AD-A137 767 DESIGN OF ARRAY PROCESSDR SOFTHHRE FOR NONLINEAR
STRUCTURAL ANALYSIS(U> ARIZONA UNIY TUCSOM DEPT OF
REROSPACE AND MECHANICAL ENGINEERING N SARIGUL ET RL.
UNCLASSIFIED DEC 83 TR-18 NB8814-75-C-08837 F/G

R T

-y

o

NARTLS

LI

£

A

AR A

3

3 _}:“‘_3' B

i

Py

e te

v,

’

TN G e

'

1

t

e R T R T T T Y e e e
A

Lol g28 W2s
Lo & & o
——h—. w ™ 2.2
| ¥ W 20
s, :- ,"
E—— 1.8 1
1.25 "1.4 mn.b }
= =
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU 0F STANDARDS-1963-A
—— e,

O T S QT U I DAY, N, T ‘s e oo,

e
o

s

£y’

£
PR

g

]

4 e
P
[/0

ADA137767

UMC FILE COPY

P B AN A I A AR A A Sl M I R B St b s St st dnpe St i "“

N00014-75-C-0837

DESIGN OF ARRAY PROCESSOR SOFTWARE FOR NONLINEAR STRUCTURAL
ANALYSIS

N. Sarigul, M. Jin,
R. Kolar, and H. Kamel oo~
UNIVERSITY OF ARIZONA

Aerospace & Mechanical Engineering Department

Tucson, Arizona 85721

N _DTIC

NeovanibeT 2, 1983

Technical Report No. 10 7 E:

Approved for public release, distribution unlimited

Department of the Navy

Office of Naval Research
Bandelier Hall West

University of New Mexico
Albuquerque, New Mexico 87131

84 02 10 049

RO), L A S L-\i

N » v TS T TR T T TR T e Te T, &,
AR e iR R R s Bare it Artl AN L ST S P [A - . Tatvo. .

6. DISTRIBUTION STATEMENT (af this Repert)

o Unclassified
© SECURITY CLASSIFICATION OF TnIS PAGE When Dars Entered) _
- REPORT DOCUMENTATION PAGE Bargggncxgggﬁgggg":o“

:"_ . 1. REPORT NUMBER 2. GOVYT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

Technical Report No. 10 AD A137 T &

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

. DESIGN OF ARRAY PROCESSOR SOFTWARE FOR - .

ﬂ; NONLINEAR STRUCTURAL ANALYSIS Technical 6/82-12/83
i: 6. PERFORMING ORG. REPORT NUMBER
Y
*

_\: 7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(s)

L . . a

R Ssarigul N., Jin M., Kolar R. an

Kamel H.A. N0001475C0837

9. PERFOARMING ORGANIZATION NAME AND ADORESS 10. PROGRAM ELEMENT. PROJECT, TASK
University Of Arizona AREA & WORK UNIT NUMBERS
AME Dept. Bldg. 16, IGEL Room 204 NR 064-531/12-17-75
Tucson, Arizona 85721

11. CONTROLLING OFFICF NAME AND ADDRESS 12. REPORT DATE
Office of Naval Research /12/83
Bandelier Hall West 87131 13. NUMBER OF PAGES
University of New Mexico, Albuquerque 38

|73, MONITORING AGENCY NAME & ADDRESS(ii different lrom Controlling Office) | 15. SECURITY CL ASS. (of this report)

Unclassified

. Same as above.

§ 15e. DECL ASSIFICATION, DOWNGRADING
A SCHEDULE

¥

Approved for public release, distribution unlimited.

Fe,

-

."j

L8

3

t{, 17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if diiferent froem Report)

3 18. SUPPLEMENTARY NOTES

3 Presented at the ASME Winter Annual Meeting, Boston, MA,

- November 13-18, 1983.

: . 9. KEY WORODS (Continue on reverse eide if necessary and identily by block number) ;

- Array processors, finite element methods, nonlinear analysis,

software engineering.

y .

i’\ 20. ABSTRACT (Continue on reverse eirde ({ neceseary and identily by dlock numnbder)

A .

N This report discusses ongoing research on the solution of large-
scale nonlinear structural problems using a 32-bit minicomputer with
an attached 64-bit array processor that communicate via a common

i memory interface. This configuration is typical of what is seen re-

> presentative of future work stations with attached specialized pro-

:

|cessors. A user-oriented software package has been designed to
allow the use of the given computer configuration by a typical en-

FORM
DD 'S5 1473 toimion oF 1 nov 63 13 omsoLETE
S/N 0102.LF.014.8601

SECURITY CLASSIFICATION OF THIS PAGE (hen Data Entered)
RS SR N ' B T G S S S e PRI PO T T ~ ~ .-

S A S A A L AR P I T Yol

KB kT, ARG

)
J]
N Unclassified
SECURITY CLASSIFICATION OF TwiS PAGE /When Date Entered)
o —
f{ engineer or a scientific user without a detailed knowledge of the
-{ operation of the array processor or/and the complex data handling
T necessary to create and manipulate the data associated with the
solution of large problems. The software was then used to imple-
- ment typical building blocks of a nonlinear finite element code,
= and performance measurements were taken. Several test examples
- are considered using 3-D beam finite elements and the Newton
g Raphson solution scheme. The array processor could not be utilized
as yet, due to the lack of the proper vendor software. Hence, a
simulator was designed to predict the performance of the software.
- The simulator was based on reliable time measurements obtained from
< . previous work with the same array processor, using a l6-bit host
‘A | computer, as well as experiments with the current 32-bit host
L | computer.
3
Lo
'
<~
"
YA Y
)
K
D)
‘.
I::
2
-.'
-;;
)
\
X
*
.
o
o

FORM
DD an 72 1473 coiTion oF 1 NOv 6315 OBSOLETE
$/N 0102.LF 0146601

DA O TR TN SO O A AN L

v, R T P I T
. Vot EON LGNNI S PIIETEE P PR Nl R) IR .
AV ST UL R, O Pl P T e I I PR T A s A T I LI IR ST SR

S e

......................................

N o
X E:: 1 Mn i or _ #‘
k)
N el X |
8" . {
(I
J\’: s o _L——d‘
% .
L -
Ny
‘N |
B ,
;\'I DESIGN OF ARRAY PROCESSOR SCFTWARE FOR NONLINEAR : |
™) STRUCTURAL ANALYSIS A' I ; !
.‘\‘ ‘
Sarigul N., Jin M., Kolar R. and Kamel H.A.

} The University of Arizona

,_ﬁ Aerospace and Mechanical Engineering Department

3 .

Y

2 KABSTRACT

i This paper presents ongoing research on the solution of

large-scale nonlinear structural problems using a 32-bit minicomputer

o] with an attached 6i-bit array processor that communicate via 2 common

., memory interface. This configuration is typical of what we see &as

3R representative of future work stations with attached specialized

¥ processors. A user-oriented software package has been designed to

o+ allow the use of the given computer configuration by a typiczl

engineer or & scientific user without a detailed knowledge of the

X operation of the array processor or/and the complex datz handling

o necessary to create and manipulate the data associated with the

'fé% solution of large problems. The software was then used to implement

£ typical building blocks of a nonlinear finite element code, and

- performance measurements were taken. Several test examples are

o considered using 3-D beam finite elements and the Newton Raphson

e solution scheme. The array processor could not be utilized as vyet,

3:; due to the lack of the proper vendor software. Hence, a simulator was

) designed to predict the performance of the software. The simulator

vy was based on reliable time measurements obtained from previous work

: with the same array processor, using a 16=bit host computer, as well
as experiments with the current 32-bit host computer.

