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\‘g ABSTRACT

The program goal was to demonstrate the energy absorbing capability
of the Vought '“rotagted” sine wave concept for helicopter fuselage under-
carriage structure. Specific program objectives were to develop design
and manufacturing procedures for energy absorbing aluminum structure,
fabricate and test specimens to confirm the methods and relate the slow !
and high rate test results to undercarriage structure designed to meet
MIL-STD-1290 criteria. The specimens were fabricated in a standard
sheet metal shop, without special attention. There are several cost and
weight advantages asscociated with the sine wave concept. The cost sav-
ings relative to conventional metal design are attributable to the reduc- 1
tion in number of parts and fasteners which saves material dollars and
assembly hours. The high-rate and slow-rate testing of the test elements
verified the performance of the energy absorbing structure developed in 4
this program. The sclected skin gage to meet the 200 lbs/in. running
load requirement is 0.063 inch. The substructure will carry normal
flight loads and provide the energy absorbing capability when necessary.
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FOREWORD

This final technical report covers the work performed under contract
DAAG46-82-C-0047 from July 1982 through October 1983. This contract with LTV
Vought Corporation was conducted under the technical direction of Mr. A. A.
Anctil of the Army Materials and Mechanics Research Center in

Watertown, Mass.

This program was accomplished by the Structures Research and Development
Group and the Advanced Manufacturing Techrology Group of Vought Corporation.
Mr. J. L. Maris was responsible for the specimen design and analysis. Mr. P.
S. Waldrop was responsible for specimen fabrication. The high strain rate
testing was conducted at the Army Structures Laboratory located in the NASA
Langley Research Center under the direction of Dr. G. L. Roderick and Mr. G.
L. Farley. They provided the test equipment and data acquisition system. Mr.
B. T. Gannon was responsible for final test data reduction and reporting. Mr.
M. Poullos was the program manager.

The program was undertaken to investigate and verify the energy absorbing
capability and manufacturing potential of the rotated sine wave concept.
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1.0 INTRODUCTION AND SUMMARY

1.1 Purpose and Objectives

The purpose of this program was to validate the energy absorbing
capability, structural integrity and weight advantage of advanced technology
aluminum structures. The program goal was to demonstrate the energy absorbing
capability of the Vought "rotated" sine wave concept for helicopter fuselage
undercarriage structure. Specific program objectives were to develop design
and manufacturing procedures for energy absorbing aluminum structure,
fabricate and test specimens to confirm the methods and relate the slow and
high-rate test results to undercarriage structure designed to meet
MIL-STD-1290 criteria.

1.2 Program Description

Yought Corporation conducted a program for the Army Materials and
Mechanics Research Center (AMMRC) to design, fabricate and test crash
survivable specimens representative of helicopter undercarriage structure
using the Vought metallic "rotated" sine wave concept. The effort was divided
into seven tasks which were performed over a span of sixteen months. The
schgdulekis presented in Figure 1. The following paragraphs briefly describe
each task.

1.2.1 Task 1 - Undercarriage Design and Manufacturing Development

This task was a joint, iterative effort between Structures Engineering and
Manufacturing Engineering personnel to define an energy absorbing

1982 1983
AuG | sep | ocT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV

[ MONTHS AFTER CONTRACT AWARD 1 2 3 4 3 [] 7 8 ] 10 1 12 13 14 15 16

TASK t - UNDERCARRIAGE
DESIGN/MANUFACTURING
DEVELOPMENT

TASK 2 - TEST SEGMENT DESIGN H

TASK 3 - TEST SEGMENT
FABRICATION 4 TEST SEGMENTS
TO TEST LAB

TASK 4 - LOW-RATE TESTS
8 TEST SEGMENTS 10 NASAILANGLLY

TASK § - HIGH-RATE TESTS

TASK 8 - PAYOFF ANALYSIS

TASK 7 - REPORTING
l A DISTRIBUTION
(O PROGRESS ? DRAFT
D AnaL |

B3-3930-1

Figure 1. Program Schedule
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undercarriage design approach. Definition was based on prior structural test
data, analysis, and the results of tool and sheet metal forming trials
conducted prior to and during this task. Emphasis was ptaced on the
development of a highly fabricable joint configuration compatible with the
required crush characteristics of the undercarriage structure.

The results were incorporated in a structural layout drawing which depicts
longeron and bulkhead spacing, thicknesses, and joint configuration. Design
criteria (geometry, loads, weights, etc.) developed from Vought's involvement
in the Sikorsky ACAP program were utilized in defining this baseline design
layout.

1.2.2 Task 2 - Test Segment Design

In this task a representative segment of the undercarriage structure was
designed for physical test and evaluation. The segment design represented the

full scale approach established in Task 1 as closely as practical. The joint
configuration was representative of a production airframe.

