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Technical Progress

* In the original proposal we had outlined a long term program for conducting

- *research in knowledge based systems. In particular we proposed to study

* -issues in diagnostic reasoning and in knowledge-directed information

retrieval. During the f irst year most of the progress came in the area of

diagnostic reasoning and in the conceptual foundations of knowledge-based

systems in general. We also developed an approach to a new type of task:

design of mechanical parts.

In particular, the following specific progress was made. (We will summarize

the nature of the result here and attach a paper in each case that gives

details of the results.)

1. We have elaborated our theory of types of Problem solving that
underlies expert reasoning. The idea is that a complex task can
often be broken down into a number of aeneric tasks, for each of
which a particular Problem solving regime is appropriate. Each of
these tasks can be solved by a collection of conceptual specialists

Samong whom knowledge of the domain is distributed. These
4 specialists solve the problem by engaging in that generic type of

problem solving by exchanging messages of specific types. We have
enclosed as appendix a paper, "Towards a Taxonomy of Problem
Solving Types," which appeared in the Al Magazine, which gives the
details of the theory.

2. In earlier work we had developed approaches to three generic types
of problem solving: diagnosis, knowledge-directed data retrieval,

-What-Will-Happen-If type of reasoning. During the period of
research under report, we formulated another important type of
problem solving: design by refining plans. We have been applying
the approach to the implementation of an expert system for

5-mechanical design. The attached paper, "An Approach to Expert
Systems for Mechanical Design," was presented at the IEEE Computer

- Society, Trends & Applications Conference.

*3. We have developed (with support from another source) a tool for
efficient construction of diagnostic expert systems. This tool is
a high level language called CSRL. Under this grant support we
have been experimenting with the application of this tool to the
design and implementation of expert systems in the area of
mechanical systems, since that was one of the domains that we
emphasized in the original proposal. We reported on this language
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at the last International Joint Conference on Artificial
Intelligence at Karlsruhe. The paper from that Proceedings
reporting on CSRL is enclosed. We also include vith this report
another technical report that discusses our experience in using

L this tool in the construction of an expert system for fuel systems
for automobiles.

4. We have been investigating the issues related to how an expert
system may have "deep" knowledge of its domain and use it to do
problem solving, as opposed to the current generation of expert
systems that use what one might call "compiled" knowledge. E.g.
all the current expert systems in medicine have knowledge relating
symptoms /manif es tations and diseases explicitly encoded in the
knowledge base. However, of ten a person who has an understanding
of the domain will be able to derive these relationships from a
deeper model. We have developed a language in which the
understanding of an agent about how a device works may be encoded.
This language expresses how a function of a device may be related
to the behavior and structure of it and its components. In
addition we have developed a compiler which can work on this
functional representation and produce a diagnostic expert system.
This result is of considerable significance we think, since it will
enable for the first time a representation of "understanding" of a
device. We have applied this methodology to the representation of
the functions of a household electric buzzer and show how the
compiler generates a dignostic problem solver from this. A paper
reporting on this is attached as appendix to the report.

5. We have been looking into how capabilities of various expert system
approaches can be characterized. A methodology by which a complex
real world decision task may be decomposed into generic tasks and
techniques suited for various generic tasks can then be applied is
outlined in another attached paper, "Expert Systems: Matching
Techniques to Tasks," which was presented as an invited talk at the
New York University Symposium on Expert Systems for Business
Applications. This will shortly appear as an article in a book of
that title.

Personnel Activities

Two items of interest need to be mentioned here. Prof. B. Chandrasekaran, the

PI for the Grant, spent 3 months at the MIT Laboratory for Computer Science as

a Visiting Scientist during the research period. He worked with Prof. Peter

Szolovits and Prof. Ramesh Patil on several aspects of expert systems. He

also spent one month at Carnegie Mellon University under the sponsorship of

*Prof. A. Newell. A portion of his support for these visits came from the
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" AFOSR Grant. In addition to these major visits, Prof. Chandrasekaran gave a

3 number of talks at BBN, GTE Labs, NRL AI Lab., and other places over the year.

Mr. Tom Bylander, a Graduate Research Associate under the Grant, won an award

for travel to the International Joint Conference on Artificial Intelligence to

present the paper on CSRL.

Computing Environment

*Quite a bit of our effort went into gearing up for the introduction of Lisp

machines into our computing environment. These machines will be arriving

shortly. A number of changes will need to be made in the language

- environment: we are moving into an Interlisp environment, and many of our

tools are being recoded for that environment.

.3

a.

"2

49g

o e

.. . . . .. . . .. . . . . . . . .. . . . . . . .a.* .-i - .- * . .



LIST OF PAPERS IN APPENDIX

1. "Towards a Taxonomy of Problem Solving Types" by B. Chandrasekaran

2. "An Approach to Expert Systems for Mechanical Design" by David
tC. Brown and B. Chandrasekaran

3. "CSRL: A Language for Expert Systems for Diagnosis" by Tom
Bylander, Sanjay Mittal, and B. Chandrasekaran

4. "Application of the CSRL Language to the Design of Expert Diagnosis
Systems: The Auto-Hech Experience" by Michael C. Tanner and Tom
By lander

5. "A Representation for the Functioning of Devices that Supports
Compilation of Expert Problem Solving Structures" by V.S. Moorthy
and B. Chandrasekaran

S6. "Expert Systems: Matching Techniques to Tasks" by
* B. Chandrasekaran

% -e

0 '

• °.



Towards a Taxonomy

Of Problem Solving Types

B. Chandrasekaran
Department of Computer and Information Science

The Ohio State University

Columbus, Ohio 43210 USA

Abstraect LmtUoduction

Our group's work in medical decision making has led us to formulate
- framework for expert system design., in particular about how the For the past few years our research group has been in-

domain knowledge may be decomposed into substructures. We propose vestigating the issues of problem-solving as well as knowledge
that thee exist different problem-solving types. i.e., tuss of knowledge, organization and representation in medical decision making.
a snd corrmpoading to each is a separate substructure specializing in
that type of problem-solving. Each substructure is in turn further In parallel with this investigation we have also been build-

- . decmposed into a hierarchy of specialists which differ from each other ing and extending a cluster of systems for various aspects
not in the type of problem-solving, but in the conceptual content of of medical reasoning. The major system in this cluster is

.4 their knowledge; e.g., one of them may specialize in "heart disease." MDX. which is a diagnostic system. i.e., its role is to ar-

.I %-t while another may do so in "liver," though both of them are doing the rive at a classification of a given case into a node of a diag-
. same type of problem-solving. Thus ultimately all the knowledge in the

system is distributed among problem-solvers which know how to use nostic hierarchy. The theoretical basis of this diagnostic
that knowledge. This is in contrast to the currently dominant expert problem-solving is laid out in some detail in Gomez and
system paradigm which proposes a common knowledge bw accesseed Chandrasekaran.
by knowledge-free problem-solvers of various kinds. In our framework The MDX system. which is wholly diagnostic in its
there is no distinction between knowledge bum and problem-solvers: knowledge, communicates with two auxiliary systems.

* - each knowledge source as a problemr-solver. We have so far hiad occa- knowl dgeE comuiate w ith tw dauxa syssstms.
* .- sion to deal with three generic problem-solving types in expert clinical PATREC and RADEX. PATREC is a data base assistant

reasoning diagnosis (clamification), data retrieval and organization, in the sense it acquires the patient data, organizes them,
6; a and remasoning about consequences of actions. In a novice, these expert and answers the queries of MDX concerning the patient

structures are often incomplete, and other knowledge structures and data. In all these activities PATREC uses various types of
.IO learning processes are needed to construct and complete them. inferential knowledge embedded in an underlying concep-

-..-., tual model of the domain of medical data. RADEX is a

_ _-._ _ _radiology consultant to MDX and it suggests or confirms
K. .diagnostic possibilities by reasoning based on its knowledge

This is a revised and extended version of an invited talk entitled. of imaging procedures and relevant anatomy. See Mittal
Ld "Decomposition of Domain Knowledge Into Knowledge Sources: The and Chandrasekaran (Mittal. Chandrasekaran. 1981) and

MDX Approach.- delivered at the IV National Conference of the Chandrasekaran t tal Cha sekaran. i 81a and

Canadian Society for Computational Studies of Intelligence. May 17-19,
. p -' 02. Saskatchewan. 1980) for further details about these subsvstems.
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' " Internist

Though in a sense RADEX and PATREC can both be
..: viewed as "intelligent" data base specialists, RADEX has

V. some additional features of interest due to the perceptual
nature of some of its knowledge. However, for the purpose
of this paper, it is not necessary to go into RADEX in much Liver Heart

'\' detail, and we can view PATREC as prototypical of this class
of auxiliary systems.

Our aim in this paper is to outline a point of view about

.. ' how a domain gets naturally decomposed into substructures
each of which specializes in one type of problem-solving. Hepatitis Jaunclice
Each of these substructures in turn further gets decomposed
into small knowledge sources of the same problem-solving Figure 1
type, but specializing in different concepts in the domain.
We shall see that this sort of decomposition results in more More general classificatory concepts are higher in the
natural control and focus properties of the overall system. structure, while more particular ones are lower in the hierar-

Identification of these substructures and how they communi- chy. It is as if INTERNIST first establishes that there is in
cate with one another is vital to the proper organization of fact a disease, then LIVER establishes that the case at hand

".". the body of knowledge for problem-solving in that domain, is a liver disease, while say HEART etc. reject the case as

Our method in this paper will be to examine how being not in their domain. After this level, JAUNDICE may",'.'-'establish itself and so on.
- knowledge is used in a few well-defined tasks: diagnosis, data

storage and retrieval, and reasoning about consequences of Each of the concepts in the classification hierarchy has
actions. It should be emphasized that these tasks are not par- "how-to" knowledge in it in the form of a collection of diag-

- . ticular to the medical domain. Rather they are fundamental nostic rue,. These rules are of the form: <symptoms> -

generic tasks occurring in a wide variety of problem-solving <concept in hierarchy>, e.g., "If high SGOT. add n units
situations. Thus these tasks are elements of a taxonomy of of evidence in favor of cholestasis." Because of the fact that
basic problem-solving types. When we are done with this when a concept rules itself out from relevance to a case, all its
examination, the general principles of know! edge decomposi- successors also get ruled out, large portions of the diagnostic
tion will begin to take on some clarity, knowledge structure never get exercised. On the other hand.

" and One final point: we will use examples from both medical when a concept is properly invoked, a small, highly relevant
and non-medical domains. In particular, there are many set of rules comes into play.
similarities between reasoning about diseases and therapies The problem-solving that goes on in such a structure is
on one hand and trouble-shooting and synthesis of corrective distributed. The problem-solving regime that is implicit in
actions in complex engineering systems on the other. the structure can be characterized as an "establish-refine"

type. That is, each concept first tries to establish or reject
itself. If it succeeds in establishing itself. the refinement

The Diagnostic Task process consists of seeing which of its successors can es-
tablish itself. Each concept has several clusters of rules:

By the term "diagnostic task," we mean something very confirmatory rules, exclusionary rules, and perhaps some

specific: the identification of a case description with a specific recommendation rules. The evidence for confirmation and

node in a pre-determined diagnostic hierarchy. For the pur- exclusion can be suitably weighted and combined to arrive

pose of current discussion let us assume that all the data at a concluion to establish, reject or suspend it. The last
'.. that can be obtained are already there, i.e., the additional mentioned situation may arise if there is not sufficient data
!.. problem of lanching exploratory procedures such as order- to make a decision. Recommendation rules are further op-

of luncing xp~ra~y prcedrestimization devices to reduce the work of the subconcepts.
ing new tests etc. does not exist. The following brief account ther dics of this wrk of he s onces .
is a summary of the more detailed account given in (Gomez, Further discussion of this type of rules is not necessary for

60 Chandrasekaran, 1981) of diagnostic problem-solving, our current purpose.

'~teLet us imagine that corresponding to each node of The concepts in the hierarchy are clearly not a static
the classification hierarchy alluded to earlier we identify collection of knowledge. They are active in problem-solving.
a "concept." The total diagnostic knowledge is then dis- They also have knowledge only about establishing or reject-

' tributed through the conceptual nodes of the hierarchy in a ing the relevance of that conceptual entity. Thus they may be

specific manner to be discussed shortly. The problem-solving termed "specialists," in particular, "diagnostic specialists."
. for this task will be performed top down, i.e., the top-most The entire collection of specialists engages in distributed

concept will first get control of the case, then control will problem-solving.
pan to an appropriate successor concept, and so on. In the The above account of diagnostic problem-solving is quite

'. medical example, a fragment of such a hierarchy might be incomplete. We have not indicated how multiple diseases
as shown in Fig. 1. can be handled within the framework above, in particular

0N
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* when a patient has a disease secondary to another disease.

Gomez has developed a theory of diagnostic problem-solving MEDATA
which enables the specialists in the diagnostic hierarchy to

W*communicate the results of thei:L analysis to each other by Poemeans of a blackboard (Erman. Lesser, 1975), and how the rgan Procedures
problem-solving by different specialists can be coordinated. 9

See (Gomez. Chandrasekaran. 1981) for details. Similarly.
how the specialists combine the uncertainties of medical data Anesteic Surgery
and diagnostic knowledge to arrive at a relatively robust
conclusion about establishing or rejecting a concept is an

* = important issue, for a discussion of which we refer the reader Holothane
to (Chandrasekaran. Mittal and Smith, 1982).

The points to notice here are the following. The control Figure 2.
transfer from specialist to specialist is akin to the correspond-
ing situation in the medical community. We shall have more shortly. Mittal (Mittal. 1980) describes this in detail as do
to say about this later on. Especially note that there is no the references (Mittal. Chandrasekaran. 1981) and (Mittal.
-problem-solver" standing outside, using a knowledge base. Chandrasekaran. 1969). Similar to our discussion regard-
The hierarchy of diagnostic specialists is the problem-solver ing the diagnostic task. we just touch upon the issues here
as well as the knowledge-base, albeit of a limited type and sufficient to make our main points regarding decomposition.
scope. That is, the particular kind of problem-solving is em- This data base-called PATREC-is organized as a hierar-

- bedded in each of the units in the knowledge structure. chy of medical data concepts. A fragment of the hierarchy
is shown in Fig. 2.

D At a representational level, there is nothing novel here:
Data Retrieval and Inferenlce each medata concept is represented as a frame, and the

inference rules that we will describe shortly are implementedConsider the following situation that might arise in diag- as 'demons" or -procedural attachments.." However what
nostic problem-solving that was discussed earlier. Suppose will be worth noticing is the fact that all these rules will be
a rule in the liver specialist was: "If history of anesthetic of a certain uniform type. For the purpose of illustration.

exposure. consider hepatitis." This is a legitimate diagnostic let us consider the SURGERY concept. SURGERY frame has
rule in the sense described earlier, i.e., it relates a manifes LOCATION and PERFORMED? slots, among others. Thetation to a conceptual specialist. However. suppose there "PERFORMED." slot has the following rules:
is no mention of anesthetics in the patient record, but his
history indicates recent major surgery. We would expect a If no surgery in the enclosing organ. surgery not
competent physician to infer possible exposure to anesthetics done.
in this case and proceed to consider hepatitis. Similarly. 2. If surgery in a component, infer surgery in this organ.
if a diagnostic rule has "abdominal surgery" as the datum 3. If no surgery in any of the components, then infer no

surgery in this organ.
needed to fire it, but the patient rcord mentions only biliary 4. If evidence of anesthetic, infer "possibly."
surgery. it does not take a deep knowledge of medicine to fire
that diagnostic rule. In both these cases domain knowledge is The DRUG frame has the following rules in the GIVEN?
needed, but the reasoning involved is not diagnostic reason- slot:
ing in our specific technical sense, One can imagine an expert 1. If any drug of this type given, infer this drug also.
diagnostician turning, in the course of her diagnostic reason- 2. If the drug class was not given, rule out this particular
ing. to a nurse in charge of the patient record and asking if drug.
there was evidence of anesthetic exposure or of abdominal 3. If all druw of this type were ruled out. rule out the
surgery. and the nurse answering affirmatively in both the class too.
instances without his being trained in diagnosis at all. These rules need not be attached to the successors of

When we faced this problem in the design of MDX. we DRUG, since they can inherit these rules-this is a fairly
- realized that it would be very inelegant to combine reason- standard thing to do in frame-based systems. A successor

ing of this type with the diagnostic reasoning that we had may have further rules which are particular to it, e.g. the=-° i isolated as a specific type of problem-solving activity. We ANESTHETIC concept has the rule:
were led to the creation of a separate subsystem for manag-
ing patient data. much like the nurse alluded to earlier. For If major surgery. infer ANESTHETIC given, possibly.
all questions concerning manifestations. MDX simply turned Let us reemphasize that the interesting thing about the
to this subsystem, which performed the relevant reasoning system is not
and returned the answer. We were surprised to discover rare knowledge base system that doesn't -but that it is a
that all the retrieval activities of this "-data base assistant" collection of conceptual specialists tuned to a particular type" could be captured in a uniform paradigm, to be elaborated of problem-solving. All the embedded inference rules have a

THE U \L\G.\ZINE Winter Spring 1983 II
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common structure: derive the needed data value from data that take place in a knowledge-rich domain is that of answer-
values relating to other concepts. The inferential knowledge ing questions of the form "What will happen if X is done?"
that is encoded in the concepts is specific to the data retrieval Examples are: "What will happen if valve A is closed in this
task in a data base activity, power plant when the boiler is under high pressure?": "What

Let us consider some examples. Suppose the stored will happen if drug A is administered when both hepatitis
datum is that -Patient was given halothane." The HALO- and arthritis are known to be present?" Questions such as
TH-kNE frame now has its GIVEN? slot filled with "Yes." this can be surprisingly complex to answer since formally it
Consider the following series of questions: involves tracing a path in a potentially large state space. Of

QI. Given Anesthetic course what makes possible in practice to trace this path is
A: YES domain knowledge which constrains the possibilities in an

-ANESTHETIC specialist inherits the rules from the efficient way.

DRUG frame. Rule I generates the question, among The problem-solving involved, and correspondingly the
others. "Given Halothane?" 'Yes" is propagated up- use of knowledge in this process. are different from that of
wards.) diagnosis. For one thing, many of the pieces of knowledge

Q2. Any Surgery performed? for the two tasks are completely different. For 'mple. con-

A : Possibly sider answering the question in the automo" rr, -chanic's
domain: "What will happen if the engine ge ot?" Look-

(SURGERY specialist rails with rules 1. 2 and 3. Rule ing at all the diagnostic rules of the form. , engine -
4 places query "Given Anesthetic?" to ANESTHETIC <malfunction>" will not be adequate. since alfunction >
specialist. Yes" answer results in "Possibly" to Q2. This
is an example of lateral inheritance.) in the above rules is the cause of the hot e ,, hile the

consequence finding process looks for the efh " i the hot
Similarly if the stored datum were "Patient had major engine. Formally. if we regard the underlying knowledge as

surgery, and the query were. "Given Anesthetic?", rule I in a network connected by cause-effect links, where from each
ANESTHETIC would have given the answer "possibly." node multiple cause links as well as effect links emanate.

Another more complex example of data retrieval reason- we see that the search processes are different in the two in-
ing by PATREC is the following: stances of diagnosis and consequence-finding. The diagnostic

DATA: A liver-scan showed a filling defect concepts that typically help to provide focus and constrain
in the left hepatic lobe. The liver search in the pursuit of correct causes will thus he different
was normal on physical exam. from the WWHI concepts needed for the pursuit of correct

Q: Liver Normal? effects.
A: No The embedded problem-solving is also correspondingly

I On liver-scan data, the following chain of inference different. We propose that the appropriate language in which
took place: (a) filling-defect in lobe - lobe not normal: to express the consequence-finding rules is in terms of state-
(b) If <comp-of> liver not normal - liver not nor- changes. To elaborate:
nal. On the other hand. Physical examination produced
"Normal" as answer. By using a general principle that I. WWHI -condition is first understood as a state change
when there are contending answers, non-default value in a subsystem.
should be chosen-the default for 'Normal?" slot of 2. Rules are available which have the form ".state
LIVER is -Yes"-the answer "No" was generated.) change in subsystem> will result in <state change

in subsystem >". Just as in the case of the diagnosis
The main points relevant here are. as in the case of problem. there are thousands of rules in the case of

the diagnostic task: (1) There is no separation between a any nontrivial domain. Again. following the diagnos-
knowledge base and a problem-solver. Problem-solving is tic paradigm we have already set, we propose that
embedded in the knowledge structure. (2) All the concep- these rules be associated with conceptual specialists.
tual specialists perform the same type of problem-solving, Thus typically all the state change rules whose left
in this case. inheritance of data from other specialists. (3) hand side deals with a subsystem will be aggregated
Concepts with the same name, say LIVER. in the diagnos- in the specialist for that subsystem, and the right

tic structure and the data retrieval structure have different hand side of those rules will refer to the state changes
of the immediately affected systems.pieces of knowledge and do different things. This is akin to

the fact that the LIVER concept of a diagnostician is bound Again we propose that typically the specialists be or-
to be different from that of the data base nume. The concepts ganized hierarchically, so that a subsystem specialist, given
in Lhis sense are "tuned" for different types of knowledge use. a state change to it. determines by knowledge-based reason-

ing the state changes of the immediately larger system of
What-Will-Happen-If (WW'vHr) which it is a part and calls that specialist with the informa-
Or Conequence Finding tion determined by it. This process will be repeated until

the state changes) for the overall system. i.e.. at the most
We said that among the many types of problem-solving general relevant level of abstraction. are determined. This
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form of organization of the rules should provide a great deal The cooling system specialist might have rules of the
of focus to the reasoning process. form:

, An Ulustrative Example. Consider the question, in low fluid-flow rate and engine running - engine state hot
the domain of automobile mechanics, "WW there is a leak low air-flow rate and engine running - engine state hot
in the radiator when the engine is running?" We suggest the

I-. .-.' specialists are to be organized as in Fig. 3.%, .%**

The internal states that the radiator fluid subsystem Again note that the internal state recognition is at the ap-

might recognize may be partially listed as follows: {leaks/no propriate level of abstraction, and the conclusions refer to

leaks, rust build-up. total amount of water,... }; similarly, the state changes of its parent system.

fan subsystem specialist might recognize states (bent/straight
fan blades. loose/tight/disconnected fan belt,...}. The cool- It should be fairly clear how such a system might be
ing system subsystem itself need not recognize states to this able to respond to the query about radiator leak. Again a

degree of detail: being a specialist at a somewhat higher level blackboard for this task would make it possible to take into
of abstraction it will recognize states such as {fluid flow rate. account subsystem interaction.
cooling-air flow rate...etc. }. Let us say that the radiator fluid
specialist has. among others. the following rules. The rules Unlike the structures for the diagnostic and data retrieval
are typically of the form: tasks, we have not yet implemented a system performing

p. <internal state change> - <supersystem state the WWHI-task. While we cannot speak with assurance
change> about the adequacy of the proposed solution, we feel that

leak in the radiator - reduced fluid flow-rate it is of a piece with the other systems in pointing to the
high rust in the pipes - reduced fluid flow-rate same set of morals: embedding still another type of problem-

no antifreeze in the water solving in a knowledge structure, which consists of cooperat-
and very cold weather - zero fluid flow etc. ing specialists of the same problem-solving type.
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" (McCarthy, Hayes, 1969). The efficiency responsibilities are
Inference put on the shoulders of the inference mechanisms: they have

Mechanism I to have the so-called heuristic knowledge in order to use the
Knowedgeknowledge efficiently for problem-solving. Our approach is

based on a rather different decomposition of the same prob-
lem, as indicated in our discussion on horizontal decomposi-

Inference tion in the previous section.
;-:'Mechanism 2

Mehnsm 2j Pictorially, the viewpoint of knowledge-based systems

that we advance can be given as Fig. 5.

