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9The summary begins with a listing of papers written followed
by further descriptions of work completed as well as work in
progress. 14-.'- , s6UA ¢-

I. PAPERS WRITTEN

E1] A Simple Theorem on 3-Connectivity. Linear Algebra and Its
Applications 45 123-126.

[2] 'A Compositici for Perfect Graphs., To appear in a volume edited
by V. ChvAtal ano C. Berge. )

iso [73 The Partial Order of a Polymatroid Extreme Point- (with W.H.
Cunningham and D.M. Topkis). To appear in Mathematics>'of Operations

iM Research.

[4) Algorithms for Two Versions of Graph Realization and an
Application to Linear Programming (1983). To appear in the
Proceedings of the Waterloo Silver Jubilee Co erence.

[5] 1A Note on Recognizing Path MatriceYij ? '

[ (6] Packing and Covering by Integral Feasible Flows in Integral
Supply-Demand Networks, (with 0. M.-C. Marcotte and L.E. Trotter,
Jr.)

II. THESES SUPERVISED

Donald K. Wagner, Assistant Professor at Purdue University.
Dissertation title: An Almost Linear-Time Alqorithm for Graph
Realization.

III. WORK COMPLETED AND IN PROGRESS

A. Polymatroids and Matroid Intersection

The work described in (33 was presented at the XI International
Mathematical Programming Symposium, Bonn, West Germany, at the
Oberwolfach Workshop on Mathematical Programming, -held at
Oberwolfach, West Germany, and at the Bielefeld meeting on
Applications of Matroids, held at the University of Bieliefeld, West
Germany. Efforts to extend the results of (3] are continuing.

The problem motivating I3] may be described as follows. Let E

be a finite set, and let f be a real-valued function defined on
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subsets of E. f is said to be submodular if

f (A) + f (B) $: f (At.B) + f (AflB)

for each pair of subsets A,B Q E. Submodular functions play a
central role in the study of combinatorial optimization problems, not
unlike the role played by convex funtions in continuious
optimization. A good discussion along these lines is given in
"Submodular Functions and Convexity" by L. Lov~sz (Mathematical
Programming: The State of the Art, edited by A. Bachem, M. Grotschel
and B. Korte, Bonn 1982). The major open problem in this theory is
that of finding a direct combinatorial procedure for minimizing
submodular functions. Algorithms have been found for several special
cases, and it is hoped that the methods developed in [3) will lead to
a solution in the general case. An algorithm is given in [3], and we
have recently succeeded in showing that this algorithm is finite. A
very short proof has also been found for a result of Topkis,
characterizing adjacency in polymatroids.

A problem related to submodular function minimization is the so-
called weighted matroid intersection problem. Collette Coullard, a

-- Ph.D. Student at Northwestern University, is working to simplify
various rewults in this area (including Lawler's presentation of his
primal matroid intersection algorithm), and on developing a simplex
method for matroid intersection. It is also hoped that her work may
lead to an appropriate definition for "weighted matroid partition,"
and thus to a better explanation of the duality phenomena apparent in
these problems. The following proposed generalization has grown out
of her work. A matroid M on a finite set E is a collection I
of subsets of E, called independent sets, such that the empty set is
independent, every subset of an independent set is independent, and
for every A E E, every maximal independent subset of A has the
same size. Let Mi, ... , Mk be matroids on the same underlying set
E. Then it is well known that the classical matroid greedy algorithm
can be used to maximize a linear functional on the matroid sum M +

+ M.. Where I is a subset of E. I is independent in this
SLum matroid if and only if it can be partitioned into sets I, ... ,

Ik independent in the matroids Mi, ... , Mk, respectively. Suppose.
now, that instead of a single linear functional, we take a separate
functional for each of the matroids, and then ask for the maximum
weight partitionable subset of elements, where the weight applied to
a particular element is determined by the independent set I that
contains it in the partition. This problem can be shown to be
equivalent to a restricted cardinality version of matroid
intersection, and it may be possible, in turn, to reduce this to the
classical weighted intersection problem. Conversely, it is easy to
see that weighted intersection can, indeed, be reduced to this new
weighted partition problem.

