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Charles W. Bert
School of Aerospace, Mechanical and Nuclear Engineering

University of Oklahoma
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ABSTRACT
The plate theory recently developed by Levinson is extended to
laminates. Closed-form solutions of this theory, as well ac thoce
of Reissner-!tindlin plate theory with appropriate chear correction,

Seide's discrete-layer rlate theory, and Lo, Christensen, ard u's

LA S M
e s -

igher-order theory are all cormpared with Pagaro's elacticelty-
theory solution for the cases of cylindrical bending o a single
orthotropic layer and a syrmetric cross-ply (0°/30°/0°) laminate
consisting of three equal-thickness layers. Quantities comrared
are maximun plate deflection, rending stress distribution, and

transverse shear stress distrilbution. Dist | .{\\:v

1 INTRODUCTION fﬁn//{

It has long been known, through Saint-Venant's flexure theory as well as
through experimental observations, that the elementary Bernoulli-Euler beam
theory is inaccurate except in the case of pure bending {no transverse shear

forces) or very slender ge.metry (large length/depth). Mindlin and

* An abbreviated and preliminary version of this paper was presented at the
Symposium on Mechanics of Composite Materials, sponsored by the Applied
Mechanics Division, American Society of Mechanical Engineers Winter Annual

Meeting, Boston, MA, Nov. 13-18, 1983,
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Deresiewicz1 provided an excellent review of early improved theories to take
into account transverse shear deformation, including the pioneering work of
Bresse® in 1859 and analogous work by Timoshenkc in 1921-22. %"

A similar situation was evident in the theory of plates, since the
classical thin plate theory (CPT) due to Germaine and Lagrange suffers from
the same deficiencies of Bernoulli-Euler beam theory, namely

a) Transverse shear strain is neglected

b) In-plane normal strain is distributed linearly through the thick-

ness, rather than nonlinearly

c) Transverse normal strain is neglected

Reissner>** and Mindlin’ presented generalizations of the Bresse-
Timoshenko beam theory to plates and thus made the first attempts to include
transverse shear deformation in plate theory. Their theories differed not
only in application, References 5,6 to static problems and Reference 7 to
dynamic, but also in the definition of the kinematic parameters. These
theories not only suffered from deficiencies b and ¢, listed above, but also
the transverse shear strain was distributed linearly through the thickness.
This required use of a transverse shear correction factor, either implicitly
(Reissner) or explicitly (Mindlin).

Perhaps the first attempts to account for a more realistic distribution
of transverse shear strain were due to Ambartsumyan in 1957, see Reference 8,
page 40. In his theory, all deficiencies (a,b,c) were removed. Later work
conducted in this same spirit was due to Reissner® and Levinson!®, and for
the geometrically nonlinear case, Schmidt!l, Numerous so-called high-order
theories were presented by Donnelll?, Tiffen!3, Tiffen and Sayer!®, Tiffen

and Lowel!S, Leel®, Berdichevskiil?, Pancl®, Lo et al.!®, Cheng2?, Celep?!,
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Krenk2?, Voyiadjis and Baluch’3, and Shirakawa<“. An interesting tabular

comparison of various plate theories was presented by Irretier .

The first complete laminated anisotropic plate theory is generally
attributed to Reissner and Stavsky?®; this was a laminated version of CPT.
However, it has been known for a long time-’ that transverse shear deforma-
tion plays a considerably larger role in structures made of filamentary
composite materials than those of isotropic materials. The explanation
for this is the very low shear moduli, relative to in-plane elastic moduli,
exhibited by such composite materials. The laminated plate versions of

