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ABSTRACT

The plate theory recently developed b7 Levinson is extended to

laminates. Closed-form solutions of this theory, as -,el as thoce

of Reissner-M!indlin plate theory with appropri'ate chear correction, / 4
Seide's discrete-layer rlate theory, and Lo, cr'stensen, and Wu's

higher-order theory are all compared with Pagano's elasticity- For

theory solution for the cases of cylindrical bending of a single TI

orthotropic layer and a syrmnetric cross-ply (C0 /90 0 /0 0 ) laminate

consisting of three euaZ-thickness layers. 0,uantities comrared

are maximum plate deflection, bending stress distribution, and

transverse shear stress distribution. Dist * .,

" Al
1 INTRODUCTION V

It has long been known, through Saint-Venant's flexure theory as we as

through experimental observations, that the elementary Bernoulli-Euler beam

theory is inaccurate except in the case of pure bending (no transverse shear

forces) or very slender geometry (large length/depth). Mindlin and

* An abbreviated and preliminary version of this paper was presented at the

Symposium on Mechanics of Composite Materials, sponsored by the Applied

Mechanics Division, American Society of Mechanical Engineers Winter Annual

Meeting, Boston, MA, Nov. 13-18, 1983.
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Deresiewicz provided an excellent review of early improved theories to take

into account transverse shear deformation, including the pioneering work of

Bresse' in 1859 and analogous work by Timoshenku in 1921-22.

A similar situation was evident in the theory of plates, since the

* classical thin plate theory (CPT) due to Germaine and Lagrange suffers from

the same deficiencies of Bernoulli-Euler beam theory, namely

a) Transverse shear strain is neglected

b) In-plane normal strain is distributed linearly through the thick-

ness, rather than nonlinearly

c) Transverse normal strain is neglected

Reissner5 ' and Mindlin' presented generalizations of the Bresse-

Timoshenko beam theory to plates and thus made the first attempts to include

transverse shear deformation in plate theory. Their theories differed not

only in application, References 5,6 to static problems and Reference 7 to

dynamic, but also in the definition of the kinematic parameters. These

theories not only suffered from deficiencies b and c, listed above, but also

the transverse shear strain was distributed linearly through the thickness.

This required use of a transverse shear correction factor, either implicitly

(Reissner) or explicitly (Mindlin).

Perhaps the first attempts to account for a more realistic distribution

of transverse shear strain were due to Ambartsumyan in 1957; see Reference 8,

page 40. In his theory, all deficiencies (a,b,c) were removed. Later work

conducted in this same spirit was due to Reissner9 and Levinson i', and for

the geometrically nonlinear case, Schmidt''. Numerous so-called high-order

theories were presented by Donnell' 2, Tiffen'', Tiffen and Sayer'", Tiffen

and Lowe' 5  LeeBedichekii Pancl3 , Lo et al.1 9, Cheng 0, Celep2 l,
. , Lee , Ber__chevski__ 7, ,. ,,,

o-,
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Krenk 22, Voyiadjis and Baluch 23 , and Shirakawa2 . An interesting tabular

comparison of various plate theories was presented by Irretier-".

The first complete laminated anisotropic plate theory is generally

attributed toReissner and Stavsky2'; this was a laminated version of CPT.

However, it has been known for a long time 2 7 that transverse shear deforma-

tion plays a considerably larger role in structures made of filamentary

composite materials than those of isotropic materials. The explanation

for this is the very low shear moduli, relative to in-plane elastic moduli,

exhibited by such composite materials. The laminated plate versions of

the Mindlin and Reissner plate theories are due to Yang et al. -' and Whitney

and Pagano 2 , respectively. In Reference 28, a dynamic method of determin-

ing the appropriate shear correction factors was introduced and in References

30 and 31, static methods were introduced. Also, the works of Reissner...

Bondarand Rasskazov, and Green and Naghdi should be mentioned.

Higher-order laminated plate theories were reviewed by Lo et al.",

who applied the laminated version of their own high-order theory'U Also,

the work of Whitney and Sun 3 , Librescul, Murthy", Soni and Pagano '*, and

Rehfield and Vallisetty ' should be mentioned.

It is noted that in all of the laminated theories discussed above, the

d shear angle was either not permitted to vary at all from layer to layer (in

the theories of References 28 and 29) or required to vary in a smooth, a priori

fashion in the higher-order theories. Apparently, the first attempts to con-

sider each layer in a laminate as a separate beam or plate are due to Refer-

ence 42 for the static case and Reference 43 for the dynamic case of multi-

core sandwich beams+and Reference 44 for laminated beams loaded statically.

