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Abstract

A multi-sweep relaxation procedure is applied
for inviscid and parabolized (pressure-clliptic)
Navier-Stokes (PNS) equations, Boattail, finite
flat plate and NACA 0012 airfoil geometries are
considered for incempressible and subsonic inviscid,
laminar and turbulent flow. The equations are
written in a conformal hody fitted coordinate frame
and differenced on a staggered grid in order to
wive second-order accuracv for the inviscid flow
and somewhere between first and second-order
accuracy for the PNS solutions, A full second-
order scheme is also discussed. Separation,
trailing edue and stagration point flow are evalu-
ated.  The effects of normal pressure gradients
for laminar and turbulent flows are compared. A
multi-grid procedure is applied in order to speed
convergence rates for fine meshes and/or large
computational domains.

1. Introduction

The reduced form of the Navier-Stokes equations
originallyv termed parabolized Navier-Stokes (PNS)
and more recently semi-elliptic, partiallyv parabolic
or thin laver are considered herein bv relaxation
methods for the evaluation of incompressible and
subsonic flows with strong pressure interaction
and/or separation. Previous analvsis bv the
authors and solutions for laminar incompressible
flow for trough and boattail configurations are
miven in references l-4, for subsonic and transonic
flow over a cone-cylinder-boattail geometry in
references 6, 7 and for supersonic flow over a
cone in reference 8. The present procedure is
apnlicable to inviscid as well as viscous inter-
acting flow and can be classified as intermediary
between interactiny boundary laver theoryv and con-~
ventional Navier-Stokes or PNS technique.

The PNS eguatinns were first applied for hvper-
sonic prohlcms”‘ where the contribution of the
pressure gradient p_ in the longitudinal (x) momen-
tum equation is neg¥igible and can be neglected.
The svstem is then mathematically parabolic and
can be solved as an initial value problem by march-
ing techniques. For lower Mach numbers, where Py
must be retained, an elliptic influence associated
with the pressure interaction through the subsonic
portion of boundary laver appears in the PNS
svstem. ¥ Single sweep marching then leads to
an ill-posed initial value problem =12 and expo-
nentially growing departure solutions appear for

step sizes ’x (:x)min' where (.‘.x)min is propor-

tional to the extent of the subsonic portion of
the flow.”»
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. . L 13
Alternatively, an eigenvalue analvsis has
shown that the p_ term can be structured so that

. + (1-, sre L (M) is g ‘ti
Py 1(px)p (1 )(px)e, where (M) is a function
of a local Mach number M and 0 - . - 1, .(0) =0,
.(1) = 1. The term '(Px)p represents the parabolic

(marching) contribution to p, and (1—")(Px)c repro-

sents the elliptic contribution to p_. This latter
term contains the upstream influence. 1f included
in a marching calculation where the M 1, the ill-
posedness of the initial value problem is once

ag.in apparent with the appearance of the departure
solutions that reflect different downstream
boundary conditions for the pressure. The (Lx)min

and h(px)p descriptions can be reconciled by defin-

ing Ax as tx/. in the general marching analvsis,
For given Ax, w(M) and therefore “x vary across
the subsonic layer in order to obtain departure
free marching solutions. This procedure is incon-
sistent for flows where px is important.

1-5 .
In recent papers by the authors, it has
been shown that for incompressible flow, (x)
is proportional to the total extent of the
computational boundary vy in the surface normal
direction. This implies that for Yy w, (LX) »

min
or with ..(0) 0 the entire p_ contribution is
elliptic and therefore must be neglected for depar-

min

w

ture free single sweep marching procedures. For

subsonic flows, . 1 over a range of y values so

that (Ax) . >> 1. However, from the p_ split of
min X

it is scen that
for subsonic flow is reduced by the factor

reference 13, shown previously,

(hx) .
min

(1-.) over the value obtained in references 2-5 for

incompressible flow, i.e., (fx)m.]-(]—u)(Lx)

it min/M=0"