<_,w‘_,
XA
el
//
>

-)

‘i‘
R

PRI i L HASLI N WK S S N TaTo Al W Y W, T P T N R A R L S L R e
Syt T AY i "'\ 4% L4 ‘.\ Loy, A‘.'-&‘_\h_"‘:'..l“.}")\)'&a 40) J\i"\ ""n\ e .'jh\ DR LS E SN SR

. -‘l. :

RIS ae WSS i W

3
o

s

o

:gf* 2
.\.—’ 1. INTRCDUCTICN
ZE% The numerical solution of nonlinear problems in structural

y mechanics requires the extensive use of modern digital computers (1).

f' :; The demand it places on computer systems is such that the need for
::. increased performance is consténtly present. Today, state of the art

v camputer systems include high performance vector machines as well as
;3 less expensive devices, such as array processors. Apart from the use
‘::Z of such array processors in conjunction with minicomputers, we

‘ ; foresee the increased marketing of powerful wcrk stations with such

'EE%: attached devices. Sophisticated hafdware of this kind usually
_.S; requires complex programming techniques, if the full potential of the

, J system is to be realized. In general applications, users object to
.:2,:; the amount of effort needed to implement code in this fashion. OCne
;“ solution is to provide with the system a higher 1level langusge
%’H compiler (e.g. FORTRAN) which allows the development of code directly
on the device (2,3). While this is a convenient solution, it does not
;; provide optimum utilization of the hardware. Furthermore, it is often :
; required to rewrite some key routines in order to approach the i
potential of the system. Whereas, the relative inefficiency of this |
§§3 epproach is tolerable on & powerful machine, such as the CRAY2 or)
'. CYBER 205, it is our opinion that a more efficient approach is needed :
33 to use the less potent array processors. Refs. (11-12) report

; ";‘ examples of the use of array processors in finite element s&nalysis

{‘:{:’, for restruc.tured existing codes. Ref. (12) is particularly

¥

1
R S S
wta % “.‘{L\’:"‘ '1’}\\1'}1

-
l.’:

0 interesting since it does demonstrate most impressive performance
" figures, using the specialized FORTRAN compiler. In the opinion of
o

he the authors, the machine used has both scalar and vector processing
_‘* hardware, and cannot be directly compared to the attached processor
:IS; examined in this paper, which has only vector functions, and is
{A"

' considerably less expensive. ’

o

7

}3{ In addition to the complexity of vector processing, another
)

'é'» equally important issue is that of handling 1large dsta Dbases
w3 associated with 1large problems. Scientific and engineering users
X

‘\;_- typically empley FORTRAN and would prefer to avoid creating complex
3 data structures on disk. The most popular approach today appears to
‘:, be the use of virtual memory systems which alleviate the need for
o out-of-core programming, but not necessarily system initiated disk
-

&l

R I/C operations. Here again, convenience takes precedence over
_‘ efficiency. And, although state of the art virtuzsl systems perform
\ "3 ' relatively well, they are not, in our view, well suited for extensive
computations. This is particularly true if vector devices are
employed and where the flow of data from and to backing storage is an
‘. ’:

x| important issue (4-9).

V4

iy In this paper, we propose the design of user-oriented software to
o
support the solution of large problems by engineers and scientists
L2

;T using a €U-bit array processor which shares memory with a 32-bit
‘ minicomputer. The concept proposed would alleviate much of the
N
R

b

'

N

%2

. - . - . - - - DA N A L N N

BN P e M Ay st oA adERS R Sl o

oy
s

R[5

2 :

DI

:::::: problems encountered by the applications programmer and the
E« researcher. It provides the user with tools to help in the creation
™ and manipulation of large matrices using the hypermatrix scheme.
;.::-:: Refere'nce (10) studies a similar scheme in the case of the CDC
: STAR-100 super computer.

X

Once the basic matrices for a computation have been established, a
E;; number of processors permit their use in complex computations. After
133 experimentation with this approsch, it appears that the availability
Lt of such processors also in subroutine form may be desirable for
"% certain complex algorithms. Some results from the solution of 3-D
‘ frame structures using finite element analysis are included to
:‘:;, validate the proposed software and measure its performance. The
,\ results presented here are of a preliminary nature. Further
% refinements of these concepts are anticipated.

L

Y

1§} NOMENCLATURE

:f] : Total number of unknowns in the problem.

3t

o oaw -
)

~
1 <,

w

Size of the submatrix.

:{ ‘ NEL ¢ Total number of elements.
W)

s NND : Total number of nodes.
i b : Half bandwith.

"‘:t

e

R e A NN e S RN

NV A e T T S L S R SR S
S AMIADA

» “

I

o 5

N

o

7.},;.

- B : Number of submatrices/half row.

-3 P : Total number of partitions.

¥ -;¢

&5 HC32 : 32-bit minicomputer.

AN

N AP6A : 64-bit array processor.

‘\-:

Q)

jﬁz 2. THE COMPUTER CONFIGURATICN

RS

A The computer system used in the research consists of a low-end
o

“C 32-bit minicomputer and a 64-bit Array Processor. The minicomputer
('.

"",-‘ may have an address space as large as 16MB and has & data bus with s

R maximum speed of (26.5 MBps). The host and the array processor are
)

Ig connected via a high speed common memory interface which minimizes

% the input/output transfer time between them (Fig. 1). The details of

the computer configuration are given in Ref.(9).

e

Ry
& 3. SOFTWARE DESIGN

A simple approach to the design of general purpose structural
analysis software to handle large problems using basic hypermatrix
operations is proposed and developed. For the purpose of comparison

and to assess the effectiveness of the array processor in speeding up

the computation, the same algorithms sare implemented on the

minicomputer alone, as well as on the minicomputer/array processor

6
coap
e
SYSTIR
OC. MTT
ars
ARTDOECIC NEC. SCROLL aru |
~QLITATEE DY ‘
APD
ARTIRERIC PRCC. ONTT
~FAST FILOMTING POINT PROC.
sm1 Ars Aru
/ Y]
r
] SMTI
SEAED MOTRY DNTEREACY
~ADONESS CONERITNG

= Ff::L___ aur
REXOTE MOIRY DRERACE
HC32 EMORY| 4 TLC ~ORTA. PORMITING
o
| TLC

1/Q SYSTEM Cermoum

Figure 1 Basic Structure of the Computer Configuration.
(APE4+HC32) .

combination.

As mentioned before, two conflicting factors must be considered in
software development; namely, convenience and efficiency. The first
factor is important if the syétem is to be used by engineers for
research and for applications software development. The second factor
is equally important if the anslysis is to be timely and economical.
Both efficiency and convenience are considered, to a certain extent,

in the design of the software discussed herein.