TR

the Mindlin and Reissner plate theories are due to Yang et al.-" and Whitney
and Pagano-<”, respectively. In Reference 28, a dynamic method of determin-
ing the appropriate shear correction factors was introduced and in References
30 and 31, static methods were introduced. Also, the works of Reissner’ *'’
Bondar' and Rasskazov'“, and Green and Naghdi should be mentioned.
Higher-order laminated plate theories were reviewed by Lo et al.*f
who applied the laminated version of their own high-order theorqu. Also,
the work of Whitney and Sun37, Librescu3®, Murthy’?, Soni and Pagano“’, and
Rehfield and Vallisetty“! should be mentioned.
It is noted that in all of the laminated theories discussed above, the
shear angle was either not permitted to vary at all from layer to layer (in
the theories of References 28 and 29) or required to vary in a smooth, a priori
fashion in the higher-order theories. Apparently, the first attempts to con-
sider each layer in a laminate as a separate beam or plate are due to Refer-

ence 42 for the static case and Reference 43 for the dynamic case of multi-

core sandwich beams’and Reference 44 for laminated beams loaded statically.

+A sandwich beam is generally understood to be one having two or more relatively
stiff, thin layers (called facings) and one or more relatively flexible, thick

layers (called cores).

................................




R ACT et M g el i - S A A M e it gt S S Bt YN S A

.t “ e PN Y « .

DRSIIC ARl S T D T I 'T

This approach was also used by Ambartsumyan®, page 75, for thick plates,
considering each layer as an Ambartsumyan-theory plate. See also the shell
work of Hsu and Wang“> and the plate work of Seide“®, who considered each
layer as a Reissner plate.

Here, the terminology "smeared laminate model" (SLM) is used to des-
cribe laminate theories of the type (References 28-29, 32-36); "discrete
layer model" (DLM) is used to describe laminate theories of the type

(References 42-46).

2 METHODOLOGY OF COMPARISON
The objective of an improved theory for laminaied plates is to achieve
greater accuracy of prediction than is possible with classical thin plate
theory (CPT) or even classical (Reissner-Mindlin) shear deformable plate
theory (SDT), without requiring the complexity of three-dimensional elasti-
city theory or even that of the more complicated higher-order plate theories.
It is customary to evaluate the accuracy of various improved theories by
comparison of the results for a specific situation with those of a three-
dimensional elasticity solution for the same situation. In this regard,

the closed-form solution due to Pagano“’, for cylindrical bending of a

simply supported laminate under a sinusoidally distributed normal pressure
loading, has been widely used.

In the present work, four different theories, described in the ensuing,
are applied to cylindrical bending in two different cases:

Case 1 Homogeneous orthotropic material

Case 2 Symmetric cross-ply laminate (three layers)

In both cases, the material considered is the same as that of Pagano“’:

= 0.25.

EL/ET = 25, EL/GLT = 50, GLT/GTT = 2.5, v

LT = V7T
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Lo 3 THEORIES COMPARED
i?i' Classical Shear Deformable Plate Theory (Smeared Laminate Model)
.;E_ This theory is due to Yang, Norris, and Stavsky-® and to Whitney and Pagano-°.
’}: It is used here inconjunction with the general shear correction factor de-
.j: rivation given in Reference 31 or more explicitly in Reference 48.
o
:if Classical Shear Deformable Plate Theory (Discrete Layer Model)
-.. This theory is due to Seide“®, who applied it and worked it out in detail
"S for a symmetric three-ply laminate.
3
Voo Laminated Version of Levinson's Theory (Smeared Laminate Model)
_:i. This theory is presented in Appendix A. Due to the nonlinearity of the
_;E: axial-normal-stress distribution through the thickness, use of the equilibrium
’fﬁ: equation for the xz plane requires a higher degree of nonlinearity in the
3?; shear-strain distribution than is assumed a priori in this theory. Thus,
;i; contrary to the remarks in Reference 19, a shear correction factor may still
';fj be needed in this theory. However, due to the complexity of the shear-strain
;:i distribution resulting and the dependency of k upon the normal pressure (see
:32 Appendix B), it is not practicable to work out this correction factor in general. ‘
'Ei However, it is shown that for the homogeneous case and p = 0 that k = 1.
f:i Lo-Christensen-Wu (LCW) Higher-Order Theory (Smeared Laminated Model)
;;; This theory was presented in Reference 19 for the homogeneous case and in
:f? Reference 36 for the laminated one.
2%
ij 4 RESULTS AND DISCUSSION
,:ég Homogeneous Case ‘
%\; In this case, due to the absence of bending-stretching coupling, B =C =10
S




and furthermore, E/D = 1/5. Then, eqn (A-15) gives for the Levinson theory

Wnax = (Pg/Da*) + (6/5)(p,/Qggha-) (1)

This result is identical to that of classical Reissner type theorys’e, i.e.,
Whitney-Pagano® with a shear correction factor k = 5/6.

