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I: Abstract
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<:’> 4¥C derive the most general equations of motion for the elcctrons and the electromagnetic
ticld in a tree clectron laser including the effects of diftractior and pulse propagation.
p The xio??\vmmf‘{éin“‘l?”éxpressed in terms of the amplitudes and phases of a complete set of

transverse modes. The analytic solution 1s given in the small signal regime, where the
P theory is shown to be in excellent agreement with a recent experiment.at Ursay.

<:f:> In this paper, we summarize : new approachl to calculating the three dimensional effects
operative ig trce clectron lasers. The previously mentioned approaches consider the growth

T'-* ot the tield €(r,t)y a g the propagation or z axis by evaluating its change at eacthgint
(x.y), and integrating ngmerlcally through the interaction region in the time domain“~' or

d in the treguency domain. These techniques all demand long conputer runs if they are to be
applicad to 4 real experimental situation. Our approach decomposes the problem into the
nimnuR punber of physically observable yuantities: the transverse optical modes of the

_::: ~ystem,  The field evolution is expressed in terms of a3 complete set of orthogonal trans-
verse modes ] cyuations are developed for the propagation of the amplitude and phase of each
rode, {n uhysical systems which operate on a few of the lowest order modes, this approach
~reatly 1ncreases the accuracy, and may reduce the reyuired computer time for the calcula-
tien by working 1n a vector space well matched to the solution ot the problem. For the
oscillator case, the appropriate choice of nodes is the set of esigenmodes of the cavity.
tar *ac aeuliticrre, the vector spuce of nodes is determined by the characteristics of the
taput noge, which 1s upresumably a TEM Gaussian mode. In either device, an optimum design
would result in the excitation ot as Y8w of the higher order modes as possible. The modal
1ecomposition method is theretore well adapted to the prediction and optimization of the
operation of the tree electron laser.
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Introduction \

- -
We begln by developing the most general equations for the propagation of the mode ampli-
tudes and phases in a FFL. These eyuations are then specialized §° the small signal case,
and applied to an experiment we have recently performed at Orsay.

1. Theoretical development of the fundamental equations

The FPL system is properly described by the coupled Maxwell and Lorentz force equations.
:’ Fron these, we shall derive a self-consistent set of equations describing the electron and
the transverse Optictb mode dynamics. Ve use the dimensionless notation originally devel-
o-.ped by W. B. Colson (in fact this work is a generalization of Colson's work to include *
(::lrunsverse modes and we shall stay as close as possible to his original notation).

Ve begin by re-deriving the equations for the slowly varying amplitude and phase of the
L‘Jplcctromlgnetlc field, but now including rigorously the transverse dependence. The field
’is described in free space by the paraxial wave equation

a3

e a2 ¢ 3 s o
: —+ — -~ 21k — ] E(F,t)el?(T:) o o (1)
ax? ay? iz

2
. 1 3
This equation is derived {rom the wave eyuation 82 . 3 =3 €= 0 in the slowly varying
it

amplitude and phase approximation. The general solution of Ey. (1) can be expressed as a
linear combination of a complete set of orthogonal modes. If we define these modes by the

. i .
complex amplitude F_e ™ vhere Em is real and m is the generalized index of the mode (in the
two dimensional traflsverse space we consider, m represents two integer numbers). The ortho-
gonality relation reads
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dxdy i -1y
. ¥n n
_/, 52 'n® Fpe = San (2)

o

where we have chosen a convenient normalization which makes the F_ dimensionless. Although
we will use the cylindrical modes in the examples, we proceed with the yeneral theoretica%
development vhich makes no assumptions on the specific form of the modes.

In the FEL, the coefficients c_ in the mode expansion hecome time dependent. We wish to
calculate the evolution of the amﬂlttude and phase of these mode coefficients.

o );:l-ml Kacos(s + v +9.) (3)

EX

- =V (4)
at

3u” dxdy -iv
— - — rk e Ke >, (5)

dt IwJ n ~0v0
]

where we have made the definitions

wetlLK
a_(Z,t) & - c.(z,t) (6)
n YZme n
. w2258
rir,t) % 3 p(r,t) (7
Y me”
. ie.(z,t)
Yalsit) = ep(z,t)] e (8)
and where
S(r) = (kK + k jz(t) - @t dimensionless (9
electron phase
v(t) = L[(k * ks, (t) - k] dimensionless - (10)
resonance pnrameter
ct .
T = e dimensionless (11)
L interaction time

