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Time Domain Analysis and Synthesis of Robust Controllers

for Large Scale LQG Regulators

Final Report for AFOSR Minigran:

ABSTRACT

The aspect of Robustness /for linear multivariable systems is

analyzed in time domain. Both 1Stability Robustness ' and 'Performance

Robustness/are combinedly considered to meet stability and performance

requirements. First a stability robustness condition in time domain

r(in terms of eigenvalues) is presented and examples are given which in-
dicate that the proposed robustness condition is less conservative then

Ithe corresponding frequency domain condition as well as another recently
proposed time domain condition, both given in terms of singular values.

Next a technique is presented to further reduce the "conservatism of the

[proposed condition. A design algorithm that incorporates both "Stability

robustnessf7and performance robustnessinto the design procedure suggested

in the sumer faculty program report, is modified with the help of new

definitions of robustness indices. Computer software to implement the

algorithm is presented along with simple examples to illustrate the

concepts. Based on the experience gained by the minigrant research, areas

of future research are recommended.II
I\
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Nomenclature

R = Real Vector Space of Dimension a

S= Dirac Delta

C f Belongs to

W Frequency Variable

IP [.] = Spectral radius of the matrix [.]

The largest of the modulus of the eigenvalues of

a (. = Singular values of the matrix [.]

X.] - Eigenvalues of the matrix [.]

..[.] = Symmetric part of a matrix r.]
S

I [.11 = Modulus Matrix = Matrix with modulus entries

r i = for all i
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.:~ [1. INTRODUCTION AND OBJECTIVES
It is well known that the inaccuracies in the mathematical models of

physical systems can severely compromise the resulting control designs.

SThe errors associated with mathematical models of physical systems may be

broadly categorized as i) parameter errors, ii) truncated models (errors

in model order), iii) neglected or incorrectly modeled external distur-

bances and iv) neglected nonlinearities. It is the inevitable presence

of these errors in the model used for design that eventually limits the

F performance attainable from the control system designs produced by either

classical (frequency domain) or modern (time domain) control theory. The

: i.: problem of model errors is more critical, in general, for large scale

Linear Quadratic Gaussian {LQG) optimal control problems and in particular,

for aerospace applications like Large Space Structure (LSS) control [1]

and other aeroelastic systems [2]. These applications are, of course, of

extreme importance to the U.S. Air Force. The fundamental problem of these

Distributed Parameter Systems (DPS) control is the control of a large di-

[ mensional system with a controller of much smaller dimension (model/control-

ler truncation) compounded with modal data uncertainty (parameter errors).

In the light of these observations, it is evident that 'robustness' is an

extremely desirable (sometimes, necessary) feature of any feedback control

design proposed for DPS control. 'Robustness' studies of Large Scale LQG

regulators is the central theme, of the present research.

For our present purposes a 'robust' control design is that design

Iwhich behaves in an 'acceptable' fashion (i.e. satisfactorily meets the

system specifications) even in the presence of modeling errors. Since the

[--
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system specifications could be in terms of stability and/or performance

I (regulation, time response, etc.) we can conceive two types of robustness,

namely, 'Stability Robustness' and 'Performance Robustness'. Limiting our

attention in this research to 'parameter errors' and 'model/controller

$~ I truncation' as the two types of modeling errors that may cause instability

(or performance degradation) in the system, we fornally define 'stability

robustness' and performance robustness' as follows:

Z- r 'Stability Robustness': Maintaining closed loop system stability in the

presence of modeling errors mainly parameter variations and model/controller

truncation.

-. 'Performance Robustness': Maintaining satisfactory level of performance in

the presence of modeling errors mainly parameter variations and model/control-

ler truncation.

~ IF Implicit in the definition of 'Performance Robustness' is the require-

ment of 'stability' for performance robustness studies. However, performance

robustness studies which require (or assume) stability may only have limited

application. On the other hand concentrating design efforts on 'stability'

4 alone is not prudent because the performance requirements may not be met by

g that design. Thus, simultaneous consideration of stability and performance

-. in the design process is more appropriate. Most of the current published

literature addresses either the I stability robustness' aspect or the 'per-

formance robustness' robustness' aspect separately. Most of the interesting

work on 'stability robustness' is done in frequency domain using singular

value decomposition [3-11] while much of the useful research on 'performance

robustness' is carried out in time domain using sensitivity approaches [12-14].

- -2-



Design studies that treated the stability robustness aspect in time domain

U' and studies which combined both stability robustness and performance ro-

bustness into the design process have been scarce. Towards this direction,

research was initiated on these aspects by the author during the Summer

IFaculty Research Program period (Summer '82) and consequently, a stability
robustness condition in time domain and a design algorithim that incorporates

both stability robustness and performace fobustness into the de.Agn process

were proposed [15]. Later as part of Mini grant work the following research

was proposed.

[ i) To probe further into the possible refinement of the stability

condition.

ii) To develop computer software for automating the design algorithim

and finally

iii) To. illustrate the methodology by examples representative of Large

[Space Structure models.

In what follows, a summary of the research that accomplished the above

tasks is presented followed by a discussion of areas of further research.

II. Work Done During the Mini Grant Period

I" IlA. Time Domain Analysis of Stability Robustness

Much of the published literature treats stability robustness of feed-

back control systems in the frequency domain with the help of singular

value decomposition [3-11 & 16]. While the singular value analysis is a

useful tool to generalize the Nyquist criterion for the multi-variable case,

it is not the only way to characterize the stability of a perturbed system,

[
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particularly for systems described by state space models. For systems

~ I described by state space differential equations, the analysis of stability

I in the time domain becomes a viable alternative. The time domain ro-

bustness analysis may have a number of advantages over frequency domain

K treatment as explained in later sections. The time domain treatment is

more or less analogous to the frequency domain treatment in spirit, but

with the stability conditions given in terms of eigenvalues rather than

singular values since eigenvalue analysis is more appropriate for time

1p~ ~ domain stability assessment. As stated earlier, it is of interest to note

[ that eigenvalue analysis was used even in the frequency domain treatment

(Ref. [16]).

In what follows, we first present the main mathematical result (as a

new theorem) which forms the basis for developing a condition for the

stability of a perturbed matrix. This result is then extended to the case

w'U of a linear system. These results are further specialized to the case of

LQG regulators with perturbations in the form of i) parameter variations

and ii) truncated models.

Main Result:

Let F and E be two real square matrices.

~ [. Theorem 1: If F is negative definite, then the matrix F + E is

'1* negative definite if

4 -1

stE(5  is j5 1

* Proof: Given in Appendix A.

The above theorem has an interesting implication. It suggests that if



a given matrix F1 is written as the sum of a negative definite matrix F

and a perturbation matrix E

i.e., FI = F + E where F is negative definite

then by use of theorem 1 one can get a condition for the negative de-

finiteness and hence the stability of matrix F1.