1.2.3 Task 3 - Test Segment Fabrication

Thirteen test segments, six from 0.063 gage and seven from 0.040 gage
material, were fabricated from 6061 aluminum sheet for crush testing. The
task included necessary tool fabrication or modification of tooling from Task
1, fabrication of detail parts and assembly of the test components. The
forming die consisted of an innovative, cast epoxy tool. Detail fabrication
included rubber press forming of the longeron/bulkhead segments with integral
flanges and corrugated webs, followed by trimming and heat treating. Assembly
was accomplished with mechanical fasteners.

1.2.4 Task 4 - Slow-Rate Tests

Slow-rate testing of the segments was conducted at Vought to determine

failure modes and energy absorption efficiency. The segments were crushed from
their original 14 inch height to approximately 4 inches. Load versus
deflection curves were plotted over the full stroke for each specimen. Five
segments (two of one gage and three of another) were tested in this manner.
The results from these tests were compared to analytical predictions and other
literature data to determine the efficiency of the selected design.

1.2.5 Task 5 - High-Rate Tests

Once feasibility was established with the slow-rate testing, eight
specimens (four of each gauge) were sent to the Army Structures Lab at NASA
Langley Research Center for high-rate testing. Vought engineers witnessed
these tests and were available for technical evaluation and assessment.

1.2.6 Task 6 - Pay-off Analysis

Upon completion of the testing, results were analyzed and compared to
analytical predictions and data from other energy absorbing structure
programs. The undercarriage layout was sized to reflect the high-rate
test results. Projections for cost and weight savings were estimated at 25%
weight savings and 15% cost savings compared to current sheet metal structure.
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1.2.7 Task 7 - Reporting

Three quarterly reports and this final technical report were prepared
summarizing the results of this effort,

. 1.3 Summary

The "rotated" sine wave concept utilized in this program grew out of
Vought in-house manufacturing technology programs and a previous Air Force
funded contract (1979) related to advanced technology wing structure. This
AMMRC program designed, fabricated and tested "box" specimens to verify the
energy absorbing capability of this current concept.

The Vought-developed technique utilizes plastic produc. a tooling to
produce net formed, integrally flanged sine wave undercarr je components,
i.e, longeron and bulkheads. This type of fabrication prc¢ .:s a lightweight,
highly efficient load bearing structure that is superior ¢ :qual to composite
honeycomb sandwich or conventional sheet/stringer aluminu  :~<truction in
compressive energy absorption capacity.

Table 1 summarizes all the test data generated in this program. Seven
specimens representative of the aluminum sine wave concept were slow-rate
tested at Vought, two were fabricated and tested under IRAD and five
were program specimens. Test results were used to refine the high-rate test
specimens and were compared to other literature data on a specific load per
length and energy per inch of perimeter of stroke basis. The program test
results compare favorably to the literature survey and the sine wave concept
is the most economical to fabricate and incorporate into the fuselage
structure,

High-rate testing of eight specimens was conducted at NASA Langley. The
results were 16 to 33 percent better than expected; however, the test
equipment did not apply the energy as anticipated. The test equipment was set
up and calibrated with 226 pounds of weight on the drop table. At this
weight, the drop table is 90 percent heavier than the 119 pounds required for
the 0.040 gage specimens; consequently, more energy than anticipated was
anplied to the specimens.

The drop table was 26 percent lighter than the 308 pounds required for the
0.063 gage specimens; thus the 0.063 gage specimens displaced only 6.2 inches
instead of the design value of 11.0 inches and the peak "g" loading was 35
g's. The overall program results validate the design procedure and the data
provides a solid basis for proceeding to Phase II.
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2.0 DESIGN DEVELOPMENT

2.1 Design Criteria

The Sikorsky ACAP helicopter was selected as the baseline vehicle for this
program since Vought had just completed an energy absorbing substructure
design for it. Figure 2 illustrates the area designed to be energy
absorbing. This conforms to the MIL-STD-1290 requirement to protect the
aircraft occupants from injury during a crash impact up to and including the
95th percentile potentially survivable accident, while minimizing aircraft
structural damage.

The design condition is a 42 foot/second (fps) vertical drop with the
landing gear slowing the fuselage to 31 fps at impact. Figure 3 shows the
proposed vertical speed and angular attitude envelope requirements the
helicopter must meet. The ACAP design for crushable under-the-floor structure

is shown in Figure 4. The energy absorbing design to meet the 31 fps
requirement is 200 pounds per linear inch of bulkhead/longeron substructure
with an average crushable height of 4 inches. A portion of the structure
below the floor (approximately one-half) was designed to remain intact during
the crush to strengthen the floor. The rotated sine wave concept of this
program utilizes all structure below the floor as crushable since it remains
structually effective after it is crushed, i.e., adequately supporting the
floor as a beam. The following load per running length requirements were
selected for the evaluation with test specimens which are representative of
bulkhead/longeron configurations:

- 200 1b/in - to match ACAP design
- 100 1b/in - assumes twice the crushable height

A structural layout of the crew survivable substructure was prepared to
establish the bulkhead and longeron structural arrangement. This layout
determined the geometry of the test elements.

