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ABSFRACT fr

* Nt

A plane wave emergent from a scattering layer is modeled as a boundary

value problem. The wave is specified at z = ) ' by a unit amplitude and a phase

prescribed by a homogeneous isotropic random function with a power law spec-

trum and Gaussian statistics. It is shown that the statistics of the wave pro-

pagating in free space away from the boundary cannot be Gaussian. except

perhaps in the far field region where the scattering is saturated. It is also shown

that the amplitude and intensity spectra of this wave each satisfy specific scal-

ing relations. Such a wave has been called a diffractal by Berry and herein we-

further developsome of his ideas on diffractals, in particular extending his dis-

cussion from two to three spatial dimensions. A study of the scintillation index

indicates that a diffractal is not an unreasonable model of a radio wave passing

through the ionosphere, as it does in satellite communication.
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1. INTIODUCTION

In this paper we investigate the statistical properties of a freely

propagating plane wave whose phase is specified on a transverse plane located at

z = 0. The wave is propagating in the z-direction with constant frequency w and

wavelength X(=27r/k) with amplitude *(r, z, t) = -""u(rz) such that

u(r,z) = o**(') at z = 0(1.1)

* where go (r) is a function of only the transverse coordinates r = (z,y). In a

great many geophysical situations the phase function is assumed to be random

so as to describe such phenomena as the twinkling of stars due to atmospheric

o turbulence, 1 radio wave scintillation in satellite communication due to electron

density fluctuations in the ionosphere, 2 interstellar scintiUation,3 interplanetary

scintillation of quasar radio sources caused by electron density irregularities in

* the solar wind,4 etc.

The observed scintillation or fluctuation in the amplitude and phase of the

received wave results from interference of phase points along the wavefront in

* the z = 0 plane as the wave propagates away from the boundary. The interfer-

ence pattern is determined at least in part by the statistical properties of (r).

Booker et al.5 were the first to use an expression of the form (1. 1) to model the

effect of a localized scattering region on the subsequent propagation of a scalar

wave away from the scattering region. The basic assumption they employed is

that the individual scatterings that a wave undergoes as it propagates through a

region of fluctuating refractive index are not important; only the net change in

the observables are significant. The physical observables far from the scatter-

ing region are the change in amplitude and phase in the received wave relative

Oki to a reference wave that has not been so scattered. Thus if one is interested in

only the net effect of the scattering region on the received signal, the entire

interval can be represented by a thin phase screen having the desired bulk

* .. , .-. .- .. -. -,.4 . -< . , . .. . , ,','.: . . . . . ... . • * . . - . .-.- . .. . .. , . .
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. properties, i.e. the phase screen gives rise to the same overall phase shift and

amplitude variation as the physical scattering interval.

Since its introduction (1. 1) has been generalized to represent an extended

scattering region by building up a sequence of thin phase screens.k-8 Near the

screen the initial field fluctuations affect only the phase, but as the wave pro-

pagates in free space away from the screen an interference pattern develops.

The distance to this interference pattern is dependent on the density gradients

in the phase screen. The larger the density gradients the greater is the angle

through which the transmitted wave is scattered and the nearer to the screen is

the subsequent interference pattern. It is the small scale spatial structure in

the scattering medium that has large spatial gradients 9 . For a scattering inter-

val whose fluctuations are manifestations of some turbulent motion there is a

broad spectrum of scales associated with the irregularities in the medium. For

example, the spectrum of irregularities of the electron density in the ionosphere

has a range of from a few meters to several hundreds of kilometers, i.e., five

-' decades or more in spatial scale. Thus radio waves with frequencies on the

0 order of 10 MHz and lower encounter irregularities on the same scale as their

wavelength and traditional propagation models, such as geometric optics, can-

not describe the transmission of the wave through the phase screen, i.e. multi-

pie scattering effects become important. 10 , 11 It is remarkable therefore that

weak scattering theory has been so successful in explaining the observed scintil-

: lation of radio waves in satellite communication as well as other data. 12 , 13

Model calculations based on phase screen descriptions make two fundamen-

tal assumptions about the fluctuations in the medium. The first is that the

statistics of the irregularities are described by a zero-centered Gaussian distri-

bution. The second is that the spectrum of scales of the irregularities has a

L:* power-law form. These two assumptions however do not provide a complete

.-
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characterization of the fluctuations. One must also introduce an outer scale

cut-off in order to avoid a long wavelength divergence of the integrated spec-

trum. Most ionospheric data can then be adequately described using weak

scatter theory with a power-law spectrum of irregularities with power exponents

6 between 3.8 and 4.8 and an outer scale cutoff of approximately 10 km.12.13

For a thin screen the phase in (1.1) is usually given by the straightline ray

path integral across the scattering interval (weak-scatter theory.) 13

0

= f N(r,z) dz (1.2)