A sandwich beam is generally understood to be one having two or more relatively

.. stiff, thin layers (called facings) and one or more relatively flexible, thick

layers (called cores).
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This approach was also used by Ambartsumyan, page 75, for thick plates,

considering each layer as an Ambartsumyan-theory plate. See also the shell

L work of Hsu and Wang45 and the plate work of Seide16, who considered each

layer as a Reissner plate.

Here, the terminology "smeared laminate model" (SLM) is used to des-

cribe laminate theories of the type (References 28-29, 32-36); "discrete

layer model" (DLM) is used to describe laminate theories of the type

(References 42-46).

-*: 2 METHODOLOGY OF COMPARISON

The objective of an improved theory for laminated plates is to achieve

greater accuracy of prediction than is possible with classical thin plate

theory (CPT) or even classical (Reissner-Mindlin) shear deformable plate

theory (SDT), without requiring the complexity of three-dimensional elasti-

city theory or even that of the more complicated higher-order plate theories.

It is customary to evaluate the accuracy of various improved theories by

comparison of the results for a specific situation with those of a three-

dimensional elasticity solution for the same situation. In this regard,

the closed-form solution due to Pagano4 7, for cylindrical bending of a

simply supported laminate under a sinusoidally distributed normal pressure

loading, has been widely used.

In the present work, four different theories, described in the ensuing,

are applied to cylindrical bending in two different cases:

Case 1 Homogeneous orthotropic material

Case 2 Symmetric cross-ply laminate (three layers)

In both cases, the material considered is the same as that of Pagano" 7:

EL/ET = 25, EL/GLT = 50, GLT/GTT = 2.5, LT = 'TT 0.25.

, ,' ' ,', ............ ... ...-.... ,................:....p.. .,.,,... ,.,,,,
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3 THEORIES COMPARED

Classical Shear Deformable Plate Theory (Smeared Laminate Model)

This theory is due to Yang, Norris, and Stavsky28 and to Whitney and Pagano 9.

• .It is used here inconjunction with the general shear correction factor de-

rivation given in Reference 31 or more explicitly in Reference 48.

Classical Shear Deformable Plate Theory (Discrete Layer Model)

This theory is due to Seide' 6, who applied it and worked it out in detail

for a symmetric three-ply laminate.

Laminated Version of Levinson's Theory (Smeared Laminate Model)

This theory is presented in Appendix A. Due to the nonlinearity of the

axial-normal-stress distribution through the thickness, use of the equilibrium

equation for the xz plane requires a higher degree of nonlinearity in the

shear-strain distribution than is assumed a priori in this theory. Thus,

contrary to the remarks in Reference 19, a shear correction factor may still

be needed in this theory. However, due to the complexity of the shear-strain

distribution resulting and the dependency of k upon the normal pressure (see
Appendix B), it is not practicable to work out this correction factor in general.

- However, it is shown that for the homogeneous case and p = 0 that k = 1.

Lo-Christensen-Wu (LCW) Higher-Order Theory (Smeared Laminated Model)

This theory was presented in Reference 19 for the homogeneous case and in

Reference 36 for the laminated one.

4 RESULTS AND DISCUSSION

Homogeneous Case

ON In this case, due to the absence of bending-stretching coupling, B = C 0

°°,,

... ,'~..... --- '... . .. . .... '--... .. ....... - .-. .- .'.-- % . .. .% -.. .- -.- -. .,
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and furthermore, E/D = 1/5. Then, eqn (A-15) gives for the Levinson theory

Wmax o (Po/Da ) + (6/5)(p /Q55h 
)  (1)

This result is identical to that of classical Reissner type theory s'  i.e.,

Whitney-Pagano 29 with a shear correction factor k = 5/6.

For comparison with Pagano's numerical results 7 , eqn (1) can be re-

written as follows:

w 100 ETh 3w max/po = (l00/-',)[12(l -, LTVTL) +(6-.'/5)(EL/GLT)(h/;)'](ET/EL)

(2)

Using the previously mentioned material-property ratios in eqn (2), one

obtains = 1.981 for h/ = 1/4, considered by the present investigator to be

the maximum thickness of a plate rather than a block. This value compares

very favorably with a value of approximately 1.95 read from the curve of

Reference 47. To the small scale of the plot in Reference 19, this is in

agreement with the LCW higher-order theory.