In order to circumvent the ill-posedness of
single sweep PNS methods, a global pressure relaxa-
tion or multiple marching procedure has been pro-
posed bv the authors'™® for the entire Mach number
range, i.c., incompressible L‘S_ ;“.“J’;‘.‘ﬂ‘.“j.c, flow. B
This requires an appropriate and exact "forward"
or mid=point difference treatment of the p_ con-
tribution since this term alone (for attached flow)
containsg the upstream or elliptic influence.
Significantly, only the pressure (and velocities in
in regions of reversed flow) must be stored during
the relaxation process. This leads to o signifi-
cant reduction over conventional Navier-Stokes and
PNS methods.

Consistent (“x arbitrarv), departure frece
('x ~ 0) and rapidlv convergent solutions have
previously been obtained tor taminar incompressi-
hlv,]_ snhsuni(‘,(’ transonic’ and weakly inter-
acting supersonic” flows. Stroag pressure inter-
actions and separation have been captured with the
plobal PNS procedure,  Scveral differencing pro-
cedures, the stabilitv of single pass and global
relaxation and an analvsis of the effective poisson
pressure and vort h'itg' cquat fons has been presented

in carlier studices.™?
YB
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_i In the present paper, the difference equations As explained in greater detail ia carlier

.f describing the PNS equations are defined on a studies=»3 the version of the PNS cquations defined
L} partially staggered grid. This leads to a madified here neglects longitudinal diffusion effects in

b* interpretation of the discrete p, approximation, the S-momentum equation (2), as well as all dittu-
}) A multi-grid line relaxation procedure that reduces sfon terms in the normal (1) nomentum equation (33
.:-' computer effort and storage is outlined. The these terms, in the appropriate streamline coor-

" convergence properties and the accuracy of the dinate frame, are no more important than thosce

. discrete system is discussed for inviscid, laminar already neglected in (2).  The continuity (1) and

h and turbulent modelling. The applicability of the normal momentum equations are then first-order in

’ : relaxation procedure is demonstrated for inviscid (faor v and p), so that two-paint trapezoidal rale
K& flow. Convergence studies are presented for an differencing is applied. Conventional three-point
:1'. axisvmmetric boattail configuration., Incompressible differences are considered for -momentum (2).

.':' and low speed compressible flow results are then Equations (1-3) are coupled for the variables

.:,‘ discussed for laminar and turbulent flow over a (u,v,p). The density is obtained through an itera-
a finite flat plate and a NACA 0012 airfoil at zero tive process at each ° location, see references

' incidence. Of particular interest is the behavior 6-8. This allows for a simplification in the

. near the trailing edge, the stagnation point and treatment of the p_ ¢ 'm and works quite well up to
:} in regions of separation., In addition, the impor- transonic speeds.

I tance of the normal pressure gradients in these

:'- regions will be compared for laminar and turbulent

[-: flow conditions. 3. Difference Equations and Solution Technique
V.

'

The equations (1-5) are differenced on the
2. Governing Equations staggered grid of figure 1 as shown for incompres-

-, sible flow,
‘o The governing PNS svstem considered here is
‘:'. written in a conformal coordinate frame (£,n) for }q——-— A
‘.':- the primitive variables, pressure p, density -,
:_ temperature T, viscosity coefficient p, and velo- j+l (u,p} v (u,p) v (u,p) f
. cities u,v. The transformed cartesian coordinates R
y 5 = f(x,v) along the surface and n = n(x,v) normal - Y
to the surface are related to the (x,v) physical j (u,p) Fv! (u,p) v (u,p) ¢
coordinates through the transformation ¥ = f(z), L—G—l i
where =~ = “#i- and z = x+iy. The metric h = {f'(z)’ ® [©O] -
and h, - ih = h(f"/f). The metric h3 = v&, where j-1 . (u,p)
~ =1 for axisvmmetry. - —
Continuity Y i-1 ',/) i+1
(: hyﬁu)__ + (:‘h_vl'v)r] =0 (1) v ! i+l
p /1 -~ i+l i+2
- v
f~momentum
L/ (: h_v'uz), + i (‘uvhyf’) + (suvh) /h Fig. 1. Staggered Grid - Incompressible Flow.
hy’ T ohy' " "
Py 2 Both first- and sccond-order accurate svstems of
- (uv) - Gv'h) . /ho+ v ), discrete equations have been developed. 3™ Signi- .
’ ! ficantly, the first-order system given below, as
1 v equations (6-8), is, in fact, second-order accurate
= -p, + — [=5 u(hu) ] (2) for incompressible inviscid flow. This is parti=-
> v hT o cularly important as the PNS svsten is used to
evaluate both viscous and inviscid regions. There-
s=momentum fore, we would expect that overall accuracy will