Attached (array) processors have an impressive cost-performance

ratio (9). Although it is possible to program an array processor

directly by using a special (machine) programming language, this

-~ "-“"\ ". - f. ‘..
N A

should be avoided as much as possible in applications. In the
development of the proposed software, we have used the manufacturer
supplied software; although, one might, in the future, enhance it by
writing additional routines. From the point of view of the softwzre
user, the presence of the array processor is made as transparent as
possible. According to this approach, the user exercises the system
in two modes. During the first stage, the basic matrices required for
the computation are established using a special subroutine librery,
which constitutes the first part of the software. In the second
stage, these matrices are used to perform the required computations,
using canned processors which form the second part of the proposed
system. In an iterative or repetitive situation, such as that
encountered in nonlinear computations, the two phases are entered
alternately throughout the process. For time critical operations, it
is possible, in principle, to merge several primary processors into a
more complex one. The best way to do this is to provide the
processors also in subroutine form, as part of a higher level

library.

Thé software uses the hypermatrix representation, which is, in our
view, an ideal candidate for array (vector) processing. A reasonably
simple data structure is used, to avoid unnecessary complications at
this stage. Nevertheless, the system 1is designed to handle 1C0CC

degrees of freedom. For efficient operation, a half bandwith of &CO

...............

o Wi N > 5 v g . AT QT , . v TN T Ve g TR v 4 . e SRt e Tttt e et e s e s
S A Mo 1}"1‘ A N \\ LT 4T 4T 4 '-\"h'.\".\'.'-'.\,n"\"\ ERRIL P P AR P

CAy

.. - -
N PRI

..........

4

SN ey

ot s

AP

to 850 may be achieved, using double precision, with a 3 to 4 MB

control memory.

: 3 Time consuming computational procedures, suited for vector
) operations are transferred to the array processor. In addition, to
N minimize the overhcad time associated with minicomputer/arrs
\;; processor communication, calls to the array processor are performe

" whenever possible, as group calls, Vector Function Control Blocks
vendor software terminology.

‘ In summary, the software package consists of two main parts, a
, user library and the matrix processors. The first is loaded with the

user program and aids in the creation and manipulation of the data

base. The second part is a collection of independent programs to be

AT S e

invoked by the user, or by a suitable executive, in the correct

order, to perform a specific computational sequence.

3

3

3

A

- 3.1 STCRAGE OF MATRICES:

:J,E Each matrix is stored in hypermatrix form and identified by a
3,} unique name consisting of four characters. Each hypermatrix is stored

in the form of two disk files: a sequential access file, in which
directory information is stored; and a random access file, in which

s rand

only the nonzero submatrices are stored. During the execution of a

matrix processor, provisions are made for the storage of directory

e
-

-
Lt

-
’q:
.
iy
%
e
.
f
.
.

l., “

‘g
L}
-

r 5
.

oL

s 8 b
"

"!5

e X
Ty

JEANNE
AR

information for three hypermatrices and three associated submatrices.
In other words, each processor may have as many as three active
operands at one time. Before an operation involving a matrix is
performed, its directory is transferred into the core. After
campletion of the operation, the updated directory is written back on

disk.

The directory information for a hypermatrix includes the name of
the matrix, the number of row and column partitions and the total
number of rows and columns. In addition, it contains a 1list of the
number of cdlumns per column partition, a list of the number of rows
per row partition, a list of the number of nonzero submatrices per
row partition, and another giving the number of the first row
relative to the complete matrix within a row partition and a similar
list for column partitions. Two auxiliary errays cre also present,
giving the location of each nonzero submatrix within the matrix and
the record mumber at which it is stored within the random access
file. The maximum allowable submatrix size is currently 50 by 50. Due
to the current core limitation on the system, the number of nonzero
submstrices is limited to 3000. The system presently allows a maximum

of 200 partitions, permitting hypermatrices of the order of 10000 by

10000, with an average (half) bandwidth of 750.

]
Nl

A{-." ;

RS
ot

10

3.2 USER LIBRARY:

The user FORTRAN subroutine library is a tool for the creation and
manipulation of hypermatrices. Via the library, the user may access
matrix files, extract and deposit data, as well as manipulate them in
a simple manner. Although the exact definition of the subroutines may
be regarded as a matter of detail, an overview of the ones currently
available would give some insight into the matter of the user

library. The following subroutines have been included:

CREM
Creates a hypermatrix, by creating two files, one random accsess
and one sequential. It requires the name of the hypermatrix, its size
and partitioning scheme.

OPNM
Opens the files of an existing hypermatrix, given its name.
Transfers directory information from disk to core in preparation for
mathematical manipulations involving the hypermatrix.

CLSM
Stores directory information of a hypermatrix from core onto its
sequential file and closes the matrix files.

DELM
Deletes the files of a hypermatrix and frees the corresponding
core storage locations.

ADDB
~ Adds a block onto a hypermatrix given its name, block size,
starting row and column addressed for the destination.

SuBB
Subtracts a block from a hypermatrix given its name, block size
and starting row and column addresses of destination.

Ve
- *u
oS
I
7 . 1
g
\
y ':\.
o ALTMB
‘ix Adds a mapped block onto a hypermatrix given the block size, and
S : lists of column and row addresses to be used in the mapping.
SUBMB
A Subtracts a mapped block from a hypermatrix given the block size,
QE} : and lists of column and row addresses.
[,:
Jed INSB
NPy . Inserts a block into a hypermatrix given the block size and
starting address.
R
v EXTB
oy Extracts a block from a matrix given the block size and starting
ot address.
b1t |
: INSMB
*ﬁj Inserts a mapped block into a matrix given the block size, and
NN lists of row and column addresses.
::S EXTMB
.',',\
N Extracts a mapped block from a matrix given the block size, 2nd
" lists of row and column addresses.
AL
N CREV
tgi Creates two hypervector files; one random and one sequentizl,
.*?i given vector name, size and partitioning scheme.
. OPNV :
Q? Opens the files for an existing hypervector, given the vector
). name.
-
5:; CLSV
- Stores directory information of a hypervector from core onto the

i sequential file and closes the hypervector files.
l. -
_ i: DELV
)

2 Deletes hyrervector files and frees the cdrresponding core storage
Y location.

Ras!

i CREVTR

248 Creates a sequential (unpartitioned) vector file given the vector
ol name and the size.

i

=

;ésA

AR N P S MR T W \ 4" ~. YRR GGES
‘y PP \'.ng_ « e e L\’-.'(.uL' \R‘hh.(a™ e L\\l. 1'{

..

o 12

L

%

)

e GPNVTR

r.':?j. Opens an existing (unpartitioned) vector file given the vector

:’-" me-

x RDVTR |
- Reads (unpartitioned) vector file from the disk. |
- WRVTR ‘
X Writes (unpartitioned) vector file to the disk.

W

\ 3.3 MATRIX PROCESSORS:

"

%

b The matrix processors are independent programs which perform

:. specific hypermatrix operations and thereby allow the solution of

e

\ linear and nonlinear structural problems efficiently and

A

conveniently. The processors described in this section are considered

primitives to be used in constructing nonlinear algoritihms. They do

»
s Y

o
L

not incorporate, as of yet, a control structure (executive). This may

L

be done by using operating system commands, or by providing the
processors in submatrix form and writing a main program to serve as

the executive. The processors envisioned in the experimental software

NI

s
- package are given below:

o, MMAD

vy . Adds two hypermatrices and stores the result in the form of a
‘v. third hypermatrix.

MMST

", Subtracts two hypermatrices and stores the result into a third
’ hypermatrix.

B,

......
.........

