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STRUCTURAL ANALYSIS A .

Sarigul N., Jin M., Kolar R. and Kamel H.A. A 4
The University of Arizona

Aerospace and Mechanical Engineering Department

ABSTRACT

"This paper presents ongoing research on the solution of

large-smale nonlinear structural problems using a 32-bit minicomputer
with an attached 64-bit array processor that communicate via a common
memory interface. This configuration is typical of what we see as

".' representative of future work stations with attached specialized
processors. A user-oriented software package has been designed to
allow the use of the given computer configuration by a typical
engineer or a scientific user without a detailed knowledge of the
operation of the array processor or/and the complex data handling
necessary to create and manipulate the data associated with the
solution of large problems. The software was then used to implement
typical building blocks of a nonlinear finite element code, and
prformance measurements were taken. Several test examples are
considered using 3-3D beam finite elements and the Newton Raphson
solution scheme. The array processor could not be utilized as yet,
due to the lack of the proper vendor software. Hence, a simulator was
designed to predict the performance of the software. The simulator
was based on reliable time measurements obtained from previous work
with the same array processor, using a 16-bit host computer, as well
as experiments with the current 32-bit host computer.
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1. INTRODUCTIGN

The numerical solution of nonlinear problems in structural

mechanics requires the extensive use of modern digital computers (1).

The demand it places on computer systems is such that the need for

increased performance is constantly present. Today, state of the art

computer systems include high performance vector machines as well as

less expensive devices, such as array processors. Apart from the use

of such array processors in conjunction with minicomputers, we

foresee the increased marketing of powerful work stations with such

attached devices. Sophisticated hardware of this kind usually

requires complex programming techniques, if the full potential of the

system is to be realized. In general applications, users object to

the amount of effort needed to implement code in this fashion. One

solution is to provide with the system a higher level language

compiler (e.g. FORTRAN) which allows the development of code directly

on the device (2,3). Wile this is a convenient solution, it does not

provide optimum utilization of the hardware. Furthermore, it is often

required to rewrite some key routines in order to approach the

potential of the system. Whereas, the relative inefficiency of this

approach is tolerable on a powerful machine, such as the CRAY2 or

CYBEI 205, it is our opinion that a more efficient approach is needed

to use the less potent array processors. Refs. (11-12) report

examples of the use of array processors in finite element analysis

for restructured existing codes. Ref. (12) is particularly
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" interesting since it does demonstrate most impressive performance

figures, using the specialized FORTRAN compiler. In the opinion of
, r

- the authors, the machine used has both scalar and vector processing

hardware, and cannot be directly compared to the attached processor

examined in this paper, which has only vector functions, and is

considerably less expensive.

In addition to the complexity of vector processing, another

equally important issue is that of handling large data bases

associated with large problems. Scientific and engineering users

typically employ FORTRAN and would prefer to avoid creating complex

data structures on disk. The most popular approach today appears to

be the use of virtual memory systems which alleviate the need for

out-of-core programing, but not necessarily system initiated disk

I/O operations. Here again, convenience takes precedence over

efficiency. And, although state of the art virtual systems perform

relatively well, they are not, in our view, well suited for extensive

computations. This is particularly true if vector devices are

employed and where the flow of data from and to backing storage is an

important issue (4-9).

In this paper, we propose the design of user-oriented software, to

support the solution of large problems by engineers and scientists

using a 64-bit array processor which shares memory with a 32-bit

minicomputer. The concept proposed would alleviate much of the
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--"problems encountered by the applications programmer and the

q(., researcher. It provides the user with tools to help in the creation

'i and manipulation of large matrices using the hypermatrix scheme.

.. Reference (10) studies a similar scheme in the case of the CDC

- .... STAR-100 super computer.

.

.-,

rOle tenbcntre by r th aopliationshv beern estalshd, th

number of processors permit their use in complex computations. After

t'3

experimentation with this approach, it appears that the availability

of such processors also in subroutine form may be desirable for

certain complex algorithms. Some results from the solution of 3-D

frame structures using finite element analysis are included to

validate the proposed software and measure its performance. The

results presented here are of a preliminary nature. Further

refinements of these concepts are anticipated.

NOMENCLATURE

U : Total number of unknowns in the problem.

3 : Size of the submatrix.

NEL : Total number of elements.

NND : Total number of nodes.

b : Half bandwith.

' '"1" " '% " W V',w'"'_3.' ,0 ,'';' , ',, ' 
.
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B : Number of submatrices/half row.