fall somewhere between first and second order.
This will be demonstrated in the following sections,
The full second-order system is given in references
1-5, and will not be repeated here. This svstem is
U vzh_v‘) _ (:uzh) /h + (‘.UZ) 3) more complex, requires many more operations and is

. “ it v very sensitive to coordinate transformation,

-p, = Cuvhy ) ./hy + Cuvh) . /h - (Cuv),

hy . ;
regions of large curvature, or large longitudinal
Energy gradients as in the trailing edge flo The
accuracy of this svstem has been tested tor a
u2+v2 semi=infinite flat plate where these effects are
H = (fp'r + —5——=H_ = constant (4) negligible.  The scecond-order character of the error

has been confirmed. 2 However, for the reasons
already cited, the "tirst"-order or "one and one-
half'"-order svstem”™ " is considered more suitable
for the present applications.  The equations are
shown here for simplicity in non=conservation
cartesian coordinates for the flat plate peometry
and a uniform mesh in x and v. In fact, non-uniform
meshes, conservation equations and contormal

State;Viscosity
p = .RT; L= () (5)

For the present studv onlv adiabatic conditions
wre cons idered.
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coordinates are used throughout.

Continuity: centered at ©on figure 1

~ - N - '2
[(.u)i'j (‘u)i-l,j + (ku)l’j_1 (Du)i-l,j-II/
v~ 6w, ] =0 (6)
KSR U BRI T P |
T~momentum: centered at ©
, - o _8x -
GO G ) O Ty G e
N n-1 _
Pitl,j 7 Pi,;
L, s 4l Axu. oy
i el CHIL T Ry e ORI -7
oy 1,] 1,] Ay s ] s ]
(7
n-momentum: centered at ()
I(DU)i’j+(KU)i'J-1][v -v +v -v ]
WAx 1,5 Vi-1.57V1,5-1"Vi-1,§-1
(ov), .+(ov), | p. .-P.
i,j-1 i i, j-1
+ 2 -
R YT Ty
=0 (8)

The equations (6-8) represent a coupled system for
u
the vector (v) . As seen from the unknown
\P sJ
bracketed vector in figure 1, on the staggered grid
the pressure Py s is evaluated one grid point

.+ This re-
2
flects the upstream influence or elliptic effect

of the p, term. The superscript n-1 for Pis j
5 ,

upstream of the unknown velocity Uy

in

(7) denotes the
tion or sweep,

by n; although,
throughout. It

value of the previous global itera-
The current iteration is designated
this superscript has been dropped
is significant that only the

n- : s .
pressure term p 1 . is relaxed during the itera-
i+1,]

tion procedure. Therefore, only P; j need be
s

stored. For separated flow the convertive terms
-1 n-1
. winded so that " ., and v , are so
are upwinded u1+1,J 141, ] al

required, but only in the limited regions of
reverse flow.

The treatment of p, in (7) as (p?li j-p? j)/A{

corresponds to a fully elliptic approximation.
From previous studies by the authors, as well as
the eigenvalue analysis of reference 13, this
description is exact only for incompressible (u=0)
flow. For subsonic flow, the structure discussed
in the Introduction, where p, is of the form

n n n-1 n

= - o r - - 't

Pr = Py Pi_l'j)/m + (1 w)(piﬂ’j Py, 0"
(9)

should apply if the density is coupled with the

(u,v,p) calculatfon.