RIS A -
o Wy UL P e ;-A'.'_'r_'i-"'_‘g’i

A S i i s dat AP vl i i il Sfel JPME Seuh L et ae Sl et LS ateirate- o

.
=% 13
o
!
W
- MSML
) Multiplies a hypermatrix by a scalar value.
\\‘
N MVML

Multiplies a hypermatrix by a vector.
N
o MMML
B Performs the multiplication operation on two given hypermatrices.
':‘;'. The result is stored into a third hypermatrix.
- MTR
o Takes the transpose of a given hypermatrix and stores it as a
e second hypermatrix.
'~_'- Multiplies the transpose of a hypermatrix by another hypermatrix
) and stores the result &as a third hypermatrix.
o SYDEC |
g.: Decomposes a given symmetric hypermatrix into the L D U form using
b o a generalized Cholesky scheme. In addition, finds the value of its
Lo determinant.
T, MEVV
Calculates a specified number of eigenvalues and eigenvectors of a
}:: given hypermatrix.
e FRDBST

Using the upper triangular part, U, of a symmetric coefficient
i decomposed hypermatrix and a given right hand side vector, the
{, processor calculates the unknown vector.
EN MDET
53 Finds the value of the determinant of a given hypermatrix.
“ 4. TYPICAL PROCEDURE FOR NONLINEAR FINITE ELEMENT ANALYSIS
N
?} A typical proqedure for the solution of a nonlinear structural
E problem, using the finite element method, is shown in Fig. 2. In
}E : general, a static or dynamic nonlinear finite element analysis,
i} including geometric and material nonlinearities, 1is accomplished
D
3
i
3
‘\
WY S RN N Y B T R o 1 s A N R L

...............

&Y
\
I
N 14
L
5
N using an incremental formulation. The relevant variables are updated
) "..q
e incrementally at successive load or time steps (steps 3,4,5,6,7,8 in
o Fig. 2) in order to trace out the complete solution path.
:{;3
o
::-_?: In static analysis, for example, the governing incremental finite
element equations of the discretized model can be expressed in the
! ‘ij following form:
159
32 | [K1{D} = {R} - {S}
‘£ where [K] is the tangent stiffness matrix corresponding to the
A5
P configuration of the system at the current load 1level; {AD} is the
433
) vector of incrementzl nodal point displzcements; {R} is the vector of
'xg externally applied nodal point loads; and {S} is the vector of nodsl
-y
;.‘ point forces equivalent to the internal stresses at the given load
‘.

level. The resultant forces {AR} (={R}-{S}) are called 'residual' or
'‘out of balance' forces and for nodal equilibrium, they should

vanish. Since an approximate solution is wused, the {aR} vector is

nonzero. In most cases, to ensure sufficiently accurate and stable
:; solutions, equilibrium iterations are performed for each load step to

ol reduce AR to an acceptable magnitude.

- By employing the well known Newton-Raphson method (13-15) as a

\‘ I
el \
'ﬁ; representative solution scheme, the iterative solution procedure \
%

._.! (steps 4,5,6,7 in Fig. 2) may be more accurately described by the ‘
equations: i
|

M_‘,; ——

-------- T e e AT N At
AT Y S I R SN
PR PPN, SR 1_"- S \’ 0 L W g ‘.-.

::: - RN h i e e B . A M S M M A AR
N

~

"y

5

;,s. 15

{ ;

= (K11{AD}+1 = (R} - (S}

-2 {D}i+1 = {D}1 + (AD}i+1

i:: where [K]i and [S]i are based on the current displacements {D}i |
. 3'2 and are usually formed by assembling contributions from all elements.
™ (Kli, [S]i and {D}i are updated. after each cycle. Therefore, each
;« iterative cycle involves assembly and factorization of the tangent
S‘ stiffness matrix, computation of the residual forces, and the
v solution of a system of 1linear algebraic equations to find the
-. displacements. After convergence at a given load 1level, external.
":gw loads are incremented again to find the new equilibrium
i configuration.

> The equilibrium iterations use matrix and vector operations
:3" repeatedly. The question here is whether the introduction of arrasy
processing would produce a significant speed up of the computetion.
:.E This question can only be resolved by breaking down the overall
f process in its most elementary blocks, taking accurate measurements
.; of the time required for their performance, constructing accurate
a parametric formulae reflecting these measurements and then imbedding
3, them in a carefully designed simulator. Finslly, representative
i : problems must be selected and run, in conjunction with the simulator.
%

3

PO L AR R |

h

'EQUILIBRIUM ITERATION LOOP

f

- n

..............

------- T

o -

o 5. PERFCRMANCE MEASUREMENTS

N Time measurements of basic I/C and computational operations are
the starting point for the design. of the code modules. They are

s indispensible for the writing of efficient code. In addition, such

measurements are invaluable for the design of simulators which help

to optimize the processors without need for running 1large problems.

j:; Eventhough it is possible to estimate some of the measured values
Qg directly from vendor supplied hardware characteristics, we have found

it more reliable to base such figures on actual time measurements.

e
.J.’:.
i
;3 5.1 TIME MEASUREMENTS CF VECTOR AND MATRIX OPERATICNS
QA Elapsed time measurements for certain basic vector and matrix
o
jﬁ operations have been taken for both the host computer, and the array
=N processor. Table 1 summarizes the vector measurements. Table 2
y" summarizes time measurements for matrix operations. For operation on
E X 500X1 vectors, the speed up factor ranges from 1.05 for vector cleer
1
iy to 3.5 for vector scalar multiplication. For 100C0X1 vectors, the
§¢ corresponding factors are 5.8 and 22.9, the later for the dot
\0
55; product. It is clear that, in order to obtain a significant speed
.
J

advantage, unrealistically 1long vectors are required. The metrix

operations, on the other hand, show substantial speed up ratios

~,' '

ranging from 11.5 for (10X10) maetrices to 42.3 for (10CX1CC) matrices

in matrix multiplication and 24.6 to 83.0 for matrix ianversion.

4 0 .l..l

o'y

i

-
BN
By
18
.
.-,:.
ij Matrix vector multiplication shows smaller speed-up factors of 1.35
.:~l
- to 28.8.
N
: Vector Dot Vector Vector Vector Vector Vector
o Size Product Clear Add Subtract Sc. Mult. Division
X HC32 AP64 HC32 AP64 HC32 AP64 HC32 AP64 HC32 AP6U HC32VAP6u
N 100 3.3 4.4 0.8 3.5 1.8 4.9 1.8 4.9 3.0 3.9 5.3 E.3
§.{ 625 20.6 5.0 5.1 4.1 10.5 5.7 10.5 5.7 18.8 4.5 32.1 9.0
1 2500 83.1 6.9 20.2 6.1 42.0 8.9 u41.8 8. 75.1 6.5 132.2 21.9
2 5625 186.7 10.1 45.4 9.2 94.5 14.1 3.9 14.1 168.9 9.7 297.3 43.5
hv 10000 336.5 14.7 8C.7 13.8 167.7 21.5 166.8 21.5 299.3 14.2 529.4 73.8
Table 1. Elapsed Time for Double Precision Vector Operations.

‘ (Times in msecs.)
3 MATRIX Matrix Matrix Matrix Vector
¥ SIZE Inverse Multiplication Multiplication
,\: HC32 AP6H HC32 AP6H HC32 AP6U

) 10X10 80 3.25 47 4.1 5.2 3.12

- 25X25 1400 2C.0 814 20.2 25.23 3.75
,4: 50X50 12100 160.0 5833 140.5 100.27 5.98
Q) ‘ 75X75 4390C 527.0 20435 467.1 225.3 9.71
t% 100X100 103700 1250.0 46679 1103 - 400.42 13.93

Table 2. Timing of Double Precision Matrix Operations.