P : Total number of partitions.

HC32 : 32-bit minicomputer.

AP64 : 64-bit array processor.

2. THE CCMPUTER CONFIGURATION

The computer system used in the research consists of a low-end

32-bit minicomputer and a 64-bit Array Processor. The minicomputer

" may have an address space as large as 16MB and has a data bus with a

maximum speed of (26.5 MBps). The host and the array processor are

connected via a high speed common memory interface which minimizes

the input/output transfer time between them (Fig. 1). The details of

the computer configuration are given in Ref.(9).

3. SOMFTARE DESIGN

A simple approach to the design of general purpose structural

analysis software to handle large problems using basic hypermatrix

operations is proposed and developed. For the purpose of comparison

and to assess the effectiveness of the array processor in speeding up

the computation, the same algorithms are implemented on the

minicomputer alone, as well as on the minicomputer/array processor

-' -- " •'
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Figure 1 Basic Structure of the Computer Configuration.
(AP6LI.,.C 32).

comination.

As mentioned before, two conflicting factors must be considered in

-software development; namely, convenience and efficiency. The first

factor is important if the system is to be used by engineers for

researchl and for applications software developuent. The second factor

is equally important if the analysis is to be timely and economical.

Both efficiency and convenience are considered, to a certain extent,

in the design of the software discussed herein.

*Attached (array) processors have an impressive cost-performance

ratio (9). Although it is possible to program an array processor

directly by using a special (machine) programing language, this

4 -*am ,, .. ,".
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should be avoided as much as possible in applications. In the

development of the proposed software, we have used the manufacturer

supplied software; although, one might, in the future, enhance it by

writing additional routines. From the point of view of the software

user, the presence of the array processor is made as transparent as

possible. According to this approach, the user exercises the system

in two modes. During the first stage, the basic matrices required for

the computation are established using a special subroutine library,

which constitutes the first part of the software. In the second

stage, these matrices are used to perform the required computations,

using canned processors which form the second part of the proposed

system. In an iterative or repetitive situation, such as that

encountered in nonlinear computations, the two phases are entered

alternately throughout the process. For time critical operations, it

is possible, in principle, to merge several primary processors into a

more complex one. The best way to do this is to provide the

processors also in subroutine form, as part of a higher level

library.

The software uses the hypermatrix representation, which is, in our

view, an ideal candidate for array (vector) processing. A reasonably

simple data structure is used, to avoid unnecessary complications at

this stage. Nevertheless, the system is designed to handle 10OCC

degrees of freedom. For efficient operation, a half bandwith of 8C0
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to 850 may be achieved, using double precision, with a 3 to 4 MB

pcontrol memory.

Time consuming computational procedures, suited for vector

operations are transferred to the array processor. In addition, to

minimize the overhead time associated with minicomputer/arrF'

processor communication, calls to the array processor are performe

whenever possible, as group calls, Vector Function Control Blocks

vendor software terminology.

In swmary, the software package consists of two main parts, a

user library and the matrix processors. The first is loaded with the

user program and aids in the creation and manipulation of the data

base. The second part is a collection of independent programs to be

invoked by the user, or by a suitable executive, in the correct

order, to perform a specific computational sequence.

3.1 STORAGE OF MATRICES:

Each matrix is stored in hypermatrix form and identified by a

unique name consisting of four characters. Each hypermatrix is stored

in the form of two disk files: a sequential access file, in which

directory information is stored; and a random access file, in which

only the nonzero submatrices are stored. During the execution of a

matrix processor, provisions are made for the storage of directory

,,.,'."
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N information for three hypermatrices and three associated submatrices.

In other words, each processor may have as many as three active

operands at one time. Before an operation involving a matrix is

performed, its directory is transferred into the core. After

completion of the operation, the updated directory is written back on

disk.

The directory information for a hypermatrix includes the name of

the matrix, the number of row and column partitions and the total

number of rows and columns. In addition, it contains a list of the

number of columns per column partition, a list of the number of rows

per row partition, a list of the number of nonzero submatrices per

*row partition, and another giving the number of the first row

relative to the complete matrix within a row partition and a similar

list for column partitions. Two auxiliary arrays z-re also present,

giving the location of each nonzero submatrix within the matrix and

the record number at which it is stored within the random access

file. The maximum allowable submatrix size is currently 50 by 50. Due

to the current core limitation on the system, the number of nonzero

submtrices is limited to 3000. The system presently allows a maximum

of 200 partitions, permitting hypermatrices of the order of 10000 by

10000, with an average (half) bandwidth of 750.