S. Algorithms for Recognizing Hidden and Embedded Structures in
Linear Programming Problems.

0

Papers [43 and [5] are connected with this work. Paper (4] was
presented as an invited address at the Waterloo Silver Jubilee
Conference in Combinatorics, held at the University of Waterloo
(Waterloo Ontario, Canada) in June 1982.

ity Codes
Work on this problem has proceeded in several directions: and/or
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1. As noted in an earlier report on this grant, one of the
major tasks that had to be undertaken in this work, before
computational testing on hidden networks could begin, was to convert
our existing codes to a system allowing greater storage capabilities

so that testing can be carried out on larger linear programs (the
previous code was not capable of handling problems with more than
approximately 200 rows).

2. Here we describe in some detail our computational experience
with embedded and hidden networks in 10 test LPs (though not all LPs

have been used in all experiments). Given a LP is equality form, we
say this LP has a hidden network if some subset of its constraints
can be discarded yielding a problem that, by elementary row
operations, can be converted to a linear network flow problem. If
these row operations involve only row and column scaling, then the
result is called an embedded network. The initial statistics for
the constraint matrices of the test LPs were as follows:

Nonzero

LP name Rows Columns Elements Density
------- ------ - - - - - - - - - - -

ETA 335 704 22331 .95%

GIF-PIN 617 1092 3467 0.51%

RECIPE 98 180 768 4.35%

SCAGR7 130 140 553 3.04%

SCFXMI 331 457 2612 1.73%

SCSDI 78 760 3148 5.31%

SCTAPI 311 580 3372 1.87%

SC205 206 203 552 1 . 327%

STAIR 357 467 3857 2.31%

VTPBASE 199 203 914 2.26%

These LPs were first analyzed to remove certain inessential rows and

columns. Free rows, fixed columns, and all-zero rows and columns of )
the LP were deleted initially. Rows that had the effect of placing
lower or upper bounds on variables were then removed, since efficient
simplex codes need not handle bounds as explicit constraints.

Unit columns were then added to represent slack variables on any

inequality constraints. Statistics for the revised constraint
matrices were as follows:

Nonzero

LP name Rows Columns Elements Density
------------------------- ------ ------- -------- -------

ETA 275 699 1848 0.96%

GIF-PIN 590 1150 2409 0.36%

RECIPE 82 174 644 4.51%

SCAGR7 89 144 378 2.95%

SCFXM1 289 559 2641 1.63%

SCSDI 77 760 2386 4.08%

SCTAP1 300 760 1872 0.82%

SC205 203 315 663 1.04%

STAIR 356 532 3813 2.01%

VTPBASE 166 296 880 1.79%
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We used a scaling heuristic to try to increase the number of
rows that contained only one nonzero magnitude; these rows are
trivially scalable to ±1 rows. The following table shows the
number of such rows, before scaling and after the best scaling:

Single-Magnitude Rows

LP name Rows Unscaled Scaled

ETA 275 31 (11%) 155 (56%)
GIF-PIN 590 264 (45%) 590 (100%)
RECIPE 82 49 (60%) 53 (65%)
SCAGR7 89 46 (52%) 63 (71%)
SCFXM1 289 88 (30%) 129 (45%)
SCSDI 77 0 (0%) 39 (51%)
SCTAP1 300 120 (40%) 126 (42%)
SC205 203 145 (71%) 147 (72%)
STAIR 356 64 (18%) 165 (46%)
VTPBASE 166 22 (13%) 63 (38%)

We then applied extraction heuristics to find embedded networks with
the ±1 rows. Dest results are shown below. The largest network
matrix that could be extracted from the unscaled matrix is also

given. to indicate the usefuleness of scaling.

Single-Magnitude Rows

LP name Rows +-1 Rows Unscaled Scaled

ETA 275 155 (56%) 31 (11%) 121 (44%)
GIF-PIN 590 590 (100%) 264 (45%) 511 (87%)
RECIPE 82 53 (65%) 49 (60%) 52 (63%)
SCAGR7 89 63 (71%) 46 (52%) 50 (56%)
SCFXM1 289 129 (45%) 86 (30%) 111 (38%)
SCSD1 77 39 (51%) 0 ( 0%) 39 (51%)
SCTAP1 300 126 (42%) 120 (40%) 126 (42%)
SC205 203 147 (72%) 109 (54%) 120 (59%)
STAIR 356 165 (46%) 61 (17%) 159 (45%)
VTPBASE 166 63 (38%) 20 (12%) 51 (31%)

In his master's thesis, Kyu-Ho Ahn studied various network-
extraction heuristics. He carried out computational studies to
compare the following five algorithms:

(1) The method of Brown and Wright--This is a delection method:
it starts with the set of all candidate rows, and deletes
confilicting rows until a network is found.