7

. . . L
For comparison with Pagano's numerical results ', egn (1) can be re-

written as follows:

Wz 100 Exh®w  /p et = (100/-*)[12(1 = v pug ) + (6-7/5) (E /6 1) (h/5) J(E/E)
(2)

Using the previously mentioned material-property ratios in eqn (2), one
obtains w = 1.981 for h/: = 1/4, considered by the present investigator to be
the maximum thickness of a plate rather than a block. This value compares
very favorably with a value of approximately 1.95 read from the curve of
Reference 47. To the small scale of the plot in Reference 19, this is in
agreement with the LCW higher-order theory.

Again for comparison with Reference 47, eqn (A-16) can be used to obtain

(3,) o) 2 /0y = (6/2°)(/h) + (106D - vpvp) (3)

X“max

(

For h/% = 1/4, eqn (3) gives (o.)

Jmax = 1474, which is in fairly good

agreement with Pagano's elasticity-theory value (approximately 14.1). The

prediction of classical Reissner SDT is

(3 )y = (6/72)(2/n)? (4)

which yields a value of (o.)

«max = 9,727, which obviously is considerably

inaccurate. Incidentally, Fig. 2 of Reference 19 appears to be drawn in-
accurately in the vicinity of h/2 = 1/4 and thus cannot be used to compare

the LCW value with the above.

..................
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:j Again, the absence of bending-stretching coupling causes coupling stiff-

&

“
- nesses B and C to vanish. Also, it can be shown that

o

~ D= (26 E +E.)(h%/328)(1 - v ~vey )"
- - 3 ‘ -1 ) |
T E = (242 EL + ET)(h /14,580)(1 - ‘LT“TL) R 555 = (ZBGLT-+266TT)(h/8]) %
N s I
- Then, application of eqn (A-15)gives, for h/s = 1/4, @
o - 3 _ !
N w = 100 Esh wmax/poz“ = 2.630 |
t§ This deflection value is approximately 12.3% lower than the exact value of |
¥

.
1]

approximately 3.0 obtained in Reference 47.

To apply SDT, the following equation for the shear correction factor

2 B 2 0

LA RPRTRIRRS *

is used (References 31,48)

- k= Df/{j 6(Klaz J v /6% az) (6)
x::

Ej or, for the specific laminate (three equal-thickness plies) (Reference 48)

)

K = 5 (26e + 1)-g (7)

- 6 (1+2g)[102e” + g(120e- + 20e + 1}]

E where e = EL/ET and g = GLT/GTT‘ For e = 25 and g = 2.5, eqn (7) yields

. k = 0.5828. Also, 555 and D are given by

" 6 E +E

s RO ] k), . & *E

5 S5 f G177 dz = (2 Gp + Gpp)(h/3) , D = J 209 e o "
. LTVTL
e (8)

Then, the maximum deflection is given by

:E Woax = (Po/Dx*) + (po/ksssaz) (9)
-

‘.c




The result, for h/e = 1/4, w = 3.226, which is 7.5% higher than the exact one.
A comparison of the present deflection results, for h/i = 1/5, with those of a

number of other investigators is given in Table 1. The bending-stress and

Ay )
s s

shear-stress distributions are shown in Figures 1 and 2.

