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E? Technical Progress
f 'I In the original proposal we had outlined a long term program for conducting
.ﬁ: research in knowledge based systems. In particular we proposed to study
S issues in diagnostic reasoning and in knowledge-directed information

= retrieval. During the first year most of the progress came in the area of
3: - diagnostic reasoning and in the conceptual foundations of knowledge-based
.
20 -
,:: - systems in general. We also developed an approach to a new type of task:

NI
design of mechanical parts.

2.
Ty o
¢ In particular, the following specific progress was made. (We will summarize
Ty -
o ey the nature of the result here and attach a paper in each case that gives

details of the results.)

1. We have elaborated our theory of types of problem solving that
underlies expert reasoning. The idea is that a complex task can
often be broken down into a number of generic tasks, for each of
which a particular problem solving regime is appropriate. Each of
these tasks can be solved by a collection of conceptual specialists
among whom knowledge of the domain is distributed. These
specialists solve the problem by engaging in that generic type of
problem solving by exchanging messages of specific types. We have
enclosed as appendix a paper, "Towards a Taxonomy of Problem
Solving Types," which appeared in the Al Magazine, which gives the
details of the theory.
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o 2. In earlier work we had developed approaches to three gemeric types
of problem solving: diagnosis, knowledge-directed data retrieval,
- What-Will-Happen-1f type of reasoning. During the period of
< research under report, we formulated another important type of
' problem solving: design by refining plans. We have been applying
- the approach to the implementation of an expert system for
. mechanical design. The attached paper, "An Approach to Expert
- Systems for Mechanical Design," was presented at the IEEE Computer
Society, Trends & Applications Conference.
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. 3. We have developed (with support from another source) a tool for

efficient construction of diagnostic expert systems. This tool is
o _ a high level language called CSRL., Under this grant support we
i9 have been experimenting with the application of this tool to the

design and implementation of expert systems in the area of
A mechanical systems, since that was one of the domains that we
~ emphasized in the original proposal. We reported on this language
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at the 1last International Joint Conference omn Artificial
Intelligence at Karlsruhe. The paper from that Proceedings
reporting on CSRL is enclosed. We also include with this report
another technical report that discusses our experience in using

)
(s

K this tool in the construction of an expert system for fuel systems
0 for automobiles.

.:{.:

P 4., We have been investigating the issues related to how an expert
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system may have "deep" knowledge of its domain and use it to do
problem solving, as opposed to the current generation of expert
systems that use what one might call "compiled" knowledge. E.g.
all the current expert systems in medicine have knowledge relating
symptoms /manifestations and diseases explicitly encoded in the
knowledge base. However, often a person who has an understanding
of the domain will be able to derive these relationships from a
deeper model, We have developed a language in which the
understanding of an agent about how a device works may be encoded.
This language expresses how a function of a device may be related
to the behavior and structure of it and its components. In
addition we have developed & compiler which can work on this
functional represenmtation and produce a diagnostic expert system.
This result is of considerable significance we think, since it will
enable for the first time a representation of "understanding” of a
device. We have applied this methodology to the representation of
the functions of a household electric buzzer and show how the
compiler generates a dignostic problem solver from this. A paper
reporting on this is attached as appendix to the report.

5. We have been looking into how capabilities of various expert system
approaches can be characterized. A methodology by which a complex
real world decision task may be decomposed into generic tasks and
techniques suited for various generic tasks can then be applied is
outlined in another attached paper, "Expert Systems: Matching
Techniques to Tasks," which was presented as an invited talk at the
New York University Symposium on Expert Systems for Business
Applications. This will shortly appear as an article in a book of
that title.

Personnel Activities

Two items of interest need to be mentioned here. Prof. B. Chandrasekaran, the

PI for the Grant, spent 3 months at the MIT Laboratory for Computer Science as

a Visiting Scientist during the research period. He worked with Prof. Peter

Szolovits and Prof. Ramesh Patil on several aspects of expert systems. He
also spent one month at Carnegie Mellon University under the sponsorship of

Prof. A. Newell. A portion of his support for these visits came from the
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AFOSR Grant. In addition to these major visits, Prof. Chandrasekaran gave a

W

number of talks at BBN, GIE Labs, NRL AI Lab., and other places over the year.
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\? Mr. Tom Bylander, a Graduate Research Associate under the Grant, won an award
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for travel to the International Joint Conference on Artificial Intelligence to

m
j; - present the paper on CSRL.
;i - Computing Enviromment
RS
~ Quite a bit of our effort went into gearing up for the introduction of Lisp
E - machines into our computing enviromment. These machines will be arriving
Q é; shortly. A number of changes will need to be made in the language
E; enviromment: we are moving into an Interlisp enviromment, and many of our
;3 tools are being recoded for that environment.
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: v 1. "Towards a Taxonomy of Problem Solving Types" by B. Chandrasekaran
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Towards a Taxonomy
Of Problem Solving Types

B. Chandrasekaran

Department of Computer and Information Science
The Ohio State University
Columbus, Ohio {3210 USA

Abstract

Our group's work in medical decision making has led us to formulate
s framework for expert system design, in particular about how the
domain knowledge may be decomposed into substructures. We propose
that there exist different problem-solving types, i.e., uses of knowledge,
and corresponding to esch is a separate substructure specializing in
that.‘ type of problem-solving. Esch substructure is in turn further
decomposed into a hierarchy of specialists which differ from each other
not in the type of problem-solving, but in the conceptual content of
their knowledge: e.g., one of them may specialize in “heart disease.”
while another may do so in “liver,” though both of them are doing the
same type of problem-solving. Thus ultimately all the knowledge in the
system is distributed among problem-solvers which know how to use
that knowiedge. This is in contrast to the currently dominant expert
system paradigm which proposes s common knowledge base accessed
by knowledge-free problem-solvers of various kinds. In our framework
there is no distinction between knowledge bases and problem-soivers:
each knowledge source is a problem-solver. We have 30 far had occs-
sion to deal with three generic problem-solving types in expert clinical
ressoning: diagnosis (classification), dsta retrieval and organisation.
and reasoning about consequences of sctions. In a novice, these expert
structures are often incompiete, and other knowledge structures and
iearning procesees are needed to construct and compiete them.

This is a revised and extended version of an invited talk entitied.
“Decomposition of Domain Knowledge Into Knowledge Sources: The
MDX Approach.” delivered at the [V Nstional Conference of the
Canadian Society for Computational Studies of Intelligence. May 17-19.
1982. Saskstchewan.

Introduction

For the past few years our research group has been in-
vestigating the issues of problem-solving as well as knowledge
organization and representation in medical decision making.
In parallel with this investigation we have also been build-
ing and extending a cluster of systems for various aspects
of medical reasoning. The major system in this cluster is
MDX. which is a diagnostic system. i.e., its role is to ar-
rive at a classification of a given case into a node of a diag-
nostic hierarchy. The theoretical basis of this diagnostic
problem-solving is laid out in some detail in Gomez and
Chandrasekaran.

The MDX system. which is wholly diagnostic in its
knowledge, communicates with two auxiliary systems.
PATREC and RADEX. PATREC is a data base assistant
in the sense it acquires the patient data, organizes them,
and answers the queries of MDX concerning the patient
data. In all these activities PATREC uses various types of
inferential knowledge embedded in an underlving concep-
tual model of the domain of medical data. RADEX is a
radiology consultant to MDX, and it suggests or confirms
diagnostic possibilities by reasoning based on its knowledge
of imaging procedures and relevant anatomy. See Mittal
and Chandrasekaran (Mittal. Chandrasekaran. 1981) and
Chandrasekaran et al (Chandrasekaran, Mittal and Smith.

1980) for further details about these subsystems.
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Though in a sense RADEX and PATREC can both be
viewed as “intelligent” data base specialists, RADEX has
some additional features of interest due to the perceptual
nature of some of its knowledge. However, for the purpose
of this paper, it is not necessary to go into RADEX in much
detail, and we can view PATREC as prototypical of this class
of auxiliary systems.

Our aim in this paper is to outline a point of view about
how a domain gets naturally decomposed into substructures
each of which specializes in one type of problem-solving.
Each of these substructures in turn further gets decomposed
into small knowledge sources of the same problem-solving
type, but specializing in different concepts in the domain.
We shall see that this sort of decomposition results in more
natural control and focus properties of the overall system.
Identification of these substructures and how they communi-
cate with one another is vital to the proper organization of
the body of knowledge for problem-solving in that domain.

Our method in this paper will be to examine how
knowledge is used in a few well-defined tasks: diagnosis, data
storage and retrieval, and reasoning about consequences of
actions. [t should be emphasized that these tasks are not par-
ticular to the medical domain. Rather they are fundamental
generic tasks occurring in a wide variety of problem-solving
situations. Thus these tasks are elements of a taxonomy of
basic problem-solving types. When we are done with this
examination, the general principles of know!edge decomposi-
tion will begin to take on some clarity.

One final point: we will use examples from both medical
and non-medical domains. In particular, there are many
similarities between reasoning about diseases and therapies
on one hand and trouble-shooting and synthesis of corrective
actions in complex engineering systems on the other.

The Diagnostic Task

By the term “diagnostic task,” we mean something very
specific: the identification of a case description with a specific
node in a pre-determined diagnostic hierarchy. For the pur-
pose of current discussion let us assume that all the data
that can be obtained are already there, i.e., the additional
problem of launching exploratory procedures such as order-
ing new tests etc. does not exist. The following brief account
is a summary of the more detailed account given in (Gomez,
Chandrasekaran, 1981) of diagnostic problem-solving.

Let us imagine that corresponding to each node of
the classification hierarchy alluded to earlier we identify
a “concept.” The total diagnostic knowledge is then dis-
tributed through the conceptual nodes of the hierarchy in a
specific manner to be discussed shortly. The problem-solving
for this task will be performed top down, i.e., the top-most
concept will first get control of the case, then control will
pass to an appropriate successor concept, and so on. In the
medical example, a fragment of such a hierarchy might be
as shown in Fig. 1.
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Internist

Hepatitis Jaundice

Figure 1.

More general classificatory concepts are higher in the
structure, while more particular ones are lower in the hierar-
chy. It is as if INTERNIST first establishes that there is in
fact a disease, then LIVER establishes that the case at hand
is a liver disease, while say HEART etc. reject the case as
being not in their domain. After this level, JAUNDICE may
establish itself and so on.

Each of the concepts in the classification hierarchy has
“how-to” knowledge in it in the form of a collection of diag-
nostic rules. These rules are of the form: <symptoms> —
< concept in hierarchy >, e.g., “If high SGOT. add n units
of evidence in favor of cholestasis.” Because of the fact that
when a concept rules itself out from relevance to a case, all its
successors also get ruled out, large portions of the diagnostic
knowledge structure never get exercised. On the other hand,
when a concept is properly invoked, a small, highly relevant
set of rules comes into play.

The problem-solving that goes on in such a structure is
distributed. The probiem-solving regime that is implicit in
the structure can be characterized as an “establish-refine”
type. That is, each concept first tries to establish or reject
itself. If it succeeds in establishing itself. the refinement
process consists of seeing which of its successors can es-
tablish itself. Each concept has several clusters of rules:
confirmatory rules, exclusionary rules, and perhaps some
recommendation rules. The evidence for confirmation and
exclusion can be suitably weighted and combined to arrive
at a conclusion to establish, reject or suspend it. The last
mentioned situation may arise if there is not sufficient data
to make a decision. Recommendation rules are further op-
timization devices to reduce the work of the subconcepts.
Further discussion of this type of rules is not necessary for
our current purpose.

The concepts in the hierarchy are clearly not a static
collection of knowledge. They are active in problem-solving.
They also have knowledge only about establishing or reject-
ing the relevance of that conceptual entity. Thus they may be
termed “specialists,” in particular, “diagnostic specialists.”
The entire collection of specialists engages in distributed
problem-solving.

The above account of diagnostic problem-solving is quite
incomplete. We have not indicated how muitiple diseases
can be handled within the framework above, in particular

‘‘‘‘‘‘‘‘‘‘‘‘
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when a patient has a disease secondary to another disesse.
Gomez has developed a theory of diagnostic problem-solving MEDATA
which enables the specialists in the diagnostic hierarchy to

communicate the results of their analysis to each other by
. means of a blackboard (Erman. Lesser, 1973). and how the Drug Orgon Procedures

problem-solving by different specialists can be coordinated.
See (Gomez. Chandrasekaran. 1981) for details. Similarly. .
how the specialists combine the uncertainties of medical data Anesthetic surgery
and diagnostic knowledge to arrive at a relatively robust
conclusion about establishing or rejecting a conc;pt iid an
important issue, for a discussion of which we refer the reader
0 (Chandrasekaran, Mittal and Smith. 1982), Halothane
The points to notice here are the following. The control
iali ialist is aki he correspond- o ]
itr:;nssi‘t:zraftrig:lni;p:;‘eal::;;:::lp:;:lr:;:i;&“w‘::hall haVep;ore shortly. Mittal (Mittal. 1980) describes this in detail as do
to say about this later on. Especially note that there is no the references (Mittal. Cha.nd.rasekaran. 1?81) gnd (Mittal.
”prol;lem-solver" standing outside. using a knowledge base. Chandras.ekaran: 1969). Su'mlar to our dxscussl'on regard-
The hierarchy of diagnostic specialists is the problem-solver ing ‘%‘e diagnostic task. we just touch upon the issues l'.nere
as well as the knowledge-base, albeit of a limited type and sufficient to make our main points regarding decomposition.
This data base-called PATREC-is organized as a hierar-

scope. That is. the particular kind of problem-solving is em- d A
bedded in each of the units in the knowledge structure. chy of medical data concepts. A fragment of the hierarchy
is shown in Fig. 2.

At a representational level. there is nothing novel here:

.
Pl

-

Figure 2.

Data Retrieval and Inference each medata concept is represented as a frame. and the
] inference rules that we will describe shortly are implemented
Consider the following situation that might arise in diag- g5 “demons” or “procedural attachments.” However what

nostic problem-solving that was discussed earlier. Suppose  will be worth noticing is the fact that all these rules will be
a rule in the liver specialist was: “If history of anesthetic of a certain uniform type. For the purpose of illustration.
exposure, consider hepatitis.” This is a legitimate diagnostic |t ys consider the SURGERY concept. SURGERY frame has
rule in the sense described earlier, i.e.. it relates a manifes- LOCATION and PERFORMED? slots. among others. The
tation to a conceptual specialist. However. suppose there “PERFORMED?" slot has the following rules:

is no mention of anesthetics in the patient record, but his

history indicates recent major surgery. We would expect a L. If no surgery in the enclosing organ. surgery not

f:omp'er.ent physician to infer possit')le exposur.e ’Lo angt!xet,ia 2. ng::éew in a component. infer surgery in this organ.

n thl_s case .and proceed to con'.lsxder hepatitis. Slmllarly_. 3. If no surgery in any of the components, then infer no

if a diagnostic rule has “abdominal surgery” as the datum surgery in this organ.

needed to fire it, but the patient record mentions only biliary 4. If evidence of anesthetic. infer “possibly.”

surgery. it does not take a deep knowledge of medicine to fire ) .

that diagnoetic rule. In both these cases domain knowledge is The DRUG frame has the following rules in the GIVEN?

needed. but the reasoning involved is not diagnostic reason-  SloU:

ing in our specific technical sense. One can imagine an expert 1. If any drug of this type given. infer this drug also.

diagnostician turning, in the course of her diagnostic reason- 2. If the drug class was not given. rule out this particular

ing. to a nurse in charge of the patient record and asking if drug.

there was evidence of anesthetic exposure or of abdominal 3. If all drugs of this type were ruled out. rule out the

surgery. and the nurse answering affirmatively in both the class too.

instances without his being trained in diagnosis at all. These rules need not be attached to the successors of
When we faced this problem in the design of MDX. we  DRUG, since they can inherit these rules-this is a fairly

realized that it would be very inelegant to combine reason-  standard thing to do in frame-based svstems. A successor

ing of this type with the diagnostic reasoning that we had  may have further rules which are particular to it. e.g. the
isolated as a specific type of problem-solving activity. We ANESTHETIC concept has the rule:
were led to the creation of a separate subsystem for manag-

ing patient data. much like the nurse alluded to earlier. For If major surgery. infer ANESTHETIC given. possibly.

all questions concerning manifestations. MDX simply turned Let us reemphasize that the interesting thing about the
to this subsystem. which performed the relevant reasoning system is not

and returned the answer. We were surprised to discover rare knowledge base system that doesn't —but thatitisa
that all the retrieval activities of this “data base assistant” collection of conceptual specialists tuned to a particular type

could be captured in a uniform paradigm. to be elaborated of problem-solving. All the embedded inference rules have a

THE Al MAGAZINE  Winter Spring 1983 11
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common structure: derive the needed data value from data
values relating to other concepts. The inferential knowledge
that is encoded in the concepts is specific to the data retrieval
task in a data base activity.

Let us consider some examples. Suppose the stored
datum is that “Patient was given halothane.” The HALO-
THANE frame now has its GIVEN? slot filled with “Yes.”
Consider the following series of questions:

Q1. Given Anesthetic
A: YES

(ANESTHETIC specialist inherits the rules from the

DRUG frame. Rule 1 generates the question, among
others. “Given Halothane?™ *“Yes™ is propagated up-
wards.)

Q2. Any Surgery performed?

A: Possibly
(SURGERY specialist fails with rules 1, 2 and 3. Rule
4 places query “Given Anesthetic?” to ANESTHETIC
specialist. “Yes” answer resuits in “Possibly” to Q2. This
is an example of lateral inheritance.)

Similarly if the stored datum were “Patient had major
surgery.” and the query were, “Given Anesthetic?”, rule 1 in
ANESTHETIC would have given the answer “possibly.”

Another more complex example of data retrieval reason-
ing by PATREC is the following:

DATA: A liver-scan showed a filling defect
in the left hepatic lobe. The liver
was normmal on physical exam.

Q: Liver Normal?

A: No

{On liver-scan data, the following chain of inference
took place: (a) filling-defect in lobe — lobe not normal:
(b) If <comp-of> liver not normal — liver not nor-
mal. On the other hand, Physical examination produced
“Normal™ as answer. By using a general principle that
when there are contending answers, non-default value
should be chosen—the default for “Normal”™ siot of
LIVER is “Yes” —the answer “No” was generated.)

The main points relevant here are. as in the case of
the diagnostic task: (1) There is no separation between a
knowledge base and a problem-solver. Problem-solving is
embedded in the knowledge structure. (2) All the concep-
tual specialists perform the same type of problem-solving,
in this case, inheritance of data from other specialists. (3)
Concepts with the same name, say LIVER. in the diagnos-
tic structure and the data retrieval structure have different
pieces of knowledge and do different things. This is akin to
the fact that the LIVER concept of a diagnostician is bound
to be different from that of the data base nuree. The concepts
in this sense are “tuned” for different types of knowledge use.

What-Will-Happen-If (WWHI)
Or Consequence Finding

We said that among the many types of problem-solving

.
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that take place in a knowledge-rich domain is that of answer-
ing questions of the form “What will happen if X is done?"
Examples are: “What will happen if valve A is closed in this
power plant when the boiler is under high pressure?”: “What
will happen if drug A is administered when both hepatitis
and arthritis are known to be present”” Questions such as
this can be surprisingly complex to answer since formally it
involves tracing a path in a potentially large state space. Of
course what makes possible in practice to trace this path is
domain knowledge which constrains the possibilities in an
efficient way.

The problem-solving involved, and correspondingly the
use of knowledge in this process. are different from that of
diagnosis. For one thing, many of the pieces of knowledge

for the two tasks are completely different. For - -mple, con-
sider answering the question in the automor m chanic’s
domain: *What will happen if the engine ge  :0t”" Look-
ing at all the diagnostic rules of the form. .. engine —
< malfunction >" will not be adequate, since alfunction >

in the above rules is the cause of the hot es .« -hile the
consequence finding process looks for the eftc .1 the hot
engine. Formally, if we regard the underlying knowledge as
a network connected by cause-effect links, where from each
node multiple cause links as well as effect links emanate.
we see that the search processes are different in the two in-
stances of diagnosis and consequence-finding. The diagnostic
concepts that typically help to provide focus and constrain
search in the pursuit of correct causes will thus be different
from the WWHI concepts needed for the pursuit of correct
effects.

The embedded problem-solving is also correspondingly
different. We propose that the appropriate language in which
to express the consequence-finding rules is in terms of state-
changes. To elaborate:

1. WWHI -condition is first understood as a state change
in a subsystem.

2. Rules are available which have the form *<state
change in subsystem > will result in <state change
in subsystem >". Just as in the case of the diagnosis
probiem. there are thousands of ruies in the case of
any nontrivial domain. Again. following the diagnos-
tic paradigm we have already set. we propose that
these rules be associated with conceptual specialists.
Thus typically all the state change rules whose left
hand side deals with a subsystem will be aggregated
in the specialist for that subsystem, and the right
hand side of those rules will refer to the state changes
of the immediately affected systems.

Again we propose that typically the specialists be or-
ganized hierarchically. so that a subsystem specialist. given
a state change to it. determines by knowledge-based reason-
ing the state changes of the immediately larger system of
which it is a part and calls that specialist with the informa-
tion determined by it. This process will be repeated until
the state change(s) for the overall svstem. i.e., at the most
general relevant level of abstraction. are determined. This
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form of organization of the rules should provide a great deal
of focus to the reasoning process.

, An Dlustrative Example. Consider the question, in
the domain of automobile mechanics, “WWHI there is a leak
in the radiator when the engine is running?” We suggest the
specialists are to be organized as in Fig. 3.

The internal states that the radiator fluid subsystem
might recognize may be partially listed as follows: {leaks/no
leaks. rust build-up. total amount of water,...}; similarly, the
fan subsystem specialist might recognize states {bent/straight
fan blades. loose/tight/disconnected fan beit,...}. The cool-
ing system subsystem itself need not recognize states to this
degree of detail: being a specialist at a somewhat higher level
of abstraction it will recognize states such as {fluid flow rate.
cooling-air flow rate...etc.}. Let us say that the radiator fluid
specialist has. among others. the following ruies. The rules
are typically of the form:

<internal state change> -~ <supersystem state

change >
leak in the radiator — reduced fluid flow-rate
high rust in the pipes — reduced fluid flow-rate
no antifreeze in the water
and verv cold weather — zero fluid flow etc.

The cooling system specialist might have rules of the
form:

low fluid-flow rate and engine running — engine state hot
low air-flow rate and engine running — engine state hot

Again note that the internal state recognition is at the ap-
propriate level of abstraction. and the conclusions refer to
state changes of its parent system.

It should be fairly clear how such a system might be
able to respond to the query about radiator leak. Again a
blackboard for this task would make it possible to teke into
account subsystem interaction.

Unlike the structures for the diagnostic and data retrieval
tasks, we have not yet implemented a system performing
the WWHI-task. While we cannot speak with assurance
about the adequacy of the proposed solution. we feel that
it is of a piece with the other systems in pointing to the
same set of morals: embedding still another type of problem-
solving in a knowledge structure, which consists of cooperat-
ing specialists of the same problem-solving type.
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Knowledge-Use Taxonomy

There has been a growing realization in the field that
the important issue in knowledge systems is to determine
how knowledge is to be used. Our foregoing examination of
the three tasks—each of which is not some ad hoc need for
medical reasoning, but is a generic task that arises in a num-
ber of domains—leads us to propose the following theses.

1. There is taxonomy of probiem-solving regimes that
are involved in expert problem-solving. We have
identified three members of this taxonomy
e diagnostic (classificatory): establish-refine, top-
down.

o consequence-finding: abstract state from low-level
description to higher-level description, bottom-up.

e data retrieval: inheritance/inference of values from
data values in other concepts.

There are obviously more. Our research is oriented
towards finding more elements of this taxonomy and
determining their interrelationships.

2. For each type of problem-solving there is a separate
knowledge structure, with the associated p.s. regime
embedded in it. Thus a domain of knowledge can be
decomposed into a collection of structures, each of
which specializes in a p.s. type. We can call this a
horizontal decomposition of the domain.