However, if the density is

treated iteratively, as in the artificial compres-
sibility procedure for transonic flow, it is
possible to consider the fully elliptic (.=0) form

This has been applied for subsonic,
and supersonic® cases. For supersonic
1, convergence will however

for p¢.
transonic/
flows with Ai/yﬂ B

be slower than with the exact treatment of (9).

and p. are always

i+1,]
located at the positions shown on figure 1. For
supersonic regions the exact differencing would be

In this procedure Py i

_ n _.n A X . . .
Ps <pi+l,j pi,i)/"’ so that the error is of the
n n-1 .. . . .
form (p )/4AF, i.e. an iterative time

i+1,5 Pi+1,]
term that vanishes when convergence is achieved.

1f the exact treatment (9) is used with
density iteration, then it is appropriate to
rewrite (9)

n-1  _ n n-1 _ kD n
i+l Pi,j ‘(pi+1 L P
s, * Af,

P L3 ity 0

P, =

where the (*) denotes the latest local iterative
value during the nth global iteration. For w.=1,
at local convergence

In this procedure, the pressure at the uy location

’

of figure 1 becomes “Py J.+(1-.,)pi+1 3 and global

convergence is accelerated for supersonic points.
Both methods have been applied successfullv here
and in references 6-8. Equation (10) is directiy

obtainable from (9), if p?+l j is approximated by
s
Zp? .- p? . so that the two approaches differ
1,] i-1,]

only in truncation error.

The density, temperature and viscosity coef-
ficient are obtained from (4) and (5). A linear
u(T) relationship has been assumed herein. When

u
these quantities have been updated the vector (\')

p/on
is re-evaluated until some specific degree of
convergence, usually 107% in sequential steps, is
achieved. The nonlinear system is quasi-lincarized
in a standard manner’”? and nonlinear turms arce
updated at the same time as the density, “iscosity,
etc. After final convergence at location i, the
procedure continues to i+l, etc.

The tridiagonal linearized svstem (h-8) i

u

solved for (v ) by the standard LU decompoa-
P/,

tion. The total line relaxation procedure continges

to the right hand boundarv. The (n-1) terme o
then updated and the marching process is repeatod,
The solution procedure is terminated when the
changes in maximum pressure and skin fri. tion
between global iterations is less than P07
relaxation is considered most etficient tor the
present analvsis as it minimizes storage require
ments. More efficient procedures, such as ADL
CSIP would require increased storage for the
velocities as well as the pressurc.  Since our o

is to reduce storage requirements tor future threeo-




dimensional applications, simple line relaxation
with a multi-grid corrector, to be discussed
shortlyv, was chosen,

4.  Boundary Conditions

For the primitive variable system (6-8) on the
staggered grid of figure 1, the following boundary
conditions apply:

At _the inflow - =;12: uy, ) = V() and

V. (g = V(). V) = () U, where L (1)

is the inflow vorticitv; for uniform conditions

U 1 and V 0 (zero vorticitv). A condition for
the pressure is not required for incompressible
flow. As seen from figure 1, the inflow pressure
is calculated during the first marching step.

At the upper surface = '\1: u=1,p-=1;

i.e., free-stream conditions are applied. This re-

quires that M be sufficiently large, e.g., outside

of the domain of the triple deck intornvtiun.J—

The outer boundary could be moved closer to  the
surface bv applving conditions similar to those of
interacting boundary laver theorv; however, for the
present calculations, the fully inviscid evaluation
was included., & boundary condition on v is not
required.

flow “= 70 Only the pressure

p(7,) or derivative p, (%)) are prescribed.  For

both p =0 and p. = 0

the present calevlations,
were applicable.  There are only slight
Jitterences in the solutions.

