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SUMMARY

Recently Mond and Murray introduced the concept of a zero sum two person game

in complex space and proved two minimax theorems. In this note a method is provided
Jor the solution of such games. A numerical example is given.
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NOTATION

Nistheset {1, 2, ..., n}, the first » positive integers. x>y means that x; 3y, for all je N
(where x and y are n-dimensional column vectors). x>y means that x,>y, for all je N.
R™*2(C™*") is the set of real (complex) m x n matrices. For any 4 € C™"*, 4' is the transpose
and A" the conjugate transpose. Rew means the real part of w, c.g., for any we C®, Rew
denotes the vector whose jth component is Re (w). e is a column vector in which every element
is 1, the dimension of the vector to be clear from the context. For any nonempty set S < C™,
S§* = {ze C™: we S implies that Re(z'w) >0} is the polar of S, and int. S* = {ze C™: 0#weS
implies that Re(z"w)> 0} is the interior of S*.

The vectors common to S and S* are denoted by § = § n S*. A nonempty set S ¢ C™ is

(i) convex if 0< A< implies that AS+(I-)S < §
(ii) a cone if 0< A implies that AS = §
(iii) a convex cone if (i) and (ii) are true
(iv) a pointed convex cone if (iii) is true and S ~ (—S) = {0}

(V) a polyhedral cone if § = BR%, for some Be C™**.




1. INTRODUCTION / r ..sl/-

' The concept of a zero sum two person gamie in complex space was introduced . Complex
analogues of payoffs, probability vectors and strategy sets were defined and a minimax theorem
established. A simpler proof of a more general minimax theorem was subsequently given in {2}
Both of the above papers provided numerical examples of 2x 2 matrix games in complex space
and their solutions. Solution of matrix games in complex space has so far been quite difficult,
even for 2 x 2 matrices. In this note a method is derived for transforming a matrix game in complex
space into a matrix game in real space having the same value. This latter game can then be soived
by the standard techniques involving linear programming. Optimal strategies for the original
game in complex space are casily obtained from the optimal strategies computed for the game in
real space.

The technique outlined in this note can be used to soive any feasible matrix game in complex
space. The only constraint on the size of the game matrix which can be accommodated is that
which is imposed by the computer or linear programming package to be used.

~

2. DEFINITIONS AND PRELIMINARIES

The development of the theory of complex matrix games requires some generalization of
real space game concepts.
An n-dimensional complex probability vector is a column vector z € C" satisfying

() Re(z)20( = 1,....n)
Gi) Tz = 1.
=

Note that the sum of the imaginary parts of the components of a complex probability vector
is zero.

A strategic cone S = C™ is a pointed polyhedral (closed) convex cone such that S < (R%)*
and S (R™)* ={0}. The requirement that S c (R7)* assures that the real parts of all
components of any vector s€ S are non-negative while the requirement that S n (R™)* = {0}
means that, except for the origin, the complex axes are not in S. The significance of a strategic
cone is that any complex probability vector w € S, where S is a strategic cone, wili have bounded
imaginary components.

Let S « C™ be a strategic cone. The set of complex probability vectors we S, if such
vectors exist, will be contained within a strategic cone whose generators p' = ¢J+id!
(=1,...n) satisfy Ycf=1 and 3 d} =0, and are thus complex probability vectors

k=1 k=1
themselves.

The strategic cone generated by p'(j = 1, ..., n) will be denoted by P;. P is the convex
conical hull of all complex probability vectors w e S. Since all of these vectors p(j = 1, ..., n)
belong to §, Py = S. If S contains RS then so does P;. Pg is nonempty if and only if there exists
at feast one complex probability vector w e S.

Note that Pg. # Py*. By definition Py does not contain any vectors whose imaginary parts
do not sum to zero. Ps* does contain such vectors.

For a complex two person game a strategy is defined to be a complex probability vector.
Each player selects a strategy from his own strategy set. Generally each player makes his choice
without any prior knowledge of the other player’s choice.




A complex matnix game 1s completely specified by a payoff matrix 4 and strategic cones
Sand T. Let Ae (™" S < C™ T c C" Player | chooses a strategy (complex probability
vector) we S and player 2 chooses a strategy ze T. Player 1 receives a payoff Re(w!'Az).
Correspondingly player 2 receives a payoff —Re(w!A4z). The game is feasible if there exists
at least onc strategy w € S and at least one strategy z € T, i.c. P; and Py are nonempty.