Figure 4. Thus the overall knowledge system is viewed as a collec-
tion of specialists in inference types, who cooperatively solve

S. Knowledge-Use Taxonomy a given problem. While in the figure we have indicated the
communication among these specialists to be unconstrained.

There has been a growing realization in the field that in fact, however, it may not be so. There may be reasons
--. the important issue in knowledge systems is to determine why only certain problem-solving specialists can talk to other
" how knowledge is to be used. Our foregoing examination of problem-solving specialists. This is an open research prob-

.-... the three tasks--each of which is not some ad hoc need for lem in our approach.

.... medical reasoning, but is a generic task that arises in a num-
ber of domains-leads us to propose the following theses. Production Rule Methodology. In most of the

1. There is taxonomy of problem-solving regimes that preceding discussions the representation of knowledge has
are involved in expert problem-solving. We have been in the form of rules. We feel that this is not acciden-
identified three members of this taxonomy tal, but that rules represent a basic form of cognition, viz.,
e diagnostic (classificatory): establish-refine, top- "how-to" knowledge. This was recognized early in Al by
down. Newell and Simon (Newell, Simon, 1972) who named the
* consequence-finding: abstract state from low-level rules production rules. Later, the Stanford Heuristic Pro-
description to higher-level description, bottom-up. gramming Project and others extended this production rule
. data retrieval: inheritance/inference of values from methodology for a wide class of expert system design prob-
data values in other concepts. lems. We are thus in agreement with the use of rules as a
There are obviously more. Our research is oriented basic knowledge representation formalism in expert systems.
towards finding more elements of this taxonomy and
determining their interrelationships. There are two aspects in which our methodology differs

2. For each type of problem-solving there is a separate from current work on rule based systems. We have already
knowledge structure, with the associated p.s. regime alluded to the difference in the viewpoint which regards
embedded in it. Thus a domain of knowledge can be
decomposed into a collection of structures, each of knowledge not as an independent structure to be used by
which specializes in a p.s. type. We can call this a different problem-solvers, but as embodiments of implicit
horizontal decomposition of the domain, problem solving knowledge. Related to that is the idea that

3. Each of the structures in (2) above can be further the central determinant of effective use of knowledge is how
decomposed into a collection of specialists, all of it is organized. Our approach begins to provide criteria for
whom are of the same p.s. type, but differ from each performing the organization of a complex body of knowledge.
other in the conceptual content. We have indicated It is well-known that production rules need to be organized

-""-'how this decomposition can be done for the threeh t d p i a d ft hnot simply for purpose of efficiency, but for focus and control
tasks considered. We term this decomposition a ver- in problem-solving (see (Lenat, Harris, 1978) for a discussion
tica decomposition, of these issues). We are proposing two organizing constructs,

which extend the production rule methodology to make it
•applicable to a larger cliss of problems. One construct is the

A Paradigm Shift problem-solving regime and the other is that of a conceptual
specialist.

A, The prevalent approach to knowledge base systems is
based on the decomposition in Fig. 4: Related to these organizational notions is the other
In this paradigm, knowledge representation is separated from aspect of the difference between our approach and the
its use. This approach has the attraction of generality and current production rule methodologies. We do not use
a certain kind of modularity, uniform problem-solving mechanisms (backward chaining,

The representational questions are dealt with in this e.g.) across the whole domain. As indicated, the problem-
approach in a manner to satisfy the criterion of expres- solving method differs from knowledge structure to knowledge
siveness, or so-called epistemological adequacy of McCarthy structure.
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Figure 5.

Role of "Deep" Models in problem-solving, can handle; and (2) will solve the diag-
D p d o id uu . Rey a nostic problems more efficiently than the deep structure can:
Deep and Compiled Structures. Recently Hart but (3) it cannot solve other types of problems- i.e., problems

* (Hart, 1982) and Michie (Michie, 1982) have written about which are not diagnostic in nature - that the deep knowledge
* the "depth" at which knowledge is represented and used structure potentially could handle. The argument is rather

in problem solving by expert systems. Distinctions such as detailed, but the essence of it consists of analyzing the ways
"deep" vs "surface" and 'high road" vs "low road" have been in which the diagnostic structure may fail to solve a par-
made in this connection. There is no clear definition of what ticular problem, and tracing that failure to either missing
constitutes a deep model - in fact precisely that issue is an knowledge in the deep model itself or in the problem solving
open area of research in the field, but the intuition is that processes that operate on it. Thus the range of diagnostic
it models the underlying processes of the domain. Michie problems that can be solved with the deep model is exactly
remarks that most expert systems that are extant don't have coextensive with the problems solvable with the diagnostic
deep models in this sense, but instead can be viewed as a data problem solving structure that can be derived from it.
base of patterns with a more or less simple control structure There is another way of looking at this. There is a
to navigate through the data base. It is argued that surface natural decomposition in the problem solving responsibilities
systems of this type have inherent limitations in hard prob- between the underlying knowledge structures and the diag.
lems, and that a system which has a deep model will be able nostic structure. The former builds the diagnostic structure
to turn to it when faced with an especially knotty problem, and the latter solves specific diagnostic problems. Human
much like a human expert might resort to "first principles" in experts often resort to deep models because the diagnostic
a similar situation. In addition to deep models of the domain, strts aen er incmp le e Th dom ostir.'-,."structures are in general incomplete. This decomposition
the human problem solver also uses other sorts of knowledge also translates into a natural division of responsibility for"a"'" traslte into a natural divisio knwldg responsioulitynds.

knowledge of various kinds, explanation of decisions. See (Chandrasekaran, Mittal. 1982)
In the rest of the discussion in this section we will ex- for more discussion on this.

plicitly consider the diagnostic task only. But the arguments
will apply to other tasks as well. Multiple Uses of Knowledge. It is possible that there

We argue in (Chandrasekaran, Mittal, 1982) for a thesis will be some redundancy in knowledge represented in our ap-

Swhich might at first sound counter-intuitive. Let us assume proach, since it calls for knowledge to be encoded in a prob-

that we wish to design a diagnostic system in a particular lem solving structure according to its usage - some pieces of

domain. Let us further assume that we can successfully knowledge may appear in several structures. (See comments

construct a deep model of the Jomain, and also specify the in (Gomez, Chandrasekaran, 1981) on redundancy and bias-

problem solving processes that will operate on that model. ing of knowledge.) Is this a good thing?

*"* "~. The thesis that we argue in (Chandrasekaran, Mittal, 1982) We have a choice: (1) We can have the knowledge in
.. is as follows. Between the extremes of a data base of pat- a deep enough form, but as. say, a diagnostic problem

terns on one hand and representations of fdeep knowledge presents itself, we can first generate fragments of diagnos-
(in whatever form) on the other. there exists a knowledge tic knowledge as needed and use it to solve the given prob-
and problem solving structure - alon, the lines outlined in lem. Similarly for a WWHI problem. etc. Or, (2) we can
the section on the diagnostic task in this paper - which (1) choose the tasks to be experts in , compile the problem solv-
has all the relevant deep knowledge "compiled" into it in ing structures for them, accepting some redundancy. The
such a way that it can handle all the diagnostic problems latter is faster for those tasks for which they are designed.
that the deep knowledge, if explicitly represented and used the former is more economical in storage. A classic trade-off!
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In a sense the former situation describes. e.g., a bright of communication needs in a distributed problem solving
medical school graduate who has a functional understanding situation.) For example. in (Gomez. Chandrasekaran. 1981)
of the phenomena of the human body, but that knowledge we discuss how certain kinds of relations between disease
is not yet molded into effective problem solving structures of hypotheses belonging to different portions of the hierarchy
particular types. We suspect that what happens even among - such as disease A being secondary to disease B - can be
experts is that they build powerful problem solving struc- handled within a hierarchical framework by the use of black-
tures to account for a good portion of foreseeable situations. boards. Finally, it ought to be stated clearly that hierarchies
and thus need to resort to the deeper structures only for the are not "out there." but imposed by the thought processes
harder problems. This is a compromise between the require- for control over problem solving. Thus it is a powerful
ments of expertise and memory. weapon, but by no means a sufficient one. It will be rash

to conclude that all complex problem solving in ali com-
T N e t e oplex domains can be crisply conducted in a single hierar-

chical framework. Reasoning about feedback and reason-
ing with multiple perspectives are two examples where addi-

There is an additional problem with option 1 in the tional machinery seems to be needed beyond the hierarchical
current state of the art: we don't know how to do it! This framework.
requires an adequate theory of the nature of the deep model.
When a person newly understands how a device works, e.g.,
it is doubtful that what he has acquired is merely a collection The Organization of the Medical Community
of rules or facts, or a network of causal relations. One
can have all these and still not "understand." The sense
of understanding must correspond to some organization of Evidence of Horizontal Decomposition. The medi-
.these pices of knowledge for some class of purposes. The cal community collectively is a good case study in the prin-

organization must be such that it can be processed to produce ciples by which knowledge may be structured for cooperative.
problem solving structures for various tasks. The nature of effective problem-solving. Corresponding to our notion of
the deep model is an extremely important area of research. horizontal decomposition along the lines of problem-solving
The work of (Rieger, Grinberg, 1976), (Pople, 1982), (Patil, types, we can identify clinicians, educators. pathologists.
1981) and fde Mleer, Brown, 1982), to name a few researchers radiologists, medical records specialists, etc. Clinicians corn-
who have looked at this problem, seem very relevant here. bine the diagnostic and predictive knowledge structures, for
However. in order to adequately represent knowledge at this practical reasons having to do with the close interaction
level, notions of an organizational nature particular to that between diagnosis and therapy. Medical record specialists.

level also seem important. as their name indicates, serve to organize patient data and
retrieve them effectively. Radiologists are not diagnosticians
in the same sense as clinicians are: their problem-solving is to

On Hierarchies reason from imaging descriptions to confirm or reject diag-
nostic possibilities; they are largely perceptual specialists.

"'..' In all the tasks that we considered in this paper, the Evidence of Vertical Decomposition. Correspond-

knowledge structures were strongly hierarchical. While ing to our vertical decomposition. many of the above problem-
hierarchical organizations have a strong intuitive appeal, in solvers are organized into conceptual hierarchies. For in-
Al there is also a strong tradition of "heterarchies"~ and net- stance, an internist is the top-level diagnostic specialist, who

work structures. Difficulties with hierarchical classification may call upon liver or heart specialists for further investiga-
structures have been noted in (Fahlman, et al, 1981). Also tion of a problem. The top-down problem-solving for diag-
concerns such as "the world is not hierarchical" are voiced nosis is indicated by the fact that a sick person typically first

in response to proposals for hierarchical organizations. goes to an internist, who may refer the patient on to more
This is not the place to discuss the important issue of detailed specialists.

i hierarchical structures in problem solving. The following Evidence for Embedding Problem-Solving. If the

brief remarks should suffice for our purposes. First of all, medical community were organized according to the cur-
the main thesis about decomposing knowledge by problem rently accepted paradigm in expert systems, i.e.. a corn-K. solving types and embedding of the problem solving in the mon knowledge base shared by different problem-solvers who
knowledge sources is itself independent of whether the struc- themselves are without domain-knowledge, one would ex-
tures for a problem solving type are hierarchical. Secondly, pect to have knowledge-specialists, who would be rather like
our general strategy has been to start by looking for hierar- encylopaedias. and problem-solving specialists who would
chical decompositions. and where there seems to be a need possess expert-algorithms for. say, diagnosis, without any

r. '4. for communication outside of the hierarchical channels, to medical knowledge about particular medical concepts. Thus
provide it in a carefully controlled fashion such as the black- whenever a patient came, the diagnostic specialist would con-
boards discussed in (Gomez. Chandrasekaran. 1981). (See suit the knowledge-base specialist and together they would
(Chandrasekaran, 1981) for a discussion of different kinds arrive at a diagnostic conclusion.
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However. that is not the way the community works. In- Chandrasekaran, B.. Mittal. S.. and Smith. J. W. (1982) Reason-
stead we find that experienced medical specialists possess ing with uncertain knowledge: the MDX approach. Proceedings

expertise which is not a raw knowledge-base. but which of the 1st Annual Joint Conferences of the Amencan Medical In/or-

5 is highly effective in problem-solving. On the other hand. m7atW5 Association.

a medical student without cliniral experience is more like Erman, L. D. and Lesser, V. R. (1975) A multi-level organization
"apurek.As he or she becomes more e- for problem-solving using many diverse cooperating sources of

a n g knowledge. 1JCAI 4, 483-490.
perienced in various types of problem-solving, the unstc Fahiman, S. E.. Touretzky, D. S.. and van Roggen, W. (1981)
tured knowledge base slowly begins to shape and structure ancan in a prel sva ork. WC 7.

'" itself. so that pieces of knowledge are tuned for ready and Cancellation in a parallel semantic network. JCAI 7.
efe th s l read Gomez F. and Chandrasekaran. B. (1981) Knowledge organization

effective use. and distribution for medical diagnosis. IEEE Transactions on
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Abstract

We present an approach to expert systems for
- "mechanical design called Design Refinement, which

addresses a subset of design activity by using a
- hierarchy of conceptual specialists that solve the
design problem in a distributed manner, top-down,
choosing from sets of design plans and refining the
design at each level of the hierarchy.

1. introduction

In terms of economic impact, one of the most
important areas for Al technology is CAD/CAM. Al
is applicable to a variety of subtasks in CAD/CAM:
process control and robotics are areas where work
has already been done. However, in terms of
intellectual difficulty the central problem is
design itself. While much Al-related work is being

..\.... done in the creation of design aids in the VLSI
--.area 9,,, ~here has been relatively little
attention paid to the knowledge structuring and
problem solving issues in the main problem of
design itself. This paper addresses the problem of
expert systms for mechanical design. For an
important class of design tasks, we present an
approach with design refinment as the central
problem solving activity. This activity can be
quite complex, but our aim here is to provide a
first-cut analysis of this process in order to show
it's potential for generating design expert
systems.

*Currently on leave from the Department of

Computer Science, Worcester Polytechnic Institute,
'." Worcester, M& 01609
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The creation of computer-based expert consultants
in any area of human endeavour requires an aiaalysis
both of the knowledge structures that the
corresponding human specialist uses, and the
problem-solving methods that underlie the different
tasks. Thus much of our discussion will be taken
up with an account of these aspects of the design
process.

2. Types of problem solving

We have been developing a framework for
decomposing a complex body of knowledge into small
knowledge sources, and organizing them into a
structure of specialists engaged in collective
problem solving. We have identified several
distinct types of problem solvn that are useful
in the design of expert systems . One advantage
of this is that it enables one to characterize
which kinds of expert problem solving we know how
to mechanize.

One type of problem solving is capable of
pertorming diagnosis, i.e., capable of reasoning
about how to classify a complex description of
reality as a node in a diagnostic hierarchy 1
Another type of problem solving (called WI by us)
is capable of reasoning about consequences of
contemplated actions on complex systems, such as
answering the question, '"What will happen if I
close that valve in this power plant?". We believe

* ~.*that design can be classified as a distinct type of
problem solving, and that it is different from the
other types we have identified. We will outline how

* a comunity of design specialists can work together.
to convert a list of specifications for a component
into a detailed design for that component.

3. Discussion of design activity in general

L4 In general, design is a highly creative activity,
the underpinnings of which we in AI only dimly
perceive. Often the design goals themselves are
only vaguely specified, and the feedback from
attempts to achieve these goals serves to modify
them. Thus designers of new systems work with
knowledge structures and problem solving techniques
that we cannot yet adequately capture with Al
technology. What the current state of the art in
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AI can do f or them is more along the lines of
support systems (intelligent graphic ai.ds,
knowledgeable data bases, etc.), rather than
actually performing the design task itself 13.5.

In a typical industrial operation, however, the
daily task of the designer is frequently less
exalted than the kind of highly creative design
mentioned above. In fact, most industries perform
design tasks which, for the purposes of the current
discussion, can be classified into roughly three
categories (to simplify what really is a spectrum
from the most open ended to the most routine).

Class 1 design is done so rarely it is of ten the
basis of a new company, division or a major
marketing effort. M~ajor inventions belong to this
category. The design activity in this case
involves access to wide-ranging knowledge

.~ *~structures, and searches in a very large space of
design alternatives.

Class 2 design is closer to the routine, but
still many of the established patterns may be
broken. Some aspects of design may require
substantial innovation; e.g., in a company which
manufactures integrated sensor systems for control£ of sheet processes, the need to take into account
extremely hot ambient conditions for a particular

.'* order may require suspension of the standard design
and launching of an investigation about new (for
the company) techni~ques of control of ambient
temperature within the sensor housing, which might
in turn result in new sealing techniques and so on.
In many companies, this happens periodically, but
is undertaken with the hope that the investment of
time and energy will be paid off by identifying a
potentially large market, in which the new elements
of design can be "routinized".

Class 3 design, the most routine, follows a set
of relatively well-established design alternatives
which are reasonably well-understood, but
nevertheless still require a well-trained human
expert to perform the design task. We do not
intend to imply that the task is "simple"; in fact,
we cannot fully substitute for the human expert,

V.and new advances in AI are called for. For
example, simple approaches, such as use of a
data-base of design parameters with associated
designs, may work for some problems, but in general
they will fail due to the large number of
combinatorial possibilities.
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Let us examine in some further detail the nature
of Class 3 design tasks. There exists a large

* . number of industries which make one-of-a-kind
products, where each is of the same general class.
For example, AccuRay Corporation, our collaborator,
designs and delivers control systems to industries
which manufacture sheet products (aluminum foil,
paper, etc.). These control systems have sensors
which continually monitor various properties of the
sheets, and provide the signals which can be used
to keep the thickness within certain bounds.
However, even within one industry, no
pre-constructed system can be placed within a
functioning mill. Each control system is built
anew from specifications that are gathered from a
particular prospective installation. The control
system itself is complex and consists of the sensor
assembly (frame, carriage, sensors, etc.) and the
complex computing system (minicomputers and
software) that goes with the sensor h ardware.

The complexity of the task arises from the
numerous subcomponents and their sub-subcomponents,
each of which needs to be specified according to
top-level specifications. The top-level
specifications of two different plants in the same
industry differ considerably, and this adds to the
complexity. For example, no two paper mills are
alike, they themselves having been designed to the

*differing specifications that arise from the
differing products and markets of the companies.
Numerous constraints exist among the parameters of
the subcomponents, contributing further to the
complexity of the task.

While a Class 3 design may still be conceptually
complex, the design alternatives at each stage are
not as open-ended as in some of the stages of Class
2 or Class 1 designs, nor is there the vagueness
and nonoperationalism of the top-level goals or the
difficulty with identification of constituent
substructures that is characteristic of Class 1
design. That is, despite complexity, the design is
intellectually more manageable, and the variety of
knowledge sources that are accessed during the
execution of the task are relatively small and can
be identified in advance.

Sometimes, however, a design that had been
classified as Class 3 might turn out during the
design process to possess many Class 2 features.
This happens if the design alternatives for a
certain stage all fail, and an exploratory search

JI
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f or a completely new alternative needs to be
launched. Identifying a design task in advance as
Class 3 i~s a nontrivial problem. But generally,
experienced designers can judge if a project is
Class 3 or not.

We propose that there is a very specific type of
problem solving associated with expert design

Pactivity, especially of the Class 3 type: a
hierarchy of conceptual "specialists" solve the
design problem in a distributed manner, top-down,
by choosing from a set of design plana and refining
the design at each stage. Each refinement is done
by a specialist calling its subspeczialists in the
hierarchy.

4. Class 3 Design

4.1 Descriotion of Class 3 Design

In general, the component to be designed will be
quite complex, with its own subsystems and
substructures. We propose that the expert system
to design the component be conceived as a
hierarchical collection of design specialists,
where the top levels of the hierarchy are
specialists in more global subsystems of the

* - component, while those at the lover levels deal
with more specific subsystems or parts. They all
access a design specification data-base.
Intelligent data-base assistants can ?lay an

.* important role here; for a discussion see .

* .At each stage a specialist S has several
prioritized alternative design plans. The
specialist begins by inheriting some design

Op parameters from its parent specialist, and it
obtains relevant specifications from the data-base.
Each of the plans can take these data as arguments.
Parts of a plan may indicate immediately that
constraints cannot be satisfied. This is
considered as 'failure. Parts of a plan access

* .~-functions which can fill in the design templates
independently, parts produce further values or
constraints to be passed on to particular
successors, while other parts of a plan give
specific sequences in which the successors may be
invoked. Thus, S fills in some of the design, then

4 -. calls its successors in a given order with requests
-U for refinement of the design of a substructure. If
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some of the substructures are independent of each
other, then subspecialists may be invoked in
parallel. The overall global plan of the
specialist, prioritizes each subplan, invokes
alternate plans in case of failure by one of the
subspecialists, etc. When a specialist receives
failure from one or more of its successors fo all

its plans, or when failure for given constraints
can be deduced imediately, the specialist
communicates that to its parent. The exceptions to
this design refinement structure are the tip node
specialists who can only fill in the design
details. Typically as one goes down in the
hierarchy, there are fever alternative plans, and
the plans themselves becomes more straightforward.

Let us consider a concrete, but highly simplified
example for illustrative purposes -- the design of
a Small Table consisting of a circular Top and a
cylindrical Support. In a design specification the
user may specify to the design system the materials
to be used, or the required dimensions. The
hierarchy of specialists for the expert system to
design the Small Table is shown in figure 1. Note
that the hierarchy need not be a strictly
component-subcomponent hierarchy, and could be
organized according to function.

System Organization:

Small Tab ledes igner Data-Bases//\ <-> II  \\

/ Materials Parts
TopDesigner Support &

Designer Structure

Figure 1 : ierarchy of Specialists

The design process starts at SmallTableDesigner,

at the point where the overall requirements are
given to the design system. Consider the case in
which SmallTableDesigner chooses its first plan,
calls TopDesigner, which in turn also chooses its
first plan, does the design of the Top, and returns
the dimensions to its parent. Nov

.



.1 -

.m

* 7

Smal1TableDesigner calls SupportDesigner. Now
suppose that this specialist's only plan fails to

* generate a successful design within the
constraints; i.e., the strength requirement and
dimension constraints are not reconcilable
according to its expertise. This would cause
'failure' to be returned to SmallTableDesigner.
SmallTableDesigner then calls TopDesigner again
with a further constraint about the weight that is
permitted. Now TopDesigner will invoke its second
plan (which is a more expensive plan to execute),
and some information about the new Top design is
passed to SupportDesigner through its parent

• Smal1TableDesigner, causing SupportDesigner to
succeed, and the design to succeed.