At the wall - = 0: For viscous flow u(7,0) =
V(M = 0 is specified. For inviscid flow only
vit ot = 0 is required. A boundary condition on

the sressnre is not required,

Siwniticantly pressure boundarv conditions arce
ok speitied at the apper and outflow boundaries.
A showit in reference-s 4,5, the equations (6-8)

1 he manipulated to o provide an effective poisson
pre sure scolver; the remaining pressure boundary
it e, ot Newmann tvpe, are implicitly imposed
vt he dnterred direstiv from the original
ference et cns, There is no o need to oapply
torterential torm oot the woisson equation and
PR EEN oty caly indirectlv, oas is commoenldy
cows 0 b o mest ineompressible flow proce-

seen o ard Malti-ernid Procedure
oo v b iate analysids of references
o oo s o i ompressible tlow
R vt the linear matrix
R coooretavataon provedure is oof
L . D ¢ u I the rate of
A e rootme markeetly, It is interest-
vt er ‘ I, whith leads to
\1 H
o St ror o vingle aweep methods,

is o voonvereence factor tor the plobal relasaanion
procedure.  As noted in the previous discussion,

13

trom the vipenvalue analysis Tor ~absonic 1low,

it can be inferred that the converpence condition
1

will be of the torm 3 ~ (1= 1 [1-A0=) ). Ihis
M

implivs moere rapid convergence with large regicns

of high subsonic or supersonic Mach numbers and

fixed v“, since o 1 as M - 1.

In order to improve the converpence rate, a
one=dimensional (in ) multi-prid procedure
following the full approximation scheme of
reference (14) has been applicd.  This approach
is less efficient, in terms ol storage requirements,
than a full two=dimensional multi-grid application;
however, relaxation for p is onlyv in the “-direction
and the calculation is fully implicit in . Also,

a highly non-uniform mesh is required to accurately
describe the boundary laver, triple deck and
inviscid regions. This is pot ideally suited tor
interpolation required by the multi-grid procedure.
0Of particular note, crror transter from coarse to
fine prids is applied only for the pressure, even
in regions of reversed flow where the velocities
u?—l . and vv_l .oare also relaxed.  These values
i+l,] i+1,]
are fixed on each grid from the previous global
(n-1) iteration. Since the separation zones are
of considerably different extent on cach grid,
the transfer process for the velocities was con-
sidered to be a source of possible difficultv. The
present procedure works quite well for most of the
problems considered here and is discussed in
greater detail in references 4,5.

The effects of the multi-grid procedure on the
convergence properties are shown in figure 2 for
a trough geometry discussed previously in
references 4,5. Similar results were found for
the flat plate configuration. When large regions
of separated flow vcvcur, the coarse grid corrections
are less effective and the multi-grid procedure
appears to enter a limit cveleo  For this reason,
the coarse grid solutions were simply applied as
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This uni-directional

fine grid initializations.
process was still a considerable improvement over

direct calculations on the finest grid, Figure 2
depicts the significant reduction in iteration
count with the multi-grid procedure. Figure 3
depicts the sensitivity of the pressure solution
to mesh width for the trailing edge triple deck
interaction. The skin friction is much less grid
dependent. This behavior was found for other
geometries as well.™» Finally, the convergence
rate, for a fixed 7 mesh, as a function of the
outer boundary location y, is shown in figure 4.
The results are consistent with the prediction
that convergence will deteriorate as (A5/y.)
decreases. With the multi-grid correction however
(figure 2), this sensitivity is greatly reduced
and the parameter (Ai/yw) is less critical.
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(i) Inviscid Flow - Boattail

Since the PNS equations are applied here for
the evaluation of the complete viscous/inviscid
interaction, the effectiveness of the relaxation
procedure, for the discrete system (1~5), for in-
viscid flow is important. For supersonic flow with
a fitted shock boundary,® the inviscid region is
relatively small; however, for subsonic® or tran-
sonic’ flows, these regions can be quite extensive
and the overall convergence rate of the PNS proce-
dure will be dependent on the "inviscid" convergence
properties. In order to test the present method,
solutions were obtained for the inviscid flow (slip
boundary condi%igns) over an axisymmetric boattail
configuration.” 2 The results are shown in figure 5,
without a multi-grid correction, and compared with
potential flow solutions obtained with the CSIP
procedure.15 The initial conditions are somewhat

