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Abstract

.: O'. derive the most general equations of motion' for the electrons and the electromagnetic
tildin u tree electron laser including the effects of diftractior and pulse propagation.
.r htZ t idf-l , tUtOliFin--e---xpr ed in terms of the amplitudes and phases of a complete set of

. - [ransverse* modes. The analytic solution is given in the small signal regime, where the

thetory is shown to he in excellent agreement with a recent experiment.at Ursay.

Introduction

In this paper, we summarize a new approach1 to calculating the three dimensional effects
,perative Q.~tjree electron lases. The previously mentioned approaches consider the growth

. ot ithe tield i,-t~h-t- -lYpagatxon or z axis by evaluating its change at each2 p9 int
j (x.)). and integrating n nerically through the interaction region in the time domain -- or

tin the troqunncy domain. These techniques all demand long conputer runs if they are to be
LpAie'd to a real experimental situation. Our approach decomposes the problem into the

C nininun nur.ber of physically observable quantities: the transverse optical nodes of the
-,stvm. The field evolution is expressed in terms of a complete set of orthogonal trans-
vt.rae, rtodes; ,quations are developed for the propagation of the amplitude and phase of each
rod,,. In vhysical s)stems which operate on a few of the lowest order modes, this approach
..r'atly increases the accuracy, and may reduce the required computer time for the calcula-
tl,.n by wvoking in a vector space well matched to the solution o the problem. For the
,)sc(lIator case, the appropriate choice of nodes is the set of Pigenmodes of the cavity.
I,,r :i *r',Littr'r, the vector space of modes is determined by the characteristics of the
1+11t roGuI. *.hich is presumably a TFRI Gaussian mode. In either device, an optimum design

&otid| result in the excitation ot as Y w of the higher order modes as possible. The modal
lfcomposition method is therefore well adapted to the prediction and optimization of the
,)jvration of the free electron laser.

We be6Ln by developing the most general equations for the propagation of the mode ampli-
tudes and phases in a FFL. These equations are then specialized 6o the small signal case,
and applied to an experiment we have recently performed at Orsay.

1. Theoretical development of the fundamental equations

The FVL system is properly described by the coupled Maxwell and Lorentz force equations.
>mrom these, we shall derive a self-consistent set of equations describing the electron and

the transverse optic M mode dynamics. We use the dimensionless notation originally devel-
O ped by W. B. Colson (in fact this work is a generalization of Colson's work to include

C ransverse modes and we shall stay as close as possible to his original notation).

-" We begin by re-deriving the equations for the slowly varying amplitude and phase of the
* 1 ,,,4 lectromagnetic field, but now including rigorously the transverse dependence. The field

Uis described in free space by the paraxial wave equation

+ - 2- 2ik *( ,tlei9(r.t) - 0 (1)

,11 32

This equation is derived from the wave euton 0 in the slowly varying

amplitude and phase approximation. The general solution of Eq. (1) can be expressed as a
4,' linear combination of a complete set of orthogonal modes. If we define these modes by the

complex amplitude I e where Em is real and m is the generalized index of the mode (in the
two dimensional traRsverse space we consider, m represents two integer numbers). The ortho-
go nality relation reads

j I--.-'O'...
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odxdy F.me Fne = 6 
(2)

%here we have chosen a convenient normalization whic, makes the F dimensionless. Althou h
we will use the cylindrical modes in the examples, we proceed witf the general theoreticd
development which makes no assumptions on the specific form of the modes.

In the FFL, the coefficients c in the mode expansion become time dependent. We wish to
calculate the evolution of the amplitude and phase of these mode coefficients.