* .An important thing to note is that very large
numbers of designs are encoded in an economical way
in this approach. While plans are "pre-compiled",
actual designs aren't - they are actually
generated during problem solving. Further, the
expertise of each specialist can be selectively

*.: *increased by carefully integrating new plans into
* the specialist. Finally, the human designer can

find causes of failure in the feedback from the
expert system, and, for example, might be able to
come up with a "new" way to design the support, so
that the rest of the system can proceed on a more
automatic design.

-_. What makes Class 3 but not Class 2 or Class 1
amenable to this approach is the fact that in Class
3 projects, a clear idea of the identities of the

.6 specialists in the hierarchy is available (in Class
~ 1, one doesn't even know who the successors might

be for a specialist), and further, the alternative

plans of each specialist can be identified and are
relatively small in number (in Class 2, the needed
alternative design plans are not specified).

" The role of analytic routines

The image of the designer sitting in front of the
CAD graphics terminal, running stress analysis
routines and visually inspecting the stress
patterns of a component is typical in descriptions
of how CAD systems work. Analysis of design is an
intrinsic part of the total design process, but
what role does such analysis play in expert systems
for Class 3 design?

q
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The preceding description of how the plans work
has been at too high a level to bring out this
aspect. In fact, analysis of design plays a role
in several steps of the process. When a specialist
inherits design constraints from its parent,
accesses specification data from the data base and
decides if there are any obvious difficulties in
proceeding with the design, one of the options will

S.be to run some analysis packages. Similarly, at
any stage in the choice of values for a design, the
plan may call for some analysis. The only

'8 difference from the current CAD practice is that
* the analysis and evaluation will be under the

control of the specialist's plans.

5. Prototype system

5.1 introduction to-Prototvye System

A prototype design expert system has been
implemented f or the domain example used above -

that of a Small Table which consists of a circular
Top and a cylindrical Support. As above, the design
hierarchy consists of a Small Table specialist that
uses a Top specialist and a Support specialist.
The system has a small design data-base with

- -information about dimensions of parts, the
structure of the table, and the types of materials
available f or use. Figure 2 shows the information
that a specialist has available.

Passed Down Constraints

Plans _____ V

SPECIALIST <-> Parts
Constraints J&

Materials
V

Pass Down Constraints
(to other Specialists)

-~ -Figure 2 Overview of Specialist

kAL.
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Each design specialist has a set of built-in
constraints that specify what has to be true in
order for that specialist to complete its design,
and a collection of plans that can be selected for

.'4 "design, redesign, or verification of an existing
.4 design. Redesign is the alteration of an existing

design due to the estab?!.shment of new
specifications. As this is a class 3 task, each
specialist has fixed plans that approach the design
task at that level of the hierarchy in some
prespecified manner. Each specialist has a 'plan
suggester ° that selects the plan to be executed.

The system is started by giving the Small Table
designer the user's design specifications - for
example, that the top be Marble. When a specialist
calls a sub-specialist all relevant constraints
from the user's specification are passed down. A
specialist succeeds when its selected plan
succeeds, and that can only happen when its
built-in and passed-down constraints are satisfied.
The system uses default values to do 'rough'
design, and can make small refinements to those
values if necessary in order to satisfy
constraints. The 'trace' of the system is very
readable, with checking and decisions being handled
in appropriate places. The flow of control in the
system is well disciplined and it is clear at each
stop what part of the design is being attempted andi~i vhy.

5.2 Structure

S ecialists The specialists in the system are
represented by a list of attribute-value pairs,
plus some associated programs and constraints.

Specialist:
Name - SmallTableDesigner
SpecialistsUsed - (TopDesigner

SupportDesigner)
BuiltinConstraints - (STleight STTopDiam

STSupportTopDiamlatio)
DesignPlans -- (STPlanl)
ReDesignPlans -- (STEPlanl)
VerifyPlans - (STVPlanl)

L' PlanSuggester -- STSuggester

r~%
-

€- .2
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Plans The plan-suggester's job is to select the
appropriate plans to be followed during this
invocation of it's specialist. In general, the
plan selected could depend on the requirements
given to the specialist, the request made (eg.
design), the history of the design being attempted,
and the current state of the design. Each
specialist will have at least one plan. Below we
present a typical simple plan for the
SmallTableDesigner. Note that the steps marked
.**" indicate places where the system will fail in
an unrealistic manner, but a better plan would be
too complex to present here.

ST Plan:
- use TopDesigner.
- did it succeed?

- No, then plan FAILS.
- use SupportDesigner.

- did it succeed?
- No, then plan FAILS. **

- check to see if design meets
table design constraints,
and the user's constraints.

- problems?
-.Yes, then plan FAILS. **
- if everything OK,

then table is designed,
and plan SUCCEEDS.

Constraints Three constraints from the
TopDesigner are given below. They restrict the
thickness of the top, the material of the top, and
the weight of the top. Constraints provide a
readable specification, explicit localized tests of
consistency, and can be used to direct the flow of
control in the hierarchy.

Constraints:
fTlaterialThickness
((Thickness Top) > (MinThickness

(MadeOf Top)))

fliaterial
((MadeOf Top) OneOf (Values

(Wood Marble)))

TWeight
- V.

• " I " " "I " " " " " " ' . . .. . . .. . . . . . . .
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((Area Top) * (Thickness Top)
* (UnitWeight (MadeOf Top))

< 10)

Data-bases Each specialist has access to
knowledge about parts and materials. For each
value to be specified ia the design some default
knowledge is avaiiable. In the implementation they
are functions giving either context-free or
context-sensitive values.

Part:
Name -- Top
MadeOf -- Unknown
Thickness -- Unknown
Diameter -- Unknown
DefaultThickness -- DTThickness
DefaultDiameter - DTDiameter
DefaultMadeOf - DTMadeOf

Material:
Name - Wood
MinThickness - 0.40000000E-l3 UnitWeight - 4

5.3 Action of system

i In this section we will present portions of the
output produced by the prototype system, in order
to show its action. Note that the user's responses
appear after the ">> *" prompt, and that all other
text is from the design expert system. The two
initial constraints specify that the table top is
to be less than 2 feet in diameter, and that it

- must be made of Marble. Having been presented with
the design specification the system can proceed.

DESIGN SYSTEM PROTOTYPE (March 83)
Name of most general

design specialist is?
>> *SmallTableDesigner

L_'

Any initial constraints?
Answer y or n or filename

>> *CONSTRAINTS.INIT

K .

K.

* *-..
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Reading constraints from file

Constraints:
TopSize ((Diameter Top) < 2)
MarbleTop ((MadeOf Top) <- Marble)

Using specialist - SmallTableDesigner
In Mode - -- Design
From specialist - TOP
In plan - --- TOP
Passed down - -- (MarbleTop TopSize)

Testing passed-down constraints
MarbleTop is setting Marble

as value of MadeOf in Top
Passed-down constraints OK

Testing built-in Constraints
Built-in constraints OK

Suggesting Plan STPlanl
Executing plan STPIlanl

Start by designing the Top

Before selecting its design plan the
SmallTableDesigner checked the constraints, and set
the top's material to be marble. The plan starts
by using the TopDesigner to design the top. Once
in control, the TopDesigner checks the constraints,
just in case immediate failure can be reported, and
then proceeds to select a plan.

Using specialist - TopDesigner
In Mode Design
From specialist - SmallTableDesigner

In plan STPlanl
Passed down - (TopSize MarbleTop)

Testing passed-down constraints
Passed-down constraints OK

-A
Testing built-in Constraints
Built-in constraints OK

Suggesting Plan TPlanl
Executing plan TPlanl

*: Looking for unspecified values in Top
Try reasonable values first

-k"' -7
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At this point the plan for the TopDesigner is
being followed, and, as this is a "tip node" in the
design hierarchy, it must attempt to supply the
appropriate missing details of the design. The plan
continues, below, by using "default" Cie.
apparently reasonable) values for those dimensions
of the top that are not yet specified. After that,
the design of the top appears to be complete, so it

-- is checked using the built-in and passed-down
constraints. Notice that both of the user's
initial constraints are relevant for the
TopDesigner and, consequently, have been passed to
it. Unfortunately one of the defaults chosen

9. conflicts with one of the design requirements.
That default value gets reduced by 1 inch, allowing
all constraints to be satisfied , and the design to

..- continue. It could be argued that the default
values should have been chosen with the constraints
in mind', but we feel that the method used fits

better into our refinement theory, as the defaults
. . provide a "rough" design which is subsequently
-.. .refined by consideration of the constraints.

.ISelecting 2 ft. as Top diameter
Selecting 0.2 as Top thickness

Now TPlanl checks for conflicts

Testing passed-down constraints
Constraints failing

IT TopSize: ((Diameter Top) < 2)
Setting 1.9166669 as

value of Diameter in Top
Passed-down constraints OK

• ,- ' "Testing built-in constraints
Built-in constraints OK

No conflicts found by TPlanl
Leaving plan TPlanl
Reporting Success of TPlanl and TopDesigner

State of design:
Name - Top
MadeOf -- Marble
Thickness -- 0.19999999
Diameter -- 1.9166669
DefaultThickness - DTThickness
DefaultDiameter - DTDiameter
DefaultMadeOf - DTMadeOf

L0

,..%..,...-.,... _... .:.............. ......-... . ..... . .... • . ........ ..
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Name -- Support
MadeOf -- Unknown
Length -- Unknown
Diameter Unknown
DefaultMadeOf -- DSMadeOf
DefaultLength - DSLength
DefaultDiameter - DSDiameter

At this point the SmallTableDesigner's plan calls
for the design of the support, and will pass
control to the SupportDesigner specialist, which
proceeds in much the same way as above. Notice
that here the default is context-sensitive. Note
too that the SupportDesigner uses the services of a
module not in the design hierarchy in order to test
the strength of the support. After the support has
been designed, the SmallTableDesigner checks the
contraints again, and, as there are no problems,
the plan is completed and the design is successful.

Next design the support

Selecting Metal as Support material,
as Top material is Marble

'- Testing strength

Reporting Success of STPlanl
and SmallTableDesigner

Result of Design attempt
(SUCCEEDS)

5.4 Redesisn mode

Suppose that, despite the TopDesigner having
"checked the weight of the Top to make sure that it

wasn't too heavy, the SupportDesigner is unable to
design a support that is strong enough. The
SmallTableDesigner will ask the TopDesigner to
redesign the top given this new information. In
cases such as this we suspect that the specialist
involved will be able to make a judgement as to
whether this is really a request for a new design,

9. o%

. . . . ... . . . . . . .
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If

15

or a minor change to the existing design. Here,
the TopDesigner would make a decision whether to
select a design plan other than the one which has
already been tried, or to select a redesign plan.
A redesign plan will keep as much of the old design
as possible and will concentrate on changing only
whatever is necessary to correct the problem that
the other specialist is having. Each specialist
must keep or have access to a record of which plans
have already been tried, under what conditions, and
how successful they were.

6. AccuRay Research

The design refinement ideas presented in the
previous sections are being used in an ongoing
project to build an expert system for a more
complex and realistic class 3 design task in an

_G industrial environment. In conjunction with Accukay

we have studied the design of a small Air-cylinder
(Figure 3). The cylinder contains a piston on a rod
that moves a shutter in one of Acculay's products.
Compressed air moves the piston to open the
shutter, and a spring in the cylinder, acting on
the piston in the opposite direction to the air
pressure, closes it. The piston moves in a sealed
tube which is closed at one end by the cap, and at
the other by the head. The rod passes through the
Head. There are about 17 parts in all, some of
them "off-the-shelf", but most are manufactured at
AccuRay according to their design specifications.

9 .

-----------
ill / / Spring/ II /2I I __ II _ 1I
I Cap I ---- I Head I
.,,Tube

Spring return Air actuated

Figure 3 Rough structure of Air-cylinder

L,

d°,
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Af ter an extended set of interviews with the
designer ye have captured the 'trace' of the design
process in some detail, and we are still refining
it. The trace is the design decisions and their
groupings considered over time. We have also
isolated from this trace, in rough form, the
conceptual structure and the plans that we consider
underlie the design refinement process. As the
implementation of the expert system progresses we
expect the conceptual structures and the plans to
become better defined.

7. Theoretical & Practical Issues

7.1 The lansuane of desistn olans

& inter-specialist comunication

So far in our descriptions, plans are very
general procedures. However, in order for this
notion to have practical consequences in CAD we
need generic representations for plans and the
specification of their coordination. Otherwise,
updating the expert system to ref lect changing
products or an increase in expertise will not be a
practical. Thus, we need to search for planning
primitives with which a language for design plans

*can be constituted. The issue of a plan
specification and refinement language is especially
important in our framework of problem solving types
and corresponding specialist structures. We have
successfully completed the task of specifying a
language called CSRL for the specification of
diagnostic specialists. We expect that a similar
language can be designed to specify design
specialists. We feel that earlier AI work on
plans, such as that of Sacerdoti, Hayes-Roth and
Bruce 6,7,8, will be applicable to our goal.

In our research, it is not the time sequencing of
operations that is at issue, as plans have already
been formed. We are concerned with the notion of
constraint propagation from plans to subplans,
either directly or via some blackboard 12. However,
each plan must show the sequence of tasks within
that plan, some of which will use the expertise of
other specialists to complete the task, and some of
which will use a "compiled,, 4 procedure to complete
the task. Some specialists will be able to proceed
in parallel.

4..&
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Intimately bound up with the language of design
plans is the nature of the communication between
specialists. Most communication will be between a
specialist and subspecialists Cie. the ones at the
next lower level of the hierarchy, from which it is
able to request action). The specialists may be
asked to design or redesign, and could be asked to
validate some small change that might affect them.

* Each message type will have some information
associated with it. For example, the message
requesting the redesign discussed above will
require some information about the cause of the
other specialist's failure, and, possibly, some
suggestions from that specialist, or a "boss",
about hov to proceed.

7.2 How to handle failure

on We have only scratched the surface of how
failures of refinement result in reinvocation of
portions of different plans. The issue is
significantly more complicated. Sometimes when a
plan failure occurs, it may be more beneficial to
ask the parent specialist for some possibly minor
changes in specif ications rather than invokea altrr taive plans. As another example, consider
the case where Plan 1 of a specialist S is being
refined, and previous experience shovs that a
potential conflict in a specialist S' several
levels below may be a most likely cause f or failure
of the plan. Let us also assume that several
successors of S also have substantial
responsibilities in the refinement of Plan 1 of S.
Nov it would seem prudent to selectively refine in
the direction of S' to make sure early on that Plan
1 has a good chance of survival rather than engage
all the relevant successors of S immediately.

7. Finally, an important problem is bov reasons for
- failure will be used by higher level specialists to

choose alternate plans. Some degree of
"ounders tand ing " the cause of failure will be
necessary. At the very least some sort of
classification of the causes of failure into

V categories that can be mapped into criteria for the
selection of alternate plans will be necessary.

The above examples indicate that coordination of
plans may become quite complex. Further research
is called for concerning the trade-off s between
overly complex plans that may capture some minor
detail of the design process and sticking with
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simpler plans that capture the essence of the
design process, but perhaps lose some efficiency
due to their incompleteness.

8. Discussion

Due to space limitations, we have not addressed
several issues of interest, e.g., the conceptually
important but common technique of "rough design"
followed by a more detailed design based on some of
the knowledge gained during the rough design phase,
and the practically important problem of how to
incorporate manufacturability constraints in the
design process. Further it is likely that only a
subset of practical industrial Class 3 problems can
be successfully conquered by the design refinement
paradigm. For some design tasks, we may have an

insufficient understanding of the problem solvingj
processes, or have difficulties with the amount of

*knowledge required. Nevertheless it is our belief
that there is a significant subset of Class 3
design problems that are amenable to the proposed
approach. The approach itself we think reflects in
a natural manner the formation of conceptual
structures for problem solving. Finally, it ought
to be pointed out that while we have been mostly
discussing the prospect of "automation" of design,
the approach is also highly suited to
semi-automation. An interactive system, in which
the system, when faced with subtle issues
concerning causes of failures of some designs,
seeks human intervention at appropriate points in
the plan selection process, will obviously be very
useful. The knowledge decomposition principles
that underlie our approach make the design of such
semi-automatic systems particularly promising.
When knowledge is decomposed into specialists,
there is no particular constraint regarding which
specialists need to be machine- implemented, and
which can be given to human specialists.

j,7.&Y--ZK&-2. -- -~~*. * ::~
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CSIL: A LUGUAGI YOX ZKZRT SYSTEfS FOR DIAGNOSIS

Tom Bylander, Sanjay Mittel*, and B. Chandrasekaran
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Department of Computer and Information Science
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Columbus, 0 43210 USA

Abstract expert's knowledge and its implementation. In this
paper, ye present CS3.L (Conceptual Structures

we present CSRL (Conceptual Structures Representation Language) as a language to
Representation Language) as a language to facilitate the development of expert diagnosis
facilitate the development of expert diagnosis systems based on the MDX approach to diagnostic
systems based on a paradigm of "cooperating problem solving (4, 8]. an approach that has been
diagnostic specialists." MDX, the medical diagnosis developed in our laboratory over the past few
system that has been developed in our laboratory years. In addition, we introduce the concept of a
over the past few years is based on this paradigm. family of languages in which different languages
In our approach, diagnostic reasoning is one of are designed for different kinds of end users.
several generic tasks, each of which calls for a
particular organizational and problem solving First, we will overview the relationship of MDZ
structure. A diagnostic structure is composed of a to our overall theory of problem solving types, the
collection of specialists, each of which diagnostic problem solving that underlies MDX, and
corresponds to a node or "concept" in a diagnostic the differences between our approach and the
hierarchy, e.g., a classification of diseases. A knowledge base/inference engine approach. We then
top-dovn strategy called establish-refine is used present CSRL in relationship to diagnosis and
in which either a specialist establishes and then illustrate many of its constructs. Next, we
refines itself, or the specialist rejects itself, discuss the family of languages concept. Finally,
pruning the hierarchy that it heads. CSRL is a our imediate plans for using CSRL are listed. Due
language for representing the concepts of a to space limitations, some understanding of how MDX
diagnostic hierarchy and for implementing the performs diagnosis is assumed.
establish-refine process. The body of a concept
specifies how it will respond to different messages
from its superconcept. The knowledge to establish 11 OvervieV of MNX
or reject a concept is factored into knowledgearoups which correspond to specific decisions in A. Tvnes of Problem Solving
the diagnosis. We also introduce the concept of a
family of languages in which different languages Our group at Ohio State has been concerned with
for diagnosis are designed for different kinds of how knowledge is organized for expert problem
end users. solving. We propose that there are well-defined

generic tasks each of which calls for a particular
organizational and problem solving structure [3].

I Introduction Some tasks that ve have identified are diagnosis,
consequence finding, and knowledge-directed data

Many kinds of problem solving for expert systems retrieval. The knowledge of a given domain that
no have been proposed within the Al community. applies to a given task can be compiled into a

Whatever the approach, there is a need to acquire knowledge structure which is tuned for that task.
the knowledge in a given domain and implement it in This structure is composed of a collection of
the spirit of the problem solving paradigm. specialists. each of which perform the same problem
Reducing the time to implement a system usually solving, but specialize in different concepts of
involves the creation of a high level language the domain. Also, each task is associated with a
which reflects the intended method of problem problem solving regime, i.e., how the specialists

I. " solving. For example, DITCIU was created for coordinate for problem solving. The implementation
building systems based on MYCIN-like problem of MDZ is based on the diagnostic task.
solving. Such languages are also intended to speed
up the knowledge acquisition process by allowing
domain experts to input knowledge in a form close B. The Dianostic Task
to their conceptual level. Another goal is to make
it easier to enforce consistency between the The diagnostic task is the identification of a

case description with a specific node in
pre-determined diagnostic hierarchy. The idea of a

'Currently at Knowledge Systems Area, Xerox PARC, diagnostic hierarchy is well-established in
3333 Coyote till Rd., Palo Alto, CA 94304 USA medicine in the form of disease classification.

.. - -* * - **": .. . . .

.. . . . . . . . . . . . .9. .



2

*(We Vill use medical terminology in the following, and problem solving strategy (establish-refine) can
but the reader should keep in mind that the be used to provide focus and control in the problem
diagnostic task also applies to other domain*, solving process.
e.g., cars, computers, and power plants.) For4
example, figure I shows that cholestasis, cirrosis, Another difference is that the specialists in the

*and hepatitis are subclasses of liver disease, hierarchy are not a static collection of knowledge.
Cholestasis can be further refined into The knowledge of how to establish or reject is
extra-hepatic and intra-hepatic cholestasis. In embedded within the specialists. Each specialist
the diagnostic task, each disease is associated can then be viewed as a individual problem solver
with a specialist that evaluates its presence or with its own knowledge base. The entire collection
absence in a patient. Specialists in ?WZ, for of specialists engages in distributed
example, attempt to classify a cholestatic case problem-solving.

* according to its etiology.

III CSRL
Liver

* . ........ I ________CSRL is a language for defining a diagnostic
i t i hierarchy and for implementing the establish-refine

Choletasis Cirrosis Hepatitis process. A diagnostic hierarchy is represented by

I \defining conceyts. Relationships to neighboring
Sd oconcepts are specified in the declarations of the

Extra-Hsp Intra-Rep concept. Establish-refine is implemented within

CSR.L via message passing. Each concept has a body
Figure 1: Fragment of a diagnostic hierarchy which specifies how the concept will respond to

different messages, and which contains the
statements which invoke other concepts with

A top-down strategy, which we call messages. The knowledge to establish or reject a
establish-refine is used for this task. In concept is factored into knowledge groups which
relation to figure 1, a simple version of this determine how the case description relates to
strategy follows. First the Liver specialist specific decisions in the diagnosis. For a

determines if it is established i.e., if liver complete description of CSRL, see Bylander [2].
disease is likely. If so, Liver refines itself by
invoking its subspecialists. Each succeeding level
of specialists performs the seas establish and A. Body and Messaa Blocks of a Concept
refine functions, On the other hand, if the Liver
specialist reiects itself, the whole hierarchy of Th body of a concept contains a list of message
liver diseases can be pruned. This strategy, in blocks, which specify how the concept will respond
combination with the diagnostic hierarchy, is the to different messages from its superconcept. The
problem solving regime of the diagnostic task. For message block contains a message pattern, which is
a detailed analysis of diagnostic problem solving, matched against the incoming message, and a
see Gomez and Chandrasekaran [7]. sequence of CSRL statements, which are executed if

the match succeeds. In figure 2, the body of
An important companion to the diagnostic Cholestasis contains two message blocks. The first

hierarchy is a data base assistant which organizes one will be activated if an "Establish Cholestasi
the findings in a relevant manner [8, 91. For message is sent from its superconcept, Liver
example, to determine if a patient has been exposed (declared in the Declarations section), and the
to anesthetics, the data be , if necessary, can second, for a "Refine C slestasia" message. The
infer this from other data, e.g., major surgery or literal "Self" is bound to the name of the concept.

.. exposure to ether. Thus the diagnostic structure
-.- is insulated from solving problems about

finding-finding relationships, avoiding a (Define-Concept Colestasis
potentially cmbinatorial explosion of (Declarations (Subconcept-of Liver)
finding-disoase relationships in the specialists of ... )

Ss t ol.the diagnostic structure. (Knohledgesroups ...
(Body

(de ssage-Block (Establish Self)
C. Differences..

