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foll#ving is a summary of work completed on AFOSR Grant1®Z

Lo The summary begins with a listing of papers written followed

by +further descriptions of work completed as well as work in
progress. (', I lo viceludiw
/

I. PAPERS WRITTEN

v

£11 A Simple Theorem on 3-Connectivity., Linear Algebra and Its
Applications 45 123~126. v’/)/\

S . . —
[21] A Compositic for Perfect Graphs., To appear in a volume edited
by V. Chvatal anc C. Berge. J

.
=1 The Fartial Order of a Folymatroid Extreme Foin (with W.H.

Cunningham and D.M. Topkis). To appear in Mathematha/gf Operations
Research. -

-
£41 Algorithms for Two Versions of Graph Realization and an
Application to Linear Frogramming (1983%) . To appear 1in the

Froceedings of the Waterloo Sllver Jublléfigsﬁkerence.

" I,
31 A NQte on Recognizing Fath Matrzcegja;J{_

.q - _ -
(61 FPacking and Covering by Integral Feasible Flows in Integral
Supply—~Demand Networks, (with O. M.-C. Marcotte and L.E. Trotter,
Jr.

«

J

I1. THESES SUFERVISED

Donald K. Wagner, Assistant Frofessor at Furdue University.
Dissertation title: An  Almost Linear-Time Algorithm_ for Graph
Realization.

III. WORK COMFLETED AND IN FROGRESS

A. Polymatroids and Matroid Intersection

The work described in [3] was presented at the XI International
Mathematical Programming Symposium, Bonn, West BGermany, at the
Oberwol fach Wor kshop on Mathematical Programming, -held at
Oberwol fach, West Germany, and at the Bielefeld meeting on
Applications of Matroids, held at the University of Bieliefeld, West
Germany. Efforts to extend the results of [3] are continuing.

The problem motivating [Z] may be described as follows. Let E
be a finite set, and let f be a real-valued function defined
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subsets of E. f is said to be submodular if
fF(A) + F(B) 3 f(AUR) + £ (ANR)

i for each pair of subsets A,B € E. Submodular functions play a
central role in the study of combinatorial optimization problems, not
unlike the role played by convex funtions in continuious
optimization. A good discussion along these lines 1s given in !
"Submodular Functions and Convexity" by L. Lovasz (Mathematical
Programming: The State of the Art, edited by A. Bachem, M. Grotschel
and B. HKorte, Bonn 1982). The major open problem in this theory is
that of finding a direct combinatorial procedure for minimizing
submodular functions. Algorithms have been found for several special
cases, and it is hoped that the methods developed in [3Z] will lead to
a solution in the general case. An algorithm is given in (31, and we !

have recently succeeded in showing that this algorithm is finite. A
very short proof has also been found for a result of Topkis, '
characterizing adjacency in polymatroids. )

A problem related to submodular function minimization is the so-
called weighted matroid intersection problem. Collette Coullard, a
~- Fh.D. Student at Northwestern University, is working to simplify
various rewults in this area (including Lawler’s presentation of his
primal matroid intersection algorithm), and on developing a simplex
method for matroid intersection. It is also hoped that her work may
lead to an appropriate definition for "weighted matroid partition,"
and thus to a better explanation of the duality phenomena apparent in
these problems. The following proposed generalization has grown out
of her wark. A matroid M on & finite set E 1is a collection I
of subsets of E, called independent sets, such that the empty set is
independent, every subset of an independent set is independent, and
for every A E E, every maximal independent subset of A bhas the
same size. Let M,, ... , M. be matroids on the same underlying set
E. Then it is well known that the classical matroid greedy algorithm
can be used to maximize a linear functional on the matroid sum M, +
eee  + M. Where I 1is a subset of E, I is independent in this )
sum matroid if and only if it can be partitioned into sets 1I,, ceey
1. independent in the matroids M,, ..., M., respectively. Suppose,
now, that instead of a single linear functional, we take a separate
functional <for each of the matroids, and then ask for the maximum H
weight partitionable subset of elements, where the weight applied to
a particular element is determined by the independent set I, that
I ’ contains it in the partition. This problem can be shown to be
A equivalent to a restricted cardinality version of matroid
itntersection, and it may be possible, in turn, to reduce this to the
classical weighted intersection problem. Conversely, it is easy to |
' see that weighted intersection can, indeed, be reduced to this new . ;
) weighted partition problem.

'y Linear Programming Problems.