¢ (Times in msecs.)
2,
>
7.
%
!
e
‘2
%

Lot TN A S

{57y

VEgERY. °.
LS

LA

.‘ % ;“'-_S

&

THRr .

¥,

e LA
Tata_a .

‘y g
T

o
A

M B e &

e Tl o
b 3

LI A 40 =Y 'y

19

5.2 TIME MEASUREMENTS FOR INPUT/OUTPUT (I/C) OPERATIONS

Two different types of input/output (data transfer) orerations are
encountered; transfers between the host and array processor memories

and I/0 transfers between the host memory and the disk. Sincé the

computer configuration used in the research has a common memory-

interface, the number of transfers of the first type is minimized. 1In
a conventional host/array processor interface (8,9), the host
transfer overhead was sbout 12 milliseconds. With the current common

memory interface, the overhead is reduced to 3 milliseconds.

Measurements listed in Tables 3 ard 4 show that I/O transfer times
between the host and the disk are too high. As a matter of fact, it
takes 3.3 times longer to transfer a (50X50Q) matrix than to multiply
two such matrices together. Examining the time measurements
carefully, it appears that there is a disk latency of 15 msecs. and a
transfer rate 9f less then 0.04 MBps. This poor performance is
clearly due to inefficient FORTRAN I/O routines. We believe thst
these transfer times can be reduced significantly, as was reported in
Ref.(11) and we hope to report on this in the future. Meanwhile, we
shall, later on in this paper, examine the effect of I/0 transfer

speed up.

YO\ -" ‘..' \v o’ \-.\r .-r\q::\' - .-.

..................
..........
‘‘‘‘‘

"1
s ‘a

54,08

‘c‘ LS50

LYY

. ‘Aﬁ:u'"'i'

RAAS -

-
a4 -
"
\7

v e
»

A

?
b
.
8,

Vector
Size

100
625
2500
5625
10000

.......

20

Write or Read
Elapsed CPU

30 14.0
120 73.8
470 291.3
920 580.1

1850 1159.0

Table 3 Double Precision Vector Read/Write From a Sequential
Unformatted File. (Time in msecs.)

Matrix
Size

10X10
25X25
50X50
T5X75
100X100

Write or Read

Elapsed CPU
50 14

130 T4
470 292
1030 653
1790 1161

Table 4 Double Precision Matrix Read/Write From a Random Unblocked
File. (Time in msecs.)

6. SIMULATOR DESIGN

The simulator is a collection of subroutines. The primary group

mimics the time consuming operations, such as matrix arithmetic and

matrix I/0 operations. The package collects operationsl statistics,

amongst which are the number of operations and their type, along with

the estimated CPU and Elapsed times for the complete process.

ORI P L A P T S UL UL S L oy A A T m Tt Y e e A .
ORISR ALY RS VG AN SN, 1T SR TR & SO R S N

:.. 21

é Although, in principle, no I/0O or computational operations are
,E executed, the computation can not be correctly simulated without the
. preservation of the hypermatrix data structure. This means that the
- hypermatrix directories must be generated and stored, but not the
§ submatrices themselves.

In addition to that, the library and processors of the solution
package use core buffering to eliminate unnecessary 1/0 transfers.
The number of submatrices resident in the buffer is & function of
%, available core space and greatly influences processor performance.

This number is one of the parameters defined in the simulator.

The simulator is a valuable tool for developing and analyzing new
algoritims in a complex hardware enviromment. Its value, in our case,
3 is particularly great due to its low cost. In addition, its
| flexibility allows easy software modifications (4,16). The time
i measurements taken above represent an important and difficult part of
the simulator design. Cthers include the careful exclusion of
measurement noise, selection of the appropriate parameters and

assuming a stable measurement enviromment.

%
5

L%, Ny) L KA o A% i ; <y S .t e, . B S T S S,
ST R N R N "‘ y A . AN . ‘ -'.__ (\f_.‘ RN AT

........

7. APPLICATION TC REPRESENTATIVE PRCBLEMS

7.1 SELECTION OF THE PROBLEM

In order to demonstrate the software performance, a 3-D frame
structure model (Fig. 3) 1is selected. Three different cases are
considered using the same general topology. The first example has
1890 degrees of freedom (d.o.f.) with a half bandwith (h.b.w.) of
240. The second has 3852 d.o.f, with h.b.w.= 336; and the 1last one
has 8736 d.o.f., with h.b.w.= 432,

For all of the cases, the following assumptions are made: the
submatrix size is 48 by 48, the core is large enough to store up to
91 such submatrices (maximum half bandwith for efficient
operation=624 and core required = 2MB) and the load vector is assumed

to reside fully in core.

7.2 RELATIVE PERFORMANCE
Of the mmerous vector and matrix operations involved in the
incremental Newton-Raphson iteration procedure, only two processors
appear to benefit significantly from vectorization via a "subroutine
box"™. These operations are characterized by extensive repetitive
computational requirements compared to I/0 operations. Furthermore, a
minimum size of vectors and submatrices is needed before ttle

operations may benefit from the use of an array processor (9). It is

possible, in our view, to speed up some of the other processors as

.
2

"
.{1

F I

Dt T
NAA

K

AN A

L8 2

a
2 'lﬁ‘l..L.

e s
ALl AL

IS 2 5 A 4,

@

L e me s <
(a0t s

33 AR

oy

LSS

F 4 r mr r

Figure 3. 3=D Frame Structure Model.

well, but it would require significantly more work and the results

would not be as spectacular.

If we consider a2 large displacement - small strain problem, for
example, the two prime candidates for vectorization .are the matrix
decomposition processor (SYDEC) and the forwerd and backward
substitution processor (FRDBST).

A summary of the simulator results are given in Tables 5-7 for the
cases described above. A speed up factor of 15.6 to 22.6 1is obtained
for the decomposition by using the attached array processor Figs.

4-5. The speed up factor increases with problem size. Cn the other

hand, the speed up factor for the forward-beckward substitution

MR IR S A A DA A R AT e g |

3
:'{;:1
<
oy
= 24
3:“_ decreases slightly with problem size, from 4.6 to 3.4, Fig. 5.
Tables (8.a-c) presents the detailed breakdown of the operations
b
Al within the decomposition processor for all three examples. It also
\]_\
2-:1 gives the total time taken for each class of operztion. Upon careful
LY
examination of the data, it appears that a substantial speed up of
the I/0 operations, which is possible in our opinion, would ceause a3
;.I;:Z: merked additional speed up by, perhaps, a factor of 2, as described
%Y
- later.
P
Cal
:‘;ﬁ
i:'w
O
-3 PROCESSOR CPU Time ELAPSED Time
HC32 HC32+AP6U HC32 HC32+AP6U
¥e, DATA 158 158 224 224
vy LCAD 2 2 7 7
g “ STIFF 283 283 357 357
Ph SYDEC 3145 150 3202 205
’ FRDBST 556 81 606 131
% STRESS 128 128 240 20
X! CONV 1 1 3 3
.-::’.- GUTPUT 1 1 6 6
-:\:
N Table 5 Relative Performance of Host vs. Host/AP for
an 1890 d.o.f. Frame Structure. Time in secs.
e (NND=315, NEL=378, b=240, M=N=3, L=7).
5y
2
g
b
R
B
‘
33
sy
N2
R