Again for comparison with Reference 47, eqn (A-16) can be used to obtain

( a) /po -6 2)(1,/h) 2 + (1/10)(E /G )(1 - (3)_
x max (Ox max (6/) LLT LTTL (

For h/2 = 1/4, eqn (3) gives (0x)max = 14.74, which is in fairly good

agreement with Pagano's elasticity-theory value (approximately 14.1). The

prediction of classical Reissner SDT is

S(Gx)max = (6/72)(z/h)2  (4)

which yields a value of (-a ) = 9.727, which obviously is considerablyx max

inaccurate. Incidentally, Fig. 2 of Reference 19 appears to be drawn in-

accurately in the vicinity of h/z = 1/4 and thus cannot be used to compare

the LCW value with the above.

".o
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Three-Layer Cross-Ply Laminate

Again, the absence of bending-stretching coupling causes coupling stiff-

nesses B and C to vanish. Also, it can be shown that

D (26 EL + ET)(h'/324)(1 LvL 5

=(242 EL + E )(h'/14,580)(1 - vLTV'TL) ,S 5 =(GL+GTT)(/l

Then, application of eqn (A-15) gives, for h/z 1/4,

H 100 E h3wma/p Z4 = 2.630

This deflection value is approximately 12.3'/1 lower than the exact value of

approximately 3.0 obtained in Reference 47.

To apply SOT, the following equation for the shear correction factor

is used (References 31,48)

k = D jG (k )dz J [b*/G (k) I dz) (6)

or, for the specific laminate (three equal-thickness plies) (Reference 48)

k- (26e+ 1)2 (7)
6(1 +2g)[L02e.' + g(120e- + 20e +_1] 7

where e _= EL/ET and g _- GL/GTT For e = 25 and g =2.5, eqn (7) yields

k = 0.5828. Also, S555 and D are given by

(k)26 E + E
S 55  f G~k dz =(2 G LT + G TT )(h/ 3) D 0 zdz =324(l L v h

- LT TL)

Then, the maximum deflection is given by

wmax (p0/Dt" 0 (/kS 55 a~ 9
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The result, for h/z = 1/4, w : 3.226, which is 7.5% higher than the exact one.

A comparison of the present deflection results, for h/ = 1/5, with those of a

number of other investigators is given in Table 1. The bending-stress and

shear-stress distributions are shown in Figures 1 and 2.

5 CONCLUDING REMARKS

On the basis of the comparisons made in this study, it is concluded that the

Levinson-type theory is more accurate, i.e., closer to the exact elasticity

solutions, than classical SDT. The higher-order LCW theory is also more

accurate, but requires too much computation to justify the accuracy achieved.

Both of these theories predict the nonlinear distribution of bending stress

through the thickness, while SDT as well as CPT does not.

However, the Seide theory, which is a discrete layer version of classical

SDT, is more accurate in predicting shear-stress distribution than any of the

smeared laminate theories mentioned above. Unfortunately, the Seide theory

is not quite as accurate in predicting the maximum bending stress, since it

predicts a linear distribution of bending stress. This suggests that a new

theory, a discrete layer version of the Levinson theory, should be most

accurate. It would be expected to have an accurate prediction of shear-stress

distribution like the Seide theory and an accurate prediction of the nonlinear

bending stress distribution like the Levinson and LCW theories.
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APPENDIX A: LAMINATED VERSION OF LEVINSON PLATE THEORY

Taking Cartesian coordinates x and y in the plane of the plate and z as

the thickness normal coordinate, measured positive downward from the midplane

of the laminate, one starts with the following displacement field

U(x,y,z) = Uo(x,y) + zc, (X,y) + Z (X,y)A0 x . (A-1)

V(x,y,z) = vo(x,y) + Zy (x,y) + z?.y (x,y) ; W(x,y,z) = w(x,y)

It is noted that the midplane displacements, not included in Levinson's

original theory1 o , are necessary here in order to provide for the bending-

stretching coupling exhibited in unsynmmetric laminates. Further, as was

pointed out by Murthy - , terms in z" are not needed due to the requirement

of zero shear stress (and thus zero shear strain) on the upper and lower

surfaces of the laminate.

The thickness shear strains are

= ' , + W' ,: + 3z2: + w ; = V + W ,y ' y + 3z.: + w (A-2)
xz U z + ,x Ix + 3z x + ,9x "yz V9z W,y y z--y , y (A 2

where ( )/3x, etc.