2.2 Preliminary Test and Evaluation

A preliminary test specimen was fabricated under IRAD from 0.063 inch
thick 6061 aluminum and slow-rate tested. The approximate dimensions were 6
inches by 6 inches with a 14 inch height, 11 inch stroke, and welded at the
corners. The specimen carried an average load of 4517 pounds over an 8 inch
stroke. This converts to a running load of:

4517 1b 1b
T8y 6 in - 188.2 57
This data, including load, geometry, and material thickness, was used to
determine panel thicknesses for the program specimens. The specimen
dimensions were set at 12 inches wide by 12 inches long to save on tooling
costs and a 14 inch height, 11 inch stroke, to represent geometry that could
be utilized in helicopter substructure,

The following calculations were performed to determine panel thickness
requirements for the thin and thick gage specimens utilizing the preliminary
test results. They also account for the material overlap of the fastened
joint versus welded construction.

11
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2.3 Analysis
Total running length including overlap is

(4) 12 inches + (4) 1.75 inches = 55 inches

The running length ratio (to simplify thickness calculations) is

55 in _
28T ° 1.146
For the 200 1b/in specimens
200 12
in 1b
1.146 - 1745547

From preliminary test data, the material thickness is

2
t

(188.21) ———— = 174.55
0.063
t = 0.061 inch

The selected thickness was 0.063 inches because it is a standard gage.
For the 100 1b/in specimens:

1b

100-T—
n _ 1b
TTI6— °© 87.26 w

From test data, the calculated material thickness is

2
(188.21) —t2—7—= g7.26 1bs
0.063 in
t2 = 0.043 inch

The selected thickness was 0.040 inches because it is a standard gage.

These two selected thicknesses provide design data that can be used
to select an appropriate thickness for a specific requirement.

Two additional preliminary test specimens, as shown in Figure 5, were
fabricated. One was made from 0.063 inch thick 6061 aluminum with blind
rivets. The other was made from 0.040 inch thick 6061 aluminum with the same
fasteners., Both were slow rated tested as shown in Figure 6.

Figure 7 presents the load/deflection plot of the 0.063 inch gage
specimen, The average load through 9.0 inches of stroke was 9155 pounds. The
specimen running length was 44.0 inches; consequently, the running load per
inch is 9155 1bs/44 in, = 208 1b/in, which corresponds to the design goal of

200 1b/in. In addition, the energy efficiency was excellent, approaching the
theoretical 100% of a rectangular shape under the curve. The effectiveness of

02228 15
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R the joint was established because, even after full crush, no tearing of the
AR sheet or failure of the fasteners occurred. This demonstrated that the
{ crushed structure will still be an effective structural element to support the
e cabin floor. The initial spike was due to the additional load required to
itf initiate the crush. The spike's small area relative to the rest of the curve
b4 indicates a minor change to the structure will remove this peak.
b Figure 8 is the load/deflection plot of the 0.040 inch gage specimen. The
) average load was 3255 pounds which results in a running load of 3255 1bs/44 in
. = 77.5 1b/in. This is below the design load of 100 1b/in but it correlates to
o the lower thickness of the actual specimen used. The overall efficiency was
O not quite as high as the 0.063 inch specimen, but it was acceptable. There
s was some fastener pull through and sheet bearing failures. The initial spike
i was also present in this specimen.
" 2.4 Final Segment Design
ot e
.:j; The following changes were incorporated into the final test segments. The
;tf; overall dimensions of the segments were reduced to 11 inches wide by 11 inches
) long to fit the test machine at the Army Structures Lab at NASA Langley. A
s decision was made to vary the location and type of fasteners on the slow-rate
ncex test specimens. The results and conclusions are discussed in Section 4.1 of
o this report and were used in fabricating the high-rate test specimens.
.;i; Vent holes were added to the high-rate test specimens. A total of 20
N holes, 0.56 inches diameter each, with 5 on each side of the specimen, were
. drilled in each specimen at the sine wave peaks. (Sixteen holes of 0.625 inch
ﬂ: . diameter were located in the valleys of the slow-rate test specimens). The
NN holes provided vents for the air as the specimens were compressed during the
o high-rate testing, therefore avoiding a high spike load.
};. The following analysis was performed to determine the effect on the
) performance of the high rate specimens due to air entrapment.
'iﬁé Drop rate = 32 ft/sec = 384 in/sec
b Cross sectional area of hox = 98 in
S Air Volume Rate = (98 in¢) 384 in/sec = 37,632 in3/sec
Ty v
— Dynamic pressure q = 25 (Tgg)2 1bs/ft2 (Units of V = mph)
al ) Velocity was detengined by dividing the Air Volume Rate (in3/sec) by the
j}j selected Vent Area (in¢) and converting to mph.
A
j:ﬁ For Vent Area = 5.0 in
! 37632 in>/sec
oo Velocity = > = 7526 in/sec = 428 mph
Aol 5 in
T . 4282 2 .
A, Dynamic Pressure q = 25 (Tﬁﬁ ) = 457 1bs/ft = 3.2 psi
1b :
g Instantaneous Spike Load = 3.2—, x 98 in = 311 1bs
e in
~7
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:j: For the 0.040 inch thick specimens, this spike load represents the following
- percentage of §otal load:
( by 100 = 8.0
g 39.6 in X 100;5
:i: For the 0.063 inch thick specimens this spike load represents the following
A percentage of total:

\ AID___ X100 = 4.0 |
? 39.6 in X ZOO-T- ;
--_. n H
5
SR The holes were placed in the sine wave peaks rather than the valleys to
D8 minimize the tendency of the sine waves to fold the wrong way lTocally at the
o . vent holes, as observed on the slow-rate test.