- l ~ImI Vm cos(c + V' + M (3)

(4)
3T

-dxdy -I e -ic (5)
* T J-w.rEo *

;hi.r,. w.- hay,. made the definitions
e eLK

, t)= Icn(zt)I i'mZ )(8)

m -"nd wht, re

;(t) u (k+ ko)zt) - wt ]dimensionless (9)
eleccnron phase

v(t) - L[(k + ko) z(t) . ki dimensionless -. (10)
I. J resonance parameter

(-t
-"-dimensionless (11)

L interaction time
i lhere we consider an N period helical undulator of length L. magnetic period A - 2w/k^

peak ragnetic2 fiold 15, and deflection parameter K - 93.4 B(gausS)Ao(cm). An electron beam
"-" ,of energy ymc * and number density p travels along the axis of the undulator; an individual

,*+lectron has longitudinal coordinate z(t) and longitudinal velocity Ci (t) at time t. An

; ar~trry elicl , ol{ tzd~v~veof wavelength A - 2./k, frequency w, and electric field
(rzitay hlicaljez s o 9z))interacts with the electrons, and cm are the mode coeffi-

cients in the expansion. In Eq. (5). <> is the average over thetminitial phase €o and

r VC(e

- "*. resonance parameter vo of the electron population at the position z.

i'" Eqs. (3) and (4) are derived di-'ctly from the Lorent: force equation and describe the
-. effect of the radiation field on the electrons. The work done by the longitudinal field on
-_ * the electrons iS i{eglected he~e, which is a good approximation provided that the modes arenot too divergent A/c (( 2. KN/y. F41.(5) is derived from the Maxwell equations and

" - describes the effect oY the electron on the "radiation field. The set (3)-(5) is self-

i" consistent. Indeed those equations are very close to being the most general classicl
" equations describing the PELI dynamics. They apply to hig~h and low gain devices (r' )>l or

r' ((1), high field and low field cases (a' >)1 or a' <<1), and include the effects of u~ulti-
% pie longitudinal modes (laser lethargy effects) through the dependence of r' , E,
, .Slight modifications alloytheir extension to the ca~es of a) the planar undulator,.:

b) the tapered undulator, c) the optical klystron, and d) space charge effects * For
. simplicity in the following development, we drop the explicit f dependence which has been

thoroug~hly discussed by (:olson, L  and concentrate on the transverse phenomena.

.. Equation (5>-describes the growth or decay of the radiation field due to its interaction
-% with the electrons. It shows clearly the fact that the Growth in the m h mode amplitude and
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lhase is given by the overlap integral of the in-phase and out-of-phase components of the
charge density with the Complex conjugate of that mode, as one would expect. We note that

i~r,
the only assumptions made on the modes -e .1 used in (3)-(S) are orthogonality and com-
rletoness. This means these equations a e also valid for the cases of waveguide modes and
dielectrically loaded cavities.

-.. The t:qs. (3)-(5) can be integrated numerically to find the evolution of the optical wave
" in any Compton regime FKL. In a high field experiment. Eqs. (4) and (5) are nonlinear in a,
"* and the wave evolution can only be obtained numerically. In this case, (3)-(5) provide a

precise and efficient technique for solving the general problem. In a low field situation
such as we find at Orsay, however, the problem becomes linear, and can be solved analytic-
ally. We proceed with the low field case in the next section.

2. The low fields solution

The low field case is defined by Ja I (( 1 for every mode. In other words, the electrons
do not become overbunched. Experimentd which operate in this domain include the low field
amplifier expertiments, and storage ring FEL oscillators which saturate by mechanisms other
than overbunchinb. The ignition of any FF. oscillator also occurs in this domain.

• quations (3)-(5) can be solved by integrating (3) and (4) to lowest order in the fields
a and inserting the result for r into l. (5). If the electrons are uniformly distributed
twitially in phase, we find

al(y ) T Isf dy' f ul T Ct, t )a, ( r (12)v r

i dxdy
I n(T,,") - - r(xy). (X.Y.r)Fn(x.Y.")

iJ w0 (13)

-i Vm(x.y.T)'Vn(x'y.T" ))
v0

, uaion (12) describes a linear evolution of the mode amplitudes, and upon integration,
,Lv.b the rPlation

" ( I) - (I + G)mnan(T - 0) (14)
n

where I is the identity matrix, and G. which is generally not Hermitian. has elements

T T ".4

6mn IdT ,I d: JdT nnrT")

(15)
T T2 3 T4 T

"di I fdt 2 Idt 3Mmt (lT I-T3) dT 4 JdT 5 rT tU'n(T 3, t6) --

The higher order terms in g are proportional to r2 and higher powers of r, and are negli-
gible in the low gain case.