Application to Linear State Space Models:

Let us consider the linear time invariant system

x = A x X (0) = x 0  , x e R (2)

" -where the 'nominal' matrix A is asymptotically stable. Let there be an

additive perturbation E in the matrix A so that the perturbed system

matrix is A + E. We are now interested in the stability of the matrix

A+E. The straightforward application of theorem 1 gives the following

result.

Theorem A: The perturbed system matrix A+E is stable if

-1

p [(E A~ (3)
[(E~n d  )s ] < 1 )

" where A = Ad + Ae., Ad = Diag [ai], i=l,2...n,a i is any real negative

entry (a i<0) and E = A + E).in Ae s)

Proof: Since A is asymptotically stable, we can always write

A -A +*Ad e (4)

L where Ad = Diag [ai], i = 1,2,...n., CLi is real and<0.

I thus A + E = Ad + (A + E)

z-5-
4,



where Ad is a symmetric negative definite matrix. Applying theorem I

gives the result of theorem A since a negative definite matrix is always

a stability matrix.

At this stage, it is appropriate to comment on the applicability of

jthese stability conditions. It is to be noted that the derived stability

condition is not particularly useful when one knows both the matrices A

I and the perturbation matrix E, in which case the stability of the matrix

A + E = Ad + A + E is determined by simply looking at its eigenvalues.J: .| e

However, in a practical situation, one doesn't exactly know E. One may only

[ have knowledge of the magnitude of the maximum deviation that can be ex-

pected in the entries of A. In that case the entries of E are such that

JEij <_ Aij (Cl)

where A.. is the magnitude of the maximum deviation.1)

I The following theorem enhances the usefulness of the proposed stability

criterion.

'- Theorem B: The perturbed system matrix A+E is stable for all perturbations

E.. satisfying (Cl) if
-1

p[(EA )] < 1 (5)

where A = Ad + Ae' Ad = Diag [ i ], i= 1,2,...n,a i0

E= (JA + A)s and A m lAd1 (6)

Proof: Observe that
-l -I -i

p ( (eAeI + A) AdI Is] > P[j{ (Ae+ E) (Ad) }s11 > P (Ae+ E) s (Ad) }s]

(for all Eij satisfying (Cl)). (7)

'-6-
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This follows from the fact that

i) for any given square matrix F
.,.

p (IFI) > p (F) (Ref. [16]) (8)

ii) for two given square non-negative matrices F and F2 such
12

that Fli j > F2 j for all ij

p (F 1) > p (F2) (Ref. [17)) (9)

thus

p [(Ep A -) s ] < 1 - [(En Ad- )s ] < 1 (10)

which in turn implies A+E is stable for all E.. satisfying (Cl).

Q.E.D.

Thus, in practice, we test the condition of theorem B and if satisfied

we can guarantee asymptotic stability for all perturbations Eij satisfying
(Cl).

Note that there is some flexibility in splitting the stable matrix A

into Ad and A . One immediate choice for Ad could be[4 ed

Ad = Re [Xi(A)], i = 1,2 .... n (C2)

We now compare the ability of the proposed time domain condition in

predicting the stability of a perturbed system with i) the corresponding

frequency domain condition and ii) another time domain condition reccntly

proposed, both given in terms of singular values.

Recently, in Ref. [5], Lee et al. considered the state feedback

I- regulator of Fig. I and provided a condition for the stability of an

additively perturbed system. It is shown that for a system which is

7



initially stable, stability will be ..intained as perturbations A A are

added, provided that

a} min - A CL ] >amax (6 A) for all w>o(1

where ACL = A - BK is an asymptotically stable matrix.

The proposed time domain condition for this case takes the form

P (EAm ) ] < 1 (12)

where A =A + AA = Diag [Re Xi CAcL)] , i = 1,2,.. .n

[ E= Al + IAlA)s and A m= IAdl (i.e. we let Ad take the form (13)

-, given in (C2)).

The following example shows that the proposed time domain condition

Sr is less conservative than the frequency domain condition of (11).

8 0 0 1.S

Example 1: Let ACL [ A A j

- ,1.s

Freq. Domain Condition:

j +8

:~ [ ainljw ACLJ inn

0jtW +

a [AA] = 1.5

at w=l

a min (jw I - ACL] = 1.414 1 a (AAI (14)

Thus the frequency domain condition fails to predict the stability of the

-3
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perturbed system matrix ACL + A.

Proposed Time Domain Condition:

Ad ACL and thus E = and A =I

;.., m~ 1.]L

I'. .

-1 J0 0.84375

p [(EmA m  ] p 0.84375 j0= 0.84375 < 1 (15)

- Thus the perturbed system matrix A + AA is guaranteed to be stable and it
CL

is indeed stable.

Comparison with the time domain condition of Lee [181:

In [18], Lee proposes the following stability robustness condition in

time domain in terms of the singular values. The perturbed system matrix

S!' A+ AA is stable if

ma < n(A) cos C mn)%max(' A) <-ain (A) n

where emn is the smallest principal phase of A measured counterclockwise

from the positive real axis. The above theorem is stated under the assumption

S that the orthogonal matrix U in the polar decomposition of A, viz

A - U H or A = H U
R L

is a stable matrix. Specializing this condition for a symmetric stable

1matrix, we get the condition as
a maxC AA) < IX iCA)lmin

[ - -" " . . - . *. " .-



Example 2.: Let us consider the same example as before. The time domain

I condition of (12) yields

a max [AA] = . IXiC(A)I min = 1

I Thus the above condition fails to predict the stability whereas (as shown in

'.1 Example 1) the proposed time domain condition succeeds.

I Also note that the proposed time domain condition of this research

doesn't require the assumption of the orthogonal matrix U being stable which

involves testing of yet another condition [181.

Improvement of 'Optimism' of the proposed condition:

The flexibility in splitting the stable matrix A into A dand A ecan be

r utilized to further improve the optimism of the proposed condition.One suggested technique is as follows:

IfProcedure: 1) Write A d - -aI

-. where a>o is a scalar variable.

The stability criterion then becomes

E

Theaboe cndiionis then tested for various values of a which

I clearly increases the probability of guaranteeing the stability of a per-

turbed system whenever it is stable.

I Example 3: Let A CL = : : AA= [ 3
-10-



' - - a .= .- ,,,,. :, i. ,, .- . .
.  

. . . . ' ,. - ..- :. -. . . .. .. -,.. . *- ). . . . _. . . . =

with Ad = Diag [Xi(AC)], the proposed time domain condition becomes

,.0 2 0 1. 125

[0.25 0  1.125 1:I s
But with Ad = -aI, the test matrix for the proposed time domain condition

becomes

[1ct8! 2/at 1
2/at Q~I- %_

- choosing a = 8, we get

0 0.25

r p = 0.9414 < 1 - the system is stable.

Thus, the proposed time domain condition with 'a splitting' is able to

predict the stability of the perturbed system and thus yields a less con-
Wservative 

result.