where N (r,z) is the deviation in the refractive index from its ambient value,

o AL is the thickness of the scattering interval and the plane wave is normally

incident on the ribbon of scatterers. It is clear from (1.2) that the statistics of

the phase fluctuations are the same as those in the index of refraction. Thus

* q(r) is a Gaussian process only if the irregularities in the medium are also Gaus-

sian. If however the mechanism leading to the irregularities in the medium is

turbulence, then as is well known the statistics of the fluctuations cannot be

* Gaussian 14 Therefore either g(r) is not a Gaussian process, or the source of

the power-law behavior of the spectrum of N-fluctuations is not turbulence, or

both. In the example of the ionosphere there is apparently no experimental evi-

Sdence to support the assumption that the fluctuations in plasma density are

normally distributed, although in situ measurements indicate the spectrum is

a power-law over a restricted range of scales.1 2

wIt is not our intention here to provide a detailed list of the possible instabil-

ity mechanisms that may contribute to the power-law spectrum of density

fluctuations in the scattering interval. Rather we suggest that the assumption of

Gaussian phase fluctuations has been made for mathematical convenience and

has not been physically justified, at least in the case of weak scattering rcf.

(1.2)]. In spite of this we retain (I. 1) to represent the transmission of a wave

%0. : .
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through a rcgion of tenuous scatterers, modeled by a power-law phase screen

and assume the statistics of rp(r) are Gaussian. We show that the power-law

behavior of the spectrum implies that the fluctuations in the medium satisfy a

scaling relation. We assume that if - is a real parameter then the phase function

0 go(yr) can be obtained from V(r) by the scaling relation 9(/r) = 7
d/ rp(r),

4 where d is the Euclidean dimension (d = 2 in the case considered here) and A

characterizes the scaling behavior. The scaling relation is a geometric con-

straint on the phase surface.

The scaling properties of waves transmitted through fluctuating media with

Gaussian statistics and power-law spectra for the fluctuations have not been

Sfully explored. Rino,2 5 in his analysis of strong scattering in a power-law phase

screen, investigated the results for the second-order statistics of intensity using

a model developed by Gochelashvily and Shishov.2 7 In the present report we

also obtain results for second-order statistics of intensity, but we emphasize the

scaling behavior of the propagated wave. The relation between the present

results and the earlier work of Rino and others is commented on in the appropri-

ate places in the text.

Mandelbrot 15 has recently drawn attention to the physical importance of

functions having scaling properties in his important work on fractals. We apply

some of his observations to the phase surface given that it is assumed to obey a

scaling law. One consequence of the scaling (self-similarity) property of the

phase function rp(r) is that irregularities exist on all scales so that such func-
wi

tions do not possess derivatives, i.e. one cannot construct a tangent to the sur-

face i(r) at any point in space. Mandelbrot not only advances the thesis that

most physical processes are discontinuous and described by such non-

differentiable functions, but in addition those processes studied by Norbert

Weiner, i.e. Gaussian random functions, although of this kind are in fact benign

qt .
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by comparison. Thus although Weiner processes are presently encountered in

practically all physical models of phenomena in which fluctuations are thought

to be important, Mandelbrot contends that the random component of nature is
.

much richer. The experimental data he has amassed and juxtaposed to support

this contention is impressive. 15

Berry 16 has applied and extended some of the ideas of Mandelbrot in the

• ,wave propagation context by introducing the notion of a diffractal. A diffrac

is a wave that has encountered a fractal object. Such an object has a self-

similarity property such that it possesses structure on all scales. An incide

wave of wavelength X is fairly insensitive to structure on scales much smaller

than X and for structures much larger than X the techniques of geometric

optics can be employed to describe the wave-object interactions. However this

separation of effects carnot be made when the scattering object is a fractal

0 since then the self-similar character insures that there will be structure on a

range of scales that includes A and thus no geometric optics limit exists. Berry

models a diffractal using (1.1) by assuming o(z), i.e. V (r) in one transverse

, dimension, to be a Gaussian random fractal function with a power-law spectrum

having a fractal dimension D lying between 1 and 2. Physically this boundary

condition constitutes a thin phase screen approximation for a wave reflected by

a fractal surface or refracted by a slab of transparent material with fractal

refractive index.

In Section 2 we discuss a homogeneous, isotropic statistical field as a model

for the fractal phase surface. Some of the physical consequences of having a

power-law spectrum, which one does for a fractal function, are discussed for this

case including the relation between the power-law index and the fractal dimen-

sionality of the statistical process. In Section 3 the paraxial approximation is

used to propagate the fractal phase surface away from the edge of the phase

4-.



screen. The statistical properties of the free field are examined by calculating

the coherence of the diffractal wave as well as the correlation and spectrum of

the diffractal intensity. In Section 4 the scintillation index is calculated as a

function of distance from the phase screen and it is determined that a diffractal

cannot have Gaussian statistics except perhaps in the far field region where the

fluctuations are saturated.