Evidently this matrix is of great interest since multiple passes of the electron beam
will result in multiple products of this matrix. greatly simplifying the calculation of the
node.s' growth. e shall discuss the consequences for an oscillation experiment in Sect.

4)f course, one must keep in mind that energy is radiated into other modes, and that cross
terms will mix .1 ultiple mode input. If the input bTm is truly monomode, the power radi-
Lated into the n mode is lower than that into the m mode by the ratio Ig.I 2/2Re(g )*hich is small for low gain (r (( 1) systems. It is only in this case that TV makes sMse
to speak of the gain of a mode. In high gain systems, however, the off-diagonal terms can
lead to substantial emissinn of energy into the higher order transverse modes. If the input
beam is multimode, of course, mode mixing occurs at all pouer levels.

.. . . .. .. -" A



Let us calculate - in the simple case of experimental interest where the electron beam
is cylindrical. and a'eood choice of modes is the cylindrical cavity eigenmodes. We restrict
o)urselves to the weakly diverging case ww 2 > AL where the gain takes on its most familiar
form. The mode amplitudes and phases in ?13) become independent of T, and we can integrate
the first term in (15) to find the gain. For small spread in resonance parameter over the
bean phase space, the integral gives the well known gain spectrum

dxdy -iV n(x. y ) ivn(x~y)
1 mn /wI r(x.y)fm(x'y)En(x.y)e e

wo (14i)

-cosy C -sinvc cosy c + sinvc
2 2 2

1nh~ sta c c

In thv usela !xp'rtiental case (unfortunately), 19nI (( 1 and the energy gain (n tin the
rwide m becomes

/1- os -2sin

- Oydy C 2 c

!'.."0 c
This is exactly the gain one calculates by using the filling factor obtained by integrating
the ,oode profile overlap with the gain profile. specializing to the TFM case with a
St-i'ssian ,lectron beam of width a, we find 00

/1 cos - -sinv C

-%- r •)(18)

v3  1 - _0o
c 2

:mplote with the familiar filling factor.

The V dependence of G is the well Known spectral dependence. The imaginary part ofg
IN not new. It describesmthe phase shift of the radiation field as described by Colson.l...

nip *!ffect of the divergence of the beam on the diagonal terms in G is, to first order, and
for a tlamentary electron beam, the addition of a time-varying &hase which shifts the
resonance curve in Fq. (18) by a constant depending on the mode

AL
Vc . Vc - - (2p + % + 1) (19)

This means that the gain curves of the modes are shifted with respect to each other. This
phenoT.non has been calculated for the fundamental TVAI mode i6the energy loss approxima-
tion, and has recently been observed experimentally R? Orsay. It should be noted that
for many practical situations where the cavity is optimized for gain on the TEM mode,
this expression is valid for only the lowest order mode. The higher modes becoag distorted
in form as well as simply shifted in resonance parameter by equation (19).

In another paper, we discuss the optimization of the cavity in a low field oscillator.

3. Application to gain-vs-aperture experiment

23.1 I)escription of the experiment

The gain of the (Orsay FEL has recently been measured with the optical klystron in place
1 2

in an amplifier experiment using an external argon ion laser to 1 rovide the coherent mode.
A detailed description of the apparatus can be found elsewhere. The laser beami is ana-

,. lyzed at a distance s from the optical klystron after passing through an adjustable colli-
Amating iris, which is centered on the laser mode emerging from the interaction region. The

gain is measured as the ratio of the power detected in phase with both the electron repeti-
tion frequency and the chopper frequency (the amplified power) divided by the power in phase

*. with the chyqper alone (the incident laser power). Calibration is performed as in our pre-
A.'vious work.

O.- . . . . .. .
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3he gain is recorded as a function of the iris aperture, and large variations are observ-
.d. One set of data points is reproduced in Fig. 1. where the gain is normalized to its
value for the iris completely open, and the iris diameter is normalized to the measured beam
saist at the iris. The data is taken at naximiam gain. which means v, m 0 for the optical
kl)stron, and the laser beam was carefully aligned to within about .05 mm of the axis of the
electron beam. The change in the measured gain as the iris is closed means that the laser
is not uniformly amplified in its transverse profile. In fact, this experiment provides a
very sensitive technique for measuring the power emitted into the higher order modes even in
the small gain limit and for a monomode input beam. Clearly a calculation of the g is
necessary in order to explain these results. In the next section, we apply the theapy we
have developed to the case at hand, and in Sect. 3.3, precise comparison is made between the
experimental and the theoretical results.