- 2.5 High-Rate Test Calculations

The required weight of the drop table used in the high-rate tests was
o found by equating the kinetic energy of the drop table to the work performed
during crushing (crush load times crush distance).

Y Kinetic Energy = Crush Load x Crush Distance

Y ' 2 _

! my~ =mg G s

’ where
¢ m = mass of drop table

. V = velocity = 32 fps

e g = acceleration of gravity = 32.2 ft/s2

o G = load factor
:i? s = crush distance = 11 inches with .8 efficiency
_j The above equation can be rearranged to yield the load factor, G.
.
[N 6= vi= (32212 =21g's |
= Zgs T 21322777 x .8)

. Thus, the force at impact, F, is

..-. ) F = mgG

Z?' or
i mg = F

.’: -G-

s For the 100 1b/in specimen, the table weight was
.:; mg = al = 119 1bs.

P For the 200 1b/in specimen, the table weight was

..:‘ m - = 308 “)S.
h.~: g 21
b3
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3.0 MANUFACTURING ENGINEERING

The manufacturing guidelines for this program were based on the
utilization of low cost tooling concepts and conventional rubber press forming
equipment and processes developed at Vought. The chosen process used 6061
aluT:num in the annealed condition, a hydroforming process, and cast epoxy
tooling.

Critical processing parameters, including material condition, grain
direction, blank configuration and forming sequence were evaluated. All
forming operations were conducted at room temperature. Circle-grid etch
technology was applied to the blanks in order to visualize and quantify the
patterns of strain created during forming.

A prototype tool was used to refine the processing parameters. Early
trials indicated a need to control the flow of material without trapping it on
the tool faces. Excessive movement of the material resulted in wrinkling, and
entrapment of the material resulted in tears due to stretching beyond the
material's formability limits. Blanks with a scalloped edge were tried as a
means of controlling the degree of holding pressure exerted by the press
bladder. Further testing with simple rectangular blanks, however, showed that
scalloping the edges would be unnecessary.

It was determined that a very low pressure, approximately 500 psi, would
form the blank to about 90 percent of its final shape and permit acceptable
flow of the blank over the die faces. The blank width was found to be a
critical element. A blank width was established which would provide minimum
surface for entrapment while leaving the necessary material for trimming after
the second press operation.

The second forming step was performed at 6,000 psi so that the material
would be completely formed into the corner radii of the die, finishing the
“rotated sine wave". This step was preceded by a solution heat treatment of
the 6061 aluminum to the "W" condition. The parts were refrigerated prior to
forming. The second press operation removed any deformation from the heat
treatment. Finished parts were aged to T-6.

The prototype epoxy tooling was modified to investigate the feasibility of
incorporating integral attachment flanges in the primary forming stage.
During the initial forming evaluations, the flanges were formed in a secondary
operation. Using the modified epoxy forming tool, several sine wave sections
with integral flanges were successfully formed. A complete preliminary crush
test speciman shown in Figure 5 was assembled with blind rivet MS-20600-MP5-W2
fasteners for preliminary sizing tests.

For the purposes of producing the contract specimen detail parts, it was
decided to form the end attachment flanges during the second step. There was
less need for precision trimming of the blank, and less chance of a tear, in
the second step. At the completion of the manufacturing investigation,
tooling was built for the contract specimens.

An optically-guided router was used to create precision sine wave
templates required to form the master for the cast epoxy tools. The master
was formed of plaster, hand-swept with the templates shown i; Figure 9. The
completed plaster element was then boxed in for casting. Pla:*er fillets were

22
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added to form outside corner radii on the tool to be cast. A reinforcement
plate of aluminum was suspended in the casting box, and the epoxy tooling
material was then poured. The completed tool, shown in Figure 10, was then
removed and cured.

Two tools were produced in the above manner, which Vought has previously
demonstrated to be a very effective, low cost method. The first step, shown
in Figure 11, is designed to form the specimen side panels from a flat sheet
to the approximate final contour. Following trim and solution heat treatment
to restore ductility (Step 2), the panels are placed on the second tool (Step

3) and formed at approximately 7,000 psi. This third step bends the
attachment flanges to 900, finishes radii detail in the rotated sine wave,

and removes any heat treatment distortion.