Hlere we consider an N period helical undulator of length L, magnetic period A _ = 2¢/k ,
peak magnetic,ficld B, and deflection parameter K = 93.4 B(gauss)r (cm). An elegtron befm
of energy vymc®, and number density p travels along the axis of the undulator; an individual
wlectron has longitudinal coordinate z(t) and longitudinal velocity c3_(t) at time t. An
arbhitrary hellcal}*kgoltgifedt”ve of wavelength A = 2»/k, frequency v, and electric field
€ (z,t) = E(z,t)e ~wite(z, interacts with the clectrons, and ¢_ are the mode coeffi-
cients in the expansion. In Ey. (8), <>‘ v is the average over the initial phase ¢, and

oo

resonance parameter v. of the electron population at the position z. -

o
Fys. (3) and (4) are derived di-=ctly from the Lorentz force equation and describe the

ctfect of the radiation field on the electrons. The work done by the longitudinal field on
" the electrons is qeslected heie, which is a good approximation provided that the modes are
not too divergent’ ijw._ (¢ 2°KN/y. Fy.(5) is derived from the Maxwell equations and
describes the effect oY the electron on the radiation field. The set (3)-(5) is self-
consistent. Indeed those cquations are very close to being the most general classical .
equations describing the FFL dynamics. They apply to high and low gain devices (r’ 1 or
r’ ¢<<1), high field and low field cases (a’ >>1 or a’ <<l), and include the effects of multi-
ple longitudinel modes (laser lethargy effects) through the 2 dependence of r' , E, }nglg.
Slight modifications nllo! their extension to the cn;es of a) the planar undulator,;’

b) the tapered undulator, Y c) the optical klystron, and d) space charge effects . For
simplicity in the tfollowing devibopment. we drop the explicit dependence which has been
thoroughly discussed by (olson, and concentrate on the transverse phenomena. :

Fyuation (S ) describes the growth or decay of the radiation field dughto its interaction
with the electrons. [t shows clearly the fact that the growth in the m mode amplitude and
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phase is given by the overlap integral of the in-phase and out-of-phase components of the
chargc density with the complex conjugate of that mode, as one would expect. We note that

iy
the only assumptions made on the modes E e A used in (3)-(S) are orthogonality and com-

pleteness. This means these equations afe also valid for the cases of wavegulde modes and
dielectrically loaded cavities.

-

The fys. (3)-(5) can be integrated numerically to find the evolution of the optical wave
in any Compton regime FEL. In a high field experiment, Fqs. (4) and (5) are nonlinear in s,
and the wave evolution can only be obtained numerically. In this case, (3)-(5) provide a
precise and efficient technique for solving the general problem. In a low field stituation
such as we find at Orsay, however, the problem becomes linear, and can be solved analytic-
ally. VWe proceed with the low field case in the next section.

2. The low tlelas solution

The low field case is defined by |a _|<< 1 for every mode. In other words, the electrons
do not become overbunched. Experiment8 which operate in this domain include the low field

anplitfier expertnents, and storage ring FEL oscillators which saturate by mechanisms other
than overbunching. The ignition of any FEl oscillator also occurs in this domain.

tquations (3)~(5) can be solved by integrating (3) and (4) to lowest order in the fields

u_and insertiny the result for ¢ into Hy. (5). If the electrons are uniformly distributed
iRitially tn phase, we tind

du_(v) ¢ v '
e e fa¢ fur" M (r,c")a (") a2
R e,
(o] (»]
where
i [dxdy

Yap(T.t") = sl P(x, y)E (X, y. ) (x,5,1")
’ " ’
(o]

(13)
. e-t ((vm(x.y.t)-vn(X-Y-‘")) (e-ivo(t-t”)>v
o

tquation (12) describes a linear evolution of the mode amplitudes, and upon integration,
Hives the relation

-

3t = 1) -; (1 + G)ppanle = 0) (14)

where [ is the identity matrix, and G, which is generally not Hermitian, has elements

T 154
Emp = Jar {d:‘ {dt'”nn(td")
r o % 3 b4 3
’[dlljodtz-[d'snml('l,ts) d"“[dts dtﬁ”ln(‘3"8)A¢ cae

The higher order terms in “nn are proportional to r2 and higher powers of r, and are negli-
gible in the low gain case.’