5 CONCLUDING REMARKS
On the basis of the comparisons made in this study, it is concluded that the
Levinson-type theory is more accurate, i.e., closer to the exact elasticity
solutions, than classical SDT. The higher-order LCW theory is also more
°, accurate, but requires too much computation to justify the accuracy achieved.
Both of these theories predict the nonlinear distribution of bending stress
y through the thickness, while SDT as well as CPT does not.

However, the Seide theory, which is a discrete layer version of classical

SDT, is more accurate in predicting shear-stress distribution than any of the
smeared laminate theories mentioned above. Unfortunately, the Seide theory

is not quite as accurate in predicting the maximum bending stress, since it
predicts a linear distribution of bending stress. This suggests that a new
theory, a discrete layer version of the Levinson theory, should be most
accurate. It would be expected to have an accurate prediction of shear-stress
distribution like the Seide theory and an accurate prediction of the nonlinear ;

bending stress distribution 1ike the Levinson and LCW theories.
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APPENDIX A: LAMINATED VERSION OF LEVINSON PLATE THEORY

Taking Cartesian coordinates x and y in the plane of the plate and z as
the thickness normal coordinate, measured positive downward from the midplane

of the laminate, one starts with the following displacement field

Ux,y,2) = ug(x,y) + ze (x,y) + 2%, (x,y)

(A-1)

Vix,y,z) = v (x,y) + zwy(x.y) + z?oy(X.y) 3 W(x,y,2) = wix,y)
It is noted that the midplane displacements, not included in Levinson's
original theory!?, are necessary here in order to provide for the bending-
stretching coupling exhibited in unsymmetric laminates. Further, as was
pointed out by Murthy?”, terms in z” are not needed due to the requirement
of zero shear stress (and thus zero shear strain) on the upper and lower
surfaces of the laminate.

The thickness shear strains are
Yo, =U _+W =y +3z°: +tw_ 3 oy_=V_+W =, +32: +w_(A-2)

XZ vz » X X X s X yz sZ 'Y y y Y

where ( ) « : 3 )/sx, etc.

9
Imposing the condition of zero shear strain at the laminate surfaces
(z = + h/2), one can express *, and ty in terms of some of the other kinematic
variables;

¢, = -(4/30%) (v, +w O o by = -(4/3hf)(wy +w y) (A-3)

’ b

Thus, the strain field is

' U,x : uo,x * wa,x - (4/3h4)zj(wx,x * w,xx)

=v = + & - 2 3|l‘ +
ey T Viy T Yo,y T Try,y T (W302300  r W )

A




Yxy T Uyt Vx T o,y t Yo,y Ry

yz - (Zz/hi)](¢y + w,y) s oe, s 0 (A-4)

) 5 vge = [0 (22/0) T * )

X,y

<
]

Each layer may be monoclinic, i.e., the generalized Hooke's Taw is

oo ) [0 4 0 0 ] [, )

% G Qp 0 0 Qe 1y

12 ¢ =] 0 0 Qy Qs 0 | "'yzL (A-5)
Tzx 0 0 Q5 Qg O Tzx

v ) | Be Y% 00 0 Qg6 | | vy

Here, the Qij are the plane-stress-reduced stiffness coefficients, +'s are
normal stresses, and t's are the shear stresses.

The plate stress resultants and stress couples are defined as

h/2
(Ni’Mi) = (]’Z)Oi dz (i,j=X,Y)
-h/2
rh/2
(ny’Mxy) = J (]’Z)Txy dz (A-6)
-h/2
h/2
(vxivy) = (TZX)TyZ) dZ
-h/2

Substituting the generalized Hooke's law, eqn (A-5), into egns (A-6),

one obtains
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M Yo,x ’ x,x ¥ xx
Yoo By Yoy gt (04 vy LRI Yy
Mey Yo,y * vo,ﬁ "y T Vy,x W Ly
Vy i 544 545 uy + w’y (i,j=1,2,6)
Yy a5 Sss|f *x * Y x (A-7)
where
B =By~ Cij o Dij= 0y -y )
h/2
(Aij,Bij,Dij) = J (1,z,z?)Qij dz ? (i,j§=1,2,6) (A-8)
-h/2
h/?2
(C;5E55) = (4r307) (L2)z Q5 dz
-h/2
h/2
S, . = f [V - (22/h) 1q,, dz k,i4,5
-h/2
The equilibrium equations of elasticity are
%ij.j + Fi =0 (A-9)