Papers (4] and [51 are connected with this work. Faper [4] was
presented as an invited address at the Waterloo Silver Jubilee
Conference in Combinatorics, held at the University of Waterloo
(Waterloo Ontario, Canada) in Junpe 1982. :
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Work on this problem has proceeded in several directions: and/or
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1. As noted in an earlier report on this grant, one of the
major tasks that bhad to be undertaken in this work, before

computational testing on hidden networks could begin, was to convert
our existing codes to a system allowing greater storage capabilities
s0 that testing can be carried out on larger linear programs (the
previous code was not capable of handling problems with more than
approximately 200 rows).

2. Here we describe in some detail our computational experience
with embedded and hidden networks in 10 test LFs (though not all LPs

have been used in all experiments). Given a LP is equality form, we
say this LP has a hidden network if some subset of its constraints
can be discarded vyielding a problem that, by elementary row
operations, can be converted to a linear network flow problem. 1+
these row operations involve only row and column scaling, then the
result is called an embedded network. The initial statistics for

the constraint matrices of the test LPs were as follows:

Nonzero
LP name Rows Columns Elements Density
ETA 335 704 2231 0.95%
GIF-FIN 617 1092 4467 0.31%
RECIFE 98 180 748 4,335%
SCAGR7 120 140 S53 Z.04%
SCFXM1L 331 435 2612 1.73%
SCS8D1 7 760 3148 S.31%
SCTAP1L 11 580 3372 1.87%
SCROS 206 203 552 1.32%
STAIR 35 467 857 2.31%
VYTFBASE 199 207 914 2.26%

These LFPs were first analyzed to remove certain inessential rows and
columns. Free rows, fixed columns, and all-zero rows and columns of
the LF were deleted initially. Rows that had the effect of placing
lawer or upper bounds on variables were then removed, since efficient
simplex codes need not handle bounds as explicit constraints.

Unit columns were then added to represent slack variables on any
inequality constraints. Statistics for the revised constraint
matrices were as follows:

Nonzero
LP name Rows Columns Elements Density
ETA 275 699 1848 0.956%
GIF-PIN 590 1150 2409 Q.26%
RECIFE 82 174 644 4.951%
SCAGR7 89 144 78 2.99%
SCFXM1 289 859 2641 1.63%
SCSD1 77 760 2388 4.08%
SCTAPL 300 760 1872 0.82%
8C205 2037 15 [-Y-%4 1.04%
STAIR 356 522 813 2.01%
VTPRASE 166 296 880 1.79%
AIRPCT "2 " % ¥ SCYENTI®I. © -
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. We wused a scaling heuristic to try to increase the
rows that contained only one nonzero magnitude; these rows are
trivially scalable to *1 rows. The following table shows the
number of such rows, before scaling and after the best scaling:

number of

Single—-Magnitude Rows

LP name Rows Unscaled Scaled

ETA 275 3 (11%) 1S5 (56%)

GIF-FIN 590 264 (457 S0 (100%)

RECIFE 82 49 (&LO%) S3 (657

SCAGR7 289 46 (S22 6 (71%)

SCFXM1 289 88 (J0%) 129 (45%) |
SCSD1 77 0 (0% 39 (S1%) !
SCTAF1 300 120 (40%) 126  (42%) !
SC205 203 145 (717%) 147  (72%) b
STAIR 56 64 (18%) 165  (46%) !
VTFPEASE 165 22 130 &3 (ZI8%)

We then applied extraction heuristics to find embedded networks with
the *1 rows. Best results are shown below. The largest network
matrix that could be extracted from the unscaled matrix 1is also
given, to indicate the usefuleness of scaling.

Single-Magnitude Rows ]

LLP name Rows +-1 Rows Unscaled Scaled

ETA 275 155 (567 31 (11%) 121 (447%) )
GIF-FIN 590 990 (100%) 264 (45%) S1t (87%)

RECIFE 82 S22 (6S%) 49 (6OL) S2 (63L)

SCAGR7 89 &3 (71%) 46 (52%) S0 (S56%) ‘
SCFXM1 289 129 (45%) 86 (Z0%) 111 (38%) . '
SCSsD1 77 I9 (S1%) Qo 0%) 39 (514

SCTAP1 300 126 (42%) 120 (40%) 126 (42%4)

SC205 203 147 (727%) 109 (%4%) 120 (59%)

STAIR 356 165  (46%) 61 (177 159  (45%)

VTPBASE 166 &3  (38%) 20 (12%) S1 (31%)

In his master’s thesis, Kyu-Ho Ahn studied
extraction heuristics. He carried out
compare the following five algorithms:

various network-
computational studies to

(1) The method of Brown and Wright--This is a delection method:
it starts with the set of all candidate rows, and deletes
confilicting rows until a network is found.

