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SUMMARY
Recently Mond and Murray introduced the concept of a zero sum two person game

in complex space and proved two minimax theorems. In this note a method is provided
for the solution of such games. A numerical example is given.
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NOTATION

N is the set {, 2. n), the first n positive integers. xoy means that xjyj for alIjE N
(where x and y are n-dimensional column vectors). x>y means that xj>yj for all je N.
R"'(C " ' ) is the set of real (complex) mxn matrices. For any A cC r" , A' is the transpose
and A1 the conjugate transpose. Re w means the real part of w, e.g., for any w e C', Re w
denotes the vector whose jth component is Re (V. e is a column vector in which every element
is 1, the dimension of the vector to be clear from the context. For any nonempty set S c C,

S* = {ze Cm : we S implies that Re(zw) > 0} is the polar of S, and int. S = {z C: 0 t w e S
implies that Re(z"w)> 0) is the interior of S*.

The vectors common to S and S* are denoted by S = S r% SO. A nonempty set S c C' is

(i) convex if0A4 1 implies that AS+(l -A)S a S

(ii) a cone if 04A implies that AS a S

(iii) a convex cone if (i) and (ii) are true

(iv) a pointed convex cone if (iii) is true and S n (-S) = {0)

(v) a polyhedral cone if S= BRk, for some Be C'.
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1. INTRODUCIMON, ,

-- The concept of a zero sum two person game in complex space was introduced41. Complex
analogues of payoffs, probability vectors and strategy sets were defined and a minnmax theorem
established. A simpler proof of a more general minimax theorem was subsequently given in[2( "r '
Both of the above papers provided numerical examples of 2 x 2 matrix games in complex space\ 
and their solutions. Solution of matrix games in complex space has so far been quite difficult,
even for 2 x 2 matrices. In this note a method is derived for transforming a matrix game in complex
space into a matrix game in real space having the same value. This latter game can then be solved
by the standard techniques involving linear programming. Optimal strategies for the original
game in complex space are easily obtained from the optimal strategies computed for the game in
real space.

The technique outlined in this note can be used to solve any feasible matrix game in complex
space. The only constraint on the size of the game matrix which can be accommodated is that
which is imposed by the computer or linear programming package to be used.

2. DEFINITIONS AND PRELIMINARIES

The development of the theory of complex matrix games requires some generalization of
real space game concepts.

An n-dimensional complex probability vector is a column vector z e C' satisfying

(i) Re(z) > (j = 1 ... , n)

(ii) Z Z = I.
I-I

Note that the sum of the imaginary parts of the components of a complex probability vector

is zero.
A strategic cone S a C' is a pointed polyhedral (closed) convex cone such that S c (R,)*

and S na (R") * = 10}. The requirement that S c: (R+)* assures that the real parts of all
components of any vector s e S are non-negative while the requirement that S r) (R')* = (0)
means that, except for the origin, the complex axes are not in S. The significance of a strategic
cone is that any complex probability vector w e S, where S is a strategic cone, will have bounded
imaginary components.

Let S a C' be a strategic cone. The set of complex probability vectors w e S, if such
vectors exist, will be contained within a strategic cone whose generators p = cJ+id'

(j = I ... , n) satisfy , c = I and ,dk = 0, and are thus complex probability vectors
k1l k1l

themselves.
The strategic cone generated by pJ(j = I ... , n) will be denoted by Ps. Ps is the convex

conical hull of all complex probability vectors w e S. Since all of these vectors pJ(j I. n)
belong to S, Pg c S. If S contains R, then so does Ps. Ps is nonempty if and only if there exists
at least one complex probability vector w e S.

Note that Ps # P30. By definition Pg. does not contain any vectors whose imaginary parts
do not sum to zero. Ps* does contain such vectors.

For a complex two person game a strategy is defined to be a complex probability vector.
Each player selects a strategy from his own strategy set. Generally each player makes his choice
without any prior knowledge of the other player's choice.