N

|' .- . ,. , -.. -. % - , -. -. -.- -.. .. - . .. . . . .-. . . .~
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3.2 USER LIBRARY:

The user FORTRAN subroutine library is a tool for the creation and

manipulation of hypermatrices. Via the library, the user may access

matrix files, extract and deposit data, as well as manipulate them in

a simple manner. Although the exact definition of the subroutines may

be regarded as a matter of detail, an overview of the ones currently

available would give some insight into the matter of the user

library. The following subroutines have been included:

CREM
Creates a hypermatrix, by creating two files, one random accsess

and one sequential. It requires the name of the hypermatrix, its size
and partitioning scheme.

OPtI
Opens the files of an existing hypermatrix, given its name.

Transfers directory information from disk to core in preparation for
mathematical manipulations involving the hypermatrix.

CLSM
Stores directory information of a hypermatrix from core onto its

sequential file and closes the matrix files.

DEL14
Deletes the files of a hypermatrix and frees the corresponding

core storage locations.
4ADDB

.Adds a block onto a hypermatrix given its name, block size,
5' starting row and column addressed for the destination.

SUBB
Subtracts a block from a hypermatrix given its name, block size

and starting row and column addresses of destination.

M.:-
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Adds a mapped block onto a hypermatrix given the block size, and
lists of column and row addresses to be used in the mapping.

SLIlE
Subtracts a mapped block from a hypermatrix given the block size,

and lists of column and row addresses.

INSB
Inserts a block into a hypermatrix given the block size end

starting address.

EXTB
VExtracts a block frm a matrix given the block size and starting

address.

INSMB
Inserts a mapped block into a matrix given the block size, and

lists of row and column addresses.

EXThB
Extracts a mapped block from a matrix given the block size, and

lists of row and column addresses.

CREV
Creates two hypervector files; one random and one sequential,

given vector name, size and partitioning scheme.

OPNV
Opens the files for an existing hypervector, given the vector

name.

CLZV
Stores directory information of a hypervector from core onto the

sequential file and closes the hypervector files.

DELV
Deletes hynervector files and frees the corresponding core storage

location.

CREVTR
Creates a sequential (unpartitioned) vector file given the vector

name and the size.

4,' !v p , ; A', , " ' % 'a, .. ',.<-'....-..-. -";'"":-.-"v "" '..... ' ''' ' .'v
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OPNVTR
Opens an existing (unpartitioned) vector file given the vector

RDVTR
Reads (unpartitioned) vector file from the disk.

WRVTRWrites (unpartitioned) vector file to the disk.

3.3 MATRIX PROCESSORS:

The matrix processors are independent programs which perform

specific hypermatrix operations and thereby allow the solution of

linear and nonlinear structural problems efficiently and

conveniently. The processors described in this section are considered

primitives to be used in constructing nonlinear algorithms. They do

not incorporate, as of yet, a control structure (executive). This may

be done by using operating system commands, or by providing the

processors in submatrix form and writing a main program to serve as

the executive. The processors envisioned in the experimental software

package are given below:

Adds two hypermatrices and stores the result in the form of a
third hypermatrix.

M14ST
Subtracts two hypermatrices and stores the result into a third

hypermatrix.

9 * , '' ,- . '' ," - ',.' . . . . ' *
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MSI4L
Multiplies a hypermatrix by a scalar value.

Multiplies a hypermatrix by a vector.

Performs the multiplication operation on two given hypermatrices.
The result is stored into a third hypermatrix.

MTR
MT Takes the transpose of a given hypermatrix and stores it as a
second hypermatrix.

Multiplies the transpose of a hypermatrix by another hypermatrix
and stores the result as a third hypermatrix.

SYDEC
Decomposes a given symmetric hypermatrix into the L D U form using

a generalized Cholesky scheme. In addition, finds the value of its
determinant.

.. MEW'

., Calculates a specified number of eigenvalues and eigenvectors of a
given hypermatrix.

FRDBST
Using the upper triangular part, U, of a symmetric coefficient

decomposed hypermatrix and a given right hand side vector, the
processor calculates the unknown vector.

KDET
Finds the value of the determinant of a given hypermatrix.

