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INTRODUCTION

This article presents dynamical system models of three types of

related neural phenomena: electrical signal patterns in individual

nerves, transduction of light into electrical signals by photorecep-

tors, and the electrical, chemical, and light interactions that con-

trol circadian rhythms.

Each of these phenomena takes place in a complex neural system,

which can be experimentally analyzed by a variety of techniques, each

technique probing different levels of system organization; e.g., beha-

vioral, neurophysiological, anatomical, and molecular. Our modelling

approach aims to discover and to classify system properties that will

persist as new experimental methods are developed. To achieve this

goal, each model mechanizes basic principles of neural design which we

suggest are rate-limiting in the data gathered by any of several meth-

ods. To test whether these principles are operative in the cases we

discuss, each model is used to predict how several data indices will

simultaneously vary in response to Prescribed parameter changes in

each model. These predictions should hold not only in the cases trea-

ted herein, but also in all neural systems where these principles are

rate-limiting. The predictions are in this sense general invariants

that can be sought in any body of neural data.

-In this spirit, we examine detailed parametric properties of so-

lutions of differential equation models, both analytically and numer-

ically, and compare these properties with related data. By contrast,

various other approaches have sought the existence of solutions to

justify a model, but have not discussed the detailed parametric struc-

ture of these solutions. For example, there has recently been great

@5 interest in the complex dynamics which can arise in such simple sys-

tems as maps of the interval (Feigenbaum, 1978; Li and Yorke, 1975).

The combination of simple equations and complex dynamics has made

.....................-.-.." . -". . -. -a - . .
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these systems appealing candidates for biological models (Guevara et

al, 1981; May, 1976). Our models are also capable of aenerating com-

plex, even chaotic waveforms, but we believe that the predictable

parametric regularities of the model solutions provide the strongest

argument for their physical relevance.

I. SIGNAL PATTERNS IN SI1IGLE NERVE CELLS

1.1. Parametric Classification of Signal Patterns

In this section we examine a class of dynamical systems that gen-

eralizes the famous Hodgkin-Huxley (1952) model of nerve impulse pro-

pagation. Despite the many variations that exist across nerve cells

and, more generally, excitable membranes throughout phylogeny, the in-

tuitive concepts of ionic interactions with membrane voltage that led

to the Hodgkin-Huxley (1952) model have proved to be universal. The

generalized Hodgkin-Huxley model attempts to rigorously capture both

the invariant intuition and the many variations on the ionic hypothe-

sis. To structure some of these experimental variations and to test

whether Hodgkin-Huxley dynamics generate the observed signal patterns,

the detailed parametric properties of model solutions have been exam-

ined and classified (Carpenter, 1977a, 1977b, 1979, 1981).

One surprising result of this analysis is that the mere existence

of the elementary components of impulse orooagation (Qa entering the

cell followed by K leaving the cell) implies many oroperties which

had previously been ascribed to additional membrane processes. For

example, bursting patterns measured from epileptic neurons have been

ascribed to a complex interacticn between neurons (Ward, 1969), but

these bursting patterns can be generated by individual neurons (Car-

penter, 1979, 1981). Other characteristics of the data had not even

* -
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been noticed. For example, there exist two types of regular periodic

(beating) signal patterns, each type possessing a series of correlated

distinguishing properties. The model hereby structures signal patterns

that had previously seemed to be so irregular that their fine struc-

ture was ignored. In this sense, the model helps to define what the

reliable data properties are by parametrically relating these proper-

-" .ties to a single underlying mechanism.

*? In this article, a number of parametric model predictions will be

presented. It is important to emphasize what we mean by a prediction.

A prediction is a property of the model in question. If one of these

properties fails to hold in vivo, either the model is inapplicable or

there are additional factors at work. We will consider examples of

data which do not correspond to the predicted solution types of one

Hodgkin-Huxley model, but do correspond to the predicted solution

types of a related Hodgkin-Huxley model that possesses one more ionic

process. An important goal of the classification theory is to discover

the minimal number and type of ionic processes that are needed to gen-

erate prescribed signal patterns. From this perspective, the popular

FitzHugh-Nagumo model (Evans, Fenischel, and Feroe, 1982; FitzHugh,

1961; Hastings, 1982; McKean, 1970; Nagumo, Arimoto, and Yoshizawa,
' %1"

1962; Rinzel and Keller, 1973) is a variant of a generalized Hodgkin-

Huxley model with one ionic process less than the original Hodgkin-

Huxley (1952) model.

1.2. The Hodgkin-Huxley Equations

The original Hodgkin-Huxley (1952) model was derived from experi-

mental studies of the squid giant axon. The axon of a nerve cell is a

long cylindrical process that leads from the nerve cell body to other

cells or muscles (Figure 1). Propagated signals can hereby be trans-

mitted along axons between communicating cells. The Hodgkin-Huxley
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Figure 1: Schematic view of part of a nerve cell.

model describes interactions between membrane voltage V and three

ionic variables m, n, and h capable of generating these propagated

signals.

Denoting the distance traveled from the nerve cell body down the

axon by the variable x, the Hodgkin-Huxley (1952) equations describe

how the ionic processes m(x,t), n(x,t), and h(x,t) interact with the

voltage V(x,t) at each position x and time t, and how the voltages at

nearby positions influence each other via diffusion. The equation

governing the voltage V(x,t) is the membrane equation

2 V

i2
a V C-. + g(V,m,n,h) 1)

-x

2a 2V
where the term a V is the total membrane current density (by Ohm's

: X
9 1 -V

law) and the term C- is the capacitance current density. These two
9t

4

V.
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terms control the diffusion of voltage between spatial positions. The

remaining term g(V,m,n,h) is the total ionic current density, which is

defined by Hodgkin and Huxley (1952) as

- 3 4g(V,m,n,h) = g am h(V-VNa) + g n lv V
K ) + gLIV-V (2)

Each summand in (2) is a product of a conductance times a voltage dif-

ference. Term g m h(V-V Na) is the (inward) sodium current density;

term gKn (V-VK) is the (outward) potassium current density; and

L gL(V-VL) is a leakage current density. The main step in generalizing

the Hodgkin-Huxley equations is to consider total ionic currents more

general in form than (2) that may include fewer or more ionic cur-

. rents, and to characterize the qualitative properties of those func-

tions that control signal properties.

.: The voltage is coupled to the ionic processes via equations of

the form

v.' = (v) (m(v)-m) (3)

.- n (n (V)-n) (4)

and

:t h(V)(he(V)-h). (5)

Each of the ionic equations is of the same general form. Equation (3),

for example, possesses a positive voltage-dependent rate term ,m(V

and a positive voltage-dependent asymptote m,(V) to which m is attrac-

ted. The ionic equations differ in two basic ways. Some ionic proces-

"- ses respond quickly to voltage changes, others slowly. Some ionic pro-

cesses increase with voltage increments, others decrease. Since m

responds quickly relative to n and h, (mV) is large relative to n(V)

and (V). Since m and n tend to increase whereas h tends to decrease' : h "
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as V increases, m.(V) and n.(V) are increasing functions of V whereas

h,(V) is a decreasing function of V. The choice of fast-slow and on-

off distinctions are characteristic of the qualitative hypotheses that

define the class of generalized Hodgkin-Huxley models and distinguish

one model from another.

1.3. Propagated Signals and Traveling Waves

To study signals propagated along an axon, solutions are sought

of the form

V(xt) V(s) (6)

where

s = x + t. (7)

In other words, one seeks solutions which propagate down the axon (x)

through time (t) at a speed (w). Such solutions are called traveling

waves. When (6) holds, equation (1) can be rewritten as the pair of

equations

, dV W (8)
d

and

dWd- 'W + g(V,m,n,h) (9)
ds

in terms of the new independent variable s and the parameter

2RC. (10)
a

To emphasize the fact that m responds quickly whereas n and h respond

slowly to fluctuations in V, we can redefine the voltage-dependent

rate functions and rewrite equations (3)-(5) in terms of the new inde-

pendent variable s as

I'-
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dm - m11)
ds M ( 1)

nd

dn n (V)(n(V)-n) (12)

S-and

dh (V) (1
ds hV) (h(V)-h). 13

Since both and - are assumed to be small, the rate function :V. (.

* is large compared to the rate functions ETn(V) and -h(V).

1.4. Bursts and Two Types of Regular Periodic Waves: Predictions

and Data

Previous articles have developed the mathematical analysis of

system (8)-(13) (Carpenter, 1977a,b, 1979, 1981). Here, we will focus

on the detailed predictions of that analysis; compare the predicted

solutions with experimental recordings; examine some types of signal
-. " ..

patterns which are not consequences of the basic sodium-Potassium

. mechanisms; and consider ways in which the model may be augmented to

account for these patterns.

First we will consider experimental and mathematical evidence

for the existence of two types of regular periodic waveforms and how

these are related to periodic bursts. Examples of these signal pat-

.- terns can be seen in Figure 2, which shows recordings taken from two

snail yellow cells (Benjamin, 1978). Each column in Figure 2 depicts

signal patterns measured in a single cell. Each signal pattern-in a

given column occurs when the cell is maintained at a given level of

hyperpolarization, which is denoted by i. Both cells emit regular per-

iodic signals when i-0, as in the bottom row of Figure 2, but cell A

has a higher frequency. As the cells are gradually hyperpolarized (i

" becomes negative), cell A moves through a region of high frequency

- tJ 1
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Figure 2: Recordings from two similar snail yellow cells (Benjamin,
1978, p.208), which illustrate the two types of predicted
dynamics of the generalized Hodgkin-Huxley model. From bot-
tom to top, cells are hyperpolarized until the- become
silent. (A) High frequency .-periodic spikes (i-0) pass
through a phase of bursts with many spikes, then bursts
with few spikes, then 1-bursts, then silent: exactly as
predicted. (B) In a cell without bursts (tbe other "half")

.[ high frequency -2-periodics become low frequency 2-perio-
dics, then silent.

bursts, then low frequency bursts, then low frequency beats, then

becomes silent. Cell B continues to emit regular periodic signals

whose frequency declines gradually as i becomes negative until it,

too, is silent. Previous theorems (Carpenter, 1979, 1981) not only

predict the existence of the two types of signal patterns observed in

cells A and B, but also lead to further predictions, which cells A and

B confirm on closer inspection. Some of these predictions follow.

The most obvious difference between cells A and B in Figure 2 is

that cell A emits burst patterns at certain levels of hyperpolariza-
L

_ion, but cell B never bursts. Until recently, it was not known that

Hodakin-Huxley dynamics could lead to bursts at all. Surprisingly, it

r[-?
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has been proved that "half" of all generalized Hodgkin-Huxley models,

in a sense that can be made precise, admit bursting solutions (Carpen-

ter, 1979). Given the unexpected ease with which bursts can be gener-

ated, it is imperative to study the detailed internal structure of

these bursts to ascertain their underlying mechanism. It was also pro-

ved that all generalized Hodgkin-Huxley models admit regular periodic

solutions, as do both cells A and B in Figure 2. To emphasize the

meaning of these general results on bursts and Periodic solutions, we

mention that snail yellow cells, as in Figure 2, may sustain bursts

in one season but only re-gular periodic patterns in another season

(Benjamin, 1978). This can be explained by a suitable parameter shift

in a generalized Hodgkin-Huxley model that removes the model from the

~ .*,parameter range where bursts occur to the parameter range where only

regular periodic solutions occur.

The analysis of burst solutions leads to a geometric understan-

ding of the phase Portrait which is illustrated schematically in Fig-

ure 3. In Figure 3A, a burst with many spikes per burst, a so-called

Z.: N-burst with N >> 1, is depicted. Each loop in the bursting trajectory

corresponds to one spike in the cell's potential, as in Figure 2A. As

more spikes in a burst unfold, the N-burst trajectory approaches a

regular periodic solution that lies far from the equilibrium point

(rest) in phase space. The regular periodic solution is called an 2-

:Deriodic solution. When N is large, spikes late in the burst are all

but indistinguishable from spikes in the '-periodic solution. Thus

late in the burst, it appears as if the trajectory is approaching a

limiting (--limit) set which in this case is the 0-periodic solution.

The part of the N-burst trajectory denoted by Q is a quiet spell dur-

i.ng which the cell potential approaches close to equilibrium before

the bursting cycle begins again.

The fact that an N-burst starts near rest and ends near an Q-

'k J
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A B

N-burst

3-burst

rest r

Fiqure 3: Schematic representation, in chase space, of .2-periodic
solutions and (A) a burst with N spikes per burst; and
(B) a burst with 3 spikes oer burst. During the quiet
spell (0) the burst solutions approach the rest point.

periodic solution far from rest has important implications for the

internal structure of each burst. Spikes emitted close to rest will

be emitted at a slow rate whereas spikes emitted close to the -peri-

odic solution far from rest will form a high frequency pattern of

• .- approximately equally spaced spikes. Thus the spikes within a burst

will speed up until they abruptly shut off.