From the finished detail parts, specimens were constructed around an
assembly jig (Step 5). Plated monel blind rivets were installed, but later
replaced with HiLok threaded fasteners in order to solve the problem of rivet
pull through, experienced in slow-rate testing. From spare detail parts, one

additional 0.040 gage specimen was fabricated in order to slow-rate test the
performance of the new fastener.

The rework to replace the blind rivets with HiLoks was accomplished using
the following procedures. A hole gage was used to check hole diameters after
the existing fasteners were removed. If the hole diameter was smaller than
0.176 inch, the same size HilLok was installed in the hole. Otherwise, the
hole was reamed out for the next size fastener. All the existing fasteners
were replaced, and the 0.56 inch diameter vent holes were drilled as shown in
Vought Drawing CS-001, Figure 12,
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4.0 TEST AND EVALUATION

4.1 Slow-Rate Test Results

4.1.1 Introduction

The slow-rate tests consisted of five segments (three 0.040 and two 0.063
inch thick). These thicknesses are the closest standard gages that match the
design goals, while providing a good range of test data. This is desirable
since other parameters can be varied (i.e., longeron and bulkhead geometry) to
meet design requirements.

One specimen of each gage was used to investigate the performance of the
fasteners located at the peaks and valleys of each sine wave. Energy
efficiency was reduced on these specimens with considerable tearing at the
structural joints; therefore, the configuration was dropped. Some blind
fasteners pulled through the sheet on all test specimens because the bulb end
of the blind fastener provided inadequate bearing surface in tension, This
failure mechanism was particularly evident on the 0.040 inch gage specimens.
Since blind fasteners were not a design requirement, and were selected for
convenience, it was decided to change to Hilok fasteners with their superior
tension capability. The fifth specimen (0.040 inch gage) was fabricated with
HiLoks and tested. A marked improvement in energy efficiency was observed
with no joint failures. Seven of the eight segments shipped to NASA for high-
rate testing were reworked to incorporate this change. The eighth specimen
was already at NASA. Since it was an 0.063 inch gage specimen, which was
determined to have reduced fastener failure, it was not altered.

4.1.2 Specimens with Relocated Fasteners

Two specimens were used to evaluate optional fastener location. One
specimen of each gage had blind fasteners installed at the peaks and valleys
of the sine waves to simplify the manufacturing procedures. Figure 13 is a
plot of the load/deflection curves for the two specimens. Curve B is the data
from the 0.063 inch thick skin specimen. Peak 1oads of almost 12,000 pounds
demonstrated that this configuration was unacceptable. Figure 14 is a
photograph of the 0.063 inch thick skin specimen fully compressed and shows
shear tear-out failures at the corners where the fasteners are in the peaks.
Curve A on Figure 13 is the data from the 0.040 inch thick skin specimen. The
overall load-carrying capability of this configuration was 57 1b/in., which is
much less than the preliminary test result of 77.5 1b/in. The poor
performance of both specimens eliminated the option of installing the
fasteners at the sine wave peaks and valleys. A1l remaining specimens had
fasteners installed at the sine wave tangency points.

4.1.3 Specimens with 0,040 Inch Thick Skins

Two 0.040 inch thick skin specimens were tested to evaluate their load
carrying and energy absorption capability. The first test specimen had blind
fasteners installed. Figure 15 includes a plot of the load/deflection (Curve
A) for this specimen. Results indicate a desirable energy absorption curve
and an average load carrying capability of 75.4 1b/in. This compares
favorably with the 77.5 1b/in 1oad carrying capability of the preliminary
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test, except it had unpredicted fastener pullout at the corners. One

b difference between the preliminary test segment and this specimen was the

- addition of 16 vent holes drilled at the valleys of the sine waves. Another
{ difference was that the earlier specimen was heat treated at a lower
temperature for a longer period of time. Both cycles are accepted heat

. treatments for the T-6 condition. The vent holes account for the slightly
lower load carrying capability of the more recent test specimen.

Due to the unpredicted pullout of the blind fasteners, an additional

specimen was fabricated with HiLoks instead of the blind fasteners. Figure 16
is a plot of the load/deflection test results. Curve A is a replot of the
0.040 inch thick specimen with the blind fasteners. The specimen with HilLoks

- (Curve B) carried an average load of 88 1b/in, a 17 percent improvement in
load and the curve indicates an improvement in energy absorption efficiency.
None of the fasteners pulled out, and there was no shear tear-out at the

- edges. The HilLok fasteners obviously provided a superior joining technique;
therefore, the fasteners were changed from blinds to HiLoks on the four

J remaining 0.040 inch thick specimens delivered to NASA.

Al 4.1.4  Specimens with 0.063 Inch Thick Skins

Curve B of Figure 15 presents the 1oad/deflection test results from the
0.063 inch thick specimen. It had a desirable energy absorption curve and
N load-carrying capability of 176 1b/in.

This was less than the 208 1b/in value on the preliminary test segment.
Differences in specimen configuration included 16 vent holes in the sine wave
‘ valleys which would amount to approximately 3% strength reduction. Since the
strength reduction was 15%, this only accounts for a small percentage of the
difference. Some additional joint failures were observed in the later test so
the decision was made to incorporate the HiLok fastener change on the three
rega;ning 0.063 inch thick specimens. (One had already been delivered to
NASA).