+ - POTENTIAL SOLUTION
w - GLOBAL PNS

N o102
X
R
R 1873
[s]
R
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!
s |
19 i o B0 e B £ s i Tl o B0 i S e e S R
1 10 102 10
NO. OF GLOBAL ITERATIONS
RATE OF CONVERGENCE C(BOATTAIL BETAC = 7 .891 DEG INVISCTD)
Fig. 5. Convergence Rate for Inviscid Flow On
Boattail (Juncture Angle 15.8°).
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different and therefore the potential solutions
start with a slightly larger error, The figure
clearly shows that the convergence rate of the
line relaxation procedure for the pressure des-
cribed herein is not significantly different than
that for the potential equation and the CSIP., This
is an important and somewhat surprising result.
Moreover as seen in figure 6a, the solution is
essentially second-order accurate. This was dis-
cussed previously; further analysis is given in
references 4,5 where it was shown that on the
staggered grid of figure 1, the inviscid discrete
equations for the pressure and velocities are in

.2 2 L .
error by 0(477, &n"), when the vorticity is
defined by

- + -
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Fig. 6a. Accuracy Plot for Inviscid Flow on
Boattail (Juncture Angle 15.8°).
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These

results confirm the validity and accuracy
of the relaxation procedure for inviscid regions.
An accuracy plot for the viscous boattail dis-
cussed proviously3_) is given in figure 6b.  Notoe
that the exponent 1.8 is obtained. Similar
results were found for the trough configuration.
This indicates that the overall accuracy of the
system (6-8) is,as predicted, somewhere between
first and second order.

(ii) Finite Flat Plate - PNS

Solutions for the full PNS svstem are given
in references 3-5 for the laminar incompressible
flow over a finite flat plate. The pressure
coefficient given in figure 3 for twoe grids is
shown in figure 7. These results are repeated
here in order to demonstrate the excellent apree-—
ment obtained with interacting boundary laver
solutions for this geometry. The trailing edge
pressure and skin friction are predicted very
accurately and for the staggered grid the minimum
pressure is obtained at the trailing edge of the
plate. Due to the discontinuity in pressure

- oM

Fig. 7a. Flat Plate Trailing Edge Pressure
(Laminar Flow).
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7b.  Flat Plate Trailing Fdge Skin Friction

and Wake Centerline Velocity (Laminar).
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gradient at the trailing edge, the accuracy factor o REF [17]

was 1.35, a value somewhat less than that found v+ REF [19) .
for the boattail and trough. LR ' A
0004 - S~ T - na

For the present study we are particularly
concerned with the trailing edege behavior for
turbulent flow conditions. The two-laver Cebeci-
Smith eddy viscosity model 6 has been assumed for
the Reynolds stress term in the J-momentum equa-
tions on the plate, and a modified version given
in reference 16 has been applied in the wake.
Reynolds stresses have been neglected in the
n-momentum equation., The two-laver model should
be adequate for this unseparated flow problem.
Limited interacting boundary laver results have O 00t - [ LR
been presented in reference 17. A definitive ) . !
triple deck theory has not been completed for this }
flow. One of the open questions concerns the