- L] LIS 2P 2 X RO I P -.,.‘..'.-~-_- R
AU Al WY —.“JA‘A_‘A’._‘_.L‘_AZ A .:.:_‘n':'-{f:_"l.:". _‘r‘.'l..*:-"_n-', Lo e

.\‘
LS W
o
% PROCESSOR CPU Time ELAPSED Time
>3 HC32 HC32+AP6U HC32 HC32+AP64
s DATA 324 324 usy 454
ey LOAD 3 3 9 9
A STIFF 584 584 733 733
L SYDEC 10041 418 10162 537
L FRDBST 1182 207 1305 330
STRESS 265 265 493 493
.~ CONV 1 1 3 3
20 CUTRPUT 2 2 10 10
o
33; Table 6 Relative Performance of Host vs. Host/AP for a
] 3852 d.o.f. Frame Structure. (Time in secs.)
. (NND=642, NEL=783, b=336, M=4, N=3, L=10).
N
o5
PROCESSOR CPU Time ELAPSED Time
. HC32 HC32+AP64 HC32 HC32+AP6U
o DATA 'y 41 1031 1031
N LOAD 7 6 15 13
X STIFF 1317 1217 1642 1642
B SYDEC 34879 1273 35161 1558
| FRDEST 2804 579 3139 912
A STRESS 608 608 1129 1129
”gﬁ CONV 2 2 7 4y
S CUTPUT ' 5 5 20 20
Sy
Lo Table 7 Relative Performance of host vs. host/AP for an 8736 d.o.f.
Frame Structure. (Time in secs.)
",: (NND=1436, NEL=1800, b=u432, M=N=U, L=16).
S5
N
‘ﬁ* Returning now to the Newton-Raphson method, it 1is possible to
.ml‘.
:‘. estimate the overall speed up factors for the basic 1load increment
i:& loop, as well as for the equilibrium iteration 1loop. Tables (9.s-¢c)
3\? shows that an increment of load, followed by & recomputation and
M

decomposition of the stiffness matrix asnd a computation of the

URERATA fh i Sl Sd Tl A AT Sl b el 4 @) ol bl AR
RDARARAAA A R P R FA

ot 26

o

- displacement increment and residual forces, is speeded up by a factor
:-Ij:- of 4.70 (1890 d.o.f) to 7.82 (8736 d.o.f.). On the other hand, one
equilibrium iteration was speeded up by 2.28 to 2.09. One might call
.t }
;‘1;2 this an appreciable improvement, although not spectacular. It is |
P 1
2 hoped that careful optimization of the I/0 transfer speed will
Q] produce better ratios.

e

N
¥ OPERATION ELAPSED TIME per NUMBER of TOTAL TIME

' Type OPERATION OPERATIONS

ol HC32 HC32+AP6Y4 HC32 HC32+AP64

AL
{‘; . Matrix Read 0.47C 0.470 130 61 61
Y Matrix Write 0.470 0.470 143 67 67
R Matrix Multiply 5.173 0.125 505 2612 63

Matrix Inversion 11.461 0.4 39 uyg 5

T Others 14 9

Ij-s Total 3202 2C5

A
'—\'f‘-, Table &.a Distribution of Elapsed Time in Decomposition.
S Time in Secs. (U=1890).
b2

4

$3 OPERATION ELAPSED TIME per NUMBER of TCTAL TIME

V) Type CPERATION CPERATIONS
- HC32 HC32+AP6U HC32 HC32+AP6Y

b b
..3 Matrix Read 0.470 0.470 271 127 127
A Matrix Write 0.470 0.470 364 171 171
Yy Matrix Multiply 5.173 0.125 1725 8923 216
3 Matrix Inversion 11.491 0.1 80 919 11

-~ Others 22 12
B Total 10162 537
-. Table 8.b Distribution of Elapsed Time in Decomposition.
o Time in Secs. (U=3852).

o
3

.'}.
o
3 z
N OPERATION ELAPSED TIME per NUMBER of TOTAL TIME
- Type OPERATION OPERATIONS
HC32 HC32+AP6Y HC32 HC32+AP6U
"~
\3 Matrix Read 0.470 0.470 551 259 259
N Matrix Write 0.470 0.470 1008 474 474
N Matrix Multiply 65.173 0.125 6246 32311 781
Ay Matrix Inversion 11.491 0.141 181 2080 26
Cthers 37 18
33 Total 35161 1558
3}
)
,2 Table 8.c Distribution of Elapsed Time in Decomposition.
el Time in Secs. (U=8736).
Ly
3
hi3 ELAPSED TIME SPEED UP FACTOR
AN HC32 HC32+AP6U
| LOAD CYCLE
)
v Load Increment 6 6
o Stiffness Assembly 357 357
f'_. Decomposition 3202 205 15.62
’ Displacement 606 131 4.63
Stresses 20 240
" TCTAL huy11 939 4.70
NS
s; EQUILIERIUM ITERATICNS
(Y|
- Displacement 606 131 4,63
o Stresses 240 20
2 TOTAL 8ué 371 2.28
X
,4 Table 9.2 Speed up Factors For The Modified Newton-Raphson Procedure
Using an Array Processor.(U=1890).

F
DA
N
D

. 0 “.Fi. ';‘\‘l- " :"‘.", l’;“i a

ra TR IR), . I S T L A D G L B S A T Tt TN Y O O TR IT T S IS S JYOR I
RN X A LI y \Mm}d'&?i\ﬂl\i\;\¢h\ LA DRI -.-\.,‘..:‘. e T T L

TENEHTT T ity y A
N a B} Py g% W Y

LOAD CYCLE

Load Increment
Stiffness Assembly
Decomposition
Displacement
Stresses

TOTAL

EQUILIBRIUM ITERATIONS

Displacement
Stresses
TOTAL

................

.............

28
ELAPSED TIME SPEED UP FACTCR
HC32 HC32+AP64
8 8
733 733
10162 537 18.92
1305 330 3.95
493 493
12701 2101 6.05
1305 330 3.95
493 493
1798 823 2.18

Tsble 9.b Speed up Factors For The Modified Newton-Raphson Procedure
Using an Array Processor.(U=3852).

LCAD CYCLE

Load Increment
Stiffness Assembly
Decomposition
Displacement
Stresses

TOTAL

EQUILIBRIUM ITERATIONS
Displacement

Stresses
TCTAL

ELAPSED TIME SPEED UP FACTCR
HC32 HC32+AP6Y
15 13
1642 1642
35161 1558 22.57
3139 913 3.44
1129 1129
41084 5253 7.82
3139 913 3.44
127 1127
4266 2040 2.0§

Table 9.c Speed up Factors For The Modified Newton-Raphson Procedure
Using an Array Processor.(U=8736).

LR)
4 N

AP S S N A S i Ty

o o SR,

DS SN

\u,

\\\'\\

L S ’_\.\ -*. TS

-\.‘E\‘j

CRACHA R4 Bt Mt Achsechng paChag Sasi bl Bus en St bos e A 7—1_

29

N

\ﬁ

20000 <

- :

APB4

|

£
9
sO00Y 6P ~- QAOQGDO-—mM

|
AN

T T T T T
2000 4000 6000 8000 10000

Total Number of Degrees of Freedom CU)

Figure 4. Arary Processor Performance in Decomposition.

