence rate of the PNS proce-
dure will be dependent on the "inviscid" convergence

% _=properties. In order to test the present method,
_-" - .-. solutions were obtained for the inviscid flow (slip

.'. boundary condi~igns) over an axisymmetric boattail
configuration. - The results are shown in figure 5,

Fig. 3a. Flat Plate Trailing Edge Pressure on without a multi-grid correction, and compared with
Fig. w3a Ft PLel rai inaerepotential flow solutions obtained with the CSIP
Two Grid Levels (Laminar), procedure. 1 5  

The initial conditions are somewhat

•.POTENTIAL SOLUTION

_GLOBAL PNS

Re - 10
5  i -

&COARSE GR'D (0.1

* FZ" "t (R-00.01) 513

.,'."

A e

-rr-c-1T{,- 198iii -i rs
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~rr- a'- ~ryx~~fl . ~'-.-~ ~ri , r. r17 -.,. 4 -.r. . - -.-.
. , 0r ,'.7 W_

different and therefore teie potent ial sol it ions iliese results confirm tie val i di t v and a-c Iti1.c V
start with a sl ightlv larger error. The figure of the relaxat ion procedure for inviscid reg ions.
clearly shows that the convergence rate of the An accuracy plot for tie viscous boattail dis-

line relaxation procedure for the pressure des- Cussed previouslv
-  

is given in figuLi 6b. Noti-
cribed herein is not significantIv different than that the exponent 1.8 is obtained. Similar
that for the potential equation and the CSIP. This results were found for the trough configuration.
is an important and somewhat surprising result. This indicates that the overall accuracy of the
Moreover as seen in figure 6a, the solution is system (6-8) is,as predicted, somewhere between
essentially second-order accurate. This was dis- first and second order.
cussed previously; further analysis is given in

references 4,5 where it was shown that on the (ii) Finite Flat Plate - PNS

staggered grid of figure 1, the inviscid discrete
equations for the pressure and velocities are in Solutions for the full PNS system are given
e 0(, :2 , in references 3-5 for the laminar incompressible
error by O , .,), when the vorticity is flow over a finite flat plate. The pressure

by coefficient given in figure 3 for two grids is
+" shown in figure 7. These results are repeated"v. .- v + -

i+ I -vi +lJ- -ij-1 here in order to demonstrate the excellent agree-
.: "i,j 2,- ment obtained with interacting boundary layer

solutions for this geometry. The trailing edge
SUi,j ,j-1 pressure and skin friction are predicted v rv

ZIn' accurately and for the staggered grid the minimum
pressure is obtained at the trailing edge of the

..... plate. Due to th, dscontinui in pressur

I!
E 0 T

o a 22- .

00
- --- . . .. . . ..--"_ . . .. . . .

N Slope =1.97

NV -~ c
E
L - I

2 3 4 5 6 7 8 9

0.00 070 30 g 10 1.30 15, 70

H -  
Fig. 7a. Flat Plate Trailing Edge Pressure

(Laminar Flow).[.-.-Fig. 6a. Accuracy Plot for Inviscld Flow on

- Boattail (Juncture Angle 15.80). 2 NS

L. -_ - Infit.te 1'at Plac-

ho I

%

% IS 

loe =1.83

10-2 7 3 4 S6 B - 7 3 4% 10 ti

Fig. 6b. Act-uracy Plot for Boattail (htinc'tur-
Angle 30*) Lamninar Flow Re 1000. Figp. 71. Flat Plate Trailing Fdre Skin Fri t ion

and Wake Centerline Veloc itv (himiniiir)
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L "L" 0 005; ,

gradient at the trailing edge, the accuracy factor . REF [171

was 1.35, a value somewhat less than that found R 4EF 1191
for the boattail and trough. "- ,.AtI.'0 004 -t "-

For the present study we are particularly "-- -

concerned with the trailing edge behavior for ,

turbulent flow conditions. Th two-layer Cebeci- I

Smith eddy viscosity model
1 6 

has been assumed for N 0003i

the Reynolds stress term in the ---momentum equa- I

tions on the plate, and a modified version given 1 I
in reference 16 has been applied in the wake. C o ,n
Reynolds stresses have been neglected in the
T-momentum equation. The two-layer model should

be adequate for this unseparated flow problem. N

Limited interacting boundary layer results have 0 001 n.