4. TYPICAL PROCEDURE FOR NONLINEAR FINITE ELEMENT ANALYSIS

A typical procedure for the solution of a nonlinear structural

problem, using the finite element method, is shown in Fig. 2. In

general, a static or dynamic nonlinear finite element analysis,

including geometric and material nonlinearities, is accomplished

,.-
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using an incremental formulation. The relevant variables are updated

'0 incrementally at successive load or time steps (steps 3,4,5,6,7,8 in

Fig. 2) in order to trace out the complete solution path.

In static analysis, for example, the governing incremental finite

element equations of the discretized model can be expressed in the

following form:

[K]{AD) = (R) - (SI

where [K] is the tangent stiffness matrix corresponding to the

configuration of the system at the current load level; [AD} is the

vector of incremental nodal point displacements; [R} is the vector of

S.. externally applied nodal point loads; and (S} is the vector of nodal

point forces equivalent to the internal stresses at the given load

level. The resultant forces (AR) (=(R}-{S)) are called 'residual' or

'out of balance' forces and for nodal equilibrium, they should

vanish. Since an approximate solution is used, the [AR) vector is

nonzero. In most cases, to ensure sufficiently accurate and stable

solutions, equilibrium iterations are performed for each load step to

reduce A R to an acceptable magnitude.

By employing the well known Newton-Raphsn method (13-15) as a

representative solution scheme, the iterative solution procedure

(steps 4,5,6,7 in Fig. 2) may be more accurately described by the

equations:
.4.,,

5~i

* S - *-4
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[Kli{AD)i+1 {R} - {S}i

(D)i+1 a (D)i + {AD)i+1

where Ki and [S]i are based on the current displacements {D}i

and are usually formed by assembling contributions from all elements.

[K~i, [S]i and {Dli are updated after each cycle. Therefore, each

iterative cycle involves assembly and factorization of the tangent

•.. stiffness matrix, computation of the residual forces, and the

solution of a system of linear algebraic equations to find the

displacements. After convergence at a given load level, external.

loads are incremented again to find the new equilibrium

configuration.

The equilibrium iterations use matrix and vector operations

repeatedly. The question here is whether the introduction of array

processing would produce a significant speed up of the computation.

This question can only be resolved by breaking down the overall

process in its most elementary blocks, taking accurate measurements

of the time required for their performance, constructing accurate

parametric formulae reflecting these measurements and then imbedding

them in a carefully designed simulator. Finally, representative

problems must be selected and run, in conjunction with the simulator.

F% '--
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5. PERFORMANCE MEASUREMENTS

Time measurements of basic I/0 and computational operations are

the starting point for the design of the code modules. They are

indispensible for the writing of efficient code. In addition, such

measurements are invaluable for the design of simulators which help

to optimize the processors without need for running large problems.

Eventhough it is possible to estimate some of the measured values

directly from vendor supplied hardware characteristics, we have found

it more reliable to base such figures on actual time measurements.
%4.
',

.5.1 TIME MEASUREMENTS CF VECTOR AND MATRIX OPERATICNS

Elapsed time measurements for certain basic vector and matrix

operations have been taken for both the host computer, and the array

processor. Table 1 summarizes the vector measurements. Table 2

summarizes time measurements for matrix operations. For operation on
50OXI vectors, the speed up factor ranges from 1.05 for vector clear

to 3.5 for vector scalar multiplication. For IOOCOXI vectors, the

corresponding factors are 5.8 and 22.9, the later for the dot

product. It is clear that, in order to obtain a significant speed

advantage, unrealistically long vectors are required. The matrix

operations, on the other hand, show substantial speed up ratios

ranging from 11.5 for (10X10) matrices to 42.3 for (I0OXI00) matrices

in matrix multiplication and 24.6 to 83.0 for matrix inversion.

• + -* .' .. - '% : + . > +. ?> .i. / /
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'-"? ,Matrix vector multiplication shows smaller speed-up factors of 1.35

a'..

,. to 28.8.