3. Each of the structures in (2) above can be further
decomposed into a collection of specialists, all of
whom are of the same p.s. type, but differ from each
other in the conceptual content. We have indicated
how this decomposition can be done for the three
tasks considered. We term this decomposition a ver-
tical decomposition.

A Paradigm Shift

The prevalent approach to knowledge base systems is
based on the decomposition in Fig. 4:
In this paradigm, knowiedge representation is separated from
its use. This approach has the attraction of generality and
a certain kind of modularity.

The representational questions are dealt with in this
approach in a manner to satisfy the criterion of expres-

" siveness, or so-called epistemological adequacy of McCarthy
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(McCarthy, Hayes, 1969). The efficiency responsibilities are
put on the shoulders of the inference mechanisms: they have
to have the so-called heuristic knowledge in order to use the
knowledge efficiently for problem-solving. Our approach is
based on a rather different decomposition of the same prob-
lem, as indicated in our discussion on horizontal decomposi-
tion in the previous section.

Pictorially, the viewpoint of knowledge-based systems
that we advance can be given as Fig. 5.

Thus the overall knowledge system is viewed as a collec-
tion of specialists in inference types, who cooperatively solve
a given problem. While in the figure we have indicated the
communication among these specialists to be unconstrained,
in fact, however, it may not be so. There may be reasons
why only certain problem-solving specialists can talk to other
problem-solving specialists. This is an open research prob-
lem in our approach.

Production Rule Methodology. In most of the
preceding discussions the representation of knowledge has
been in the form of rules. We feel that this is not acciden-
tal, but that rules represent a basic form of cognition, viz.,
“how-to” knowledge. This was recognized early in Al by
Newell and Simon (Newell, Simon, 1972) who named the
rules production rules. Later, the Stanford Heuristic Pro-
gramming Project and others extended this production rule
methodoiogy for a wide ciass of expert system design prob-
lems. We are thus in agreement with the use of rules as a
basic knowledge representation formalism in expert systems.

There are two aspects in which our methodology differs
from current work on rule based systems. We have already
alluded to the difference in the viewpoint which regards
knowledge not as an independent structure to be used by
different problem-solvers, but as embodiments of implicit
problem solving knowledge. Related to that is the idea that
the central determinant of effective use of knowledge is how
it is organized. Our approach begins to provide criteria for
performing the organization of a compiex body of knowledge.
It is well-known that production rules need to be organized
not simply for purpose of efficiency, but for focus and contro!
in problem-solving (see (Lenat, Harris, 1978) for a discussion
of these issues). We are proposing two organizing constructs,
which extend the production rule methodology to make it
applicable to a larger cldss of problems. One construct is the
problem-solving regime and the other is that of a conceptual
specialist.

Related to these organizational notions is the other
aspect of the difference between our approach and the
current production rule methodologies. We do not use
uniform problem-solving mechanisms (backward chaining,
e.g.) across the whole domain. As indicated, the problem-
solving method differs from knowledge structure to knowledge
structure.
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Role of “Deep” Models

Deep and Compiled Structures. Recently Hart
(Hart, 1982) and Michie (Michie, 1982) have written about
the “depth” at which knowledge is represented and used
in problem solving by expert systems. Distinctions such as
“deep” vs “surface” and “high road” vs “low road” have been
made in this connection. There is no clear definition of what
constitutes a deep model - in fact precisely that issue is an
open ares of research in the field, but the intuition is that
it models the underlying processes of the domain. Michie
remarks that most expert systems that are extant don’t have
deep models in this sense, but instead can be viewed as a data
base of patterns with a more or less simple control structure
to navigate through the data base. It is argued that surface
systems of this type have inherent limitations in hard prob-
lems, and that a system which has a deep model will be able
to turn to it when faced with an especially knotty probiem,
much like a human expert might resort to “first principles” in
a similar situation. In addition to deep models of the domain,
the human problem solver also uses other sorts of knowledge
such as “common sense” knowledge of various kinds.

In the rest of the discussion in this section we will ex-
plicitly consider the diagnostic task only. But the arguments
will apply to other tasks as well.

We argue in (Chandrasekaran, Mittal, 1982) for a thesis
which might at first sound counter-intuitive. Let us assume
that we wish to design a diagnostic system in a particular
domain. Let us further assume that we can successfully
construct a deep model of the jomain, and also specify the
problem solving processes that will operate on that model.
The thesis that we argue in (Chandrasekaran, Mittal, 1982)
is as follows. Between the extremes of a data base of pat-
terns on one hand and representations of fdeep knowledge
(in whatever form) on the other. there exists a knowledge
and problem solving structure - alon~ the lines outlined in
the section on the diagnostic task in this paper - which (1)
has all the relevant deep knowledge “compiled” into it in
such a way that it can handle all the diagnostic problems
that the deep knowledge. if explicitly represented and used

in problem-solving, can handle; and (2) will solve the diag-
nostic problems more efficiently than the deep structure can:
but (3) it cannot solve other types of problems- i.e., problems
which are not diagnostic in nature ~ that the deep knowledge
structure potentially could handle. The argument is rather
detailed, but the essence of it consists of analyzing the ways
in which the diagnostic structure may fail to solve a par-
ticular problem, and tracing that failure to either missing
knowledge in the deep model itself or in the problem solving
processes that operate on it. Thus the range of diagnostic
problems that can be solved with the deep model is exactly
coextensive with the problems solvable with the diagnostic
problem solving structure that can be derived from it.

There is another way of looking at this. There is a
natural decomposition in the problem solving responsibilities
between the underlying knowledge structures and the diag-
nostic structure. The former builds the diagnostic structure
and the latter solves specific diagnostic problems. Human
experts often resort to deep models because the diagnostic
structures are in general incomplete. This decomposition
also transiates into a natural division of responsibility for
explanation of decisions. See (Chandrasekaran, Mittal, 1982)
for more discussion on this.

Multiple Uses of Knowledge. It is possible that there
will be some redundancy in knowledge represented in our ap-
proach, since it calls for knowledge to be encoded in a prob-
lem solving structure according to its usage - some pieces of
knowledge may appear in several structures. (See comments
in (Gomez, Chandrasekaran. 1981) on redundancy and bias-
ing of knowledge.) s this a good thing?

We have a choice: (1) We can have the knowledge in
a deep enough form, but as, say, a disgnostic problem
presents itself, we can first generate fragments of diagnos-
tic knowledge as needed and use it to solve the given prob-
lem. Similarly for a WWHI problem. etc. Or. (2) we can
choose the tasks to be experts in , compile the problem solv-
ing structures for them, accepting some redundancy. The
latter is faster for those tasks for which they are designed.
the former is more economical in storage. A classic trade-off!
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In a sense the former situation describes, e.g., a bright
medical school graduate who has a functional understanding
of the phenomena of the human body, but that knowledge
is not vet molded into effective problem solving structures of
particular types. We suspect that what happens even among
experts is that they build powerful problem solving struc-
tures to account for a good portion of foreseeable situations.
and thus need to resort to the deeper structures only for the
harder problems. This is a compromise between the require-
ments of expertise and memory.

The Nature of the Deep Model

There is an additional problem with option 1 in the
current state of the art: we don't know how to do it! This
requires an adequate theory of the nature of the deep model.
When a person newly understands how a device works, e.g.,
it is doubtful that what he has acquired is merely a collection
of rules or facts, or a network of causal relations. One
can have all these and still not “understand.” The sense
of understanding must correspond to some organization of
these pieces of knowledge for some class of purposes. The
organization must be such that it can be processed to produce
problem solving structures for various tasks. The nature of
the deep model is an extremely important area of research.
The work of (Rieger, Grinberg, 1978), (Pople, 1982), (Patil,
1981) and (de Kleer, Brown, 1982), to name a few researchers
who have looked at this problem, seem very relevant here.
However. in order to adequately represent knowledge at this
level. notions of an organizational nature particular to that
level also seem important.

On Hierarchies

In all the tasks that we considered in this paper, the
knowledge structures were strongly hierarchical. While
hierarchical organizations have a strong intuitive appeal, in
Al there is also a strong tradition of “heterarchies” and net-
work structures. Difficulties with hierarchical classification
structures have been noted in (Fahiman, et al, 1981). Also
concerns such as “the world is not hierarchical” are voiced
in response to proposals for hierarchical organizations.

This is not the place to discuss the important issue of
hierarchical structures in probiem soiving. The following
brief remarks should suffice for our purposes. First of all,
the main thesis about decomposing knowledge by problem
solving types and embedding of the problem solving in the
knowledge sources is itself independent of whether the struc-
tures for a problem solving type are hierarchical. Secondly.
our general strategy has been to start by looking for hierar-
chical decompositions. and where there seems to be a need
for communication outside of the hierarchical channels, to
provide it in a carefully controlled fashion such as the black-
boards discussed in {Gomez. Chandrasekaran. 1981). (See
{Chandrasekaran, 1981) for a discussion of different kinds
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of communication needs in a distributed problem solving
situation.) For example. in (Gomez, Chandrasekaran. 1981)
we discuss how certain kinds of relations between disease
hypotheses belonging to different portions of the hierarchy
- such as disease A being secondary to disease B - can be
handled within a hierarchical framework by the use of black-
boards. Finally. it ought to be stated clearly that hierarchies
are not “out there.” but imposed by the thought processes
for control over problem solving. Thus it is a powerful
weapon, but by no means a sufficient one. It wiil be rash
to conclude that all complex problem soiving in ali com-
plex domains can be crisply conducted in a single hierar-
chical framework. Reasoning about feedback and reason-
ing with multiple perspectives are two examples where addi-
tional machinery seems to he needed beyond the hierarchical
framework.

The Organization of the Medical Community

Evidence of Horizontal Decomposition. The medi-
cal community collectively is a good case study in the prin-
ciples by which knowiedge may be structured for cooperative,
effective problem-solving. Corresponding to our notion of
horizontal decomposition along the lines of problem-solving
types, we can identify clinicians, educators. pathologists,
radiologists, medical records specialists, etc. Clinicians com-
bine the diagnostic and predictive knowiedge structures, for
practical reasons having to do with the close interaction
between diagnosis and therapy. Medical record specialists,
as their name indicates, serve to organize patient data and
retrieve them effectively. Radiologists are not diagnosticians
in the same sense as clinicians are: their problem-solving is to
reason from imaging descriptions to confirm or reject diag-
nostic possibilities; they are largely perceptual specialists.

Evidence of Vertical Decompeosition. Correspond-
ing to our vertical decomposition. many of the above problem-
solvers are organized into conceptual hierarchies. For in-
stance, an internist is the top-level diagnostic specialist, who
may call upon liver or heart specialists for further investiga-
tion of a problem. The top-down problem-solving for diag-
nosis is indicated by the fact that a sick person typically first
goes to an internist, who may refer the patient on to more
detailed specialists.

Evidence for Embedding Problem-Solving. If the
medical community were organized according to the cur-
rently accepted paradigm in expert systems, i.e.. a com-
mon knowledge base shared by different problem-solvers who
themselves are without domain-knowledge. one would ex-
pect to have knowledge-specialists, who would be rather like
encylopaedias. and problem-solving specialists who would
possess expert-algorithms for. say, diagnosis, without any
medical knowledge about particular medical concepts. Thus
whenever a patient came, the diagnostic specialist would con-
sult the knowledge-base specialist and together they would
arrive at a diagnostic conclusion.
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However. that is not the way the community works. In-
stead we find that experienced medical specialists possess
expertise which is not a raw knowledge-base. but which
is highly effective in problem-solving. On the other hand.
a medical student without cliriral experience is more like
a pure knowledge-base. As he or she becomes more ex-
perienced in various types of problem-solving, the unstruc-
tured knowledge base slowly begins to shape and structure
itself. so that pieces of knowledge are tuned for ready and
effective use.
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AN APPROACH TO EXPERT SYSTEMS FOR MECHANICAL DESIGN

David C. Brown*
B. Chandrasekaran
Artificial Intelligence Group
Dept. of Computer and Information Science
The Ohio State University
Columbus, OH 43210

Abstract

We present an approach to expert systems for
mechanical design called Design Refinement, which
eddresses a subset of design activity by using a

- hierarchy of conceptual specialists that solve the
design problem in a distributed manner, top-dowm,
choosing from sets of design plans and refining the
design at each level of the hierarchy.

1. Introduction

In terms of economic impact, one of the most
important areas for AI technology is CAD/CAM. AI
is applicable to a variety of subtasks in CAD/CAM:
process control and robotics are areas where work
has already been done. However, in terms of
intellectual difficulty the central problem is
design itself. While much AI-related work is being
done in 8hi creation of design aids in the VLSI
area 9,10,11 there has been relatively little
attention paid to the knowledge structuring and
problem solving issues in the main problem of
design itself. This paper addresses the problem of
expert systems for mechanical design. For an
important class of design tasks, we present an
approach with design refinement as the central
problem solving activity. This activity can be
quite complex, but our aim here is to provide a
first-cut analysis of this process in order to show
it’s potential for generating design expert
systems.

*Cutrently on leave from the Department of
Computer Science, Worcester Polytechmic Institute,
Worcester, MA 01609
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tasks. Thus much of our discussion will be taken ;
up with an account of these aspects of the design
process.
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- The creation of computer-based expert consultants

in any area of human endeavour requires an analysis

N both of the knowledge structures that the
h corresponding human specialist wuses, and the
e problem-solving methods that underlie the different '

2. Types of problem solving

We have been developing a framework for
decomposing a complex body of knowledge into small
knowledge sources, and organizing them into a
structure of specialists engaged in collective
problem solving. We have identified several
distinct types of problem solvi that are useful
in the design of expert systems °. One advantage
of this is that it enables one to characterize
which kinds of expert problem solving we know how
to mechanize,

One type of problem solving is capable of
pertorming diagnosis, i.e., capable of reasoning
about how to classify a complex description of
reality as a node in a diagnostic hierarchy 1
Another type of problem solving (called WWEI by us)
is capable of reasoning about consequences of
contemplated actions on complex systems, such as
ansvering the question, "What will bhappen if I
close that valve in this power plant?". We believe
that design can be classified as a distinct type of
problem solving, and that it is different from the
other types we have identified. We will outline how
a8 community of design specialists can work together,
to convert a list of specifications for a component
into a detailed design for that compoment.

n

§£':

3. Discussion of design sctivity in general
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In general, design is a highly creative activity,
the underpinnings of which we in AI only dimly
perceive. Often the design goals themselves are

s &
B

_3: only vaguely specified, and the feedback from ]
Ajt attempts to achieve these goals serves to modify <
n them, Thus designers of new systems work with
- knowledge structures and problem solving techmiques

»
»

that we caonot yet adequately capture with AI
technology. What the current state of the art in
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" . Al can do for them is more along the lines of
{ . support  systems (intelligent graphic aids,
EAEE knowledgeable data bases, etc.), rather _than
o actually performing the design task itself 13,
ACE
':::-.: ::-: In a typical industrial operation, however, the
daily task of the designer is frequently less
exalted than the kind of highly creative design
(@] mentioned above. In fact, most industries perform
SRR design tasks which, for the purposes of the current
™ discussion, can be classified into roughly three
:-Z-: categories (to simplify what really is a spectrum
R from the most open ended to the most routine).
Class 1 design is done 8o rarely it is often the
NG basis of a newv company, division or a major
RN marketing effort. Major inventions belong to this
:,.' category. The design activity in this case
\:;., “ iavolves access to wide-ranging knowledge
AOATE structures, and searches in a very large space of
=~ Rl design alternatives.
RGP Class 2 design is closer to the routine, but
M still many of the established patterns may be

.
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broken. Some aspects of design may require
substantial inmovation; e.g., in a company which
manufactures integrated sensor systems for control
of sheet processes, the need to take into account

-

e

A0 extremely hot ambient conditions for a particular
:-".‘ > order may require suspension of the standard design
and launching of an investigation about new (for
S the company) techniques of control of ambient
20 temperature vithin the sensor housing, which might
N C in turn result in new sealing techniques and so on.
__.-:- oo In many companies, this happens periodically, but
A is undertaken with the hope that the investment of
SN time and energy will be paid off by identifying a
AR potentially large market, in which the new elements
. of design can be "routinized".
el Class 3 design, the most routine, follows a set
RS of relatively well-established design alternatives
SO which are reasonably well-understood, but

nevertheless still require a well-trained human
expert to perform the design task. We do not

W o intend to imply that the task is "simple"; in fact,
(W ve cannot fully substitute for the human expert,
e - and nev advances in AI are called for. For
::-.‘- ':{ example, simple approaches, such as use of a
-.::C data-base of design parameters with associated
e designs, may work for some problems, but in general
-.,-:: R they will fail due to the large number of
& : combinatorial possibilities.
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Let us examine in some further detail the nature
of Class 3 design tasks, There exists a large
oumber of industries which wmake one-of-a-kind
products, where each is of the same general class.
For example, AccuBay Corporation, our collaborator,
designs and delivers control systems to industries
which manufacture sheet products (aluminum foil,
paper, etc.). These control systems have sensors
which continually momitor various properties of the
sheets, and provide the signals which can be used
to keep the thickness within certain bounds.
However, even within one industry, no
pre-constructed system can be placed within a
functioning mill. Each control system is built
anew from specifications that are gathered from a
particular prospective installation. The control
system itself is complex and consists of the semsor
assembly (frame, carriage, sensors, etc.) and the
complex computing system (minicomputers and
software) that goes with the sensor hardware.

The complexity of the task arises from the
numerous subcomponents and their sub-subcomponents,
each of which needs to be specified according to
top-level specifications, The top~level
specifications of two different plants in the same
industry differ considerably, and this adds to the
complexity. For example, no two paper mills are
alike, they themselves having been designed to the
differing specifications that arise from the
differing products and markets of the companies.
Numerous counstraints exist among the parameters of
the subcomponents, contributing further to the
complexity of the task.

While a Class 3 design may still be conceptually
complex, the design altermatives at each stage are
not as open—ended as in some of the stages of Class
2 or Class 1 designs, nor is there the vagueness
and nonoperationalism of the top~level goals or the
difficulty with identification of constituent
substructures that is characteristic of Class 1
design. That is, despite complexity, the design is
intellectually more manageable, and the variety of
knowledge sources that are accessed during the
execution of the task are relatively small and can
be identified in advance.

Sometimes, however, a design that had been
classified as Class 3 might turn out during the
design process to possess many Class 2 features.
This happens if the design alternatives for a
certain stage all fail, and an exploratory search
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for a completely new alternative needs to be
launched, Identifying a design task in advance as
Class 3 is a nontrivial problem. But generally,
experienced designers can judge if a project is
Class 3 or not.

We propose that there is a very specific type of

problem solving associated with expert design

.. activity, especially of the Class 3 type: a
hierarchy of conceptual "specialists" solve the
. design problem in & distributed manner, top-dowm,
- by choosing from a set of design plans and refining

i: the design at each stage. Each refinement is done
o by a specialist calling its subspecialists in the
hierarchy.

rs :
.‘l 4.0

«
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4, Class 3 Design

| N

4.1 Description of Class 3 Design

In general, the component to be designed will be
quite complex, with its own subsystems and
N . subatructures. We propose that the expert system

. to design the component be conceived as a

hierarchical collection of design specialists,
wvhere the top levels of the hierarchy are

- specialists in more global subsystems of the
component, while those at the lower levels deal
with more specific subsystems or parts. They all
access a design specification data-base.

! Intelligent data-base assistants can flay an
" important role here; for a discussion see 4,

8 At each stage a specialist S has several
e prioritized alternative design plans, The

specialist begins by inheriting some design
parameters from its parent specialist, and it
!f obtains relevant specifications from the data-base.
- Each of the plans can take these data as arguments,
Parts of a plan may indicate immediately that

constraints cannot be satisfied. This 1is
o considered as “failure”. Parts of a plan access
h# functions which cam fill in the design templates

independently, parts produce further values or
constraints to be passed onm to particular
successors, while other parts of a plan give
specific sequences in which the successors may be
invoked. Thus, § fills in some of the design, then
- calls its successors in a given order with requests
L4 for refinement of the design of a substructure. If
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some of the substructures are independent of each
other, then subspecialists may be invoked in
parallel. The overall global »plan of the
specialist. prioritizes each subplan, invokes
alternate plans in case of failure by one of the
subspecialists, etc. When a specialist receives
failure from ome or more of its successors fo. all
its plans, or when failure for given constraints
can be deduced immediately, the specialist
communicates that to its pareat. The exceptions to
this design refinement structure are the tip node
specialists who can only f£fill in the design
details. Typically as one goes down in the
hierarchy, there are fewer alternative plans, and
the plans themselves becomes more straightforward.

Let us consider a comcrete, but highly simplified
example for illustrative purposes -- the design of
& Small Table consisting of a circular Top and &
cylindrical Support. In a design specification the
user may specify to the design system the materials
to be used, or the required dimensions. The
hierarchy of specialists for the expert system to
design the Small Table is shown in figure 1. Note
that the hierarchy need not be a strictly

. component-subcomponent hierarchy, and could be
organized according to functionm.

.

System Organization:

SmallTableDesigner Data~Bases
/ \ > ] \
/ \ / \
/ \ Materials Parts
TopDesigner  Support &
Designer Structure

Figure 1 : Hierarchy of Specialists

)

vy
el e
&

- The design process starts at SmallTableDesigner,
at the point where the overall requirements are
given to the design system. Consider the case in
which SmallTableDesigner chooses its first plan,
calls TopDesigner, which in turn also chooses its
first plan, does the design of the Top, and returns
the dimensions to its parent. Now
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SmallTableDesigner calls SupportDesigner. Now
suppose that this specialist’s only plarn fails to
generate a successful design within the
constraints; i.e., the strength requirement and
dimension constraints are not reconcilable
according to its expertise, This would cause
“failure” to be returned to SmallTableDesigner.
SmaliTableDesigner then calls TopDesigner again
with a further constraint about the weight that is
permitted. Now TopDesigner will invoke its second
plan (which is a more expemsive plan to execute),
and some information about the new Top design is
passed to SupportDesigmer through its parent
SmallTableDesigner, causing SupportDesigner to
succeed, and the design to succeed.

An important thing to note is that very large
numbers of designs are encoded in an economical way
in this approach., While plans are "pre-compiled",
actual designs arent -- they are actually
generated during problem solving. Further, the
expertise of each specialist can be selectively
increased by carefully integrating new plams into
the specialist. Finally, the human designer can
find causes of failure in the feedback from the
expert system, and, for example, might be able to
come up with a "new" way to design the support, so
that the rest of the system can proceed on a more
automatic design.

What makes Class 3 but not Class 2 or Class 1
amenable to this approach is the fact that in Class
3 projects, a clear idea of the identities of the
specialists in the hierarchy is available (in Class
1, one doesn’t even know who the successors might
be for a specialist), and further, the alternative
plans of each specialist can be identified and are
relatively small in oumber (in Class 2, the needed
alternative design plans are not specified).

4,2 The role of anglytic routines

The image of the designer sitting in front of the
CAD graphics terminal, running stress analysis
routines and visually inspecting the stress
patterns of a component is typical in descriptionms
of how CAD systems work. Analysis of design is an
intrinsic part of the total design process, but
e what role does such analysis play in expert systems
- for Class 3 design?
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) The preceding description of how the plans work
has been at too high a level to brimg out this
aspect. In fact, analysis of design plays a role
in several steps of the process. When a specialist
inherits design constraints from its parent,
accesses specification data from the data base and
decides if there are any obvious difficulties in
proceeding with the design, one of the optioms will
be to run some analysis packages. Similarly, at
any stage in the choice of values for a design, the
plan may call for some analysis. The only
difference from the current CAD practice is that
the analysis and evaluation will be under the
control of the specialist”s plans.

5. Prototype system

3,1 Introduction to Prototype System

A prototype design expert system has been
implemented for the domain example used above —
that of a Small Table which consists of a circular
Top and a cylindrical Support, As above, the design
hierarchy consists of a Small Table specialist that
uses a Top specialist and a Support specialist,
The system has a small design data-base with
information about dimensions of parts, the
structure of the table, and the types of materials
available for use. Figure 2 shows the information
that a specialist has available.