0

%W
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2. HOMOGENEOUS PHA SCREEN

Herein we assume that the phase surface p(r) is a locally homogeneous

random field, that is to say a random field with statistically homogeneous incre-

ments and follow the discussion of Monin and Yaglom 14 to establish its general

properties. Spatial homogeneity, like time stationarity, means that the distribu-

tion of the increments [V(ri) - rp(r 2) ] depends only on the magnitude of separa-

tion between the two phase points, i.e. on I r, - r2 1. Consequently the probabil-

ity density is invariant to any rigid translation of the field. It is easily demon-

strated that the average of the incremental phase [ r(r + R) - P(r) ] in such a

case is a linear functional of R
0

< [p(r + R) -p(r) ]> = c R (2.1)

If we further assume that the field is locally isotropic, meaning that the proba-

bility density for the incremental phase is invariant under rotations and

reflections of the spatial increments, then c is the zero vector.1 4 The mean

incremental phase is therefore zero.

Inasmuch as we are also assuming that the incremental phase is a Gaus-

sian process it is completely determined by its first two moments. The general

second moment of the incremental phase is

< [ (r, + R,)- o (r,) ][ (r2 + e) - p(r2) ]> = D (r,- r2 , R,, Re) (2.2)

For a locally homogeneous, isotropic phase surface (2.2) can be written as14

D(r,-re,Re) = ~-{D[!r,-r 2 -R, I) +DrI-r, -Re (2.3)

-DIrj -r 2 -R, + &1) -D(Irl -rz)}}

where D(R) is the phase structure function

D(R) : < [(r + R) - ](r) 12> (2.4)
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The phase structure function is as important for the incremental process as the

* correlation function, p(R) < - (r + R) rp (r) . j, is for the phase surface. From

the definition (2.4) it is clear that

D(R) = 2 [p(O) -p(R)] (2.5)

* so that if we know the correlation function for the process we know the

structure function as well. The converse of this statement is not always true

however, since a knowledge of D(R) will not uniquely determine p (R). In the

* situation we wish to consider here the correlation of the phase surface rp(r) with

p(r + R) vanishes as R- so that

timrD(R) = D(-) = 2p(0); p(R) = 1-) - D(R) . (2.6)
o R-,-2 D('

Thus, for locally homogeneous isotropic random processes with a correlation

function p(R) which vanishes at infinity, the statistical characteristics of p(R)

* and D(R) can each be determined from the other.

Let us now consider the spectral decomposition of the phase surface rp(r)

with homogeneous isotropic increments and the corresponding structure

• function D(R):

rp(r) = f (aik., - ) d$ (k) + rpo . (2.7)

The integral is over the entire wavevector space since d 4(k) = $(dk) is a ran-

dom function of the wavevector k defined on all intervals ( k, k + dk) not con-

taining the origin and rp = rp(O) is a constant random variable. The two

dimensional spectral density +' (k) of the phase surface rp(r) is defined by
V

< d$(k) d '(k) > = * (k) d2k (2.8)

where *l(k) is a non-negative even function of the wavevector k. The phase

structure function (2.4) can be expressed in terms of the spectral density

using (2.7) and (2.8) as

--. * .. . . ., .-,-. . "- ... r .* . -"." - . -, - . -. .? . -'-, .. ,. - i . - '' ., / -*-.*-.*.*.** ** * * * .; .-. 7. .. - .,--
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D(R) 2 f [1 -cosk.R +(k) d2k (2.9)
0

We note that the function +(k) can rapidly diverge as I ki -# 0 according to

(2.9). However, the factor (1 - cos k-R) tends to zero as (k.R)2 so that as long

as

k2 * (k) d2k <oo (2.10)

the phase structure function remains finite for finite R.

* Herein we assume that the phase structure function is given by

D(R) = CAR" ;0/ 2 (2.11)

where C. is a positive constant determining the strength of the correlations

and /A is a parameter to be determined. The inverse Fourier transform of (2.9),

with the phase structure function (2. 11). yields

+ ,(K) = ) fd2 R gF -if.jR-R

= c r (W 2) F (1 + / 2) sin (.r/2) K!" + 2 (2.12)
(27T) 2

Thus we have a power-law spectrum for the incremental phase and integrating

(2.12) over an unbounded region, i.e.

<(P2> = f +' (K)c2K (2.13)

we observe that the mean square phase surface, < r2 >, is infinite. The phase

surface therefore satisfies the conditions for being a Gaussian fractal function

with homogeneous isotropic increments and spectral density +'(K).