(Message-Block (Refine Self)
The usual approach to building knowledge based

tsystems is to emphasize a general knowledge
representation structure and different problem Figure 2: Message blocks in Cholestasis
solvers which use that knowledge. One difference
in the M approach is that the organization of its
knowledge is not intended as a general Message blocks for establish messages are
representation for all problems, Rather it is relatively simple since the knowledge groups
tuned specifically for diagnosis. y limiting the (described below) do mosat of the work. Figure 3
type of problem to be solved, a specific
organizetional technique (classification hierarchy)

Ioaeteis h aabsi eeezcn eod o Rfn hlsai"asae h
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shows how One would look fort he Stone concept.* (Define-Concept Liver
The knowledge groups are named Zray, Physical, (Declarations (Subconcepts Cholestasis
History, and Sumary. Within the (Establish Self) Cirresis
message block, an Execute statement runs all the Hepatitis)
knowledge groups, and then an Establish-Reply
stcement asserts the value of Sumary as the (Knovledge-Groups ...)
establish value of Stone. The establish value is (Body
an integer from -3 to 3, which represents symbolic (Message-Block (Refine Self)
probabilities from "definitely not" to "definite." (Callexpert (E in Subconcepts)
A value of 2 or 3 means that the concept has been (With-Message (Establish E)))
established. This value is written on a blackboard (Callexpert (E in Subconcepts)
[61, which other concepts can access. (With-Message

(Cond ((Established? E)
(Refine H))))))

(Define-Concept Stone ...
(Declarations (Subconcept-of Extra-Hop)

... ) Figure 4: Statements for refining Liver
(Know ledge-Groups

(Iay ... )
(History ... ) directly mapping values to conclusion, or having
(Physical ... ) each rule add or subtract a set number of
(Sumary ...)) "confidence" units. Generally, the knowledge in a

(Body concept is factored into several kg's, and other
(Message-Block (Establish Self) kg's are used to combine their results. See [5]

(Execute fray History for a discussion on combining diagnostic knowledge
Physical Summary) in this way, as well as reasoning with uncertain

(Establish-Reply Sumary)))) data.

Figure 3: Statements for establishing Stone As an example, figure 5 is the Physical ks of the
Stone concept presented above. The conditions
query the data base (not defined in CSL) for

Refining a concept is more complicated since the whether the patient has cholangitis, colicky pain
message block must be carefully tailored to follow in the liver, or has been vomiting. Each rule in
the establish-refine strategy. In figure 4, the the Match section is evaluated until one "matches."
(Refine Self) message block contains two Callexpert The value corresponding to this rule becomes the
statements. The first one calls each subconcept value of the kg. For example, the first rule tests
with an establish message (Subconcepts is bound to whether the first and second conditions are true
the declared list of subconcepts). The second (the "?" means doesn't matter). If so, then 3
Callexpert statement calls each subconcept that was becomes the value of the knowledge group.
established with a refine message. Otherwise, other rules are evaluated. The

resulting value of the table measures the strength
Message passing is appropriate for the diagnostic of physical evidence towards establishing the Stone

task since the establish-refine regime easily concept. The fray and Ristory kg's of Stone
translates into a message protocol, in which the simiarly evaluate the radiological and historical
messages clearly indicate the important activities evidence. The Summary kg combines their results
of the concept. Also note that although each (the values of the other kg's are the conditions of
concept would have an establish message block in Summary) into the establish value of Stone.

.e. this formulation, the way that a concept
establishes itself is concept-specific, i.e., a

". concept has its own knowledge groups. (Physical
(Options (End-After (Match )))

, (Table (Conditions (Present? Cholangitis)
". Knowledee Groups (Pain? Abdomen Colicky)

(Present? Vomit))
The Knowledge-Groups section contains a list of (match (If (T T ?) Then 3)

knowledge groups, which are used to evaluate how (If (0 T T) Then 2)
the case description relates to the establish value (If (? T ?) Then 1)
of a concept. A knowledge group (kg) can be (If (T ? ?) Then 1)
thought of as a cluster of production rules which (If (0 ? ?) Then -1))))
map the values of a list of conditions (boolean and
arithmetic operations on data) to some conclusion Figure 5: Example of a knowledge group
on a discrete, symbolic scale. Different types of
kg's perform this mapping differently, e.g..

Factoring the knowledge of a concept in this
manner has many advantages. Only the relevantStone is a subconcept of Extra-Rep in MDI. It knowledge gets invoked. It allows knowledge to be

represents the disease "stone causing extra-hepatic acquired more easily from domain experts because
cholestasis," you can focus their attention on some specific

s'-. *.. ...... '..... . .- ..-.
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subtaek. It also allows knowledge to be debugged V Current Plans
because it is easier to see what purpose is being

served by a knowledge group. This factoring would Our group at Ohio State is currently using CSBL
make it easier for experts to directly enter the in a variety of domains including blood type

also translating MDZ's diagnostic structure from

the present LISP code to CSRL. We also plan to
C. Implementation of CSRL implement a diagnosis language which

non-programmers can use with minimal training to
CSRL is implemented on a DEC 20/60 using ELISP, a implement prototype diagnostic systems.

dialect of LISP developed at Rutgers, and a local
version of FRL (Frame Representation Language).

The CSRL interpreter and environment takes up an Acknowledgments
additional 33K words of storage. The environment
includes a thorough syntax check when concepts are We would like to acknowledge Jack Smith and Jon
defined, commands to invoke any concept with any Sticklen for several discussions during CSRL's
message, and a simple trace facility. CSRL design phase. The language development is fun,4qd
currently allows little user interaction while it by a grant from the Battelle Memorial Laboratory, 8
is running, but in the future we plan to add a University Distribution Program, and
simple explanation facility and to allow the user experimentation and application in different

to "advise" the system during execution. domains is supported by AFOSR grant 82-0255, and

NSF grant MCS-8103480.
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Abstract

. Auto-Mech is an expert system which diagnoses automobile fuel systems. Its

organization and strategies are patterned after MDX, an expert diagnosis

system developed in our AI laboratory. The problems that these systems are

able to diagnose are represented as nodes within a hierarchy. Each node has

knowledge about how to confirm or reject the problem hypothesis, as well as

- . knowledge about what nodes to consider next. This approach is intended to be

S.a domain-independent methodology for providing focused problem solving and for

" localizing knowledge in. a conceptually relevant manner. Auto-Mech is

- implemented in. a recently developed language called CSBL, which is
specifically intended for building diagnostic expert systems. This paper

describes Auto-Mech and discusses why the MDX approach and CSRL were useful im

developing Auto-Mach, and where some difficulties were encountered.

L. Introduction

Over the past few years, our Al laboratory has developed an approach. to the

design of expert diagnosis systems based on the paradigm of "cooperating

speciaLists." This approach is exemplified in an. expert system called

-DX [3, 61, whose expertise is in. cholestatic liver disease. In order to

demonstrate the viability of this approach to non-uedical domains, we have

. developed a systes called Auto-Mech which diagnoses problems in automobile

fuel systems. We show that an organization, of diagnostic knowledge which is
similar to MDX can be used in this domain to provide focused problem solving,

- and to localize knowledge in a conceptually relevant manner.

Auto-Mech is implemented in a recently developed language called CSRL [2],

which was designed specifically for building MDX-like diagnostic expert

systems. Thus another goal of this work was to determine the strengths and

* weaknesses of CSRL and to make recommendations for future versions of CSRL..

Briefly, Auto-Mech works as follows. When Auto-Kech begins diagnosis, it

S"obtains a specific complaint about the way the car operates. Then general
Li hypotheses about the nature of the problem are evaluated. When a hypothesis

is confirmed, any hypotheses which are immediately more specific are

considered. The user is queried for additional information as needed during

'p * . . . .
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this process. Auto-Mech is not intended to be a complete model of an

automobile mechanic, but is intended to reflect the information processing '
capability of a mechanic when she attempts to determine the specific cause of

a fuel problem from an initial complaint and from things that a typical

mechanic can observe when she looks under the hood.

Before we present a more detailed description of Auto-Hech, we give an

!_ overview of our approach to diagnostic problem solving. We then describe the

program, explaining the assumptions that we have made, and outlining its

organization. An. annotated. session of Auto-Mech and a sample of its CSRL code

- is included. Finally, we discuss why our approach and CSRL were useful in

- developing Auto-Mech, and. where some difficulties were encountered.

2. Introduction to Diagnostic Problem Solving

The central problem solving of diagnosis, in our view, is classificatory

activity. This is a specific type of problem solving in. our approach, meaning

that a special kind. of organization and special, strategies are strongly

associated with performing expert diagnosis. We will not examine here how

classificatory diagnosis fits in with our overall theory of problem solving

* (see Chandrasekazan, [41). Instead, we will briefly overview the structure and.

the strategies of classificatory diagnosis. For the purposes of this

discussion, we will use "diagnosis" in place of "classificatory diagnosis"

with the understanding that the complete diagnostic process includes other

elements as well.

The diagnostic task is the identification of a case description with a

specific node in a pre-determined diagnostic hierarchy. Each node in the

hierarchy corresponds to a hypothesis about the state of the "patient" (a car

in the Auto-Mach program). Nodes higher in the hierarchy represent more
general hypothesis, while lover nodes are more specific. In medicine, a case

description is the manifestations and the history of a patient, and a

diagnostic hierarchy is a classification of diseases and disease classes. For

example, MDX [3, 61 attempts to classify a medical case into a diagnostic

hierarchy of cholestatic diseases. Figure 1 illustrates a fragment of MDX's

hierarchy. The most general disease, cholestasis in this example, is the head
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node of the hierarchy. More specific cholestatic diseases such as extra-

hepatic cholestasis are classified within the hierarchy. In the following

discussion, we will use the generic term "problem" rather than "disease".

Cholestasis
• / \

Extra-hepatic Intra-hepatic
Cholestasis Cholestasis

EEC Due to EEC Due to
Bile Duct Stone Bile Duct Tumor

Figuze 1: Fragment of MDZ's diagnostic hierarchy

'- Each problem in the hierarchy is associated. with a pecialist, which

contains the diagnostic knowledge to evaluate the presence vr absence of the
problem from the case description. From, this knowledge, the specialist
determines a confidence value representing the amount of belief that the

problem exists. If this value is high enough, the specialist is said to be
established. Note that each specialist is a problem solver with its own

knowledge base.

The basic strategy of the diagnostic task is a process of hypothesis

refinement, which we call. establish-refine. In this strategy, if a specialist
establishes itself, then it rfne the problem hypothesis by invoking its
subspecialists, which also perform the establish-refine strategy. If the

confidence value is low, the specialist rejects the problem hypothesis, and
. performs no further actions. Note that when this happens, the whole hierarchy

below the specialist is eliminated from consideration. Otherwise the

*." -specialist sugjge4 itself, and may later refine itself if its superior
.. -- requests it. The processing ends (if we assume that only one problem is.

*present) when a tip node specialist, a specialist with no subspecialists, has

been established.

With regard to Figure 1, the following scenario might occur. First, the

cholestasis specialist is invoked, since it. is the top specialist in the

hierarchy. Cholestasis is then established, and the two specialists below it

are invoked. Eztra-hepatic. cholestasis is rejected, also eliminating EEC due

.... , re i~vked. E*ra-heatic

r.,... . 2 .. .-...- -.-.-.-. '...i- , --.-.-. ,22. - *" ".. . ..--.-.-- -- ,"- . -,. .• . . . . .
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to stone and bile duct cancer from further consideration. Finally, intra-

hepatic cholestasis establishes itself, and invokes its subspecialists.

Due to space and time limitations, we have not addressed several issues

* relevant to diagnostic problem solving (such as handling multiple problems).

For a more detailed. analysis, see Gomez and Chandrasekaran [5]. Test

ordering, causal explanation of findings, and therapeutic action do not

directly fall within the auspices of classificatory diagnosis, but expertise
in any of these areas would certainly enhance a diagnostic system. Fully

resolving these issues and integrating their solutions into the diagnostic

framework are problems for future research.

3. The Automobile Diagnosis Program

,-' 3.1. Description of Auto--Kech

Auto-Mech is & program which diagnoses fuel problems in automobile engines.

It was developed using CSRL (which will be described in Section 3.3) and the

estabLish-raefine problem-solving methodology described in Section 2.

One reason the domain of automobile diagnosis was chosen is that most

people feel comfortable discussing car problems thus making such a program

easy to demonstrate. We also had two good amateur mechanics available to

serve as experts. We decided to concentrate on fuel problems because the fuel

system is sufficiently complex to be interesting and simple enough to do in a

short time.

Before discussing the program further a brief discussion of automobile fuel

systems is in order. The purpose of the fuel system is to deliver a mixture

of fuel and air to the cylinders of the engine. It can be divided into four

major subsystems:

1. the fuel delivery subsystem which brings fuel from the tank to the
carburetor,

Z. the air intake which brings air into the carburetor,

3. the carburetor which mixes the air and fuel in the proper ratio,
and

i'"~
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4. the vacuum manifold which brings the mixture to the cylinders.

These subsystems correspond to initial hypotheses about fuel system faults and
each can be further refined by more detailed descriptions.

Just as hospitals have a routine series of data to collect about every
patient admitted, Auto-Mach collects a set of' initial data to get the

-:diagnosis running. We refer to the initial data as defining the user's
Saint. The complaint is a problem-condition pair where the problem is the

* symptom. the user notices (such as stalling or running rough) and the
conditions include the kind of driving in which the problem occurs
(accelerating, idling, etc.) and the approximate engine temperature (hot,

cold., or both). Note that the complaint is highly symptomatic.

W& chose to implement a program around. a generic automobile fuel system

rather than the fuel system of a particular car. Reasoning about the f uel
system depends on its design, which can vary in many ways.* Within the CSBL

* framework each design. requires its own diagnostic hierarchy so we had, to make

C a few assumptions about the. system.. The miajor assumptions are:

- carbureted engine

- single: barrel, single stage, downdraft carburetor

* - mechanical. fuel pump

-automatic transmission

~ - non-computer ignition

4PI- automatic choke

* ~-- A l pollution control systems

~ Each of these assumptions has diagnostic consequences. A carbureted engine,

for example, will have a different set of problems than a fuel injected engine
- .. .(the former can have a broken carburetor). Many of these assumptions would be
* . valid for most cars built before 1980 or so. Those. that are not would either

add complexity without aking the problem more interesting (such as a two-

Le stage carburetor) or vary so widely that no single generic arrangement can be

imagined (such as pollution controls).
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We also made a few simplifying assumptions about the problem solving

required of the program. The most important of these is our single complaint

assumption. This means that for any session with the program the user can

specify only one major complaint (a problem-condition pair as described

above). One difficulty with multiple complaints is the need to keep the

problem-condition pairs together. If the complaints were "stalls while

idling" and "hesitates on acceleration" it would be necessary to know

stalls, "hesitates", "idling", "acceleration", and that the complaints are

not "stalls on acceleration!' and. "hesitates while idling". The simple data

base provided with CSRL does not provide for this kind. of reasoning. This

could be rectified by implementing a special data base. Another difficulty
with allowing many complaints is keeping the line of questioning focused on

> -one complaint. Given many complaints, large portions of the hierarchy will be

relevant and the questioning may appear random to a user unless some mechanism

is used for. focusing the questioning. Such a mechanism was not readily

available. Solving these problems would have either added to the time taken

for the project as a whole or subtracted frouL the time devoted to the main

purpose of developing Auto-Mech - to test CSRL and establish-refine problem-

solving. So we chose to restrict the problem-solving to a single complaint at

'' & time.

Another simplifying assumption we made is that the data to be used by the

system. be from comonly available sources. Mechanics now have an array of

computer analysis information available which our experts were unfamiliar

with. So we limited ourselves to such data as whether a component is working

and how the car behaves in certain situations.

Figure 2. shows part of the diagnostic hierarchy f or Auto-Hech. Each node
in the hierarchy is a specialist representing a hypothesis together with
knowledge about how to confirm or reject the hypothesis. For example, the
specialist named Delivery represents the hypothesis "Fuel delivery subsystem

is causing the problem." Delivery also contains knowledge about the types of

*This is most emphatically not a single fault assumption. If there is more
than one fault causing the complaint, Auto-ech can find it.

... .-- .
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ENGINE

* FUEL

-' I I I I I
DELIVERY MIX URE VACUUM AIR-INTAKE BAD-GAS.1: I I I I

II
• .I I

CARBURET0R-GASKET VACUUM-HOSES

Fig=e Z: Partial Diagnostic Hierarchy for Auto-Mach

complaints for which fuel delivery problems should be considered and how to

infer that fuel is not being delivered to the carburetor. The purpose of the

top-level specialist, Engine, is to collect the initial complaint information

" and begin diagnosis. The ellipsis in the diagram represent points where the

hierarchy continues down.

3.2. Annotated Transcript of a Session with Auto-Mech

In the folloping transcript of a. session with Auto-Mach the user's

responses follow the ">" prompt, comments are underlined, and. everything else

comes from the program.

T e first tells th too level specialist. mn, to
establish, and refine itself The vrogram then srints a
riesatment U dianostic system's scope and begins

collecting infoaation t hA roblem.

>DoCSRL Engine Establish-Refi

This is a program to diagnose automobile problems. At the present
tim the the program only knows about fuel problems. The first series
of questions is an attempt to determine what the problem is (starting
problem, rough running, stalling, hesitation, slow response,
knocking), and the conditions under which it occurs (idling, loading,
accelerating, cruising, turning, decelerating, engine temperature).
After this the rest of the questions are attempts to confirm or reject
hypotheses.

* "Do you. have problems starting your car?>?
LJ

Answers:
I -Yes

- - N

i- :. .-"., • "

[_'. . - . . .,. ...... , .
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UUnknown

Ifthe user doesn't know how to respond, ? will Provide a
description o.f acceptable answers. All of the questions i~n

.4 ~this Prsta are answered "v~s" * "no" * or "funknown" for
sizzii. CSR does provide facilities for using an,

* ame. wichs .aZI approuriate. including in ch tinvs as
nMerical values and. aultivle choice,

Do you have problems, starting-your car?>N

Does the car stall?*R

Does the car run, rough?>T

Does the problen occur while idling?>N

* . Does the problem occur on loading?>?

Does the probimi occur while the engine is both hot and cold?>?

_UM zprolm .jQ& user _.bAs snecif ied _Ls "the engine runsa rough"!
&1k1 a UL codtin ja : loading &A independent of enzin.

tinerature". _Tl~e only vurpose gL jka. Ruaze usicaistL. ii. ._2.
1Stamima Uh. 1 k co mlan. -Czaia tem evsecif ic
definitioL j& oreS& clerl sevarat somaI~ prblm aIk~nd a
conditiont,. =s eImlL. lo~ading mans putting some. strain on
Si enine wihu acelrtig idling means 53efleine is

>>> Message Trace <<<
Frm. UNGn To: FMlL
Message: ((ESTABLISH FUEL))

Basis no refine M ir ist teDlln its subsmecialist. Fuel
sabalish,

Have you eliminated. ignition, as a possible cause of the problem?>?

_riA.L question skhwsk ZaI 5q2. S& kM v other speciaJlst
low Anbus don.L ki.r e~t hav determined that many Problems

whichmih ake hfuebl vrobla. aIa Ws iiks.1z to be ignition
arbes TIL FI,.iai ~Di~L~oeo those cases. so

liii x Aa s user' mA= coymljain isa one If
Janever Isnition, baL not kM imilmented j&. the user s_
alked AZ "Is inition nasa jR be en considered. and rject.-~j~

>>> Message Trace <<<
From: uM. To: UGh!Z
Message: ((ESTA6BLISNRfl FMN 2))
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>>> Message Trace <<<
From: ENGINE To: FUEL
Message: ((REFINE FUEL))

Once j subspecialist. Fuel, establishes. Enaine continues to
refine by telling Fuel .o refine itself. The next series oL
messages and auestions shov the Program considering Delivery.
-M ixture, Vacum. Aik and Bad-Gas as hypotheses about

k cause 2L the problem, The data.. base provided with CSRL
records Uack gs asked the user's answers to. avoid
asking r. n wai o JI&decisions the specialists make are
_'  " based ntirely on. S ansvers 1 9uestions shoyn under

****'*** Vk R sip i2sJL but. 9_. combigtioans 2L. the ansvers otos
and previous answers.

>>> Message Trace <<<
Frow- FUEL To: DELIVERY
Message: ((ESTABLL5R DELIVER!)

Is any- fuel delivered to the carburetor?>U

>>> Message Trace <<<
From: DELIVERY To: FUEL

* Message:- ((REJECTED DELIVER! -2))

>>> Message Trace <<<
From: FUEL To: MIXUR

- Message: ((RSTABLISK MIXTURE))

. , iavs you. be*& getting bad gas sileage?>N

.. >>> Message Trace <<<
% -~ Prow: MIXTURE To: FUEL
. Message: ((REJECTE MIXTURE -3))

>>> Message Trace <<<

From: FUEL To: VACUUM
-"Message: ((ESTABLISH VACUUM))

>>> Message Trace <<<
K From: VACUUM To: FUEL

Message: ((ESTABLISRED VACUUM 3))

>>> Message Trace <<<
From; FUEL To: AIR-INTArK
Message: ((ESTABLISH AIR-INTAKE))

Is the air filter old?>I

>>> Message Trace <<<
From: AIR-INTAKE To: FUEL
Message: ((REJECTED AIR-INTAKE -2))

. '. - '. ," . .. . .. ,, . . . . . . - . . * .. . - • ,. *- - - - . . . , - . . . .-. . , . . , - . '- * ,'- ' .
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>>> Message Trace <<<
From: FUEL To: BAD-GAS
Message: ((ESTABLISH BAD-GAS))

"- Have you tried a higher grade of gas?>Y

>>> Message Trace <<<
,-. From: BAD-GAS To: FUEL

Message: ((REJECTED BAD-GAS -3))

>>> Message Trace <
From: FUEL To: VACUUM
Message: ((REINE VACUUM))

Fuel now asks its established si bsoecialists to refine. In
ks_ case only Vacuum ha_s established.

>>> Message Trace <<<
From: VACUUM To: VACUU*-HOSES
Message: ((ESTABLISK VACUUM-ROSES))

Are there any cracked, punctured or loose vacuum hoses?>U

Tis .uestion sees s range because jj appears Lo be
maioaM. asking whether I heL hyptei L should h&

ird Bu when Auo-Mch ge oL very pecific
bahesi. usull L ~ only data =r Sofirig or reetn

comes LMr ect observation oL vat

Can you. hear hissing while the engine is running?>N

Are the vacuum hoses old?>Y

>>> Message Trace <<<
From: VACUUM-HOSES To: VACUUM
Message: ((UMKOWN VACUUM-HOSES 1))

l f=a Vacuum-Hoses has is u c some

indicae trouble AdM somedoes't. So the answer i~s
"maknon". t the value = indicates t it leans toward

>>> Message Trace <<<
From: VACUUM To: CARBURETOR-GASKET
Message: ((ESTABLISR CARBURETOR-GASKET))

Can you see cracks in the carburetor gasket?>Y

>>> Message Trace <<<
From: CARBURETOR-GASKET To: VACUUM
Message: ((ESTLBLMLED CAR URETOR-GASKET 3))

°*r



Here n example of how the hierarchy sets context for lower
level specialists. The carburetor zas often appears
cracked or split but does not cause problems. Cracks in ji
are thus indicative of trouble only in a context in which a
vacuum leak is suspected.