(2) A revised version of the Prown-Wright method that omits
certain updating operations at each step.
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D(3) A method of Gunawardane Hoff and Schrage which is also a
deletion method, extended to allow reflection of rows.

(4) A revised version of an extended Gunawardane-Hoff-Schrage
method that omits certain updating operations at each step.

(5) A new insertioji method, which starts with an empty network-
row set and adds to it as the columns are scanned.

Each of these was implemented to incorporate a second phase,
suggested by Brown and Wright, which attempts to simply add further
candidate rows to the network set found by the first phase.

All of the above algorithms displayed compara.ble effectiveness
in finding a large network Subset:

BW Method GHS Method
Method

LP name scaled? Drig. Rev. Orig. Rev. of Ahn

ETA yes 157 143 157 147 164
SCAGR7 no 83 81 83 81 83
SCAGR7 yes 83 81 82 80 83
SC205 no 78 110 78 78 78
SC205 yes 96 112 96 96 96
STAIR no 59 58 59 57 59
STAIR yes 155 154 155 153 155
VTPBASE no 40 39 40 39 40
VTPBASE yes 44 42 42 38 43

However, the algorithm varied greatly in the amount of computation
required. The following timings (in central-processor seconds) were
made on a Cyber 170/730:

BW Method GHS Method
Method

LP name scaled? Orig. Rev. Orig. Rev. of Ahn

ETA yes 18.79 2.13 20.31 4.49 1.18
SCAGR7 no .65 .35 1.02 .42 .19
SCAGR7 yes 1.34 .52 2.72 .62 .33
SC205 no 3.75 .74 8.34 .88 .51
SC205 yes 2.67 .71 6.88 .82 .49
STAIR no 1.21 .88 1.51 .94 .93
STAIR yes 1.58 1.24 2.41 1.19 1.07
VTPBASE no .78 .43 1.36 .58 .37
VTPBASE yes 2.37 .61 3.24 .67 .40

5
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;ere Ahn's insertion method seems generally preferable. (The numbers
of network rows above differ from those given in the previous tables,
due to differences in scalings and in numbers of inessential rows
deleted.)

An "exchange" algorithm was designed to follow any of the above
five. It attempts to identify a row in the network subset that, when

deleted, allows two or more ±1 rows to be added. This algorithm
made substantial additions to the row subsets for SC205, SCAGR7 and

ETA in some cases. The size of the augmented row subset, when the

exchange algorithm ran after each of the five above, was as follows:

BW Method GHS Method
Method

LP name scaled? Orig. Rev. Orig. Rev. of Ahn

ETA yes 160 157 160 157 164
SCAGR7 no 83 83 83 83 83
SCAGR7 yes 88 88 88 88 88
SC205 no 110 110 110 110 110
SC205 yes 120 113 120 120 120
STAIR no 59 58 59 58 59
STAIR yes 155 154 155 154 155
VTPBASE no 41 41 41 41 41
VTPBASE yes 44 44 44 44 44

Thus the effectiveness of the five algorithms was nearly identical
when followed by the exchange algorithm. However, the exchange
algorithm added substantially to the computation times:

BW Method GHS Method
Method

LP name scaled? Orig. Rev. Orig. Rev. of Ahn

ETA yes 24.66 10.02 23.05 7.37 2.70

SCAGR7 no 1.02 .66 .65 .59 .19

SCAGR7 yes 3.82 1.80 2.30 1.53 1.550

SC205 no 11.75 1.93 7.17 5.91 6.19

SC205 yes 9.62 3.62 5.32 4.84 4.59

STAIR no 1.85 1.29 1.58 1.27 1.27

STAIR yes 3.12 1.88 2.27 2.01 1.74

VTPBASE no 1.97 .22 1.44 1.10 .96

VTPBASE yes 3.69 1.47 3.38 1.57 1.28

Here it is not so clear which algorithm is best. Also, further
experimentation will be required to determine whether the expense of
the exchange algorithm is worth the increase in network rows.