Figure 3B depicts a 3-burst. Since the last spike in this burst

is far from the .-periodic solution, all the spikes are emitted at a

lower rate than the final spikes in the N-burst of Figure 3A. Since

no spike in the 3-burst is close to the 2-oeriodic solution, the rea-

ular frequency which the .-oeriodic solution imposes on the final

* . . . . . . . . ° - _
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soikes in the N-burst need not appear in the 3-burst. Finally, compare

the quiet spells Q in the N-burst of Figure 3A and the 3-burst of

Figure 3B. Although both quiet spells correspond to a narrow range of

subthreshold cell potentials, Figure 3 shows that they actually cor-

respond to rather different paths in phase space. Consequently the

durations of quiet spells between bursts with different numbers of

spikes need not be the same. This point will be illustrated in Figure

9 below.

A generalized Hodgkin-Huxley model that possesses an N-burst

solution also possesses a 1-burst, 2-burst, 3-burst ..... , and an

(N-l)-burst solution (Carpenter, 1979). Consequently, every generali-

zed Hodgkin-Huxley model that admits bursts at all will admit 1-burst

solutions. A 1-burst solution is a regular periodic solution (Figure

4). However, all generalized Hodgkin-Huxley models admit 2-periodic

1-burst

rest

Figure 4: Schematic representation of the two types of regular peri-
odic solutions whose existence is predicted in the "half"
of the model cells which burst. The .-periodic is far from
equilibrium while the 1-burst approaches equilibrium
during the quiet spell.

Of ...
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solutions, which are also regular periodic solutions. Thus "half" of

all generalized Hodgkin-Huxley models admit two classes of mechanisti-

cally distinct regular periodic solutions. How can an experimentalist

know which reaular periodic solution is being seen when a cell emits

periodic spikes? To answer this question, the following parametric

properties of each type of regular periodic solution may prove helD-
i ful.

First, in a model cell capable of bursting, the family of 2-peri-

odic solutions is always far from equilibrium, while each solution in

the co-existing family of 1-burst solutions always approaches equili-

brium during its quiet spell. Thus, we would expect that a small hy-

perpolarization of cell potential during a periodic 1-burst could

easily extinguish this pattern, but a much larger hyperpolarization

would be recuired to extinguish an I-periodic. Moreover, if an Q-peri-

odic pattern is hyperpolarized, it can become an N-burst solution.

Given larger hyperpolarizations, N.will tend to decrease. Given a

large enough hyperpolarization, the 9-periodic can be extinguished.

This prediction corresponds exactly to what occurs in Figure 2A,

where successively larger hyperpolarizations transform a regular oeri-

. odic pattern into bursting patterns with progressively fewer spikes

per burst.

In generalized Hodgkin-Huxley models wherein bursts do not occur

(the other "half" of the models), the regular periodic solutions that

do occur are all 2-periodic solutions. Hyperpolarization of such a

*. solution moves it closer to rest, and thereby decreases the frequency

of its spikes. If the hyperpolarization is chosen sufficiently large,

the -periodic solution is extinguished.

Figure 2B nicely illustrates this orediction. Successively great-

er hyperpolarizations cause progressively lower spiking frequencies,

but do not cause bursts to occur, by contrast with Figure 2A.

...
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Notice that the individual waveforms in Figure 2 differ in seve-

* ral ways which are hard to categorize a priori. For example, the wave-

forms corresponding to low frequency patterns in row 1 of the Figure

are different. The periodic patterns of different frequency within

column 1 and within column 2 of the Figure are different. Below, seve-

ral of these differences will be parametrically characterized as typi-

* cal predictions of Hodgkin-Huxley dynamics. It will also be shown how

a single family of solutions in a model capable of bursting can pos-

sess properties from both column 1 and column 2 in a predictable

order.

Because the underlying parameters of a given cell are not known

* a priori, the most robust predictions arise when the cell is parame-

trically perturbed in an experimentally controlled way, as in Figure

2A or 2B. Nonetheless it may be noted, as in row 1, that low frequency

.--periodic solutions possess a strictly increasing ramp-like potential

between successive spikes, whereas low frequency 1-bursts tend to be

flat over a significant fraction of the interspike interval. Figure 2B

illustrates the fact that -,-periodic solutions of higher frequency

tend to have smaller spike amplitudes. By contrast, the spike ampli-

tudes of all bursts in Figure 2A are approximately constant in size.

Finally, the spike amplitudes of all bursts exceed the spike ampli-

tudes of high-frequency .'-periodic solutions in a given model cell.

* In fact, the spike amplitudes of the 1-bursts in row 1 of Figure 2A

are 50% larger than the amplitudes of the .-periodic spikes in row 4

of Figure 2A. These qualitative remarks are made more quantitative in

the set of predictions depicted by Figures 5 and 6 below.

1.3. A Single Family of 1-Bursts and 2--Periodic Wave TrainsIi! A family of 1-bursts, as in Figure 2A, and a family of .-periodic
solutions, as in Figure 2B, may or may not meet in phase space as

-O*- b
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changes in initial data generate successive members of the family

(Carpenter, 1979). Figure 5 depicts a family of solutions where the

6A single spike

iI
low frequency

afterdeoolarization I1-burst

"I moderate frequencyI ~ jlatQ1-burst
- flatL_ L

D.. I s and 1-burst meet

moderate frequency Q

high frequency n2|F LULL

Figure 5: A typical family of regular periodic solutions of a genera-
lized Hodgkin-Huxley model which has burst solutionS. In
this example, the 1-burst family and the 2-periodic family
meet, although this need not be the case. The quiet spell
goes from - at the single pulse (A) to 0 at the dividing
point (D). The 1-burst frequencies range from very low to
moderate and the 2-periodic frequencies range from moderate
to very high. The amplitudes of the 1-bursts ((A)-(D)) are
large and approximately constant over their wide frequency
range. In contrast, the amplitudes of the 2-periodics de-
cline as the frequency increases, as does the size of the
hvperpolarization, or tail, following each spike.

Li.
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two types of regular periodic patterns do meet. Figure 5A depicts a

single spike, whose potential goes to the rest point both as t-+, and

as t---. Nearby in phase space is a 1-burst periodic solution (Figure

5B), which comes very close to the rest point during its quiet spells

Q and thus has a low frequency. Such a low frequency 1-burst may or

may not be followed by a brief afterdepolarization (arrow; also see

Figure 8B). As the family is perturbed away from the rest Point, the

frequency decreases to a moderate level as Q shortens (Figure 5C),

4. and the afterdepolarization disappears. As noted in Figure 2A,

1-bursts are relatively flat during their quiet spells 0. The soike

amplitude is large and nearly constant over a wide range of frequen-

cies.

In Figure 5, high frequency 1-bursts join a family of ^-periodic

solutions. At the meeting point the frequency is moderate. Moving

into the family of 41-oeriodics (Fiaure 5E), the frequency increases

further. As noted in Figure 2B, activity steadily increases throuah-

out the interspike interval. The a-periodic family terminates at very

high frequency (Figures 5F and 2A). High frequency £,-periodic solu-

tions have significantly smaller spikes than do low frequency 2-peri-

odic solutions, by contrast with 1-bursts.

1.6. Fine Structure of 2-Periodic Waves

Figure 6 illustrates some detailed predictions of the generali-

zed Hodgkin-Huxley model. These Predictions describe the covariation

of several properties of .-periodic solutions that apply to all model

cells, whether or not they admit bursts. If a change of initial data

causes a higher frequency of 2-periodic spikes, then it also causes a

lower amplitude of spikes, a smaller post-spike hypernolarization, a

lower wave speed, and a lower spiking threshold. In Fi-ure 2B, theK frequency, amplitude, and post-spike hyperpolarization of snail vel-

®R °]
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low cell spikes all covary as predicted, thereby strengthenina our

contention that Figure 2B illustrates a family of .-periodic solu-

tions.

slower faster

Figure 6: Correlated properties of Q-periodic solutions

higher frequency lower frequency
lower amplitude higher amplitude
smaller post-spike larger post-spike

hyperpolarization hyperpolarization
low speed moderate or high speed
lower threshold higher threshold

.. 1.7. Effects of Drugs on Signal Patterns: The Inverse Problem

Another type of data that illustrate these predictions are drug

e'!fects on nerve cell signal patterns. A drug may cause complex chem-

ical reactions in many intracellular and intercellular subsystems.

Most if not all of these reactions cannot be directly observed. The

present approach suggests a new method to help classify which of

tnese reactions are due to intracellular chances, notably changes in

the parameters of a Hodgkin-Huxley mechanism, and to generate infer-

ences about which intracellular parameters may have changed. The

. ..
• % .. . . . . . - . . ••,•. " . ... . . + ,•. .-. .. . .
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method studies the observable parametric changes in a cell's electri-

cal signal patterns and uses these changes to make inferences about

corresponding changes in unobservable cell parameters. The attempt to

infer underlying mechanisms from observable properties is often called

an inverse problem.

Figure 7 depicts a drug effect on a giant neuron of the snail

Helix pomatia (Ldbos and LAng, 1978) that can be interpreted in terms

of our parametric predictions about bursts and 2-periodic waves. Fig-

ure 7A illustrates the regular periodic output of a giant neuron in an

~ £2or 1 -bursts
control 111911 amp.= 65 mV

cocaine
added _...__jzo. 2 -bursts

P5-O

-.%

U amp. z 4OmV

Figure 7: Recordings from snail (Helix) neuron. (A)-(B): control;
(C)-(E): 10-25 minutes after administration of cocaine;
"(F-G): after 30 minutes (Ldbos and Lang, 1978, p.179).

Compare (A) with (F): in (A) the frequency is lower, the
amplitude is higher, and the post-spike hyperpolarizationis larger - all as predicted in Figure 6.
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isolated subesophageal ganglion before cocaine was applied to the

bathing fluid. This regular periodic solution is either a periodic 1-

burst or an :-periodic solution. Recall from Figure 5 that periodic

1-bursts can merge with --periodics in a single family of solutions,

so no single picture can tell them apart.

During the first 30 minutes after the cocaine was applied, the

regular periodic solution was transformed into a periodic 2-burst so-

lution (Figure 7C). After the first 30 minutes, the effects of the

drug started to wear off, leading to the regular periodic solution of

Figure 7F, before this solution approached the original waveform in

:Figure 7A. Despite the incomplete nature of these data for solving the

inverse problem, a comparison of Figures 7A and 7F is informative in

the light of Figure 6. Figure 6 suggests that Figure 7F depicts an

periodic solution, not a periodic 1-burst. Note that the amplitude of

spikes is larger, the frequency of spikes is lower, and the post-spike

hyperpolarization is greater in Figure 7A than in Figure 7F, just as

predicted in Figure 6. To draw a more complete portrait of underlying

cellular changes, a parametric series of dose-dependent waveforms at a

regular succession of times after dose would be most helpful.

1.8. Parametric Structure of Bursts

Just as with 1-bursts and 2-periodics, a series of predictions

can be made about N-bursts. The family of all such N-bursts will be

called HH bursts to distinguish them from other burst types, such as

the parabolic bursts and paroxysmal bursts that occur in data and the

FN bursts that are solutions of the FitzHugh-Nagumo model. These other

burst types will be discussed later.

As shown in Figure 3A, an HH burst with many spikes per burst

moves away from the rest point towards an .-periodic solution. Hence

its spiking frequency speeds up and becomes more constant late in the
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burst. As with 1-bursts, the potential in such an HH burst is nearly

flat during the quiet spell Q. Figure 8A contains a periodic bursting

sclution that illustrates these predictions. This record depicts sDon-

.'..,-; J. ,.p-:,* . .jgk.-P - - .. * ... . ,: -. -• " ,:-
~- . . .... w . .- -

~ff .,~. *A ~i-*-*., *-u , * .** I - --

Spontaneous action potentials in monkey
epileptic cortex (Atkinson and Ward, 1964,

p.291).

Bursts in the lobster stomatogastric gang-

lion (Russell and .artline, 1978, p.454).

0J$ Bursts in the motor neuron controlling

expiration in the dragonfly (Mill, 1977,

p.193).

Figure 8: Typical HH burst patterns in intracellular recordings. Note
the increasing frequency within the burst; the flat inter-
burst interval; and the afterdepolarization in (B).'

taneous action potentials that were recorded from the monkey epileptic

cortex (Atkinson and Ward, 1964, p.291). Figure 8C depicts bursts of

similar form that were recorded from a motor neuron which controls

expiration in the dragonfly (Mill, 1977, p.193). In both figures, the

1A%-
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frequency of spikes increases and levels off before the burst suddenly

terminates. Figure 8B depicts a bursting solution with so few spikes

per burst that the frequency never speeds up, as also occurs in Figure

r' 3B.