Is the diagnosis of VACUUM finished?>Y

CSRL and Auto-Mech are unable to determine when diagnosis is
finished. The mechanism we use asks the user as control
nasses ML through the hierarchy from the lowest point reached.

_f th user answers "Yes". I Jn this case. then control
passe on 2L the hierarchy. Another of the user's options
hee s.t.o_ answer " In that case CSRL would refine those
subspecialists of Vacu-a which were "unknown". such as Vacum-
Roses. Unless the proram is told to do this only
"established" subsecialists will t refined , In this
particular case the ouestion indicates a bu n th.e Auto-Mech

S ro~gam.itself since Vacuum's subspecialists are all til
avecialists.

>>> Message Trace <<<
From: VACUUM To: FUEL
Message: ((ESTABLISHED CAR URETOR-GASKET 3) (UNKNOWN VACUUM-HOSES 1))U
Is the diagnosis of FUEL finished?>Tree

FUEL -

DZLIVER - -2
MITrJ- -3
VACUUM - 3

VACUUM-HOSES - 1
CARBURETOR-GASKET - 3

AIR-INTAKE - -2
BAD-GAS - -3

p The user also h4s the option of printing out the diagnostic

hierarchy with the values displayed for each specialist.

Is the diagnosis of FUEL finished?>Y

>>> Message Trace <<<
From: FUEL To: ENGINE
Message: ((UNKNOWN VACUUM-HOSES 1) (ESTABLISHED CARBURETOR-GASKET 3)
(REJECTED BAD-GAS -3) (REJECTED AIR-IN'TAKE -2) (ESTABLISHED VACUUM 3)
(REJECTED MIXTURE -3) (REJECTED DELIVERY -2))

- Is the diagnosis of ENGINE finished?>Y

(ASWER (REJECTED DELIVERY -2)
(RECTED MIXTURE -3)

,,....,- + . .... +7,-. +. - ,;-;. -:.++ i.++ .-. . . . .. . ... .+ ,+., . . .. . - -.... .... . . . ., ,,_ -- ,,'? -



(ESIABLISED VACUUM 3)
(REECTED AIR-INTAKE -2)
(fEJECTED BAD-GAS -3)

-s (ESTABLISHED CARURETOR-GASKET 3)
-" (UNKNOWN VACUUM-HOSES 1)

(ESTABLISHED FUEL 2)
" (ESTABLISHED ENGINE 3)) %

The answer is spl & li s of the specialists which ran and
their values. The diagnosis is the established tip
specialists, Carburetor-Gasket in this case.

3.3. How One of Auto-Mech's Soecialists Reasons

Figue 3 shows the CSRL code for implementing the lad-Cas specialist which

considers the hypothesis "Something wrong with the fuel is causing the
" problem." The specialist is defined by the Define-Concept statement. Like

all, CSRL specialists it is made of three parts:

-Declarations, containing information about where the specialist fits El
in the hierarchy.

- Knowledge-Groups, shoving the major categories of decisions to be
made.

- Body, which controls the way in which the specialist responds to
var-ious messages.

The boldface represents built-in CSRL primitives, everything else is

- determined by the system builder. And-YNU is a three-valued logical AND which

is defined for T, N, and. U. Use-Declaration and Use-Statement invoke CSRL

, macro-instructions that expand into longer sequences of statements which do

not vary from specialist to specialist. The Use-Declaration's h're set up

. standard variables and constants for the CSRL interpreter to use. The Use-

. Statement's implement the establish-refine problem-solving process. Since the

*i interesting thing is how Bad-Gas establishes or rejects itself, we will not

discuss these other processes here.

The general description of how lad-Gas reasons is:

First make sure Bad-Gas is a relevant hypothesis to hold. If it is
not then reject. If it is relevant find out if there is any reason to
believe something has happened to the fuel recently. If there is none

* then reject. But if there is some reason to believe this then
establish with value depending on how relevant the hypothesis is.

• - 1J

,~~~~~ ~~~~..". .. ." . '..' "....-.... ... ' ......- .. .. '%....'.. . ..... ".. . , "i
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(Define-Concept Bad-Gas
(Declarations (Subconcept-Of Fuel)

., (Subconcepts Low-Octane
Water-In-Fuel
Dirt-In-Fuel)

(Use-Declaration Usual-Variables)
(Use-Declaratiou. Usul-Constants))

(Knowledge-Group.
(Relevant

(Options (End-After (Match 1)))
. (Table (Conditions

(Ask-YNU? "Is the car slow to respond")
L(s-NU? "Does the car start hard")

(And-rN
(Ask-TRU? "Do you hear knocking or pinging sounds")
(Ask-TEU? "Does the problem occur while accelerating")))

(Match (If ( T ? ? ) Then -3)
(If ( ? Y ? )Then -3)

' (If( ? ? Y) Then 3)(if ? .? T Thre& 1)
(Gas

*:~,. (Options (End-After (Match )))
(Table (Conditions

(Ask-YNU? "Rave you tried a higher grade of gas")
(Ask-TMU? "Did the problem start after the last fillup")
(Ask-TMU? "Has the problem gotten worse since the last

fillup"))
.. (Match (If (Y ? ? )Then,-3)

(If( I T ? )Then. 3)
."( C r ) TThen. 2)

(If ( ? ? ? ) Thon.-3))))
(Sisz~y

> * (options (End-After (match )))
(Table (Condition Relevant Gas)

(Match (If ( 3 (Ge 0) )Then 3)
(If( 1 (G O) )Then 2)
(If ( ? (Lt 0) Then -3)))))

(Body
(Use-Statement Usual-Establisb-Refine)
(Message-Block (Establish Self)

(Execute Relevant)
(Case Relevant
((Ge O)(Execute Gas Summary)

(Establish-Reply Sumary))
(Otherwise (Establish-Reply Relevant))))

(Use-Statement Simple-Refine)
(Use-Statement Pass-Messages)))

Figure 3: CSRL code for a specialist

..................................

- . *
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To implement this Bad-Gas has a group of statements in the Body which begin

(Message-Block (Establish Self) ... )

and which will. be activated when a message to establish is received from the

Fuel specialist.* The Message-Block controls the order in which the

Knowledge-Groups (Relevant, Gas, and Summary) are evaluated. Sumary combines

the results of Relevant and Gas. The

(Ezecute Relevant)

statement causes the Relevant knowledge-group to run. If Relevant returns a

non-negative value the Gas and Sumary groups run with the establish-value of

Ba&-Gas set by Summary. Tf Relevant returns a negative value the establish-

value of Ba4-Gas, is set by Relevant and the other two groups are not run.

This choice is implemented by the construct:

(Case Relevant
((GO 0) ...
(Othervise ...

Very detailed descriptions of how. all. of the knowledge groups work is not

necessary. In general, running a knowledge-group consists of testing its

Conditions and trying to match. their results to one of the rows in the Match

table. A. condition which begins with Ask-NU? causes CSRL to look in its

string-value data base for the given string. If found then the value stored

there becomes the value of the condition. If not found, the string is

displayed as a question to the user. The user's response is stored in the

string-value data base and is used as the value of the condition. If the

condition is the name of a knowledge-group its value is the value of the

knowledge-group. The rows (or "rules") of the Match table are tried one at a

time, from the top down. As soon as a row is found which matches the value of

the conditions, the Then-part gives the value of the knowledge-group and the

evaluation of the knowledge-group stops. The "?" in the tables is a wild-

.CSRL can be viewed as a restricted object oriented language in which the

objects are the specialists and the messages are instructions to the
specialists.
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card., it matches any value.

. In the transcript given earlier the value of the conditions in the Relevant

knowledge-group are (N N N) so the row

If (? ? ?) Then 1

Matches and the value of Relevant is l. This is a result of the previously

supplied information that the complaint is "runs rough on loading" combined

.. with the single complaint assumption. As a result Gas and Sumary are run.

The value of the conditions in Gas are (Y - -), where "-" signifies "did not
- ask", and the row

If (Y ? ?) Then-3

matches. This is the result of asking a question of the user. So now the

values of the conditions for Smmary are (1 -3) which matches

If .( (Lt 0)) Then -3

and the value of Sutary is -3, causing Bad-Gas to reject.

For more detail about CSRL see (2] and (11

! ""3.4. Usefulness of CSRL in Develovins Auto-Mech

One of the first things we noticed in. using CSRL is that the internal

workings of a specialist and the overall problem-solving method is easy to

explain to a computex-naive expert.* Establish-refine seemed to be a natural

way for the experts to solve the problems and was not in any way imposed upon

thim. The specialists in the diagnostic hierarchy of Auto-Mech represent the

"' hypotheses considered by the experts during the solution of practice problems.

The experts quickly understood the CSRL specialists and could point out flaws

in their reasoning during debugging sessions.

L

*Our experts ware Ph.D. students in Nuclear Engineering, they were not
computer specialists and knew very little about Al.

. . . . . . . . . . ..
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Another helpful feature of CSRL is that it makes it easy to get something

running quickly. This gives the experts a chance to actually run the program

to see the results of their suggestions. It is much easier for experts to

help debug a running program than to debug a paper construct. CSRL makes

possible the development of partial systems, the obvious evidence for which is

that we can develop a fuel system program without being concerned with the

rest of the car. Much of this is due to our approach to diagnosis in which

knowledge is localized within specialists and the interaction among

specialists is simple and well-defined. Concerns about global interaction of

knowledge are minimized. Changes in. the Delivery specialist will not affect

any other specialists in the hierarchy (except for the context assumed by its

subspecialists, an easy thing to check). So if Vacum works right but

Delivery has bugs in it, fixing Delivery will not affect Vacuum. This greatly

simplifies building and debugging a systm over the traditional knowledge-

base/inference-engine approach.

Auto-Mech consists of 34 specialists in a. hierarchy which varies from four

to six levels deep. Four people were actively involved with its development,

two computer specialists and two domain experts. The total labor was

approximately five man-months of which about 30% was domain expert time. The

project extended over nine calendar months.

3.5. Some Difficulties

CSRL was built to embody a theory of diagnosis which was developed in the

medical domain. The diagnostic reasoning of an automobile mechanic, however,

is slightly different from that of a doctor. Once a hypothesis is confirmed a

doctor will carefully consider the competing refinement hypotheses and follow

up on the best. This is the behavior modeled by the establish-refine theory.

But an auto mechanic seems to follow up the first reasonable refinement.

Auto-Mach does not capture this latter behavior. It could be done in CSRL,

though it ',uld be a little more difficult to do than using the standard

establish-refine routines. The end result of diagnosis in both cases is the

same, but presently Auto-Mech seems dumb to an expert since it is being more

careful than necessary.

-',. "-5 . ,',,,. -,'-% .. "- . . - -( " - -.. -.. -. .- . . . . . " .. -. . - - - . . . , -'
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Mechanics usually do not go straight into the kind of diagnostic reasoning

which requires a diagnostic hierarchy. The complaints are associated with

typical maintenance or repair procedures as a result of the training or

experience of the mechanic. An example of this is:

Temperature dependent problems (those that happen only when the
engine is cold or only when it is hot) are usually caused by a
malfunction of the choke. So for those problems first check to see
that the choke works correctly and if it does not then fix it. Also,
since you have to go past the air filter to get to the choke, make
sure the air filter is good.

Only after all the applicable procedures like this get tried does the mechanic

do the more seriog diagnosis done by Auto-Mech. This process is outside the

scope of both CSRL and the establish-refine theory but it is actually only an

efficiency measure. The final diagnoses using the mechanic's method and using

establish-refine are the same, with establish-refine possibly doing more work.

One of the problems we had. in developing Auto-Mech is that we could not

*treat establishing a specialist, or confirming a hypothesis, as indicating a

high degree of belief in the hypothesis. Sometimes in Auto-Mach a specialist

establishes because it is not possible to reject it and one of its

subpecialists may be able to establish. So during diagnosis, when a

[] specialist establishes it really means "this hypothesis is worth pursuing."

'" This is mainly due to the type of domain that we were working with. Most of

the data used by Auto-Mech are very weak at indicating specific problems.

Data that are direct are usually about tip hypotheses and of the form "is xxx

working correctly." Thus the specialists which rely on indirect data are

- unable to produce high confidence in. their associated hypotheses, although

" they can still determine a "pursuit value." The theory of establish-refine

- problem solving, which CSRL is based on, needs to be modified to take this

into account.

The question of when to stop is a difficult one for diagnosis in general.

Human experts have the concept of a diagnosis "explaining" the data and that

Li/ certai data must be explained while other data need not be. Automating this

decision has proven to be difficult, though it seems clear that it is not a

decision appropriately made by the diagnostic expert itself but rather by some
0,. '

- ' -
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outside entity having additional knowledge and skills. This is why CSRL

currently asks if the user is satisfied as control passes back up through the

hierarchy. However, in the automobile domain the system should recommend

fixing the problems represented by established tip specialists and then ask if

" the problem persists after the repairs are made. The answer to that question

could be data for another round of diagnosis. Once again, this could be fixed

within CSRL (the problem arises from the built-in Simple-Refine macro which

was designed to be very general and would need to be customized for Auto-

Meah).

* In the establish-refine theory of diagnostic problem-solving, diagnosis is

seen as an inherently parallel process [5]. All specialists at a given level

in the hierarchy may be active simultaneously. These specialists communicate

their status (established or rejected) to each other via a blackboard. This

makes it possible for a specialist to know what another specialist has done.

Sometimes this knowledge is necessary, as can be seen in the example session

given earlier where the Fuel specialist wanted to know the status of the

Ignition, specialist. CSRL is presently implemented as a serial language

without a blackboard. This leads to some occasional awkwardness as the Fuel

specialist's question to the user shows.

Another feature of establish-refine theory is that it is strictly a theory

of classificatory reasoning and that other kinds of reasoning are needed to do

"-'- diagnosis. In particular inferential reasoning about data is needed. For

example, if the user's problem is one which involves the engine running then

the system should know that there is fuel in the tank even if that piece of

data is not explicitly given to it. This is reasoning about relationships

between pieces of data and is not classificatory in nature. n MDX there is

an intelligent data base component, called PATREC [6, 7], for doing such
.reasoning about medical data. CSRL is intended to be used for the diagnostic

component and so it does not contain an intelligent data base. Since this

component is absent in Auto-Mech, we have had to clutter our diagnostic

specialists with data base reasoning.
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4. Sumary and Recommaendations

The relative length of the "difficulties" section compared to the
"usefulness" section is due to the need for additional programming and the

CSRL language rather than deficiencies in the theory of diagnostic problem-

solving. The difficulties 'point to some recommendations for improvements in

CSRL:

1. Changes from. the standard. control flow should be easier to make.
-. Presently all hypotheses at one level are tried before going down

-to- the next level. The control needed by Auto-Mech is a natural
complement to this - pursue the first reasonable hypothesis.

2. CSRL needs a more flexible facility for determining when to stop
than simply asking the user. System builders may have ideas on how
to do it for specific problems without necessarily being able to
solve the general problm of deciding when. diagnosis is complete.

3. Since CSRL is to be used for building diagnostic experts it should
provide a facility for limited communication between specialists

- ', across the hierarchy, such as a blackboard. Such a facility would
be useful even if CSRL remains a serial language.

Our other problems were the result of things which it would not be appropriate

for CSRL to address since they are outside the scope of classificatory

diagnosis. These include the intelligent data base and. the execution of

typical maintenance procedures prior to diagnosis.

Overall CSRL was a very useful tool. for developing a diagnostic expert

system. It was easy to explain to an expert, the specialists were fairly easy

to write based on protocols, and a partial system could be running quickly for

debugging purposes. CSRL was also easy to use from a programmeros point of

view.

,, Auto-Mach does not verify the validity of establish-refine problem-solving

but it does demonstrate that establish-refine is a viable method for doing

diagnosis. It is a natural way for experts to solve problems. The hypotheses

they consider can be used as specialists within the diagnostic system. The

localization of knowledge proved to be useful for development purposes.

L3
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ABSTRACT Romse (101. proposes that they should represent

Mot f hediagnostic systems that have been siuaio".Th rkof Pi 111 a ctiPonl (II

properly becalled "compiled" knowledge systemi the representation of deep knowledge is a causal
; ~ h "w sne that the knowledge base contains the net * We Propone that with respect to the "Surface

reltioskis btwen smptom ad malfunction causality" modeled in sysem like MYCIN1, the next
hypothees in ce fera. However, often in human deeper level to model causality is the functional
reasoning. am expertes knoledge of how the device representation of devices. * An agent become an
*fumations" is used to &US naw relationships expert in various task& such as diagnosis, design,
during the reasoning process. This depe lee explanation, etc., by compiling appropriate problem
cre, nation which can be processed to yield more solving structures from the functional
compiled diagnostic structures is the Coneo= of representation.
this paper. - Usng the example of an household
busser, us chowr in this paper what a functional In this paper we describe a representational
represntation of a dewice looks like. We also scheme for the functioning of devices and its
indicate the meture of the complation process that utility for compiling an NDZ-like (8,9, 17 1
cam produce the diagnostic expert from this deeper diagnostic expert system. Our focus here is on the
representation. representation; we discuss the compilation in =me

detail in 1151.

* -~ I. Istreduction
2. Comparison with Related Research

Recently the domain of devices has attracted
theoetial s wll a aplie Alremembes [. D kler ad Bown[ 1. 2, 3] have been working

2, 3,4, 13, 14,161. To troubleshoot, modify end on the representation of an agent's knowledge about
moitor devices (eg. nucler power plant, how a device actually functions. This
physiological organ, electronic circuits, Computer representation, which they call "functional", is
software, etc.), it 's necessary for an agent to actually a cansally related sequence of behavioral
reprsent and us the knowledge abOut the states, com of which either belong to the
functioning Of the devices. * Moeover, an agent components or refer to the attributs of the
needs to know the functioning of similar devices in interconnections betwee the components.* They then
order to become an expert in designing a new proceed to discuss the process of acquiring the
device, above "functional* representation from the

structural knowledge of the device. They impose
Referring to the "depth" of knowledge in expert three interesting criteria that such a process, an

system, sart (51 and Kichie CS1 hae euggeted well an the "functional" representation, should
that system with deep knowledge will be able to satisfy - .ey, "w-function-in-structure",
solve problems of significantly greater complexity "wek Causality" and "strong causality."
then the so called surface system. Their rumer"
on deep Va.su*erf ace systems soe to zapture a Our work differs from that of De kLeer and Brown
fairly widespread feeling about the inadequacy of in two aspects: lirstly,our definition Of what
the first generation. expert systems. H owever, in Constitutes a functional representation is
Cbaau&~sea and Mittel [71, it is argued that, different from theirs*. Secondly, while they are
in principle, given any deep model of a doma~in, it concentrating on the acquisition of function from
is possible to compile am expert diagnostic system structure. we wish to understand the process by

S(more specifically en ND-like diagnostic system which an agent uses the functional representation
SIs, 9, 17 1) which is as powrful an the deeper for various problem solving activities, i.e.,

model, but ore efficient then the deeper model f or transform the functional representation into
*-diagnostic purposes. "expert" problem solving structures. H owever,

these apparently different objectives are not an
Alno, there is no general agreement on the form disjoint as they might appear. In fact, we

LA and content of these deep knowledge structures, strongly believe that our functional representation
Sart (51 sunsents that they should model causality Will ultimately satisfy the twin requirements of

*. *by sulti-level systems. while Hichie, following acquirability and transformability into expert



problem so lving structures.

The functional represeuntation of Davis at &I j
hierarchies. Their "infesence rules" and

"simlation rules" enable their "violaced
expctation" approach to troubleshooting. lovever,
their "functional" and "physical" hierarchies
neither differentiate nor relate
* fnction" "strcture-, "behavior", as sumptionh"
and "deeper causal Knowledge " as ours. I r.I

3. A Rpresentational Sche for the Functioning of
Devices Tcc:.T

3.1. The Representational Scheme Figure i-1: A Schematic Diagram of a

our sch ie allows multiplicity of levels i.n Bousehold Buzzer

* functional representation. The topmost level
" describes the functioning of a device in taris of FUNCION

the abtractions of its components. The next level
describes the functioning of these components using The functional specification of a device is

. the abstractions of their subcaponents, and so on. illustrated below by describing one of the
A we shall see later, the hierarchy is not just
functional. The abstractions from the lower level functions of the buzzer.
include, in addition, the states of components as
well an other entities. uNT=IO:

Buzz: TOMAU buzzing(buazer)

At esach level of our functional representation r presed(Us -eItch).
w we propose that there are five significant aspects PRDY!DU assuptioni BY behaviorl

to an agent's knowledge of functioning of devices:
"buzz" is the neoe of the function;

"bussing(buzzer)" denotes the buzing state of the
- S71OCTURZ: that specifies the components zer. "t7" and "t8" are distinguished elments of

(subcomponents) of a device (a component) a component of buzzer (we discuss thi* below).
ad the interconnections between thm. "assumption2" will specify the initial state i.e.,

"7"."tS" are electrically connected (sore about
- FUCTZON: that specifies EAX is the assimptions later). The "31" clause relates the

. response of a device or a component to an function with its behavior i.e., the manner in
eternal or internal stimulus. which the function is accomplished (behavioral

specification is described below). As we shall see
- RATIZOR: that specifies ROW, given a in section 4.2, this- association between function

stimulus, the response is accomplished. and behavior is important at the compilation stage.

- G"UIC KUOULUGI: chnks of deeper
ual knowledge that he been compiled

from various domains to enable the
specification of behavior of devices and The structure of a device (component) is
their components . For esple, a represented using the abstractions of its
specialized version of Kirchoff's law components (subcomponents) and generic relations
from ro domain of electrical circuits. between thn (such as "serially-connected"). As an

illustration consider the structure of the buzzer
- ASSMUPTIGN: under which a behavior is given below:

accomplished.

#e t we describe the roles of these five aspects
in representing the functioning of devices and
their motations. Following De kleer and Brown (1,
21, we shall use the household buser shown in fig.
3-1 to illustrate our idees.

..
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c) We modelI interconnections between
STRUCTUI: components by relations such a

COMPOMSS serially-connactod, 'includes', ae.

5 coil (c5,t,spacsil), Clappe" (t7,t8.spaco2)
IRAflOUB: sorially-connected; (uanual-switch,

battery .coil, clapper),
AIM includes(spacel'spaceZ) .. The behavioral specification of a device

describes the manner in which a function is
ASS7ACTZON-O-COMPOmusM accomplished by "gluing" together the functions of

CCWCIU clapper (Tl.T2,SPACI) components, generic knowledge, assumptions relating
FUCRMCS: mechanical. acouaeic'aagnstic to behavioral alternatives, a&" sub-behaviors. for
STM : elect-commected (Tl,T2). ample, the specification of of 'behaviorl' in

4repeated-iiit(clapper) fig. 3-2 illustrates how the 'buss' function
UV COWGRT discussed above is realized.