Vector Dot Vector Vector Vector Vector Vector
_..Size Product Clear Add Subtract Sc. Mult. Division

HC32 AP64 HC32 AP64 HC32 AP64 HC32 AP64 HC32 AP64 HC32 AP64

\ 100 3.3 4.4 0.8 3.5 1.8 4.9 1.8 4.9 3.0 3.9 5.3 a.3
S625 20.6 5.0 5.1 4,1 10.5 5.7 10.5 5.7 18.8 4.5 33.1 9.0
S2500 83.1 6.9 20.2 6.1 42.0 8.9 41.8 8.9 75.1 6.5 132.2 21.9

S5625 186.7 10.1 45.4 9.2 94.5 14.1 93.9 14.1 168.9 9.7 297.3 43.5
S10000 336.5 14.7 80.7 13.8 167.7 21.5 166.8 21.5 299.3 14.2 529.4 73.8

: -Table 1. Elapsed Time for Double Precision Vector Operations.
.:' (Times in msecs. )

SMATRIX Matrix Matrix Matrix Vector
WSIZE Inverse Multiplication Multiplication

HC32 AP64 H-C32 AP64I HC32 AP64

10X10 80 3.25 47 4.1 4.2 3.12
S25X25 1400 20.0 81.4 20.2 25.23 3.75

S50X50 12100. 160.0 5833 140.5 100.27 5.98
S75X75 43900 527.0 20435 467.1I 225.3 9.71

IOOXI00 103700 1250.0 46679 1103 400.42 13-93

Table 2. Timing of Double Precision Matrix Operations.
(Times in msec3. )

.i*i



4.

19

5.2 TIME MEASUREMENTS FOR INPUT/OUTPUT (I/C) OPERATIONS

Two different types of input/output (data transfer) o 'rations are

encountered; transfers between the host and array processor memories

and I/0 transfers between the host memory and the disk. Since the

computer configuration used in the research has a common memory-

interface, the number of transfers of the first type is minimized. In

a conventional host/array processor interface (8,9), the host

transfer overhead was about 12 milliseconds. With the current common

memory interface, the overhead is reduced to 3 milliseconds.

Measurements listed in Tables 3 and 4 show that I/O transfer times

between the host and the disk are too high. As a matter of fact, it

takes 3.3 times longer to transfer a (50X50) matrix than to multiply

two such matrices together. Examining the time measurements

carefully, it appears that there is a disk latency of 15 msecs. and a

transfer rate of less then 0.04 MBps. This poor performance is

clearly due to inefficient FORTRAN I/O routines. We believe that

these transfer times can be reduced significantly, as was reported in

Ref.(11) and we hope to report on this in the future. Meanwhile, we

shall, later on in this paper, examine the effect of I/O transfer

speed up.

-V v . >' ; S;5 ? 5> : .. .: < . - , . ..-. ,. - ............
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Vector Write or Read
Size Elapsed CPU

.1 100 30 14.0
625 120 73.8

2500 470 291.3
5625 920 580.1
10000 1850 1159.0

Table 3 Double Precision Vector Read/Write From a Sequential
Unformatted File. (Time in msecs.)

Matrix Write or Read
Size Elapsed CPU

1OX10 50 14
25X25 130 74
50X50 470 292
75X75 1030 653

100X100 1790 1161

Table 4 Double Precision Matrix Read/Write From a Random Unblocked
File. (Time in msecs.)

6. SIMULATOR DESIGN

The simulator is a collection of subroutines. The primary group

mimics the time consuming operations, such as matrix arithmetic and

matrix I/O operations. The package collects operational statistics,

amongst which are the number of operations and their type, along with

the estimated CPU and Elapsed times for the complete process.
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Although, in principle, no I/O or computational operations are

executed, the computation can not be correctly simulated without the

preservation of the hypermatrix data structure. This means that the

hypermatrix directories must be generated and stored, but not the

submatrices themselves.

In addition to that, the library and processors of the solution

package use core buffering to eliminate unnecessary I/O transfers.

The number of submatrices resident in the buffer is a function of

available core space and greatly influences processor performance.

This number is one of the parameters defined in the simulator.

The simulator is a valuable tool for developing and analyzing new

algorithms in a complex hardware environment. Its value, in our case,

is particularly great due to its low cost. In addition, its

flexibility allows easy software modifications (4,16). The time

measurements taken above represent an important and difficult part of

the simulator design. Cthers include the careful exclusion of

measurement noise, selection of the appropriate parameters and

asumming a stable measurement environment.

", %%C ,, ' ); ,'.;?:3;;:;.; ,.a. ; ' ?. .' .. .. • '-.. .-... ....-.-
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7. APPLICATION TO REPRESENTATIVE PROBLEMS

7.1 SELECTION OF THE PROBLEM

In order to demonstrate the software performance, a 3-D frame

structure model (Fig. 3) is selected. Three different cases are

considered using the same general topology. The first example has

1890 degrees of freedom (d.o.f.) with a half bandwith (h.b.w.) of

240. The second has 3852 d.o.f, with h.b.w.= 336; and the last one

has 8736 d.o.f., with h.b.w.= 432.