Another prediction for HH bursts is that the length of the quiet

spell Q between bursts increases with the number of spikes in each

burst, as illustrated in Fiaure 9 within snail yellow cells. Due to

this property, there is a tendency for a fixed number of spikes to oc-

cur within a sufficiently long time interval whether these spikes are

71101
5 1

a' ,tII l eI ,:

sanls) yelo cel Bnai,098 .0)

ted in, Fiue Aad7.Teeteapiaino oan eutdi

the clstr._ f piesino -brtdulsutheargef -

q y r e tJha I
'.' 2 sec

Figure 9: As oredicted, the length of the quiet spell increases with
the number of spikes in the orevious burst in snail (Lvmnae
stagnalis) yellow cells (Benjamin, 1978, p.209).

* grouped into 1-bursts, 2-bursts, nd so on. This tendency is illustra-

ted in Figures 7A and 7C. There the application of cocaine resulted .n

the clusterino of spikes into 2-burst doublets, but the average fre-

quency remained the same: each trace has 14 spikes within acoroximate-

. *".. .". " .
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ly 34 seconds.

Even in cells wherein the average spiking frequency remains

entirely invariant when the bursts change their structure, these chan-

ges can significantly alter the firing of the cells which receive the

bursts (Calvin, 1972). This is because a large number of rapidly

occurring spikes within a burst can drive the target cell potential to

a much higher asymptote than the same number of spikes spread more

thinly through time, as Figure 10 schematically illustrates. Carpenter

(1979, 1981) makes other predictions concerning the structure of HH

bursts, notably their stability under noisy pert,1rations.

A Bii IIII U I
firina

/ threshold

Figure 10: Top row: ore-synaptic spike train. Bottom row: post synap-
tic transmitter concentration. In (A) and (B), the average
spike frequencies are identical. However, the cell which
bursts (B) is more excitable than the cell (A) with a reg-
ular spike oattern.

1.9. Finite Wave Trains and Chaotic Waveforms: Aperiodic Phenomena

In addition to the periodic bursts and Q-periodic solutions, sev-

eral classes of aperiodic waveforms that were not previously known to

be consequences of Hodgkin-Huxley dynamics have been mathematically

proved to exist (Carpenter, 1977a, 1977b, 1979, 1981).
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The simplest aperiodic waveforms are the finite wave trains.

These solutions generalize the single spike in Figure 5A. They contain

a single burst, preceded and followed by subthreshold activity, whose

internal structure is akin to the bursts that occur within periodic

bursting solutions. It has been proved that the speed with which such

an N-burst travels down the axon is an increasing function of F.

More complex aperiodic waveforms can also exist. Under special

hypotheses, all possible sequences of bursts can be generated within a

single model neuron. In other words, some model neurons can support an

infinite dimensional temporal code despite the fact that they are de-

fined by a five-dimensional dynamical system. More precisely, within

such a system, given any sequence :Nl , N2 , N3 ,. " of positive inte-

gers, there is a solution with N1 spikes in the first burst interval,

N soikes in the second burst interval, N3 spikes in the third burst23

interval, and so on. Moreover, the solutions are ordered lexicographi-

cally by the wave speed .j in the following sense. Suppose that NI .

..* N2, N3 ,. .NK..} and ;K, M2 , M3 ,...M.. represent two such solu-

. tions, with speed jN and , respectively. If we compare these sequen-

ces term-by-term, N1 with Mi, N2 with M2, and so on, there always is

* -. a first pair of terms that differ unless the sequences are identical.

Denote this first pair by (NK MK). Then N < if and only if N !K'. °X

More complex, even chaotic, waveforms are also possible, again under

special hypotheses but without adding any more variables to the model.

1.10. Parabolic and Paroxysmal Bursts: Augmented Hodgkin-Huxley Models

There exist bursting patterns in vivo that are not consequences

of the basic Hodgkin-Huxley dynamics with three ionic variables m, n,

and h. Some of these bursts can, however, be generated by Hodgkin-

Huxley models with four ionic variables. Figure 1lA depicts a periodic

bursting pattern of this type, the so-called oarabolic bursts that

N............- ':.-.
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R1s

A 3 3 E Jparabolic
- Om j...., . ...,"0. M .... .... ........ ......... bursts

20mV L
Osec

paroxysmal
B bursts

50 MV

100 USEC

Fiaure 11: (A) Parabolic bursts in Aplysia abdominal ganglion(Roberae,
et al, 1978, p.392).

* (B) Paroxysmal bursts in -he cat hippocampus MKandel and
Spencer, 1961, p.245).

have been. studied in the Aplysia abdominal ganalion (Roberae, et al,

1978, o.392). Within a parabolic burst, the spiking frequencv first

_ncreases, then dec.reases, before shutting off. The first nart of the

parabolic b-urst, wherein spiking freauency increases, resembles an HH

zCurst (Ficures 8A and BC). Due to this fact, a parabolic burst form
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can be generated if there exists another slow process acting on the

time scale of seconds, rather than the millisecond time scale of the

Hodgkin-Huxley currents, that interacts with the three faster cur-

rents. Because the time scale of this additional process is relative-

ly slow, it acts like a parametric change that moves the burst away

from its 2-periodic solution towards the rest point and thereby slows

the frequency of spikes before the burst terminates (Carpenter, 1979).

Either a slow accumulation of extracellular potassium or an additional

slow potassium current can produce this effect (Faber and Klee, 1972)

Paroxysmal bursts, depicted in Fiaure l1B, occur in cell bodies

.. rather than being propagated down axons (Kandel and Spencer, 1961).

Such a burst pattern can formally be generated by antidromic (back-

wards) flow of potential from the cell body to the cell dendrites

which, in turn, further depolarize the cell body and raise the base-

line of burst activity to its plateau level.

A related type of burst which rides a plateau is illustrated in

Fiaure 12. This periodic bursting solution is generated by periodic

Figure 12: A burst riding the crest of a slow potential wave (Otala
lactea, cell 11) (Barker and Smith, 1978, p.380). Th
large oscillations in the baseline potential are not part
of HH bursts, although small oscillations may be present.

pacemaker activity, or a slow depolarization shift, (DPS) , on which

spikes are superimposed when the potential is suprathreshold. Here the
L I

-. • oU
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mechanisms of interest are those which generate the DPS, rather than

the spikes per se. This is the type of burst discussed in Plant and

Kim (1975).

I.11. FitzHugh-Nagumo Bursts

Burst solutions have recently been reported to occur in the Fitz-

Hugh-Nagumo model (Evans, Fenichel, and Feroe, 1982; Feroe, 1982; Has-

tings, 1982). This model is similar to a generalized Hodgkin-Huxley

model with two rather than three ionic processes. It was originally

motivated by the observation that since potassium activation (n) tends

to increase while sodium inactivation (h) tends to decrease, the sum

n+h does not vary too much (FitzHugh, 1961; Nagumo, Arimoto, and Yosh-

izawa, 1962). Hence one degree of freedom was removed from the origi-

nal Hodgkin-Huxley model by assuming that n+h is identically constant.

Other simplifications in the model were made to represent it as a tun-

nel diode.

In vivo, the processes of sodium inactivation (h) and potassium

activation (n) are relatively slow. In the Hodgkin-Huxley model, this

fact becomes the mathematical hypothesis that the model's eigenvalues

are real numbers. A necessary requirement for .the Evans et al (1982)

and Hastings (1982) analysis is that the corresponding process in the

FN model be fast in order to create eigenvalues that are complex num-

bers. In the original HH model, n and h could only change this quickly

if the model's temperature variable were set at twice the normal tem-

perature (Centigrade).

Independent of discussions about the physical plausibility of the

FN-burst hypothesis, one can test for FN bursts and HH bursts in vivo

by their parametric properties. FN bursts are obtained by perturbing

off a single spike, so the spikes within such a burst are evenly and

widely spaced, by contrast with the typical speed-up of HH oursts de-

-N,-7 2
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picted in Figures 8A and 8C.

II. THE TRANSDUCTION OF LIGHT BY VERTEBRATE PHOTORECEPTORS

II.1. The Turtle Cone and the Dynamics of Chemical Transmitter

Substances

In this section we consider the electrical response of cells in

another model system, the turtle cone. The discussion will have sev-

eral points in common with the previous section on single nerve cell

dynamics. The turtle cone, like the squid axon, is important not just

in itself, but because it is a convenient experimental preparation in

which to investigate a general neural phenomenon: the transduction of

light into an electrical response. Many experiments have indicated

that this transduction process is mediated by a chemical transmitter

within the photoreceptor. Our discussion will compare two models for

the interactions of light, transmitter, and photoreceptor potential:

*the unblocking model of Baylor, Hodgkin, and Lamb (BHL) (1974b) and

our own gating model (Carpenter and Grossberg, 1981).

As with the Hodgkin and Huxley work on the squid giant axon, the

generative work on turtle cones includes an exhaustive series of para-

metric experiments (Baylor and Hodgkin, 1973, 1974; Baylor, Hodgkin,

and Lamb, 1974a, 1974b) that led to the unblocking model. Both the un-

blocking model and the Hodgkin-Huxley model begin with the basic mem-

brane equation, which is then augmented by auxiliary equations. Our

'- - - - - -- -....

'1-
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analysis of turtle cone dynamics will, however, be very different from

* the analysis in Section I. In their article, Baylor, Hodgkin, and Lamb

(1974b) do an extensive numerical analysis of their model, and note

that, despite its complexity, it fails to meet important data. Their

"- model's difficulties seem to center on how the chemical transmitter

* mediates between light and potential. We realized that an alternative

* model of transmitter dynamics (Grossberg, 1968, 1969) could provide

" - intuitively simpler and better quantitative fits to the turtle cone

data. This gating model has additional appeal to us because it was

derived from a general principle of neural design and has been helpful

in explaining transmitter-mediated data in a variety of other neural

systems (Grossberg, 1975, 1980, 1982a,b).

Thus in this section, our discussion will approach the problem of

* how to choose between two models of a complex biological phenomenon.

*. This task is rendered all the more difficult by the fact that the

light transduction process involves multiple stages that are difficult

to experimentally disentangle. No model can hope to include all the

* interactions that will eventually be disclosed by ever finer physiolo-

gical, biochemical, and molecular techniques.

We approach this task by offering parametric predictions that can

characterize whether the type of transmitter gating process that we

have in mind is rate-limiting in any body of data, whether in a photo-

receptor or not. Thus our approach is to explicate the parametric im-

plications of a basic neural desig, no less than to try to understand

a particular body of data. In the case of vertebrate photoreceptors,

experimental articles based on electrophysiological recording typical-

ly interpreted the major electrical effects to occur in the outer sea-

ment of the photoreceptor. More recent experiments using suction elec-

trodes that can electrically isolate the photoreceptor outer segment

from its inner segment suggest that these electrical effects are not
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necessarily localized at the outer segment (Nunn, Matthews, and Bay-

lor, 1980; Yau, McNaughton, and Hodgkin, 1981). Our analysis does not

attempt to specify the anatomical locations at which a transmitter or

transmitters may act, but rather provides parametric evidence for

whether a rate-limiting transmitter gating step occurs at some stage

in the generation of photoreceptor potential.

11.2. The Unblocking Model

Figure 13 illustrates a schematic version of the first stages of

vertebrate photoreceptor dynamics, as represented by BHL. Light enters

Light

-M Amplifier (time S(t) Transduc-

and magnitude) tion Step , T(tI

(voltage)

0

photon collec- chemical chain cell is
tor (c,.romophore) reaction hyperpolarized

Figure 13: Schematic view of the early stages of light processing in
the vertebrate photoreceptor.

the front of the eye, and photons are collected at the back of the eye,

in the chromophore. The light signal, I(t), is amplified, both in time

and magnitude, by a chemical chain reaction. Such an amplification step

.. . -

. . . .. . . . . . . . . . . . . . . . .

...................................................
. . . . . . . . . . . . . . . . . . .
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enables the eye to register even 1 or 2 photons by generating enough

activity to translate these microscopic signals into a voltage change

which can be transmitted to the brain. The output of the chain reac-

"" tion is S(t). Next comes the transduction transformation

S(t) - T(t) (14)

whereby the photoreceptor is hyperpolarized by light and the electri-

- cal signal T(t) is generated. The signal T(t) influences the activity

of subsequent retinal layers and the brain. We will focus our atten-

* tion on the transduction transformation (14).

The BHL model of the transduction transformation is summarized

. .below.