Evidently, there is much scope to improve the 'optimism' of the proposed

. time domain condition by an appropriate selection of the Ad matrix and more

.. research is warranted in this direction.

Extension to LQG Regulators

We now extend the above analysis to the case of large scale LQG re-

" gulators having i) parameter variations and ii) truncated modes as the

[modeling errors (or perturbations). The strategy adopted is to model these

perturbations as additive perturbations to a nominally stable matrix and then

A

- 11 -



apply the above eigenvalue analysis to arrive at the stability conditions.

Let us consider a continuous linear time invariant system described by

k ± (t) = A x (t) + B u (t) + D w (t) , x(O) = x0  (16a)

Sy t) = Cx t) (16b)

Z (t) = M x (t) + v (t) (16c)

where the state vector x is nxl, the control u is mxl, the external

-17 disturbance w is qxl, the output y (the variables we wish to control)

is kxl and the measurement vector z is xl. Accordingly, the matrix A

is of dimension nxn, B is nxm, D is nxq, C is kxn and M is Zxn. The

initial condition x(O) is assumed to be a zero-mean, gaussian random

vector with variance Xo, i.e.

E[x(O)] = 0, E[x(0) x T(0)] = X (17)

Similarly, the process noise w (t) and the measurement noise v (t)

are assumed to be zero-mean white noise processes with gaussian

distributions having constant covariances W and V respectively, i.e.

.0
E [w~t)J = Elv(t)] = 0 (18)

" - 12-
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.%

E w(t)

1 [w (t) v (T)]

q v(t)

w o
6 Ct - t)

S0 PeV (19)

where pe is a scalar greater than zero . and V=Pe Vo

Let the above system be evaluated for any control u by the quadratic

I. performance index1 T Tt

n = lim -[ E E(CT (T) Q y (t)+uT (T)pcR u Ct)] dt C20)t f R

t-9~ 0

where scalar p- > 0 and Q, R are (kxk) and (mxm) symmetric, positive
c 0

definitive matrices, respectively.

. For the case of a deterministic system, the following modifications

in the system description are in order:

i) Dw % 0, v = 0
T

ii) the initial condition, x(O) = xx X = X

and the index J of (20) reads

J X W , yT(t) Q y(t) + u T (t) p R u(t)Jdt (21)

-13 -
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[ If the state x(t) of the stochastic system is estimated as a

%-I 
function of the measurements 

we assume the state estimator 
to be

. :o f t h e f o l l o w i n g s t r u c t u r e

x(t) = A x(t) + G z(t) (22)

I where-

z(t) = z(t) - N x(t)

.. |i s c a l l e d t h e ' m e a s u r e m e n t r e s i d u a l '. F o r a ' m i n i m u m v a r i a n c e '

! requirement, the estimator of (22) is the standard Kalman filter

[19]. We refer to the system presented in this section as the 'Basic

4 System'.

We now use theorem B as the basis for extending the stability

conditions to the case of LQG regulators for various cases of modeling

[ errors involving parameter variations and model/controller trunca-

tion. These are discussed in (15]. For brevity we consider two cases

". here.

. [C a s e 1 : P a r a m e t er v ar iat io n s a lo n e , n o m o d e l / c o n t r o ll e r t ru n c at io n :

For this case, the following assumptions are made with respect

to the model described by equations (16).

Assumption 1: The matrix pairs [A , B] and [A , D] are completely

controllable and the pairs [A , C] and [A , M ] are completely

observable.

Since there is no model/controller truncation the full order

[ optimal control for nominal values of the parameters is given by

B T "
u=Gx R KX (23a)

- 14* * *.J* * . * * .



where

= Ai + B u + G(z M1), i (O) = 0 (23b)

= A + B G -G,) M + G (23c)

G 1 P MT V-1 (23d)

IPe
and P and K satisfy the algebraic matrix Riccati equations

KA + ATK - KB - BTK + CT QC= 0 (23e)

.- v
T T TPAT + AP - PMT e_ MP + DWD = (23f)

The nominal closed loop system is given by[:1= [: °][J [ j
GM Ac 0 G v(24a)

U 0 G(24b)

[L J

I. where Ac = A + BG - G M and the closed-loop system is asymptotically

stable.

We are now interested in examining the stability robustness of the

closed-loop system in the presence of parameter variations alone.

Let AA, AB, AC, AM.1 and AD be the maximum modulus perturbations in the

[ system matrices, A, B, C, M and D respectively. Then the perturbed

r-15 -
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V.+'I

system can be written as (Note: the filter parameters A and G and the

control gain G are not subjected to variations because they are

specified by the designer as a function of the nominal values of the

parameters).

x A BG 0 0 x D 0

x GM A 0 0 x 0 G I14' c- li

-A! AA ABG +AA (B+AB)G Ax AD 0

A GAM 0 ( A Vx 0 0 (25)

r r By application of theorem B of section II, we obtain the

following design observation.

[ Design Observation 1: The perturbed LQG regulator system is stable for

all perturbations in A,B,C,M & D in the sense of (Cl) if

55)]A-1 <l1 (26)

where [A BG
Ad =Diag [Real X.(ACL) A [

I " ACL =Ad + Ae I EM = IAeI +E, E and Am=IAdI (27)

Note that in this case both the nominally stable matrix AL and the

~v K CL

perturbation matrix E are functions of controller gains G and G.

I

%4- 16 -
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S.

Case 2: Model reduction alone, no controller reduction and

no parameter variations

For this case, we treat the model given by (16) as the evaluation

model. We assume the order of the model, n, to be too high for the control

u to be determined and that there is a control design model of dimension

n I R <fn given by

R R

R - BR (28)

Rz T Z MRXR +vS.

where the above control design model is obtained either by a direct

truncation of the full order model given by

:1 ZR ZRT  R :J DR

I!

""T J ,T AT B T DT (29a)

L j

Y = (CR CT] XR (29b)

z - [M 'Rz - Kr] ; R R29c)

-17 -
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Shor by a partial realization of x involving some model reduction

.4 technique (e.g, (141).

Let the full order control for the reduced order model be given by

.- " - (30a)

.. %

-\1 I "~ ---

XR =Ax +BU + GR(z-N X) (30b)X RR XR +R R XR)
4,

=Ap. x+ G z where A=AR + BRGR-GRNIR

iA such that the closed-loop system matrix for the control design model

,4.' given by

AR B RGR (31)

AcL

L" 
R

is asymptotically stable. These controller gains GRand GR could be

optimal or non-optimal with respect to the model (28).

The closed-loop system for the evaluation model is obtained by

forcing the evaluation model with the controller of the control design

[.. model. Thus, we have

:i: A 8 GR AT D 0 w
AR, RBRR T Rri

L -~
H 4- 7V

XR GRM + 0 G R  V

L T ATR BTGR AT D 0 32)

-18-
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X
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The stability of the above closed-loop system matrix which we denote

as ACL 2 is to be established.