For all of the cases, the following assumptions are made: the

Vi submatrix size is 48 by 48, the core is large enough to store up to

91 such subnatrices (maximum half bandwith for efficient

operation=624 and core required = 2MB) and the load vector is assumed

to reside fully in core.

7.2 RELATIVE PERFORMANCE

Of the nmerous vector and matrix operations involved in the

inoremental Newton-Raphson iteration procedure, only two processors

4 appear to benefit significantly from vectorization via a "subroutine

box". These operations are characterized by extensive repetitive

,omputational requirements compared to I/O operations. Furthermore, a

minim= size of vectors and submatrices is needed before the

operations may benefit from the use of an array processor (9). It is

possible, in our view, to speed up some of the other processors as
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L

F3er

exapleure two p- rme andidte fodel.rztn-r hemti

decmposition processor (SYDEC) and the forward and backward

substitution processor (FRDBST).

A sinary of the simulator results are given in Tables 5-7 for the

cases described above. A speed up factor of 15.6 to 22.6 is obtained

for the decomposition by using the attached array processor Figs.

4-5. The speed up factor increases with problem size. Cn the other

hand, the speed up factor for the forward-b-ckward substitution

.4., , # , .. ,.4< * < % ,. - ,., . . .'. F ,'v '...-v... -,: . -. .. . - .. . - -/ . . - .
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decreases slightly with problem size, from 4.6 to 3.4, Fig. 5.

Tables (8.a-c) presents the detailed breakdown of the operations

within the decoMposition processor for all three examples. It also

gives the total time taken for each class of operation. Upon careful

examination of the data, it appears that a substantial speed up of

the I/O operations, which is possible in our opinion, would cause a

marked additional speed up by, perhaps, a factor of 2, as described

later.

PROCESSOR CPU Time ELAPSED Time
HC32 HC32+AP64 HC32 HC32+AP64

DATA 158 158 224 224
LOAD 2 2 7 7
STIFF 283 283 357 357
SYDEC 3145 150 3202 205
FRDBST 556 81 606 131
STRESS 128 128 240 240
CONV 1 1 3 3
OUTPUT 1 1 6 6

Table 5 Relative Performance of Host vs. Host/AP for
an 1890 d.o.f. Frame Structure. Time in secs.
(NNID=315, NEL=378, b=240, M=N=3, L-=7).

• ",a. .". . , ..- . -. . .:. , -.- / . . . .- .. . . .
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PROCESSOR CPU Time ELAPSED Time
HC32 HC32+AP64 HC32 HC32+AP64

DATA 324 324 454 454
LOAD 3 3 9 9
STIFF 584 584 733 733
SYDEC 10041 418 10162 537
FRDBST 1182 207 1305 330
STRESS 265 265 493 493
CONV 1 1 3 3
CUTPUT 2 2 10 10

Table 6 Relative Performance of Host vs. Host/AP for a
3852 d.o.f. Frame Structure. (Time in sees.)
(NND=642, NEL=783, b=336, M=4, N=3, L=10).

PROCESSOR CPU Time ELAPSED Time
HC32 HC32+AP64 HC32 HC32+AP64

DATA 741 741 1031 1031
LOAD 7 6 15 13
STIFF 1317 1317 1642 1642
SYDEC 34879 1273 35161 1558
FRDBST 2804 579 3139 913
STRESS 608 608 1129 1129
CONV 2 2 7 4
OUTPUT 5 5 20 20

Table 7 Relative Performance of host vs. host/AP for an 8736 d.o.f.
Frame Structure. (Time in sees.)
(NND=1436, NEL=1800, b=432, M=N=4, L=16).

Returning now to the Newton-Raphson method, it is possible to

estimate the overall speed up factors for the basic load increment

loop, as well as for the equilibrium iteration loop. Tables (9.a-c)

shows that an increment of load, followed by a recomputation and

decomposition of the stiffness matrix and a computation of the
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displacement increment and residual forces, is speeded up by a factor

of 4.70 (1890 d.o.f) to 7.82 (8736 d.o.f.). On the other hand, one

equilibrium iteration was speeded up by 2.28 to 2.09. One might call

this an appreciable improvement, although not spectacular. It is

hoped that careful optimization of the I/O transfer speed will

produce better ratios.
-p

A'

OPERATION ELAPSED TIME per NUMBER of TOTAL TIME
Type OPERATION OPERATIONS

HC32 HC32+AP64 HC32 HC32+AP64

Matrix Read 0.470 0.470 130 61 61
Matrix Write 0.470 0.470 143 67 67
Matrix Multiply 5.173 0.125 505 2612 63
Matrix Inversion 11.491 0.141 39 448 5
Others 14 9
Total 3202 205

Table 8.a Distribution of Elapsed Time in Decomposition.
VTime in Sees. (U=1890).