Membrane Ecuation:

L E-V(l + Gf + Gi (15)

Light-Sensitive Ionic Conductance:

G.
G. (16)1 1+ Zl*

Time-Average of Prior Voltage Transform:

dGf
-fdt F(V) - (f 17)

Loaistic Transform of Voltage:

F(V) = _ _ f(18)
(V-V)

1 + exp _Vvf)

LVJ
LII
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Linear Chain Reaction to Light:

(d Nn-i1 n-2

+ 1 n- I(t) (19)

Blocking Substance:

dz

dt yn-1 - K12Zl + 21z2 (20)

Unblocking Substances:

dz2
dt 2Zl - (c 2 1 +K2 3 )z 2 + z32z3 (21)

dz3

dt 23 Z2 - (C3 2 +1C3 4 )z 3  
(22)

Gain Control:

AK21 1 12 = 12 2 K12M K12 ] (23)

1I2M 12 + ' 2

Just as in the HH model, V(t) in (15) is the transmembrane voltage. In

the BHL model, however, V(t) is assumed to be spatially homogeneous;

possible spatial interactions of different photoreceptor segments are

not considered. Function G. in (15) and (16) is a light-sensitive1

ionic conductance. In (16), G. is a decreasing function of z which

represents the concentration of a blocking substance that is hypothe-

sized in (20) to be the output of the light-initiated chain reaction

1(t) - yl- - Yn-i -3 (24)

that is defined by (19). According to equations (15), (16), (19) and

r:" (20), light increases the amount of blocking substance and thereupon
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hyperpolarizes the membrane by decreasing G. in (15).
i

The blocking substance z is removed by the unblocking substances

z 2 and z3 according to equations (20)-(23). At first glance, the

blocking-unblocking equations (20)-(22) appear to be linear. However

the z terms in the definitions of < 1 and 21 in (23) show that equa-

tions (20)-(22) are highly nonlinear. The blocking-unblocking hypothe-

sis is the key component of the BHL model.

The conductance G in (15) also depends nonlinearly on the vol-
f

tage V via equations (17) and (18). Its significance in the BHL model

will be reviewed when we discuss relevant data in Section 11.5.

11.3. The Gating Model: Unbiased Transmitter-Mediated Signalling

The gating model of the transduction transformation can be deri-

ved as an answer to the following question:

What is the simplest law whereby one nerve cell site can send

unbiased signals to another nerve cell site?

If S(t) is the input to one cell site and T(t) is the output to the

next cell site, then a linear relationship such as

T = SB (25)

* is clearly the simplest law for unbiased transmission, where B is a

positive constant. Here the outgoing signal T is directly proportional

[:. to the incoming signal S, so the signal is relayed perfectly.

This is not the end of the discussion when the output signal T(t)

is due to the release of a chemical transmitter substance z(t) in re-

sponse to the input signal S(t). Then we must face the issue of how a

large and sustained signal S(t) is prevented from depleting z(t) and

thereby causing a progressively smaller signal T(t).

From this perspective, equation (25) may be replaced by the pair

. . . . ° , .. • , , ,o o - % • .o . ° . - o - • . . - . .. .. -= % -* , d . *
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of equations

T -Sz (26)

and

z B . (27)

Equation (26) says that transmitter z is released at a rate (propor-

tional to) T in response to signal S. In other words, z gates S to

generate T, or T is caused by a mass action interaction between S and

z. By (26), more transmitter is released if either the incoming signal

S or the amount of available transmitter z is increased.

Equation (27) simply requires that the amount of transmitter seek

a constant level B, as in (25), so that the sensitivity of T to S will

not decrease due to transmitter loss. If equations (26) and (27) can

be simultaneously implemented, then the perfect transmission described

by equation (25) will be assured. The gating model is derived from

hypotheses that aim to maintain unbiased transmission when the cell

sites in question signal each other via a depletable chemical trans-

* * mitter. Herein lies the intuitive appeal and generality of the gating

concept.

The simplest dynamical equation that is capable of simultaneously

summarizing equation (26) and (27) is the following:

Transmitter Accumulation-Depletion Equation

dz -) -S
dt -A(B-)-S, (28)

where A,B 0. In (28) , term A(B-z) says that z accumulates until it

reaches the target level B, as required by (27) . Term -Sz says that

transmitter is depleted at the rate T, as required by (26).
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II.4. Unbiased Transmission by Miniaturized Cells: Light-Induced

Enzymatic Activation of Transmitter Accumulation

Equation (28) is the simplest dynamical law that might oossibly

subserve unbiased chemical transmission between cell sites, but it is

not adequate in cells that possess certain properties shared by photo-

receptors. This is because the rate of transmitter accumulation (A) in

term A(B-z) may be small compared to the rate of transmitter depletion

(S) in term -Sz if the signal S can become large, as in a photorecep-

tor that can respond to a wide dynamical range of light intensities

I(t). Then z(t) can become deoleted significantly below its asymptotic

level B, and loss of sensitivity in T's response to S can occur. Thus

equation (28) alone does not solve the following.

Problem: A large input signal S(t) can deplete z(t) and cause habitua-

tion or desensitization of T(t).

How can a cell maintain its sensitivity in spite of large fluctuations

in liaht input intensity? Two types of solution can be contemplated in

(28). The first solution, which we do not adopt, leads to the type of

reaction to light that is schematized by the BHL chain reaction (24)

leading from light input I to transmitter reaction z .

If a large storage depot of transmitter is maintained, then even

large signals S will deplete only a small fraction of the depot.

Hence, if B >> 1, then even large (but bounded) signals S will cause
-l

only a small reduction in the ratio zB.

If a large storage depot of transr!nitter existed within each

photoreceptor, then this depot would enlarge each photoreceptor's vol-

ume, and would thereby reduce the number of photoreceptors that could

be packed into a fixed retinal area. Improving the dynamical sensiti-

;ity of each =hotoreceptcr using this method would reduce the spatial

sensltivity of the retina as a whole.

S*. *.a - - .
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We can therefore reformulate our design oroblem ac follows.

Problem: How can a spatially miniaturized photoreceptor maintain its

sensitivity to large fluctuations in input intensity?

If in equation (28), B is not large relative to S, then an alter-

native solution is to let the rate of transmitter accumulation (A) in-

crease as a function of S to counterbalance the rate S of transmitter

depletion. Otherwise expressed, we suppose that there exists a light-

induced enzymatic activation of the transmitter accumulation rate.

According to this hypothesis, the effects of light on the photorecep-

tor do not merely follow a serial chain of transduction steps. Rather,

light activates parallel pathways which later mutually interact to

generate the cone potential.

* . The simplest mass action law for a light-activated accumulation

rate is

* - dA
= -C(A-Ao) + D(E-(A-A o )]S. (29)

Here, Ao is the baseline level of Aft) in the dark (S=O). An incoming

light-induced signal S tends to drive the accumulation rate A(t) to-

wards its maximal level A +E.
0

We have found that the two equations (28) and (29) numerically fit

the most difficult BHL data better than the full BHL model (15)-(23).

Indeed a single equation derived from (28) and (29) fits these data

better than the full BHL model. This is true even if these equations

are coupled to the cone potential V(t) in the simplest possible way by

making the change in T proportional to the change in V. Wherever such

a coupling or more realistic couplings occur, whether in the outer seg-

ment or the inner segment, does not influence the meaning of the gating

step or the goodness of numerical fit.

The simpler gating model assumes that enzymatic activation occurs

quickly relative to z's equilibration rate. Then A in (29) is always

S.. . . . . .. .
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approximately at its equilibrium level

i-,-:.EGS
A(S) = A S (30)

where G DC- . This approximation leads to

Gating Yodel I

T = Sz (26)

dz = A(S) (B-z)-Sz (31)

. -"

where A(S) is defined by (30). When the enzymatic activation of A pro-

ceeds at a finite rate relative to z's equilibration rate, we study

A the

Gating Model II

T - Sz (26)

°d,
dz . A(B-z)-Sz (28)

and

dA = C(1+GS) [A(S)-A] (29)

where A(S) is defined by (30).

11.5. Double Flash Experiments

An important difference between the chain reaction of the BHL

model

I -yY -Y 2 - "'" "Yn- - zl- 24

and a chain reaction of a gating model

I I - "1 -,, .. . . . . ..' " . : - - - -
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I 2 Yn-l S Sz (32)

is illustrated by a double flash experiment (Figure 14). Baylor, Hoda-

- kin, and Lamb (1974a) found that a bright flash causes the potential

- -"'.- 10 -

mV

n. RdanfoFiue 1 BorHdkn n ab

II I I
0 750

msec

Figure 14: Effect of a bright conditioning flash on the response to a
subseauent bright test flash. (A) Response to test flash

*alone. (B) Response to conditioning flash alone. (C) Res-
ponse to both flashes, with the upper two responses dotted
.n. Redrawn from Figure 15 (Baylor, Hodgkin, and Lamb,
194a, p.716).

D. " . - A * * . * * * ..- .
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to overshoot before settling to a Plateau level that is maintained for

a while before the Potential returns to eauilibrium. A second bright

flash that occurs while the potential is at the Plateau value caused

by the first flash does not cause an overshoot even though it d~oes ex-

tend the duration of the chain reaction.

Given a chain reaction like (24), it is not possible to under-

stand how the duration of the chain reaction can be prolonged without

increasing the concentration of internal transmitter (Detwiler, Hodo-

kin, and McNaughton, 1980, pp.222-223). Since, however, the voltage

does not change in response to this change in transmitter concentra-

tion, the voltage must be saturated, or insensitive to, the transmit-

*ter increment. In the BHL model, the definition of the conductance G f

in equations (15), (17), and (18) is made to guarantee the voltage's

insensitivity to a second flash.

Notwithstanding the possible Physical truth of these assertions,

* the gating model provides an alternative explanation: The transmitter

- . term z in the chain reaction (32) can equilibrate via equation (28) or

(31) to the first flash, thereby causing an overshoot in Potential,

and can thereafter remain insensitive to a second flash that occurs

while S remains at its Plateau value, without preventing the new flash

from prolonging the duration of the chain reaction. See Carpenter and

Grossberg (1981, pp.lS-l 6) for further details. This is perhaps the

critical difference between an unblocking model and a gating model. A

more critical test between the models might be made using a parametric

series of double flash experiments in which the second flash is twice

as intense as the first.

The remainder of this review of photoreceptor models will compare

how the unblocking and gating models fit a demanding body of parame-

tric data, how the gating step can be coupled to a membrane eauation,

*and how the gating model can br parametrically tested by blocking the
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light-induced enzymatic activation step.

11.6. Parametric Studies of Flashes on Backgrounds: Differential

Reactions in the Energy and Time Domains

A critical series of parametric experiments which generated para-

doxical data was reported in Baylor and Hodgkin (1974). The Gating

Model I with just one dynamical equation fits these data better than

the full BHL model. The Gating Model II with two dynamical equations

*. provides a significantly better fit. In these experiments, (Figure

15), a brief (11 msec.) flash of fixed size (:) is superimposed on a

constant level of background illumination (I). The cone potential is

brief flash

variable'fbackground
... peak time t

S t) chain reaction

ecuilibrium
level

S 0 =  10

Figure 15: This experiment, from (Baylor and Hodgkin, 1974), measures
the photoreceptor's response to a brief flash of fixed
size, superimposed on a level of background light which ran-
ges from dark to very bright.

allowed to equilibrate to the background level I before the flash

0

occurs at time t-0. As I is parametrically increased across several

&7. Z_
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log units, the cone's voltage responses to the fixed flash are measur-

ed for t > 0. The results of these experiments are plotted in Figure

16a. Each curve in Figure 16a represents the amount of hyperpolariza-

tion caused by the flash ' relative to the baseline level of hyperoo-

larization caused by the background level I0.

As 1 0 is increased, the peak hyperpolarization decreases, as is

intuitively plausible. However, the times at which these oeak respon-

ses occur first decrease as I increases, but then, at sufficiently

large values of 10 , begin to increase. Thus a monotonic chanae in the

energy domain coexists with a non-monotonic change in the time ddmain.

Such a differential parsing of energy and time also occurs in the

double flash experiments (Section 11.5) wherein a second flash influ-

ences temporal but not energetic measures, by contrast with a first

flash.

Numerical solutions of the BHL model are shown in Figure 16b.

Note that the scales in the lower two graphs differ from those in Fia-

ure 16a, and that the peak sizes are off by a factor of 10 in the low-

est graph. Also the turnaround occurs at too low a light intensity,

and the time of the turnaround is too late.

Results for the Gating Model I are given in Figure 16c. Here, the

peak sizes at large I0 are also off by a factor of 10, but the time

and intensity of the turnaround are closer to the data. Recall that

- Model I consists of a single linear ditferential equation.

Results for the Gating Model II, in Figure 16d, fit the data

well: peak size, turnaround time, and light intensity at e turna-

round are all close to those in Figure 16a. The times at which peak

response occurs, as functions of log IO , are plotted in Figure 17 for

the Baylor-Hodgkin (1974) data, the BHL model, and the two aatina

models.

V..
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Figure 16: Intracellular response curves x(t)-x o showing the effect
of a flash superimposed on a background light of fixed in-
tensity, 10. Each horizontal axis represents the time, in
msec., since the middle of the 11 msec. flash. Each verti-
cal axis is scaled so that the peak value of x(t)-xo=x(t)
in the dark is equal to 25. The number beside each curve
equals log1 0 (Io), where I is calibrated so that when
1ogj 0 IO = 3.26, the peak of x(t)-x o eauals 12.5. (a) The
Baylor-Hodgkin (1974) data. (b)The Baylor-Hodgkin-Lamb
model predictions redrawn from (Baylor, Hodgkin, and Lamb,
1974b, p.785).
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Figure 16 (cont.): (c) Predicted response of Gating model I (Eauation
(9)). (d) Predicted response of Gating r'odel II
(Equations (7)-(8)). For each of Vodels I and II,
x(t) is oroDortional to S(t)z(t). Note that the
vertical scales of (a) and (d) are the sare, and
the vertical scales of (b) and (c) are the same.