been presented in reference 17. A definitive
triple deck theory has not been completed for this
flow. One of the open questions concerns the
influence of normal pressure gradients. n 00I-[TF1 1 r-T- - I [ V T I

00 0 25 0 so 0 15 1 00 125 S I) 1/i,,
Solutions for the pressure coefficient, skin DIIAtICF UPOM IIt LEADING EDGE

friction and wake centerline velocity are shown in Fig. 8b. Flat Plate Trailing Edge Skin Friction and Wake
figures 8a and 8b. The centerline velocity and Centerline Velocity (Turbulent, Re= 6.5x 105).

pressure results are in reasonable agreement within-
teracting boundary laver and experimental vrlUes.

7, 1 9  
Velocity u

er. 00 0 04 0.6 08The normal pressure gradients at the trailing edge 00 J t 0 W
(figures 9a and 9b), however, are quite different P ,__ _,

*'.::" than those found for laminar flow, (figure 9a). - ,RE C0FF
" In the latter case virtually all of the pressure -v-OCl[V

change occurs outside of the boundary laver, i.e., 0 08- 0o V

in the inviscid region or outer deck of the triple
deck structure. For the turbulent flow, approxi-
matelv 60% of the pressure change occurs inside 06 0o
the boundary layer (figure 9b). Therefore, the
longitudinal pressure distribution (figure 8a) at v
the surface (centerline) is considerably different I
than that at the boundary layer edge. This clearly 0 04- -0 0.

has some implications with regard to the applica- W /

bility of conventional interacting boundary layer /
methods that neglect these gradients. Similar 4,5 0 0 -- 0 02
effects have been found for the boattail geometry. X,It is surprising that the values of the centerline I "

velocitv (figure b) are in such good agreement.

.- w'. Further study on the effect of normal pressure 0o0..r , rI I -0 00
gradients for turbulent flow is certainly suggested. 0 14 1 12 -0 to -0 08 0 06 0 04 ) 2 0 00

Fig. 9a. Normal Pressure Distribution Near Trailing

Edge of Flat Plate (Laminar, Re = 105).

I"-'-Velocity uo." y-0.0 0M aI's 0 so 0 7, 0
• o 0 10 - 0M00

• PRF COEFF

0 00- ..... ___ VfLOCI Y

- -0 08 -0 ns

S-n 0i,- 00 06- -006

F I

n/

" r r r I T I t -r r 7 t t t f I i t I I ,7 1 1 t

,o 1 Vlo , 11

riSIAllr FRl r t lt I I 1AD1N1r CIWV 0 8 -0I 6 -0i 4 C 2 0l 0

1(10

Fig. 8a. Flat Plate Trailing Edge Pressure
(Turbulent, Re 6.5 x 105). Fig. 9b. Normal Pressure Distribti in Near Trail ing Edge

of Flat Plate (Turbulent, Re 6. Sx I0).
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(iii) NACA 0012 Airfoil - PNS

Laminar and turbulent flow over a NACA 0012
at zero incidence is considered for incompressible 0.o
and subsonic (M = 0.3) flow. The two-laver eddy 

viscosity model is applied once again. This should R

be suitable for non-separated flow; however, forsu 2

the separated flow solutions, the adequacy of this u
S

Ui
model could be questioned. For the mild separation R

regions occurring with the airfoil geometry, the 0. -c/
errors incurred with this closure model should be 0

relatively small. This is not true for regions
with massive separation zones. The metric h in
the governing equations (1-3) is obtained from a
cenformal mapping procedure described in previous

studies.
3-5 

The grid is shown in figure 10. 0 -. - , 0
•-4 -2 0

ITUI/OIJIAL DISIAMUCi X

- Fig. 11:i. NACA 0012 Airfoil, Laminar W

V 9 4-(Re =12,500).