OPERATION ELAPSED TIME per NUMBER of TCTAL TIME
Type OPERATION CPERATIONS

HC32 FIC32+AP64 HC32 HC32+AP64

Matrix Read 0.470 0.470 271 127 127
Matrix Write 0.470 0.470 364 171 171
Matrix Multiply 5.173 0.125 1725 8923 216
Matrix Inversion 11.491 0.141 80 919 11
Others 22 12
Total 10162 537

Table 8.b Distribution of Elapsed Time in Decomposition.

Time in Sees. (U=3852).

4 , , .: .-.: ..; ,. - , .,.., .,., . . .",; . .
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OPERATION ELAPSED TIME per NUMBER of TOTAL TIME
Type OPERATION OPERATIONS

HC32 HC32+AP64 HC32 HC32+AP64

Matrix Read 0.470 0.470 551 259 259
Matrix Write 0.470 0.470 1008 474 474
Matrix Multiply 5.173 0.125 6246 32311 781
Matrix Inversion 11.491 0.141 181 2080 26
Others 37 18
Total 35161 1558

4' Table 8.c Distribution of Elapsed Time in Decomposition.
Time in Secs. (U=8736).

ELAPSED TINE SPEED UP FACTOR
HC32 HC32+AP64

LOAD CYCLE

Load Increment 6 6
Stiffness Assembly 357 357
Decomposition 3202 205 15.62
Displacement 606 131 4.63
Stresses 240 240
TOTAL 4411 939 4.70

EQUILIBRIUM ITERATIONS

Displacement 606 131 4.63
Stresses 240 240
TOTAL 846 371 2.28

Table 9.a Speed up Factors For The Modified Newton-Raphson Procedure
Using an Array Processor. (U=1890).
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ELAPSED TIME SPEED UP FACTOR
HC32 HC32+AP64

LOAD CYCLE

Load Increment 8 8
Stiffness Assembly 733 733
Decomposition 10162 537 18.92
Displacement 1305 330 3.95
Stresses 493 493
TOTAL 12701 2101 6.05

4EQUILIBRIUM ITERATIONS
Displacement 1305 330 3.95
Stresses 493 493
TOTAL 1798 823 2.18

Table 9.b Speed up Factors For The Modified Newton-Raphson Procedure

Using an Array Processor. (U=3852).

ELAPSED TIME SPEED UP FACTOR
HC32 HC32 AP64

LOAD CYCLE

Load Increment 15 13
Stiffness Assembly 1642 1642
Decomposition 35161 1558 22.57
Displacement 3139 913 3.44
Stresses 1129 1129
TOTAL 41084 5253 7.82

EQUILIBRIUM ITERATIONS

Displacement 3139 913 3.44
Stresses 1127 1127
TOTAL 4266 2040 2.09

Table 9.c Speed up Factors For The Modified Newton-Raphson Procedure
Using an Array Processor.(U=8736).
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7.3 EFFECT GF BUFFERING

In the decomposition processor, the I/O transfer time constitutes

presently up to 60 per cent of the total execution elapsed time for-.%i
the AP64+32 configuration, Tables (8.a-c). In order to improve the

execution speed and increase the speed up factor, I/O transfers

should be minimized. A standard technique in non-virtual memory

systems is to use part of the core as a buffer. The goal is to read

and write each stiffness submatrix only once. This can only be

achieved if the number of submatrices in the buffer is larger than

B(B+1)/2, where B is the integer part of ((b-1)/s+2). If the number

* is less than that, unnecessary I/0 operations (thrashing) will

result. In order to investigate the effect of buffer size in the

decomposition process and illustrate the above point, time

measurements were taken for different buffer sizes(Fig. 6). Larger

buffers increase the speed up factor, until the maximum is reached at

the critical buffer size (Fig. 7). It is clear that, while the

buffering effect is minimal for the HC32 alone, it is crucial for the

HC32.AP64 ombination. More details are given in Tables (10.a,b).