A complex matrix game is completely specified by a payoff matrix A and strategic cones
S and T. Let A e C" .S c C'. T c C". Player I chooses a strategy (complex probability
vector) we S and player 2 chooses a strategy ze T. Player I receives a payoff Re(w"Az).
Correspondingly player 2 receives a payoff - Re(woAz). The game is feasible if there exists
at least one strategy w e S and at least one strategy z e T, i.e. Ps and PT are nonempty.

A solutio to complex matrix game A e C" " with strategic cones S 4= C', T c: C" is a
pair of complex probability vector% w -S and z. e T and a real number v such that

Re wAz) v for all probability vectors 7 e T, and

Re w"Azo < v for all probability vectors w e S.

w. and z. are optimal strategies for players I and 2 respectively and v is the value of the game.
Note that the existence of a solution (w., z., v) implies

Re twiAzo) < Re (WH'4Zo) < Re (W.HAz)

and

max. min Re (wHAz) = min. max Re (wAz) = Re (w.,HAZo) =v.

3. THE SOLUTION TECHNIQUE

Consider a matrix game specified by the payoff matrix A e C" " and strategic cones
S c: C"' and T c C". Player I chooses a strategy (complex probability vector) w 6 S and
player 2 chooses a strategy z E T. Player I receives a payoff of Re (wRAz) from player 2.

Let the complex probability vectors pi(j = 1 ..... n ) be the generators of the convex

conical hull of all complex probability vectors w c S. Similarly, let the complex probability
vectors q5(k = 1 ..., n,) be the generators of the convex conical hull of all complex probability
vectors z e T. Let a and b be real n, and n2-dimensional probability vectors respectively, and
let P = [pp 2 ... p" I and Q - [qq2 ...q".].

Any strategies weS, z eT may be written in the form w=Pa, z= Qb. Note tat

wH = a'PH. Let M = Re (PHAQ). Then, since a and b are real,

Re (wHAz) - Re (a'P"A Qb) = a'Mb.

Now, a'Mb is the payoff obtained for a matrix game in real space with player I choosing
probability vector a while player 2 chooses probability vector b. This game can be solved using
linear programming. Suppose that it has value v and optimal strategies a., b.. Then the original
matrix game in complex space has value v and optimal strategies w. = Pa. and z. = Qb,.
Also v = a,'Mbo = Re (w,"Az,). Note that the pJ's and qk's represent complex analogues of
pure strategies.

4. A NUMERICAL EXAMPLE

Consider a matrix game in complex space with the following payoff matrix:

Player 2

1 2

I 2 Ii

Player 1 2 [ i ]

.4
3

2

a



-aiiI -l I i -

Let player I choose his strategy from strategic cone S and player 2 choose his strategy from

strategic cone T. Let S be generated by the set of complex probability vectors

-lji , I -i 0+ 0 i-t~

Let T be generated by the set of complex probability vectors

'-i, [ ] .
For this game Ps (the convex conical hull of S) = S and P, = T.

i +ji I-i -i 0 0 i 1
Hence P= 0 ji I+j I -ji -i 0

- i 0 0 ji i+ji I - ir-l+ji ji l-ji -i
and Q I -=i I ]

-ti I-t i t l+v]

"19 29 1I 21"

17 22 13 18

M Re (PHAQ) 13 18 -3 2

26 -19 14 -31

2 -23 18 -7

-9 21 -1 29

After adding 31 to each element in the matrix, the usual linear programming technique yields
optimal strategies for the real matrix game M. These are

a= for player I and bo = for player 2.

Optimal strategies for the original complex matrix game are thus

W,= [ t for player l and Z . 1 for player 2.

The common value of the two games is H.

3
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5. REMARKS

The complex space conversion of a game to a linear program has been demonstrated in [3].
There is in fact an equivalence between matrix games and linear programs in complex space [4].
Hence the above solution technique for matrix games in complex space suggests that it may be
possible to convert a linear programming problem in complex space into a real linear program.
The conversion is readily accomplished [5], thus providing a method for solving linear programs
in complex space.

4|
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