(15)

¥vidently this matrix is of ygreat intcrest since multiple passes of the electron beam
will result in multiple products of this matrix, greatly simplifying the calculation of the

modes® growth. Ve shall discuss the conseyuences for an oscillntion.expertnent in Sect.
2.2,

f course, one must keep in nind that eneryy is radiated into other modes, and that cross
terns eill mix a Rultlyle mode input. [f the input bgﬁm 1s truly monomode, the_power radi-
tated into the n'" mode is lower than that into the m'" mode by the ratio g |2/2Re(g )
which is small for low gain (r << 1) systems. [t is only in this case that TV makes sBWse
to spcak of the gatin of a mode. In high gain systems, however, the off-diagonal terms can
lead to substantial emissirn of energy into the higher order transverse modes. If the input
heam is multinode, of course, mode mixing occurs at all posver levels.
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. Let us calculate L3N in the simple case of experimental interest where the electron beam ‘
.y ts cylindrical, and a‘Eood choice of modes_is the cylindrical cavity eigenmodes. ¥We restrict

N

ourselves to the weakly diverging case aw 25t where the gain takes on its most familiar
form. The mode amplitudes and phases in (13) become independent of tr, and we can integrate
the rirst term in (15) to find the gain. For small spread in resonance parameter over the
bheum phase space, the integyral gives the well known gain spectrunm

A
r .
o dxdy ) =ty (x,¥) 1y (X.¥)
R an * 7= F(x.y)E(x,¥)F (x,y)e e
S LA
L (18)
™ v v v
1l - cosv , - -Sslnvc - L. -Ecosvc + sinuc
2 2 2 .
® =3 + 1 5
c Ve
In the usnal experivental case (untortunutely), 'gnnl << 1 and the energy gain “n un the
mode n becones :
v
c
1 - cosv - ~sinv,
dxdy 2
un = Re(g,,) —_ 2reg 3 (17)
IVO Vc

This 1s exactly the gain one calculates by using the filling factor obtained by integrating
the mode protile overlap with the gain profile. Specializing to the TEMGO case with a
, tzussian clectron beam of width o, we find

Ve
1 - cosy_ - --sinvc
¢ 2 1
Coe = 51, i) (18)
Yo
3 -2
¢ to

v 2
2

complete with the familiar filling factor.

The y  dependence of G is the well <xnown spectral dependence. The imaginary part of gnn
15 not nBw. [t describes™the phase shift of the radiation field as described by ColsondU™
The effect of the divergence of the beam on the diagonal terms in G is, to first order, and
tor a' filamentary electron beam, the addition of a time-varying phase which shifts the
resonance curve in Ey. (18) by a constant depending on the mode

Al

Vo * Vo = =3 (2p + 2 + 1) (19)
b4
o

This mcuns that the gain curves of the modes are shifted with respect to each other. This
pbenqunon has been calculated for the fundamental TEM node ig,the energy loss approxima-
tion, " and has recently been observed experimentally ge Orsay. [t should be noted that

tor many practical situations where the cavity is optimized for gain on the TEM__ mode,

this expresstion is valid for only the lowest order mode. The higher modes becofl€ distorted

in forn as wvell uas simply shifted in resonance parameter by equation (19). .

In another paper, we discuss the optimization of the cavity in a low field oscillator.l

. Application to gain-vs-aperture experiment

3.1 UDescription of the experiment

The ygain of the Ursay FFL has recently been measured with the optical klystron in place
in an amplitier experiment using an external argon ion laser tolyrovide the coherent mode.
A detailed description of the apparatus can be found clsewhere. The laser bean is ana-

12

lyzed at a distance J from the optical klystron after passing through an adjustable colli-
mating iris, which is centered on the laser mode emerging from the interaction region. The
yain is measured as the ratio of the power detected in phase with both the electron repeti~
tion frequency and the chopper frecquency (the amplified power) divided by the power in phase
sith the ch?gper alone (the incident laser power). Calibration is performed as in our pre-
vious work.
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he gain is recorded as a function of the iris aperture, and large vartations are observ~

od. Une set of data points is rcproduced in Fig. 1, where the gain is normalized to its
value for the iris completely open, and the iris diameter is normalized to the measured bean
satst a2t the iris. The data is taken at maximum gain, which means v. ™ 0 for the optical
Klystron, and the laser beam was carefully aligned to within about .05 mm of the axis of the
. vlectron bean. The change in the measured ygain as the iris 1S closed means that the laser

. is not uniformly amplified in its transverse profile. In fact, this experiment provides a
very sensitive technique for measuring the power emitted into the higher order modes even in
the small gain limit and tor a monomode input beam. Clearly a calculation of the g is
necessary in order to explain these results. [n the next section, we apply the theBly we
have developed to the case at hand, and in Sect. 3.3, precise comparison is made between the
experinental and the theoretical results.