Finally, we applied the algorithm of Bixby and Cunningham to
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tett whether certain subsets of rows were hidden networks. In most
cases, a hidden-network subset was constructed by adding rows to a
known embedded-network subset. The sizes of the largest embedded and
hidden networks discovered were as follows:

Embedded- Hidden-
LP name Rows Network Rows Network Rows

ETA 275 121 (44%) 123 (45%)
GIF-PIN 590 511 (87%) 590 (100%)
RECIPE 82 52 (63%) 53 (65%)
SCAGR7 89 50 (56%) 61 (69%)
SCFXMI 289 111 (38%) 125 (43%)
SCSD1 77 39 (51%) 39 (51%)
SCTAP1 300 126 (42%) 126 (42%)
SC205 203 120 (59%) 147 (72%)
STAIR 356 159 (45%) 165 (46%)
VTPBASE 166 51 (31%) 52 (31%)

- Thus notablty larger hidden networks were found in SCARG7, SCFXM1 and

SC205, and GIF-PIN was found to be a pure network!

Mr. Ahn is currently working on developing methods for
exploiting embedded structures computationally, once they have been
found. Since there exist very efficient simplex methods for full-
network linear programs, it is reasonable to seek efficient simplex
methods for linear programs that have large partial networks.
Previous studies of partial-network simplex methods (also often
called embedded-network simplex methods) have taken either a
decomposition or a working basis approach. Ahn is taking a more
straigtforward approach, in which the routines of the simplex
algorithm are adapted to take advantage of the partial network.

He will be particularly interested in applying partial-network
simplex metiods to embedded- or hidden-network LPs, and will
initially concentrate on row-wise partial-networks LPs. These offer
several advantages. In such LPs, the size of the row-wise partial
network is the same in every basis. Thus basis updates are
simplified, and the partial-network structure is equally advantageous
at every iteration. In the hidden-network case, moreover, elementary
row operations can transform some rows to a partial network without

disturbing the non-network part of the matrix.

4. The qraph-realization problem may be described as follows:
Given a finite set E and a collection P of noncomparable subsets
of E, when is there a tree T with edge-set E such that P is a
collection of edge sets of paths in T? The applications of this
problem to finding hidden-network structure in linear programs, an
idea originally due to Iri, is by now well known, and forms the basis
for much of the work described above. In his thesis, Don Wagner
presents an algorithm for this problem which is, in essence, as
nearly linear as possible (linear in the size of E), where a linear
time bound is an obvious lower bound on problem complexity. His
algorithm is the fastest one known.

Paper E33 gives a survey of current work on the graph-realization
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problem and its applications to structure problems in linear
programming. It also contains a new algorithm for recognizing
network structure in "implicit matrices", matrices given by an oracle
that determines column independence. This problem was originally
solved by P.D. Seymour, and is significantly more subtle than the
explicit matrix version. In addition, a short proof a strengthened
version of Seymour's result is given. This stronger result is due to
Truemper.

5. Call a matrix totally trianQular if every maximal linearly
independent set of columns, that is, every basis, can be permuted to
an upper triangular matrix. Collette Coullard is working on the
problem of recognizing such matrices. Several partial results have
been obtained. For example, we have shown that if the given matrix
contains a basis that can be permuted to an identity, then it must
necessarily happen that the entire matrix A can be scaled to a
totally unimodular matrix; moreover, there is an efficient algorithm
to find this scaling.

b. Let G be an undirected graph, and let e be a dis-
tinguished edge of G. Let C be the family of circuits of G that
contain e, and let P = {C - e: C E C. Let A be a (0,1)-matrix
the rows of which are the incidence vectors of the members of P.
We call such a matrix a path matrix. Path matrices arise as
constraint matrices in the so-called path-arc formulation of the
classical maximum-flow problem, and, computationally, are relevant
to the multicommodity flow problem. In [5] an algorithm is given for
recognizing path matrices in polynomial time, and an algorithm is
also given for recognizing the more general class of "totally
Mengarian" matrices, for which the max-flow min-cut equality also
holds. The problem of recognizing "dipath matrices" of directed
graphs is left open, although significant progress has been made by
E. Balas and a student, at Carnagie-Mellon.

C. Perfect Graphs

The vertex packing problem is the graph theoretic form of the
well-known integer programming set packing problem. A perfect graph
is graph for which we have an efficient method to verify optimality
in the associated vertex packing problem. In [2] a method is
described for composing two given perfect graphs to form a larger
perfect graph.

D. Packing and Covering

Polynomial-time algorithms are presented in [6) for solving
combinatorial packing and covering problems defined by the integral
feasible flows in an integral supply-demand network.
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