A fractal function F(x) is a continuous but non-differentiable function that

satisfies a scaling relation of the form F(yx) = 7y."IF(x) where 7 is a real

4parameter, d is the Euclideandimensionality of the space and A is a real

parameter. Thus in the case d = 1, if the variations in the function are known in
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an interval yx 0 ! z L x 0 , they can be determined in the expanded interval

7 zt z ! 7 z0 , as well as in the contracted interval z 0 - z t x 0/7. This scaling

behavior is known as self-similarity and is one of the defining properties of frac-

tal processes. A process described by a function the graph of which has a

Hausdorff-Besicovich dimensionality greater than unity is said to be fractal, i.e.

a fractal process is a process described by a function that exhibits a fractal

dimensionality. 5 For example, the fractal dimensionality D of a Wiener pro-

cess is two in aEuclideanspace of one, two and three dimensions. In general,

fractal functions (processes) with D < 2 and D < d are not space filling. In

order to maintain the self-similarity property a fractal process can only occupy

space in clustered or localized patches. 17-19 The phase function (p(r) is such a

random fractal function in the Euclidean space d = 2. Its fractal (Hausdorff-

Besicovich) dimensionality is shown below to be related to the parameter jt by

L/2 = 2-D.

The strength of the phase structure function, i.e. the constant C;, in (2.12),

is here chosen by analogy with Berry. 16 We note that the vector connecting the

end points of the phase increment [V(r + R) - (p(r)] has a finite slope, even

though the function V(r) is non-differentiable. We use this fact to define the

strength of the fractal as the distance over which the phase structure function

has a slope of one radian, i.e.

D(L)l . (2.14)

The parameter C,, in (2.11) can now be replaced with L2 - , yielding for an arbi-

-W trary separation vector R,

D(R) = L2AR (2.15)