Passed Down Constraints

Plans ___ v
\
SPECIALIST <---> Parts
Constraints __/ &
| Materials
v

Pass Down Constraints
( to other Specialists )

Figure 2 : Overview of Specialist
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Each design specialist has a set of built-in

._ constraints that specify what has to be true in
order for that specialist to complete its design,

. and a collection of plans that can be selected for
Co design, redesign, or verification of an existing
. design. Redesign is the alteration of an existing
design  due to the establishment of new
specifications. As this is a class 3 task, each

. !E specialist has fixed plans that approach the design

- task at that level of the hierarchy in some

_ prespecified manner. Each specialist has a “plan
: . -0 suggester” that selects the plan to be executed.

- The system is started by giving the Small Table

- designer the user”s design specifications -- for

X; example, that the top be Marble. When a specialist

- calls a sub-specialist all relevant constraints

from the user’s specification are passed down. A
o specialist succeeds when its selected plan
E; succeeds, and that can only happen when its
built-in and passed-down constraints are satisfied.
The: system uses default values to do “rough”
design, and can make small refinements to those
values if  necessary in order to satisfy
constraints., The “trace” of the system is very
readable, with checking and decisions being handled
. in appropriate places. The flow of control in the
system is well disciplined and it is clear at each
step what part of the design is being attempted and
why.

2.8 cture

Specjalists The specialists in the system are
represented by a list of attribute-value pairs,
plus some associated programs and constraints.

-
Specialist:
Name ~= SmallTableDesigner

: SpecialistsUsed =— (TopDesigner

. SupportDesigner)

= BuiltInCoustraints -- (STHeight STTopDiam

STSupportTopDiamRat10)

DesignPlans -~ (STPlanl)
ReDesignPlans -- (STRPlanl)
VerifyPlans -= (STVPlanl)
PlanSuggester -- STSuggester
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Plans The plam-suggester”s job is to select the
appropriate plans to be followed during this
invocation of it’s specialist. In general, the
plan selected could depend on the requirements
) given to the specialist, the request made (eg.
design), the history of the design being attempted,
and the current state of the design. Each
specialist will have at least ome plan. Below we
A present a typical simple plan for the
R . SmallTableDesigner. Note that the steps marked
A "w#'" indicate places where the system will fail in
i an unrealistic manner, but a better plan would be
too complex to present here.

ST Plan:
- use TopDesigner,
- did it succeed?
- No, then plan FAILS.
- use SupportDesigner.
- did it succeed?
X - No, then plan FAILS. **
o - check to see if design meets
. table design constraints,
and the user”s comstraints.,
- problems?
=.Yes, then plan FAILS. **
- if everything OK,
then table is designed,
and plan SUCCEEDS.

Constraints Three constraints from the
TopDesigner are given below. They restrict the
thickness of the top, the material of the top, and
the weight of the top. Constraints provide a
readable specification, explicit localized tests of
consistency, and can be used to direct the flow of
control in the hierarchy.

Constraints:
TMaterialThickness
((Thickness Top) > (MinThickness
(MadeOf Top)))

.f‘] TMaterial
- ((Mac¢20f Top) Onedf (Values
(Wood Marble)))

TWeight

l
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: ((Area Top) * (Thickness Top)
| * (UnitWeight (MadeOf Top))
< 10)

Data-bases Each specialist has access to
knowledge about parts and materials. For each
value to be specified in the design some default
knowledge is available. In the implementation they
are functions giving either context-free or
context-sensitive values,

Part:
Name == Top
MadeOf == Unknown
Thickness == Unknown
Diameter == Unknown

DefaultThickness -- DTThickness
DefaultDiameter -—— DTDiameter
DefaultMadeOf —— DTMadeOf

Material:
Name - Wood
MinThickness - 0.40000000E-1
UnitWeight — &

3.3 Action of system

In this section we will present portions of the
output produced by the prototype system, in order
to show its action. Note that the user’s responses
appear after the ">> *" prompt, and that all other
text is from the design expert system., The two
initial comstraints specify that the table top is
to be less than 2 feet in diameter, and that it
must be made of Marble. Having been presented with
the design specification the system cam proceed.

v
v

»

't‘

DESIGN SYSTEM PROTOTYPE (March 83)
Name of most general
design specialist is?

» >> *SmallTableDesigner

-

Lu Any initial constraints?
A Answer y or n or filename
d i >> *CONSTRAINTS.INIT

S

I
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Reading constraints from file

Constraints:
TopSize ((Diameter Top) < 2)
MarbleTop ((MadeOf Top) <=— Marble)

Using specialist -- SmallTableDesigner
In Mode -—-—- Design

From specialist =--- TOP

In plagp ————==e===w TOP

Passed down =~ (MarbleTop TopSize)

Testing passed-down constraints
MarbleTop is setting Marble
as value of MadeOf in Top
Passed-down constraints OK

Testing built—-in Constraints
Built-in constraints OK

Suggesting Plan STPlanl
Executing plan STPlanl

Start by designing the Top

Before selecting its design plan the
SmallTableDesigner checked the constraints, and set
the top”s material to be marble. The plan starts
by using the TopDesigmer to design the top. Once
in control, the TopDesigner checks the constraints,
just in case immediate failure can be reported, and
then proceeds to select a plan,

Using specialist —— TopDesigner

In Mode Design
From specialist ——— SmallTableDesigner
In plan STPlanl

Passed down (TopSize MarbleTop)

Testing passed-down constraints
Passed-down coustraints OK

Testing built-in Constraints
Built-in constraints OK

Suggesting Plan TPlanl
Executing plan TPlanl

Looking for unspecified values in Top
Try reasonable values first
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At this point the plan for the TopDesigmer is
being followed, and, as this is a "tip node" in the
design hierarchy, it must attempt to supply the
appropriate missing details of the design. The plan
continues, below, by using ‘"default" (ie.
apparently reasonable) values for those dimensions
of the top that are nmot yet specified. After that,
the design of the top appears to be complete, so it
is checked using the built-in and passed-down
constraints. Notice that both of the user’s
initial constraints are relevant for the
TopDesigner and, consequently, have been passed to
it. Unfortunately ome of the defaults chosen
conflicts with one of the design requirements.
That default value gets reduced by 1l inch, allowing
all constraints to be satisfied , and the design to
continue. It could be argued that the default
values should have been chosenm with the comstraints
“in mind”, but we feel that the method used fits
better into our refinement theory, as the defaults
provide a '"rough" design which is subsequently
refined by comnsideration of the comstraints.

Selecting 2 £ft, as Top diameter
Selecting 0.2 as Top thickness

Now TPlanl checks for comnflicts
Testing passed-down constraints
Constraints failing
TopSize: ({(Diameter Top) < 2)
Setting 1.9166669 as
value of Diameter in Top
Passed-down constraints OK

Testing built-in comstraints
Built-in comnstraints OK

No conflicts found by TPlanl
Leaving plan TPlanl
Reporting Success of TPlanl and TopDesigner

AR
. .

Lo

State of design:

Name -- Top
rf}; s MadeOf -- Marble
i{{- - Thickness -- 0.19999999
v T Diameter -~ 1.9166669
e DefaultThickness ~- DTThickness
e v DefaultDiameter =-- DTDiameter
;_!! i DefaultMadeOf ~- DTMadeOf
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Name =~ Support
MadeOf =~ Unknown
Length ==~ Unknown
Diameter ==~ Unknown

DefaultMadeOf =~ DSMadeOf
Defaultlength -~ DSLength
DefaultDiameter -~ DSDiameter

At this point the SmallTableDesigner”s plan calls
for the design of the support, and will pass
control to the SupportDesigner specialist, which
proceeds in much the same way as above. Notice
that here the default is context-semsitive. Note
too that the SupportDesigner uses the services of a
module not in the design hierarchy in order to test
the strength of the support. After the support has
been designed, the SmallTableDesigner checks the
contraints again, and, as there are no problems,
the plan is completed and the design is successful.

Next design the support

Selecting Metal as Support material,
as Top material is Marble

Testing strength

Reporting Success of STPlanl
and SmallTableDesigner
Result of Design attempt
(SUCCEEDS)

~

S.4 Redesign mode

Suppose that, despite the TopDesigner having
checked the weight of the Top to make sure that it
wasn’t too heavy, the SupportDesigner is unable to
design a support that is strong enough. The
SmallTableDesigner will ask the TopDesigner to
redesign the top given this new information. In
cases such as this we suspect that the specialist
involved will be able to make a judgement as to
whether this is really a request for a new design,
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L or a minor change to the existing design. Here,

( . the TopDesigner would make a decision whether to

select a design plan other than the ome which has

o already been tried, or to select a redesign plan.

A redesign plan will keep as much of the old design
- as possible and will concentrate on changing only

: whatever is necessary to correct the problem that
the other specialist is having. Each specialist

- . must keep or have access to a record of which plans
X have already been tried, under what conditions, and
o how successful they were.

NI

~ .
™ 6. AccuBay Research
NARS The design refinement ideas presented in the
-, previous sections are being used in an ongoing
SIS project to build an expert system for a more
" ‘; complex and realistic class 3 design task in an
J industrial enviromment., In conjunction with AccuRay
we have studied the design of a small Air-cylinder
(Figure 3). The cylinder contains a piston on a rod
o that moves a shutter in one of AccuRay”s products.

. Compressed air moves the piston to open the
shutter, and a sprirg in the cylinder, acting on

) . the piston in the opposite direction to the air
pressure, closes it. The piston moves im a sealed
tube which is closed at one end by the cap, and at
U the other by the head. The rod passes through the

R Head. There are about 17 parts in all, some of
o them "off-the-shelf", but most are manufactured at
. AccuRay according to their design specificatioms.

Sl
.
j o~ .'.'
s — — —
\ t. I I I_I |
I I |
F L1/ / / / \
S i/ / Sprinmg / || /
D [ e
- - | Cap | | Head |
A, -— Tube —————
2R
Spring return Air actuated
> <
Pigure 3 : Rough structure of Air-cylinder
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After an extended set of interviews with the
designer we have captured the “trace” of the design
process in some detail, and we are still refining
it. The trace is the design decisions and their
groupings considered over time. We have also
isolated from this trace, in rough form, the
conceptual structure and the plans that we consider
underlie the design refinement process. As the
implementation of the expert system progresses we
expect the conceptual structures and the plans to
become better defined.

7. Theoretical & Practical lssues

7 The langu of design plans
& inter-specialist communicatiom

So far in our descriptions, plans are very
general procedures. However, in order for this
notion to have practical consequences in CAD we
need generic representations for plans and the
specification of their coordination. Otherwise,
updating the expert system to reflect changing
products or an increase in expertise will not be a
practical. Thus, we need to search for planning
primitives with which a language for design plans
can be constituted, The issue of a plan
specification and refinement language is especially
important in our framework of problem solving types
and corresponding specialist structures, We have
successfully completed the task of specifying a
language called CSRL for the specification of
diagnostic specialists. We expect that a similar
language can be designed to specify design
specialists. We feel that earlier AI work on
plans, such as that of Sacerdoti, Hayes-Roth and
Bruce 6’7’8, will be applicable to our goal.

In our research, it is not the time sequencing of
operations that is at issue, as plans have already
been formed. We are concerned with the notion of
constraint propagation from plans to_ subplans,
either directly or via some blackboard 12, However,
each plan must show the sequence of tasks within
that plan, some of which will use the expertise of
other specialists to complete the task, and some of
wvhich will use a "compiled" % procedure to complete
the task. Some specialists will be able to proceed
in parallel.

Py
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Intimately bound up with the language of design
plans is the nature of the communication between
specialists. Most communication will be between a
specialist and subspecialists (ie. the omes at the
next lower level of the hierarchy, from which it is
able to request action). The specialists may be
asked to design or redesign, and could be asked to
validate some small change that might affect them.
Each message type will have some information
associated with it. For example, the message
requesting the redesign discussed above will
require some information about the cause of the
other specialist’s failure, and, possibly, some
suggestions from that specialist, or a '"boss",
about how to proceed.

7.2 Bow to handle failure

We have omnly scratched the surface of how
failures of refinement result in reinvocation of
portions of different plans. The 1issue is
significantly more complicated. Sometimes when a
plan failure occurs, it may be more beneficial to
ask the parent specialist for some possibly minor
changes in specifications rather than invoke
alternative plans. As another example, consider
the case vhere Plan 1 of a specialist S is being
refined, and previous experience shows that a
potential conflict in a specialist 8° several
levels below may be a most likely cause for failure
of the plan. Let us also assume that several
successors of S also have substantial
responsibilities in the refinement of Plan 1l of S.
Now it would seem prudent to selectively refine in
the direction of 8” to make sure early on that Plan
1 has a good chance of survival rather than engage
all the relevant successors of S8 immediately.
Finally, an important problem is how reasoms for
failure will be used by higher level specialists to

choose alternate plans. Some degree of
"understanding"” the cause of failure will be
necessary. At the very least some sort of

classification of the causes of failure into
categories that can be mapped into criteria for the
selection of alternate plans will be necessary.

The above examples indicate that coordination of
plans may become quite complex. Further research
is called for concerning the trade-offs between
overly complex plans that may capture some minor
detail of the design process and sticking with
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simpler plans that capture the essence of the
design process, but perhaps lose some efficiency
due to their incompleteness.

8. Discussion

Due to space limitations, we have not addressed
several issues of interest, e.g., the conceptually
important but common technique of '"rough design"
followed by a more detailed design based on some of
the knowledge gained during the rough design phase,
and the practically important problem of how to
incorporate manufacturability constraints in the
design process. Further it is likely that omnly a
subset of practical industrial Class 3 problems can
be successfully conquered by the design refinement
paradigm. For some design tasks, we may have an
insufficient understanding of the problem solving
processes, or have difficulties with the amount of
knowledge required. Nevertheless it is our belief
that there is a significant subset of Class 3
design problems that are amenable to the proposed
approach. The approach itself we think reflects in
a natural manner the formation of conceptual
structures for problem solving. Finally, it ought
to be poinmted out that while we have been mostly
discussing the prospect of "automation" of design,
the approach is also highly suited to
semi-automation. An interactive system, in which
the system, when faced with subtle issues
concerning causes of failures of some designs,
seeks human intervention at appropriate points in
the plan selection process, will obviously be very
useful. The knowledge decomposition principles
that underlie our approach make the design of such
semi-gutomatic systems particularly promising.
When knowledge is decomposed into specialists,
there is no particular constraint regarding which
specialists need to be machine-implemented, and
which can be given to human specialists,
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CSRL: A LANGUAGE FOR EXPERT SYSTEMS FOR DIAGHOSIS

Tom Bylander, Sanjay Hitnl.’, and B. Chandrasekaran
Artificial Intelligence Group
Department of Computer and Information Science
The Ohio State University
Columbus, OB 43210 USA

Abstract expert”s knowledge and its implementatiom. In this
psper, we present CSRL (Conceptual Structures
We  present CSRL  (Conceptual  Structures Representation Language) as & langusge to

Language) a8 a  language to facilitate the development of expert diagnosis

Representation
facilitate the development of expert diagnosis
systems based on a paradigm of "cooperating
disgnostic specialists.” MDX, the medical diagnosis
system that has been developed in our laboratory
over the past fev years is based on this paradigm.
In our approach, diagnostic reassoning is one of
several generic tasks, each of which calls for a

particular organizational and problem solving
structure. A diagnostic structure is composed of a
collection  of specialists, each of which

corresponds to a node or "conocept" in a diagnostic
bierarchy, e.g., a classification of diseases. A
top-down strategy called establish-refine is used
in which either a specialist establishes and then
refines itself, or tbe specialist rejects itself,
pruning the hierarchy that it heads. CSRL is a
language for representing the concepts of a
diagnostic hierarchy and for implementing the
establish~refine process. The body of & concept
specifias hov it vill respond to different messages
from its superconcept. The knovledge to establish
or reject a concept is factored into knowledge
aroups, which correspoud to specific decisions in
the diagnosis. Ve also introduce the concept of a
family of languages in which differenmt languages

for diagnosis are designed for different kinds of

end users.

I Introduction

Many kinds of problem solving for expert systems
bave been proposed within the AI community.
Whatever the approach, there is & need to acquire
the knovledge in a given domain and implement it in
the spirit of the prodblem solving paradigm.
Reducing the time to implement a system usually
involves the crestion of a high level laoguage

vhich reflects the intended method of problem
solving. For exsmple, EMYCIN wvas created for
building systems based on MYCIN-like problem
solving. Such languages are also intended to speed

up the knowledge acquisition process by allowing
domain experts to input knovledge in a form close
to their conceptusl level. Another goal is to make
it easier to enforce consistency betveen the

'Cuttcntly at Knovledge Systems Area, Xerox PARC,
3333 Coyote Rill Rd., Palo Alto, CA 94304 USA
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systems based on the MDX approach to diagnostic
problem solving (4, 8], an approach that has been
developed in our laboratory over the past few
years. In addition, we introduce the concept of a
family of languages in which differemt languages
are designed for differeat kinds of end users.

First, we will overviev the relationship of MDX
to our overall theory of problem solving types, the
diagnostic problem solving that underlies MDX, and
the differences between our approach and the
koowledge base/inference engine approach., We then
present CSRL in relationship to diagnosis and
illustrate many of its conmstructs. Next, we
discuss the family of languages concept. Finally,
our immediate plans for usinog CSRL are listed. Due
to space limitations, some understanding of how MDX
performs disgnosis is assumed.

II Overviev of MDX

A, Types of Problem Solving

Qur group at Ohio State has been concerned with
bow knowledge is organized for expert problem
solving. Ve propose that there are well-defined
generic tasks each of which calls for s particular
organizational suod problem solving structure [3].
Some tasks that ve bave identified are diagnosis,
consequence finding, and knowledge-directed data
retrieval. The koowledge of a given domsin that
applies to a given task can be compiled iato a
knowledge structure which is tuoed for that task.
This structure is composed of a collection of
specialists, esch of which perform the same problem
solving, but specialize in different concepts of
the domain. Also, each task is associated with a
problem solving regime, i.e,, how the specialists
coordinate for problem solving, The implementation
of MDX is based on the diagnostic task.

B. The Diagnostic Task

The diagnostic task is the identification of &
case description with a specific node in
pre-determined diagnostic hierarchy. The ides of a
diagnostic hierarchy is wvell-established in
medicine in the form of disease classificationm.
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(We will use medical terminology in tbe following, and problem solving strategy (establish-refine) can
but the reader should keep in mind that the be used to provide focus and cootrol in the problem
diagnostic task also applies to other domains, solving process. H
e.§., cars, computers, and power plaats.) For !
exanple, figure 1 shows that cholestasis, cirrosis, Another difference is that the specialists in the
and bepatitis are subclasses of liver disease. bierarchy are ot a static collection of knowledge.
Cholestasis can be further refined into The kaowledge of how to establish or reject is
extra-hepatic and intra-hepatic cholestasis. In embedded within the specialists. Each specialist |
the diagoostic task, each disease is associated can then be viewed as a individual problem solver J
with a specialist that evaluates its presence or with its own knowledge base., The entire collection
absence in a patient. Specialists ie MDX, for of specialists engages in distributed
exanple, attempt to classify a cholestatic case problem-solving. ‘
according to its etiology.
L
III CSRL
Liver
J 1\ CSRL is a language for defining a diagnostic ]
/ | \ L. hierarchy and for implementing the establish-refine j
Cholestasis Cirrosis Hepatitis process. A diagoostic hierarchy is represented by
/ \ defining concepts. Relationships to neighboring
/ \ concepts are specified in the declarations of the
Extra~Hep Intra-Hep concept. Establish-refine is implemented within
CSRL via message passing. Each concept has a body
Figure 1: Fragment of a diagnostic hierarchy vhich specifies how the concept will respond to
different wmessages, and wvhich coatains the
statements wvhich invoke other coancepts with
A top-down strategy, which ve call messages. The knowledge to establish or reject a
establish-refine, is wused for this task. Ia concept is factored into knowledge groups, which
relation to figure 1, a simple version of this determine how the case description relates to
strategy follows, First the Liver specialist specific decisions in the diagnosis. For a .
determines if it is established, i.e., if liver complete description of CSRL, see Bylander [2]. b
disease is likely. If so, Liver refines itself by R
invoking its subspecialists., Each succeeding level
of specialists performs the same establish and A. Body and Message Blocks of a Concept
refine functions, On the other band, if the Liver ‘
specialist rejects itself, che whole hierarchy of The body of a concept contains s list of message
liver diseases can be pruned. This strategy, in blocks, which specify bow the concept will respond
combination with the diagnostic hierarchy, is the to different messages from its superconcept. The
problem solving regime of the diagnostic task. For message block contains s message pattern, which is
a detailed anslysis of diagnostic problem solving, matched against the incoming message, and a
see Gomez and Chandrasekaran (7]. sequence Of CSRL statements, which are executed if
the match succeeds, In figure 2, the body of
An  importsnt compsnion to the diagnostic Cholestasis contains twvo message blocks., The first
hierarchy is a data base assistant wvhich organizes one will be activated if an "Establisb Cholestasis”
the findings in & relevant manner [8, 9]. For message is sent from its superconcept, Liver
example, to determine if a patient bas been exposed (declared in the Declarations section), szad the
to aneathetics, the data base, if necessary, can second, for a "Refine Cholestasis” message. The
infer this from other data, e.g., major surgery or litersl "Self™ is bound to the name of the coacept,
exposure to ether., Thus the diagrostic structure
is insulated from solving problems about
finding-finding relatiouships, avoiding [ (Define~Concept Cholestasis
potentially combinatorial explosion of (Declarations (Subconcept=-of Liver)
finding—disease relationships in the specialists of .ee)
the diagnostic structure. (Knowledge~Groups ...)
(Body
(Message~Block (Estsblish Self)
C. Differences ees)
(Message-Block (Refine Self)
The ususl approach to building knowledge based eeeld))
systems is to emphasize & general knovledge
representation structure and different problem Figure 2: Message blocks in Cholestasis
solvers wvbich use that knovledge. One difference
in the MDX approach is that the orgsumization of its
knovledge is oot intended as &  general Message blocks for establish wmessages are
cepreseantations for all problems. Rather it is relatively simple since the knowledge groups
tuned specifically for disgnosis. By limiting the (described below) do most of the work. Pigure 3

type of problem to be solved, a specific
organizational technique (classification hierarchy)
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shows how onme would look for the Stone concept.*
The knowledge groups are npamed Xray, Physical,
History, and Summary. Within the (Establish Self)
message block, an Execute statement runs all the
knowledge groups, and then an Esctablish-Reply
statement asserts the value of Summary as the
establish value of Stone. The establish value is
an integer from -3 to 3, which represents symbolic
probabilities from "definitely not" to "definite.”
A value of 2 or 3} means that the concept has been
established. This value is vritten on a blackboard
[6], which other coucepts can access.

(Define-Concept Stope
(Declarations (Subconcept-of Extra-Hep)
(Knovledge-Groups
(Xray ...)
(Bistory ...)
(Physical ...)
(Suxmary ...))
(Body
(Message-Block (Establish Self)
(Execute Xray History
Physical Summary)
(Establish-Reply Summary))))

Figure 3: Statements for establishing Stone

Refining a concept is more complicated since the
message block must be carefully tailored to follow
the establish-refine strategy. In figure 4, the
(Refine Self) message block contains two Callexpert
scatements. The first one calls each subcomcept
with an establish message (Subconcepts is bound to
the declared list of subconcepts). The second
Callexpert statement calls each subconcept that vas
established vith a refine mesaage.

Message passiug is sppropriate for the diagmostic
task since the establish-refine regime easily
translates into a message protocol, in which the
messages clearly indicate the importamt activities
of the concept. Also note that although each
concept would have an establish message block in
this formulation, the wvay that & concept
establishes itself is concept-specific, i.e., s
coucept has its own knowledge groups.

B. Knowledge Groups

The Knowledge-Groups section contains s list of
knovledge groups, which are used to evsluste how
the case description relstes to the eatsblish value
of a concept. A knovledge group (kg) can be
thought of as a cluster of production rules which
map the values of a list of conditions (boolesn and
srithmetic operations om data) to some conclusion
on a discrete, symbolic scale. Different types of
kg“s perform this mapping differently, e.g.,

" :

Stone is a subconcept of Extra-Bep ia MDX. It
represeuts the disesse "stone causing extra-hepatic
cholastasis.”