Integration of eqns (A-9) through the thickness of the laminate and use

of eqns (A-6) yield the usual plate equilibrium equations

Nx,x ¥ ny,y th =0 Mx,x * Mxy,y s Verm =0
NS N + N + =0 M +M - + = A-10
3 xy:x "~ Vy.y T Py xyx Py Ty tmy s 0 (A-10)
~
: V. +V _+p=0
S x,x * ly,y P

where P; and m, are body forces and body moments, and p is the normal

pressure.
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Substitution of the laminate constitutive egns (A-7) into eqns (A-10)
yields finally five plate equilibrium equations in terms of the five gener-
alized displacements Ug» Vo’ Woo ¥y wy.

For the case of cylindrical bending, all derivatives with respect to y

vanish and the equilibrium equations become

Alluo,xx Bi]'x Xx CHw,xxx =0
SSS(wx,x ¥ w,xx) tp=0 (A-11)
B]luo,xx * Dilwx,xx - EHw,xxx B S("'x * w,x) =0

These can be uncoupled to yield

Bi] B B,,C

- 11 11711
Oy = w7 Woxax =P = Oy - g - = EndP d/Sss (A-12)
11 1 1
For a sinusoidally distributed pressure
P =p,sinux 5 a=-/g (A-13)
the deflection, for freely supported edges, is
w=woosin ax (A-14)
where
Py Po BC - AE
wmax - {D - (B /A)]a“ + 555a2 (1 + AD - B- ) (A-15)

and the subscripts 11 have been omitted from A, B, C, D, and E for brevity.

In eqn (A-15), the first term is identical to that of CPT and the quantity

1 + (BC - AE)(AD - B7)
is the multiplier of classical shear deformable plate theory.
It is interesting to note that the normal strain is not distributed

linearly through the thickness but has a term in the cube of z:

eot LBA) - 2w - (5842 - Epssgg) (A-16)




APPENDIX B: CORRECTION COEFFICIENT FOR A LAMINATE IN LEVINSON THEORY

P_. There are numerous methods of determining the shear correction coefficient,

;:3: some dynamic and some static. The two most popular static methods are:
i:i 1. Through use of the axial-force-equilibrium equation of elasticity.
:ﬂf. This approach is identical to that of Jourawsky's theory of transverse shear
;lj: in beams (and Reissner's for plates) and yields a value of 5/6 for a homo-
o geneous rectangular section.
;¢;; 2. Through use of equivalency with the results of Saint-Venant theory
¥, .
o of flexure. This method, originated by Cowper” ', yields a value dependent
;i; upon Poisson's ratio for a homogeneous rectangular section of isotropic material.
A\
T Here, the former approach is used. The plane-strain equilibrium of
i?j axial forces in the xz plane is expressed by
-
S = =
{ %,x ¥ xz,z 0 (B-1)
o
,?=: Thus, rz
i xz T T Txx dz (B-2)
Nt -h/2
N However,
o - olk) i
. Yx2 sz/QSS (B-3)
.!-;; th
:‘ where the superscript k denotes the k- layer.
i:i Thus, 2
~ (k) (k) dz
o vxz = "[1/055"] [ N1 ex,x (B-4)
o -h/2
: " 0 [ ol
- . k k) 2y, 3. _
Yxz = []/055 ] J Q]] [uo,xx * Z““x,xx - (4/3n7)2 (‘x,xx ¥ W,xxx)]dZ (B-5)
- -h/2
i;ﬁ Now, it is necessary to express the generalized displacement in terms of
X
B

.




the generalized forces by inversion
eqns (A-7). The results are

BM

A i I o
0,x AD - B‘ T AT B

UM - BN AE - BC
Y,x - “AD - BZ * AD - B?
wx,x * w,xx N Vx/SSS

where subscripts 11 have been omitted from A, B, C, and D for brevity.