The notion of a fractal (Hausdorff-Besicovich) dimensionality is a useful con-

cept for understanding the degree of irregularity possessed by a random pro-

cess. We use a simple covering argument to show that the fractal dimensionality

~~~~~~~~~~~~.- .. ,.............. -.. . .. .....- ... .... -. ,., .. .. .
.' , .- . .- . ' -,-. • -.. -. . .<.--. .. . -. .. .. . . . . . .. . .-.- -. - .. . . . , - .. -. . - , . .. .



D of the phase surface is related to the exponent js in (2.15) and (2.12) by

D = ( 4 - A)/ 2 . The argument is similar in spirit to one presented by Mandel-

brot, 15 wherein he uses the Lipschitz condition to determine the fractal dimen-

sionality of a given process. Instead of the Lipschitz condition we use the result

for the phase structure function (2.15).20 We note that the number of spheres of

radius R, in ($,r) -space, required to fill the volume between the phase surfaces

at r and r + R is

n = [D(R)]R 2 /R 3 - RW,- as R - 0 . (2.16)

The total number of spheres required to fill the volume between r = 0 and r = 1

is N = n/R as R -, 0. The fractal dimension D follows from the definition

N - RD (2.17a)

in the limit R -. 0 and is

* D = log N/l og (1/ R)

= (4-IA)/2 (2.17b)

so that D falls in the interval 1 i D ! 2, since from (2.11), 0 ! U!9 2. Berry

• obtained the same result in the one dimensional case using a capacity argu-

ment. Thus the fractal dimension is independent of the Euclidean dimensionality

of the ( ,r) - space.

As pointed out above, the defining property of a fractal function is its self-

similar character. This is also true of a random fractal function, but in this

latter case the self-similarity is also manifest through the scaling of the

w corresponding probability density. Let P ( ,r) be the probability density that

the random function rp(r) has a value in the interval ( , $ + dt) at the location

r. Then since P ( O,r) is Gaussian and rp(r) has the phase structure function

(2.15), we observe for a positive real parameter y the scaling relation 2 0 ,2 1

P(r)= P(Y1'W2 $, )r) YW2  (2. 18)

. ..
" ~~~~. ... ,... .......... ... ........ ......... .......... ,

n( " ' - " '- ' • " I" " • " "" "-'' " 
° ° ° 'm

° " - ." " ° ,, .°o . " -" *- * .-* - ° . - "% _ ' "
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where As is the parameter in (2.15). Equation (2.18) indicates that if the phase

surface go(r) is scaled in both the x and y directions by - and in the i direc-

tion by yW2 , then the resulting phase surface is statistically indistinguishable

from the original. This scaling property implies that in addition to not having a

• smallest scale, which is required for a fractal function, the phase function 9(r)

also has no largest scale and is self-correlated over an arbitrarily long distance [

cf. (2.11)].14.13

In the case jA = I the probability density (2.18) scales in the same way as

Brownian motion; the phase structure function is proportional to R [cf. (2.11)]

so that we refer to D = 1.5 as the Brou ntianfracta [cf. (2.17b)]. The case. = 0

is the extreme fractal where the phase surface 9 is on the verge of filling a

finite volume. Finally the case A = 2 is the margina fractal, where the phase

is "almost" a smooth function. If instead of specifying the phase structure

• function (2.1) we had instead originally assumed a spectrum of the form (2.12),

then we could not inverse Fourier transform this spectrum to obtain (2.12) for u

= 2 because the integral would diverge. Therefore we would be unable to choose

the coefficient C. as done in (2.15). If however, we can identify C2 as the root

mean square "slope" of displacements of any length, this would replace the

length L. These latter comments follow closely those of Berry. 16

4" o- o- .t*...............o............ . ... ° . . . .. . ... .... . .
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3. THRE DIMENSIONAL DIFFRACTALS

The propagation of a difractal in free space can be determined by solving

the three dimensional wave equation subject to the boundary condition

u(rz) = exp[iic(r)] at z = 0+. For a plane wave of frequency W and

wavenumber k the wave equation reduces to the Helmholtz equation

B2M- O+k2} u(rz) =0 (3.1)

with the boundary condition

u(r, z=0") = etj (r)  (3.2)

* and V2 is the two dimensional Laplacian. The Helmholtz equation is an elliptic

partial differential equation so that in order to find the wave field at a given

point in space one must solve the equation for the field at all points in space.

* One often approximates the Helmholtz equation by a parabolic equation having

the form of the Schr6dinger equation in two space dimensions with the time

replaced by the propagation coordinate: 1

i C' + V2+ k2lu(rz) = 0 (3.3)

The boundary condition (3.2) is the "initial value" of the solution to (3.3). In the

* parabolic approximation the normal to the phase front of the wave is assumed to

remain close to the direction of incidence, i.e. the z-axis. For this reason the

approximation is also referred to as the paraxial approximation. The condition

4P for the validity of (3.3) is therefore small angle scattering and can often be

expressed in terms of a correlation length. The validity of (3.3) will be discussed

subsequently since its applicability to describing the propagation of diftractals is

not obvious.

4P

......................... .... € .".""...
"
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a.1 Average DMactal