. . .
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Figure 17: Times at which the oeak hyperpolarizations occur for the
Baylor-Hodgkin (1974) data and the three models. Note that
the input intensity at which the turnaround occurs and the
dynamic range of peak times are much too small in the BHL

*model. Baylor, Hodgkin, and Lamb (1974b) considered this
the most serious defect of their model.

11.7. Locus of the Transmitter Gating Stage
-p.,

* The model thus far has described only chain reaction and trans-

mitter gating effects in keeping with our hypothesis that the gate is

the rate-limiting cause of phenomena like the turnaround of potential

-. .oeaks. Both conceptual completeness and the explanation of various

other phenomena require that the gating step be coupled to the cone

potential. For example, Baylor, Hodgkin, and Lamb (1974a) found during

double flash experiments that an extra slow conductance accompanies

the overshoot to the first flash but not the prolonged response, with-

out overshoot, to the second flash. In the unblockina model, this oro-

perty requires the hypothesis that an extra rembrane channel exists

*.. 
°

o.'



43.

with properties that control the slow conductance term. In a gating

model, a slow conductance effect is found without hypothesizing an

extra membrane channel (Carpenter and Grossbera, 1981, p.22). The slow

conductance and its relationship to the overshoot of potential follow

directly from the coupling of the gate to the potential.

Such properties of the gating model are invariant under model

variations which place the coupling between gate and potential at dif-

ferent stages in the light transduction process. This fact is impor-

tant to realize because electrophysiological data leave uncertain the

exact stage at which a particular biochemical process occurs. This un-

*" certainty has recently been reduced by the use of suction electrode

methods that permit outer segment recordings to be made in isolation

from inner segment electrical signals (Baylor, Lamb, and Yau, 1979).

-These methods suggest that various processes which produce overshoot

- phenomena occur in the inner segment, rather than the outer segment,

as had previously been thought (Baylor, Lamb, and Yau, 1979; Nunn,

Matthews, and Baylor, 1980). This modification in the locus of over-

shoot-related phenomena is compatible with the existence of a rate-

limiting gating step, but indicates that such a step occurs later in

the transduction process than previous data suggested.

11.8. Coupling the Transmitter Gate to Cell Potential

A gating sign,-i can, in principle, either depolarize or hyperpo-

larize a cell's potential. Although this distinction is of great phy-

sical importance, many formal properties are the same in both cases.

For example, S(t) can be thought of either as the output of the chain

reaction or as the effect of the chain reaction on the outer segment

potential. Whichever interpretation of S(t) is used, the gated signal

T(t) may then, in principle, either depolarize or hyperpolarize the

zone potential. Whatever interpretation is needed to treat a particu-

w
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lar case, the steady-state amount of hyperpolarization or of depolari-

zation in response to a gated signal T=Sz is of the form

MT •(33)
." "N+T

The rate with which the potential approaches asymptote (33) will de-

pend on whether the cell is hyperpolarizing or depolarizing. However,

in cases where the potential reacts quickly relative to the gate's

- reaction rate, as we assert occurs in turtle cones, the potential

change maintains the approximate equilibrium (33) whether the cell is

'- hyperpolarized or depolarized. In this case, the time and the back-

ground intensity at which the potential, via (33), experiences a turn-

around in ootential peak is approximately the same as the time and the

background intensity at which the gated signal T itself experiences

its turnaround. In fact, (33) is approximately proportional to T

except if it begins to saturate at values of T >> N.

* The gating model is coupled to the membrane equation as follows.

We start with the spatially uniform version of the membrane equation

for the voltage V(t):

dV + - -C0 d = (V+ - V)g + (V - V)q + (Vp - V)g , (34)

where V+ , V, and VP are the excitatory, inhibitory, and passive satu-

ration ooints; and g , g and gp are the corresponding conductances.

To couple the excitatory conductance a to the gated signal T=Sz,

* we use a simple mass action law. Below we describe the case wherein an

, .increase in T decreases g , and thereby hyperpolarizes V. Similar qua-

litative results are obtained if T increases rather than decreases g+

One difference between the two counlings is that a hyperpolarizing

coupling decreases V's reaction rate, whereas a deDolarizing coupling

:,i'..".... . .-:.:.............................................................
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increases V's reaction rate.

The simplest mass action hyperpolarizing action is defined by

= H(g 0 - g') - Jg+T , (35)

where a is the maximal number of open pores in the dark (T=O). Equa-

tion (35) says that closed pores, which number g0 -g
, open at a rate H;

- .',. and that the gated signal T closes open pores, which number g at a

[ rate J. Equati.on (35) can be rewritten in the form

= H(1 + KT)I - g (36)

where K = JH - . If pores g close quickly relative to the reaction

rate of the gate z to light, then (36) implies that

=+ t 0  (37)
(t)1 +KT

SAssuming that pores close quickly, as in (37); that g (t) is constant,

say g (t) =- gl; and setting CO - 1 and g = 0 for simplicity, the mem-

brane equation (34) becomes

dV (+ V) 1 0  (V - g (38)
d 1 +KT

The equilibrium potential V can be found by setting T=0 and dV 0 in
*1S0 dt

(38). It is

UiV gdV go

a V, = Iv3)+ vg (39)
0 go + g

.o°

,42.

,.. .. .. .. .. .. .
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The amount of hyperpolarization

x =V -V (40)0

then obeys the equation

dx -- +  g x + LT (41)

-'J glV ) - (411t +K-T 1+KT

where

L r K 1 (V 0  V (42)

Equation (41) can, in turn, be written in the form

dx
dt1+KT MT ) (43)

where

MV -. V (44)0

and.. gO + gl
N = g 1 (45)

g1 K

.If x(t) reacts quickly relative to the reaction rate of z(t), then

(43) implies

x (t) MT (t) (46)N+T(t)

as in (33).

When equation (46) is written in the form

-T, (47)

,M- x
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it provides a basis for comparison with the Baylor, Hodgkin, Lamb

(1974b) equation

aU =-z (48)
UL-U K

relating amount of hyperpolarization U (in their notation) to the

blocking variable z In the gating model, the gated signal T = Sz

replaces z .

11.9. Tests of Enzymatic Activation

Another point of comparison between the gating model and the

unblocking model arises by considering the steady-state reactions of

both models to a series of background lights. In the gating model,

equations (26), (28), (29), and (30) imply a dependence of the form

T -PSG+QS) (49)
1+RS+US

2

where coefficient U is small compared to QR (Carpenter and Grossberg,

1981, p.12, p.2 1). In the unblocking model, the dependence is of the

form

Z - PS(I+QS) (50)

K 1+RS

Again the gated signal T in (49) replaces the blocking variable z1 in

2
(50). Equation (49) also contains the quadratic term US . No such term

appears in the unblocking equation (50), which shows that this equa-

tion must break down at large values of S, since the amount of block-

-nc substance must be bounded, whereas the right-hand side of (50)

grows without bound as S increases.

in the gating model, the quadratic terms OS and US2 are due to

;N-
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the light-induced enzymatic reaction (29) . If the enzymatic activa-

tion could be chemically inhibited, then the steady-state gating equa-

tion (49) would reduce to the equation

T PS (51)1+RS

wherein no quadratic terms occur. Simultaneously, the turnaround of

- potential peaks due to light flashes on parametric increases of back-

ground. light would cease to occur; only a monotonic decrease in the

* time to peak should be observed. Finally, suppose that the steady-

* state potential is plotted against the logarithm of light intensity

after adapting the cone to a series of prior background intensities.

Then the cone's potential at a given log intensity is shifted as a

function of background intensity. Inhibition of the enzymatic step

should reduce the size of the shift due to high intensity lights by a

predictable amount (Carpenter and Grossberg, 1981, pp.24-25). These

and related parametric predictions can be used to test for the exis-

* tence of a rate-limiting enzymatically modulated transmitter gating

step in photoreceptor and related cellular preparations.

L ,.
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III. CIRCADIAN RHYTHMS AND OTHER BIOLOGICAL CLOCKS

V.'

III.l. A Chemical Gatina Model of Circadian Rhythms and f'otivational

Cycles'

Because the gating concept can be derived from general principles

about unbiased chemical transmission between cells (Section 11.3), it

should not be surprising that chemical aates may be found in a wide

variety of neural systems. Whenever such a general principle can be

identified, a classification of the properties whereby the principle

manifests itself in data is desirable. Our discussion of photorecep-

tor dynamics has reviewed a type of data which exhibits parametric

properties akin to those of an enzymatically activated rate-limiting

transmitter gating steo in a feedforward chain reaction. In such a

reaction chain, one does not expect to find spontaneous large ampli-

tude oscillations or sustained oscillations in response to brief in-

outs. When chemical gates are placed in feedback anatomies, by con-

trast, a wide variety of oscillations can occur.

A role for gates in feedback anatomies first arose in models of

motivated behavior (Grossberg, 1972a, 1972b, 1975, 1980, 1982a, 1982b,

1982c). The model of circadian rhythms that we introduce here for the

first time shares many formal similarities with these earlier models

of gated feedback networks. These similarities clarify a sense in

which motivated behaviors are controlled by a hierarchy of similar

mechanisms with a circadian oacemaker at the foundation of the hier-

archy, and permit us to understand how rhythmic properties arise in

the motivated behaviors themselves (Moore-Ede, Sulzman, and Fuller,

1982, -D.186). Due to the role of slow chemical gates in generating

these rhythms, our model allows us to understand why certain chemical

transmitters can oscillate according to a circadian rhythm, not only

because they are driven by pacemaker output, but also because they

- I. . . . .

... . . . . . . . .
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form an integral part of the rhythm-generating mechanism (Binkley,

1979; Deguchi, 1979; Jouvet, 1974; Lewy, Wehr, Goodwin, Newsome, and

Markey, 1980; Markowitz, Rotkin, and Rosen, 1981; Nestler, Zatz, and

Greengard, 1982; Passouant and Oswald, 1979; Takahashi, Hamm, and

Menaker, 1980; Tapp and Holloway, 1981; Wehr and Wirz-Justice, 1982;

Zatz and Brownstein, 1979).

Three different biological processes, oroperly juxtaposed, are

necessary to define a gated pacemaker: slow chemical gates, feedback,

and comoetition. If any one of these orocesses is removed, a gated

pacemaker ceases to oscillate. Using these ingredients, we have defi-

ned a pharmacologically predictive model of a circadian pacemaker. In

their 1978 article, Daan and Berde note the essential weakness of pre-

vious models: "Plost models of circadian oscillators have been ab-

stract, in the sense that they include parameters not definable in

terms of concrete physiological or biochemical processes. .This fea-

ture makes them difficult to test and limits their heuristic or pre-

dictive value"(p.299). Because our model is physiologically grounded,

it enables us to provide a unified explanation of circadian proper-

ties that have not previously been dynamically explained, such as per-

iod doubling, bimodal activity patterns, rhythm splitting, long-term

after-effects, Aschoff's rule and its exceptions, characteristic phase

leads and lags, seasonal modulation of activity, and differences be-

tween nocturnal and diurnal animals (Aschoff, 1960, 1979; Enright,

1980; Jouvet, Mouret, Chouvet, and Siffre, 1974; Moore-Ede, Sulzman,

and Fuller, 1982; Pittendrigh, 1960, 1974; Wever, 1979; Winfree,

1960). For example,concerning long-term after-effects, Pittendrigh

(1974) wrote in an important review article: "They are more widespread

than the current literature suggests; they are not accounted fcr by

any of the several mathematical models so far published; and they must

be reckoned with in the mechanism of entrainment"(p.441). Dur woik

_i.
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pays particular attention to after-effects and provides examples of

all the after-effect phenomena that Pittendrigh (1974) discusses.

111.2. Some Alternative Circadian Models

As with the classification of signal patterns in terms of genera-

lized Hodgkin-Huxley models, the present work both classifies pheno-

mena in terms of their generative mechanisms, and helps to define as

" structured data groups of phenomena that had heretofore seemed to be

* unrelated. We will develop the model in three stages and will indicate

those data properties that can be explained at each stage. The first

'- stage defines the basic gated pacemaker, whose properties already suf-

fice to explain various circadian data. The second stage augments the

gated pacemaker to include feedback generated by metabolic activity,

which we think of as an index of fatigue. The analogous process in

.? models of motivated behavior such as eating is a feedback signal due

to satiety (Grossberg, 1982a, 1982b, 1982c). The third stage includes

a slowly varying automatic gain control process. In models of motiva-

ted behavior, the analogous process describes how cues that are per-

sistently associated with a motivated behavior become conditioned re-

inforcers that can thereupon modulate the activity cycle of that be-

havior. Our gain control process is not a "learning" process of the

type that Pittendrigh and Daan (1976) criticized by saying (p. 248):

"We see no utility in... treatment of circadian rhythms as being 'im-

* printed' on organisms.. .The structure of circadian pacemakers, inclu-

ding provision for some lability is completely encoded in DNA....". The

* gain control process is free from this criticism both because the basic

gated pacemaker properties are independent of the gain control process

and because all the processes in the model could be genetically speci-

fied.