RN

The 0.063 inch gage specimen already sent to NASA was tested as it was, to
N provide high rate comparative test results between Hilok and blind fastening
k- results.

4.2 High Rate Test Results

4,21 Instrumentation and Equipment

The high-rate tests were conducted at the Army Structures Lab at NASA
Langley with their IMPAC 1212 Shock Test Machine. Figure 17 is a photograph
of the setup with specimen in place. The specimens were placed on the test
machine base in a recessed area to restrain any unexpected lateral motion.
The instrumented drop table, just above the specimen in the photograph, was
raised to a height of 29.0 inches above the specimen during the actual tests.
The drop table weighed 226 pounds and had three accelerometers (for redun-
dancy) and a velocity marker mounted to it. The accelerometers, Endevco Model
7231C piezoresistive type with a maximum range of 750 g's, were bonded to
rubber pads to attenuate the metal ringing effects. The three accelerometers
were then fastened to the table. The velocity of the table at impact was
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verified by the velocity marker which passed between two photoresistive
transducers set exactly 1.0 inch apart. The photoresistive transducers
recorded the time required for the marker to pass between them.

The high speed movie camera, at the left in the photograph, was used to
verify symmetrical crush initiation and cross-check the velocity of the drop
table at impact.

Two bungee cords were attached to either side of the table to increase the
amount of energy the table could deliver. Figures 18 and 19 are calibration
curves for the test machine with the bungees. The curves were developed by
the Army Structures Laboratory for other test programs.

Figure 18 is a plot of impact velocity versus initial drop table height
above the base. The curve was developed by raising the drop table to various
heights above the base, releasing it, and measuring the velocity at 4.0 inches
above the base. For the Vought high-rate tests, the table was raised 29.0
inches above the specimens and released, corresponding to an initial impact
velocity of approximately 32 ft/sec.

Figure 19 is a plot of residual bungee force versus height of the drop
table above the base. This represents the additional force acting on the
specimens during and after impact. The total force acting on the specimen
during impact is this residual force plus 226 times the "g" value recorded in
the accelerometer data. NEFF model amplifiers were used to amplify and
convert the voltage output from the accelerometers to "g" values. The
amplifiers were calibrated at 250 "g" equal to 1.0 volt,

An IRIG Model A Time Code Generator was used in conjunction with the
accelerometer data to generate the "g" versus time data which was then
recorded on a Bell and Howell 14 channel analog tape recorder. A Techtronix
oscilloscope was also incorporated into the system for immediate visual
inspection of the acceleration versus time data. Figure 20 is a photograph of
the data acquisition system.

The analog tape from the recorder was converted to digital data and output
in tabular form as acge]eration, in units of "g's" at time intervals of
approximately 6 x 107° seconds. Test results of the 0.040 inch and the
0.063 inch thick specimens are discussed in the next two sections.

4.2.2 Thin Gage Specimen Test Results

The 0.040 inch specimens collapsed to an average height of 3.0 inches.
This was based on measuring and averaging the heights of the four corners of
all four specimens. No corner was more than 0.125 inch above any of the other
corners of each specimen. The crush initiated at the top of the specimen.
This is desirable because the drop table simulated the ground striking the
bottom of the helicopter.

Figure 21 is a plot of acceleration in "g's" versus time in milliseconds
for the first specimen. It is typical of the other three 0.040 inch gage test
specimens. Initially the curve is relatively flat with no severe initial
spike but a large spike at the end. The peak load at the end was due to the
large mass of the drop table which developed more total energy than
anticipated. The drop table weight should have been 119 1bs.
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The four specimens sustained an average load of 18 g's over the first 35
milliseconds, which corresponds to the following loading:

18 x 226 + (1480-226) = 5322 pounds.

This represents a linear loading of:

5322 1bs  _ 135 1b
35.3 in in

This is 35 percent better than the design goal of 100 1b/in for the
0.040 inch gage specimens.

The time interval of 35 milliseconds was selected because of the

acceleration peak after 35 milliseconds. The peak was created by the 226
pound drop table weight (as opposed to the required weight of 119 pounds).

4.2.3 Thick Gage Specimen Test Results

The 0.063 inch specimens collapsed to an average height of 6.2 inches.
This was based on measuring and averaging the heights of the four corners of

the four specimens. No corner was more than 0.125 inch above any other corner
of each specimen.

Figure 22 is a plot of acceleration in "g's" versus time in milliseconds
for the first 0.063 gage specimen. It is typical of the other three.
Initially, the shape corresponds to peak g's as a corrugation peak collapses.
After 30 milliseconds the energy is attenuated at a constant rate.

The four specimens sustained an average load of 35 g's which corresponds
to the following loading:

35 x 226 + (1480-226) = 9164 pounds.
This represents a linear loading of:

9164 1bs  _ 233 1b
39.3 in in

This is 16 percent better than the design goal of 200 1b/in. These tests
substantiate the energy absorbing capability of the rotated sine wave
concept. The specimens collapsed only 6.2 inches because the drop table
weight was 226 pounds instead of the required 308 pounds.