.JIJ' IJ’}.“‘;

o
3 30
4 s B
% P 7
‘-,, . e
- -
d 20 -] cammunt
v') .] ttion
p - -
C
. F .
i : -
€
w ¢ 10
— o i
oy r - . Forvord Redyctlon
; N HC32 4 Bockyord Substitut lon
;22 HC32+AP84
¥
™ ° -T -T T T T
24 o 2000 4900 8000 8000 1 9000

Total Number of Degrees of Freedom (U

N Figure 5. Variation of Speed up Factor With Problem Size.
Nk (Buffer size = 100 submatrix).

iy “L.Q. \'M| '].,.‘,.‘ ' -f.;'\ -..d‘.; e '-',-.-".-.‘,\-: .-‘.f_'.:\. e, ' -

»
A

LR

;_ XA
't e d

N
g

".":f’}‘ _):

7

N

7.3 EFFECT CF BUFFERING

In the decomposition processor, the I/0 transfer time constitutes
presently up to 60 per cent of the total execution elapsed time for
the AP64+HC32 configuration, Tables (8.a-c). In order to improve the
execution speed and increase the speed up factor, I1/0 transfers
should be minimized. A standard technique in non-virtual memory
systems 1s to use part of the core as a buffer. The goal is to read
and write each stiffness submatrix only once. This can only be
achieved if the number of submatrices in the buffer is larger than
B(B+1)/2, where B is the integer part of ((b-1)/s+2). If the number
is 1less than that, unnecessary I/C operations (thrashing) will
result. In order to investigate the effect of buffer size in the
decomposition process and illustrate the above point, time
measurements were taken for different buffer sizes(Fig. 6). Larger
buffers increase the speed up factor, until the meximum is reached at
the critical buffer size (Fig. 7). It 1is clear that, while the
buffering effect is minimal for the HC32 alone, it is crucial for tte
HC32+AP6l combination. More details are given in Tables (10.a,b).

R A A 3 A S S O T R R o R RO

AR el ._'“.'.'._"".f“"“‘"_‘i—l\v\"”A -

I 31

HC32

E | opsed

09 -=
L
N=? TOh9C® S0P ="~

!

1

!
AP84+HE32 }
] 'ﬁ LR BRI TV T Try J
A [} 235 se 75 100 125
h ' Number of Submatrices Iin Buffer

:'.3 Figure 6 Effect of Buffer Size in Decomposition. Time in Secs.
& (U=8736, s=48, b=384, NEL=1800, NND=1436)

PIT
']

s RV A0 %

a7

T
b

;:jisaia |;E§¥f,-:

CRER
[

8
N

= A
§1o-—oa'n VE oeev®
e
\\

LIRS A) LERLERL rrya LERLARLEDL LA

] 5 S0 75 100 128
Number of Submotricee In the Buffer

e 43

Figure 7 Variation of Speed up Factor With Buffer Size in-
LCecomposition. (U=8736, s=48, b=384, NEL=180C, NND=1436)

-

S

R
Y

b
iy
o

......
....................................... O T A .

R WA i wa e Sl B A o A R AR R M A 1

N 32
U
l‘\;“
%o
‘53? Buffer Size Number of Submatrix CPU Time Speed up
(No. of Submat.) Reads/Writes HC32 HC32+AP6U4 Factor

3:; 5 6067 36494 2883 12.7
¢ 10 . k837 36135 2525 4.3
v 25 2174 . 35356 1748 20.2
Y 45 551 34879 1273 27.4

' 50 551 34879 1273 27.4
2 100 551 : 34879 1273 27.4
N
0 Table 10.a Effect of Buffer Size on SYDEC CPU Time.
oo fa (U=8736, NND=1436, NEL=1800, b=432, B=9).
ot Optimum Buffer size is 45.
2 |

" Buffer Size Number of Submatrix Elapsed Time Speed up
Ned (No. of Submat.) Reads/Writes HC32 HC32+AP64 Factor
N 5 6067 37747 4152 9.1
1 10 4837 37173 3573 10.4

': 25 2174 35924 2323 15.5
5 45 551 35161 1558 22.€

? 50 551 35161 1558 22.6

100 551 35161 1558 22.6

1

Table 10.b Effect of Buffer size on SYDEC Elapsed Time.
(U=8T73€, NND=1436, NEL=1800, b=432, B=S)
Optimum buffer size is 45.

R IN
h -

Y
bR
53; 8. EFFECT OF RELATIVE PERFORMANCE COF SYSTEM COMPCONENTS
iﬁ* The results shown in this paper are based on experience with
v specific hardware. Cne of the aims of the research is to reach
fo general conclusions regarding the profitsbility of the addition of an
'fzi arrgy processor of the type selected (subroutine box) to a typical
Sy minicomputer or personal work station. Cne might, at this stege,
A

T

3%5

"\- ” - - - Q* " - B - LI Y - . - - - L R o« rd
o N VRO RGN ul.\‘ "Dy y - w) .t NARK "»_ Se e e ! . o et '.\‘--‘

33

extrapolate these results in order to reach more general conclusions.
Due to the lack of time, however, the discussion is restricted to the
decomposition processor performance. This 1is Jjustified, since this

processor represents the most crucial part in nonlinear analysis.

One of the first questions that comes to mind is the effect of
more efficient I/0C operations. It is clear that an increase in the
1/0 rate would produce an improved speed up ratio. On the other hand,
the relationship between the I/0 speed and the speed of the host
computer and the array processor is an important factor which should

be investigated.

Examining the operation counts for the large frame problem and
extrapolating from them, assuming different host computer, array
processor and I/0 transfer speeds, interesting information is
obtained and plotted in Figs.(8) and (9). The basic configuration is
that of a host capable of 0.465 Mips (based on manufacturers
specifications), an array processoi capable of 1.82 MFLOPS in double
precision (based on measurements of matrix multiplication) and an I/0
transfer rate of 0.04 MBps (measured FCRTRAN I/0). Since it is
possible to increase the transfer rate by writing assemly language
programs, plots are given to demonstrate the variation of the speed
up factor as a function of the transfer rate. ’Transfer rates very
between 0.04 MBps ,which is the measured rate from the current
system, and 1.2 MBps ,which is the maximum transfer rate of a typical

......

.........

AN RSO T N T . (A TR S W 0
WSS, SRR VIR NS < .J.'.,x'kw':'q':'-.':f.'-‘.'q‘:'f}‘ﬁ. SN IR 3T HUSA BT

{ﬁ\‘l

O A
.

L SRR

i ¥
Lol
s
L
.

34

disk drive. In Fig. § the current array processor speed of 1.82
MFLOPS is used. Plots are included for different real and
hypothetical computers with speeds varying between 0.36 Mips to 2.5
Mips. One concludes from this figure that an array processor
increases the efficiency of a slower machine considerably for data

transfer rates above 0.15 MBps.

On the other hand, the array processor is not as effective for
faster minicomputers with speeds of 1 or 2 Mips; although, there
still is an appreciable speed up. We .conclude also that the array
processor should be particularly effective with desk top computers,

since the effective speeds of these computers will be somewhat low.

It would be interesting to examine the speed up factor for a
hypothetical faster array processor. Assuming that, severzl years
from now, an array processor with a speed ten times faster will be
available. The speed up factor variations are shown in Fig. 9.
Careful examination of this figure indicates that the faster array
‘processor will greatly enhance host machines similar to those of
today. However, higher disk transfer rates would be beneficial, up to

1.2 MBps and more.

We believe that Figs. 8 and 9 will be helpful to investigators in
the selection of proper computer system components for a

multiprocessor enviromment.