Cowox= coil (TIMBPACS)

U1D COH1WU
EM A33SUACTMOUS-0-C~MUCUU!

am STINCTUlt SimAyOR .mbv

tlti..,"Space" are distinguished elements pes U~~-~~)
(terminals) of components ; only between
distinguished elements can relations be defined.
"mechanical". "acoustic". etc., are the urnes of ~-
functions of clapper. Tbese functions ( as well as X
the structure, behavior, generic knowledge and (ootCM"a (t,. to) '*OC*V~~ (tV CO.
assumptions relating to the clapper as well as
other of the Components) are represented at the IN sz rscio MMa~uS.
nezt level of our representation in the same *a&=or OF Clamor (t7. Co. S.aCO
as the banner * The capitalized parameters such ans
11 ,T2,etc., are Local to the associated Component. Uposto-hic (Cla".t)

It is important to note, the following: II S rsr PUC. ACaQAaei
or clamor (Lv. ca. SW82)

a) A cmoet (subcomponent) is specif ied lmrindependent of the representation of the
device (component) which contains it.
More specifically, the specification of soa buan s

a component does not refer to the role
of the component in the composite. Thus

*our representation obeys the "no-
function-in-etructure" principle of De figure 3-2: An Illustration of
kleer and Irowa U. 21. Behavioral Specification

*b) not the behavioral specif ications of We have made use of five conceptually important
components but only the ames of the notations in behavioral specification. They are
functions are carried over to the highe
level. This property is important when described below:

sman agent nsed to replace a

malfunctioning Component by ; a 41

different one. note that neither the IIBY ftname-of-a-behavior>
"intrinsic mechanism" nor the Vcua

model" of Do kleer and Brown 111 .2
distinguishes between function and
behavior as we do.* The "behavioral For example,
description" of Davis at &l [131 and
Davis [141 is similar to our functional Pressed (manual-switch)*
specification. They do not have any I
construct equivalent to our behavioral 11 BY behaviorl
specification. (The significance of
having a behavioral specificati.on will fLect-tonected W 7,t8);
become clear when we discuss it below.) elect-connected (c7ti)}

IL -%
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Thin neaa t.at the stte 51 ca-ses the state a~, applied between tS and t6. This is true as per the
and the details are in another behavioral knowledge chunk called knovlede' when it is
specification ( "beh"iorl"), This relation applied in the context of battery, coil, Clapper
enables the the specification of behavior of a and mnual switch being serially connected, and the
component (or a device) at many levels of detail battery makes voltage available at its terminal.
but still at the level of the component (or (The representation of "luowledge" is discussed

below.) It is through this primitive that the role
device), of generic knowledge in describing a behavior is

r epresented.
2: .1

II 5: uagnetized(space2)
I1 USING FUNCTION <(ame-of-s-function I1
I I O< (component> I1 USING FUNCTION magnetic
Vd II OF clapper(t7,tS,space2)
82 WIE A Usepcioa3

F'or exmple,
"elect-connected(t7,t8)

repeated-bit (clapper)
I I USING FUNCTION acoustic )assumption3" will specify that there exists a
11 OF clappor(ttSspacel) force F such that if apaceZ in magnetized, then the
VS rasulting magnetic force will be rester than

buzzing (buzzer) F P Note the.. "assmptioWn does not specify what is
1, how it is to be realized and so on. The "WIT"

The above notation meas that the state &Z is clause, like *ROVIDED", relates an assumption with
caused from al by making use of a function the state transition. Sover, "WmrE" is different
("acoustic") of the component ( clapper). This from "PRVIDD" since it relates an assumption that
relation makes it possible to &luI the functions of is passed frcm a device (component) to a component
the components together to obtain a behavior. (sub-component) while "PROVIDED" relates the one

from a component (nub-component) to the device
3: (component). A.so, assumptiona related by "VI"

"1 S2 clane can be used to maie a state transition

deterministic.
The above notation means that the gogut will

"equivaLonso" the state sl of a component (or GENERIC MOWLEDGE
subcomponent) with si, the state of a device (or a
component). For ezsmple, as in the specification The generic knowledge specification of a device
of "behaviorl" (ref. to fig. 3-1 "buszing(clapper)" (component) describes all chunks of deeper
is "equivaleuced" with "buzzing(buzzer)". Note knowledge used in its behavioral specification.
chat without this relation, it is impossible to
connect the result of a fun'tio of & component The following is a specification of knowledgel.
(the buzzing of the clapper) with the result of a
function of the device (the buzzing of the buzzer GUUXC UOgL G:
which is the result of its function "buzz").
Without this connection, "behaviori" caot be knowledgel:
claimed to implment the function "buzz" of the voltage-applied (tl,t2)

buzzer, 11 AS-PU kirchoff's-law
I IN-MZ-CONEXT-OF

4: 51 1 I elect-conneceed(tl,3)
i II elect-connected(tl ,4)
II A-P <name-of-e-kaoledge-cbuak>\/V
I ZlI-I1Z-CONU"-OP c one or more voltage-applied (tJ,t4)

of a "relation", "State" or a
i "function of a component" > It is worth noting that the specification of

generic knowledge is contezt-free. The context inoro example, which it is applied is specified in the behavioral
specification (as illustrated above). An we shall

eLect-connected(t7 ,tS) see soon, there is a mechanism ("UUULCES") by
I I which a user task of the functional representationI AS-PU knowledgel Z*-Z-f=-0F knows where to look for the definition of
1I FUSCTO voltage 0 battezy(tl,tZ), rirchoff's law.
II serialy-connected (battery. coil,V clapper~m1a-writh)voltae-mpplned(twc) We would like to draw particular attention to

the notion of GEU C tBOLEDGE in our
representation. This enables us to capture theThis meas that if the terminals t7 and t8 are relation between functional representation and

e electrically connected, then voltage will be deeper causal knowledge. Noreover, without an

L "
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explicit link with suck generic knowledge it is not 4. Compilation of a Diagnostic Import
possible to support the recognition of incorrect

a pplication of suack knowledge during "envisioning" The principal function of the compiler that we
11.2.31. Also it cannot support queries relating shall discuss here is to generate a diagnostic
to the role of such knowledge in expert from the functional representation. Checking
undarstanding~describing.explaining,e., of the the correctness/ consistency of a functional
behavior of devices. representation, optimization of the generated

expeat systm are also significant aspects of the
* ~s~zns.compilation process. Nowever, for vunt of space

we discuss here only the generation of an ND-lika
diagnostic expert. *other aspects of compilation

All assumptions made use of in the behavioral are discussed in [151.
* . specification of a device (component) are described

in ASSUIGIOES as illustrated below with reference

to the clapper . 4.1.* The Structure of the Generated Diagnostic
Expert System

ASSUIUTZN8: DuiXIT~us:As shown in fig. 4-1 * the generated expert is aUVNIIOS:hierarchy of specialists, lack specialist
fl a magntic-force OUR-To uagnetized(space) AN corresponds to a malfunction in the device at a

.2 2- spring-force DU*-TO loaded (spring) certain level of abstraction. For sample, a bad
_% clapper, bad serial connection, ae. Specialists

ASSUIOTIO5l: corresponding to more general or abstract
17 magnetized (space) 7U fli f2 malfunctioning are higher in the hierarchy. for

exepLe,tke toot specialist in fig.4-l corresponds
ASSUIWTZOZ: to a "malfunctioning buzzer".* Its three sub-

- manetied~eece)mu f f2specialists correspond to the following three
No 1 - agnoissd~spce)THENfl f2malfunctions (only the first one is shown in fig.

IND ~ASSUaI wS 4-1):

"spring-force" and "magetic-forces" are I. MTe boaxer do not buzz when the manual
concepts; we discuss below about their definition. switch is pressed.
The primitive "DU-TO" relates a concept with a
state of a component.* 2. A beazing buazer does not stop buzzing

Not tha whuhDhenradgrw 2 saev the manual switch is released.

that a difference between a novice and an expert Li 3. noTh buzzer keeps boozing independent of
that the latter has made explicit all the the state of the Manual switch.
assumptions underlying behavior of devices, their
causal sodal, unlike our functional representation -2very specialist has knowledge to establish the

does sot represent explicitly the role of associated malfunctioning and to refine it by
assumptions in behavior. calling its sub-specialists. The knowledge of a

specialist is in the foum of three types of rules:
confimetory rules, ext locionary rules and

*-recaumandatione. (We Will not discuss
"recoinendations" here since it is concerned with

clearly an agent's knowledge of the functioning optimization of the generated expert.) For
* .of devices will have references to elements of example.

dif ferent domains #*.g., electrical
.,% .*circuits, elctro-mgmetim ,etc.* These references zy elect-connected (tlI .)

are specified in the NIZIUUCU"W part of our voltage-applied (tO)
MM confirm

representational scheme as illustrated below: ?olaeplid tSG) Urjc

*I CS A malfunction is diagnosed top-down by
101 kircheff's-a, elect-connected establishing a specialist and refining the

tUM-TO elect-circuits malfunction represented by it by calling its sub-
fOE magntic-force UM-20 electro-magnetism specialists. This discussion of the structuring

and functioning of the diagnostic expert is grossly
EID INJENCI simplified. More detailed information can be

obtained from S.8 9 1
gote thet we do not yet know how to represent
domains such as "elect-circuits", "electro-
Usgutism",tc.

S..%
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IL Ftemed (moa-vtcW.
'bus~ms; (bazaasr)

11 IRTIAL' .igouw~ (t. c5  IL ep eed-hit (Clapper
IT MrIA I 100C-'e080t§-dt7-to)ceefirs

7 ({elect-coommected (t 7 . to), IT (eiect-cagwescted(t7. co);
'.lee-onete toW 5 'leest-cseeceted(t7. toe))*

cnfim repeatsd-MCt (clapper)
9&S rejctT Sldr

U~~~r rejectref1,

JW1 reject alreject

rigure 4--: A Example of a asuersted
Diagnos tic Expect

N ~ There are three types of malfunctioning and, YuNCTIOM:
Phence three types of speci.alists: buss: TOMKI bazing(buzzee)

IN pressed(uanal-switch)* BY behaiori

1. An&*sp nngt aebe iltd the compiler wull generate a function checker with
The specialiat associated with it is
called an iaUNL jk2kai. the following rule:

%2. A function my not be functioning 17 pressed(mannal-e'witch)* -buzzing(buszer)
correctly. The associated specialist is TM confirm
called a IUESiIU £h26kIL. K.1M reject

3.* A relation between com~ponents may not Then the function checkers generated as above will
hold. For ezomple, the battery, coil be attached to the root specialist. Afterwards the
sod clapper my not be connected compiler, using the "IT" clause, obtains the
serially. Lot us call the specialist behavior associated with each function and compiles
the XMIa~tu £hkiz. it. for sempLe, if the behavior is specified in

the form:

4.2 The Compilation Process sL - > @2 in...... ) an

At the start, the compiler generates the root thou the compiler will generate a met of n-i
specialist. The root specialist needs no knowledge specialists for the function checkers associated
to establish itself. The fact that the ezpert is with the behavior. The rules for then will be:
invoked Leeds automatically to the establishment of
the root specialist. The compiler then processes 17 @1 - 2 TIES confirm
the various functions of the device and generates a ELSE reject
fuction checker corresponding to each function.
For ez 1ple given

17 sn-I - n ThUS confirm
ELSE reject

%.
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For the "buss" function ezample given above, nodes corresponding to the above tranaition. An example
5, 6 and 7 in fig. 4-I will be generated using of an assumption checker is node 4 in fig.4-1.
"behaviorl" in f ig.3-2. Note that the rule

CASE 3:
associated with node 5 should be:

The state transition
17 presed(naa-,witch)"
.{elsct-conncted(t7,tS) ;elect-conectsd(t7,t))* $I

- Tan confirm I I AS-PU knowledgel
* E .SE reject. I I 15-TRE-CON=E -OF s3^s4.. .sn

Sowever, the condition "pressed(mannal-witch)*" is 82
not checked since it is done at node 2, i.e., the
parent of the node 5. will result in a set of sub-specialists with the

Further processing of a behavioral specification rules:

depends on the kind of composition of behavior.

CASE 1: 17 s3 71 coofirm
ELSE reject

Assume that node 5 is generated corresponding to Ii -s4 TZ confirm

the following state transition in fi. 3-2. reject

Presed (aual-switch)*
1I 'aen TEN conf irm
I I BY behavior2 ELSE reject'/

(elect-connected(t7,t8) ; "elect-conncted(t7,t8) )

The above state transition will also result in
compiling Behaviorl as described above, a
attaching the generated specialists to node 5. 1: De &leer, J., Brown, J.5., "Hental

Models of Physical Mechanisms and Their
CASE: 2 Acquisition," ia iguJgitU Ik"1a n#Am3±L &Ar LUlo (ed) J.1. Anderson.,

Let the state transition in fig.3-.corresponding

2: De KZetr, J., Brown, J.S., "Assumptions
. to node 6 in fig.4-1 b : and mbiguities in Mechanistic Mental

Models," tech rapt. CIS 9, Zeroz Palo
{elect-connectsd(t7,c8); "elect-comcted(t7,t8))* Alto Research Centers, 1982.

UING FUNCTION mechanical 3: De Clear, J., grown, J.S., "Foundatious
F 01 clapper(t7,tSspac2) of envisioning," Proceed, of AAAl,

repeated-hit(clapper) 1962.

After generating the node 6 for the above state 4: Kuipear, B., De Kleer and Brown 'ental
".'o:: ,transition, the compiler will look at the function Models', A Critique," TUlIPICS No. 17,

mcaia'in the functional representation ofWorking Papers in Cognitive Science,
the component clapper and compile the behavior Tufts Univ., 1981.
associated with the function. If there is no

._ behavioral specification for the function, node 6 5: Bart, P.S., "Directions for I in the
will be a tip specialist. If there is one for the Eighties," SIJAR? newsletter, no. 79,
function, thuen it will be compiled, and the Jan. 1982.
generated specialists will be attached to nods 6.
U-. f the function of the component is implemented 6: ichie D., "Nigh-road and Low-road
under, say, "ssmsption." and the specif cation of Progrems," AL aU .M 3:1, 1982.
a"ssumptionl" is of the form:

7: Chandrasekaran, B., and Mittel S., "Deep
17 s3 * 94 vs. Compiled Knowledge Approaches to

Diagnostic Problem Solving," Prot,
% then the additional specialist with the rule Second ha"Wa& AL Cunf. ALAi,

Pittsburgh, PA., 1982., revised version
17 @3 ' -s4 MW confirm to appear in I.ZnsaliI jnszmi 2g

.8E reject IILI fiSK Si es 1963.

w " ill be generated and attached to the node 8: Games, F. and Chandrasekaran, B.,
"Knowledge Organisation and Distribution

,



'4 --. -.'... ..- rCr.

for Medical Diagnosis." Trns

.. 4

&A06. lk Man S C, OWt&L, SMC-11:1,

9: Chandraekaran. B., "Decomposition of
Domain Knowledge into Knowledge Sources:
The OX Approach," Proc. of Fourth
National Conf. of Canadian Society for
the Computational Studies Of
Intelligence (CSCSI/ScRIO), 1982.,
Revised in "Towards a Taxonomy of
Problem Solving Typ1,"

IMu WLaVinter/Spring , 1963.

10: Rouse, W.3., and Runt, I.M., "A Fussy
Rule-flsod Model Of Roman Problem
Solving in Fault Diagnosis Task,"
Working Paper, Coord. Science Lab,
Univ. Illinois, Urbana, 1980.

11: Patil, I.S., "causal Representation of
Patient Illness for Electrolyte and Acid
ase Diagnosis," Ph.D. Dissect., TZ-267,

MIT Lab for Computer Science, Cambridge,
Kass., 1961.

L"

12: Pople .E., "Euristic Methods For
Imposing Structures On Ill-Structured
Problem," AKJSjsi~j .~~uia
IAigM ed. by Saolovits, Vestviev,

1962.

13: Davis 1., Shrobe I., Imecher W.,
Vieckert, K., Shirly M., Polit S.,
"Diagnosis Based on Description of
Structure and Function ," atal coo. on
AlL 1962.

14: Davis 1., "Diagnosis via Causal
Reasoning: Paths of Interaction and the
Locality Principle," atnl. conf. on Al

1963.

15: oorthy V.S., and Chandrasekaran 3., "A
functional Representation of Devices an
Compilation of Expert Problem Solving
S ms", Tech. report, Al group, Dept
of Camp ad Into Science, Ohio State
University, Sept.,1983.

16: Cbandrasekaran I., "Ixport System:
atching Techniques to Tasks", Invited

Presentation at the lewyork Univ.
Symposium on "*rtificial Intelligence
Applications for Busines", Nay 1963.

17: Chandrasekaran I., Mittal S.,
"Conceptual Representation of Medical

Knowledge for Diagnosis by Computer: HZ
am related Systm", in AMiAsa .a
.qO a. Vol.,22, Academic PressInc.
193.

ACKOWLDGZrrEs

Research wes supported in part by AFOSR
Grant 82-0255 and NSF Grant MCS 8103480.

6-.. ......... . ... .. . .-.



APPENDIX

To the paper

"A REPRESENTATION FOR THE FUNCTIONING OF DEVICES

THAT SUPPORTS COMPILATION OF EXPERT PROBLEM SOLVING STRUCTURES"

by V.S. Moorthy and B. Chandrasekaran

Details of the functional representation of FUNCTION: buzz of the buzzer

NOTE: We have represented below only the buzzer;
Battery,coil,clapper and manual switch have NOT been represented.

DEVICE buzzer
FUNCTION:

buzz: TOMAKE buzzing (buzzer)
IF pressed (manual-svitch)*
PROVIDED INITIAL elect-connected (t7,t8)
BY behaviorl

"top-buzz:TONAXE -buzzing (buzzer)
.. F -pressed (manual-svitch)

'4 PROVIDED INITIAL buzzing (buzzer)
" BY behavior 5I

SUTUCTURE:
COPONTS:

manual-svitch (tl,t2), battery (t3t4),
coil (t5,t6,spacel), clapper (tT,t8,space2)

RELATIONS:
serially-connected (manual-switch, battery, coil,clapper),
includes (spacel,space2)

ABSTRCTIONS-OF-COMPONETS:
COMPONET clapper (Tl,T2,SPACE)

FUNCTIONS: mechanical, acoustic,magnetic
STATES: elect-connected (TlT2),

repeated-hit (clapper)
COMPONENT coil (TIT2,SPACE)

FUNCTIONS: magnetic
STATES: magnetized (SPACE), voltage-applied(Tl,T2)

CON ONNT manual-switch(Tl ,T2)
FUNCTIONS: connect
STATES: elect-connected (Tl,T2),

U pressed (manual-switch)

COMPONENT battery (Tl,T2)
FUNCTIONS: voltage

a •• .
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BEHAVIOR:

behaviori:

pressed (manual-svitch)*

11I BY behavior2

{elect-connected (t7,t8); elect-connected (t,t8)

IIUSING FUNCTION mechanical OF
II clapper(t7,t8,spacel)

repeated-hit (clapper)

IIUSING FUNCTION acoustic OF
II clapper (t7,tSspace2)

4r,.. - ,

; ,,..-'O

buzzing (clapper)

buzzing (buzzer)

behavior2:

{ pressed (manual-switch)

,'I BY behavior3

• II

elect-connected (t7,tT)

seial-cnece (battery,coil,
I I clappermanual-svitch)

I I U FUNCTION voltage OF battery

-voltage-applied (t5pt6)

lift'
II

11 BY behavior4

It

elect-connected (t7,t)

.- behavior2:--.. V 24'V' '4
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behavior3:

pressed (manual-switch)

IIUSING FUNCTION connect OF
II manual-switch (tl~tZ)

elect-connected (t , t2)

IIAS-PEI know ledge 1fIN-TRE-CONTRZT-OF
II FUNCTION voltage OF battery,

* II erially-connected (batterycoil,
II clapper,manual-svitch)

voltage-applied (t5,t6)

B Y behavior4

eliect-connected (t7,t8)

behavior4: IYl

voltage-applied (0,06)

IIUSING FUNCTION magnetic OF
II coil (t5,t,spacel)

SIRI

magnetized (spacel)

IIAS-PER knovledge2 IN-TU-CONTEIT-OF
II includes (spatel,space2)

V. magnetized (space2)
AII

IIUS33G FUNCTION magnetic OF
II clapper (t7,t8,space2)

LA I

elect-connected (t7 ,t8)

Li:



GENRIC KNOWLEDGE:
knowledgel:

Voltage-applied (tl,t2)

IIAS-PER kirchoff's-law
II IN-TRE-COITEZT-OF
II elect-connected (tlt3),
II elect-connected (t2,t4)

VI
voltage-applied (t3,t4)

2 knowledge2:

magnetized (spacel)

S IA-PER laws-of-space
II IN-TRE-CONEEXT-OF

iI ncludes (spacel,space2)

VI

magnetized (space2)

ASSUMPTIONS:
DE73NITIOIS:

flin magnetic-force DUE-TO magnetized (space)
f2- spring-force DUE-TO loaded (spring)

* assimptioni:
IF magnetized (space) TREN fl > f2

* assumption2:
F -magnetized (space) THEN fl < f2

END-DEVICE buzzer
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EXPET SYSTEMS: MATCHING TECHNIQUES TO TASKS

B Chandrasekaran'
*Departmtent of Computer and Information Science

The Ohio State University
Colmus, OR 43210

,. ... 'ABSTRACT

In this paper an attempt is made to relate the architectures and

do representations for expert systems to the types of tanks for which they are

appropriate. We start with an analysis of the features that characterize an

expert system, and discuss the need for symbolic knowledge structures that

I support qualitative reasoning in the design of expert systems . We consider

:~ rules, logical formulas and frame for representation of expert knowledge. In

particular we provide an analysis of the multiplicity of roles that rules have

I played in different rule-based systems, and emphasize the need to distinguish

between these rules. We proceed to outline our theory of types of expert

N, problem solving and argue that such a taxonomy enables one to characterize

expert system capabilities and help match problem with techniques.

Throughout the paper it is emphasized that the important issue is the nature

of the information processing task in a given task domain, and issues of

formalisms for representation are subordinate to that basic issue.

Research supported by AJOSR Grant 82-0255
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1. Z T STsMs: SWh ARX ?

It is clear that recently artificial intelligence has created enormous

excitement in the comercial marketplace, and one of the sources of this

excitement is the promise of expert systems or knovledge based systems in

solving or assisting in the solution of many practical problems. There is a

widespread feeling that knowlet is the next frontier in the practical

application of computers, and the vell-publicized couuitment of the Japanese

to resemch on and development of a Fifth Generation computer for knowledge

processing has only added to this sense of an impending revolution. The

phrase "expert systemsa evokes all sorts of hopes: From the clerical worker to

. the research scientist in a corporation, each employee is a storehouse of an

enormous mount of knowledge and problem solving capabilities. The syllogism

goes something like, "I need an expert for X, they are hard to find or

expensive, thus I need an expert system for Z." It is clear to most of us

doing research in the field that while the promise of carefully deployed

.7 ~expert systems is indeed high, we are nowhere near the stage where we can hope

' .. to replace all kinds of himan experts with computer-based expert systems. To

take an extreme example, advanced researchers or creative mathematicians

clearly perform knowledge-based expert problem .solving, but equally clearly

the state of the art in expert systems is not up to replacing them with expert

systems. Any attempt to characterize, even if informally, what sorts of

problems are amenable to current techniques -matching techniques to tasks,

if you will - could be very useful.