Substituting relations (B-6) into eqn (B-5), one obtains

of the laminate constitutive relations,

(Vx,x/sss)

(VX,X/SSS) (8'6)

........

......
.......

z
DN - BM + (CD-BE)(V /S..)
- (k) (k ) X, X x,xx’ >55
= -[MQgg'] Oy e
-h/2
AM - BN + (AE - BC)(V /Scc) .
X, X X4 X X, XX’ 55 R L
+ Y z - (8/3n >(Vx,x/555)2 ydz
(B-7)
Now, beam-type equilibrium requires that
Nx’x =0 , Mx’x = Vx s vx,x = -p (B8-8)
Thus, eqn (B-7) reduces to
- . (k) Ab - Ba (CD-BE)a + (AE - BC)b
[1/Qee Ygggm Yy * (ep/Sge) + [ 20 =B 1(-p /S 5)}
(B-9)
where the partial stiffnesses are given by
z
(a.0) = | (Lz)alk) az
-h/2 (B-10)
2
¢ = (4/3h2) f 230§$) dz
-h/2

.............
.............
................
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For a symmetric laminate, B = C = 0 and eqn (B-10) reduces to

Yy = " 1/Q§'§)[(b/o)vx + (c/Sgg)p - (EB/DSge)p ] (B-11)

To derive the shear correction factor (k), one uses

k USc = USE (B-12)

where USc and USE are the shear strain energies (per unit length) calculated
on the basis of the constitutive relation and the equilibrium equation of

elasticity, respectively. Thus,

h/2 - h/2 .
0l = e vw . 43220742 [ (1242 G (B-13)
S 2 “X o X ° X 2 h:
-h/2 -h/2
where
P W T Y o iy = -(4/3h )y (B-14)
Also,
h/2
E.) 1
uE = 3 | B L0/, + (e/sggdp - (Eb/Dgedp T a2 (-15)
-h/2
But
Vx = Ss579 (8-16)

Thus, eqn (B-15) can be rewritten as

h/2
E_1

2
ugt = 7[ FL(BS5/0)v, + (c/Sgg)p - (EB/DSSo)p 1'dz (8-17)
-h/2

Finally, in view of eqn (B-12)




:i ) h/2 . 2

ﬁii Y, J (1-4%) 6 dz

A -h/2

n K =—wr2 : (8-18)
- ] N

- g‘[(bSSS/D)YO + (C/SSS)p - (Eb/DSSS)p,x] dz

-h/2

It is noted that, in contrast to the shear correction factor in Bresse-

Timoshenko-Reissner theory which is independent of p, the present expression
for k depends upon p and p,x. Since for the sinusoidal distribution of p,
the quantities p and p,x vary with x, eqn (B-18) implies that k must vary
with x. However, it is not practicable to consider this variation here.

Thus, for p = p < = 0, eqn (B-18) reduces to

]

h/2 o
(1- 4376 dz
k12 =h/2 (B-19)
b2
(555/0) [ (67/6) a2
“h/2

For the homogeneous (single-layer) case, Q]] and G are independent of

2 and

b= (1/2)[2" - (h/4)] Qy,

Then, eqn (B-19) gives k = 1 precisely.
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i TABLE 1

. Dimensionless Deflection of a 0°/90°/0° Laminate by

{

v

f;a Various Theories, for h/e = 1/5

v - . .
. Theory Reference W = 100ETh wmax/po[
o Exact 47 n 2.0%

O Seide 46 N 2.0%
s Murthy 39 N 1.87*
P Present (SDT) - 2.25

Present (Levinson) - 1.87

*
The values marked with the approximation sign () are only

N approximate, since they were obtained from reading small-size curves.
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Fig. 1 Bending stress distribution through half thickness of
three-ply laminate; h/2=1/4. Stress in middle ply
too small to show at this scale.
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