The solution to the parabolic equation (3.3) subject to the boundary condi-

tion (3.2) is given by the elementary diffraction integral

* u(r,z) = el" k f d271 e 2x k) (3.4)

Equation (3.4) describes the diffraction of the phase front away from the phase

screen point ( r',O) to the observation point (r,z). The average diffractal

0 detected at (rz) is determined by an average over an ensemble of realizations

of the phase irregularities:

* <u(r.z)> k f e< e='€> (3.5)

2irz fc.r .(3)

However, the Gaussian nature of the phase fluctuations allows us to write

< O'(v0> = e -kO<V 2>/2 = 0 (3.6)

where the last equality follows from the fractal nature of rp(r), i.e., the mean

square phase variation of a fractal is inflnite [ cf. (2.12) and (2.13)].

&2 Coherence of difractals

The coherence between the diffractal wavefleld (3.4) at the points (r + Rz)

and (r.z) is given by the coherence function

< (Pz)> - <u(r+Rz)u'(rz)>

[ 2k '  + t r--12 - Ir - r-111

-< gtkt,(")"(I")J> (3.7)

Using the conditions of Gaussianity, isotropy and homogeneity we evaluate the

average in (3.7) using (2 4) to obtain after an elementary transformation of

variables

* O*~~.
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<I(Rz) =[ f f ,n f d2 e - Dl2(3.8)

exp fiL(r-n) -')±LR(

0 The integral over 17 yields (27r) 2 6 (R- ) z 2/k2 so that using (2.15), (3.8)

reduces to

• <I(R)> = exp[ V L2- IPJ/2} (3.9)

which is independent of z. The coherence function (3.9) is consistent with the

result first obtained by Booker et. al. 5 for a thin phase screen with Gaussian

statistics. Most recently Berry has obtained the one dimensional form of (3.9)

for a diffractal. 16

The energy at each scale in the diffractal is determined by the power spec-

trum P,(10 and is obtained by taking the Fourier transform of the coherence

function (3.9):

P, (IQ f = f e Iae K'exp{ k2L2.-uIl/2 (3.10)

Note that (3. 10) has the form of a radially symmetric Ldvy stable probability

density in two dimensions, that is to say that (3.9) has the form of a Ldvy

characteristic function with parameter/.. 19-21 A Lvy stable process is one

whose distribution is a member of the class of infinitely divisible distributions

and therefore it satisfies a number of scaling relations. The identification of the

power spectrum of the difTractal with such a process is not accidental; rather it

emphasizes the lack of a fundamental scale in the diffractal spectrum. The scal-

ing properties of the spectrum are made evident by scaling the variables in the

integrand of (3.10) by [k2 L2 '/2]"" and integrating over angle to obtain

P.(K)= 21T k2 2-A& Y d -e

--. L.-
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where J0 (.) is the zero under Bessel function.

In the limit K - 0 the Bessel function in the integrand of (3.11) is replaced

by unity and we obtain, in terms of the fractal dimensionality (2.17b),

K rnIp,(Kr/k) =P 2ir r [(3-D)/(2-D)] (3.12)

Note that (3.12) is independent of spatial wavenumber and that the spectral

level for large scale features scales as \2/(2-D)- The fractal dimension D = 2 is

somewhat special and will be discussed in Section 4. In the short scale asymp-

totic limit, K -. a., the well known asymptotic expansion for a stable Ldvy pro-

cess in two dimensions applied to (3.11) yields2 0Q 2 1

mk 2 P (K/k) = 25-? (kL) 2(D-) P(3-D) sin(2-D)ir/1K/k2( - D) (3.13)

For intermediate values of the wave number a more detailed analysis of the

integral (3.11) is required.22,23

The asymptotic results for the diffractal spectrum (3.12) and (3.13) can be

used as an a posteriri justification for the paraxial approximation. The para-

bolic equation is an adequate description of the propagation away from the

phase screen where the scattering angle, as measured by I K /k, is small.

Therefore we require that most of the energy in the scattered wave field is in the

forward direction. More quantitatively, if I K /k I is large, we require that

PP(O)>>P,) ( K/k):

PU (0)_ k) /Kko2< 3-4

Therefore we introduce the parameter (3 given by

24-A D-l

E = (kL) 11 = (kL)2-D (3.15)

and the paraxial approximation is a good one if k 9/ It <<;, or more strongly it

9<<1. Thus for a given incident wavelength X for L sufficiently small the
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dominant diffracted waves are paraxial. The scattering parameter @ increases

with increasing wavenumber (decreasing wavelength) of the incident wave indi-

cating the small scale divergence of the slope of the phase surface.

3.3 Coherence of di actal intensity

The coherence between the diffractal intensities! u (r + RZ) 12 and

I u (r.z) 1 2 is given by

T k f j4[;~~I d/(R) 2 f drj
• j= 1

*x rX{ ~ I+ R- ril r + R -r 2l12 +1.r- r312 -Ir-r 4 12)

<expi k[V(ri) -p (r) + o (r) - o(rI]> (3.16)

* The average in (3.16) requires the specification of the mean square tour point

difference in the phase surface

+(r) _ ip(r4)12> = D(Ir,- rb + D(Ir, -r 4
1  -D(Ir3- r4!

0
+ D(Irs - r2l) - D(IrI - r31) - D(Ir 2 - r4l) (3.17)

so that using the local homogeneity and isotropy assumption on the phase struc-

ture function [cf. (2.15)] we obtain

k 14 f j

21r

*exp (-Lk2 L2 ' fr - r2 .- IM r, - r4 lM- + Ir3 - 4

+ Ira -r 2 I,- -Ir, - r31M - Ir2 -r4 1A]} 35

4 % . . . . .



- 18 -

The linear transformation of variables:

= -(r, +r2 +r3 + r4), 772 = -(r -r2 -r + r 4),2 2

=7 L (r + r2 - rs- r) and N7 L -(r -r2 +r3 -r 4)2 2

enables us to directly integrate (3.18) over , to obtain (21T) 2 6(714) z 2 /k 2 so