* A related problem is that, in strict definitional terms, it is hard to be

very precise about what characteristics of a computer program to solve a class
..:

i2".

i::- . -. : -.'i---.- .- : - ; . :- -.- 4- ? . :-"? - -. .. ;- . ..-. . . - .. . : .,: . : .i:4.) - ii.- ,i -. 2,::J



5,. 2

of problems qualify it to be called an expert system? The following

dimensins have ofe beensuggestedasimpot:nt in such a definition.

-Expertise : etil eesr odto sthat an expert

system should have expertise ithdoanndshow expert-level

performance is some aspects of the domain. However, this condition

A is not sufficient. Is a payroll program written in Cobol an expert

system? In some real sense it captures the expertise of an

accountant whose domain knowledge is incorporated in the many

branching decisions made by the logic of the program.

- Search: The intuition that a program must do some search in a space

of possibilities - following the idea that search is an essential

characteristic of intelligent reasoning - is generally useful but

not always valid, because R1 (McDermott, 1982), an expert system

that has been very successful in practical use, does not do any

search in the execution of its main task.

- Uncetainty: While uncertainty in data or knowledge gives may

exert problem domain& (such as. medicine) interesting additional

properties and makes them challenging for the designer of expert

systems, it is not a defining characteristic, since, again using 11

as an example, its knowledge and data do not involve probabilistic

or other types of uncertainty.

-Symbolic knowledge structures: Most expert systems in the Al field

have their domain knowledge in explicitly symbolic form as

collections of facts, rules, frames etc., which are explicitly

manipulated by problem solving or inference mechanisms to produce

answers to questions. This is to be contrasted with mathematical or

a.2
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simulation models or mainly numerical information as its main

knowledge base. However, many well-known expert systems such as

• ',. Internist represent the bulk of their core knowledge in the form of

nuerical relations between entities. As an incidental observation,

we may note that the general emphasis in expert systems work on

* symbolic knowledge structures often elicits another sort of

response. Engineers trained in mathematical modelling techniques

find it difficult to understand why a computer program which

evaluates say a system of complex mathematical equations describing

some process (such as nuclear reaction in a reactor vessel) is not

an expert system - after all, they argue, such a system is an

embodiment of very highly specialized expert knowledge, capable of

providing answers to a nuber of questions. Further there is a

" tendency mong some people in this group to regard Al progrs as

.' "approximate," because the rules that an expert system will use are

* supposed to be only heuristic, while the mathematical models are

exact. (See sec. 3.2 for a discussion of this issue.)

- Explanation capability: Continuing in the vein of searching for

definitional characteristics of expert systems, the idea that such

systems should be able to eln their reasoning is a useful

constraint on the structure and functioning of expert systems, but

as a rule, since the activity of explanation itself is poorly

-. 4 understood, it is not yet certain what structures and functions this

" requirement rules out or permits.

- Other features: Many people in the industrial world have virtually

taken to jgg&jMg expert systems as those that have a knowledge base

.............................
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and a separate inference engine, and that knowledge base in expert

systems should necessarily be in the form of rules. Again, while

rules have been a dominant method for knowledge representation in

many first generation expert systems, many expert systems have used

frame structures (Pauker, Gorry, Kassirer, Schwartz, 1976), or

network structures (Ond, Gaschnig, Hart, 1979). Tn any case, this

emphasis on knowledge representation formalisms often obscures the

more fundamental issues of the content of the computation these

- systems do. For ezample, Stolovits and Pauker (1978) point out that

"-CIC, the system met widely thought of as a prototypical example

of the rule-based approach can be recast as a frame-based system.

which uses procedural attachments to fill the slots in various

frames 2 Taking up the knowledge base/ inference engine separation

issue, it is unlikely that a complete separatiou of knowledge and

inference is viable as a basic principle in the organization of

expert systems. We (Gown and Chandrasekaran, 1981; Chandrasekaran,

1982) as well as, more recently, others (Davis, 1982; Stefik, et al,

1982) have argued that knowledge and its use are likely to be more

strongly intertwined as the difficulties and variety of the tasks

2 There is a general problem in AT of not making clean distinctions between
the basic inoman prs m U& of a computation and the algorithm or
program that carries out this task. Karr (1976) presents arguments for such a
distinction in computational theories of vision. In Gome and Chandrasekaran
(1981) we make analogous argiments in the area of knowledge representation for
problem solving systems. Saying that System A uses rules, while System B uses
networks for knowledge representation says nothing about the nature of the
information processing activities that go on in the two systems: a comparison
at the formalism level ould miss many important aspects of the similarities
and differences that ought to be sought at a higher level. Our discussions
later in the paper regarding rules elaborate on some aspects of this point.

.- - - - - - - - - - -
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the expert systems are called upon to perform increase. (This

argument will be elaborated in Sec. 7 of this paper.)

The point of the foregoing is not to suggest a precise, issue-settling

definition of expert systems, but merely to point to the multiple dimensions
U

along which expert systems can be viewed, and to the need for more careful

- analysis of much of the terminology that is used in discussing expert systems.

"- The major line of argument that we will pursue in this paper can be

outlined as follows. In Sec. 2, we briefly trace the development of the idea

of knowledge-based systems in Al. Sec. 3 is devoted to discussing the

increasing need for symbolic content to expert reasoning as the size and

demands of the task domain increase; i.e, we will analyze why a complete

mathematical model of the situation, even if available, will not meet many of

" the demands placed on expert reasoning. In Sec. 4, we discuss the several

distinct senses and roles that the notion of rules can play and have played in

*" expert systems, and how a failure to keep these separate can cause a great

deal of confusion. In Sec. 5, we briefly discuss logic-based and frame-based

representations. In Sec. 6, we discuss the need for organization of knowledge

for effective use, and in Sec. 7, we argue that further organizational

M constructs, such as oncelts and ye& 2f problem solig are needed both to

construct more powerful expert systems, and to characterize their

capabilities. This will also have the side effect of emphasizing the

increasing need not to separate knowledge bases and inference machineries. We

will also provide in this section two examples of reneric problem-solving

types, and show how each type of problem-solving induces an organization of

iknowledge in the form of a cooperating comunity of "specialists" engaged in

4j.

°.... .. ..
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that problem solving type. At this point, we will be able to discuss what

sorts of problems can be handled by "compiled" structures and what sorts need

"deeper" problem solving. In that context we will discuss the issues related

to the so-called causal modeling problem. This will help us present a

discussion of the the issues surrounding the degree of understandinx that

expert systems nay need to have about the domain. The overall flow of the

discussion is in the direction of the evolution of expert systems from

nmerical programs to highly organized symbolic structures engaged in distinct

types of problem-solving and communicating with one another.

An admission is in order at this point. The title is more ambitious than

what we will be able to accomplish in this paper. A really satisfactory

account must await a better overall theory of problem solving than we have at

present. Even an incomplete theory such as the one presented in Sec. 7 is

capable of providing a framework for characterizing capabilities of expert

systems in generic terms. Thus the paper should be viewed as stating a

position on the sorts of theories that might help us characterize in powerful

ways how the "engineering" of knowledge ight rest on a more systematic

understanding.

* . .... . -- - - ." " " ., ". .
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"" 21. QE UN The 01 sOULUDGI-IASID SUySsMI

A historic reminder may be useful to clarify the term, "knowledge-based."

This phrase, in the context of Al systems, arose in response to a recognition,

p ainly in the pioneering work of Feigenbaum and his associates in the early to

mid-70's, that much of the power of experts in problem solving in their

domains arose from a large nmber of rule-like pieces of domain knowledge

which helped constrain the problem solving effort and direct it towards

potentially useful intermediate hypotheses. These pieces of knowledge were

domain-specific in the sense that they were not couched in terms of general

principles or heuristics which could be instantiated within each domain, but

. : rather were directly in the form of appropriate actions to try in various

situations. The situations corresponded to partial descriptions stated in

I iterms of domain features . This hypothesis about the source of expert problem

solving power was in contrast to the previous emphasis in problem solvi

research on powerful enemal principles of reasoning which would work on

Sdifferent dam-an representations to produce solutions for each domain. Thus

the m anis h of the General Problem Solver program (Newell and

Simon, 1972) is a general purpose heuristic, which would attempt to produce

solutions for different problems by working on the respective problem

representations. On the other hand, a piece of knowledge like, "When

considering liver diseases, if the patient has been exposed to certain

-. chemicals, consider hepatitis," is a domain-specific heuristic which the human

expert was said to use directly.

The paradigm for knowledge-based systems that was elaborated consisted of
d

extracting from the human experts a large number of such rules for each domain

P. "
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and creating a knowledge-base with such rules. It was generally assumed as

part of the paradigm that the rule-using (i.e., reasoning) machinery, was not

the source of problem solving power, but rather the rules in the knowledge

base. lance the slogan, "In Knowledge Lies the Power."

The word "knowledge" in "knowledge base systems" is used in a rather

special sense. It is meant to refer to the knowledge an expert problem solver

in a domain was posited to have which gives a great deal of efficiency to the

problem solving effort. The alternative against which this position is staked.-

is one in which complex problem solving machineries are posited to operate on

a combination of basic knowledge that defines the domain with various forms of

general and coin sense knowledge. Thus the underlying premise behind much

* of the AZ work on expert systems is that once the body of expertise is built

up, expert reasoning can proceed without any need to invoke the general world

and cinon sense knowledge structures.* If such a decomposition were not in

principle possible, then the developeent of expert systems will have to await

the solution of the store general problem of common sense reasoning and general

world knowledge structures. Meht portion of expert problem solving in a given -

domain can be captured in this manner is an empirical question, but experience

indicates that there is a nontrivial subset of expert problem solving in

important domains that can be captured in this manner. 'This decoupling of

- como sense and general purpose reasoning from domain expertise is also the

explanation for the rather paradoxical situation in Al where we have programs

which display, e.g., exprt-like medical diagnostic capabilities while the

field is still some distance from capturing most of the intellectual
I,

activities that children do with ease.

r We will argue later in the paper that while many first generation expert
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systems have been successful in relatively simple problems vith this approach

Swhich lays relatively greater emphasis on heuristic knowledge specific to the

domain at the expense of the problem solving aspects, the next generation of

research in this area a- s well as application systems - will be bringing

back an increased emphasis on the latter.

, 3M f ]UnCAL TO SMM~MC VODLENG O1 I3RftIS

In this section we will provide two sets of reasons why symbolic

structures become necessary to support decision-making. By considering the

Sexample of usltiariate prediction, we will suggest that certain kinds of

computational problems are alleviated by multiple-level symbolic structures.

In the next subsection, we will argue that certain kinds of decisions cannot

p be made puzrely within a numerical model however complete it may be in

principle.

34 0 hitariate Classification

There is an ubiquitous but conceptually simple class of problems in

decision-making which can often be typically modeled as mapping a multivariate

state vector to a set of discrete categorical states. The classical pattern

classification paradigm deals with this class of problems. There are many

S. application domains in which such problems arise locally, and domain experts

may be called upon to perform such a classificatory task as part of a larger

* -problem--solving effort. Classifying weather conditions based on a number of

measurements and predicting the presence or absence of certain

4U pathophysiological conditions on the basis of a vector of numerical predictor

variables are examples of this task. Often, once the predictor variables
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themselves are chosen in consultation with the experts, and vhen the state

vector is of modest dimensionality (in the order of 10's), a discriminant type 4
* ~..

of analysis can be as good as or better than human experts. Much theoretical

effort in pattern recognition notwithstanding, experience in this type of task

was that this is an example where pover came from expert choice of the

variables, rather than in the complexity of the discriminants themselves. But

when the diaensionality of the state vector gets very large this approach has

*serious problems both in one's ability to compute the discriminant as well as

in the sensitivity of the decision to small changes. Using the medical

example earlier, the totality of the medical diagnostic problem can be

formally viewed as a mapping from a (very large) vector of manifestations to a

(again quite large) set of named diseases. What works very well locally,

i.e., for state vectors of low dimensionality and few decision states,

deteriorates rapidly when the sizes get large. It doesn't matter which sort

of discriminant one uses: statistical ones or perceptron-like threshold

devices. The camputational problems in the statistical case are described

well in Szolovits and Pauker (1978). Corresponding difficulties, especially

those relating to sensitivity issues, for perceptron-like devices are

discussed by Minsky and aapert a969).

One approach to overcoming the above computational problems is to

introduce multiple lauaer of decisions. Instead of one classification

function from say a 200-dimensional state vector, the problem can be broken

into groups of (possibly overlapping) state vectors of the order of 10"s, each

of which providing a small number of discrete values as local mappings.

Typically these groupings will correspond to potentially meaningful

9 .. . . . . .... .. 4- . . . ' - . ..
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intermediate entities, so that one can interpret each grouping as computing a

Ssymbolic abstraction corresponding to an intermediate concept At the second

layer, the outputs of each of these can be grouped together in a similar

unter and the process repeated. This is precisely what Signature Tables of

. Samuel (1967), did in transforming a description of a checker board

configuration into a classification in terms how good the board was for a

player. Each stage of the abstraction is computationally simple. An

important point to notice is that a shift away from nuerical precision

towards discretiation and symbolixation is taking place here in capturing

ezpertise.

" 3.2. 7m681 Nedels Ts symbeLic Knowledge Structures

Even if one had a complete mathematical model of a situation, that by

itself is not often sufficient for many important tasks. All the numerical

values of the various state variables will still need to be itrreted.

identifying interesting and potentially significant states from the initial

conditions requires su .izi reasoning rather than a complete mathematical

simulation. To take a pedagogically effective but fanciful ezastple, consider

a household robot watching its master carelessly move his arm towards the edge

Sof a table where sits a glass full of wine. In theory a complete mathematical

,*- equation of the arm and all the objects in the room including the volume of

wine is possible. But the most detailed numerical solution of this will still

only give values for a number of state variables. It still takes further

reasoning to interpret this series of values and arrive at a simple comon

61 sense level statement, viz., "the arm will hit the wine glass and wine will

%7,r
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spill on the carpet." On the other hand the aim of "naive physics" models is

to support qualitative reasoning that can arrive at such conclusions readily. .
The reason why a complete numerical solution is not enough, i.e., why the

above symbolic conclusion ought to be reached by the robot is that its own

knowledge of available actions is more appropriately indexed by symbolic

abstractions as "spilled wine," rather than by the numerical values of all

ranges of relevant state variables in the environment.j

Thus when faced with reasoning tasks involving complex systems, both

humnan experts as well an expert systems are necessarily compelled to deal with

symbolic knowledge structures, whether or not complete mathmatical models may

in principle be available. Human experts (as well as Al expert systems) may,

at specific points during their qualitative reasoning, svitch to a local

formal analysis, such as a medical specialist using formulas or equations to

decide which side of the acid/base balance a patient may be in, but this

formal analysis is at the overall control* of a symbolic reasoning system. It

is the symbolic knowledge and problem solving structures that are of central

interest to the science and technology of AI.

4. Off MK R= OF EDL= Iff UUL-IS8D SYSTEM

As anyone with even a cursory knowledge of expert systems literature

would know, the most dominant form of symbolic knowledge in the first

generation of expert systems has been rules.* In our view, the idea of rules

as a formalism for encoding knowledge comes from at least three distinct

traditions, and a failure to distinguish between the different senses implied

by them is often a great source of misunderstanding. Let us list the three
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4,. Rule System as uuvezsal* Computing Systm

It is well-known that Post productions as vell as Harkov Algorithms, both

of which are rulebased formalism are examples of universal computation

system. Any computer program, including an expert system, can be encoded in

one of these rule systems with only some minimal constraints on the

interpreter. In this sense of the term, the rule-based approach becomes a

__razi n technoloys . Some of the rules in almost every major rule-based

system perform such a purely programmin role. For example, rules in 3l

(McDermott, 1982) which set contexts can, in another representation, be simply

m viewed as a call for a module which contains a block of knowledge relevant to

that context. Netaruleas (Davis, 1976) can also be viewed as attempts to

| enable the specification of control behavior in a rule-based programing

Ui system. Not all algorithms can be equally naturally encoded in rule

, .-. "formalisms, however. Thus often expert system designers woo build rule-based

systns complain of frustrations they face when they have to come up with

rules to make the *yem= have good control behavior, or to express all domain

knowledge in rule form; i.e., they are not encoding "domain knowledge" as much

- as doing programming &.& rule-eat.m.

Wether the rule-based approach is a good programming technology for an

expert task depends on both whether the necessary control behavior as well as

the *facts of the domain" can be most naturally represented in rule form. In

- .some domains there is a 201/801 effect - i.e., a large percentage of the
domain knowledge may appear to be capturable by a relatively small number of

,. rules, but a rapid growth in the nmber of rules required sets in if one

. attempts to capture more and more of the domain knowledge (McDermott, 1982).
i... f.

m

I4 -% "+.
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4.2. les as in "hles-of-Mhub

The comon sense notion of rules is one of an approximate, quick guide to

action, a computationally less expensive alternative to real thinking,

adequate for most occasions, but still with potential pitfalls. A related

notion is that of a rule as something that captures a relationship which is

2c- only statistically valid, or a relationship whose causal antecedents are

poorly understood. Rules in medical diagnosis systems of the form, "If male

and findings z, y, z, assign k units of evidence to hypothesis I," are of this

type, where some statistical differential between the sexes in the likelihood

of having a certain disease night be used.

This sense of rules is often the basis of concerns that rule-based

..1 approaches are "shallow" and for hard problems "causal" models are needed.

It ought to be emphasized that, this comon sense notion notwithstanding,

the fact that an expert system is rule-based should not necessarily imply that

it is engaged in shallow reasoning, or that it is using knowledge of only

approximate validity. For example, Rl uses rules which are perfectly sound

pieces of knowledge about the domain of computer system configuration. To the

extent that any computer program can be written in a rule-based computational

framework, the shallow vs. deep characterization does not arise from its rule

form, but from the character of the rules.

-po
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4.3* lales as Cognitive lnits

The third stream of ideas relating to the prominence of rules in expert
systems is the idea, due to Newell (1983), of rules as the basic form of knowledge

formation in the hman short-term memory. In this theory rules become the

3 '. basic building blocks of I n knowledge structures. This sense of rules

" gives rule-based systems an aura of legitimacy as models oL ineUjlglbSL. But

we feel that one should be very cautious about making this connection, even

- ** ;¢though it seems a natural one in the light of the fact that expert systems are

a branch of artificial intg ence. This interpretation is neither necessary

nor sufficient for the role of rules in expert systems. It is not necessary

because, while Al progras may advantageously model huan thought at some

level of abstraction, it is not obvious that it should do so at the level of

knowledge formation in short-term m m y, especially for capturing expert

-. +i problea-solving performance. It is not sufficient because even if rules were

the basic units of cognition. a numnber of further constructs are needed to

* account for their organization into bigher level units such as concepts, and

for their interaction with problem solving.

4.4. es Are Isle-aasd Systms AppxWiate?

The term "rule-based system" has coqe to mean an expert system which has

.- a knowledge base of rules and a problem solver - such as a forward-chaining

system or a backward-chaining system, or a production system controller such

as OPS5 (Forgy & McDermott, 1977) - that uses the knowledge base to make

inferences. It is conceptually important to keep in mind that the use of

rules as a representation device does not necessarily force one to use the

Li.-Y

° J
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rule-based system architecture mentioned above, i.e., rules can be used for

expert system design in significantly different architectures. MDX

(Chandrasekaran & Hittal, 1983), eog., has some of its medical knowledge in

the form of rules, but it is organized as a hierarchical collection of

Wspecilists." We shall discuss this system later in the paper. The remarks

that follow apply to the use of rules in the standard rule-based system

architectures.

Because the problem solver (or, the inference engine, as it has come to

be called) is itself free of knowledge, controlling the problem solving

process often involves placing more or less complex rules for control purposes

in the knowledge base itself. This is the "programing technology" sense of

the use of rule based systems that was mentioned earlier. Normially, the

rule-based architecture mentioned above works quite well when relatively

little omlz couplin between rules exists in solving problems, or the rules

can be implicitly chunked into groups with little local interaction between

rules in different chunks. 1 is an example where there is a virtual chunking

of rules for subtasks, and the. reasoning proceeds in a relatively direct and

focused way. In general, however, when the global reasoning requirements of

the task cannot be conceptualized as a series of linear local decisions, the

rule-based systems of the simple architecture results in significant "focus"

problems, i.e., since the problem solver does not have a notion of purposes at

different levels of abstraction, there are often problems in maintaining

coherent lines of thought. Focus needs maintenance of multiple layers of

contexts, goals and plans. We shall discuss later how alternative

architectures may be conceived for better focus in problem solving. These

I% .
'

% .. . . . . . + , . . . .
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architectures will begin to erase the separation of knowledge base from the

I inference machinery.

There is one pragmatic aspect of rule-based approaches to expert system

- design that is important. Since only certain kinds of expertise have natural

U expression as rules, a rule-based approach may encourage a false feeling of

security in capturing expertise. The human expert often may not bring up

expertise hard to express in that form. The 20%/80Z phenomenon is worth

recalling here: i.e., as the most rule-like pieces of knowledge get encoded,

there may be an acceptable initial performance, but as more knowledge that is

not naturally rule-like is being acquired, the size of the rule base may grow

very rapidly.

5.M LO=I AID IIAMM AS 3.RUtWTAIO FOWAULIM

The architecture of systems using some sort of a logical formalism for

knowledge representation is generally similar to that of the rule-based

p systems discussed earlier. That is, there are a knowledge base of formulas in

somne logical formalism, and an inference machinery that uses the formulas to

make further inferences.* But since there are several forms of logic with

4"

status as theoretically more rigorous for knowledge representation purposes.

In practical term, however, the existence of rigorous semantics is not always

helpful, since the semantics are often not at the right level of abstraction;

* - e.g., it is of ten difficult to incorporate context-dependent inference

-, strategies in logic-based systems. If one were to model, say, reasoning in

Li arithmetic, one could represent domain knowledge in the form of axioms, and

* ase a variety of inference machineries to derive new theorems. However, the
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computational complexity of such systems tends to be impractical even for

relatively simple axiomatic system. Even in such domains where in theory

powerful axiom systems exist, capturing the effectiveness of human reasoning

is an open research area. On the other hand, in tasks where the inference

chains are relatively shallow, i.e, the discovery of the solution does not

involve search in a large space, the logic representation may be more

* practical. Analogous to our remarks regarding the appropriateness of

rule-based systems when there is an implicit structure to the task that can be

mapped into chunking of rules, in logic-based systems also it is possible to

create a similar subtasking structure that can keep the complexity of

- inference low.

To our mind, both the logic-based architectures and the rule-based

architectures have surprising similarities in some dimensions; in both of

them, the architecture separates a knowledge base from mechanisms that use the

knowledge. In both cases, this results in an increasing need to place in the

knowledge base more and more control-type knowledge - the representations

inceasingly become programing technologies rather than perspicuous encodings

of problem solving activity. Because of an inability at that level to specify

complex structures such as 4ontexzts and goal hierarchies, the approaches are

subject to problems of focus in reasoning.