. -At this juncture we assume the matrix AT to be an asymptotically

J rstable matrix (which is a reasonable assumption for large space structure

models). In order to derive the condition for stability of the closed-

loop system matrix ACL2 , we write ACL2 of (32) as

AR BRGR  0

ACL2 GRMR AR 0

0 0 AT

1 0 BR('R-GR) ART (33)

_ (GR'GR) MR AR-AR R

B G 0

L AT R 
T R

S.C F.L. A R AR + BRGR-GRM R

19
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where GR and GR are the control gain and estimator gain matrices, re-

spectively,obtained by using the reduced order model {A B C MR D }
R, R, R, R, R,

and are such that the resulting closed loop system matrix (of the re-

" duced order system which, of course, is the first partition of A s.c) is

asymptotically stable. One choice of G and G could be the standard
R R

' optimal control gains of the reduced order model (AR BR,CR,MRDR,

under appropriate conditions. Note that A is thus a stable matrix

_... I and that EFA basically contains the terms that cause spillover.

"1 F Design Observation 2: The closed-loop system matrix ACL 2 is stable for

$' -- all control design models G and G such thatR R

4 Ri FS~ GG < GRij I, I G Rijj< I G iji

~' r if

p [(E m Am-ls] <1 (34)

where Ad + Ae A ,A = Diag [Re X. (A )]eSC= i (s.c

C~i  Era (IAeI + AE) s  A m= IAdI

,.0 2BRGRI IARTI

1.. a2GRMRI 12ARI (35)

I ArR 1 IBT GR 1 0I,
: " 4I l T R
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Measure of Stability Robustness

It may be noted that a variety of controller gains may satisfy the

proposed stability condition for given perturbations. In order to compare

different models/controllers from stability robustness point of view, it is

. clear that there is a need for some form of a measure of stability robust-

> ness. To this end, we now define a measure of stability robustness called

"Stability Robustness Index", aS.R.

O C 8S.R. Re Xmin(ACL) 1-1 Re Xmin(ACLP) 1 / ReX min(A CL)( (36)

where A is the nominal closed loop system matrix and A is the perturbed
CL CLP

closed loop system matrix (i.e. the closed loop system matrix formed by the

perturbed matrices of plant, estimator, etc.); here it is assumed that the

controller gains are such that the condition for stability is satisfied and

thus the perturbed closed loop system matrix is stable. The motivation be-

hind this definition is that the index is a measure of the magnitude of the

deviation in the minimum eigenvalue modulus of the perturbed system from the

nominal system.
4... By this difinition .R. 0 corresponds to a highly robust system from

stability point of view. However, one aspect of further research in this

development is to investigate what is the worst case deviation (i.e. Max

a 8S.R for a given set of maximum modulus perturbations expected in the

system matrices. Once the worst case 8S.R. is determined for each controller/
'p.

model, say 8S.R.W. then this index can be used for comparison purposes.

-21-.e '-'.- 21- - - - - ,.
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Measure of Performance Robustness

I In similar lines, we define a measure of performance robustness called

"Performance Robustness Index 5".R i i.e.

5P.R. ~ P N N 37

Iwhere J Pis the value of the performance index for the perturbed systen

SI(with A CLP as the plant matrix). Thus, 8P.R. 0 corresponds to a highly

robust system from performance point of view. As mentioned above, an area

of future research is to investigate the worst case a .R for each controller/

model and then use this index P.R.W as the basis for comparison.

Robust Control Design

Once measures of stability robustness and performance robustness are

developed, the idea of a robust control design is to pick a controller that
gives a reasonable or satisfactory trade off between stability and performance.

~:ISpecifically, the design algorithms involves determining the indices B S.R.
and B P.R. for different values of the design parameters p c and p e which in

turn determine the control and estimator gains. This information about the

indices B .. and $P.R. along with the corresponding nominal costs( Ty)h

and CUTu) can be used to pick a specific controller (control and estimator

:1. gain combination) as the one which provides a satisfactory trade off between

stability and performance. The algorithm is thus iterative in nature. The

I computation basically involves the use of matrix Riccati and Liapunor so-

lutions and the eigenvalue analysis for which standard easy-to-use computer

programs are available. The details of the algorithms (in principle) are

given the SFRP report and for reasons of brevity, are not reported here.

However, a brief account of the "flow-chart" is included in the section

dealing with the computer software.

22- -
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Discussion of the Theoretical Development of this Research:

~ Some discussion about the implications of the current theoretical develop-

ment of this research is now in order. First, it may be noted that the

proposed stability conditions are similar, conceptually, to the frequency

>: j domain results reported in Ref. [1]. However, there are also some interest-

ing differences between these two (frequency domain and time domain) versions.

~ Some preliminary observations are presented in the following sections.

Secondly, these design observations are useful in many ways in both the analysis

and synthesis of robust controllers. These are discussed in later sections.

[ Comparison and Contrast Between Frequency Domain Analysis and the

~ - Time Domain Analysis

The main differences between the frequency domain treatment and the

time domain treatment are as follows:

~ Ii) The main differences between the frequency domain treatment and the
the calculation of singular values of a complex matrix at various

* frequencies. In the stability conditions of time domain, no time

dependence is present. Only the eigenvalues of a real symmetric matrix

L are to be computed.

~" ii) In the case of frequency domain results, the perturbations are

mainly viewed in terms of 'gain' and 'phase, changes t6,71. In the

proposed time domain analysis the perturbations are viewed as 'system

L parameter variations' and 'system model/controller order' with con-

stant, fixed gains. It may be noted that in the time domain treatment

L the nominally stable closed-loop matrix and the perturbed closed-loop

matrix are both functions of the constant controller gains.



L~.iii) In the frequency domain treatment, the requirement of

'% I square matrices necessitates the assumption that the number of control

inputs be equal to the number of outputs, which can be satisfied by

appropriate selection of the break point of the loop. However, in the

.ci i-present time domain analysis no such assumption is needed.
iv) Most of the work on robustness in the frequency domain con-

* j centrated on the analysis problem. That is, analyzing a given closed-

loop control system to determine the uncertainty bounds that will make

.~ I the closed-loop system unstable. This can be done very easily in the

frequency domain. The difficulty, however, is that the uncertainty

bounds can be obtained only in the frequency domain and are very dif-

ficult to translate back into the time domain to determine the allowable

perturbations of physical parameters of the system. This difficulty

can be eliminated by posing equations (26) and C27) in the framework of

.~ a robustness analysis problem.

Very little work has been done on the robustness synthesis problem

in the frequency domain. That is, to design a closed-loop contorl system

to meet the performance specifications in the face of ai specified set of

uncertainty bounds. The proposed approach in the time domain handles the

1 robustness synthesis problem very well.
L ~) In the proposed stability conditions, provision is made for

considering different reduced order models for control design purposes

(reflected by the presence of A R , B R matrices which could be different

from A R9B R-matrices). Just as in the frequency domain different control

design methods could be compared using the singular value plots of the

return-difference matrices, this provision helps to compare different re-

~ [ duced order models (used for control design) from a stability robustness

point of view.