P ah

(Define~Concept Liver
(Declarations (Subconcepts Cholestasis
Cirrcsis
Bepatitis)
eee)
(Enowledge-Groups ...)
(Body
(Message-Block (Refine Self)
(Callexpert (E in Subconcepts)
(With-Message (Establish E)))
(Callexpert (E in Subcoucepts)
(VWith-Message
(Cond ((Established? E)
(Refine E))))))
aed))

Figure 4: Statements for refining Liver

directly mapping values to conclusion, or having
each rule add or subtract a set noumber of
"confidence" units, Generally, the knowledge in a
concept is factored into several kg's, and other
kg's are used to combine their results. See [5]
for a discussion on combining diagnostic knowledge
in this way, as wvell as reasoning with uncertain
data,

As an example, figure 5 is the Physical kg of the
Stone concept presented above. The conditions
query the data base (not defined im CSRL) for
wvhether the patient has cholangitis, colicky paia
in the liver, or has been vomiting. Each rule in
the Match section is evaluated until ome "matches,"
The value corresponding to this rule becomes the
value of the kg, For example, the first rule tests
wbether the first and second conditions are truye
(the "?" means doesn’t matter). If so, thben 3
becomes the value of the knowledge group.
Otherwvise, other rules are evaluated. The
resulting value of the table messures the strength
of physical evidence towards estsblishing the Stone
concept. The Xray and Ristory kg“s of Stone
similarly evaluate the radiological and historical
evidence. The Summary kg combines their results
(the values of the other kg“s are the conditions of
Summary) ianto the establish value of Stone.

(Physical
(Options (End-After (Match 1)))
(Table (Conditions (Present? Cholangitis)
(Pain? Abdomen Colicky)
(Present? Vomit))
(Match (If (T T ?) Them 3)
(1£ (2 T T) Then 2)
(If£ (2 T ?) Themn 1)
(1f (T ? 7) Then 1)
(1If (2 ? ?) Thenm ~1))))

Figure 5: Example of a koowledge group

Factoring the knovledge of a concept in this
manner has many advantages. Ouly the relevant
knovledge gets invoked. It allows knowledge to be
acquired more easily from domain experts because
you can focus their attention on some speciflic
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subtask. It also sllows koowledge to be debugged
because it is easier to see what purpose is being
served by s knowledge group. This factoring would
make it easier for experts to directly enter the
knowledge at some future time.

€. Implementation of CSRL

CSRL is implemented on a DEC 20/60 using ELISP, a
dialect of LISP developed at Rutgers, and a local
version of FRL (Frame Representation Language).
The CSRL interpreter and enviroument takes up an
additional 33K words of storage. The envirooment
includes a thorough syntax check whem coucepts are
defiged, commands to invoke any concept with any
message, aod & simple trace facility. CSRL
currently allows little user interaction while it
is running, but in the future we plan to add a
simple explanation facility and to allow the user
to "advise" the system during execution.

IV Family of Languages

Designing languages for kmowledge representation
often has to face conflicting requirements. At one
end, they should be powerful enough to allow
different kinds of knowledge and control to be
expressed. The power is needed in the form of
flexibility in the programming constructs
available. At the other end, the language should
be simple enough so that non~-programmers such as
domain experts canm directly encode their knowledge
without having to worry about the representation in
the machine.

We are studying how to do this for the diagnostic
task by using CSRL to experiment with the notiom of
"family of languages." The basic ides is that the
same task is embedded in all languages in the
family. However, some of the languages make
stronger commitments to 4 particular uwmessage
passing protocol or structuring of knowledge. Thus
at the lovest level we have message passing and
koovledge grouping but no coummitment to any set of
messages or any types of knowledge groups. In this
regard, the language would become a general-purpose
language such as LOOPS [l]. In fact, ve are
considering using LOOPS as the bottom—level of the
diagoosis family.

The higher-level languages in the family would
begin to tie these general facilities to the
specifics of the diagnostic task. For example, a
fixed set of message types may be allowed to carry
out the message passing protocol of MDX, The
highest levels may go so far as to create types of
concepts, with built in templates for the kmovledge
groups and body. This would allow users to pick
out the appropriate template and concentrate onmnly
on filling in the knowledge.

CSRL fits into this framework in the following
vay. A strong coomitment is made concerning the
types of knovledge groups that are available, but
0o commitment is made as to the set of messages
that must be used, Bowever, the flow of coatrol is
definitely restricted to be top-dowm.

Rt el A SN AN R R T Tl T A P N S

¥ Current Plans

Our group at Ohio State is currently using CSEL
in a variety of domains including blood type
analysis, cars, and nuclear power plants. We are
also translating MDX“s diagnostic structure from
the present LISP code to CSRL. We also plan to
implement a diagnosis language which
non~programmers can use with minimal training to
implement prototype diagnostic systems.
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Abstract

Auto-Mech is an expert system which diagnoses automobile fuel systems. Its
organization and strategies are patterned after MDX, an expert diagnosis
system developed in ouxr AI laboratory. The problems that these systems are
able to diagnc':;le are represented as nodes within a hierarchy. Each node has
knowledge ab;:ut how to confirm or reject the problem hypothesis, as well as
knowledge about what nodes to consider next. This approach is intended to be
a domain-independent methodology for providing focused problem solving and for
localizing knowledge in a conceptually relevant manner. Auto-Mech is
implemented in a recently developed language called CSRL, which is .
specifically intended for building diagnostic expert systems. This paper
describes Auto-Mech and discusses why the MDX approach and CSRL were useful in
developing Auto-Mech, and wvhere some difficulties were encountered.

1. Introduction

Over the past few years, our AI laboratory has developed an approach to the
- ' design of expert diagnosis systems based on the paradigm of "cooperating
ey specialists."” This approach is exemplified in an expert system called

MDX [3, 6], whose expertise is in cholestatic liver disease. In order to

b demonstrate the viability of this approach to non-medical domains, we have

t developed a system called Auto-Mech which diagnoses problems in automobile

f_‘ ) fuel systems. We show that an organization of diagnostic knowledge which is
:_: ' similar to MDX can be used in this domain to provide focused problem solving,

and to localize knowledge in a conceptually relevant manner.

- Auto-Mech is implemented in a recently developed language called CSRL [2],

,".: vhich was designed specifically for building MDX-like diagnostic expert

‘__, systems. Thus another goal of this work was to determine the strengths and

= vesknesses of CSRL and to make recommendations for future versioms of CSRL.

. Briefly, Auto-Mech works as follows. When Auto-Mech begins diagnosis, it
: u obtains a specific complaint about the way the car operates. Then general

bypotheses about the nature of the problem are evaluated. When a hypothesis
is coufirmed, any hypotheses which are immediately more specific are
considered. The user is queried for additional information as needed during

n’..' Cee
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this process. Auto-Mech is not intended to be a complete model of an
automobile mechanic, but is intended to reflect the information processing -=
capability of a mechanic when she attempts to determine the specific cause of
a fuel problem from an initial complaint and from things that a typical
mechanic can observe when she looks under the hood.

Before we present a more detailed description cf Auto-Mech, we give an
overview of our approach to diagnostic problem solving. We then describe the
program, explaining the assumptions that we have made, and outlining its
organization. An annotated session of Auto-Mech and a sample of its CSRL code
is included. PFinally, we discuss why our approach and CSRL were useful in -

developing Auto-Mech, and where some difficulties were encountered.

2. Introduction to Diagnostic Problem Solving -

The central problem solving of diagnosis, in our viev, is classificatory
activity. This is a specific type of problem solving in our approach, meaning
that a special kind of organization and special strategies are strongly

't’{- .‘

associated with performing expert diagnosis. We will oot examine here how
classificatory diagnosis fits in with our overall theory of problem solving
(see Chandrasekaran [4]). Instead, we will briefly overview the structure and
the strategies of classificatory diagnosis. For the purposes of this

“l }l "-

discussion, we will use "diagnosis" in place of "classificatory diagnosis™
with the understanding that the complete diagnostic process includes other

elements as well.

The diagnostic task is the identification of a case description with a -
specific node in & pre-determined diagnostic hierarchy. Each node in the

hierarchy corresponds to a hypothesis about the state of the "patient" (a car
in the Auto-Mech program). Nodes higher in the hierarchy represent more
general hypothesis, while lower nodes are more specific. In medicine, a case
description is the manifestations and the history of a patient, and a
- diagnostic hierarchy is a classification of diseases and disease classes. For
o example, MDX [3, 6] attempts to ;:luoify a medical case into a diagnostic

hierarchy of cholestatic diseases. Figure 1 illustrates a fragment of MDX’s
e hierarchy. The most general disesse, cholestasis in this example, is the head
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f:_',:'_. B node of the hierarchy. More specific cholestatic diseases such as extra-
‘ . hepatic cholestasis are classified within the hierarchy. In the following

discussion, we will use the generic term "problem" rather than "disease".

',‘{."v,“
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Figure 1: Fragment of MDX“s diagnostic hierarchy

Each problem in the hierarchy is associated with a specialist which
contains the diagnostic knowledge to evaluate the presence ur absence of the
j-:: '::. problem from the case description. From this knowledge, the specialist
x determines a confidence value representing the amount of belief that the
SRR problem exists. If this value is high enough, the specialist is said to be

l 8 ished. Note that each specialist is a problem solver with its own
e knowledge base.

o The basic strategy of the diagnostic task is a process of ixypothu'u
; _ l: refinement, which we call gstgbligh-refine. In this strategy, if a specialist
establishes itself, then it refines the problem hypothesis by invoking its
subspecialists, which also perform the establish-refine strategy. If the
- confidence value is low, the specialist pejects the problem hypothesis, and
coulliay performs no further actions. Note that when this happens, the whole hierarchy
: ‘ below the specialist is eliminated from consideration.  Otherwise the
; - specialist suspends itself, and may later refine itself if its superior
- requests it. The processing ends (if we assume that only ome problem is.
present) when a tip node specialist, a specialist with no subspecialists, has
been established.

e With regard to Pigure 1, the following scenmario might occur. First, the
Q - cholestasis specialist is invoked, since it is the top specialist in the
: hierarchy. Cholestasis is then established, and the two specialists below it
S are invoked. Extra-hepatic cholestasis is rejected, also eliminating EHC due
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to stone and bile duct cancer from further consideration. Finally, intra-

hepatic cholestasis establishes itself, and invokes its subspecialists.

ooy

Due to space and time limitations, we have not addressed several issues

R
NP

relevant to diagnostic problem solving (such as handling multiple problems).
For a more detailed analysis, see Gomez and Chandrasekaran [5]. Test

ordering, causal explanation of findings, and therapeutic action do not

ianihd

directly fall within the auspices of classificatory diagnosis, but expertise
in any of these areas would certainly enhance a diagnostic system. Fully "~
resolving these issues and integrating their solutions into the diagnostic ’

framework are problems for future research.

3. The Automobile Diagnosis Program

3.1, Description of Auto-Mech

Auto-Mech is a program which diagnoses fuel problems in automobile engines.
It was developed using CSRL (which will be described in Sectiom 3.3) and the
establish-refine problem~solving methodology described in Section 2.

" One reason the domain of automobile diagnosis was chosen is that most
people feel comfortable discussing car problems thus making such a program
easy to demonstrate. We also had two good amateur mechanics available to
serve as experts. We decided to concentrate on fuel problems because the fuel
system is sufficiently complex to be interesting and simple enough to do in a
short time.

Before discussing the program further a brief discussion of automobile fuel
systems is in order. The purpose of the fuel system is to deliver a mixture
of fuel and air to the cylinders of the engine. It can be divided into four
major subsystems:

l. the fuel delivery subsystem which brings fuel from the tank to the
carburetor,

2. the air intake which brings air into the carburetor,

3. the carburetor which mixes the air and fuel in the proper ratio,
and
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4, the vacuum manifold which brings the mixture to the cylinders.

( . l These subsystems correspond to initial hypotheses about fuel system faults and
}Q;:' each can be further refined by more detailed descriptious.
o
jf:‘:'.' Ny
e Just as hospitals have a routine series of data to collect about every

A = patient admitted, Auto-Mech collects a set of initial data to get the
OIS
2 SN diagnosis running. We refer to the initial data as defining the user’s
; .. somplajnt. The complaint is a problem—condition pair where the problem is the
e symptom the user notices (such as stalling or running rough) and the

'f‘fl N (accelerating, idling, etc.) and the approximate engine temperature (hot,

cold, or both). Note that the complaint is highly symptomatic.

2 We chose to implement a program around a géneri.c automobile fuel system
';;"-'j:: _ rather than the fuel system of a particular car. Reasoning about the fuel
b system depends on its design, which can vary in many ways. Within the CSRL
AN e . . . e s
e framework each design requires its own diagnostic hierarchy so we had to make
_ : : a few assumptions about the system. The major assumptions are:
';J ~ - carbureted engine
<f' -~ -~ single barrel, single stage, downdraft carburetor
2 ~ mechanical fuel pump
{::::j . - sutomatic transmission
B U
< w.:_-j - - non-computer ignition
- . - - automatic choke
::3:::: - minimal pollution comtrol systems
T .
B Each of these assumptions has diagnostic consequences. A carbureted engine,
o for example, will have a different set of problems than a fuel injected engine
;;:.:f' - (the former can have a broken carburetor). Many of these assumptions would be
N valid for most cars built before 1980 or so. Those that are not would either
: . add complexity without making the problem more interesting (such as a two-
:3 o stage carburetor) or vary so widely that no single generic arrangement can be
S . imagined (such ss pollution controls).
R L
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conditions include the kind of driving in which the problem occurs
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We also made a few simplifying assumptions about the problem solving
required of the program. The most important of these is our single complaint
assumption.* This means that for any session with the program the user can
specify only one major complaint (a problem-condition pair as described
above). One difficulty with multiple complaints is the need to keep the
problem-condition pairs together. If the complaints were "stalls while
idling™ and '"hesitates on acceleration" it would be necessary to know
"stalls"™, "hesitates", "idling", "acceleration", and that the complaints are
not "stalls on acceleration” and "hesitates while idling". The simple data
base provided with CSRL does not provide for this kind of reasoning. This

could be rectified by implementing a special data base, Another difficulty

with allowing many complaints is keeping the line of questioning focused on
one complaint. Given many complaints, large portions of the hierarchy will be
relevant and the questioning may appear random to a user unless some mechanism
is used for focusing the questioning. Such a mechanism was not readily
available. Solving these problems would have either added to the time taken
for the project as a whole or subtracted from the time devoted to the main
purpose of developing Auto-Mech — to teat CSRL and establish~refine problem—
solving. So we chose to restrict the problem—-solving to a single complaint at

a time.

Another simplifying assumption we made is that the data to be used by the
system. be from commonly available sources. Mechanics now have an array of
computer analysis information available which our experts were unfamiliar
vith. So we limited ourselves to such data as whether a component is working

and how the car behaves in certain situatiouns.

Figure 2 shows part of the diagnostic hierarchy for Auto-Mech. Each node
in the hierarchy is a specialist representing a hypothesis together with
knowledge about how to confirm or reject the hypothesis. For exan;ple, the
specialist named Delivery represents the hypothesis "Fuel delivery subsystem
is causing the problem.” Delivery also coutains knowledge about the types of

This is most emphatically not a single fault assumption., If there is more
than one fault causing the complaint, Auto-Mech can find it.

- o . m
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Figure 2: Partial Diagmostic Hier.archy for Auto-Mech
$ N complaints for which fuel delivery problems should be considered and how to -
SR .
b infer that fuel is not being delivered to the carburetor. The purpose of the
.t:; top~level specialist, Engine, is to collect the initial complaint information
'., i and begin diagnosis. The ellipsis in the diagram represent points where the
:jij hierarchy continues down.
c:\ .-
=
- 2, Aonotated Transcript Session with 9
I "In the following transcript of a session with Auto-Mech the user’s
5;3: respouses follow the ">" prompt, comments are underlined, and everything else
::::j < comes from the program.
! I The usexr first tells the top level specialist. Engine, to
establish and then refine itself. The program then prints a
e brief statement of the disgnostic system’s scope and begins
N, sollecting infommgtion about the problem.
~ >DoCSRL Engine Establish—-Refine

-
- This is a program to diagnose automobile problems. At the present
.2 time the the program only knows sbout fuel problems. The first series
RO of questions is an attempt to determine what the problem is (starting
SRS problem, rough running, stalling, hesitation, slow response,
o) = knocking), and the conditions under which it occurs (idling, loading,
vy accelerating, cruising, turning, decelerating, engine temperature).
L After this the rest of the questions are attempts to confirm or reject
- O hypotheses.
e Do you have problems starting your car?>?
@ L
Answers:
MR Y = Yes
- .;?_ N = No
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U = Unknown

If the user doesn’t kmow how to respond, "2?" will provide
description of gccggtgble angvers. All of the questions Ln
this program are answered ves", "no", or r "unknown" for
simplicity., csxu. does M ggczl;;;es for us:.ng any
answers which are approprjate including such ings as
ougerical values and multiple choice,

Do you have problems starting your car?>N
Does the car stall?>N

Does the car run rough?>Y

Does the problem occur while idling?>N
Does the problem occur on 1udin§‘l>¥

Does the problem occur while the engine is both hot and cold?>Y

mmmmy_m;__t.smm_m
mmmnp_m.s..;_dm and independent of engine
Semperature”, The only purpose of the Engine specialist is to
detorming the complajnt. Certain terms require specific
defigitions in order to clesrly separate some problems and
sonditions, For exsmple. logding means putting some strain ou
the eugine without sccelersting, idling means the engine is
zunping but there is no losd om it,

>>> Massage Trace <<<
From: ENGINE To: FUEL
Message: ((ESTABLISH FUEL))

Eoging now refines by first telling its subspecialist, Fuel,
Lo establish,

Have you eliminated ignition as a possible csuse of the problem?>Y

This gquestion shows the need to know what uL__mmLm
bhave done. Qtommmsﬁ_ broblems
which might be fuel problems sre more likely to be igmition
Rroblems. m_un_mm;__e.of s_s_e_s_ 80
Iuel wants to make sure Ignition has rejected itself.
However, Igpition has not been ipplemented so the user is
asked if the igpition system has been considered and rejected.

>>> Massage Trace <<<
Prom: FUEL To: ENGINE
Message: ((ESTABLISHED FUEL 2))
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:'f-_j:{ >>> Message Trace <<<
Ao o From: ENGINE To: FUEL
‘_ ! Message: ((REFINE FUEL))
\' NS Ouncg its subspecjalist, Fuel, establishes, Engine continues to
y zefine by telling Fuel to refine itself. The next series of
> messages and guestions show the program cousidering Delivery,
5 Mixtuge, Vacuum, Air-Intake, and Bad—Gas as hypotheses gbout
the cguse of the m The data bgse provided with CSRL
N Iecords each guestjou asked and the user”s amswers to avoid
1 ) asking them agajin. g_gg_dgc;s;ona the gecxg;;sgs make are
S not based entirely on the amswers to guestions shown under
SO each specialist, but on combinations of the answers to those
and previous answers
-‘:j I:Z
:: >>> Message Trace <<<
:}- From: FUEL To: DELIVERY
LT Message: ((ESTABLISH DELIVERY))
3
. Is any fuel delivered to the carburetor?>U
R :; >>> Message Trace <<<
7, From: DELIVERY To: FUEL
- Message: ((REJECTED DELIVERY -2))
4
_. I >>> Massage Trace <<<
N From: FUEL To: MIXTURE
WS Message: ((ESTABLISH MIXTURE))
4'\.'-' :,:
.';"'3 Have you been getting bad gas mileage?>N
F >>> Message Trace <<«
~o From: MIXTURE To: FUEL
e Message: ((REJECTED MIXTURE -3))
NI
N >>> Mgssage Trace <<<
: From: FUEL To: VACUUM
cadlin Message: ((ESTABLISH VACUUM))
‘:rZ;: : >>> Message Trace <<<
AN From: VACUUM To: FUEL
R Message: ((ESTABLISHED VACUUM 3))
. >>> Massage Trace <<<
- From; FUEL To: AIR~INTAKE
Message: ((ESTABLISE AIR-INTAKE))
e Is the air filter old?>N
N Lo
o >>> Message Trace <<<
DR From: AIR-INTAKE To: FUEL
_._\’: ::- Message: ((REJECTED AIR-INTAKE -2))
-
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>>> Message Trace <<<

ot From: FUEL To: BAD-GAS

{ Message: ((ESTABLISH BAD-GAS)) X

_-:? Have you tried a higher grade of gas?>Y '

P -

::-I >>> Message Trace <<< q

) From: BAD-GAS To: FUEL '
Message: ((REJECTED BAD-GAS -3)) 1

A >>> Message Trace <<<
From: FUEL To: VACUUM .
Message: ((REFINE VACUUM)) 4

A Tuel now asks jts established subspecialists to refine. In : y
E: this cgse only Vacuum has established. . {
':‘:: >>> Message Trace <<<
Wi From: VACUUM To: VACUUM-HOSES
_ Message: ((ESTABLISH VACUUM-HOSES))
\ Are there any cracked, punctured or loose vacuum hoses?>U
'~ This guestion seems strange because it appears to be
{ squivalent to ssking whether the hypothesis should be
sonfirmed, But when Auto-Mech gets to a very specific
- hypothesis ususlly the only dgta for confiming or rejecting
N it comes from direct observationm of & part,
; Caz you hear hissing while the engine is running?>N
.-'_: Are the vacuum hoses 01d?>Y ﬁ
) >>> Message Trace <<< B
From: VACUUM-HOSES To: VACUUM K
Massage: ((UNKNOWN VACUUM-HOSES 1))
" ’ 1
% Ihe information that Vacyum-Hoses has is not certain, some *
T~ indicates trouble and some doesnt, So the anmswer jis
N Zuoknown", but the value "1" indjcates that it leans toward .i
>>> Massage Trace <<<
From: VACUUM To: CARBURETOR-GASKET
Message: ((ESTABLISH CARBURETOR-GASKET))
{ Can you see cracks in the carburetor gasket?>Y j
o >>> Message Trace <<<
. From: CARBURETOR-GASKET To: VACUUM p
% Message: ((ESTABLISHED CARBURETOR-GASKET 3)) a
.:’,

-------




Here is an example of how the hierarchy sets context for lower
eve

n exam
vel specialists. The carburetor gasket often appears
cracked or split but does not cause problems. Cracks im it

vacuum leak is suspected.

Is the diagnosis of VACUUM finished?>Y

CSRL and Auto-Mech are unable to determine when diagnosis is

finished, The mechanism we use asks the user as control
passes up through the hierarchy from the lowest point reached.
If the user answers "Yes", as in this case, then control
pgsses on up the hierarchy., Another of the user”s options
bere is to answer "No". In that case CSRL would refine those
subspecialists of Vacuum which were "unknown", such as Vacuum—
Hoses., Unless the program is told to do this only
“estgblished" subspecjalists will get refined. In this
particular case the guestion indicgtes a bug in the Auto-Mech
program itself since Vacuum®s subspecialists are all tip
speciglists.

>>> Message Trace <<<
From: VACUUM To: FUEL :
Message: ((ESTABLISHED CARBURETOR-GASKET 3) (UNKNOWN VACUUM-HOSES 1))

Is the diagnosis of FUEL finished?>Tree

FUEL - 2

DELIVERY — =2

MIXTURE — -3

VACUUM - 3
VACUUM-HOSES — 1
CARBURETOR-GASKET — 3

AIR-INTAKE —— =2

BAD-GAS -~ -3

The user also has the option of printing out the diagnostic
hjerarchy with the values displaved for each specialist,

Is the diagnosis of FUEL finished?>Y

>>> Message Trace <<<

From: FUEL To: ENGINE

Message: ((UNKNOWN VACUUM-BOSES 1) (ESTABLISHED CARBURETOR-GASKET 3)
(REJECTED BAD-GAS -3) (REJECTED AIR-INTAKE -2) (ESTABLISHED VACUUM 3)
(REJECTED MIXTURE -3) (REJECTED DELIVERY -2))

Is the diagnosis of ENGINE finished?>Y

(ANSWER (REJECTED DELIVERY -2)
(REJECTED MIXTURE -3)
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(ESTABLISHED VACUUM 3)

(REJECTED AIR-INTAKE -2)
(REJECTED BAD-GAS -3)
(ESTABLISHED CARBURETOR-GASKET 3)
(UNKNOWN VACUUM-HOSES 1)
(ESTABLISHED FUEL 2)

(ESTABLISHED ENGINE 3))

The answer is M a list of specialists which ran and
their values, Ihe sLxm_u .gt_ e gstablished tjp
specialists, Carburet sket in this case.