The gated pacemaker model represents a single pacemaker system.

I"7.
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We have in mind the pacemakers that have been located in each of the

two suprachiasmatic nuclei (SCN) of mammals (Moore, 1973, 1974; Moore-

Ede, Sulzman, and Fuller, 1982). Various studies have indicated that

these pacemakers drive the sleep, activity, feeding, and drinking

cycles in mammals (Enright, 1980; Moore-Ede, Sulzman, and Fuller,

1982; Wever, 1979). In humans, the temperature cycle can be desynchro-

* nized from the sleep cycle, thereby suggesting that the temperature

. cycle is driven by a separate pacemaker system (Wever, 1979).

Recent models have focused on how these two distinct pacemaker

systems are coupled (Enright, 1980; Kronauer, Czeisler, Pilato, Moore-

Ede, and Weitzman, 1982; Wever, 1979). In these models, the individual

pacemakers are chosen for convenience and simplicity, but do not admit

a detailed physiological interpretation. For example, the Kronauer et

." al. (1982) and Wever (1962, 1975) models consist of a pair of coupled

" van der Pol equations. The model of Kawato and Suzuki (1980) consists

of a pair of coupled FitzHugh-Nagumo equations. The more abstract

model of Daan and Berde (1978) describes a pacemaker entirely in terms

of its period, phase, and phase shifts. Our analysis complements these

contributions on the coupling of formal oscillators by explicating the

dynamics of a single pacemaker. Those results about coupled oscilla-

tors which are insensitive to the detailed properties of the indivi-

dual oscillators will carry over to the case where gated feedback net-

works are the oscillators to be coupled.

We, however, araue that some properties which have heretofore

been assumed to necessarily follow from the coupling between oscilla-

tors can be explained by internal properties of a single oscillator,

notably rhythm splitting and long-term after-effects. This claim does

not deny the existence of coupling between distinct sleep and temper-

ature systems. Nor does it deny the existence of distinct pacemakers

in each of the two suorachiasmatic nuclei of a mammal. Rather we show

*..*
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how properties which cannot be explained without coupling between

classical oscillators can be exr.lained by a single gated oscillating

system, and that some properties which have not been explained by

coupling between classical oscillators can be explained by a single

gated oscillator. At the very least, these results show that further

argument is needed to conclude that a coupling between oscillators

generates a data property when the individual oscillators are poorly

* characterized.

111.3. Some Circadian Phenomena and Gated Pacemaker Properties

This section summarizes some of our model's explanations of cir-

cadian data. A more comolete exposition is contained in our other

* . ,* articles (Carpenter and Grossberg, 1982a, 1982b). In our analysis,

certain circadian properties are attributed to the gated pacemaker.

Other phenomena are understood as due either to metabolic feedback or

to slow gain control. Some important properties, such as slowly evol-

ving split rhythms, require the entire system. Each level of analysis

provides specific predictions about the anatomy and physiology of the

1circadian system. 0everal of these predictions challenge prevailing

assumptions in circadian models.

A) Competition Between On-Cells and Off-Cells

The basic model consists of on-cell/off-cell pairs, or dipoles,

which mutually inhibit one another. The on-cell drives observable ac-

tivity, such as wheel-turning. Light is hypothesized to influence the

endogenous circadian cycle by differentially exciting the on-cells or

off-cells of the dipole, depending on whether the model depicts a di-

urnal or nocturnal animal. These hypotheses are consistent with the

observations that electrically stimulating the optic nerve, or stimu-

-ating the retina by light, excites some cells of the suprachiasmatic
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nuclei while inhibiting others (Groos and Mason, 1978; Groos and Hen-

driks, 1979; Lincoln, Church, and Mason, 1975; Moore-Ede, Sulzman, and

Fuller, 1982; Nishino, Koizumi, and Brooks, 1976). When these data are

interpreted in terms of a van der Pol or other formal oscillator, an

anatomical conclusion is drawn that differs from our own viewpoint in

the following way.

B) Phase Resetting in Diurnal and Nocturnal Animals

In the gated pacemaker model, the assumption that light inputs

excite the on-cells of diurnal animals and the off-cells of nocturnal

animals leads to the expected day-activity of diurnal animals and

night-activity of nocturnal animals. This assumption also implies that

light resets the phase of both diurnal and nocturnal gated pacemaker

(2-- models in a similar way, as demanded by the data (Pittendrigh, 1960,

1974).

For example, during the "early subjective night" of a model diur-

nal animal, a light pulse exciting the on-cell prolongs its active

phase, delays the rest cycle, and thereby creates a phase delay. Dur-

ing the "early subjective night" of a model nocturnal animal, a light

pulse exciting the off-cell prolongs its active phase, delays the en-

suing activity cycle, and again creates a phase delay. During the

"late subjective night" of a diurnal animal, a light pulse exciting

the on-cell induces a premature onset of on-cell activity, thereby

causing a phase advance in the onset of activity. During the "late

subjective night" of a nocturnal model animal, a light pulse exciting

the off-cell induces a premature onset of off-cell activity, thereby

causing a phase advance in the onset of rest which, in turn, causes a

phase advance in the onset of activity. For both diurnal and noctur-

nal model animals, a light pulse during the "subjective day" has lit-

tle effect. Thus the characteristiz ohase response curves of both di-

- v .- . " " . . . . . 7. . . .*.... .. .- * .*. .*.*. .- . .
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urnal and nocturnal model animals are similar, as also occurs in vivo.

Thus if a gated pacemaker exists in the SCN, then the phase response

curves of both diurnal and nocturnal animals can be explained by SCN

dynamics.

By contrast, if a van der Pol oscillator is used to model the

pacemaker, then it is difficult to see how the diurnal/nocturnal dis-

tinction could be built in until after the SCN level, as Moore-Ede et

al (1982, p.81-82) realized: "The circadian systems of diurnal and

nocturnal species must be organized differently to account for the

dramatic differences in the phase relationships of their rhythms to

" the light-dark cycle [i.e., day-active vs. night-active]. It is pos-

sible that the differences lie in the coupling between zeitgeber and

*pacemaker. However.. the similarities between nocturnal and diurnal

*species in the way that light resets circadian pacemakers [i.e., the

phase response curves] make it more likely that the difference in the

phase relationships of the rhythms of nocturnal and diurnal animals

actually depends on differences in the coupling mechanisms between the

circadian oacemaker and the rhythms it drives."

If the transmitter gates which our model hypothesizes to exist in

the SCN could be parametrically excited or inhibited during phase re-

setting experiments, then predictable changes in the phase response

curves would be generated that could not be explained by a formal os-

cillator model.

C) Suppression of Circadian Rhythm by Steady Bright Light

Another ..operty of a gated pacemaker that is often not discussed

in formal models of coupled oscillators concerns the parametric res-

ponse to increases in a steady background light level. Aschoff (1979,

p.23 8) writes: "At high intensities of illumination circadian systems

often seem to break down, as primarily exemplified by arhythmicity in

. .
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records of locomotor activity. Data supporting this statement have not

often been published but the phenomenon is familiar to everyone work-

ing in the field."

In a gated pacemaker, sufficiently high steady light quenches the

circadian rhythm. Activity is then determined by competition between

• " motivated behaviors that are modulated by aperiodic environmental

cues.

D) Period Doubling and Biorhythms

When humans live in caves for long periods in dim steady light,

their circadian rhythm occasionally drifts towards a forty-eight hour

day (Jouvet, Mouret, Chouvet, and Siffre, 1974). A period doubling

phenomenon can also occur in the basic gated pacemaker model without

light input. A normal period is achieved using the same choice of par-

ameters in response to periodic light. Slow modulations of activity on

a time scale much longer than a day can also occur. These phenomena

are described in greater detail in Section III.6.

E) Split Rhythms and Metabolic Feedback

Pittendrigh (1960) first noted, and recognized the importance of,

the phenomenon of split rhythms, whereby a nocturnal animal with a

single daily activity cycle in the dark may generate an activity cycle

which splits into two components in constant light. In recent years,

numerous examples of split rhythms have been discovered. Hoffman

(1971) described a diurnal animal (Tupaia belangeri) whose rhythm

splits when the level of illumination is reduced; and Gwinner (1974)

noted that the hormone testosterone induces split rhythms in star-

lings. Pittendrigh (1974) also noted that "Many animals tend to be bi-

modal in their activity pattern"(p.450) even when the activity pattern

does not split.

Il9j:
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Since Pittendrigh's original observations, many circadian models

have adopted Pittendrigh's assumption that split rhythms are due to

a pacemaker consisting of two or more coupled oscillators which drift

out of phase when the split occurs:

"The circadian pacemaker for the activity cycle [a] comprises two
separable oscillators, one responsible for the N (night, or earliest]
component of , and the other for its M [morning, or later] component."
(Pittendrigh, 1974, p.450).

"The findings reported here strongly suggest that the rhythms of
locomotor activity in Tupaias is controlled by two coupled oscillators
(or two groups of oscillators), which may have two stable phase rela-
tionships." (Hoffmann, 1971, p.142).

9.

9." "Several recent investigations in mammals have made it virtually
certain that the daily rhythm of gross locomotor activity... is gover-
ned by at least two coupled oscillators. This is strongly suggested by
the observation that under certain conditions of constant illumination
the rhythm of locomotor activity may 'split' into two distinct compo-
nents..."(Gwinner, 1974, p.7 2 ).

"...Most of the behaviour of the rhythms observed may also be in-
terpreted as complex responses of a single basic oscillator.. .The most
compelling evidence for a two-oscillator system in vertebrates is the
occurrence of 'splitting' of free-running activity rhythms into two

* distinct components." (Daan and Berde, 1978, p.298).

"...only a multi-oscillator arrangement could account for all the
various behaviors of the mammalian timing system... Splitting of the
activity pattern of rodents (Pittendrigh, 1960) was one of the ear-
liest indications of multiple, potentially independent oscillators in
mammals." (Woore-Ede, Sulzman, and Fuller, 1982, p.117-118).

We challenge the assumption that split rhythms necessarily imply

the existence of in-phase/out-of-phase oscillators by explicitly dem-

onstrating the existence of both split rhythms and bimodal activity

patterns in a different type of model. At best, the traditional two-

". oscillator model now requires further proof.

In the aating model, split rhythms are caused by metabolic feed-

back due to activity. In this context, bimodal activity patterns are

generated as follows: The pacemaker excites the on-cell and thereby

, - -. .. . .-
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initiates activity, such as wheel-turning. Activity causes a build-up

of metabolic feedback to the off-cell. This feedback enables the off-

cell to partially inhibit the on-cell earlier than the on-cell trans-

mitter gate's relatively large value would otherwise allow. Wheel-

turning thereupon slows or ceases. The metabolic feedback has an

opportunity to dissipate during this rest period. The on-cell is

thereby disinhibited and its potential is revived by the still rela-

.- tively large value of the on-cell transmitter gate. Activity there-

upon increases until the combination of increased metabolic feedback

and off-cell activation by the pacemaker bring on rest and sleep. For

the same model animal, an environment that depresses on-cell poten-
tial, such as constant light in a nocturnal animal, turns the rest

period into the full-fledged sleep period of the split rhythm.

Our explanation thus suggests that a nonspecific effect on the

pacemaker, say due to substances in the bloodstream, can cause split

rhythms. This explanation is consistent with electron microscopic

evidence that some SCN cells are clustered in direct apposition to the

walls of blood capillaries (Moore, Card, and Riley, 1980; Card, Riley,

and Moore, 1980). As Moore-Ede et al. (1982) note, these cells "may

act as receptors, sensing hormonal signals from elsewhere" (p.172).

Indeed, it has been observed that injection of hormones can induce

split rhythms (Gwinner, 1974). Our hypothesis is also supported by the

fact the split rhythms are observed in higher organisms, although, in

theory, it is possible for depletion of a chemical in a lower or uni-

cellular organism to have a similar effect.

The metabolic feedback term in our model explicates the intuitive

idea that activity per se, or other metabolically mediated processes,

can influence our need to rest. The model also indicates how subtle

the interaction between the underlying pacemaker and contingent acti-

vity can be. Because the metabolic feedback process rises and falls

.. . . .. ..
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in the model on an "ultradian" time scale that is significantly short-

er than the 24-hour day, it helps to account for the approximately

6-, 8-, or 12-hour components of activity sometimes seen, for example,

when a nocturnal animal is put in the dark after its circadian rhyth-

micity has been eliminated by leaving it in steady light (Pittendrigh,

1960, p.172).

F) Unilateral Lesions of the SCN Abolish Split Rhythms: The

Internal Zeitgeber

When a nocturnal animal such as a golden hamster is maintained in
• %-

constant light, a split rhythm can develop. Surgical ablation of one

of the two SCN in the hamster eliminates the split rhythm (Pickard and

Turek, 1982). The ablation also causes a total reduction in activity

and a greater temporal diffuseness of activity.