D 0.04
% . I 2- K'

•T -I"

A N
N F

T -

0
-1- T- p -T-rN 0.00-

o - t I T T .O - - I .................. .. ..... .......
•0 -- -e 0 9,5 I's 1 2 0

HORIZONTAL DISTANCE X

Fig. 10. NACA 0012 Airfoil Grid Close to the Body -°°--I - [ -U l
(Physical Plane). -0.2 0 0 0 ? 0.4 U a a 1 0 1

IIOkIZO14TAL VISTAJCt X

Laminar flow solutions have been obtained for
Reynolds numbers, Re = 5000, 10000, 12500. For Fig. llb. NACA 0012 Airfoil, Laminir Flow

the larger value of Re a small separation region (Re = 12,500).

appears near the trailing edge, figures lla, lb.
A detailed study of the front stagnation point for

a series of successively finer grids has provided
evidence that the PNS approximation, in an appro-

.priate body fitted coordinate system, can accurately
evaluate the flow in this region. Recall, that
the exact Navier-Stokes equations for stagnation 2
point flow do not include diffusion effects along 2 J

FROM FUILL. NAVIER-STOKES SOI.tTION
the surface or diffusion terms in the normal 72 1
momentum equation. Comparisons of the present s
PNS stagnation point sheir stress with the exact
Navier-Stokes value of 1.25 are given for several
grids in figure 12. For the finest two vris, the 0 7S

agreement is quite good.

Turbulent flow solutionsare shown in figures--

13a and 13C.for Re = 5.35x l05. Based on experi- -1
mental data,

18 
transition has been prescribed it

a distance along the airfoil x/c = 0.4, where ( is 0 s
the chord length. Separation does not occur. The
agreement with the data is reasonable (figure 13a)

considering the fact that the grid resolution is 1 n -, ,1 I t i i t r r , i i , , i i i I T

clearly inadequate for the region x/c 0.4, where 0 00 0 Wt 0 02 0 03 0 01 0 W, IT 06 4 1'

the flew is laminar at the same very large Reynolds
number. Finally, the normal pressure gradient for

.of the laminar and turbulent flows is shown in

figure 13bC. Behavior similar to that found for Fig. 12. NACA 0012 Airfoil St agnation FHow it tin:

the trailing edge is obtained for the airfoil leading Edge (Re 5000).

configuration.
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bNACA 0012 Airfoil (Turbulent, Re= 5.3Wx t05).

L''"(iv) Other Geometries procedure. The method is unconditionally stable,

h .-. ,departure free, separation singularity free and
,.JSolutions with large separation regions have describes separation, stagnation point and tra ilIing

...=been presented for the boattail geometry.
5  

Both edge behavior. With the difference equation given

laminar and turbulent flows have been considered, on a partially staggered grid, the inviscid equa-
Finally, for subsonic and transonic flow, laminar tions are second-order accurate and the full PNS
solutions over a cone-cylinder-boattail configura- system is somewhere between first and second-order.
tion, for which separation occurs, have been pre- The convergence rate for inviscid flow is comparable
sented in references 6, 7. Initial results for to that obtained for the full potential equation.
supersonic flow over a cone have been given in For fine meshes or large values of the upper
reference 8. Additional supersonic studies will boundary yM, the convergence rate slows considerably.
be presented in future papers. A one-dimensional multi-grid procedure for the

pressure has been applied in order to alleviate
this difficulty. The solutions are in good agree-

7. Summary ment with previous results or data and the effects
of normal pressure gradients for turbulent flows

Laminar and turbulent solutions for finite are shown to be significant even within the boundar"
.flat plate and NACA 0012 airfoil geometries have laver The method is applicable for flows with

F been obtained with a multi-sweep PNS relaxation strong pressure interaction and large separation
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!. regions when the difference equations are written 12. Iubard, 8. and tti IiwtlI, W. (1975), "An ImlIi-

in an appropriate streamline coordinate system. cit Method tIr Three hlimvn-sinail Visous I low

Other studies for cone, trough, boattail, cone- with App lication to Cones -it Angle of Attick,"

cvlinder-boattail and base flows hav. established Comput'rs and F iids. 3, I , pp. 81-l101.

the procedure as applicable for subsonic,

.P transonic and supersonic flow. 13. Vigieron, Y. Ct a . (1978), 'Ci Iiculat ion ,,
Supersonic Flow Over Delti Wing.s with Shar;'

Lead ing Edges," Al AA Paper No. 78-11 17.

This ra14. Brandt, A. (1979), "Multi-I.evel Adaptive Compi-
This research was supported by the Air Force tations in Fluid Dvn.imic,'' AIAA Paper No.

*,,. Office of Scientific Research under Grant No. 79-1455, Computational Fluid l)ynam its fL.r.nfere e,
' _ AP1 80-0047. Will iamsburg, VA, 197).
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