Control of problem solving requires, in our opinion, ortang, knowledge

into chunks, and invoking portions of the knowledge structures and operating

on them in a flexible, context-dependent manner. The knowledge representation

approach in I that first emphasized organization in the form of structured

units was that of fras (Minsky, 1975). Frames are especially useful in

organizing a problem solver's "what" knowledge- knowledge about objects,L1
....*-* * * *. ---. ... .. , .... - .*....*",
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e~.-in such a vay that efficiency in storage as weil as inference can be

maintained. Assuming some familiarity on the part of the reader with the

to hiseffciecy.Bascaly, frme f aconcept being a structured

stereotype, suho h nweg a estored as "defaults," and only the

information corresponding to differences from the default value needs to be

explicitly stored. For exmltedfutvalue of the number of walls for

a room is 4, the knowledge of the system about a particular room does not have

to explicitly store this, unless it is an exception, e.g., it is a 5-wvalled

rooms

A second benefit of organizing one's knowledge of objects in the form of

*frame structures is that one can create frume hierarchies, and let much of the

*knowledge about particular objects be inherited from information stored at the

class level. This again makes for great economy of storage. For instance,

the *purpose" slots of a bedroomn and a living room may be different, but the

* parts that are coou to them, e.g., typically all room have four walls, a

ceiling etc., can be stored at the level of the 'room" frame, and inherited as

L needed at the "bedroom" or "living room" level.

- A third mechanism that makes frame structures very useful i-i expert

systems is the possibility of embedding procedures in the frames so that

certain inferences can be performed as appropriate for the conceptual context.

fl~ This, as can be seen, is a move away from the rule-based system architecture,

where the inference mechanisms were divorced from the knowledge base.

Becamse of these three properties, frame systems are very useful for

~.4 Ucapturing one broad class of problem solving activity, viz., one where the

basic task can be formulated as one of main inferencs aboutL objecs. h
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MIM one'. knaxledit2 related objects elseher iastructure, Thus a

whole class of progrming styles called "object-oriented" progriming has

arisen which has conceptual kinship with the notion of frames.

Zven though many knowledge-base systems follow the popular architecture

of a knowledge base (generally of rules, but many times of other forms:

networks in Prospector, frames in Pip) and an inference engine,3 often they

have further interqal architectures, but which are implicit in the sense that

they are accomplished, as mentioned in an earlier section, by using

progriming techniques (again, typically using rules to specify conditions for

transfer to the module) to achieve some degree of modularization of the

knowledge into groups. Before we discuss this, however, some account of the

need for this sort of organization is called for.

Men the nmber of domain rules in the knowledge base is large, typically

several rules will *fire," i.e., their left hand sides will match the state of

the data. Since the inference machinery (because in the standard architecture

it is deliberately kept domain-independent) does not have the domain knowledge
s8..

to choose among the, either some sort of syntactic conflict-resolution

-chanims need to be used (such as the technique of R1 which chooses that

rule whose conditions strictly subsume those of a contending rule), or all of

then will need to be tried. The latter option has the potential for

combinatorial explosion. Most systems attempt to cope with this problem by

3 1e will argue in Sec. 7 against this separation but for our inediate
purposes that is not important.

. . .-.'
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% . .

creating "contexts." which help specify a small set of rules in the base as

I.. candidates to be considered for notching. For ezample, each subtask in R1

creates a context and only rules relevant to that subtask are considered for

matching. This technique essentially decomposes the rule base (except for the

rules which effectuate the transfer from module to module) into a umber of

virtual modules, each for a subtask. Prospector (which is a geological

.- .' consultation system, (Duda et al, 1979)), while not a rule-based system

explicitly,4 also organizes its knowledge in the form of "models," each model

corresponding to a classification hypothesis about the geological make-up. In a

sense, each model is a Ospecialist' in that hypothesis. Metarules (Davis,

1976) have been proposed as a special class of rules to embody 'control

knowledge.' These also play the role of decomposing the knowledge base into

g portions that are relevant for classes of situations. Without some such

attempt at organization, the problm solving process will be generally be very

ufocused, and serious control problm will arise.

All the above organizational devices were IigiL and are subject to

the constraints of the rule formaliss on the one hand, and the uniformity of

the inference procedure on the other. The uniformity of the inference

machinery makes it difficult to arrange for different subtaska during

r reasoning to oploit different ways of going about using the knowledge. Again

it is worth eaphasizing that the issue is not one of the computational

sufficiency of the rule mechanism, but one of naturalness and conceptual

adequacy.

4 but the centr of the network representation can be translated into rule

form in a straightforward way

77.
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Our owu work (e.g, (Chandrasakaran, 1983), which gives an overview of our

activity) has been directed toward the development of a thoical basis of

kaeitega aniation for expert probleam solving. We will outline some

* aspects of this theory in the next section.

-ft 7* C AIM PROBLU STLIXG TM AS O3AEU ,A CESMCMS

To restate a point from the last section: Even the implicit

nodularization of the knowledge base due to various context-setting mechanisms

is not always sufficient when the task domain consists of subtasks which night

differ from each other in the natur of the problem solving, i.e., the gs of

knowledge that is required for that subtask. The work to be discussed has

been directed toward elaborating a framework in which different generic types

of problei solving can be related to the types of knowledge organizations

required for then.

7.A1. Generic Tasgs

. The theory proposes that there are well-defined generic tasks each of

which calls for a certain organizational and probleam solving structure. We
have identified several such generic tasks from our work in the domains of

"* . medicine and reasoning about engineered systems.

The cLassificatogy task that is at the core of medical diagnosis, i.e.,

the task which classifies a complex case description as a node in the disease

hierarchy is an example of such a generic task. It is generic because it is a

component of many real world problem solving situations. For example, a

tax-advising expert program night go through a stage of classifying the user

as a particular I= of taxpayer before invoking strategies that may be

.-
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appropriate for that class of taxpayer. We have already discussed in Sec. 3

Ssiapler versions of this task. The problem solving for this task, as

* * .implemented in our medical diagnosis system, MDX, will be considered in Sec.

7. 1. 1.

Another example of a generic task is what we call a WHRI-type (for "What

Will Happen If") reasoning which attmpts to derive the consequences of an

action that might be taken on a complex system. Such a task is useful as a

* subtask in an expert system that trouble-shoots and repairs a complex system

where it may be useful to reason out the consequences of a proposed corrective

action.

-- A third type is a form of knowlede-directed associative memory that

helps retrieve information by reasoning about other related information; we

have used this type of problem solving in an intelligent data base systen,

P&2RC (Nittal and Chandrasekaran, 1980). A fourth type is a form of plan

synthesis, which we are using to build an expert systm for mechanical design

(Brown and Chandrasekaran, 1983). It is clear that there are many more such

generic tasks, and it is part of our research program to identify more of

~ ' them.

opA& 13221&M gLL identifying, 13k tasks& gives £~S& LA
fra rk ba cte e U& k iii L j3 ee= smstoewa. If a real world

task can be decomposed into a number of generic tasks for each of which we

know how to build a reasoning systaem, then there will be a basis for

, concluding that the task domain can be successfully tackled by an expert system.

In the next two subsections, we will discuss in greater detail, but still

Lai in schematic terms, how knowledge can be organized and problem solving can be

accomplished for two of the above generic tasks. Cited references can be
,'.
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consulted both for more details on these tasks, as veil as for information on

the other two problem solving types that we omit here due to space
. "

limitations.

7.1.1. The ClassificatorT Taq,

As mentioned earlier, the task is the identification of a case

description with a specific node in a pre-determined diagnostic hierarchy.

For the purpose of current discussion let us assue that all the data that can

be obtained are already there, i.e., the additional problem of launching

ezplorato 7ry procedures such as ordering new tests etc. does not ezist. The

following brief account is a sary of the more detailed account given in

Games and Chadrasekaran (1981) of diagnostic probleo-solving.

Let us imagine that corresponding to each node of the classification

hierarchy alluded to earlier we identify a "concept." The total diagnostic

knowledge is then distributed through the conceptual nodes of the hierarchy in

a specific manner to be discussed shortly. The problem-solving for this task

will be performed top down, i.e., the top-most concept will first get control

of the case, then control will. pass to an appropriate successor concept, and

so on. In the nedical emmple, a fragment of. such a hierarchy might be as

-'. •shown in Figure 1.

internist

Liver Heart

He0l itis Jaundice

Figure 1. Fragment of a classificatory hierarchy

• ,_ ' . - '. ," **:.- • ".-, -, -. ' -," " - ." .**." . -*."* *"-.."., ,"." "," -,., . -. * " :-.*'* -' .
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*-M ore general classificatory concepts are higher in the structure, while more

Sparticular ones are lower in the hierarchy. It is as if 11TERNIST first

establishes that there is in fact a disease, then LITM establishes that the

case at hand is a liver disease, while say HART etc. reject the case as being

not in their domain. After this level, JAUNDICE may establish itself and so

on*

b The problem-solving that goes on in such a structure is diribut. The

problem-solving regie that is implicit in the structure can be characterized

as an 'Ntablish-rtfine type. That is, each concept first tries to establish

%" or reject itself. If it succeeds in establishing itself, the ref inement

process consists of seeing which of & successors can establish itself. The
.a

. i.p

•~ -". sway in which each concept (or "specialist') attempts to do the

establish-refine reasoning say vary from domain to domain. In medicine it may

often be accomplished by using knowledge in the form of a collection of rules,

S.sme of which look for evidence for the hypothesis, some for counter evidence,

and others which carry information about how to combine them for a finalpc conclusion. In reasoning about electrical circuits on the other hand it may

be more appropriate to represent the establish-refine activity in the form of

I ' ... . , - , ,, . . • , . .- . . . . , . .- ' - .. . . . . - . . . . . .
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functional knowledge about specific modules. (That is, performance of a

genrictask may require solution of some problem of a different type as a

subtask.)

In our medical diasnosis systen MDX, each of the concepts in the

classification hierarchy has "how-to" knowledge in it in the form of a

collection of diamsi rules. These rules are of the form: <symptoms>

- > <concept in hierarchy>, e.g., "If high SGOT, add n units of evidence in

favor of choletasis." Because of the fact that when a concept rules itself

out from relevance to a case, all its successors also get ruled out, large

portions of the diagnostic knowledge structure never get ezercised. On the

other hand, when a concept is properly invoked, a small, highly relevant set

of rules comes into play.

Each concept, as mentioned, has several clusters of rules: confimnatory

rules, exclusionary rules, and perhaps some recoendation rules. The

evidence for coufirmation and exclusion can be suitably weighted and combined

to arrive at a conclusion to establish, reject or suspend it. The last

mentioned situation say arise if there is not sufficient data to make a

decision. Rsconendation rules are further optimization devices to reduce the

work of the subconcepts. Further discussion of this type of rules is not

necessary for our current Purpose.
-. •

The concepts in the hierarchy are clearly not a static collection of

knowledge. They are active in problem-solving. They also have knowledge only

about establishing or rejecting the relevance of that conceptual entity. Thus

they my be termed specialists," in particular, "diagnostic specialists." The

entire collection of specialists engages in distributed problem-solving.

The above account of diagnostic problan-solving is quite incomplete. We

o . * . * *' '. .~
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have not indicated how ultiple diseases can be handled within the framework

_ above, in particular when a patient has a disease secondary to another

disease. Gome has developed a theory of diagnostic problem-solving which

enables the specialists in the diagnostic hierarchy to comnicate the results

of their analysis to each other by mans of a blakbur and how the

problm-solving by different specialists can be coordinated. Similarly, how

the specialists combine the uncertainties of medical data and diagnostic

knowledge to arrive at a relatively robust conclusion about establishing or

rejecting a concept is an important issue, for a discussion of which we refer

the reader to Chandrasekaran, Mittal and Smith (1982).

The points to notice here are the following. The inference engine is

- -tuned for the classificatory task, and the control transfer from specialist to

specialist is implicit in the hierarchical conceptual structure itself. One

could view the inference machinery as *ambedded" in each of the concepts

*2 " directly, thus giving the sense that the concepts are "specialists."

J 7.1.2. Ubae-Wll-hanuen-lf (11) or Conseauence Finding

xamples of this type of reasoning are: *What will happen if valve A is

closed in this power plant when the boiler is under high pressure?"; "What

will happen if drug A is administered when both hepatitis and arthritis are

known to be present?* Questions such as this can be surprisingly comples to

answer since formally it involves tracing a path in a potentially large state

space. Of course what makes it possible in practice to trace this path is

domain knowledge which constrains the possibilities in an efficient way.

U The problam-solving involved, and correspondingly the use of knowledge in

•. " "this process, are different from that of diagnosis. For one thing, many of

'.. -S. . . . . ...- .•.- -.. ,....., . ..---.- :- . .--
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the Pieces Of knowledge for the two tanks are completely different.* For

ezple, consider answering the question in the automobile mechanic's domain:

"1hat will happen if the engine gets hot?" Looking at all the diagnostic rules

of the form, "hot engine -> <malfunction>" will not be adequate, since

<malfunction> in the above rules is the caus of the hot engine, while the
',p

consequence finding process looks for the effects of the hot engine.

.1 Formally, if we regard the underlying knowledge as a network connected by

- cause-effect links, where from each node multiple cause links as well as

effect links emanate, we see that the search processes are different in the

two instances of diagnosis and consoquence-finding. The diagnostic concepts

that typically help to provide foc La and constrain search in the pursuit of

correct causes will thus be different from the WINH concepts needed for the

pursuit of correct effects.

The embedded problm -solving is also correspondingly different. We

propose that the appropriate language in which to express the

consequence-finding rules is in term of gagcagj.L- To elaborate:

- 1. Mil-condition is first understood as a state change in a

subsystem.

- 2. Rules are available which have the form "<state change in

subsystei> will result in <state change in subsystn>'. Just as in

the case of the diagnosis problem, there are thousands of rules in

the case of any nontrivial domain. Again, following the diagnostic

"-..'- paradigm we have already set, we propose that these rules be

associated with oo.ajl vecils. Thus typically all the

state change rules whose left hand side deals with a subsystem will

be aggregated in the specialist for that subsystem, and the right

-A ' .
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band side of those rules will refer to the state changes of the

imdiatey affect systsas.

Again we propose that typically the specialists be organized

hierarchically, so that a subsystem specialist, given a state change to it,

determines by knowledge-based reasoning the state changes of the immediately

larger system of which it is a part and calls that specialist with the

information determined by it. This process will be repeated until the state

change(s) for the overall systeam, i.e., at the most general relevant level of

abstraction, are determined. This form of organization of the rules should

provide a great deal of focus to the reasoning process.

" An Illustrative Ixample.

_.I Consider the question, in the domain of automobile mechanics, "VWIX there

is a leak in the radiator when the engine is running?" We suggest the

specialists are to be organized as in Figure 2 :

"'"

- ~~ysmitSs

iF
COD

.I Fiu e 2. Ezm le of Wi , z o ucpt herarchy
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The internal states that the radLaJg fluid nbsystem night recognize may be

partially listed as follows: (leaks/no leaks, rust build-up, total amount of

water,*.*. ); similarly, the In subsyste specialist might recognize states

(beut/straight fan blades, loose/tight/disconnected fan belt,...). The

S"-Una uxuM ssystem itself need not recognize states to this degree of

detail; being a specialist at a somewhat higher level of abstraction it will

recognize states such as (fluid flow rate, cooling-air flow rate...etc.}. Let

us say that the radiator fluid specialist has, among others, the following

rules. The rules are typically of the form:

<internal state change> - > <supersyst m state change>

leak in the radiator - > reduced fluid flow-rate

high rust in the pipes - > reduced fluid flow-rate

no antifreeze in the water and very cold weather -> zero fluid
flow etc.

. " I ., 5", '.,". " ", " ".. ....... . ..- .. ...,- .-'.. . *.-" - f. -...: +". . '.
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° °The cooling system specialist might have rules of the form:

low fluid-flow rate and engine running - > engine state hot

low air-flow rate and engine running - > engine state hot

Again note that the internal state recognition is at the appropriate level of

*2 abstraction, and the conclusions refer to state changes of its parent system.

It should be fairly clear how such a system might be able to respond to

r fthe query about radiator leak. Again a blackboard for this task would make it

possible to take into account subsystem interaction.

Unlike the structures for the diagnostic and data retrieval tasks, we

have not yet implemented a system performing the WWKI-task. hile we cannot

speak with assurance about the adequacy of the proposed solution, we feel that

it is of a piece with the other systems in pointing to the sae set of morals:

embedding still another type of problem-solving in a knowl-Age structure,

which consists of cooperating specialists of the se problem-solving type..

r7el* Diesaa

Since each of the generic tasks involves a problem-solving behavior which

is unique to that task, the standard architecture of a knowledge base and a

general purpose inference machinery is not applicab' here. There is a closer

intertwining of knowledge structures and corresponding inference methods. At

the implementation level, one can view the system as being decomposed into a

collection of pairs of the form (<knowledge structure, inference method>),

indezed by the generic tasks, e.g., <diagnostic structure, establish-refine>.

owever it is conceptually more appropriate to view each of the specialists as

having the inference machinery "embedded" in them. This interpretation gives

-% * ' °%
. -,* .
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the term "specialists" an added degree of aptness.

In Sec. 2 we mentioned that the first generation of expert systems

emphasized the power of knowledge itself over that of the problem solving method.

In the current section we have attempted to restore the balance, by showing

how a variety of problem-solving types in conjunction with appropriate

organixzations of knowledge can solve a greater variety of problems.

We have outlined an evolution of expert systems from collection of rules

to cooperative problem solving by a counity of specialists in different

kinds of problem solving. The knowledge that is in each of the specialists,

e.g., the diagnostic rules in the classificatory specialists or the state

abstraction rules in the V1 specialists in the previous section, is itself

"compiled." This knowledge is obtained from huma experts who either learnt

that knowledge originally in that compiled form, formed it as a result of

experience, or derived it from a deeper model of the domain. In

Chandrasekaran and Mittal (1982) we argue that in principle, given any deep

.-- model of the domain, - an compile an MDX-like diagnostic system which is as

powerful as the deeper model, but more efficient than it, for the diagnostic

problem. However. in practice, the compiled structures are likely to remain

iuin lat - for various reasons, and it would be very attractive to endow

expert systems with deeper understanding of their domains to protect

themselves against incompleteness.

Attempts to give expert systems some ability to do deeper level reasoning

have typically taken the direction of giving the system a mechanim to reason

at more or less levels of detail by using a prestored knowledge base of causal

i.

*, .. * v .*..* * . . .. . . . . .. .
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associations. In CASNIT (Weiss, et al., 1978) an attempt is made to trace out

- the most likely causal sequence given some likely intermediate states for

* which there is evidence and some states which can be assumed not to have

occured. A knowledge base of possible causal connections between states with

associated likelihood information is used to fit a most likely path that goes

through the states for which there is evidence and avoids the unlikely states.

ABEL (Patil, 1981) uses causal association information at different levels of

detail. There may be a piece of knowledge at the top level of the form, "A

causes B," but at a more detailed level, there may be several different ways

i in which A might be able to cause B. The system works at these different

S.-. ' levels of detail to pin the causal connection down to the degree that is

required.

It is important to note that these systms do not use "causal models" as

smuch as they use a storehouse of compiled causal associations. In a sense all

diagnostic programs use *causal models." Much of the diagnostic knowledge in

C MCNr= or HDX j& causal, i.e., saying "symptom A gives so much evidence for

disease B,' is, in content, the same as "B causes A with so much likelihood."

The difference between than and the programs above is what is done with the

causal knowledge.

In our view a truly deep model should have the power to derive the causal

- connections between states. The work of uipers (1982), delleer and Brown

(1981) and Chandrasekaran and Moorthy (forthcoming) are relevant here.

Kupers proposes methods by which causal behavior may be derived from a

knowledge of the structure of some syste. The latter two references seek to

U model functional understanding of devices.

The scope of the current paper does not allow a detailed description of

AL.........................................--..-
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how the functional representations work and how they are related to diagnostic

reasoning. Rere we content ourselves with an intuitive account of our

* approach.

. We model udrtnig .2L A device as the creation of a knowledge

structure which is hierarchically organized in terms of functions and

subfunctions. Row the salient behavior (generally stated in qualitative

terms) and UhM phvsical structure of the relevant portions of the device play

a role in achieving a function by means of the subfunctions is part of such a

description.

We believe that such a structure can be used to generate the causal

knowledge needed for diagnostic reasoning. The function/subfunction

*2 relationship can be used to generate diagnostic hypotheses. If function A is

affected, each of its subfunctions can be considered as a possible source of

failure. Similarly the symptomatic knowledge that is needed for establishing

or rejecting these as possibilities can be derived from the behavioral and

physical structure constraints that enable subfunctions to be achieved; "if

behavior 3 is necessary to accomplish subfunction A, look for evidence or

lack of 3 in the behavior of the device," e.g., would be a useful way to

generate some of that knowledge. The attmpt to give systems a degree of

Sunderstanding based on functional models is still very experimental, and

practical expert systems based on this approach are still some time away. But

we feel that this sort of systems. is the next step in the evolution of expert

systems towards a greater degree of understanding.

...... *-s**.....*.**..** ..



9. DISUS8M

The racer may have gathered that there is no simple method of

determining which tasks are likely to be successfully handled by an expert

system. We have attempted to give the reader some analytical tools by which

such a decision nay be made a little easier. In any case, the following

guidelines arise from our experience in designing a number of expert systems.

1. When the total emount of knowledge is relatively small (a few

"'. hundred rules), the exact technique used is not very important. A

-~~"~~ ; wide variety of techniques will all give similar qualitative

-performance.

2 A large fraction of expert systems that have reached sone degree of

exposure (Prospector, Mycin, MX, CAB=, Internist) deals with some

f form of the classification problem. I the core task in an

- application domain is classificatory, chances are very good that an

expert system approach will be successful. Problems of synthesis,

such as design, are in general harder, but some simpler versions of

the design problem, such as the task domain of Rl, have been

successfully attacked.
. 3. Another type of expert system that is likely to be of practical

applicability is one that helps the user access knowledge in a

. c- cplex knowledge base. This type of expert behavior does not

• -.. - require the full problem solving capabilities of the expert. Our

, "work on intelligent data bases (Mittal and Chandrasekaran, 1980)

offers some techniques of potential relevance here.

4. If a real-world task can be decomposed into a number of generic
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tasks for which expert syste- solutions are available, then the

prospect of a successful expert system increases significantly.

5. Iportant research is going on in comon sense qualitative reasoning

involving space and time; these advances will give the next

generation of expert systems more power and flexibility.

6. Reasoning of experts is in general varied and broad-ranging. We

" have only begun to understand some forms of such reasoning. Honesty

compels us to admit that it is not a simple matter to capture all

forms of expertise and incorporate them in the form of computer

progrms, even though, in the enthusiasm surrounding this promising

field, careful distinctions and qualifications often do not get

made., On the positive side is the solid body of accomplishment: the

field L nanaged to capture a nmber of useful forms of expertise.

We have not discussed in this paper a number of issues such as user

interfaces, explanation facilities, and knowledge acquisition problems. They

are obviously of great practical importance, but it has always seemed to us

that the issues of knowledge organization and problem solving will continue to

occupy the center stage in this area, since these Tiobles are by no means

solved.
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