How On Al Mach”s Specialists R

Figure 3 shows the CSRL code for implementing the Bad-Gas specialist which
considers the hypothesis "Something wrong with the fuel is causing the
problem.” The specialist is defined by the Define-Concept statement. Like
all CSRL specialists it is made of three parts:

- Declarations, containing information about where the specialist fits
in the hierarchy.

- Knowledge~Groups, showing the major categories of decisions to be
made.

- Bod!, wvhich controls the way in which the specialist respoands to
various messages.

The boldface represents built-in CSRL primitives, everything else is
determined by the system builder. And-YNU is a three-valued logical AND which
is defined for Y, N, and U. Use-Declaration and Use-Statement iavoke CSRL
macro-instructions that expand into longer sequences of statements which do
not vary from specialist to specialist. The Use-Declaration”s here set up
standard variables and constants for the CSRL interpreter to use., The Use-
Statement”’s implement the establish~refine problem—solving process. Since the
interesting thing is how Bad-GCas establishes or rejects itself, we will not
discuss these other processes here.

The general description of how Bad-Gas reasons is:

First make sure Bad—Gas is a relevant hypothesis to hold. If it is
oot then reject. If it is relevant find out if there is any reason to
believe something has happened to the fuel recently. If there is none
then reject. But if there is some reason to believe this then
establish with value depending on how relevant the hypothesis is.
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(Define=Concept Bad-Gas
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(Declarations (Subconcept-Of Fuel)
(Subconcepts Low-Octane
Water~In-Fuel
Dirt-In-Fuel)
(Use~Declaration Usual-Variables)
(Use-Declaration Usual-Constants))
(Enowledge—Groups
(Relevant
(Options (End-After (Match 1)))
(Table (Conditions
(Ask-YNU? "Is the car slow to respond")
(Ask=YNU? "Does the car start hard")
(And-YNU
(Ask-YNU? "Do you hear knocking or pinging sounds")
(Ask~YNU? "Does the problem occur while accelerating”)))
(Match (I£ (Y ? ? ) Them -3)

(I£E(? Y ? ) Then -3)
(I£(? ? Y ) Then 3)
(EC? 7 ?) Then 1))))

(Gas
(Options (End-After (Match 1)))
(Table (Counditions
(Ask=YNU? "Have you tried a higher grade of gas")
(Ask~-YNU? "™Did the problem start after the last f£illup")
(Ask-YNU? "Has the problem gotten worse since the last
£illup")) )
(Match (IE (Y ? ? ) Them -3)
(IE(? Y 7 ) Then 3)
(IE(? N Y ) Then 2)
(? 2 ?) Them -3))))
(Summary
(Options (End-After (Match 1)))
(Table (Conditions Relevant Gas)
(Mateh (£ ( 3 (Ge 0) ) Then 3)
(r£( 1 (Ge 0) ) Then 2)
(1 ( (Lt 0) ) Them =3)))))
(Body
(Use-Statement Usual-Establish-Refine)
(Message-Block (Establish Self)
(Execute Relevant)
(Case Relevant
((Ge 0)(Execute Gas Summary)
* (Establish-Reply Summary))
(Otherwvise (Establish-Reply Relevaat))))
(Use~Statement Simple-Refine)
(Use~Statement Pass-Messages)))

Pigure 3: CSRL code for a specialist
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To implement this Bad-Gas has a group of statements in the Body which begin

(Message-Block (Bstablish Self) ... )

and wvhich will be activated when a message to establish is received from the
Fuel apeciali.st.* The Message—Block controls the order in which the
Knowledge-Groups (Relevant, Gas, and Summary) are evaluated. Summary combines
the results of Relevant and Gas. The

(Execute Relevant)

statement causes the Relevant knowledge-group to run. If Relevant returns a -
non-negative value the Gas and Summary groups run with the establish-value of
Bad-Gas set by Summary. If Relevant returns a negative value the establish-
value of Bad-Gas is set by Relevant and the other two groups are not rum.
This choice is implemented by the comstruct:

(Case Relevant
((Ge 0) cee )
(Othexwise ... ))

Very detailed descriptions of how all of the knowledge groups work is not
necessary. In general, running a knowledge-group consists of testing its
Conditions and trying to match their results to one of the rows in the Match
table. A condition which begins with Ask-YNU? causes CSRL to look in its
string-value data base for the given string. If found then the value stored
there becomes the value of the condition. If not found, the string is
displayed as a question to the user. The user”s response is stored in the
string-value data base and is used as the value of the condition. If the
condition is the name of a knowledge-group its value is the value of the
knowledge-group. The rows (or "rules") of the Match table are tried one at a
time, from the top down. As soon as a row is found which matches the value of
the conditions, the Then-part gives the value of the knowledge-group and the
evaluation of the knowledge-group stops. The "?" in the tables is a wild-

*CSBI. can be viewed as a restricted object oriented language in which the
objects are the specialists and the messages are instructions to the
specialists.
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card, it matches any value.

In the transcript given earlier the value of the conditions in the Relevant
knowledge-group are (N N N) so the row

I£ (272 17) Then 1

matches and the value of Relevant is 1. This is a result of the previously
supplied information that the complaint is "runs rough on loading" combined
with the single complaint assumption. As a tesuit Gas and Summary are ruam.
The value of the conditions in Gas are (Y - =), where "-" signifies "did not
ask", and the row

If (Y 72 ?) Then -3

matches. This is the result of asking a question of the user. ~So now the
values of the conditions for Summary are (1 =3) which matches

If (7 (Lt 0)) Thex -3

and the value of Summary is -3, causing Bad-Gas to reject.

For more detail about CSRL see [2] and [l].

4, Usefulness cs in D ing Auto=M

One of the first things we noticed in..using CSRL is that the internal
workings of a specialist and the overall problem—solving method is easy to
explain to a computer—naive expert..* Establish-refine seemed to be a natural
wvay for the experts to solve the problems and was not in any way imposed upon
them. The specialists in the diagnostic hierarchy of Auto-Mech represent the
hypotheses considered by the experts during the solution of practice problems.
The experts quickly understood the CSRL specialists and could point out flaws
in their reasoning during debugging sessions. '

*our experts wvere Ph.,D. students in Nuclear Engineering, they were not
computer specialists and knew very little sbout AI.
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Another helpful feature of CSRL is that it makes it easy to get something
running quickly. This gives the experts a chance to actually rum the program
to see the results of their suggestions. It is much easier for experts to
help debug a running program than to debug a paper comstruct. CSRL makes
possible the development of partial systems, the obvious evidence for which is
that we can develop a fuel system program without being concerned with the
rest of the car. Much of this is due to our approach to diagnosis in which
knowledge is localized within specialists and the interaction among
specialists is simple and well-defined. Concerns about global interaction of
knowledge are minimized. Changes in the Delivery specialist will not affect
any other specialists in the hierarchy (except for the context assumed by its
subspecialists, an easy thing to check). So if Vacuum works right but
Delivery has bugs in it, fixing Delivery will not affect Vacuum. This greatly
simplifies building and debugging a system over the traditional knowledge-—
base/inference~engine approach.

Auto-Mech consists of 34 specialists in a hierarchy which varies from four
to six levels deep. Four people were actively involved with its development,
twvo computer specialists and two domain experts. The total labor was
approximately five man-months of which about 302 was domain expert time. The
project extended over nine calendar months.

3 Some Difficulties

CSRL was built to embody a theory of diagnosis which was developed in the
medical domain. The diagnostic reasoning of an automobile mechanic, however,
is slightly different from that of a doctor. Once a hypothesis is confirmed a
doctor will carefully consider the competing refinement hypotheses and follow
up oo the best. This is the behavior modeled by the establish-refine theory.
But an auto mechanic seems to follow up the first reasonsble refinement.
Auto-Mech does uot capture this latter behavior. It could be donme in CSRL,
though it muld be a little more difficult to do than using the standard
establish~-refine routines. The end result of diagnosis in both cases is the
same, but presently Auto-Mech seems dumb to an expert since it is being more

careful than necessary.
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Mechanics usually do not go straight into the kind of diagnostic reasoning
which requires a diagnostic hierarchy. The complaints are associated with
typical maintenance or repair procedures as a result of the training or

experience of the mechanic. An example of this is:

Temperature dependent problems (those that happen only when the
engine is cold or only when it is hot) are usually caused by a
malfunction of the choke. So for those problems first check to see
that the choke works correctly and if it does not then fix it. Also,
since you have to go past the air filter to get to the choke, make
sure the air filter is good.

Only after aii the applicable procedures like this get tried does the mechanic -
do the more serioy> diagnosis done by Auto-Mech. This process is outside the
scope of both CSRL and the establish—-refine theory but it is actually only an
efficiency measure. The final diagnoses using the mechanic”s method and using

establish—refine are the same, with establish-refine possibly doing more work.

Oune of the problems we had in developing Auto-Mech is that we could not
trest establishing a specialist, or confirming a hypothesis, as indicating a
high degree of belief ;'.n the hypothesis. Sometimes in Auto-Mech a specialist
establishes because it is not possible to reject it and one of its
subspecialists may be able to establish. So during diagnosis, when a
specialist establishes it really means "this hypothesis is worth pursuing.”
This is mainly due to the type of domain that we were working with. Most of
the data used by Auto-Mech are very weak at indicating specific problems.
Data that are direct are usually about tip hypotheses and of the form "is xxx
working correctly.” Thus the specislists which rely on indirect data are
unable to produce high confidence in their associated hypotheses, although
they can still determine a "pursuit value." The theory of establish-refine
problem solving, which CSRL is based on, needs to be modified to take this

into account.

The question of when to stop is a difficult onme for diagnosis in general.
Human experts have the .concept of a diagnosis "explaining" the data and that
certain dats must be explained while other data need not be. Automating this
decision has proven to be difficult, though it seems clear that it is not a

decision sppropriately made by the diagnostic expert itself but rather by some
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outside entity having additional knowledge and skills. This is why CSRL
currently asks if the user is satisfied as control passes back up through the
hierarchy. However, in the automobile domain the system should recommend
fixing the problems represented by established tip specialists and then ask if
the problem persists after the repairs are made. The answer to that question
c¢ould be data for anmother round of diagnosis. Once again, this could be fixed
within CSRL (the problem arises from the built-in Simple-Refine macro which
was designed to be very general and would need to be customized for Auto-
Mech).

In the establish~refine theory of diagnostic problem-solving, diagnosis is
seen as an inherently parallel process [5]. All specialists at a given level
in the hierarchy may be active simultaneously. These specialists communicate
their status (established or rejected) to each other via a blackboard. This
makes it possible for a specialist to know what another specialist has done.
Sometimes this knowledge is necessary, as can be seen in the example session
given earlier where the Fuel specialist wanted to know the status of the
Ignition specialist. CSRL is presently implemented as a serial language
without a blackboard. This leads to some occasional avkwardness as the Fuel

specialist”s question to the user shows.

Another feature of establish~refine theory is that it is strictly a theory
of classificatory reasoning and that other kinds of reasoning are needed to do
diagnosis. In particular inferential reasoning about data is needed. For
example, if the user”s problem is one which involves the engine running then
the system should know that there is fuel in the tank even if that piece of

data is not explicitly given to it, This is reasoning about relationships
between pieces of data and is not classificatory in nature. In MDX there is
an intelligent data base component, called PATREC (6, 7], for doimg such

’l. :v.‘-. ‘l‘ ‘.. ," ! "
L

reasoning about medical data. CSRL is intended to be used for the diagnostic
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component and so it does not contain an intelligent data base. Since this
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component is absent in Auto-Mech, we have had to clutter our diagnostic
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4, Summary and Recommendations

The relative length of the "difficulties”" section compared to the
"usefulness" section is due to the need for additional programming and the
CSRL language rather than deficiencies in the theory of diagnostic problem—
solving. The difficulties point to some recommendations for improvements in
CSRL:

l. Changes from the standard control flow should be easier to make.

Presently all hypotheses at one level are tried before going down

to' the next level. The control needed by Auto-Mech is a natural
complement to this — pursue the first reasonmable hypothesis.

2. CSRL needs a more flexible facility for determining when to stop
than simply asking the user. System builders may have ideas on how
to do it for specific problems without necessarily being able to
solve the general problem of deciding when diagnosis is complete.

3. Since CSRL is to be used for building diagnostic experts it should
provide a facility for limited communication between specialists
across the hierarchy, such as a blackboard. Such a facility would
be useful even if CSRL remains a serial language.

OQur other problems were the result of things which it would not be appropriate
for CSRL to address since they are outside the scope of classificatory
diagnosis. These include the intelligent data base and the execution of

typical maintenance procedures prior to diagnosis.

Overall CSRL was a very useful tool for developing a diagnostic expert
system. It was easy to explain to an expert, the specialists were fairly easy
to write based on protocols, and a partial system could be running quickly for
debugging purposes. CSRL was also easy to use from a programmer’s point of

view,

Auto-Mech does not verify the validity of establish-refine problem—solviang
but it does demonstrate that establish~refine is a viable method for doing
diagnosis. It is a natural way for experts to solve problems. The hypotheses
they consider can be used as specialists within the diagnostic system. The

localization of knowledge proved to be useful for development purposes.
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ABSTRACT Rouse (10], proposes that they should represent
knowledge of the form "situstion x action =>

Most of the diagnostic systems that have been
developed in medicine as well as other domsins can
properly he called "compiled” knowledge systems in
the semss that the knowledge base contains the
relationships between symptoms aad malfunction
hypotbeses in some form. However, ofteu ic human
reasoning, an expert”s knowledge of how the device
“functions” is used to gangrats new relationships
during the ressoning process. This desper level
representstion which can be processed to yield more
compiled diagnostic structures is the concera of
this psper. Using the exsmple of an bousehold
buszer, we show in this paper what a fumctiomal
represestation of s device looks like. We also
indicate the nature of the compilatiom process that
can produce the diagnostic expert from this deeper
Tepresentation.

1. Introduction

Recently the domsin of devices has attracted
theoretical as wall as applied AI researzchers [1,
2, 3, 4, 13, 14,16]. To troubleshoot, modify and
sonitor devices (eg. omclear power plant,
physiological organs, slectromic cizcuits, computer
software, etc.), it is necessary for an agent to
represent and vuse the Lknowledga about the
functioning of the devices. Morsover, an agent
useds to know the fumctiomning of similar davices in
order to become az expert in desiguning a new
device.

Referring to the "depth” of knowledge in expert
systems, Hart [S] and Michie [6] have suggested
that systems with deep kmowledge will be able to
solve problems of significantly greater complexity
than the ¢o called surface systems. Their remarks
on desp vs. surface systems seem (0 :apture a
fairly widespread feeling about the inadequacy of
the first gensration expert systems. However, in
Chandraseharan and Mittal (7], it is argued that,
in prisciple, given any deep model of a domain, it
is possible to compile an ezpert diagnostic system
(moze specifically an MDX-like diagnostic system
(8, 9, 17]1) which is as powerful as the deeper
model, bdut more efficient thsan the deeper model for
diagnostic purposes.

Also, there is no genersl sgreement on the form
snd coutent of these deep knowledge structures.

Bart (5] suggests that they should model causality
by miti-level oystems,

vhile Michie, following

situation™. The work of Patil [11] and Pople [12]
is based on the ides that the sppropriate form for
the representation of deep knowledge is a caussl
net. We propose that with respect to the “"surface
causality” modeled in systems like MYCIN, the next
desper level to model csusality is the functional
representation of devices. An agent becomes an
expert in various tasks such as diagnosis, design,
explanation, etec., by compiling appropriate problem
solving structures from the functional
representation.

In this paper we describe s representational
scheme for the fumctioning of devices and its
utility for compiling an MDX-like (8,9, 17 ]
disgnostic expert system. Our focus here is om the
tepresentation; we discuss the compilation in more
detail ia [15].

2. Comparison with Relsted Research

De kleer and Brown [1, 2, 3] bave been working
on the representation of an agent’s knowledge about
how a device actually fuactions. This
representation, which they call "functionsl™, is
actually s causally related sequence of behavioral
states, some of which either belong to the
componants or refer to the attributes of the
interconnsctions betwesn the components. They then
proceed to discuss the process of acquiring the
sbove "functional™ representation from the
structural knowledge of the device. They impose
thres interesting criteria that such a process, as
well as the "functional”™ representation, should
satisfy — nunamely, "wo-fuaction-ip-structure”,
"weak causslity” and "strong causality.”

Our work differs from that of De kleer and Brown
in two aspects: TFirstly,our definition of what
constitutes s functional representation is
different from theirs. Secondly, while they are
concentrating om the ascquisition of function from
structure, we wish to uaderstand the process by
vhich an sgent uses the fuactional representation
for various problem solviag activities, i.e.,
transforms the functional representation iato
"exzpert” problem solving structures. Howvever,
these spparently different objectives are not as
disjoint as they might asppear. In fact, we
strongly believe that our functional representation
will ultimstely satisfy the twin requirements of
scquirability and ctrsasformability into expert
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:- problem solving structures. )

- |
( The functionsl representation of Davis et al | T : :
" {13] has “functional® as well as ‘"physical” i ! :

- bierarchies. Their  "inference rules” and : ! ’
"simslation rules” enable their ‘“violated : i

. expectation”™ approach to troubleshooting. Bowever, : :
their "functional™ and ‘"physical® hierarchies ' o spacel o
neither differentiate nor relate : 3 -
- "ganction”, "structure”, "bebavior”, "sssumptions” i !

. and "deeper causal Knowledge " as ours. !

: ——t——spacel
L~ : : 1
b . /\
Ko 3. A Representational Scheme for the Punctioning of ) ~
“ Devices P s U
~:”_ ssaual switch ‘.j
. i
o 3.1. The Representational Scheme Figure 3-1: A Schematic Diagram of a :
Our schems allows multiplicity of levels in Household Buzzer
functional representation. The topmost level
describes the fuanctioning of a device in terms of FUBCTION

the abstractions of its componsnts. The next level
describes the functioning of these componants using

The functional specification of a device is

the abstractions of their subcomponents, and so on. illustrated below by describiag one of the .
. As we shall see later, the hierarchy is oot just i

iy fusctionsl. The abstractions from the lower level functions of the buszzer.

. include, in addition, the states of components as

0 well as other entities. FUNCTION: :

-~ Busz: TOMAKE bu:%n((buuu') ) -
S At esch level of our functionmal representation I¥ pressed(manual-switch)* . -
:-\ we propose that there are five significant aspects PROVIDED sssumption2 BY behaviorl .
N to an agent’s knowledge of functioning of devices:

\ - "bun'(' is o the osme of the function; R

. ussing (buzzer )" denotes the buzzing state of the .

{ ~ STRUCTURE: that specifies the componsnts buzzer. "t7” and "t8" are dittimin?d elements of é
. (subcomponents) of & device (a component) a component of buzzer (we discuss this below).

N and the interconnections betwees thea. "sseumption2” will specify the initisl state i.e.,

N A . "t7","t8" are electrically connected (more asbout -
. - FUNCTION: cthat specifies WEAT is che assumptions later). The "BY" clsuse relates the "4
., response of a davice or s component to an function with its behavior i.s., the mamner in -
- external or internsl stimulus. wvhich the function is accomplished (behavioral -

specification is described below). As we shall see
in section 4.2, this-association between fumction
snd bebavior is important at the compilation stage.

- BEHAVIOR: that specifies HOW, given a
stimulus, the response is accomplished.

~
o - GENERIC [KNOWLEDGE: chunks of desper
- causal kuowledge that have been compiled SIKUCIURR
o~ from verious domaine to enable the
" specification of behavior of devices and The setructure of a device (component) is
~ their compouents. Por exzample, & represented using the abstractions of its
specialized version of Kirchoff’s law componants (subcomponents) and generic relations
from the domain of electrical circuits. betwaen them (such as "serially-conpected™). As an
illuscration consider the structure of the buszzer
A - ASSUMPTIONS: under which a behavior is given below:
X accomplished.
<
N
", fext we describe the roles of these five aspects
o in representing the fumctioning of devices and 1
T their notations. Following De kleer and Brown (I, n
2], we shall use the household buxzser shown in fig.

3=1 to illustrate our ideas.
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STRUCTURR:
COMPONENTS :
manual-switch (tl,t2), battery (t3,t4),
coil (t3,t6,0pacel), clapper (t7,t8,space2)
RELATIONS: serially~connected (manusl-swvitch,
bn:tcry.cou.chppor)
AND includes(spacel,space2)

ABSTRACTIONS—QF-COMPONENTS :
COMPONENT clapper (T1,T2,SPACE)
FUNCTIONS : mechanical,acoustic,magnetic
STATES: e¢lect-connected (T1,T2),
repeated-hit(clapper)
D

COMPONENT coil (T1,T2,SPACR)

ZND COMPOWENT
ESD ABSTRACTIONS-OF-COMPOWENTS
KD STRUCTURR

"tl”,t2%...., "space” are distinguished elements
(terminals) of componsnts ;3 only between
distinguisbed elements can relationa be defined.
"sechanical®, "acoustic”, etc., are the tvames of
functions of clapper. These functions ( as well as
the structure, behsvior, generic knowledge and
assumptions relating to the clapper as well as
other of the components) are represented at the
next level of our representsationm in the ssme manner
as the buzser. The capitalized parameters such as
T1,72,etc., are local to the sssociated component.

It is important to note the following:

a) A component (subcomponent) is specified
independent of the representation of the
device (component) whichk contains it.
More specifically, the specification of
4 componasut does nwot refer to the role
of the component in the composite. Thus
our represestation obeys the "no~
function-in~structure” principle of De
kleer and Brown (1, 2],

b) Not the behavioral epecifications of
components but only the names of the
functions are carried over to the higher
level, This property is important when
an  agent teeds to replace n
malfunctioning component by
tunctionally equivaleat but bohviotllly
different ocne. Uote that azaither the
“intrinsic wmechanism® nor the "causal
wodel” of De klesr and Brown (1)
distinguishes between function and
behavior as we do. The "behaviorsl
description” of Davis et sl [13] anmd
Davis [14] is similar to our functional
specification. They do aot have any
construct equivalent to our bebaviorsl
specification. (The significsnce of
having & bebaviorsl epecification will
become clear vhen we discuss it below.)
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¢c) Wa  wmodel interconnections  between
components by relations such as
“serially-connected”, “includes’, etc.

RIBAVIOR

The Dbehavioral specification of a device
ducz:.bu the wmanper in which a function is
accomplished by "gluing" together the functions of
components, generic kmowledge, sssumptions relating
to behavioral alternatives, and sub-behaviors. For
example, the specification of of “bebaviorl” in
£ig, 3-2 illustrates how the “buzz” functionm
discussed above is realized.