Z—"n

Qon3-- v boad

. WAKE
oo - " oA
PLATE * . 5

T = -

influence of normal pressure gradients. D000 P T T T T O T T T T TR TR T [0 [“” i
(113 025 0 58 0.75 i 00 125 ! 50 7% A
Solutions for the pressure coefficient, skin DISTAHCE TROM THE LEADING EDGE
friction and wake centerline velocity are shown in Fig. 8b. Flat Plate Trailing Edge Skin Friction and Wake
figures 8a and 8b. The centerline velocity and Centerline Velocity (Turbulent, Re=6.5x 107).
pressure results are in reasonable agreement with%n—
teracting boundary laver and experimental v-luesl’s19 00 o ?Vel%c}ty g 6 08 ‘o . ‘s
The normal pressure gradients at the trailing edge 1‘ L 1 ) l‘ '
; : @1o po-do bt Lol Loa A Loy e
(figures 9a and 9b), however, are quite different PRE COEFF I
than those found for laminar flow, (figure 9a). - - PRed |
In the latter case virtually all of the pressure ¢ - vreocrry
change occurs outside of the boundary laver, i.e., 0 08- !0 A
in the inviscid region or outer deck of the triple !
S deck struccure. For the turbulent flow, approxi- ’ d
£ mately 60% of the pressure change occurs inside o 06 ] I oot
LA the boundary layer (figure 9b). Therefore, the i |
:\( longitudinal pressure distribution (figure 8a) at v . ,/ i v
P . the surface (centerline) is considerably different // |
o~ than that at the boundary layer edge. This clearly “9“1 K "9 0
L has some implications with regard to the applica- J “
1 bility of conventional interacting boundary laver . //
- methods that neglect these gradients. Similar 0 024 . o o2
- effects have been found for the boattail geometry. ’ { ,//’ /
'::: It is surprising that the values of the centerline ’ I :
\r; velocitvy (figure Zbh) are in such good agreement. 1 f? e - M
- - DR -
- Further studv on the effect of normal pressure 0 00 U O L 0 00
e sradients for turbulent flow is certainly suggested. 014 -0t2 -016 -008 006 -004 -DE 000
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' | Fig. 9a. Normal Pressure Distribution Near Trailing
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(iii) NACA 0012 Airfoil - PNS oo
Laminar and turbulent flow over a NACA 0012

[: at zero incidence 1Is considered for incompressible 04

and subsonic (M_=0.3) flow. The two-laver eddy o
t viscosity model is applied once again. This should R
{ be suitable for non-separated flow; however, for s w2
AP Y the separated flow solutions, the adequacy of this 3
{::. model could be questioned. For the mild separation R ) ]

?\- regions occurring with the airfoil geometry, the 00 | - - T ~ !
MY errors incurred with this closure model should be b |
A relatively small. This is not true for regions H i |
\f‘{ with massive separation zones. The metric h in Foga |
%) the governing equations (1-3) is obtained from a

cenformal mapping procedure described in previous 1 X

TN studies.’” The grid is shown in figure 10. Q4 e . | , | .

T -4 -2 0 2 4

8 S—p 3= " ——— HORI/ONTAL DISTANCE X
N ]
bs - H- 1+ 11 Tt
:; . 10 44 1 o O S U T Fig. lla. NACA 0012 Airfoil, Laminar W
ve 41 1 HI-H (Re = 12,500).
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a:‘:r, NORIZONTAL DISTANCE X
e Laminar flow solutions have been obtained for . b e . . .

!\;, Reynolds numbers, Re = 5000, 10000, 12500. For "ig. 1lb. NACA OO]L Alrfoil, Laminar Flow
: the larger value of Re a small separation region (Re = 12,500).
' appears near the trailing edge, figures lla, 1ilb.

A detailed study of the front stagnation point for
a series of successively finer grids has provided
evidence that the PNS approximation, in an appro- 1 50-
priate body fitted coordinate system, can accurately (
evaluate the flow in this region. Recall, that .'1
the exact Navier-Stokes equations for stagnation 2 125~ 5 A T, A
point flow do not include diffusion effects along k3 -} FROM FULL NAVIER-STOKES SOLUTION
the surface or diffusion terms in the normal .2 B ' ‘
momentum equation. Comparisons of the present s
PNS stagnation point shear stress with the exact }
1

(o] 4

Navier-Stokes value of 1.25 are given for several
grids in figure 12. For the finest two grids, the 875
agreement is quite good.