4**9
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Buffer Size Number of Subatrix CPU Time Speed up
(No. of Submat.) Reads/Writes HC32 HC32+AP64 Factor

5 6067 36494 2883 12.7
" 10 4837 36135 2525 14.3

25 2174 35356 1748 20.2
45 551 34879 1273 27.4
50 551 34879 1273 27.4
100 551 34879 1273 27.4

Table 10.a Effect of Buffer Size on SYDEC CPU Time.
(U=8736, NND=1436, NELt1800, b=432, B=9).

* Optimum Buffer size is 45.

Buffer Size Number of Submatrix Elapsed Time Speed up
(No. of Submat.) Reads/Writes HC32 HC32+AP64 Factor

5 6067 37747 4152 9.1
10 4837 37173 3573 10.4
25 2174 35924 2323 15.5
45 551 35161 1558 22.6
50 551 35161 1558 22.6
100 551 35161 1558 22.6

Table 10.b Effect of Buffer size on SYDEC Elapsed Time.
(U=8736, NND=1436, NEL=1800, b=432, B=9)
Optimum buffer size is 45.

8. EFFECT OF RELATIVE PERFORMANCE OF SYSTEM COMPONENTS

The results shown in this paper are based on experience with

specific hardware. One of the aims of the research is to reach

general conclusions regarding the profitability of the addition of an

array processor of the type selected (subroutine box) to a typical

minicomputer or personal work station. ne might, at this stage,
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extrapolate these results in order to reach more general conclusions.

Due to the lack of time, however, the discussion is restricted to the

deCoPsition processor performance. This is justified, since this

processor represents the most crucial part in nonlinear analysis.

One of the first questions that comes to mind is the effect of

more efficient I/O operations. It is clear that an increase in the

I/O rate would produce an improved speed up ratio. On the other hand,

the relationship between the I/O speed and the speed of the host

computer and the array processor is an important factor which should

"., be investigated.

Examining the operation counts for the large frame problem and

extrapolating from them, assuming different host computer, array

processor and I/O transfer speeds, interesting information is

obtained and plotted in Figs.(8) and (9). The basic configuration is

that of a host capable of 0.465 Mips (based on manufacturers

specifications), an array processor capable of 1.82 MFLOPS in double

precision (based on measurements of matrix multiplication) and an I/O

transfer rate of 0.04 MBps (measured FORTRAN I/O). Since it is

possible to increase the transfer rate by writing assemly language

progrma, plots are given to demonstrate the variation of the speed

up factor as a function of the transfer rate. Transfer rates very

between 0.04 MBp ,which is the measured rate from the current

system, and 1.2 MBps ,which is the maximum transfer rate of a typical

- .~'~*x' 4.; -1'.~'K.~'\
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disk drive. In Fig. 6 the current array processor speed of 1.82

MFLOPS is used. Plots are included for different real and

hypothetical computers with speeds varying between 0.36 Mips to 2.5

Mips. One concludes from this figure that an array processor

increases the efficiency of a slower machine considerably for data

transfer rates above 0.15 MBps.

On the other hand, the array processor is not as effective for

faster minicomputers with speeds of 1 or 2 Mips; although, there

still is an appreciable speed up. We conclude also that the array

processor should be particularly effective with desk top computers,

since the effective speeds of these computers will be somewhat low.

It would be interesting to examine the speed up factor for a

hypothetical faster array processor. Assuming that, several years

from now, an array processor with a speed ten times faster will be

available. The speed up factor variations are shown in Fig. 9.

Careful examination of this figure indicates that the faster array

processor will greatly enhance host machines similar to those of

today. However, higher disk transfer rates would be beneficial, up to

1.2 MBps and more.

he believe that Figs. 8 and 9 will be helpful to investigators in

the selection of proper computer system components for a

multiprocessor environment.
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9. CONCLUSIONS AND FUTURE WORK

Software was designed to support the development of large-scale

nonlinear structural analysis programs in a multi-processor

environment. Then, using the designed software, an application.1

program was developed for the solution of large-scale nonlinear

structural analysis problems via the finite element method. In order

to predict the system performance under proper array processor

software with a minimal cost, a simulator is designed.

Important issues in adapting nonlinear analysis procedures to

array processors seem to be the proper task distribution between the

host and the array processor, as well as efficient disk operations.

The study gives preliminary results regarding the profitability of

array processors. The cost effectiveness depends on the relative

speed of the host and the array processor, as well as on the transfer

rate of the disk.
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