(2) A revised version of the Brown-Wright method that omits
certain updating operations at each step.




g

L2

R s e

W e -

(3) A method of Gunawardane, Hoff and Schrage which 1s also a
deletion method, extended to allow reflection of rows.

(4) A revised version of an extended Gunawardane—Hoff-Schrage
method that omits certain updating operations at each step.

(5) A new insertion method, which starts with an empty netwark-
row set and adds to it as the columns are scanned.

Each of these was implemented to incorporate a second pbhase,
suggested by Brown and Wright, which attempts to simply add further
candidate rows to the network set found by the first phase.

All of the above algorithms displayed comparable effectiveness
in finding a large network subset:

BW Method GHS Method

—————————————————————————— Method
LF name scaled? rig. Rev. Orig. Rev. of Ahn
ETA yes 157 143 157 147 1464
SCAGR7 no 83 81 az 81 8>
SCAGR7 yes 83 81 82 80 83
SC205 no 78 110 73 78 78
SC205 ves 96 112 95 ?6 95
STAIR no 59 o8 59 57 39
STAIR yes 155 154 155 5% 185
YTPBASE no 40 9 40 9 40
VTPBASE yes 44 2 42 8 4z

However, the algorithm varied greatly in the amount of computation

required. The following timings (in central-processor seconds) were
made on & Cyber 170/730:

BW Method GHS Method

LP name scaled? Orig. Rev. Orig. Rev.

ETA yes 18.79 2.13 20.321 4,49
SCAGR7 no .65 .33 1.02 .42
SCAGR7 yes 1.324 .52 2.72 .62
SC205 no 3.75 .74 8.34 .88
SC2053 ves 2.67 .71 6.88 .82
STAIR no 1.21 .88 1.51 .94
STAIR yes 1.58 1.24 2.41 1.19
VTPBASE no .78 .43 1.36 .58
VTFBASE ves 2.37 .61 J.24 .67
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: Thus the effectiveness of the five algorithms was nearly identical
; when followed by the exchange algorithm. However, the exchange
i algorithm added substantially to the computation times:
‘ !
: EW Method GHS Method )
et b D Rt Method
‘ LF pame scaled? Orig. Rev. Orig. Rev. of Abhn
T S .
! ETA yes 24.66 10,02 23.03 7.37 2.70 i
! SCAGR7 no 1.02 .66 .65 .59 .19 :
! SCAGR7 ves 3.82 1.80 2.30 1.53 1.50 :
. SC2203 no 11.75 1.932 7.17 5.91 6.19
; SC205 vyes 9.62 T.62 5.32 4.84 4,59
STAIR no 1.85 1.29 1.58 1.27 1.27
f STAIR vyes .12 1.88 2.2 2.01 1.74
. VTPBASE no 1.97 .22 1.44 1.10 )
: VTPBASE ves 3.69 1.47 3.2 1.57 1.28
. !
| . !
i e i
, ;
4
Here it 1is not so clear which algorithm is best. Also, further i
‘ experimentation will be required to determine whether the expense of
| the exchange algorithm is worth the increase in network rows.
Finally, we applied the algorithm of Bixby and Cunningham to

Here Ahn’s insertion method seems generally preferable. (The numbers
of network rows above differ from those given in the previous tables,
due to differences in scalings and in numbers of inessential rows
deleted.)

An  "exchange" algorithm was designed to follow any of the above
five. It attempts to identify a row in the network subset that, when

deleted:, allows two or more *1 rows to be added.

made substantial additions to the row subsets for SC205,

ETA inp some cases. The size of the augmented row
exchange algorithm ran after each of the five above,

This algorithm
SCAGR7 and
subset, when the
was as follows:

BEW Method GHS Method
—————————————————————————— Method
LP name scaled? Orig. Rev. Orig. Rev. of Ahn |
ETA yes 160 157 160 157 164 ‘
SCAGR7 no 83 83 az 87 8% b
SCAGR7 ves 88 88 88 88 88
SC205 no 110 110 110 110 110
SC205 yes 120 113 120 20 120
STAIR no 59 58 59 a8 59
STAIR yes 155 154 1S5 154 155
VTPBASE no 41 41 41 41 41
VTFRASE ves 44 44 44 44 44




test whether certain subsets of rows were hidden networks. In most
cases, a hidden-network subset was constructed by adding rows to a
known embedded-network subset. The sizes of the largest embedded and
hidden networks discovered were as follows: ’