that integrating over 734 (3.18) reduces to

=1(R) [k 12.f d2772 f d2t1 ,1" .'a

A more compact form of (3.19) is obtained by introducing the dimensionless

parameter

s kz 9 2  (3.20)
and using the dimensionless variables

u =- k e 1 2/ 0; v = k 9 173 Q (3.21)
we obtain

< 12(Rz) > fiu f dzu

(2 T)2

*ex(p Ii u. [vRk G/ 'j - W2f (ULv)1 (3.22)

where

f (U.V) = JIO+IPh- 4i~1MU + il U-yIA (3.23)

The spectral density of the diffractal intensity in terms of the Fourier transform

* of (3.22) can be written

P. P(K) f d2 it aur+<a~+.21>

.(Iu(rZ)12-<Iu(rZ)12>)>1



-19-

f dR eiK R I < 12(R' > "1 (3.24)

where we have used (3.9), i.e. <luI 2> = 1. In terms of the scaled wavevector

q = K/ k we can. after integrating over R rewrite (3.24) as

k2 P1 (1k ,() - f dav cos(v, q) e - -] (3.25)

The spectrum of intensity fluctuations therefore has the following limiting forms

* obtained by Gochelashvily and Shishov.2 2

In the low frequency limit I KI / k E) <- the exponential in (3.25) can be

expanded and the first order correction to the spectrum given by

limk 2 P1(qk0, 2) +- 2- r2 (3.26)

Thus the spectrum goes to zero quadratically in the parameter ', and as the

* (2 -M) power of the wavenumber.

In the high frequency limit the intensity spectrum can be evaluated by seg-

menting the integral (3.25) into a part v < .¢ q and a part v > ¢ q:

* 2w Ce
*k

2 P p, - rpo 17 dv cos (v. q) eLC,.

+f vdvcos(v. q) e'( 'u cvcheos(v.q) (3.27)

In the first integral we expand f ( v, q ) for ¢ - and obtain

lim f (v,¢q) '-v"

in the second integral since v > q, we use

lir f(vq) 0

Thus (3.27) yields

lim k P(q,) = 1 (q/

*.
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_Pu-( l  )  (3.28)
L>2-D

so that the intensity spectrum saturates far from the phase screen resulting in

a scaled version of the spectrum of u [cf. (3.14)].

* As a final comment on the intensity spectrum we observe that (3.25) itself

satisfies a scaling relation. Recalling that q = K/ k0 in (3.25) and defining

kLp(k,9.) fke) - (3.29)
k2Pj(K/k,8,s~ ~ E f 2-o~ /G

we obtain the scaling law

PI(I[C'/,,,) = P(K/ke,1,-)/0. (3.30)

Thus as the phase surface deformation increases, as measured by the parame-

ter 9, spectral information appears closer to the phase screen and farther

from the z-axis, i.e. at larger angles.

!, , , ~... ....-.... ............- . ,..-....... ................... .
"=- . . . . = : " ; : ,_' "-, " M" ' "J .'( ," , i" .' ( _,".,"."- ." -" " - .",' .' - -...- . .. ,--..' - .-. '_'-. .
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4. SCINTILLATION DEX

A parameter often used to measure the strength of the intensity

fluctuations is the scintillation index S 4 defined by the integrated intensity

spectrum:

-, S2
S4,(2-r) 2  P, (X ) d2K (4.1)

Substituting (3.24) into (4.1) we obtain an expression for the scintillation index

0 in terms of the fourth moment of u. i.e.

S4= < 1(R= O,z)>-l . (4.2)

Rumsey2 4 introduced an intensity randomization factor U, obtained from (4. 1)

by replacing P1 (I ) with

p1 (K ¢) = 4k 2 AL sin2 (Kez/2k) $D(IK) (4.3)

where A L is the thickness of the phase screen and @, (K) is the spectrum of

irregularities in the screen. Introducing a turbulence strength parameter T by

$ ,, (K) = 27r T/ [k 2 AL fI id + 2 ] the intensity randomization factor can be writ-

,S. ten

u = ()--- T q-'- sin2 (¢q2)

",2.2

-T (1 -// 2) cos (jafr/4) (4.4)

in agreement with Rumsey since (0/ kQ)M = (z/k) 2  In his analysis of

strong scattering from a power-law phase screen Rino2 5 determined that

S > U for all values of j/ except in a small region around A=2. (This

corresponds to his parameter value v = 1.5.) For the fractal

dimension in the interval I < D < 2, the v parameter is confined to the interval

0.5 -v 1.5, i.e. v-2.5-D. At the end of the v intervalwhere U>S2, the

U.
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fractal dimensionality is marginal, i.e. D = 1. The marginal fractal separates

diffractals from ordinary random waves. The physical properties of these two

types of waves are quite distinct as indicated by the discontinuity in the scintil-

lation index obtained by Rino. 2 This corresponds to A = 2 in (3.19) and results

in <Ie(Rz)> = 1, so that the saturation level <I2(rz)> = 2 is only obtained if

the -. limit is taken before the A -'2 limit [cf. (4.12) below].

In the present formulation the scintillation index (4.2) can be written, using

- (3.22) with R 0 and the symmetry properties of the integral, as

S""= (2ir)2  1f -v - (4.5)

In the region close to the edge of the phase screen ( -. 0) we can expand the

exponential term in the integrand of (4.5) to obtain,

1 7) Ref du f d2v 0"'

1 - ¢A'2 [2uj -Ju + VIA + 0 (M' - 1 (4.6)

The first term inside the curly brackets yields (2 iv) 2 & (u) for the v - integra-

tion. The u-integration of this term yields unity exactly cancelling the -1 factor.

The term involving uA yields a 5 (u) for the v-integration and u 5(u) vanishes

GO for the u-integration. The integral involving lu + v1A can be transformed using

x = )(u-v) and y = Y(u + v) to obtain

S2" 2A&2 R - e( f d'y e iv" f d2 JXJA ei. 0 (¢A)
(21r) 2 Re y % fdxxIez'O()

= 2,W 2  (j + /) cos(uir/4) + o(¢A) (4.7)

From the power spectral density (2.12) we observe that Rumsey's turbulence

intensity factor can be written2 4

'.

. . . .. . . . . . . . . . . . . . .
p#".'.-'" "" 

"
"- - " -" " " $ . " " " " " "" " .
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T M 2M"1k2L2- P F(Al2) P(1 +)V2) sn(r/2)