:;
Pl

3.2 Multimode emission in a single mode amplifi®br experiment

in this section, we assume the incident wave 1s a4 single node TEN beun with a weak
tield (Ja | < 1), and pertectly aligned onto the clectron beam. As | scussed previously, we
take the 8yllndr1cn1 cigennodes based on the torm ot the input laser beam. Using the nota-
tion ot decet. 1, the iaput luser ficld reaas

iy )
ey = ¢ kg (Fre ¢ (20)
where the subscript O refers to the TEMOO mode. From (l4), the output field ES(P) becomes
. = iy, (F)
v w gl ¢y ; 6ok (e J (21)
J=V
Assuming low gain, the output power passing through the iris aperture is
Rup 2 . - i(v, =v;)
—_—n S P 2 -2 nel ’ e e o )
. ﬁjh I3t = cg dSt.o + .coRe Jz-:obJO /:ihl-.ohJ.c. (22)
shor j}s covers the iris aperture. The gain is therefore
b iy ,=v )
. ot o ")
2he & dsk ¥ e
’Jgo "°f ° ! -
G = - (23)
Jase2 ‘
. o
For purely cylindrical & = U0 modes, G can be written
X -X
12 f Lo(x)e "dx
- i2ptan "= O
i = 2Re {¢ + g, e z (24)
oo pal Py

e ®dx

O\ ¢

where 2z {s the Rlylelﬁh ragge qt the laser node, z ts the distance between the iris and the
laser bBam waist, and - r°/2v‘(z) where r, is the iris diameter. There are two interest-
in, limiting cases:

G = zne(goo) X +» » (iris open) (25)
-1%
- i2ptan " — :
G = 2He (6, * 2.:1 Epo® z, X+ 0 (iris closed) (26)
P

[t is nbvious from Fys. (24)~(26) that the yain change’s with iris diameter in a way which
depends on the magnitudes of the off-diagonal terms in the gain matrix.

The generalization is straightforward to the case of the nultimode input beam, and to
inpertect alignment of the laser and electron beams, although the calculation becomes more
ditficult. This calculation also applies to high power input laser beams (a_ >> 1) provided
one keeps in nind that the go, are functions of aq. °
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- Figurs l. The measured gain as a function of the iris dia-
meter” normalized to the measured beam waist at the iris.
The solid points were taken closing the iris and the open
points while opening it. The error bars are the one sigma
statistical errors. All points have the same horizontal
error bar which is shown for the point at 2.7. The solid
curve is calculated using the measured values for the elec~
tron and laser beam sizes. The effect of each higher order
mode is shown by the dashed curves.

3.3 Application to the Orsay experirent .

The experimental points shown on Fig. 1 were taken under the following approximaté con-
ditions

laser
beam: - neasured beam waist ¥, " -67 nn
- wavelength = 5145 A
= neasured beam waist at iris w(z) = 2.7 np
- distance from optical klystron to iris d = 11.6 nm
¢lectron
beam: ~ gaussian and cylindrical with o = .32 mn
optical

kiystron: - nd = goll.12,14
=~ resonance parameter corresponding to maxinun gain with irts open

e I M R e
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< The fnr% curve has been calculated using Fqs. (12), (13) and (24) for the planar config-

uration™* taking into account the 10 lowest order t = 0 modes. The dashed curves show the
contribution of each individual nmode. The agreement hetween the experimental results and
the theory is excellent.
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A Very sinilar curves were calculated for other resonance parameters indicating that as
DA cxpected, the diffraction effects do not change nmuch as a function of detuning parameter for
Lt nodes with low divergence.. The effects of the transverse size of the elfcsron beam and the
e distance of the analyzing aperture from the FFL are discussed elsewhere. '’
‘e
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