These data imply that a functional relationship exists between

the two SCN that helps to synchronize as well as to split the ham-

ster's activity rhythm. The nature of this functional relationship re-

quires close scrutiny. Pickard and Turek (1982) wrote that more than

one interpretation is possible: "...the two SCN oscillators...might

normally be coupled, but this coupling might be altered under... the

split condition.. .Another possibility is that a set of interacting

pacemakers may reside in each SCIN, and the loss of the split rhythm

may be a consequence of the total number of these oscillators destroy-

ed; whether or not the destruction is unilateral may not be important"

(p.1121). The former interpretation of two oscillators going out of
phase due to a change in their mutual coupling is the more familiar

one. To explain how removal of one SC17 creates diffuse overall activi-

ty, this interpretation would need to suppose that several oscillators

exist in each SCN and that, although the oscillators within either SCN

do not mutually interact, the oscillators between the SCN do interact,

I oiT. 4*~.--.-- 1*--- .**.'.*.*..-.. ~ -
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probably via an inhibitory coupling.

The gating pacemaker model explains both the abolition of the

split as well as the reduction and diffuseness of subsequent activity

without supposing that individual oscillators are differentially coup-

led within and between the two SCN. The model does this by explicating

how a change in total activity causes the observed effects by reducing

the metabolic feedback received by each cell in the remaining SCN.

This explanation proceeds as follows.

Before an SCN is removed, every on-cell in each SCN contributes

to a total excitatory signal that supports the observed activity level.

(See function G(xM(t)) in equation (65) of Section 111.7). This total;1

excitatory signal determines the total amount of metabolic feedback.

* Every off-cell in each SCN receives this total metabolic feedback sig-

nal. That is, the metabolic feedback signal is distributed nonspecifi-

cally to all the off-cells. In Section (E) above, we explained how

this metabolic feedback signal can cause a split rhythm.

When one SCN is extirpated, the total number of on-cells that can

generate activity is cut in half. Consecuently, the total metabolic

feedback signal to each surviving off-cell is soon also significantly

.. reduced. This fact immediately indicates how the split rhythm is abo-

lished, since in our model the split rhythm is ascribed to a relative-

ly large metabolic feedback signal.

The diffuseness of activity is then explained in our model as it

would be in a coupled SCN model. We assume that the remaining SCN con-

tains several gated pacemakers which, in the absence of entraining

signals, eventually get desynchronized. By contrast with a coupled SCN

"K model, we sugcest that the entraining signal may be received via the

K.bloodstream; hence, its nonspecific character. To emphasize the fact

bOi that this metabolic feedback signal, which acts like a forcing func-

tion analogous to light, can be controlled by internal factors other

.° .. . .
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* than the pacemakers themselves, we call it an internal zeitgeber.

G) Solit Rhythm After-effects: Slow Gain Chances

when a nocturnal animal, such as a golden hamster, is placed in

- steady light, it may take a month or more for a split rhythm to evolve

(Pittendrigh, 1974, p.449). In the present model, the slowness of the

*. split onset is due to the action of a slow gain change that is analo-

* gous :o the change in a cue's conditioned reinforcing efficacy in

models of motivated behavior (Grossberg, 1982a, 1982b, 1982c). More

precisely, the slow gain change is a process with two properties: its

strength increases slowly as a function of on-cell activity; it acts

as an excitatory signal to the on-cell that is proportional to its

*strength when the model animal is active. Otherwise expressed, the

slowly varying gain process acts to gate an excitatory signal to the

on-cell. This gating action is functionally distinct from the gating

action that generates the underlying pacemaker oscillation.

Speaking intuituvely, the slowly varying gain signal causes the

slow onset of the split as follows. A split rhythm is caused when met-

abolic feedback can get sufficiently large relative to the on-cell

potential during an activity cycle. At the time when the model animal

is placed in steady light, the slow gain signal is relatively large.

It tnereby enhances the on-cell potential during an activity cycle.

After the model animal is placed in steady light, the light acts to

exci-e the off-cell and thus tends to inhibit the on-cell. At first,

the relatively large gain signal partially offsets this reduction in

on-cell activity. Gradually, however, the gain signal senses the aver-

age reduction in the on-cell potential. The gain signal slowly decrea-

ses as a result, and the on-cell activity decreases further, on the

average. As this progressive decrease in average on-cell activity pro-

ceeds, the metabolic signal gradually causes the rhythm to split.

% .. . . .....
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When an animal whose rhythm is split is placed back into its ori-

ginal steady light environment, its rhythm can remain split indefi-

nitely (Hoffmann, 1971). In our model, the split rhythm occurs when

the gain signal is sufficiently small to allow metabolic feedback to

split the on-cell activity cycle. Under certain circumstances, the

average on-cell activity thereby decreases. When this occurs, the gain

signal also tends to remain small. The splitting mechanism hereby

tends to perpetuate itself unless a sufficiently potent and sustained

counteractinq influence is imposed, as Hoffmann (1971) also found.

Many authors interpret the slow onset and offset of split rhythms

as a desynchronization phenomenon. In our theory, the slow onset and

offset are attributed to the same mechanism that we use to explain

after-effects, as in Section (I) below. In fact, our theory explains a

variety of slowly varying processes using just this gain control mech-

anism. In particular, this mechanism has been used to numerically si-

*mulate several of the different types of split rhythms that are found

. in the data (Pittendrigh, 1974, p.449).

Aschoff's Rule and Its Exceptions: Paradoxical Results on

After-effects

Additional support for the existence of a slow gain control pro-

cess that reflects average activity comes from a correlative analysis

of three types of data: Aschoff's rule and its exceptions, split rhy-

thms in diurnal and nocturnal animals, and long-term after-effects on

period subsequent to phase leads and lags caused by light pulses. In

the experimental literature, no correlation has been drawn between

these three types of phenomena. Our model rationalizes the split rhy-

thm data using the mediating hypothesis that a slow decrease in the

gain control signal tends to make split rhythms more likely, whereas

a slow increase in the gain control signal tends to make split rhythms

• a-
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less likely.

Aschoff's rule notes the tendency in many nocturnal mammals for

an increase in steady light to cause an increase in period and a de-

crease in activity, and in some diurnal mammals for an increase in

steady light to cause a decrease in period and an increase in activi-

ty (Aschoff, 1979). Exceptions to this rule frequently occur. In a

different set of experiments, some diurnal mammals show split rhythms

caused by an increase in light; others have rhythms which split in

response to a decrease in light. Also, in some diurnal mammals, a

transient lengthening of period during a phase shift is followed by a

free-running rhythm of shortened period, whereas after a transient

shortening of period, a lengthened free-running period is observed

(Kramm, 1971). We correlate and unify such apparently unconnected ob-

servations using the properties of our gain control mechanism in ano-

ther article of this series (Carpenter and Grossberg, 1982a).

I) Frequency After-effects

Pittendrigh (1974) wrote: "In our laboratory, we have found

after-effects on the frequency of freerunning (in the dark] rhythms

. following: (1) phase shifts induced by light signals; (2) entrainment

by cycles whose period is near the limit of entrainment...; (3) expo-

sure to constant light; (4) change in photoperiod" (p. 441). Pitten-

.- drigh also noted that no mathematical model could yet explain these

widespread phenomena. We have successfully simulated all of these phe-

nomena using the slow gain control mechanism.

We will indicate below how the gain control mechanism generates

one of these types of after-effects. In general, all of the cited man-

ipulations which cause after-effects alter the total activity level,

and thus the size of the gain signal in the model. The gain signal,

and therefore the circadian period, may gradually return to its prior

. ",.-. .
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level or may maintain a new level indefinitely, depending on the ex-

periment.

An experiment in which photoperiod was manipulated will now be

summarized (Pittendrigh, 1974, p.438). The photoperiod is the total

duration of light within one circadian cycle. The experiment was done

on a nocturnal rodent, the deermouse. First light was turned on peri-

odically for one hour, followed by twenty-three hours of dark, for

sixty days. Then the animal free-ran in the dark for thirty days.

- ... Next the animal was periodically exposed to eighteen hours of light

followed by six hours of darkness for fifty days, after which the ani-

mal again free-ran in the dark until the end of the experiment. The

total periods and activity levels during the two free-run intervals

were different and maintained themselves for at least thirty days. The

activity level after one-hour light pulses exceeded that after

eighteen-hour light pulses. The period after one-hour light pulses

also exceeded the period after eighteen-hour light pulses. Both of

* :these effects were found in our numerical simulation despite the fact

that the animal does not obey Aschoff's rule in this experiment.

The reason for the difference in activity levels is easily ex-

plained in terms of slow gain change. The difference in periods is

due to a complex interaction that is not easily described in words.

To see why free-running activity level decreases as light duration

during the preceding photoperiods increases, note that an increase of

light duration in a nocturnal animal causes a decrease in average on-

cell activity, which in turn causes a gradual decrease in the gain

signal. During the subsequent free-run interval, the smaller gain sig-

nal supports a smaller average level of on-cell activity. In all, an
4
•

."

increase in light duration during the photoperiod causes a sustained

decrease in activity during the subsequent free-run period.

L............... .......-......- _ -.. ... .- . . *. . . . . ..
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111.4. The Gated Pacemaker

The gated pacemaker is described by a four-dimensional dynamical

system, just as in the case of the Hodgkin-Huxley (1952) model. Where-

as the Hodgkin-Huxley model contains one potential to which three aux-

.. iliary variables are coupled, the gated pacemaker model possesses two

mutually interacting potentials to each of which is coupled a slow

*o gating process. More precisely, the model describes interactions be-

tween two pairs of variables, (x1,z ) and (x2 ,z2 ). Each x. is a "fast"

0* variable that represents the voltage (or activity) of a cell (or cell

- population) vi, i=1,2. Each zi is a "slow" variable that represents

the amount of stored transmitter in an excitatory feedback pathway
from v. to itself whose signals are gated by zi , i=1,2. In particular,,i
the zi s correspond to the z variable in the gating model of Section

." II, equation (28).

The cell(s) v1 is an on-cell and the cell(s) v2 is an off-cell.

Such on-cell/off-cell pairs, or dipoles, are widely found in the

* nervous system (Thompson, 1967). The on-cell and off-cell characteris-

tics of v1 and v2 are due to the following constraints.

The potentials x1 (t) and x2 (t) mutually inhibit one another. The

input J(t) which represents the (transduced) intensity of light ex-

cites the on-cell when the model represents a diurnal animal, but ex-

cites the off-cell when the model represents a nocturnal animal (Fig-

ure 18). In both diurnal and nocturnal model animals, the on-cell

output energizes behavioral activity. Both the on-cell and the off-

cell also receive an equal tonic input I that represents the arousal

level of the dipole. Our model of the pacemaker in a suprachiasmatic

nucleus consists of a family of these on-cell off-cell dipoles. Many

of our results can be derived from the properties of a single such

dipole.
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Figure 18: On-cell/off-cell anatomy with positive gated feedback and
mutual inhibition. I is the tonic arousal input. J(t) re-
presents the light input, which enters the on-cell in the
diurnal model and which enters the off-cell in the noctur-
nal model.

The equations which describe the dynamics of the anatom, in Fig-

ure 18 are exactly analogous to the membrane equation (34) and the

gating equation (28) from Section II:

.. O _ (Vp - V)gP + (V+ - V)g+ + (V - V)g (34)

and

dz - A(B-z) - S(t)z. (28)

The on-cell and off-cell gating equations are thus-. 5= .

"-P-p , ,.-.-' "'. \ ..-.- 'i ' .- --.--- ' '.'. . , ' , . ", . ' -• .-. ,. ,- ."
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dz1

. A(B-z) - f(xz 1  (52)- ... dt (2

and

dz2
= A(B-z 2 ) - f(x2 )z2  (53)

where f(xi ) is proportional to the excitatory feedback signal trans-

mitted by cell v., i=1,2. Our analysis considers signal functions of

the form

i) Linear Above Threshold
~ wif W > 0

f(w) = f O(54)

0 if w < 0

or

ii) Sigmoid

.w.2 w if w > 0
f(w) a + (55)

"0 if W < 0

The membrane equations for diurnal x1 and x2 are:

',! " dx I g
C d x (xP-x )gP + (x+-X)[I+J(t)+Cf(X )z (x--Xl)Dgx 2  (56)
C0  = 11xz. - 1x x) x2) (6

and

dx2 gP+( )

COd 2 (xP-x 2 )gP + (xx 2 ) [I+Cf(x2 )z2] - (x -x 2 )Dg(x) (57)

~K +

in (56) and (57), the constants xp , x , and x are the passive, exci-

tatory, and inhibitory saturation points, respectively. The excitatory

conductance of xI is the sum of a tonic arousal input I, a light input

J(t), and a positive gated feedback signal Cf(x )z1 . By contrast, the

6 k ,

4, !7
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excitatory conductance of x2 does not contain a light input; in a

model of a nocturnal animal, J(t) is added to the excitatory conduc-

-tance of x2. The inhibitory conductance of x is proportional to a

feedback signal g(x2) from v2. Typically g(w) is chosen as in (54) or

(55). The inhibitory conductance of x is proportional to a feedback2

signal g(xI) from v . The two inhibitory conductances, taken together,

express the mutual inhibition of v and v2.