- P’ PaC A A o < PR A I A G M S el e P e WIS Y LT NATRT T I TR T T T e T AL E "1
.
: ...!
R : 35
; o
ot 80
.:2 s M P.-o. 6
s | 4T
" ; / =9
40 P:%%
) . /T_Ff
= |/
f.§ F] /
R~ a
S .
‘;:: : 20 s=! d=
R d (-]
b
. HC32 - / pe=2.9
X HC32+AP84
:':, 1] T T ™ T T
v 0.8 0.2 0.4 98 0.8 1.8 1.2
" Dato Tronsfer Rate (MBpe)
- l ‘
: Figure 8 Effect of Data Transfer Rate on Speed up Factor for the
o Decomposition Processor.(U=8736). AP Speed = 1.82 MFLCPS,
M |
::j 690
» .
'::3 S "lp-ﬂeie_/
400
L " L | Hipe=0]4e5
~ 70—
,‘ ‘-1 L N /
b . |
-]
-_— Hipe=tlo
3 HC32 4] Mipe=2|5
» T yTyy
A HC32+AP84 /,/"—
ﬂ e LS L 0 T BN N A
A 900 0.25 90.59 9.7 1.00 1.28
A Doto Tronsfer Rote (MBpe)

ki
..

.
¥

Figure 9 Effect of Data Transfer Rate on Speed up Factor for the
Decomposition Processor.(U=8736). AP Speed = 18.2 MFLCPS,

S

)

o F ! ’: .
L A AT

v

N TN N N T N '\.f'- S A

AN

................................

%l: 36
N
;; 9. CONCLUSIONS AND FUTURE WGRK
:ﬁ Software was designed to support the development of large-scale

nonlinear structural analysis programs in a multi-processor
“g enviromment. Then, using the designed software, an application
‘; program was developed for the solution of large~scale nonlinear
_' structural analysis problems via the finite element metﬁod. In order
Tis to predict the system performance under proper array processor
,: software with a minimal cost, a simulator is designed.
-

Important issues in adapting nonlinear analysis procedures to

;j array processors seem to be the proper task distribution between the
¢, host and the array processor, as well as efficient disk operations.
N The study gives preliminary results regarding the profitability of
ii array processors. The cost effectiveness depends on the relative
;?l speed of the host and the array processor, as well as on the trensfer
Zg rate of the disk.
%
il 10. ACKNOWLEDGMENTS
¥ The support of the Office of Naval Research under contract
h§ NCOO1475C0837 is gratefully acknowledged. Special thanks are due to

Ms.Susan K. Lewis and Ms.Debbie Westerman for their careful

assistance in the preparation of this manuscript.

o

pOR ST R

BEAYE TR Y) A ARV
) "\) -_‘.*}‘ it “_,‘,) a .

3

4 "‘v'-.‘ ‘

)
' "‘l" “. .a‘ h

& ¢ Lams

AN NN

-

2T

NN IN

"
o

| AT

'

e\ ON
4 ."A..'J‘ ¢

r s
o

Yoy

Hrl

REFERENCES

{11

(2]

[3]

[4]

[5]

[6]

7]

8]

(9]

(10]

(1]

A.K.Noor, 'Survey of Computer Programs for Solution of
Nonlinear Structural and Solid Mechanics
Problems',Computers&Structures, 13, pp.425-465,(1981).

J.C.Knight, 'The Current Status of Super Computers', Computers
& Structures, 10, pp.401-409, (1979).

V.D.Poor,'The Concept of Attached Processing and Attached
Recourse Computer Systems', in Gorsline G.W. ed.,Proc. of First
Sigmini Symposium on Small Systems, (197€).

G.A.Strohkorb and A.K.Noor,'Potential of Minicomputer/Array
Processor System for Nonlinear Finite-Element Analysis',NASA
T.M. 84566, (1983).

H.A.Kamel and J.Maitan, 'Performance of Finite Element
Algorithms on an Array Processor-minicomputer Based System’,
in: wunderlich, Stein and Bathe eds.,Nonlinear Finite Element
Analysis in Structural Mechanics, Springer Verlag, (1981).

J.Maitan and H.A.Kamel, 'Performance of Minicomputers in Finite
Element Analysis, Pre- and Postprocessing, ONR Tech. Rept.
No.6, University of Arizona, (19€0).

J.Maitan, N.Sarigul, O.Paulisinski, znd H.A.Kamel, ‘'Balanced

Array Processor Configuration for Finite Element Analysis’',

presented at INRIA 5th Symposium on Computer Methods in

%nggniering and Applied Science, Le Chesnay, France,lec.
1981).

N.Sarigul, J.Maitan, and H.Kamel, ‘'Implementation of Some
Finite Element Algoritims on a Minicomputer with an Attached
Array Processor', presented at the CAFEM-6 Conference ,Paris,
France, August (1981).

N.Sarigul, J.Maitan, and H.Kamel, 'Solution of Nonlinear
Structural Problems Using Array Processors', Computer Meths in
Appl. Mechs. and Engng., 34, pp.939-954, (1982).

A.K.Noor and S.J.Voigt,'Hypermatrix Scheme for Finite Element
Systems on CDC STAR-10C Computer', Computers & Structures,15,

E.U.Cohler and J.A.Cohler, 'Array Processors in Finite Element

Modeling',Proc. Third World Congress and Exhibition on Finite
Element Methods, Beverly Hills, California, Oct. 12-16, (1G81).

" " 0" ® (g

B adr At iar Tt Jheit B I A S AL AR NS A S A M

YO AN \';.’Q' ‘,‘t‘\}‘-‘_\’ \'_'Fxx:t\' NN b AN N L e

' T T T

AT et A NS S CL AR LA A bt A I

38

:;; [(12] J.A.Swanson, G.R.Cameron and J.C.Hoberland, 'Adapting the ANSYS
';Q Finite Element Analysis Program to an Attached
L Processor',Computer , pp.85-91, (June 1983).

- [13] H.Matthies and G.Strang,'The Solution of Nonlinear Finite
A Element Equations',Int. Journal for Num. Methods in
:?? {(14] M.A.Crisfield, 'A faster Modified Newton-Raphson Iteration',
i Comp. Meth. in App Mech. and Engng., 20, pp.267-278, (1979).
 {: [15] S.Utku, R.Melosh, M.Islam, and M.Salama, 'Cn Nonlinear Finite
;}: Element Analysis in Single-, Multi- and Parallel-Processors’',
A Computers & Structures, 15,No.1,pp.39-47, (1982).
N

- {16] D.A.Orbits and D.A.Calahan,'A Cray-1 Simulator and Its
sk Application to Development of High Performance Codes', Proc. of
o the 1978 LASL Workshop on Vector and Parallel Processors,
X (1978).

)

OOy
lﬁb -

3
o7

A4

)

.;
ot P,

.l.;.l '-'4;“

OO,

‘

H..v.
&y . -
ol ';'JA'JV) >

iy
Wiy
)

]
. 17 AT RS - L - e DR SR P S U TP T L A P - o B S T ST DI SPNP SR
NN Y ,l,““'l, 1 e, ‘V'-) ¢ \ o Ry T s g T, NN

B I L ¥ SUF S

A
®
I8
Al