Embedded- Hidden-
LP name Rows Network Rows Networlk Rows
ETA 275 121 (447%) 123 (45%)
GIF-FIN 590 511 (87%) 590 (100%)
RECIPE 82 52 (63%) 53 (65%)
SCAGR7 89 S0 (S6%) 61 (69%)
SCFXM1 289 111 (28%4) 125 (4340
SCSD1 77 39 (Si1%) 39 (S1%)
SCTAP1 300 126 4270 126 (42%)
SC20S 203 120 (59%) 147  (72%)
STAIR 356 159 ((45%) 165  (46%)
VTFRASE 166 S1 (217) ] 52 (310

Thus notablty larger hidden networks were found in SCARG7, SCFXM1 and
SC205, and GIF-FIN was found to be a pure network!

3. Mr. Ahn is currently working on developing methods for
exploiting embedded structures computationally, once they have been
found. Since there exist very efficient simplex methods for full-

network linear programs, it is reasonable to seek efficient simplex
methods for linear programs that have large partial networks.

Frevious studies of partial-network simplex methods (also often
called embedded-network simplex methods!) have taken either a \
decomposition or a working basis approach. Ahn is taking a maore :

straigtforward approach, in which the routines of the simplex
algorithm are adapted to take advantage of the partial network.

He will be particularly interested in applying partial-network
simplex methods tn embedded- or hidden-network LFs, and will g
initially concentrate on row-wise partial-networks LFs. These offer i
several advantages. In such LPs, the size of the row-wise partial
network is the same 1in every basis. Thus basis updates are
simplified, and the partial-network structure is equally advantageous '
at every iteration. In the hidden~-network case, moreover, elementary
row operations can transform some rows to a partial network without
disturbing the non-network part of the matrix.

Ny

4, The graph-realization problem may be described as follows: .
Given a finite set E and a collection P of noncomparable subsets . |
of E, when is there a tree T with edge-set E such that P is a : !
collection of edge sets of paths in T? The applications of this
problem to finding hidden-network structure in linear programs, an ;
idea originally due to Iri, is by now well known, and forms the basis
for much of the work described above. In his thesis, Don Wagner
presents an alqorithm for this problem which is, in essence, as
nearly linear as possible (linear in the size of E), where a linear
time bound is an obvious lower bound on problem complexity. His
algorithm is the fastest one known.

[EPoP

A

Paper [2] gives a survey of current work on the graph-realization

-7 -




problem and its applications to structure problems in linear
programming. It also contains a new algorithm for recognizing
network structure in "implicit matrices", matrices given by an oracle
that determines column independence. This problem was originally
solved by P.D. Seymour, and is significantly more subtle than the
explicit matrix version. In addition, a short proof a strengthened

version of Seymour®s result is given. This stronger result is due to
Truemper.

S. Call a matrix totally trianqular if every maximal linearly
ingependent set of columns, that is, every basis, can be permuted to
an upper triangular matrix. Collette Coullard is working on the
problem of recognizing such matrices. Several partial results have
been obtained. For example, we have shown that if the given matrisx
contains a basis that can be permuted to an identity, then it must
necessarily hHappen that the entire matrix A can be scaled to a
totally unimodular matrix; moreover, there is an efficient algorithm
to find this scaling.

a. Let G be an undirected graph, and let e be a dis-
tinguished edge of G. Let € be the family of circuits of G that
contain e, and let P = {€C ~ e: C e C}. Let A be a ((0O,1)-matriu
the rows of which are the incidence vectors of the members of P.
We call such a matrix a path matrix. FPath matrices arise as
constraint matrices in the so-called path-arc formulation of the
classical maximum-flow problem, and, computationally, are relevant
to the multicommodity flow problem. In [51 an algorithm is given for
recognizing path matrices in polynomial time, and an algorithm is

also given for recognizing the more general class of “totally
Mengarian" matrices, for which the max—-flow min—cut equality also
holds. The problem of recognizing “dipath matrices" of directed

graphs is left open, although significant progress has been made by
E. Balas and a student, at Carnagie-Mellon.

C. Perfect BGraphs

The vertex packing problem is the graph theoretic form of the
well-known integer programming set packing problem. A perfect graph
is graph for which we have an efficient method to verify optimality
in the associated vertex packing problem. In [2] a method is

described for composing two given perfect graphs to form a 1larger
perfect graph.

D. Packing and Covering

Folynomial-time algorithms are presented in [6] for solving
combinatorial packing and covering problems defined by the integral
feasible flows in an integral supply-demand network.
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