WU



Vi) In the frequency domain treatment, considering an uncertainty,

1 for example, as an additive perturbation several stability robustness con-

ditions can be written which do not imply each other for practical systems

[21]. In the present time domain approach such difficulty is not present.

~kj The perturbations can only be modelled as additive perturbations and yield

only one robustness test.

~ I Vii) All the norm bounded robustness criteria in the frequency domain

are inverently conservative because they assume that the phases of all the

elements in the perturbation matrix are in worst possible direction which is

a mathematical extreme. Some possible alternatives to reduce this con-

servatism in the frequency domain are developed in references [22] and [23].

The proposed time domain robustness criteria are also conservative. The

conservatism enters the development of the main result because of the re-

quirement of the negative definitess of the perturbed system. The degree of

.~ [ conservatism, however, is a subject for future research.

These are some o-f the preliminary observations made with respect to

- the frequency domain and time domain approaches for 'stability robustness'.

Evidently further in-roads have to be made in the investigation of this

relationship and this is suggested as a future-research topic. In the

~i~j [following section, the usefulness of the proposed design observations is
% briefly discussed.

Usefulness of the Design Observations

The proposed design observations are helpful in many ways. First, if

anominally stable closed-loop system matrix is specified (i.e. either A CL

or A scdepending on the specific case as discussed in section III), then

* Ione can use these tests to determine the tolerable perturbations in the
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system matrices A, B and M and the order of the model/controller before the

closed loop system becomes unstable.

Conversely, given the perturbations AA, AB Lnd ALN and the order of the

model/controller, one may determine the controller gains to achieve

:o.."stability robustness.

As indicated in the previous section, these tests can be used to compare

different model reduction and control design schemes from a stability

-17 robustness point of view.

Finally, these tests can find applications in spillover reduction

•4 problems and sensor/actuator location problems.

r
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lIB. Computer Software

Introduction:

The computer program has been developed in two packages. The first

1 package tests the stability condition developed in the report for two types

of perturbations viz, Parameter Variation and Model truncation. The

.~ Isecond package then computes the Regulation, control and total costs for

the open loop. Nominal closed loop and Perturbed Closed Loop Systems.

The program then computes the robustness indices P.R  and aS.R.

[The program uses extensively the subroutines available in the LSLIB

(Library for Control and Estimation of Linear Uncertain Systems) and made

compatible for use in DEC-10 computer. The main programs of the Stevens

Computer Center and other subroutines are written in Fartran IV. The

LSLIB package was originally developed at Purdue Aero Department.

I [The following paragraphs outline briefly the program.

Package 1. Stability Evaluation:

The algorithm first forms the nominal closed loop matrix ACL and the

Perturbation Matrix AACL.

a) Program PARVA 1 handles parameter variation problem. The input

matrices are A,B,C,D,M,Q,R,V,W and the perturbations DA,DB,DC,DD&DM.
1) The subroutine SSLQG solves the algebraic matrix Rocatti

- equation for the controller and estimator and gives the control gain G

and estimator gain G.

2) The subroutine MATFTZ forms the nominal closed loop matrix ACL

and the Perturbation Matrix AACL.

-'27 -



b) Program Trunk handles the Truncated Mode problem. The input

'-I matrices are AR, ART ATR, BR, BT, CR, CT, DR, DT, MR' MT, Q, R, V, W.

'1 1) The subroutine SSLQG solves the Ricatti equation and gives the

control gain GR and estimator gain GR.

~ ~and2) The subroutine MATFIT forms the nominal closed loop Matrix A CL

-z and the Perturbation matrix AACL as discussed in the report.

c) Program TEST with ACL and AACL matrices as input, tests the

stability condition of the system. It is interactive and permits one to

test the stability of the system for different values of a (of the a method

rl discussed in the report). Once the condition is satisfied, the program

- then calculates the stability-robustness index a of (36) for all the

controllers satisfying the condition.

Package 2. Performance Evaluation:

Il The input to this program are the matrices AB, C, D, M, W, Q, DA, DB,

DC, DD, DM and the scalar constants ROEC and ROEE.

1) The subroutine LYAP2 computer the open loop cost Jop"

2) Subroutine SSLQG solves the Ricatti equations for the controller and
A

estimator and gives the control gain G and the estimator gain G. It also

computes the control, regulation and total costs of the nominal closed

** loop system (JUN, JXN, JN respectively).

3) Subroutines MATFT2 and MATFT4 form the matrices AFll, AF21, AF22, CF,

Di, DF2, and WF (Ref. [15].

4) Subroutines LYAP 2 and LYAP 5 solve the three reduced-order Lyapunov

I equations (each of order (n + nc)) and give the matrices PFll, PFI2, and

[PF22.
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5) Subroutine MATFT2 forms the matrix PF.

6) Subroutine MATFT4 forms the matrix QPF.

7) Subprogram JRAC2 computes the cost with the matrices PF, CF and

QF as input.

8) The algorithm forms different structures of the QF matrix each

. one yielding a particular cost, thus, the control costs JUNN, JUP,

Regulation Costs JXNN, JXP and the total costs JINN and JP for the nominal

closed loop and Perturbed Closed Loop respectively are computed.

1 9) The algorithm then computes the performance robustness Index BETAPR

[ from the perturbed regulation cost JXP and the nominal regulation cost

4JXNN.

List of Subroutines Used:

ABS - Makes all elements of a matrix absolute.

CINV - Forms inverse of a complex (nonsingular) matrix.

DIAMAT - Forms diagonal matrix with real part of eigenvalues of

a given matrix.

EIGRF - Computes eigenvalues.

IDENT - Forms an identity matrix.
TSLYAP 2 - Solves Lyapunov equation [form: AA * xx + xx * AA + cc =0]

LYAP 5 - Solves Lyapunov Equation of the [form: AA * xx + xx * BBT

I + cc = 0].

3 -- MADDSB - Adds and subtracts Matrices [form: A + B - c].

MARB - Find the biggest magnitude of real part of the

.Leigenvalue.

MARS - Find the smallest magnitude of real part of the eigenvalue.

- 29 -
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MATFT 2 Forms a single matrix from 4 matrices.

MATFT 4 - Forms a single matrix from 16 matrices.

MEQ - Stores the matrix A in the matrix B.

AT.MP 31 - Computes matrix product [form: p = A * B * C

i*'. IP 32 - Computes matrix product [form: p = A * B * CT

MULRRT - Computes matrix product [form: p = A * BT

-IJLT - Computes matrix product [form: p = A * B]

SCAMUL - Multiple a matrix by a scalar.
- SSLQG - Solves Ricattis equation.

STABR - Forms and solves the stability criterion.