Imposing the condition of zero shear strain at the laminate surfaces

(z = + h12), one can express x and in terms of some of the other kinematic

variables;

=--(4/3h)( +,= -(4 /3h-)(,y + W,y) (A-3)• (43Z)'x 9 Wx ' yy

Thus, the strain field is

: :,x u + z x- (4/3h2)z3( + W xx)."-".Ex U,x Uo09x +Z'xx *x,x x

Cy v ,y v + Z... - (4/3hZ)z3 ,,, + w,> ... = ~y o,y Zy,y (y,y Wyy)

,,y

-j1 .1a.°. .. •.
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U + V + v + z( + ; [I - (2z/h) ](,+xy ,y oty o,y y'x x,y zx x

Yyz [ - (2z/h 2 )](;.y + W9y ; z  0 (A-4)

Each layer may be monoclinic, i.e., the generalized Hooke's law is

°x QI] Q12 0 0 QI16 Cx

Q Q 0 0 Q
y 12 22 0 26 yTyz0 0 45 yz (A-5)

Tzx 0 0 Q45  Q55  0 zx

xy jI6 26 0 66 xy

Here, the Qij are the plane-stress-reduced stiffness coefficients, ''s are

normal stresses, and T's are the shear stresses.

The plate stress resultants and stress couples are defined as

h/2

(NiMi) : f (lz)oi dz (i,j=x,y)

-h/2

h/2

(NI dz (A-6)xy xy - h (l'Z)Txy
-h/2

h/2

(V xVy) f (T zxTyz) dz
-h/2

Substituting the generalized Hooke's law, eqn (A-5), into eqns (A-6),

one obtains uo O, XXxxx
N y :[A ij] v o,y + [B'iij ,y,y + [Cij] -w Syy

]xy {o9y+ ', f2W}xy
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,°Mx 
I. =} [B [Eii]{ }x

" lMx J'x -xxMy =[Bij]j Vo + [D~j O.yy + [Eij w

[::Mxy U°'Y + v ° ' x  x'y yx -2w xy

{v S : S4]' + W (i,j=l,2,6) (A7v 45 s55 ..x  + Wx (A-7)

-: where

B'.=B. -C. D!.=D. - E..-.-:. ij = ij - ij D' ij - ij

h/2
(AijBijDij) = (l,z,z")Q 1. dz (i,j=1,2,6) (A-8)

-h/2

(C i,Eij ) = (4/3h') f (l,z)z' Qij dz

h/2
' Skz = I [1 - (2z/h) ]Qk;, dz k,-495

• -eo.,.. h/2

The equilibrium equations of elasticity are

Oijj +F i =0 (A-9)

Integration of eqns (A-9) through the thickness of the laminate and use

of eqns (A-6) yield the usual plate equilibrium equations

N + N + Px =0 M + M -V +m 0x,x xyy x,x xyy x x
+N + py = x~xy,x y +My - V +my = 0 (A-10)

xyIx y'y y xyx y

V +V +p=0Vx,x y,y

where pi and m. are body forces and body moments, and p is the normal
1

pressure.

* • - .. - * .- ° w w • . - " . . . " " • " " " . .
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Substitution of the laminate constitutive eqns (A-7) into eqns (A-la)

yields finally five plate equilibrium equations in terms of the five gener-

alized displacements u0 , v0 , wo, x y"

For the case of cylindrical bending, all derivatives with respect to y

vanish and the equilibrium equations become

Alloxx + l,x,xx - C 1Wxxx =

G + Wx) + p = 0 (A-11)

BllUOx + Djlx,xx - EllW,xxx- S( X + W,) = 0

These can be uncoupled to yield

11  B = 11  B 11 C11 -E 1 pIS 5 (12(Dll - W,xxx A= p - (Dl l E1)Px (A-12)

For a sinusoidally distributed pressure

P = P0 sin ax ; = (A-13)

the deflection, for freely supported edges, is

w = w max sin ax (A-14)

where

__Po PO BC - AEWmax [D - (B /A)]a4 + (l + (A-15)

and the subscripts 11 have been omitted from A, B, C, D, and E for brevity.

In eqn (A-15), the first term is identical to that of CPT and the quantity

1 + (BC - AE)(AD - B2 )

is the multiplier of classical shear deformable plate theory.

It is interesting to note that the normal strain is not distributed

linearly through the thickness but has a term in the cube of z:

x = [(B/A) - z]wx - C- + z (P/S (A-16)

- ; " .- .' ' ".; ;. . . "/ . .' ., - - -,-, .. ,'' -. , , --' .A'-. ,-. 55 i ° " " : '
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APPENDIX B: CORRECTION COEFFICIENT FOR A LAMINATE IN LEVINSON THEORY

There are numerous methods of determining the shear correction coefficient,

some dynamic and some static. The two most popular static methods are:

1. Through use of the axial-force-equilibrium equation of elasticity.

This approach is identical to that of Jourawsky's theory of transverse shear

in beams (and Reissner's for plates) and yields a value of 5/6 for a homo-

geneous rectangular section.