Figure 23 is a photograph of the thick gage specimen after test. The
6 percent of the expected value.

stroke is approximately
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Figurz 22. Accelaration vs. Time for Thick Gage Specimen

)
‘.l ..

41

‘.'.:‘.'l‘..l ‘.'.‘

IR A T R R R A LRI A IE St St P ."L- Al \:'. PR S e e .'vn‘ - ‘-‘..’.\\:-\‘..- -
.. LA A N e e W ] e Tt et M ", - . S G e T «aw ~
e :L‘._'"-..'-;"n.'-\"a.' 1."\':5.{\:“; R R I, A A R TS A RN A WARI A A PP PN P9 S s e ¥ ad
a d




(¢4

uswuLoadg abey 3oLyl paysnu) €z Sunbi4

ey LIPS arie e

s

L 2 g

L]
I~
..
.
.
. od .
7.\ <t K
X ..;.
b ! 1
il ..A
b, i
-. [l
p L
w.- K
7 o
n. ‘.,
4

N WY

-,

p. -
v .
., u
b 0
. © 9
-. . q

-

ol A e e
Y

v
- u




5.0 PAY-OFF ANALYSIS

The purpose of this section is to present the pay-off analysis for the
energy absorbing structure developed in this program. The results of previous
government sponsored programs are presented first. This provides the weight
and performance criteria used to evaluate the energy absorbing efficiency of
the rotated sine wave concept. Next, the low-rate and high-rate energy
absorbing test results from the various programs are compared. Finally, a
cost analysis is performed to compare the sine wave structure to conventional
structure with advanced manufacturing techniques.

5.1 Previous Industry Program Results

This section presents the results of previous programs that structurally ‘
tested energy absorbing configurations for flight vehicles and compares them
to the results from this program. Tables 2, 3 and 4 present the energy
absorbing efficiency of several material and design configurations developed
using slow rate test procedures. Specific details for each chart are
discussed below.

The running loads shown in column 3 of the tables were calculated by
dividing the average post ultimate load of each test specimen by the perimeter
of the specimen. Specific running 1oads are these running loads divided by
the product of material thickness multiplied by the density. The work shown
in column 5 of the tables was determined by multiplying the running load by
the vertical distance or stroke the loading head travelled. This represents
the total energy absorbed by each configuration. Specific work was calculated
by dividing the work by the same factor used for the specific running load.
This allows for a comparison between different materials and different
structural configurations.

Table 2 is from Reference 1, reported in October 1982, The test elements
utilized 9.0 inch diameter vertical tubes fabricated in three configurations
with four materials each. The three configurations were internally stiffened
(IS), externally stiffened (ES) and honeycomb sandwich construction (HC). The
materials evaluated were aluminum (A1), graphite/epoxy (Gr/Ep), Kevlar/epoxy
(K/Ep), and fiberglass/epoxy (G1/Ep).

Conclusions based on this table are: (1) the vertical tube creates a
large initial peak load, making it an ineffective configuration, (2) aluminum
is excellent for energy absorbtion in all configurations and (3) the
composites are best utilized in honeycomb sandwich construction.

Table 3 presents a summary of the results developed in Reference 2.
Several general aviation aircraft structural configurations were evaluated but
only two were of interest and are presented. The corrugated structure is
presented because it led to the Vought concept (which is simpler and less
costly to fabricate than what is shown in Reference 2). The horizontal tube
configuration is shown because it included another comparison between aluminum
and Kevlar. The results indicate the advantages of the horizontal tubes;
however, they are difficult to incorporate into actual floor substructure,

i.e., attach floor structure or seat tracks and develop effective structural
intersections.
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Table 4 presents the Vought slow-rate test results. Two different
material gages in the sine wave configuration were evaluated to develop a
design curve of running load (1b/in) versus substructure thickness (in.). The
Kevlar data is from the earlier effort at Vought on the ACAP program.

5.2 Performance Comparison

The performance advantages of the rotated sine wave design are indicated
by comparing the slow-rate test results with other industry results.

The rotated sine wave concept has comparable or better energy absorption
characteristics than any other configuration and it is the simplest to
incorporate into fuselage structure. It can be designed to carry required
flight loads and crush at the predetermined rate to improve the survivability
of the crew and passengers in the vehicle. The energy absorbing structure
would be used throughout the entire substructure area, between the floor and
outer skin, allowing cutouts for systems requirements, yet still able to
sustain a crash. The crushed rotated sine wave also demonstrated excellent
post crush structural integrity. There was no fragmentation (i.e., no
fasteners flying apart), the specimens crushed from the top down simulating
the desired bottom-up on an actual flight vehicle, and it demonstrated the
capability of maintaining the structural integrity of the floor. For these
reasons, the rotated sine wave concept is the most practical and cost
effective method of providing crash survivable structure for helicopters.