TRAC 2 - Multiple 2 matrices and finds the trace of the

matrix product.

USWCM - Prints complex matrix.

USWFM - Prints real matrix.

6--30-



C PROGRAM PARVAI
C THIS PROGRAM FORMS CLOSED LOOP MATRIX AND PETURBATION MATRIX
C FOR PARAMATER VARIATION PROBLEM

REAL A(l4.14) fI(l4U14)fC(14*14),D(14,14),M(14,14) eOA(14, 14)
REAL DD(14.14) .OC(14.I4)PAD(2g,28) .VW(14u14)
REAL DD(14.14),DM(t4,14),O(l4.14) PR(14.14)
REAL W(14.14) ,V(14,14)vS(14.14),COC(14,14)
REAL K(l4114).P(14,14),F(14.14)uO(14.14)eUKCSOO) uZERO(14,14)
REAL FM(14114)9D0C14914)PAC(14,14)PAFM(14,14),APG(14, 14)
REAL ACL(2B,28),AEC2B,28)tDBG(14v14)
REAL FDM(14#14)pECL(2St28)rEN(28p28)

* .REAL CCC2929).DDD(26p28),ENS(28,28)

COMPLEX EIOA(14),EIO(14),EE(29,28),Elc28,2B)
COMPLEX EIOACL(28)PEIGN(28)

C
1S-14

j. NX=2
NM-I

NK-2
NL-2

C
C GIVE VALUES OF A AND DA
2 READ (15#*)((A(IPJ),JmluNX)PI=IPNX)
3 READ (15#*)((DAcIJ)#Jm1,NX),lI.NX)

'ft. C
C GIVE VALUES OF SIDD
5 READ (l59*)((DuJ),J1,NM),I=1,NX)
6 READ (159*)((DD(XJ),JmhNM),I=1,NX)

V C
C GIVE VALUES OF ClDC
a READ(15.S)((C(IPJ),JalNX),I.1,NK)

9 READ(15,8)((DC(IJ).J=INX)PImlNK)

121 READ (15**)((DD(IPJ)#J-1,NO)tI-1.NX)
C
C
c GIVE VALUES OF NIDM

15 READ (I~v*)((M(IrJ)J1iNX)I-I.NL)

c GIVE VALUES OF Q(NKPM1O

C 0 18 SY~v+VE DEFN MATRIX
16 READ(15.*)((G(IeJ)eJ=1,NK)uIulNK)

C GIVE VALUES OF ROEC
READ(I5v*)ROEC
90 101 ImlNM
DO 101 JWINM

4~f4 RC IiJ) .0
101 R(IeI)wl
C GIVE VALUES OF ROEE

* READ(159*)ROEE
DO 102 I11NL
DO 102 Jm1,NL
V (I tJ ) 0

S10i VCItI)v1
CD READ(15e*)((V(IPJ).J1,PNL).IUleNL)

C
C CALLS INSL ROUTINE FOR SETTING OUTPUT IDENTIFIERI..CALL UI3ETIOC3,o,3s,

CALL USUFM(2HAA92,A#ISNXtNX94)
CALL USUFIIC2HDA92PDAISPNXPNX,4)
CALL USUFM(2HDpe2t3.SpNXNM,4)
CALL USUFM(2HD~e2pDDIStNXPNM,4)
CALL USWFM(2HCCt23CpIStNK#NXP4)
CALL USWFN(2HDCF2,DCISPNKPNXP4)
CALL USUFN(lHDp1,DtZSPNXtNGv4)
CALL USUFM(2HDD,2,DDISpNXNG,4)
CALL USUFMC1HMPIUMISNLNX,4)
CALL USWFM(2HDM,2tDMPISPNLoNXP4)
CALL USUFM(1HU,1,OIS#NKpNKv4)
CALL USbFM(1HW,1,WvISvNGNQ,4)

C FORMS R-ROEC*R
CALL SCAMULCROECISrRrISRvN1.NM)

C FORMS V-ROEE*V
CALL SCAMUL(ROEEISPVIS.VPNLNL)

C FORMS WW-D*basDT
CALL MP3 2(rS.NX.DISNGeuZSNONXPoIS.UU)

- CALL MP31IS9NXC.ISPNKOvI5,NKPNXCISCOC)



CALL USIIFM(IHRvI.RvISN~pIN.4)
CALL USMFM(K~vl@VpIS#NLPNLP4)

IY CALL EIGRF(A.NX.IS,2,ElGA.EEIBwWKtXER)
CALL USUCN(4HEIGAt4.EIOAvXS#NXplv4)

20 CALL SSLOG(IS99uAI9#DISeWWISMeISVISCCISRPNXNI.NL
1,0..FALSE.,WKIS.SISK,!S~S.OXP9FEIG.EEPRJPRJXRJU)

CALL USUFM(1I4GvlO,15,NtINXv4)
CALL USWFM(IHFv1,FpISPNXiNMP4)
CALL USWFM(lHK,1,KISPNXtNXP4)
CALL USIJFM(lHPIePPISPNXtNXP4)

22 CALL MULT(BvOr9GvNX.NHeNXvISpISvIS)
23 CALL MULT(FMPFMvNXtNL.NX!tseisprs)

CALL MATADD(AeDO.ADOrNXvNXuIS)
CALL MATSUB(AvFMvAFMpNXvISISvIS)
CALL EIGRF (ABGvNXrISi2iEIGN.EEvIDUKpIER)

39 CALL USWCM (14I4EIGENS OF A*SO,14vEIGNvI~vNXv1.4)
C

CALL EXORF(AFMNXpXS,2EONEE!BIJKPIER)

.40 CALL USUCM (14HEIGENS OF A-FH.I4iElGNvIBeNXtlv4)
24 CALL MADDSB(A.3OeFMNXtAC.XSISISv!S)
25 CALL MATFT2CA.DGFMPACPNXINXPNXDNXPACLP2*NX

lv2*NXuIBPISPI9)
:' ~ CALL USWFN(3HACL,3,ACLID,2:NX,2*NX,4)

MACL-2*NX
NECLNMACL

30 CALL ADS(6rN94.NX,!S)
31 CALL ADSCF@NXPNLPIS)
32 CALL MULT(D~op.DG.NXPNJI.NXPISIS,!S)
33 CALL MULT(FDMPFDMNXHLNXISISPIS)
34 CALL MATFT2(DADBOFDMPZERONXPNXNXPNXECLNECL

19NECLPIDPISeIS)
CALL USUFM(IHE.1,ECLIDNECLPNECL,4)'iF URITE(36,51)(CECLCXJ)wJ-1,NECL),1INECL)
CALL MATADD(ECLACLPACLPNECLNECLPIB)
CALL USWF"(SI4ACL+E,5,ACLIDNECL.NECL,4,
CALL EXGRF(ACLPNECLIU,2,EIGACLEEPIDUKIER)
CALL USWCM(I4HEIGEN OF ACL+E,14PEIGACLIB#NECLtl,4)