SEJAVIOR  babaviorl

Pressad (mamual-ewitch)*

BY bebavior2
V

(slect~comactad (t,, €y); “elect-connacted (t,. Sgll*

‘ USING FUNCTION Mechanical
\/ OF clapper (t,. Cy, space,)

Repssated-nit (clagper)

USING FUNCIION icouacic
/ of clapper (5. :3. lmaz)

Sussing (clapper)
il
Sussing (busser)

Yigure 3=2: An Illustration of
Behavioral Specification

Ve have made use of five conceptuslly important
notations in behavioral specification. They are

described below:
1:

|

| BY <usme=of-a=behavior>

For emample,
Pressed (manugl-switch)¥
|| BY behavior2
\/

elect-connected (£7,t8); |
~ slect-connscted (t7,t8)
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This mesns that the state sl csuses the state s2
and the details are in another behavioral
specification ( "bebavior2”). This relation
enables the the specification of behavior of s
component (or a device) at many levels of detail
but still at the level of the component (or

davice).
2:

USING FUNCTION <osme=-of-a=-function>
OF <compousat>

. - ———a
Nl e — =

Por example,

repested-hit (clapper)
|| USING FURCTION gcoustic
{1 OF clapper(t7,t8,space2)
\/

buszing (buszzer)

The above notation wmesns that the state s2 is
csused from sl by wmaking use of & fumectic
("acoustic") of the component ( clapper). This
relation makes it possible to glue the fumctions of
the components together to obtain a behavior.

3:
sl = 82

The above ootation mesns that the agent will
"equivslenge” the state sl of a component (or
subcomponant) with s2, the state of a device (or a
component). For exsmple, as in the specification
of "behaviorl” (ref. to fig. 3-1 "buzzing(clapper)”
is "equivalenced” with "buzzing(busser)”. Note
cthat without this relaciom, it is impossible to
conngct the result of a fumstion of & componsat
(che bduzzing of the clapper) with the result of a
function of the device (the buszing of the buzzer
which is the result of its fumctiom "busz").
Without this compection, "bshaviorl™ casmot be
claimed to implement the function "busz" of the

buzzer.

& sl
1
Il AS~-PER <pame~of-a=knowledge-chunk>
X IN-THE-CONTXIZ~OF < one or more
\/ of s "relation”, "state" or a
2 "function of a component™ >

For exsmple,

elect=—comnected(t?,t8)

{{ AS-PER knowiedgel IN~THE-CONTEXT-OF

|l FUNCIION voltage OF battery(tl,t2),

I serially-connscted(battery,coil,

\/ clapper,manual-switch)
voltage-applied(t5,t6)

This means that if the terminsals t7 and t8 are
electrically connacted, then voltage will be

3

applied betwveen t5 and t6. This is true as per the
knowledge chunk called “knowiedgel®’ when it is
applied im the context of battery, coil, clapper
aud manusl switch being serially connected, and the
battery makes voltage available at its terminal.
(The representation of “knowledgel” is discussed
below.) It is through this primitive that the role
of generic knowledge in describing a behavior is
represented.

5: mnTcind(cpccnz)
|

{| USING FUNCTION magnetic

I OF clapper(t7,t8,space2)
{i WITH sssumption3
\/

“elect-connected(t7,t8)

"sseumption3” will specify that there exists a
force I such that if space2 is magnetized, then the
resulting magnstic force will be greater than
P, Note the: "asaumption3™ does not specify what is
?, how it is to be realized and so on. The "WITH"
clause, like "PROVIDED™, relates su assumption with
the state transition. However, "WITH" is diffevent
from "PROVIDED” since it relates an assumption that
is passed frcm a device (componsnt) to a compovent
(sub—component) while "PROVIDED” ralates the ome
from & componsat (sub~componsnt) to the device
(component). Also, assumptions related by "WITR"
clause can be used to make a state transition
detemministic.

The generic knowledge specification of a device
(component) describes all chunks of deeper
knowledge used in its behavioral specificatiou.

The following is a specification of “knowledgel”.

GENERIC KNOWLEDGE:
knowledgel:

voltage~spplied (tl1,t2)
i

| AS=PER kirchoff’s-law

| IN~-TRAE-CONTEXT-OF

| elect=connected(tl,t3)
|

|
|
|
| elect-connected(t2,ts)
voltage—spplied (t3,t4)

It is worth noting that the specification of
generic knowledge is context-free. The context in
vhich it is applied is specified in the bebavioral
specification (as illustrated above). As we shall
see soon, thers is s mechanism ("REFERENCES") by
vhich s user task of the functional representation
knows wvhere to look for the defimitiomn of
Rirchof£f’s law.

We would like to draw particular attentiom to
the ootion of GENERIC KNOWLRDGE in our
representation. This enables us to capture the
velation betveen functional repreasentation and
desper causal knowledge. Moreover, without an

L
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' explicit link with such generic knowledge it is mot 4, Compilation of a Diagnostiec Expert
et possible to support the recognition of incorrect
( . l application of such knowledge during "envisioning” The principal function of the compiler that we
- [1,2,3]. Also it cannot support queries relating shall discuss here is to generate a diaguostic
e to the role of such knowledge in  expert from the functional representation. Checking
O undersctanding,describing,explaining,etc., of the the correctness/ consistemcy of a functional
- g behavior of devices. . raprasentation, optimization of thbe generated
B ) expert systems are also significant aspects of the
et ASSUMPTIONS compilation process. However, for wzat of space ,
- we discuss here only the generation of an MDX-like
diagnostic t. Other aspects of compilgti
n All assumptions made use of in the behavioral u.':;"u‘::p :: [15]. P owpilation
. specification of a device (component) are described )
::1 S in ASSUMPTIONS as illustrated below with reference
.~: the el . 4.1. The Structure of the Gensrated Diagnostic
g . to apper Expert System i
TS SUMPTIONS : |
' ‘SDIIIII'}.I:IS: As shown in fig. 4~1, the generated expert is a
hierarchy of specialists. Each  specialist
’ .. £l = mggnatic-force DUE~TO magnetized(space) AND corresponds to a nl.tunc:':.on in the device at a
AN - i g DUR- : certain level of abstraction. For ezample, a bad
-, IS £2 = spring=force T0 loaded (spring) clapper, bad serisl conmectiom, etc. Specialists
O ASSUMPTION]: corresponding to more gensral or abstract
'\ magneti THEG > malfunctioning sre higher in the hierarchy. For
- o tized(space) f1>8a example,the root specialist in fig.é~1 corresponds
AT ASSUMPTIONZ : to a "malfunctioming buzzer". Its three sub-
. - - THEN < specialists correspond to the following three
g b ol snacized(space) £l < g2 malfunccions (only the first ome is shown in fig.
END ASSUMPTIONS &1):
SANERN
N “spring-force™ and "magnatic-force” are 1. The busser does not busz when the manual
e concepts; we discuss below about their definitionm. switch is pressed.
N The primitive "DUE-T0" relates s comcept with a
.-: 3 state of a component. 2. A buszing buszer does not stop buzzisg
' vhen the manual switch is relessed.
¢
Note that tbough De kleer and Brown (2] stsate L.
AR that & difference between s novice and an expert is 3. The buszzer keeps bussing independent of
RO that the latter bas wmade explicit all the the state of the manual switch.
e sssumptions underlying behavior of devices, their
- causal model, umlike our functional representation *KEvery specialist has knowledge to establish the
e T , does not represent explicitly the role of associated malfunctioning and to refine it by
* assumptions in behsvior. calling its sub-specialists. The knowledgea of a
. . specialist is in the form of three types of rules:
confirmatory rules,excluzionary rules and
A BEYEREICES recommandations ., (Ve will oot discuss
‘T . "recommendations” here since it is comcerned with
e Clearly an agent’s knowledge of the fumctioning optimization of the generated exzpert.) For
R of devices will have refersnces to elements of example,
‘4T, different domains N ™ electrical
23 SN circuits,electro~nsgnetisae ,etc. These referesnces -
” - 8 ’ IF elect-~connected (tl,t2)
Py are specified in the "REFEREKNCES" part of our ~ voltage~spplied (t5,t§)
" THEX confirm
. representational scheme as illustrated below: IF voltage-applied (t5,t6) THEN reject
- - cas: A malfunctiom is diagnosed top~down by
Y oo anee establishing a specialist and refining the
‘-i . yor uﬁf:o'.{:;.:m: ted salfunction represented by it by calling its sub-
.\_. roz tic-force REVER-TO electr tism specialists. This discussion of the structuring
PN ¥ ¢ and functioning of the diagnostic expert is grossly
. AEYRREN simplified. More detailed informstion can be
mo s obtained from [ 8, 9 ],
Note that we do not yet know how to represent
domains such a8 "elect—circuits”, "electro~
sagnetism®, ete.
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4
17 INITIAL ~ elect-counacted (t;. Cq)
coafire

SR rejece

]
1 ~{alect-counected (ty, tg);
~elect-conmected (ty, tg)l*
confire
RSE teject

~
]

IP elect-connectad (85, tg)*
THDY coafirm
u_ reject

L R A A

RS A A A AN D M M

Susser

2

IF Pressed (mavusl-switch)#,
~ bussing (buszer)

T confirm

ELSR cejece

7
1IF repeated-hit (clapper)
confirw

HSE reject

1I¥ (elect-connectad(ty, tg)i
~elect-connected (t7, t8)}*
~repeated-hit (clapper)
THEN coufirm

ELSE reject

9
IF voltage-spplied (tg, ¢g)*.
~elact-connected (t7, tg)*

coafirs
reject

TN

Tigure 4~i:

There are three types of wmalfunctioning and
hence three types of specialists:

1, An as: isption might have been violated.
The specislist associsted with it is

called an aspumption checke:.

2. A function may oot be functioning
correctly. The associated specialist is

called a funcgion chesker.

3. A relation between components may not
bold. For exzample, the battery, coil
and clapper wmay 0ot be connected
serially. Let us call the specialist

the zalation ckeckar.

4.2. The Compilation Process

At the etart, the compiler genarates the root
specialist. The root specialist needs 0o kaowledge
to establish itself. The fact that the expert is
iovoked leads sutomstically to the establisbment of
the root specialist. The compiler then processes

the various functions of the device and genarates a
function checker corresponding to each functiom.
Tor exsmple, given

.. T et e et et
PRI PR PV VN R TGN N NN

dn Example of a Genersted
Diagnostic Expert

FUNCTION:
buzz: TOMAKER buszing(buszzer)
IF pressed(manual-switch)* BY behaviorl

the compiler will generats a function checker with

the following rule:

IF¥ pressed(manual-switch)®* * “bugzing(buszzer)
THEN confirm
ELSE reject

Then the function checkers gemerated ss above vill
be attached to the root specialist. Afterwards the
compiler, using the "BY" clause, obtains the
behavior associated with esch function and compiles
it. TYor example, if the behavior is specified in
the form:

gl w=mme) g2 smme) L,i,.000ss wmmmd> gp
then the compiler will generate a set of o=l
specialists for the fuanction checkers associated

with the behavior. The rules for them will be:

IF sl =™ 2 THEX counfirm
ELSE reject

IF su=-1 "~ sn THEN confirm
ELSE reject
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For the "buzz" fuaction example given asbove, sodes
S, 6 and 7 in fig. 4~1 will be generated using
"bebaviorl” in fig.3-2. Note that the rule

associated with node 5 should be:

I¥ prassed(manusl-switch)®

~{elact=-connacted(t7,t8);  elect-connected(t7,t8))}*
TIiEN confirs
ELSE reject.

HBowever, the condition "pressed(manusl-switch)*" is
aot checked since it is done at node 2, i.s., the
parent of the nmode 5.

Further processing of a behavicral specification
depends oz the kind of composition of behavior.

CASE 1:

Assume that node 5 is generated corresponding to
the following state transition in fig. 3-2.
Pressed (manusl-switch)*
1

U BY behavior2
{elect-connected(t7,t8) ; “elect-connected(t7,t8)}*

The above state transition will also result in
compiling “Behavior2” as described above, and
attaching the generated specialists to node 5.

.

CASE: 2

Let the state transition in fig.l-2corresponding
to node 6 in fig.4~1 ba:
{elect-connected(t7,c8); “elect-connectad(t7,c8)}*
I

i{ USING FUNCTION mechanical
\/ OF clapper(t?,t8,spacel)
repeated-hit(clapper)

After generating the node 6 for the above state
trxansition, the compiler will look at the function
‘mechanical” in the functional representation of
the component “clapper” and compile the behavior
associsted with the fumction. I there is no
behavioral specification for the function, node 6
will be a tip specialist, If there is ons for the
function, then it will be cowpiled, and the
generated specialists will be attached to node 6.
If the function of the component is implemented
sader, say, "assumptionl” and the specification of
“assumptionl” is of the form:

IF 3 THEE sé
then the additional specialist with the rule

I? 83 * "84 TEXN confim
ELSE reject

will be gensrsted and gsttached to the node

R R R T TN LW R Y L e S T v N TR TN TR TN T T T YT Y T

6

corresponding to the above transition. An exzample
of an assumption checker is node 4 in fig.4~l.

CASE 3:
The state transition

|| AS=-PER knowledgel
I IN~THE=CONTEXT-OF $3"s4...80
82

will result in a set of sub-specialists with the

rules:
I¥ “s3 THEN cogfirm

ELSE reject

IF a4 THEN confirm
ELSE reject

sn THEN confirm
ELSE reject

1: De Kleer, J., Brown, J.S., ™antal
Models of Physical Mechanisms apd Their
Acquisition,” in Cognitive Skills and
Iheizr Acauisition, (ed) J.R. Andersocn.,

Erilbaum, [981.

2: De Kleer, J., Brown, J.S., "Assumptions
snd Ambiguities in Mechanistic Mental
Models,"™ tech rept. CIS 9, Xerox Palo
Alto Research Centers, 1982.

3: De Kleer, J., Brown, J.3., "Foundations
of envisioning," Proceed. of AAAI,
19682.

4: Ruipers, B., De Klesr and Brown “Mantal
Models”, A Critique,"” TUWPICS No. 17,
Working Papers in Cognitive Science,
Tufts Taiv., 1981.

S: Bart, P.B., "™Directions for I in the
Eightias,” SIGART newsletter, no. 79,
Jan. 1982,

6: Michie D., ™Righ-troed and Low-troad
Progrems,” Al magazine, 3:1, 1982.

7: Chandrasekarsan, B., and Mittal S., "Deep
vs. Compiled Knowledge Approaches to
Diagnostic Problem Solving,” Proc,
Second Magiopmal AL Conf., AMAIL,
Pittsburgh, PA., 1982,, revised version
to appear in Incercgtional Jouroal of
Mag Machina 3Jtudies, 193.

8: Gomes, 7. and Chandraseksran, 3.,
"Knovledge Organization and Distribution

Pl i i S0y




P T B R A

Lt AR AR RN R A R A A S P R A R IR It oy i s A AL S il S A It IREENARNA A A A AR

P - - - LI - . . L O L
4
T

for Madical Disgnosis,” IEEE

Izans,
System. Man and Cvberpatics, suc-11:1,
1981. 4

L

9: Chandrasekaran, B., ™ecomposition of
Domain Knowledge into Knowledge Sources:
The MDX Approach,” Proc. of Pourth
Hational Conf. of Canadian Society for
the Computational Studies of 3
Intelligence (cscs1/scelo), 1982.,
Revised in "Towards & Taxonomy of
Prodlea Solving Typas,” AL :
sAZazine,Vinter/Spring , 1983.

10: Rouse, W.B., and Hunt, R.M., "A TFuszy

Rule~Based Model Of BHumsn Problem -

Solving in Fault Diagnosis Task," A

Working Paper, Coord. Science Labd,

Usiv, Illinois, Urbana, 1980.

11

Patil, R.S., "Causal Representation of r
Patient lllness for Electrolyte and Acid L
e Base Diaguosis,” Ph.D. Dissert., TR-267, R
. MIT Lab for Computer Science, Cambridge,

Mass., 1961,

JAE L
12: Pople H.E., ™leuristic Methods For i
Imposing Structures Oz Ill-Structured
Problems,” Artificial Intelligence In
Medicing, ed. by Ssolovits, Westview, )

1982, -

13: Davis R., Shrobe H., Hsmscher V., .
Wieckert, K., Shirly M., Polit 8.,
"Diagnosis Based on Description of
Structure and Function ," Natal conf. on
AL, 1982,

14: Davis R., "Diagnosis via Causal
Reasoning: Paths of Interaction and the
Locality Principle,” Natal. conf. om AI
, 1983,

15: Moorthy V.S., and Chandraseksran B., "A
Functional Representation of Devices and
Compilstion of Expert Problem Solving
Systams”, Tech. report, Al group, Dept
of Comp and Info Science, Ohio State
Oniversity, Sept.,1983.

16: Chandrasekaran B., "Expert System:
Matching Techniques to Tasks™, Invited
Presentation at the HNewyork Univ.
Symposium on "Artificial 1Intelligence
Applications for Business™, May 1963.

17: Chandrasekaran B, Mittal 8.,
"Conceptual Representation of Medical
Knowledge for Diagnosis by Computer: MDX
sod related Systems”, in jdvances in
Computers Vol.,22, Academic Press,Inc.
1983,

" .

- Research was supported in part by AFOSR
Grant 82-0255 and NSF Gramt MCS 8103480.

5
o

. v F_ 9
0T .
etetats




0
LR Y N

SIS

s

(A AN A i,
® % 4o & 3

s'-

s B AN
ERAICEAT
[ ':7',

T
[A

el

E::ﬁ:;

4

Y

S e T A T T R RN g e

APPENDIX
To the paper
"A REPRESENTATION FOR THE FUNCTIONING OF DEVICES
THAT SUPPORTS COMPILATION OF EXPERT PROBLEM SOLVING STRUCTURES"

by V.S. Moorthy and B. Chandrasekaran
Details of the functional representation of FUNCTION: buzz of the buzzer

NOTE: We have represented below only the buzzer;
Battery,coil,clapper and manual switch have NOT been represented.

DEVICE Dbuzzer
FUNCTION:
buzz: TOMAKE buzzing (buzzer)
IF pressed (manual-switch)*
PROVIDED INITIAL elect-comnected (t7,t8)
BY behaviorl

stop-buzz:TOMAKE “buzzing (buzzer)
IF “pressed (manual-switch)
PROVIDED INITIAL buzzing (buzzer)
BY behavior$5

STRUCTURE:
COMPONENTS :
manual-switch (tl,t2), battery (t3,t4),
coil (t5,t6,spacel), clapper (t7,t8,space2)

RELATIORS:
serially-connected (manual-switch,battery,coil,clapper),
includes (spacel,space2)

ABSTRACTIONS-OF-COMPONENTS :
COMPONENT clapper (T1,T2,SPACE)
FUKCTIONS: mechanical,acoustic,magnetic
STATES: elect-connected (T1,T2),
repeated-hit (clapper)
COMPONENT coil (T1,T2,SPACE)
FUNCTIONS: magnetic
STATES: magnetized (SPACE), voltage-applied(T1,T2)

COMPONENT manual-switch(T1,T2)
FUNCTIONS: comnect
STATES: elect-connected (T1,T2),

pressed (manual-switch) .

COMPONENT battery (T1,T2)
FUNCTIONS: voltage

.........
.............

.
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BEHAVIOR:
behaviorl:
pressed (manual-switch)*
Il BY behavior2
!
{ elect-connected (t7,t8); elect—connected (t7,t8)} *

USING FUNCTION mechanical OF
clapper(t7,t8,spacel)

Sy, St s ey S

|
|
|
|
\

repeated-?it (clapper)
i
|| USING FUNCTION acoustic OF
I clapper (t7,t8,space2)
I
\/

buzzing ( clapper)
i
I

buzzing (buzzer)

behavior2:
{ pressed (manual-switch)

[

Il BY behavior3

I

\/
~elect-connected (t7,t8)

AS-PER knowledgel IN-THE-CONTEXI-QF
serially-connected (battery,coil,
clapper,manual-switch)
FUNCTION voltage OF battery

/—-—-—-——-
— —— —— . ——

~voltage-applied (t5,t6)
I

|| BY behavioré
I
\/

elect-connected (t7,t8) } *

S atala AP TR R, e
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10.

behavior3:

pressed (manual-switch)

I
USING FUNCTION connect OF

I
] manual-switch (tl,t2)
Pl
\/
elect-connected (tl1,t2)
AS-PER knowledgel IN-THE-CONTEXT~OF
FUNRCTION voltage OF battery ,

I
I
il
I serially-connected (battery,coil,
:: clapper,manual-switch)
\/

voltage-applied (t5,t6)
I .
Il BY behavioré

~elect-connected (t7,t8)

behavior4: IFY
voltage—-applied (t5,t6)
I

|| USING FUNCTION magnetic OF
Il coil (t5,t6,spacel)
M
\/ .
magnetized (spacel)

AS-PER knowledge2 IN-THE-CONTEXT-OF
includes (spacel,space2)

magnetized (space2)
Il
|| USING FUNCTION magnetic OF

clapper (t7,t8,space2)

“alect-connected (t7,t8)

.......

..........
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GENERIC KNOWLEDGE:

knowledgel:
1
Voltage-applied (tl,t2) 1
[
|| AS-PER kirchoff”s-law
I IN-THE-CONTEXT-OF
I elect-connected (tl,t3),
I elect-connected (t2,t4)
I
\
voltage-applied (t3,t4)
]
]
knowledge2:
magnetized (spacel) *
I :
|| AS-PER laws-of-space
11 IN-THE-CONTEXT-OF i
I includes (spacel,space2)
1
\/
magnetized (space2) i
ASSUMPTIONS :
DEFINITIONS:

fl1= magnetic-force DUE-TO magnetized (space)
f2= gpring-force DUE-TO loaded (spring)

assumptionl:
IF magnetized (space) THEN f1 > £2

assumption2: .
IF “magnetized (space) THEN f1l < £2 )

END-DEVICE buzzer
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EXPERT SYSTEMS: MATCHING TECHNIQUES TO TASKS

B Chandrasekaran!
Department of Computer and Information Science
The Ohio State University
Columbus, OR 43210

ABSTRACT

In this paper an attempt is made to relate the architectures and
representations for expert systems to the types of tasks for which they are
appropriate. We start with an analysis of the features that characterize an
expert system, and discuss the need for symbolic knowledge structures that
support qualitative reasoning in the design of expert systems. We counsider
rules, logical formulas and frames for representation of expert knowledge. In
particular we provide an analysis of the multiplicity of roles that rules have
played in different rule—based systems, and emphasize the need to distinguish
between these rules. We proceed to outline our theory of types of expert
problem solving and argue that such a taxonomy enables one to characterize
expert system capabilities and help match problems with techmiques.
Throughout the paper it is cnéhnli:ed that the important issue is the nature
of the information processing task in a given task domain, and issues of

formalisms for representsation are subordinate to that basic issue.

lpesearch supported by AFOSR Grant 82-0255
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1. EXPERT SYSTEMS: WEAT ARE THEY?

It is clear that recently artificial intelligenée has created enormous
excitement in the commercial marketplace, and onme of the sources of thia
excitement is the promise of expert systems or knowledge based systems in
solving or assisting in the solution of many practical problems. There is a
widespread feeling that knowledge is the next frontier in the practical
application of computers, and the well-publicized commitment of the Japanese
to research on and development of a Fifth Generation computer for knowlédge
processing has only added to this sense of an impending revolution. The
phrase "expert systems™ evokes all sorts of hopes: From the clerical worker to
the research scientist in a corporation, each employee is a storehouse of an
enormous smount of knowledge and problem solving capabilities. The syllogism
goes something like, "I need an expert for X, they are hard to f£ind or
c:p;nliv., thus I need an expert systea for X." it is clear to most of us
doing research in the field that while the promise of carefully deployed
expert systems is indeed high, we are nowhere near the stage where we can hope
to replace all kinds of human experts with computer—based expert systems. To
taske an extreme example, sdvanced researchers or creative mathematicians
clearly perform knowledge—based expert problem solving, but equally clearly
the state of the art in expert systems is not up to replacing them with expert
systems. Any attempt to characterize, even if informally, what sorts of
problems are smensble to current techniques — matching techniques to tasks,

if you will — could be very useful.

A related problem is that, in strict definitional terms, it is hard to be

very precise about what characteristics of a computer program to solve a class




of problems qualify it to be called an expert system? The following

|

dimensions have often been suggested as important in such a definition. !__{

- Expertise : Certainly a necessary condition is that an expert

.
system should have expertise in the domain and show expert-level %
performance is some aspects of the domain. However, this condition 34
is not sufficient. Is & payroll program writtem in Cobol an expert -
system? In some real sense it captures the expertise of an j
accountant whose domain knowledge is incorporated in the many ;:1'
branching decisions made by the logic of the program.