.3.2 Flultirode emission in a single mode amplifiter experiment

Ln this section., e assume the incident wave is a single mode TE beam with a weak
litId (ja I ( 1), and perfectly ali~ned onto the electron beam. As S?scussed previously, we
take the 8Vlindrical eigenmodes based on the torm ot the input laser beam. Using the nota-
ti.n of Sct. 1, the inpit laser field reaas

i1 (20)1I(1") - *E()e "(20)

where the subscript 0 refers to the TF, mode. From (14). the output field F s(t*) becomes
00

S iW,(~
U 0. F ('He J (21)

,.1.1lrgt; low 6ain. tie output power passing througih the iris aperture is

a ,f .(22)

Al4', 1. 'overs the iris aperture. The gAin is therefor'

:.'.' t; - 2.e Oee

21 J : o(23 
)

0

For purely cylindrical 0 modes, G can be written

r -x2pn' -

G. - 2Re I 00 pal 9 S e 0 0 cloed (24)

whee t ois the Raylei h q the laser mode. Is the distance between the Iris and the
I laser bVam waist, and s /2w(z) where r0 is the iris diameter. There are two interest-
I% -enr limiting cases: s

G. - e60 X * - (iris op~en) (25)

C-2H' 2ptan- -I
4' 2 GO a gp0e z 0 I X * 0 (iris closed) (26)

'PIt is obvious from iqs. (2.4)-(26) that the 6ain change6 with iris diameter in a way which
depinds on the magnitudes of the off-diagonal terms in the gain matrix.

The generalization is straightforward to the case of the multimode input beam, and to
I -I mperfect alignment of the laser and electron beams, although tile calculation becomes more

difticult. This calculation also applies to high power input laser beams (a )> 1) provided
one keeps in mind that the bpo are functions of a.. 1

l i , ( . . . . . . .'.. .. . -. . . . --". --



u . I3 -
- -- -F 

.._.. , ........ ,

* GAIN
GAIN (iris open)

.5-

- -. ... ~.

r.- 0.5--'~ '

Iris diameter
.', W (z)

I
1 2 3 4 17

- Figurg 1. The measured gain as a function of the iris dia-
.', meter normalized to the measured beam waist at the iris..P The solid points were taken closing the iris and the open

points while opening it. The error bars are the one sigma40 statistical errors. All points have the same horizontal
error bar which is shown for the point at 2.7. The solidcurve is calculated using the measured values for the elec-tron and laser beam sizes. The effect of each higher order
mode is shown by the dashed curves.

_.3 ApDlication to the Orsay experiment

The experimental points shown on Fig. I were taken under the following approximatd con-
di tions

laser
beam: - measured beam waist w - .67 mm- wavelength - 5145 A 0

- measured beam waist at iris w(z) - 2.7 nm
- distance from optical klystron to iris d = 11.6 m

lect ron
. beam: - gaussian and cylindrical with 0 a .32 mm

o)pt ical
klystron: - Nd - 8011.12,14

- resonance parameter corresponding to maximum gain with iris open

" ,, .,,,,' -... ,* ...'.* .- . -... '.. .... .. ... - . 'i.... .. . . ., .. .. .. . .
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The -afl ,:urve has been calculated using Fis. (121). (13) and (24) for the planar config-

uration takin% into account the 10 lowest order t - 0 modes. The dashed curves show the
contribution of each individual mode. The agreement hetween the experimental results and
the theory is excellent.

Very similar curves were calculated for other resonance parameters indicating that as

expected, the diffraction effects dO not chanie much as a function of detuning parameter for

nodes with low divergence. The effects of the transverse size of the elcbron beam and the
distance of the analyzing aperture from the FF.L are discussed elsewhere.
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