. o i 0

Turbulent flow solutions are shown in figures n 50-

13a and 13¢.for Re = 5.35x 103, Based on experi- i
mental data.18 transition has heen prescribed at ]
a distance along the airfoil x/c = 0.4, where ¢ is 075‘f
the chord length. Separation does not occur. The
agreement with the data is reasonable (figure 13a)
considering the fact that the grid resolution is 000 Fryaagay RN RN R R R RN R
clearlv inadequate for the region x/c - 0.4, where 0 00 0o e 02 001 0 04 005 006 T
the flew is laminar at the same verv large Revnolds
number. Finally, the normal pressure gradient for
the laminar and turbulent flows is shown in
figure 13b,e.Behavior similar to that found for Fige 12. NACA 0012 Airfoil Stagnation Flow at the
the trailing edge is obtained for the airfoil Leading Edge (Re = 5000).
configuration.

o

201




VELOCITY u
vin ! -9 5 ee 05 1 e s 20
0 15 . ere-Lr vl ur o by e H\x o by x,xiiwg e
« o REF [18] \ - PRE COEFF I\ !
‘ . I+ - VELOCITY i r
' | .
0o | o o8- | \ ‘.0 o8
. : |
S . ! ! — \ -
? uan i / ‘ :
M : | i 0.06-- \ -0 86
R " \ !
Lo ! 1 - -
RO A o o, | / \
; ! o\ 0 904 9.04—+ . —8 04
rr RO 8/ Oy : A
1 00 O (y ) ! - -
g . "o, C i
I | 0 g . : 8.02-- - -9 02
. ! (9] UOH \
0 000 | !
: ‘ - =
: !
o oo ; . 0 00“+”r [ N A O I B I I T O R O R !'9-00
R L L oo -0.01 0 00 2 81 8.02 0 93 0 04
0o A [ K 06 0K 1o [N
P
Fig. 13a. NACA 0012 Airfoil Turbulent Flow Fig. 13b. Normal Pressure Distribution Near Trailing Edge
g IA
(Re = 5.35x 103). of NACA 0012 Airfoil (Laminar, Re = 10%).
VELOCITY u
9.08 9.25 0.50 8.7s 1.00 1.25

%

» -~ PRE COEFF

eazs-biaa by by laaan bas L._t.a 125

_1

+ — VELOCITY

8
]

o
o
~J
[24]
1
PSS T TR U S U WY D N I

9.050--

1L

-9.100

THUrITrT

Fig. 13c. Normal Pressure Distribution Near Trailing Edge of
NACA 0012 Airfoil (Turbulent, Re= 5.35x 105).

(iv) Other Geometries

Solutions with large separation regions have
been presented for the boattail geometry.5 Both
laminar and turbulent flows have been considered.
Finally, for subsonic and transonic flow, laminar
solutions over a cone-cylinder-boattail configura-
tion, for which separation occurs, have been pre-
sented in references 6, 7. Initial results for
supersonic flow over a cone have been given in
reference 8. Additional supersonic studies will
be presented in future papers.

7. Summary
Laminar and turbulent solutions for finite

flat plate and NACA 0012 airfoil geometries have
been obtained with a multi-sweep PNS relaxation
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procedure. The method is unconditionally stable,
departure free, separation singularity free and
describes separation, stagnation point and trailing
edge behavior. With the difference equation given
on a partially staggered grid, the inviscid equa-
tions are sccond-order accurate and the full PNS
system is somewhere between first and second-order.
The convergence rate for inviscid flow is comparable
to that obtained for the full potential equation.
For fine meshes or large values of the upper
boundary y,, the convergence rate slows considerably
A one-dimensional multi-grid procedure for the
pressure has been applied in order to alleviate

this difficulty. The solutions are in good agree-
ment with previous results or data and the effects
of normal pressure gradients for turbulent flows

are shown to be significant even within the boundary
laver. The method is applicable for flows with
strong pressure interaction and large separation




regions when the difference equations are written
in an appropriate streamline corordinate system.
Other studies for cone, trough, boattail, cone-
cvlinder-boattail and base flows have established
the procedure as applicable for subsonic,
transonic and supersonic flow,.
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