. p (+/ts12) (4.8),. r(i -IV2)

which when substituted into (4.4) yields one-half of (4.7). Thus we observe that

S2 = 2U in the near field region, i.e. the region close to the phase screen.

If instead of the parameter L introduced in (2.14), we had instead selected

* CA in (2.12) in such a way that the spectral strength is given by (j as defined

by (6) in Rino , then

42
T = T = p (4.9a)

0 
and

C = - ('-t/2) L 2 -  (4.9b)
i. 120 P (l + IA 2)

0 Substituting (4.9a) into (4.4) and (4.9b) into (4.7) again yields S4 = 2U, in

essential agreement with Rino's result away from the marginal fractal region

(D= 1).

Finally we can express (4.7) in terms of the fractal dimension as follows:

S = 25-2D - cos !!-(2-D) r (3-D) + O(e -2D) . (4.10)

Equation (4. 10) agrees with the one-dimensional result of Berry which for the

marginal diftractal D 1 + r. -* 0, yields

•S = 4 i + o(tqe )  (4.

W< The scintillation index therefore has an infinitesimally slow linear growth in

(=kz) for D = 1 + c.

Far from the phase screen ( -, C) the behavior of the scintillation index

is quite different. Gochelashvily and Shishov22 find the scintillation index to be

given by

%
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4 = 1 + ((2) -A) -  (4.12)

0 
where

.:c4(A) -2"r(l +j/2)r(4// -1) r(l + 1.42) sinjn/ 2 + -W(2 2)

02 (Al 2) r (i -,u,/2) ]2-2)/ (4.13)

Thus the scintillation index for the fractal surface approaches unity from above

* as Z-1( -) [cf. (4.12)] so that the intensity scintillations become saturated with

propagation distance and/or with the increased strength of "turbulence"

[cf. (4.9)].

1* We now use the scintillation index to establish that a diffractal cannot have

Gaussian statistics except perhaps in the region far from the phase screen, To

establish this we make the contrary assumption, i.e. that a diffractal can be

* •described by a complex Gaussian wave field, and demonstrate that this assump-

tion leads to a value of S2 that is inconsistent with (4.10) and (4.12). Thus we

write the diffractral wave amplitude in terms of its real and imaginary parts

u (r,z) = u,.(rz) + ii(rz) (4.14)

where u,. and u- are real homogeneous Gaussian random variables. Then the

mean square amplitude is

<Us> = <i4> - <u> + 2i<uru> (4.15)

where the bracket here denotes an average over the Gaussian distribution. But

we know that < u2 > = 0 because of the fractal nature of the phase [cf. (3.6)], so

that the components of the field are statistically independent

< = 0 (4.16a)

*and their mean square levels are equal

.1

.4

.4," 4 44'4- ,,.:.'' ". " ',- ."-."* "- -'. . " " " ..... . . . . .. . . . .
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<2> = <u2> = (4.16b)

* where the value } stems from the normalization (3.9). Now we can write the

fourth moment as

s + 1 =<t>

* = < 4t, "> + <u'> + 2<u- 2u> (4.17)

and using the well known properties of Gaussian functions 14 we obtain for the

scintillation index

S42 = 3<i4>2 + 3<iW>2 + 2<u2><i g> + 4<UW> 2 - 1 (4.18)

Inserting the second moment values from (4.16) into (4. 18) we obtain

4 = 1 (4.19)

for a homogeneous isotropic Gaussian wave field.

However the scintillation index for the diffractal given by (4.12) is

A +0 (4.20)
2 2(D-=) Z 1

where the definition of the scaling parameter t has been used [cf. (3.20)] and A

is a z independent positive definite constant. Since 1 C D - 2 the scintillation

index (4.20) approaches that for a Gaussian random wave as z -# -. This implies

that the statistics of a diffractal are not Gaussian except perhaps in the far
rfield region where the fluctuations are saturated.

0

I.I
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5. SUKMARY AND CONCLUSION
288

In an earlier report 2 6 we have argued how the existence of different scales

of fluctuations in the ionosphere can give rise to the observed power-law spec-

trum of plasma irregularities. This property of the ionosphere suggests that it

can be reasonably well modeled as a region with a fractal index of refraction.

Subsequently a wave transmitted through such a medium would become a

diffractal as proposed by Berry. 16 We have shown herein that a diffractal results

from the diffractive free space propagation away from a boundary of a homo-

geneous, isotropic statistical phase surface having a power-law spectrum. The

index /A of the power-law spectrum at the boundary is related to the fractal

dimensionality (D) of the diffractal by D = (4- ja) /2. The statistical properties of

the free field were determined by calculating the coherence of the diffractal as

well as the correlation function and spectrum of the diffractal intensity. These

low order moments indicate that the diffractal can be characterized by scaling

laws in the spectrum of the wave amplitude and in the intensity spectrum.

Finally the scintillation index S 2. often used as a measure of the strength

of the intensity fluctuations, is expressed in terms of the distance from the

phase screen boundary. For a wave field with Gaussian statistics S2 = 1

independent of z, and we have shown that a diffractal approaches this value from

above as an inverse power of the distance from the phase screen in agreement

with Rino.2 5 This implies that the statistics of a diffractal are not Gaussian

except perhaps in the far-field region.

- .-,-.. ..., .-.. ..,.,,,, . .... . *.. .-. . .- .. . .. ,,. *. .-.. . . .*. . .. .,*~ .. • . -. . - .-
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