STOP
END

C PROGRAM TRUNK
C THSPROGRAM FORMS CLSDLOOP MATRIX AND PETURBATION MATRIXIC FOR A TRUNCATED MODES PROBLEM

REAL AR(14,14),DR(l4,14)CR(l414)DR(l414)NRC14914)IAT(l4914)
REAL 3TC14u14)PCT(14.14),AD(2929),UWp(l4,14).A(29p2g)
REAL DT(l4,14),MTC14I4),(14,14)PR(l4,14)VCOC(14,14)
REAL U(14,14),V~l4,14),S(l4,14)PART(14,14),ATR(14914)
REAL K(l4,14),PCI4,14)eFR(14,14),0RC14,14),UK(S00),ZERO(l4I 14)
REAL FRMRCI4PI4),3RGRC14,14),AC(14,14),RAFMC14t14)eRADG(14914)
REAL ACLC2S,25),AE(29v23),DTGR(14vl4)
REAL FRPTC14u14)PECL(29.2S).EN(29p28)
REAL CCC2Sv2U)pDDDC29,29)pENS(29i2S3)

C
COMPLEX EIOA(29),ElOCI4),EEC2S,28),EI(2S,2g)

C XTiR1X

N"-I

C
C GIVE VALUES OF ARIARTPATR AND AT
2 READ (15,g)((AR(XJ),J1,PNXR),I.1,NXR)
3 READ (15,3)((AT(IJ),JIoNXT),Iu1.NXT)

READ(15,*)( (ART(IPJ)uJ-19NXT),I*1.NXR)

C
C
C
C GIVE VALUES OF BRST
5 READ (15,S)((3R(Ij)JslNM)Iin1NXR)
& READ (15,*)C(IT(IPJ),JUI.NM),I1,tNXT)

C SKYE VALUES Of CRICT
S RA(1!u)((CR(ZjJJu1XR),IOInNK)
9 fADf(15P*)((CT(JJ)JINXT)91IinPNK)



* C GIVE VALUES OF MR&MT

14 READ (159*) C(MR(I PJ)vJ-IeNXR)PI-1eNL)

15 READ (15,2)(C(MT(I vJ) YJ1.NXT),I1,PNL)
C
C GIVE VALUES OF O(NKvNK)
C 0 IS SYP+VE DEFN MATRIX
16 READ(15.s)((O(IJ),J-1,NK) ,I-IeNK)
C
C GIVE VALUES OF ROEC

READ(15v*)ROEC
DO 101 I-1.NM
DO 101 J.1,NM

di R(IeJ)u0

C GIVE VALUES OF ROEE
READ(15v*)ROEE
DO 102 I-19NL

* DO 102 J-1,HL
V(IFJ)-0

102 VII=

C

C CALLS IMSL ROUTINE FOR SETTING OUTPUT IDENTIFIER
CALL UGETIO(390935)
CALL USWFM(2HARp2vARPISPNXRPNXRP4)

4.. -CALL USWFM(2HAT,2pATPISPNXTNXTP4)
CALL USWFM(3HART93PARTPISeNXRPHXTp4)
CALL USWFM(3HATRp3tATRPISpNXTPNXR,4)
CALL USWFM(2HBRP29DRPISPNXRPNMP4)
CALL USWFM(2HDTv2v3TplS9NXRtNMP4)
CALL USWFM(2HCRv2pCRPISPNKvNXR94)
CALL USWF'M(21CTp2vCTiIStNKPNXTP4)
CALL USIJFM(2HDT.2vDTIS#NXTNGP4)
CALL USWFM(2HD~p2pDTPISPNXRNO,4)
CALL USWFM(2HMRo2.NRPISPNLPNXRP4)
CALL USWVM(2HMTt2tMTtISPNLPNXT*4)

C FORMS R-ROEC*R
CALL SCAMUL(ROECPISRISRNN4)

C FORMS V-ROEE*V
CALL SCAMUlL(ROEEtISpVpISvNLtNL)

% CALL USVFM(lHO.1.G#IStNKPNKP4)
CALL USWFM(lNWp1,U.ISPNGPNQ.4)

C FORMS WW=D*W*DT
CALL MP32(ISNXRPDRISNOWISNONXRPDRISUU)
CALL MP31CISHXRPCRPlS.N1COISNKPNXRtCRISCOC)
CALL USWFMC1HR1IFRPIS.NMPNMPA)
CALL USUFM(1HVlIPVP1SNLvNL.4)
CALL MATFT2(ARARTPATRPATPNXRNXTPNXRNXTP

1 ArNXpNXvI~rI9,IS)
19 CALL EIGRF(ANXvI~v2,EIGA.EEI3.UKiIER).2:. t*CALL USWCM(414EIGAr4,EIGAtI3,NXp1,4)
20 CALL SSL0GCISARISv3RISvkIU.ISMRIS.VyIStCOCeISiReNXRNMNL

1i0..FALSE.PWKISSIS#KIS.GFPISPPISPFRPEIG.EEuJPJXPJU)
CALL USUFM(2HGRt2,ORISPNMPt4XR,4)I .. CALL USWFM(2HFRp2tFRPIStNXRPNMP4)
CALL USWFM(IHKt1,KPISPNXRNXRP4)
CALL USWFM(IHPP19PPIStNXRPNXRP4)

-22 CALL PULT(DRORPDRGRPNXRiNtiNXRvISuISeIS)
23 CALL MULT(FRPMRFRMRPNXR.NLNXRtISIS.IS)

CALL MULT(BTGRBTGRPNXTvNI.NXRXSvIStXS)
CALL MULT(FRPMTPFRtITtNXRPNLNXT.ISiISeIS)
CALL MATADD(ARvBRGRvRABO.NXRpNXRpIS)
CALL *ATSUB(ARvFRMRPRAFMPNXRIS.ISvIS)
CALL EIGRF (RABGeNXRPIS.2,EIGNPEEPIB.WKiIER)

39 CALL USWCM (17HEIGENS OF AR+BRGRP17iEIGNI~vNXRP11 4)
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CALL EIORF(RAFPNXReISe2,EIGNEEIBeWKPIER)

40 CALL USUCM (I7HEIGENS OF AR-FRMR917PEION.IBuNXR1IP4)
4424 CALL MADDSB(ARBRGRPFRMRPNXR.ACPISISISIS)

C
NACLa2*NXR+NXT

4' NECL-NACL
C CALL MATFT3

25 CALL MATFIT(ARPBRGRPZEROFRMRPACZEROPZEROtZEROAT,
I NXR.NXRNXTNXRNXRNXTNACLNACL.ACLISIStISIB)

CALL USWFM(3NACL,3,ACLIB,2*NXR+NXT,2*NXR+NXT,4)

WRITE(36v5l)((ACL(IPJ)PJulNACL),I-IPNACL)

* ) 91-2
29 CALL SCAMUL(SL.ISDRGReISDRGReNXRPNXR)