2. Through use of equivalency with the results of Saint-Venant theory

of flexure. This method, originated by Cowper". , yields a value dependent

upon Poisson's ratio for a homogeneous rectangular section of isotropic material.

Here, the former approach is used. The plane-strain equilibrium of

axial forces in the xz plane is expressed by

Xx =0 (B-l)

Thus, z

=.-.r dz (B-2)

- h/ 2

However,
Q= /(k) (B-3)

""Yxz xz 55

where the superscript k denotes the kth layer.

Thus,

^xz --[I/Q55 I Q ) Lxx (B-4)

-h/2

or

(k) f Q(k) [Uo,xx + Z~xxx - (4/3h2)z3 (.xxx + W xxx)]dz (B-5)

-h/2

Now, it is necessary to express the generalized displacement in terms of

. . .-- % .
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the generalized forces by inversion of the laminate constitutive relations,

eqns (A-7). The results are

=DN x - BM x + DC - BE (V /S5o,x AD - B ADX 55B x

AM x - BN x + AE BC (V /S) (B-6)

X,X AD-BLXDX ,X5

where subscripts 11 have been omitted from A, B, C, and D for brevity.

Substituting relations (B-6) into eqn (B-5), one obtains

'Y [/Q (k)] fz Q,(k),DN X,X - BMXX + (CD- BE)(Vx~xx/S 55)
xz55J J 11' AD- B

_ h/ 2

+AM X - BN X + (AE -BC)(Vxx/ IS) z (/h'( S)'d

AD - B-X,X 55

(B-7)

Now, beam-type equilibrium requires that

N X = 0 , M X =v , V =-p (B-8)

Thus, eqn (B-7) reduces to

(k) Ab -B[(CD -BE)a + (AE -BC~h
Y'xz Il/ ]Ix + (cp/555  +I xS

(B-9)

where the partial stiffnesses are given by

z

- h/2 (B-10)

c E (4/3h2) z3 Q(k) d

- h/ 2

a ~ ~ ~ ~ - Ze....e.A:.t*
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For a symmuietric laminate, B =C =0 and eqn (B-10) reduces to

Y I/Q [(bID)V~ + (c/S55)p -(Eb/DSss)p] (B-li)

*To derive the shear correction factor (k), one uses

k U C =UE (B-i2)S S

where U SC n U5S are the shear strain energies (per unit length) calculated

on the basis of the constitutive relation and the equilibrium equation of

elasticity, respectively. Thus,

h / 2 h / 14 z( -3USC f GJ G(x + w ,x + 3z2  x )dz Y -- f (-4 .)Gdz(1)

-h/2 -hI/2

where

+X w 'Y I. IX -(4/3h')-l (B-i14)

Also,

h/2

U . E I (b/D)Vx + (cIS,,)p- (Eb/DSs)p ]"dz (B-15)

- h/ 2

a' But

Vx 55'o (B-16)

Thus, eqn (8-15) can be rewritten as

U E 1 fh/2 2-( Dy E/

L =~ G~ uS55 Iu~ (c/S55)p - . bIS 55)P x] dz (B-17)

Finally, in view of eqn (8-12)
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k"1  -h/2h2(1 -4 G dz

"'h- /2 (B-18)

-h/2

It is noted that, in contrast to the shear correction factor in Bresse-

Timoshenko-Reissner theory which is independent of p, the present expression

for k depends upon p and p ~x Since for the sinusoidal distribution of p,

the quantities p and p vary with x, eqn (B-18) implies that k must vary

with x. However, it is not practicable to consider this variation here.

Thus, for p = p = 0, eqn (B-18) reduces to

h/2
Z.0l 4 )Gd

k-I f-h/2 ) z(B-19)

h/2

(S55/D)"f (b2/G) dz

-h/2

For the homogeneous (single-layer) case, and G are independent of

z and

b = (l/2)[z' - (h,/4)] Q

Then, eqn (B-19) gives k = 1 precisely.

., *. .*"* .
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STABLE 1

Dimensionless Deflection of a 0*/90*/0 ° Laminate by

Various Theories, for h/z = 1/5

Theory Reference w l00EThWmax/Po +

Exact 47 2. 0*

Seide 46 -t 2. 0*

Murthy 39 1.87*

Present (SDT) - 2.25

Present (Levinson) 1.87

*The values marked with the approximation sign (-,) are only

approximate, since they were obtained from reading small-size curves.

P A

io-a
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*Fig. 2 Shear stress distribution through half thickness of
three-ply laminate; h/2. = 1/4.
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