Without loss of generality, we set xp  0 and put equations (52)-

(57) in dimensionless form as follows:

d1
dt _x + (1-xl) [C+J(t)+C2 f(x1 )Zl] - (xl+C 3 )C4glx2 ) , (58)

dx2

d. 2 _x + (1-x2) Cl+C 2 f(x2)z2 ] - (x2+C3 )C4 g(x1 ) , (59)

dz - C5 (1 - z - C6 f(x )z1 ) ( (60)
and

dz 2 . 1- z- C z)(61)
= C5 1- C 6flx 2)z 2 ,

where C1 ,...,C 6 are positive dimensionless constants; x1 (t) and x2 (t)

are dimensionless variables which remain between -C3 and 1; and z (t)

and z2 (t) are dimensionless variables which remain between 0 and 1.

" Note that if the light input J(t) is identically zero, then the pairs

of equations for (xl,z 1) and (x2 ,z2) are symmetric.

Further commentary is needed to characterize the light input

J(t). We assume that when light is on and the model animal is awake,

then J(t) equals the experimentally controlled light intensity. If the

model animal is asleep, then J(t) equals a constant fraction of the

experimentally controlled light intensity. The model animal goes to

.5. S *.- S *. v*,.
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- sleep when the on-cell potential x1 (t) is smaller than a prescribed

constant. In terms of equations (65) and (68) below, we assume that

the animal goes to sleep when G(xI(t)) < iC9 where 0 < < 1.

III.5. Genesis of Unforced Pacemaker Oscillations: Strength of

Inhibitory Coupling

This section and the next consider some of the types of oscilla-

tions that can occur within an unforced gated pacemaker in the dark.

In this situation, the light input J : 0 in (58). Consequently equa-

tions 158) and (59) for xI and x2 and equations (60) and (61) for z

and z2 are symmetric, and could represent pacemaker activity of either

a nocturnal or a diurnal animal. This section describes how oscilla-

tions depend on the strength of the inhibitory coupling constant C4 in

(58) and (59). The next section describes how oscillations depend on

the choice of the threshold constant C7 of the excitatory feedback

function

w 2-2 if w>O0

f(w) C 7 W (62)

0 if w < 0

when

g w if w > 0
g (w) = (63)

0 if w < 0

In both cases, the choices (62) and (63) of signal functions are made.

Surprisingly, parametric changes in C7 cause totally different oscil-

latory waveforms than do parametric changes in C4.

Choosing C = 0 decouples the two potentials xI and x2. In all of

our numerical studies, this choice forces all the variables to

approach limits x1 (r), x2 (0, z I-), and z2 1 ) such that

2 2
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x = x2 (=) and z1 (0) = z2 (=). (64)

Such limits are said to occur on the diagonal. If f(w) is chosen to be

*linear above threshold, as in (54), then it can be proved that this

outcome is necessary. We have, moreover, not found any numerical exam-

nles that violate this outcome. Consequently, we can assert that

decoupling the two potentials quenches unforced oscillations. This

conclusion strongly distinguishes our pacemaker model from other

models in the literature.

Figures 19-24 describe how the behavior of the unforced gated

pacemaker changes due to parametric increases in the inhibitory coup-

ling strength C4 . This parametric series shows just the behavior one

might expect: for weak coupling (Figure 19), the limit is on the dia-

gonal; as C4 increases, a small amplitude periodic solution bifurcates

from the critical Point (Figure 20); further increases in C4 cause the

amplitude and the period of the periodic solution to increase (Figures

21 and 22); a still stronger coupling elicits a large amplitude relax-

ation oscillation (Figure 23); finally, a very strong coupling enables

the cell (population) v1 or v2 , whichever has the larger initial

values, to win the competition (Figure 24). The oscillation is thereby

quenched and a limit is approached off the diagonal. Thus in all non-

trivial cases, the solution pairs (x1 (t), z1 (t)) and (x2 (t), z2 (t))

eventually become 1800 out of phase.

In Figures 19-24, two types of graphical representation are used.

The first type of representation depicts the 4-dimensional phase por-

trait by projecting both pairs (x1 ,z1 ) and (x2,z2 ) onto an (x,z) coor-

dinate nlane. Each state of the system is then represented by a pair

of 2-dimensional points. The second representation plots the functions

X (t) and zW(t) for t > 0. Because the nairs (xlz I ) and (x2 ,z2 ) are

eventually 1800 out of phase, the olots of x2 (t) and z 2 (t) can also be

:..: y - .• - , - -L * *
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inferred.

The illustrated dynamics are robust over a wide range of para-

meters. Physical considerations have guided some constant parameter

choices. For example, we let C3  .1 in (58) and (59) because C3 is

the ratio of V to V. In vivo, V~ often stands for the saturation

point of a Na + channel and V_ stands for the saturation point of aK+

channel so that V+ >> V_. In the Hodgkin-Huxley (1952) model, for

example, C 3 a .1. Also the "slow" rate C 5 of gate accumulation in (60)

and (61) is chosen small relative to the "fast" unit rate of potential

decay in (58) and (59). In particular, we choose C 5 = .01.

111.6. Period Doubling, Slowly Modulated Irregular Periodic Waves,

and Chaos

Parametric changes in the signal threshold C 7 in (62) cause a

dramatically different and novel sequence of oscillatory patterns. We

start with the system illustrated in Figure 22. Here the choices C 4

5 and C 7 = 2 caused large-amplitude oscillations.

if C7is chosen very small, the signal function f(w) in (62)

makes a sharp jump from 0 to 1 as w increases. If Cis large, this

signal function increases gradually from 0 to 1 as w increases. Given

any choice of C 7 > 0, f(C 7)= In the Parametric series in Figures

19-24, C.2, which is a moderate level because x1 and x2 can oscil-

late between -.1 and 1.

Figure 25 depicts the same system as Figure 22, but at' large

times. Consequently, the projected phase portrait looks like a single

periodic solution, although really the two pairs (x 1 "i ) and (x 21z2)

traverse this closed curve 180* out of phase. As C7increases from .2

to .35, an interval of Cvalues is reached wherein period doubling

occurs (Figure 26). In other words, as C7 is increased from .2 to .35,

the regular periodic solution of Figure 25 is gradually deformed in
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such a way that every other peak gradually becomes smaller than its

neighboring peaks. Consecuently a Period-doubled solution is a period-

ic solution in which a pair of large-then-small peaks repeats itself

periodically through time. Thus, although a period-doubled solution is

V . periodic it is not a reaular periodic solution, due to the alternation

* in peak sizes. Such an irregular periodic solution is said to be peri-

i - od-doubled because at the transitional value of C7 where the regular

-neriodic solution becomes an irreqular periodic solution, the period

of the solution doubles.

A singular perturbation analysis has been developed to prove the

existence of the reaular Periodic and period-doubled solutions as well

as the transition between solutions (Carpenter and Grossberc, 1982b).

This type of dynamic period doubling is different from the period

doublina discovered by Feigenbaum (1978, 1979), which is currently a

topic of great interest (Ruelle, 1981).

The existence of period-doubled solutions immediately suggests

the possibility that chaotic solutions can also be generated by a

gated pacemaker. Our numerical studies are insufficient to decide this

issue, but we have observed a bifurcation of the period-doubled solu-

tions to a new type of irregular periodic solution. In Figure 27,

where C7 = .355, the oeriod-doubled amplitudes are slowly modulated on

a time scale that is long compared to the interpeak duration. In terms

of biological clocks, these slow modulations are suggestive of biorhy-

thms and other slowly varying modulations of mood or activity level.

In particular, if each peak represents a day, then the modulation in

Figure 27 is on the order of maanitude of a month.

As C. increases to .365 (Figure 28) solution peaks are still

slowly modulated, but all the peak amplitudes are smaller and there

are fewer oscillations per cycle. hlen C7 = .37 (Figure 29), the

oscillations lie close to the diagonal. Finally, for sufficiently

6" %
i...............o. . .
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large choices of C7, the oscillations are quenched and the variables

approach limits on the diagonal.

111.7. Metabolic Feedback and Slow Gain Control

The comolete model is augmented with two types of slowly varying

feedback. The feedback that measures activity-generated metabolic

feedback is used to explain phenomena such as split rhythms, whereas

the feedback due to slow gain control is used to explain phenomena

such as long-term after-effects. Only the model of a diurnal animal

will be considered herein. As before, the nocturnal model is identical

'V- except that J(t) appears in the x 2 instead of the x I conductance.

To define metabolic feedback, or fatigue, we suppose that the on-

cell potential x1 (t) generates a signal G(xI(t)) that energizes obser-

vable activity, such as wheel-turning. We typically choose a sigmoid

* output function

w2
fw iwfw>0

G(w) C (65)

-'0 if w < 0

and assume that the model animal becomes active if G(x (t)) exceeds a

threshold C9 , and that suprathreshold activity is proportional to

G(x 1 (t))-C 9. We assume that a metabolic debt increases linearly with

activity, and dissipates at a constant rate C10 . The metabolic feed-

back function is then

t
F(t) =Cl : e-ClOlt-S) max[0,GlX (S))-C9]ds (66)

~ 0
V1 9

We assume that F(t) directly excites the off-cell(s) v2 and thereby

indirectly inhibits the on-cell(s) v1 via competitive feedback. Equa-

tion (59) is then augmented to read

-%

., -" , . - ' .. ". - .
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. dx3ax2  -I2 +(l-x 2) [CI+C 2f(x2)z2 +FJ - (x +C3)C4 gxl) " (67)

The metabolic feedback function F(t) generates a snlit rhythm as fol-

- lows. The build-uo of F(t) starts to inhibit the on-cell activity be-

"" fore it would otherwise be inhibited by the autonomous action of the

pacemaker. The inhibition of on-cell activity, in turn, allows F(t) to

dissipate, thereby disinhibiting the on-cell before the end of its

usual on-ahase. This explanation tacitly assumes that the gate z (t)

has not become too depleted during this time. A similar sequence of

events helps to explain the bimodal frequency of activity that is

often observed before rhythm splitting occurs (Pittendrigh, 1974,

p.4 49 ).

The gain control process can be interpreted in several ways. It

is formally the same as a model of how cues become conditioned rein-

forcers by being associated with the activity of drive representations

(Grossberg, 1982a). In the present model, the on-cell v, plays the

role of a drive representation. The conditioning process is formally

equivalent to a slowly changing gain that is a long-term average of

the on-cell activity level. The conditioning term hereby buffers the

system against short-term fluctuations in light and acts as a stabili-

zing parametric change in response to pervasive alterations in light

patterninc, say due to seasonal changes.

The inputs that are gated by the gain control process have sever-

al alternative ohysical interpretations that have not yet been theo-

retically or experimentally tested. One interpretation is that the

input is light itself. Another interpretation is that reinforcing

cues, such as a wheel that has been turned, are the input sources.

Finally, many circadian properties still obtain if the inputs are

chosen to be constant. In all these cases, the slow gain changes can

be used to fornally explain all the types of long-term after-effects

• " "a [ ', - -, % % '--,[-. .- ',.-''...
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on the frequency of the free-running circadian rhythms that were des-

cribed by Pittendrigh (1974, p. 441).

For example, to represent an input that is turned on when the

S animal is awake we define

S--t)1 if G(xl(t)) > c9 (i'' S(t) -(68)
I-0 if G(x1 (t)) < ic 9

The aain control function y(t) is defined as a time-average of the

product of input S(t) times the on-cell activity x1 (t. Thus

I;~-CyC Sx . (69)", " " ~~dt = -12 y + CI3SX1 •(9

The function y(t) in turn gates the input S(t) to create a net input

to the on-cell v1 that is proportional to S(t)y(t), as in the follow-

ing augmented equation for the on-cell potential:

l-' , dx1d x 11-x 1 (C1+J(t)+C 2 f(x1 )z1 +SY] - (x 1 +C3 )C 4g(x 2). (70)

Note that two types of gating action occur in equation (70). Equations

(60), (61), and (65)-(70) complete the definition of a gated pacemaker

whose rhythm is modulated by both metabolic feedback and gain control

feedback.

V.!:
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CONCLUSION

Three concepts persistently occur throughout this article. One is

the classical concept that a membrane ecuation can model fast electri-

cal responses in cells. The second is the concept that mass action

* "processes can be coupled to the membrane equation as conductance

terms. The third is the concept that gating processes can be used to

model the mrs action dynamics of chemical transmitters. Our use of

these concepts illustrates how a small number of simple mechanisms

can generate a wide diversity of complex biological phenomena, as well

as parametric experimental tests of the models that simulate these

- phenomena.
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