= Search: The intuition that a program must do some search in a space 1

of possibilities — following the idea that search is an essential

.
A r“‘l

characteristic of intelligent reasoning — is generally useful but

not always valid, becsuse Rl (McDermott, 1982), an expert system
that has been very successful in practical use, does not do any
search in the execution of its main task.

- Uncertainty: While uncertainty in data or knowledge gives many
expert problem domains (such as medicine) interesting additional
properties and makes them challenging for the designer of expert
systems, it is not a defining characteristic, since, again using Rl
as an cn-plc,.itl knowledge and data do not involve probabilistic
or other types of uncertainty.

= Symbolic knowledge structures: Most expert systems in the AI field
have their domain knowledge in explicitly symbolic form as
collections of facts, rules, frames etc., which are explicitly

manipulated by problem solving or inference mechanisms to produce

answers to questions. This is to be contrasted with mathematical or

.......................
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simulation models or mainly numerical information as its main

knowledge base. However, many well-known exfert systems such as
Internist represent the bulk of their core knowledge in the form of
oumerical relations between entities. As an incidental observation,
we may note that the general emphasis in expert systems work on
symbolic knowledge structures often elicits another sort of
response. Engineers trained in mathematical modelling techniques
find it difficult to understand why a computer program which
evaluates say a system of complex mathematical equations describing
some process (such as nuclear reaction in a reactor vessel) is not
an expert system — safter all, they argue, such a system is an
embodiment of very highly specialized expert kmowledge, capable of
providing answers to a number of questions. Further there is a
tendency smong some people in this group to regard AI programs as
"approximate,™ because the rules that an expert system will use are
supposed to be only heuristic, while the mathematical models are
exact. (See sec. 3.2 for & discussion of this issue.)

Explanation capability: Continuing in the vein of searching for
definitional characteristics of expert systems, the idea that such
systems should be able to g¢xplain their reasoning is a useful
constraint on the structure and functioning of expert systems, but
as s rule, since the activity of explanation itself is poorly
understood, it is not yet certain what structures and functions this

requirement rules out or permits.

Other features: Many people in the industrial world have virtually

taken to defining expert systems as those that have a knowledge base

PSP P
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and a separate inference engine, and that knowledge base in expert
systems should necessarily be in the form of rules. Again, while
rules have been s dominant method for kmnowledge representation in
many first generation expert systems, many expert systems have used
frame structures (Pauker, Gorry, Kassirer, Schwartz, 1976), or
network structures (Duda, Gaschmig, Hart, 1979). In any case, this
emphasis on knowledge representation formalisms oftem obscures the
more fundsmental issues of the content of the computation these
systems do. For example, Sgolovits and Pauker (1978) point out that
MICIN, the system most widely thought of as a prototypical example
of the rule—based approach can be recast as a frame—based system
which uses procedural attachments to £ill the slots in various
frames 2 Taking up the knowledge base/ inference engine separation
issue, it is unlikely that a complete separaticn of knowledge and
inference is viable as & basic principle in the organization of
expert systems. We (Gomez and Chandrasekaran, 1981; Chandrasekaran,
1982) as well as, more recently, others (Davis, 1982; Stefik, et al,
1982) have argued that knowledge and its use are likely to be more

strongly intertwined as the difficulties and variety of the tasks

z'rhu'o is a general problc- in AI of not making clean distinctions between
the basic m REocessing task of a computation and the algorithm or
program that carries out this task., Marr (1976) presents arguments for such a
distinction in computational theories of vision. In Gomez and Chandrasekaran
(1981) we make analogous arguments in the area of knowledge representation for
problem solving systems. Saying that System A uses rules, vhile System B uses
networks for knowledge representation says nothing about the nature of the
information processing activities that go om in the two systems: a comparison
at the formalism level would miss many important aspects of the similarities
and differences that ought to be sought at a higher level. Our discussions
later in the paper regarding rules elaborate on some aspects of this point.

..............................................
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the expert systems are called upon to perform increase. (This
argument will be elaborated in Sec. 7 of this paper.)

The point of the foregoing is not to suggest a precise, issue-settling

i definition of expert systems, but merely to point to the multiple dimensions
N
) - along which expert systems can be viewed, and to the need for more careful
o :
XIS snalysis of much of the terminology that is used in discussing expert systems.
A
i The major line of argument that we will pursue in this paper can be
e :jf- outlined as follows. In Sec. 2, we briefly trace the development of the idea
ClN |
- |

o of knowledge-based systems in AI. Sec. 3 is devoted to discussing the
G increasing need for symbolic content to expert reasoning as the size and ]
demands of the task domain increase; i.e, we will analyze why a complete

mathematical model of the situation, even if available, will not meet many of

. .
Ty iy
L AR
P R |

y . the demands placed on expert reasoning. In Sec. 4, we discuss the several
distinct senses and roles that the notion of rules can play and have played in
*; :T expert systems, and how a fsilure to keep these separate can cause a3 great

\ ! deal of confusion. In Sec. 5, we briefly discuss logic-based and frame-based
_ - representations. In Sec. 6, we discuss the need for orgamization of knowledge
- - for effective use, and in Sec. 7, we argue that further organizational

- constructs, such as gconcepts and types of problem solving, are needed both to
. construct more powerful expert systems, and to characterize their

‘ ::;’_ capabilities. This will also have the side effect of emphasizing the

= increasing need not to separate knowledge bases and inference machineries. We
‘ will also provide in this section two examples of generic problem—-solving

;; types, and show how each type of problem—solving induces an organization of

i knowledge in the form of a c;operating community of "specialists™ engaged in
:

y
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that problem solving type. At this point, we will be able to discuss what

vimlk

sorts of problems can be handled by "compiled" structures and what sorts need
"deeper" problem solving. In that context we will discuss the issues related
to the so-called causal modeling problem. This will help us present a

discussion of the the issues surrounding the degree of understanding that

NPV BRI

expert systems may need to have about the domain. The overall flow of the
discussion is in the direction of the evolution of expert systems from Li
mumerical programs to highly organized symbolic structures engaged in distinct ~:
types of problem—-solving and communicating with one another.

An admission is in order at this point. The title is more ambitious than i

wvhat wve will be able to accomplish in this paper. A really satisfactory =
account must swait a better overall theory of problem solving than we have at
present’. Even an incomplete theory such as the one presented in Sec. 7 is ;i
capable of providing a framework for characterizing capabilities of expert s
systems in generic terms. Thus the paper should be viewed as stating a ?%
focition on the sorts of theories that might help us characterize in powerful
Ea imyl how the "engineering™ of knowledge might rest on a more systematic E*
E; understanding. :3
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2. OGN THE IDEA OF KNOWLEDGE-BASED SYSTEMS

A historic reminder may be useful to clarify the term, "knowledge-based."
This phrase, in the context of AI systems, arose in response to a recogmitionm,
mainly in the pioneering work of Feigenbaum and his associates in the early to
mid-70"s, that much of the power of experts in problem solving in their
domains arose from a large number of rule-~like pieces of domain knowledge
vhich helped constrain the problem solving effort and direct it towards
potentisally useful intermediate hypotheses. These pieces of knowledge were
domain-specific in the sense that they were not couched in terms of general
principles or heuristics which could be instantiated within each domain, but
rather were direcfly in the form of appropriate actions to try in various
situations. The situations corresponded to partial descriptions stated in
terms of domain features . This hypothesis about the source of expert problem
solving power was in contrast to the previous emphasis in problem solving
research on powerful general principles of reasonming which would work on
different domain representations to produce solutions for each domain. Thus
the means—ends heuristic of the General Problem Solver program (Newell and
Simon, 1972) is a general purpose heuristic, which would attempt to produce
solutions for different problems by working on the respective problem
representations. On the other hand, a piece of knowledge like, "When
considering liver diseases, if the patient has been exposed to certain
chemicals, consider hepatitis,” is a domain—specific heuristic which the human

expert was said to use directly.

The paradigm for knowledge—based systems that was elaborated consisted of

extracting from the human experts a large number of such rules for each domain
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and creating a knowledge-base with such rules. It was generally assumed as

.

part of the paradigm that the rule-using (i.e., reasoning) machinery, was not
the source of problem solving power, but rather the rules in the knowledge

base. Hence the slogan, "In Enowledge Lies the Power."

The wvord "knowledge" in "knowledge base systems™ is used in a rather ‘3

<

special sense. It is meant to refer to the knowledge an expert problem solver
in a domain was posited to have which gives a great deal of efficiemcy to the

problem solving effort. The alternative against which this position is staked

1
R I
[y ]

is one in which complex problem solving machineries are posited to operate on

a combination of basic knowledge that defines the domain with various forms of

general and common sense knowledge. Thus the underlying premise behind much

of the AL work on expert systems is that once the body of expertise is built

up, expert reasoning can proceed without any need to invoke the general world
and common sense knowledge structures. If such a decomposition were not in k:
principle possible, then the development of expert systems will have to await ‘
the solution of the more general problem of common sense reasoning and gemeral "
world knowledge structures. What portion of expert problem solving in a given
domsin can be captured in this mauner is an empirical question, but experience ;::

indicates that there is a nontrivial subset of expert problem solving in
important domains that can be captured in this manner. 'This decoupling of
" common sense and general purpose reasoning from domsain expertise is also the

explanation for the rather paradoxical situation in AI where we have programs al

i - (R ARIUA ¥ AR
ll

vhich display, e.g., expert-like medical diagnostic capabilities while the B
field is still some distance from capturing most of the intellectual

activities that children do with ease. u
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We will argue later in the paper that while many first generation expert
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systems have been successful in relatively simple problems with this approach
) . vhich lays relatively greater emphasis on heuristic knowledge specific to the
. :::: domain at the expense of the problem solving aspects, the next generatiomn of
research in this area — as well as application systems — will be bringing

back an increased emphasis on the latter.

3. FROM NUMERICAL TO SYNBOLIC MODELING OF EXPERTISE
h In this section we will provide two sets of reasons why symbolic

structures become necessary to support decision-making. By considering the
n example of multivariate prediction, we will suggest that certain kinds of
computational problems are alleviated by multiple~level symbolic structures.
- In the next subsection, we will argue that certain kinds of decisions cannot
" . be made purely within a numerical model however complete it may be in

principle.
3.1l. Multivariate Classification

There is an ubiquitous but conceptuslly simple class of problems in

- decision-making which can often be typically modeled as mapping a multivariate
state vector to a set of discrete categorical states. The classical pattern
classification paradigm deals with this class of problems. There are many

spplication domains in which such problems arise locally, and domain experts

Ls

may be called upon f.0 perform such a classificatory task as part of a larger
problem~solving effort. Classifying weather conditions based on a number of

measurements and predicting the presence or absence of certain
i pathophysiological conditions on the basis of a vector of numerical predictor

variables are exsmples of this task. Often, once the predictor variables
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themselves are chosen in consultation with the experts, and when the state
vector is of modest dimensionality (in the order of 10”s), a discriminant type
of analysis can be as good as or better than human experts. Much theoretical
effort in pattern recognition notwithstanding, experience in this type of task
was that this is an example wvhere power came from expert choice of the
variables, rather than in the complexity of the discriminants themselves. But
when the dimensionslity of the state vector gets very large this approach has
serious problems both in ones ability to compute the discriminant as well as
in the sensitivity of the decision to small changes. Using the medical

example earlier, the totality of the medical diagnostic problem can be

formally viewed as a mapping from a (very large) vector of manifestations to a

(again quite large) set of named diseases. What vorks very well locally,
i.e., for state vectors of low dimensionality and few decision states,
deteriorates rapidly when the sizes get large. It doesn”t matter which sort
of discriminant one uses: statistical onmes or perceptron-like threshold
devices. The computstional problems in the statistical case are described
well in Szolovits and Pauker (1978). Corresponding difficulties, especially
those relating to sensitivity issues, for perceptron-like devices are
discussed by Minsky and Papert (1969).

One approach to overcoming the above computational prdblm is to
introduce multiple lgyers of decisions. Instead of one classification
function from say a 200-dimensional state vector, the problem can be broken
into groups of (possibly overlapping) state vectors of the order of 10"s, each

of which providing a small number of discrete values as local mappings.

Typically these groupings will correspond to potentially meaningful

s
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intermediate entities, so that one can interpret each grouping as computing a
symbolic ablcractiqn corresponding to an intermediate concept. At the second
layer, the outputs of each of these can be grouped together in a similar
manner and the process repeated. This is precisely what Signature Tables of
Samuel (1967), did in transforming a descriptiom of a checker board
configuration into a classification in terms how good the board was for a
player. BRach stage of the abstraction is computationally simple. An
important point to notice is that s shift away from numerical precision
towards discretization and symbolization is taking place here in capturing

expertise.
3.2. Yormal Models vs Symbolic Knowledge Structures

Even if one had a complete mathematical model of a situation, that by
itself is not often sufficient for many important tasks. All the numerical
values of the various state variables will still need to be interpreted.
Identifying interesting and potentially tignificant.ltate- from the initial
conditions requires guslitative reasoning rather than a complete mathematical
simulation. To take a pedagogically effective but fanciful example, consider
a household robot watching its master carelessly move his arm towards the edge
of a table where sits a glass full of wine. In theory a complete mathematical
equation of the arm and all the objects in the room including the volume of
vine is possible. But the most detailed numerical solution of this will still
only give values for a number of state variables. It still takes further
reasoning to interpret this series of values and arrive at a simple common

sense level statement, viz., "the arm will hit the wine glass and wine will

Ut .
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spill on the carpet."” On the other hand the aim of "naive physics" models is

Caad,

to support qualitative reasoning that can arrive at such conclusions readily.

The reason wvhy a complete numerical solution is not enough, i.e., why the

-

above symbolic conclusion ought to be reached by the robot is that its own
knowledge of available actions is more appropriately indexed by symbolic

abstractions as "spilled wine,”

rather than by the numerical values of all
ranges of relevant state variables in the enviromment.

Thus when faced with reasoning tasks involving complex systems, both
human experts as well as expert systems are necessarily compelled to deal with '
symbolic knowledge structures, whether or not complete mathematical models may
in principle be available. Human experts (as well as AI expert systems) may,
at specific points during their qualitative ressoning, switch to a local
formal analysis, such as a medical specialist using formulas or equations to
decide vhich side of the acid/base balance a patient may be in, but this

formal analysis is at the overall control of a symbolic reasoning system. It

is the symbolic knowledge and problem solving structures that are of central

interest to the science and technology of AI.

f_‘“ .’L‘ .1

4, ON THE ROLK OF RULES IN RULE-BASED SYSTEMS

As anyone with even a cursory knowledge of expert systems literature

vould know, the most dominant form of symbolic knowledge in the first

generation of expert systems has been rules. In our view, the idea of rules >
as a formalism for encoding knowledge comes from at least three distinct

traditions, and a failure to distinguish between the different uet’meu implied

by them is often a great source of misunderstanding. Let us list the three i

et
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4.l. Rule Systems as “Universal™ Computing Systems

It is well-known that Post productions as well as Markov Algorithms, both
of vhich are rule-bssed formalisms are examples of universal computation
systems. Any computer program, including an expert system, can be encoded in
one of these rule systems with only some minimal constraints on the
interpreter. In this sense of the term, the rule-based approach becomes a
Programming technology. Some of the rules in almost every major rule-based
system perform such a purely programming role. For example, rules in Rl
(McDermott, 1982) which set contexts can, in another representatiom, be simply
viewed as a call for a module which contains a block of knowledge relevant to
that context. Metarules (Davis, 1976) can also be viewed as attempts to
enable the specification of control behavior in a rule-based prograssming
system. Not all algorithms can be equally naturally encoded in rule
formalisms, however. Thus often expert system designers wno build rule-based
systems complain of frustrations they face when they have to come up with
tules to make the system have good control behavior, or to express all domain

knowledge in rule form; i.e., they are not encoding "domain knowledge" as much

as doing programpming in & rule-system.
Whether the rule-~based approach is a good programming techmology for an

expert task depends on both vhether the necessary control behavior as well as
the "facts of the domain™ can be most naturally represented in rule form. In
some domains there is a 202/802 effect — i.e., a large percentage of the
domain knowledge may appear to be capturable by a relatively small number of
rules, but a rapid growth in the number of rules required sets in if one

sttempts to capture more and more of the domain knowledge (McDermott, 1982).
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4.2. Rules as in "Bules~of-Thumb"™

{

T The common sense notion of rules is one of an approximate, quick guide to
action, a computationally less expensive alternative to real thinking,

adequate for most occasions, but still with potential pitfalls. A related

;S
s
R N 2l

. notion is that of a rule as something that captures a relatiomship which is
'{ only statistically valid, or a relationship whose causal antecedents are

poorly understood. Rules in medical diagnosis systems of the form, "If male

E; and findings x, y, z, assign k units of evidence to hypothesis H," are of this .

f type, vhere some statistical differential between the sexes in the likelihood .
. ' of bhaving a certain disease might be used.

3 This sense of rules is often the basis of concerns that rule-based ]

-3 approaches are "shallow™ and for hard problems "causal” models are needed.

\ It ought to be emphasized that, this common sense notion notwithstanding, é
the fact that an expert system is rule-based should not necessarily imply that ;1
':_ it is engaged in shallow reasoning; or that it is using knowledge of oaly ®
approximate validity. PFor exsmple, Rl uses rules vhich are perfectly sound 1
pieces of knowledge sbout the domain of computer system configuration. To the .
extent that amy computer progr.a- can be written in a rule-based computational 1
,‘_ framework, the shaliow vs. deep characterization does not arise from its rule 3

'. form, but from the character of the rules. :
& ]
-. 4
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4.3. Rules as Cognitive Units

The third stream of ideas relating to the prominence of rules in expert
systems is the idea, due to Newell (1983), of rules as the basic form of knowledge
formation in the human short-term memory. In this theory rules become the
basic building blocks of human knowledge structures. This sense of rules
gives rule-based systems an aura of legitimacy as models of intelligemce. But
we feel that one should be very cautious about making this connection, even
though it seems a natural one in the light of the fact that expert systems are -
8 branch of artificial jptelligence. This interpretation is neither necessary
nor sufficient for the role of rules in expert systems. It is not necessary
because, while AI programs may advantageously model human thought at some
level of abstraction, it is not obvious that it should do so at the level of
knowledge formation in short-term memdry, especially for capturing expert
problem—-solving performance. It is not sufficient because even if rules were
the basic units of cognition, a nmmber of further constructs are needed to
sccount for their organization into Nigher level units such as concepts, and

for their interaction with problem solving.
&s. When Are Rule-Based Systems Apprepriate?

The term “"rule—based system™ has come to mean an expert system which has
a knowledge base of rules and a problem solver — such as a forward-chaining
system or a backward-chsaining system, or & production system controller such
ss OPSS (Forgy & McDermott, 1977) — that uses the knowledge base to make

inferences. It is couceptually important to keep in mind that the use of

rules as a representation device does not necessarily force one to use the
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rule-based system architecture mentioned above, i.e., rules can be used for

[N - 'Y

expert system design in significantly different architectures. MDX
(Chandrasekaran & Mittal, 1983), e.g., has some of its medical knowledge in
the form of rules, but it is organized as a hierarchical collection of
"specialists." We shall discuss this system later in the paper. The remarks %
that follow apply to the use of rules in the standard rule-based system
architectures. ]
Because the problem solver (or, the inference engine, as it has come to
be called) is itself free of knowledge, controlling the problem solving
process often involves placing more or less complex rules for ‘control purposes
in the knowledge base itself. This is the "programming techmology" sense of

the use of rule based systems that was mentioned earlier. Normally, the

Y S N FUTE W NN Aty

f ™

rule—~based architecture mentioned above works quite vell vheﬁ relatively
little complex couplipng between rules exists in solving problems, or the rules
can be implicitly chunked into groups with little local interaction between
rules in different chunks. Rl is an example where there is a virtual chunking
of rules for subtasks, and the reascozing proceeds in a relatively direct and
focused way. In general, however, vhen the global reasoning requirements of
the task cannot be conceptualized ss a series of linear local decisions, the
tule~based systems of the simple architecture results in significant "focus"
problems, i.e., since the problem solver does -uot have a notion of purposes at 1
different levels of abstraction, there are often problems in maintaining

coherent lines of thought. PFocus needs maintenance of multiple layers of ]
o contexts, goals and plans. We shall discuss later how alternative

architectures may be conceived for better focus in problem solving. These 1

Ak d
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architectures will begin to erase the separation of knowledge base from the
inference machinery.

There is one pragmatic aspect of rule~based approaches to expert system
design that is important. Since only certain kinds of expertise have natural
expression as rules, a rule-based approach may emcourage a false feeling of
security in capturing expertise. The human expert often may not bring up
expertise hard to express in that form. The 20%/80Z phenomenon is worth
recalling here: i.e., as the most rule~like pieces of knowledge get encoded,
there may be an acceptable initial performance, but as more knowledge that is

not naturally rule-like is being acquired, the size of the rule base may grow

\

very rapidly.
5. ON LOGIC AND FRAMES AS REPRESENTATION FORMALISMS

The srchitecture of systems using some sort of a logical formalism for
knowledge representation is gensrally similar to that of the rule-based
systems discussed earlier. That is, there are s knowledge base of formulas in
some logical formalism, and an infereunce machinery that uses the formulas to
make further inferences. But since there are several forms of logic with
well-understood semantics — unlike, say, production rules — logic enjoys a
status as theoretically more rigorous for knowledge representation purposes.
In practical terms, however, the existence of rigorous semantics is not always
helpful, since the semantics are often not at the right level of abstraction;
€.g., it is often difficult to incorporate context-dependent inference
strategies in logic-based systems. If one were to model, say, reasoning in
arithmetic, one could represent domain knowledge in the form of axioms, and

use a variety of inference machineries to derive new theorems. However, the
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computational complexity of such systems tends to be impractical even for

relatively simple axiomatic systems. Even in such domains where in theory 3
poverful axiom systems exist, capturing the effectiveness of buman reasoning :
is an open research area. On the other hand, in tasks where the inference -

chains are relatively shallow, i.e, the discovery of the solution does not

g

involve search in a large space, the logic representation may be more
practical. Annlbgou to our remarks regarding the appropriateness of

rule—based systems when there is an implicit structure to the task that can be

”~ L]
2% %"

mapped into chunking of rules, in logic-based systems also it ias possible to

A

create a similar subtasking structure that can keep the complexity of

inference low.

To our mind, both the logic-based architectures and the rule-based 1
architectures have surprising similarities in some dimensions; in both of a
them, the architecture separates a2 knowledge base from mechanisms that use the

knowledge. In both cases, this resulis in an increasing need to place in the

knowledge base more and more control-type knowledge — the representations i
increasingly become programming technologies rather thaa perspicuous encodings

of problem solving activity. Because of an inability at that level to specify b

complex structures such as contexts and goal hierarchies, the approaches are

: subject to problems of focus in reasoning. :
; Control of problem solving requires, inm our opinion, organizing knowledge *
r?. into chunks, and invoking portions of the knowledge structures and operating 4
é on them in a flexible, context-dependent manner. The knowledge representation

_s" ax;ptoach in AI that first emphasized organization in the form of structured

E’t units was that of frames (Minsky, 1975). Frames are especially useful in J
I':j'-_‘ omn;i.:iu a problem solver”s "what" knowledge— knowledge about objects, ~
E;.; s:
N '
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e.g. — in such a way that efficiency in storage as well as inference can be
maintained. Assuming some familiarity on the part of the reader with the
frame concept, we will briefly mention three aspects of frames that contribute
to this efficiency. Basically, a frame of a concept being a structured
stereotype, much of the knowledge can be stored as "defaults," and only the
information correlﬁonding to differences from the default value needs to be
explicitly stored. For example, the default value of the number of walls for
a room is 4, the knowledge of the syatem about a particular room does not have
to explicitly store this, unless it is an exception, e.g., it is a S-walled

TOOR.