The following paragraph compares the high-rate test results of three
material/design concepts. The first is the vertically stiffened concept made
from Kevlar/epoxy. The average load it sustained of the initial peak was 77
1b/in, less than 50 percent of the 200 1b/in design goal. Since this
configuration did not meet the design requirement, it was eliminated from
further consideration. The second configuration was the composite concept
discussed in Reference 3. It is a sandwich construction with Kevlar/epoxy
facesheet and nomex honeycomb core. The design goal was 333 1b/in because the
energy ahsorbing structure was used in selected areas only. The full
scale drop test conducted with this configuration indicated an energy
absorption of 296 1b/in, which gives 203,000 in-1b/in as the specific work.
The third concept is the one developed in this program. Two different
thicknesses were evaluated to develop a design methodology. The 0.040 inch
gage specimen absorbed 135 1b/in which converts to 96,000 in-1b/in for
specific work. The 0.063 inch gage specimens sustained 235 1b/in loading
which converts to 197,000 in-1b/in.

A significant difference between the composite and metal configuration is
that there was considerable development with the composite to tailor its
performance. The metal design was basically a preliminary design for the
dynamic tests. The initial spike which shows up on the test results could be
eliminated by changing the sinewave pitch at the base and possibly adding
cutout holes. The Phase Il effort would verify these approaches.

5.3 Cost Analysis

The following analysis was performed to compare the cost of a "C-section"
type longeron to the rotated sine wave configuration on a cost per foot of
structure basis. The following assumptions were made in doing the
calculations:

48

02228




L IRACRACAACR b Sl T iadis

1. 1983 dollars, rounded to nearest dollar
2. Material Thickness:
0.063 in. Sine Wave
0.080 in, C-section
3. 500 parts made in lots of 10
4. Labor costs include manufacturing, quality, direct methods and tool
maintenance.
5. Fastener costs are included for C-section material. ]
6. Amortized tooling costs include design, manufacture and material for
all tooling fabrication:
COST SUMMARY
Sine Wave C-Section
: Materials $ 9.00 $17.00
Y
25N Labor 20.00 21.00
U Amortized Tooling 3.70 .80
1 TOTAL $33.00 $39.00
R Both have Tow labor hours because of automated fastener preparation and
il installation (DRIVEMATIC). The tooling cost fur the rotated sine wave is
- higher because each part needs a tool versus the segmented radius blocks used
. for conventional structure. As the number of parts fabricated increases, the
tooling is amortized over a larger number of parts; consequently, the cost per
e part decreases. The overall advantage of 500 sine wave parts is:
NN )
o 33533 x 100 = 158,
o
"u_‘
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6.0 CONCLUSIONS

This section presents conclusions based on the results of this program.
The areas discussed include manufacturing, cost, weight and performance.

Fabrication of the thirteen test specimens for this program provided
invaluable manufacturing experience. The specimens were fabricated in a
standard sheet metal shop, without special attention. The room temperature
hydroforming process has a low energy input requirement and the assembly is
adaptable to automatic fastening techniques. There was no measurable wear on
the plastic tool after fabrication of the skin panels and no tolerance problem
in fitting the skin panels together.

There are several cost and weight advantages associated with the sine wave
concept. The cost savings relative to conventional metal design are
attributable to the reduction in number of parts and fasteners which saves
material dollars and assembly hours. Potential cost savings relative to the
composite structure would be due to Tower material cost and less expensive
fabrication methods (i.e., hydroform versus autoclave). The weight savings
versus conventional metal are also due to part count reduction.

The high-rate and slow-rate testing of the test elements verified the
performance of the energy absorbing structure developed in this program. The
slow-rate testing proviged design data for developing the high-rate
specimens. The initial spikes were due to the additional 1oad needed to
initiate buckling. There are several solutions which can be incorporated into
the design to eliminate these spikes. There was no fragmentation during the
high rate testing. The structure remained intact and could provide the

required amount of support to the floor and seat support structure during and
after a crash,

The selected skin gage to meet the 200 1b/in running load requirement is
0.063 inches. The substructure will carry normal flight loads and provide the
energy absorbing capability when necessary.

The aluminum structure would be less susceptible than honeycomb to the
effects of moisture and cutouts for hydraulic and electrical systems, than
would the honeycomb structure. Therefore, the substructure could be
continuous under the entire fuselage section.
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s 7.0 RECOMMENDATIONS
(iy Based on the results of this investigation, it is recommended that:
{li (1) Detail design of a complete helicopter subfloor structure should be
" performed. This would include determining exact requirements for the
~\j helicopter system under evaluation and conducting additional testing
JQH on scaled up multi-bay specimens.
, (2) Tooling should be scaled up. The basic tooling and manufacturing
o technology has been proven but variable depth beams need further
s investigation.
'{fl (3) A direct comparison of metal and composite full scale crashworthy
- | structure, designed and tested using the same criteria, should be
" performed to quantify the differences in the crash impact behavior of
‘ij the two types of materials.
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