A solution to complex matrix game A € C™*® with strategic cones Sc C™, Tc C"is a
pair of complex probability vectors w, € S and 2, € T and a real number v such that

Re wl' Az 2 v for all probability vectors 7 e T, and
Re w4z, < v for all probability vectors w e S.
w, and z, are optimal strategies for players 1 and 2 respectively and v is the value of the game.
Note that the existence of a solution {(w,, z,, v) implies
Re (whAz) < Re (W' 4z,) < Re (w1 42)

and
max . min Re (WW4z) = min . max Re (w"'4z) = Re (w,"'4z,) = ».

z z w

3. THE SOLUTION TECHNIQUE

Consider a matrix game specified by the payoff matrix 4e C™ " and strategic cones
S < C™ and T < C". Player 1 chooses a strategy (complex probability vector) we S and
player 2 chooses a strategy z€ T. Player 1 receives a payoff of Re (wh42) from player 2.

Let the complex probability vectors pXj=1,..., a,) be the generators of the convex
conical hull of all complex probability vectors we S. Similarly, let the complex probability
vectors g*(k = 1, .. ., n,) be the generators of the convex conical hull of all complex probability

vectors ze T. Let a and b be real n, and n,-dimensional probability vectors respectively, and 1
let P=[p'p*...p"] and Q = [g'¢?...¢™].
Any strategies we S, ze T may be written in the form w = Pa, z = @b. Note that
wH = a'P", Let M = Re (PMAQ). Then, since a and b are real, .
Re (w"'A4z) = Re (a'P*A0b) = a'Mb. b
Now, @'Mb is the payoff obtained for a matrix game in real space with player I choosing
probability vector a while player 2 chooses probability vector b. This game can be solved using
linear programming. Suppose that it has value v and optimal strategies a,, b,. Then the original
matrix game in complex space has value v and optimal strategies w, = Pa, and 2z, = Qb,.
Also v = a,'Mb, = Re (w " 4z,). Note that the P"s and ¢*'s represent complex analogues of
pure strategies.
4. A NUMERICAL EXAMPLE
Consider a matrix game in complex space with the following payoff matrix:
Player 2
1 2 !
1 2 1+i . '
Player1 2 | ' A o
3 i 1-2i ; '
I
2 |
!
‘; 4




Let player 1 choose his strategy from strategic cone S and player 2 choose his strategy from
strategic cone T. Let S be generated by the set of complex probability vectors

1+3i 1—}i [ —4i 0 0 ¥
- 0 b 1+4i 1—4i —i 0
|
j L."...v L | I} L - L*IJ’ +i', L
i Let T be generated by the set of complex probability vectors
i 143 | 4 1—}i [' —4i .,
| | —y_J 1—¢i i 1+4i
‘; , IS | J. IR )
} For this game P (the convex conical huil of §) = S and Py = T.
| I+4 1—b —hi 0 0 3
i Hence P = 0 i 1+4i  1—4i —§i 0
—}i 0 0 §i 144 1—§
’ L
. [~ 7
144 b -4 —4i
. and Q =
—4i 1—4¢ $i 1+
o | } :] .
19 29 11 21
A
17 22 13 18
13 18 -3 2 ) -
M =Re(PPAQ)= 4% F )
26 —19 14 31
2 -2 18 -7
-9 2 -1 9]
| 4 After adding 31 to each element in the matrix, the usual linear programming technique yields
" optimal strategies for the real matrix game M. These are
[0
1 ] 0 '
I 0 0
. %=1, for player | and b, = i for player 2.
? i ¢
L0
Optimal strategies for the original complex matrix game are thus .
|
i 1 |
W, = 4 for player 1 and z, = for player 2. ;
i !
i {
The common value of the two games is $3. ’
k]

s v -




5. REMARKS

The complex space conversion of a game to a linear program has been demonstrated in [3].
There is in fact an equivalence between matrix games and linear programs in complex space [4).
Hence the above solution technique for matrix games in complex space suggests that it may be
possible to convert a linear programming problem in complex space into a real linear program.
The conversion is readily accomplished [5), thus providing a method for solving linear programs
in complex space.
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