A second benefit of organizing one”s knowledge of objects in the form of
frame structures is that one can create frame hierarchies, and let much of the
knowledge about particular objects be inherited from information stored at the
class level. This again makes for great economy of storage. For instance,
the “purpose” slots of a bedroom and a living room may be differenmt, but the

parts that are common to them, e.g., typically all rooms have four walls, a

ceiling etc., can be stored at the leve! of the "room™ frame, and inherited as

-'v
, s
o
‘s

v
DA Ty,
Y . l' £

Z:j: needed at the "bedroom™ or "living room™ level.
A third mechanism that makes frame structures very useful in expert

systems is the possibility of embedding procedures in the frames so that

certain inferences can be performed as appropriate for the conceptual context.

This, as can be seen, is a2 move away from the rule-based system architecture,

a

i R
LA S el

vhere the inference mechanisms were divorced from the knowledge base.

P,
.

iR

L

Because of these three properties, frame systems are very useful for

capturing one broad class of problem solving activity, viz., one where the

basic task can be formulated as one of mgking inferemces gbout obijects by
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R using oue’s knovledge of relsted obiects elsevhere ia the structuze. Thus o

_' whole class of programming styles called "object-oriented” programming has
arisen which has conceptual kinship with the notion of frames.

6. ORGANIZATION OF KNOWLEDGE

a Even though many knowledge-base systems follow the popular architecture
- of a knowledge base (generally of rules, but many times of other forms:

RS networks in Prospector, frames in Pip) and an inference cngim,3 often they
" bave further internal architectures, but which are implicit in the sense that
A

b' they are accomplished, as mentioned in an earlier section, by using )

::: programming techniques (again, typically using rules to specify conditions for
:\: transfer to the module) to achieve some degree of modularization of the |
::.:j" knowledge into groups. Before we discuss this, however, some account of the

. A

-_.j::':j need for this sort of organization is called for.

.'.’ When the mummber of domsin rules in the knowledge base is large, typically
several rules will “fire,” i.e., their left hand sides will match the state of
,_ the data. Since the inference machinery (becsuse in the standard architecture
:::f‘j" it is deliberately kept domasin-independent) does not have the domain knowledge
{ to choose smong them, either some sort of syntactic conflict-resolution

":' mechanisms need to be used (such as the technique of Rl which chooses that

:" rule wvhose conditions strictly subsume those of a contending rule), or all of
them will need to be tried. The latter option has the potential for

L:‘ combinatorial explosion. Most systems attempt to cope with this problem by
3

b".'-'}: IWe will argue in Sec. 7 against this separation but for our immediate
purposes that is not important.

5
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creating “contexts,” which help specify a small set of rules in the base as

candidates to be considered for matching. For example, each subtask in Rl
creates a context and only rules reslevant to that subtask are considered for
matching. This technique essentially decomposes the rule base (except for the
rules which effectuate the transfer from module to module) into a number of
virtusl modules, each for a subtask. Prospector (which is a geological
consultation system, (Duda et al, 1979)), while not a rule~based system
explicitly,% also organizes its knowledge in the form of "models," each model
corresponding to a classification hypothesis about the geological make-up. In 'a
sense, each model is a “specialist™ in that hypothesis. Metarules (Davis,
1976) have been proposed as a special class of rules to embody "control
knowledge.” These also play the role of decomposing the knowledge base into
portions that are relevant for classes of situations. Without some such
sttempt at organiszation, the problem solving process will be gensrally be very
unfocused, and serious control problems will arise.

All the above organizational devices were implicit, and are subject to
the constraints of the rule formalism on the one hand, and the uniformity of
the inference procedure on the other. The uniformity of the inference

machinery makes it difficult to arrange for different subtasks during

N 1'1: ruuoiu’.u to exploit different ways of going about using the knowledge. Again

it is vorth emphasizing that the issue is not one of the computational

OO
.l‘a A.‘ -' |‘ .l

sufficiency of the rule mechanism, but one of naturalness and conceptual
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. 4put the sontent of the network representation can be translated into rule
t4 forms in a straightforward way
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Our own work (e.g, (Chandrasekaran, 1983), which gives an overview of our
‘:;_. activity) has been directed toward the development of a theoretical basis of
knovwledge organization for expert problem solving. We will outlioe some

:.'.‘ aspects of this theory in the next section.

EJ 7. CONCZPTS AND FPROBLEN SOLVING TIFES AS ORCANIZATIONAL CONSTRUCTS
'::i: To restate a point from the lsst section: Even the implicit

:\:\j modularization of the knowledge base due to various context-setting mechanisms

.-.‘:: is not always sufficient when the task domain consists of subtasks which might |
:: differ from each other in the pgture of the problem solving, i.e., the yse of

'.-;: knowledge that is required for that subtask. The work to be discussed has
)C been directed toward elaborating a framework in which different generic types
-':N: of probledk solving can be related to the types of knowledge organizations

"\ required for them.

.- 7.l. Geseric Tasks

.:::.j The theory proposes that there are well-defined generic tasks each of

E: which calls for a certain organizational and problem solving structure. We

,‘-: have identified several such generic tasks f£rom our work in the domains of

f.::' medicine and reasoning about engineered systems.

_\_. The classificatory task that is at the core of medical diagnosis, i.e., 1
: the task which classifies a complex case description as a node in the disease

, hierarchy is an example of such s generic task. It is generic because it is a

0

2 compouent of many real world problem solving situations. PFor example, a

' tax-sdvising expert program might go through a stage of classifying the user

’ as a particular gype of taxpayer before invoking strategies that may be

X

;'.";:."-.';\'.-.';-.‘:\‘.s';'.;_'. S .:,.:.'{..;,x;,--','-;.:-_.'-;.'_.’-_.'~_.‘-;‘-_.'-_-‘-,-"-_-;A-‘:.-_:._:‘ ;..:.::.: ,,,,, AR e AT




- t. -
SRR
AR

.'.'J‘IJ

F\ -

appropriate for that class of taxpayer. We have already discussed in Sec. 3

simpler versions of this task. The problem solving for this task, as
implemented in our medical diagnosis system, MDX, will be considered in Sec.

7. 1. 1.
Another example of a generic task is what we call a WWHI-type (for "What

Will Happen If") reasoning which attempts to derive the consequences of an
action that might be taken on 2 complex system. Such a task is useful as a
subtask in an expert system that trouble-shoots and repairs a complex system
where it may be useful to reason out the consequences of a proposed corrective
action.

A third type is a form of knowledge-directed associative memory that
helps retrieve information by reasoning about other related information; we
have used this type of problem solving in an iantelligent data base system,
PATREC (Mittal and Chandrasekaran, 1980). A fourth type is a form of plan
synthesis, which we are using to build an expert system for mechanical design
(Brown and Chandrasekaran, 1983). It is clear that there are many more such
generic tasks, and it is part of our research program to identify more of
them,

An importsnt consequence of identifving such tasks is thet it gives us &

Sfrsmework to charscterize the capabilities of expert systems. If a real world
task can be decomposed into a number of generic tasks for each of which we

knov how to build a reasoning system, then there will be & basis for

concluding that the task domain can be successfully tackled by an expert system.

In the next two subsections, we will discuss in greater detail, but still
in schematic terms, how knowledge can be organized and problem solving can be

accomplished for two of the above generic tasks. Cited references can be
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\;.._: consulted both for more details ou these tasks, as well as for information on
: oy the other two problem solving types that we omit here due to space

l-.‘\

;::C;:’ limitations.

\::\

> N

" Z.J.l. The Classificatory Task
2
Yohte As mentioned esrlier, the task is the identification of a case
T description with & specific node in a pre-determined diagnostic hierarchy.
;}3 Tor the purpose of current discussion let us assume that all the data that can
s
:}: be obtained are already there. i.e., the additional problem of launching

4

- exploratory procedures such as ordering new tests etc. does not exist. The
-'\_:j:; following brief account is a summary of the more detailed sccount given in
1 (el .
A Gomez and Chandrasekaran (198l) of diagnostic problem-solving.
. Let us imagine that corresponding to each node of the classification

-

E:' hierarchy alluded to earlier we identify a "concept." The total diagnostic

BN

o knowledge is then distributed through the conceptual nodes of the hierarchy in
S .

' a specific mammer to be discussed shortly. The problem—solving for this task
g .

-:;'.:5 will be performed top down, i.e., the top—most comcept will first get comtrol
s

:-_:.: of the case, then control will pass to an appropriate successor concept, and
., .

] 80 on. In the medical exsmple, a fragment of. such & hierarchy might be as
shown in Figure 1.
o Internist
E - Liver Heart

Hepatitis Jaundice
Figure 1. Fragment of a classificatory hierarchy
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More general classificatory concepts are higher in the structure, while more

particular ones are lower in the hierarchy. It is as if INTERNIST first
establishes that there is in fact a disesse, then LIVER establishes that the
case at hand is a liver disease, while say HEART etc. reject the case as being
not in their domsin. After this level, JAUNDICE may establish itself and so

om.

The problem—solving that goes on in such a structure is distributed. The
problem~solving regime that is implicit in the structure can be characterized
as an "gstablish-refine” type. That is, each concept first tries to establish
or reject itself., If it succeeds in establishing itself, the refinement
process consists of seeing which of jts successors can establish itself. The
way in which each concept (or “specialist™) attempts to do the
establish-refine reasoning may vary from domsin to domain. In medicine it may
often be sccomplished by using knowledge in the form of a collection of rules,
some of which look for evidence for the hypothesis, some for counter evidence,
and others which carry informationm about how to combine them for a final

conclusion. In reasoning about electrical circuits on the other hand it may

be more appropriate to represent the establish-refine activity in the form of
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) functional knowledge about specific modules. (That is, performance of a

generic task may require solution of some problem of a different type as a

::‘- subtask. )

[
’
- it v VN

- In our medical diagnosis system MDX, each of the concepts in the

classification hierarchy has "how-to"™ knowledge in it in the form of a

A .
a
_ad sl

;;-\.' collection of disgnostic rules. These rules are of the form: <symptoms> i

,.\ > <concept in hierarchy>, e.g., "If high SGOT, add n units of evidence in 1
' favor of cholestasis.” Because of the fact that when a concept rules itself

::: out from relevance to a case, all its successors alsc get ruled out, large

S portions of the diagnostic knowledge structure never get exercised. On the )

y .:, other hand, when a congcpt is properly invoked, a small, highly relevant set

:, of rules cu;l into play. "3

; .-Z:; Each concept, as mentioned, has several clusters of rules: confirmatory

-_::, rules, exclusionary rules, and perhaps some reco.qndation rules. The ‘

:;3 evidence for confir,ntion and exclusion can be suitably weighted and combined j

:-:: to arrive at a conclusion to establish, to:icct or suspend it. The last ‘

mentioned situation may arise if there is not sufficient data to make a ’

bé decision. Recommendation rules are further optimization devices to reduce the

& work of the subconcepts. Further discussion of this type of rules is not

:\ necessary for our curremt purpose. T

53 The concepts in the hierarchy are clearly not a static collection of ;

.::; knowledge. They are active in problem—solving. They also have knowledge only .%

” about establishing or rejecting the relevance of that conceptual entity. Thus

Z they may be termed “specialists,™ in particular, “diagnostic specialists.” The

:." entire collection of specialists engages in distributed problem—solving. 1

"-_Z‘ The sbove account of diagnostic problem—-solving is quite incomplete. We
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have not indicated how multiple diseases can be handled within the framework
above, in particular when a patient has a disease secondary to another
disease. Gomez has developed a theory of diagnostic problem—solving which
enables the specialists in the diagnostic hierarchy to communicate the results
of their analysis to each other by means of a blgckbogrd and how the
problem—-solving by different specialists can be coordinated. Similarly, how
the specialists combine the uncertainties of medical data and diagnostic
knowledge to arrive at a relatively robust conclusion about establishing or
rejecting a concapt is an importsat issue, for s discussion of ‘which we refer

the reader to Chandrasekaran, Mittal and Smith (1982).

The pointn‘to ootice bere are the following. The inference engine is
tuned for the classificatory task, and the control transfer from specialist to
specialist is implicit in the hierarchical conceptual structure itself. One
could view the inference machinery as "embedded” in each of the councepts

directly, thus giving the sense that the concepts are "specialists.”

Exsmples of this type of reasoning sre: "What will happen if valve A is
closed in this power plant whem the boiler is under high pressure?™; "What
will happen if drug A is administered when both hepatitis and arthritis are
known to be present?” Questions such as this can be surprisingly complex to
sosver since formally it involves tracing a path in a potentially large state
space. Of course what makes it possible in prasctice to trace this path is

domain knowledge which constrains the possibilities in an efficient way.
The problem-solving involved, and correspondingly the use of knowledge in

this process, are different from that of diagnosis. For one thing, many of
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] the pieces of knowledge for the two tasks sre completely different. For

o example, consider answering the question in the sutomobile mechanic’s domain:
ot "What will happen if the engine gets hot?™ Looking at all the diagnostic rules

of the form, ™hot engine > <malfunction>" will not be adequate, since

<aalfunction> in the above rules is the cguse of the hot engine, while the
x’ consequence finding process looks for the effects of the hot engine.

':3 Formally, if we regard the underlying knowledge as a network comnected by
:::,:j'. cause~effect links, where from each mode multiple cause links as well as
‘__: effect links emanate, we see that the search processes are different in the
:" two instances of diagnosis and consequence-finding. The diagnostic concepts
'::: that typically help to provide focus and comstrain search in the pursuit of
:‘l correct casuses will thus be different from the WWHI concepts needed for the
-~

e pursuit of correct effects.

"“_ The embedded problem-solving is also correspondingly different. We
.\\' propose that the appropriate language in which to express the

‘” cousequence~finding rules is in terms of state-changes. To elaborate:

::J.: = l. WBI-condition is first understood as a state change in a

\EE subsystem.

~ = 2. Rules are gvailable which have the form "<state change in

:’ subsystem> will result in <state change in subsystem>". Just as in
.-" the case of the diagnosis problem, there are thousands of rules in
. the case of any nontrivial domsin. Again, following the diagmostic
-':E' psradiga we have already set, we propose that these rules be

\" associated with conceptual specialists. Thus typically all the

state change rules whose left hand side deals with a subsystem will
.. | be aggregated in the specialist for that subsystem, and the right

)

i~
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".‘,:f: i band side of those rules will refer to the state changes of the
{ . .
D immediately affected systems.
o Again we propose that typically the specialists be organized
‘:j:‘ ) hierarchically, so that a subsystem specialist, given a state change to it,
A8 n determines by knowledge-based reasoning the state changes of the immediately
" ;
Ky ~
A larger system of which it is a part and calls that specialist with the
.\‘ .-'
e ‘_"\

information determined by it. This process will be repeated until the state

2 ::f- change(s) for the overall system, i.e., at the most general relevant level of
AR
:Z-_'j sbstraction, are determined. This form of organization of the rules should
R
il o provide a great deal of focus to the reasoning process.
S
W
-\:
. An Tllustrative Example.
on . Consider the question, in the domain of automobile mechanics, "WWHI there
.,f o is a lesk in the radiator when the engine is running?” We suggest the
::j:: . specialists are to be organized as in Figure 2 :
%‘.' '..I
25 | Cvarat
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RN | System
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The internal states that the radiator fluid suybsystem might recognize may be
partially listed as follows: {leaks/no leaks, rust build-up, total amount of
water, ... }; similarly, the fan subsystem specialist might recognize states
{bent/straight fan blades, loose/tight/discomnected fan belt,...}. The
sooling svstem subsvysten itself need not recognize states to this degree of
detail; being a specialist at a somewhat higher level of sbstractiom it will
Tecognize states such as {fluid flow rate, cooling-air flow rate...etc.}. Let
us say that the radiator fluid specialist has, among others, the following

rules. The rules are typically of the form:

<internmal state change> ——> <supersystem state change>
leak in the radiator ——> reduced fluid flow-rate
high rust in the pipes ——> reduced fluid flow-rate

00 sntifreeze in the water and very cold westher ———> zero fluid
flow etec.
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o |
o ' The cooling system specialist might have rules of the form: |
{
' low fluid-flow rate and engine running =———> engine state hot
‘f::j j::_ low air-flow rate and engine running > engine state hot
- K Again note that the internal state recognition is at the appropriate level of
(i}:j sbstraction, and the conclusions refer to state changes of its parent system.
IO
o It should be fairly clear how such a system might be able to respond to
-t
. - the query about radiator leak. Again a blackboard for this task would make it
Qi -;: .
O possible to take into account subsystem interactionm.
:::.j = Unlike the structures for the disgnostic and data retrieval tasks, we
]
have not yet implemented a system performing the WWHI-task. While we cannot
':jT . speak with assurance about the adequacy of the proposed solution, we feel that
:.':j-. . it is of a piece with the other systems in pointing to the same set of morals:
" I embedding still another type of problem-tolving in a knowl.dge structure,
:::f: Ve which consists of cooperating specislists of the same problem—solving type. .
oy
] K 7+2. Discussion .
\‘-. -
>
Z:-j’l Since each of the generic tasks involves a problem—-solving behavior which
is unique to that task, the standard architecture of a knowledge base and a
-
SR general purpose inference machinery is not applicable here. There is a closer
o
N
. intertwining of knowledge structures and corresponding inference methods. At
SO the implementation level, one can view the system as being decomposed into a
L,
.jff collection of pairs of the form (<knowledge structure, inference method>),
indexed by the generic tasks, e.g., <diagnostic structure, establish-refine>.
*r L‘ However it is conceptually more appropriate to view each of the specialists as
, having the inference machinery "embedded" in them. This interpretation gives
SOBIN
~ -
a
PR
i
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the term "specialists" an added degree of aptness.

In Sec. 2 we mentioned that the first gemeration of expert systems
emphasized the power of knowledge itself over that of the problem solving method.
In the current section we have attempted to restore the balance, by showing
how & variety of problem-solving types in conjunction with appropriate

organizations of knowledge can solve a greater variety of problems.

We have outlined an evolution of expert systems from collection of rules
to cooperative problem solving by a community of specialists in different
kinds of problem solving. The knowledge that is in each of the specialists,
e.g., the diagnostic rules in the classificatory specialists or the state
sbstraction rules in the WWEI specialists in the previous section, is itself
“"compiled.” This knowledge is obtained from human experts who either learnt
that knowledge originally in that compiled form, formed it as a result of
experience, or derived it from s deeper model of the domain. In

Chandrasekaran and Mittal (1982) we argue that in principle, given any deep
model of the domain, o2 can compile an MDX-like diagnostic system which is as
powerful as the deeper model, but more efficient than it, for the diagnostic
problem. However, in practice, the compiled structures are likely to remain
incomplete for various reasoms, and it would be very attractive to endow
expert systems with deeper understanding of their domains to protect
themselves against incompleteness.

Attempts to give expert systems some ability to do deeper level reasoning
have typically taken the direction of giving the system a mechanism to reason

at sore or less levels of detsil by using a prestored knowledge base of causal

..........
....................
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associations. In CASNET (Weiss, et al., 1978) an attempt is made to trace out
- - the most likely causal sequence given some likely intermediate states for

:':.:j frf which there is evidence and some states which can be assumed not to have

occurred. A knowledge base of possible causal connections between states with

.: associated likelihood information is used to fit a most likely path that goes
: through the states for which there is evidence and avoids the unlikely states.
ABEL (Patil, 1981) uses causal association information at different levels of

,, i:f: detail. There may be a piece of knowledge at the top level of the form, "A

| causes B," but at a more detailed level, there may be several different ways
'. u in vhich A might be able to cause B. The system works at these differemt

N levels of detail to pin the causal connection down to the degree that is

_ S tiqm'.rod.
‘,, ' . It is important to note that these systems do not use "causal models” as
g much as they use a storehouse of compiled causal associations. In a sense all
dhﬁostic programs use “causal models.” Much of the diagnostic knowledge in
\'.- [: MYCIN or MDX js causal, i.e., saying "symptom A gives 80 much evidence for

)‘:' "’ disease B," is, in content, the same as "B causes A vith so much likelihood."
f The difference between them and the programs above is what is dome with the
’" - causal knowledge. '

_ 5 In our view a truly deep model should have the power to dgrive the causal
i connections between states. The work of EKuipers (1982), deKleer and Brown
- (1981) snd Chandrasekaran and Moorthy (forthcoming) are relevant here.
'\ _3 Kuipers proposes metbods by which causal behavior may be derived from a

é* - knovledge of the structure of some system, The latter two references seek to
e model functional understanding of devices.

'. "-. The scope of the current paper does not allow a detailed description of

.
. 2.

- . .
..,A'A il




how the functional representations work and how they are related to diagnostic

reasoning. Here we content ourselves with an intuitive account of our

approach.

We model understinding of a device as the creation of a knowledge
structure vhich is hierarchically organized in terms of functions and
subfunctions. How the salient behgvior (gemerally stated in qualitative
terms) and ghe physical structure of the relevant portions of the device play
a8 role in achieving a function by means of the subfunctions is part of such a

description.

Ve believe that such a structure can be used to generate the causal
knowledge needed for diagnostic reasoning. The function/subfunctionm
relationship can be used to generate diagnostic hypotheses. If functionm A is
affected, each of its subfunctions can be considered as a possible source of
failure. Similarly the symptomatic knowledge that is needed for establishing
or rejecting these as possibilities can be derived from the behavioral and
physical structure counstraints that enable subfunctions to be achieved; "if
behavior B is necessary to accomplish subfunction A”, look for evidence or
lack of B in the behavior of the device,™ e¢.g., would be a useful way to
generate some of that knowledge. The attempt to give systems a degree of
understanding based on functional models is still very experimental, and
practical expert systems based on this approach are still some time away. But

wve feel that this sort of systems is the next step in the evolution of expert

systems towards a greater degree of understanding.
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S 9. DISCUSSION
(R
.'::f:'\- ' The resder may have gathered that there is mo simple method of
x‘:\

-':j::Zj 5 determining which tasks are likely to be successfully handled by an expert
N

' N system. We have attempted to give the reader some analytical tools by which
= K
:{::'j - such a decision may be made a little easier. In any case, the following
A .

-\.}'}I“ -j: guidelines arise from our experience in designing a number of expert systems.

) 1. When the total smount of knowledge is relatively small (a few
3 T
:4'1- - bundred rules), the exact technique used is not very important. A
‘.-P\-

A

:-f.\‘ a wide variety of techniques will all give similar qualitative

2K

g performance.

“::::f;: - 2. A large fraction of expert systems that have reached some degree of
exposure (Prospector, Mycin, MDX, CASNET, Internist) deals with some
) . [ form of the classification problem. If the core task in an

_~.._4_: & spplication domsin is classificatory, chances are very good that an
\ expert system approach will be successful. Problems of synthesis,

X “. g such as design, are in general harder, but some simpler versions of

'.' the design problem, such as the task domain of Rl, have been
ol successfully attacked.
- - 3. Another type of expert system that is likely to be of practical
_\ applicability is one that helps the user access knowledge in a
L w complex knowledge base. This type of expert behavior does not
[ W
el . require the full problem solving capabilities of the expert. Our
:.j:{.'; work on intelligent data bases (Mittal and Chandrasekaran, 1980)
\'\. offers some techniques of potential relevance here.
I i
R 4. If a real-world task can be decomposed into a number of generic
X
[
e
._::,'
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.-jfj:' tasks for which expert system solutions are available, then the
_ prospect of a successful expert system increases significantly.
. 5. Important research is going on in common sense qualitative reasoning

involving space and time; these advances will give the next

generation of expert systems more power and flexibility.

6. Reasoning of experts is in gemeral varied and broad-ranging. We

,- have only begun to understand some forms of such reasoning. Honesty

o0 compels us to admit that it is not & simple matter to capture all

E:j forms of expertise and incorporate them in the form of computer

'-:;E programs, even though, in the enthusiasm surrounding this promising

’A field, careful distinctions and qualifications often do not get

ﬁ:’ made. On the positive side is the solid body of accomplistment: the ‘
R field has managed to capture a number of useful forms of expertise.

-- We have not discussed in this paper a number of issues such as user i

::-:- interfaces, explanation facilities, and knowledge acquisition problems. They

'l
oo,

sre obviously of great practical importance, but it has always seemed to us

“' that the issues of knowledge organization and problem solving will coutinue to

:j:: occupy the center stage in this ares, since these yroblems are by no means

-\. L]
S0

- solved.
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