30 CALL SCAMUL(SLISFRMRISFRMRNXRPNXR)
31 CALL SCAMUL(SLPISPACPISeACPNXRNXR)
32 CALL APS(PRGRPNXRtNXRPIS)
33 CALL ADS(FRMRPNXR.HXRIS)
34 CALL ABSCACNXRNXRPIS)
37 CALL APS(ARTI4XRPNXT*IS)
38 CALL APS(ATRPNXTPNXRPIS)

41 CALL ARS(FRMTPNXRPNXTIS)
42 CALL ADS(BTGRPNXTPNXRPIS)
43 CALL MATFIT(ZEROBRGRARTvFRMRACtFRMTATRDTGRZERO,

1 NXRNXRPNXTPNXR.NXRNXTNECLNECLECLISISISIB)
C

STOP
END

C PROGRAM COST:
C THIS PROGRAM COMPUTES THE REGULATION COSTPCONTRJL COST AND TOTAL
C COST FOR THE OPEN LOOPPNOMINAL CLOSED LOOP AND PERTURBED CLOSED
C LOOP CASES AND THE PERFORMANCE INDEX.
C DIMENSIONS:

-REAL A(Y,9),DA(9,9).B(9,9)PDB(9,9),UC9,9),MC99),DM(9,9),V(9,9)
REAL O(9v9)PR(9p9)vSS(Y99)KK(9p9)90(9p9)PP(9f9)vF(9v9)vA12(999)
REAL A21(9v9),A22(999)A32(9,9),A33(9,9),A34(9,9),A4IC9,9)
REAL A43(9,9),AFl1(18,I9),AF12(19,18),AF21(18,19) iAF22(1918)
REAL D(9,9)PDD(Y91,)DFI(1SPl8),DF2(1S8h)C(9,9) ,DCC9,9),C23(9t9)

£ REAL CF(38p36).OF(36v36) ,UF(I9,19),PR1(I818l) PR2I(l8elS)
REAL PR22C19.18) iPR2(ISpl8) vPR31(18e19).PR32C19.l8).PR33(18,15)

~ jREAL PR3(19u19),PF11(IS.18),PF12C19.18),PF22(18vlg PPF(36.36)
REAL TPF12(18,19),UKC500),ZERO(9,9).UW(999),C0CC36p36),DUM(18,I9)
REAL POP(9,9)
REAL JOPPJXNIJUNJNPJXPPJUPPJP.JXNNJUNNJNN
COMPLEX EXGI(36)vE192(36)rN0D1C36t3b)
COMPLEX INODl(36,36)eMOD2(36,36).1M0D2(36,36)PWKC(1500)
IRs9
1R2-10

B. , 2 IR4-36

MM-I
NO-I
NK-1
NL1l
NN2-2*NN
NN4-4*NN
ROL-NG+NL

3 NKM2-2*(NK+NM)

C INPUT VALUES:

S READ(50,*)((A(IJ)J-INN)I-INN)
71 READ(50,*)((D(IJ)pJ-1.NM),IllNN)

READ(509*) ((DD(IeJ) .J-lvNM) ,I~lNN)I. 72 READ(50,*)((C(IJ),JnlNN),I-l.NK)
READ(50.*)( (DC(IPJ),J-INN) ,IinINK)

73 READ(5O,*)((D(IPJ),J=1,NO)I1,lNN)
READ(50.*)((DD(IPJ),J-INO) ,I-I.NN)

74 READ(50p*)((N(IJ),JmINN),I-ItNL)
READ(502) ( (DM( IJ) ,J INN)vlIlPNL)

76 READ(509*)((W(IJ),j-1,Na),I-1,NG)
V 77 READ(50,3)((V(IJ),.frINL),IulNL)

READ(50p*) ROEC
READ(50t*) ROEE
READ(50,*) C COIPJ),JulNK) ,IOIPNK)
READC509S) ITTY

a1 CALL IDENT(RPNMPIR)
92 CALL IDENT(VPNLPIRI
93 CALL SCAMUL(ROECPIRPRPIRvRvNMNM)
934 CALL SCAMUL(ROEEPIRrVUIRPVPNLPNL)
C OPEN LOOP COST
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C
501 CALL MP3'C IR.NNPD, IRNQ#WIRNaNND, IRWU)
502 CALL MEO(ApDUMrNN1 NNvlRpIR2)
503 CALL EIGRF(DUtINN. 1R2e1 ,EIG' MOD1. 1R4.UK. IER)
504 CALL CXNVO OD1r1N~tl1,UKpIR4,NN)
505 CALL LYAP2 (E IO.P IR4 rMOD I v IMOD I I R rWW IR PPOP PNN PWKC)
506 CALL MP31( IRNN1CwIRNKOu !RPNKPNNCe1R2vDUM)

JaF'=TRAC2(IRtP0PIR'2PDUMPNNPNN)

CALL MP31(IR.NN.CIR.NKOeIRPNKPNN.C,1R4,COC)
5 CALL SSLOOCXRPAPXRPBP IRPWWeXR,MIRUV IR4vCOC. IRRuNNPNMPNLPO

Iv.FALSE.,WKPIRSSIRtKKt!ReG.IRPPRFEIGI1UKCPJNJXNPJUN)
07 CALL UGETIOC3t0.ITTY)
50 RITE(ITTYP*)('INPUT VALUES')

C CALL UGETIO(l,03r33)
CALL USWFM(4HROEC,4rROEp,1,1,4)
CALL USWFlI(4HROEE,4,ROEE'1,lul,4)

CALL USWFM(8HMATRIX ArS.ApIRvNNuNNv4)
CALL USWFH(9HMATRIX DAr9tDAv1RNNrNNp4)
CALL USWFM(SHMATRIX BPBPBPIRPNNPNMP4)

508 CALL USWFM(9HMATRIX DBP9#DBPIRPNNPNMP4)
CALL USbJFl(SHMATRIX CPBPCPIRPNKrNNt4)
CALL USWFM(9HMATRIX DCP99DCiIRPNKPNNt4)
CALL USWFH(SNJIATRZX D8PSDPXRPNNPNGP4)
CALL USWF*I(9HMATRIX DDt9iDDi!RvNNpNO.4)F.CALL USUFM(BHMATRIX 91,8,MPIRPNLPNN,4)
CALL USUFM(9HMATRIX DM99DMPIRPNLtNNw4)

CALL USWFM(8HMATRIX U.SUIRpNON~v4)
CALL USWFM(SHM$ATRIX VPgVPXRPHLFNLP4)
CALL USWFM(SHMtATRIX Ov9i0,IRtNKrNKv4)
CALL USWFM(SHMATRIX Rp.BvIRrNMrNl,4)
WRITE(ITTYP*)('OUTPUT VALUES')
CALL USWFM(GHMATRIX O.9,O.IRvNMvNN,4)
CALL USWF(S4NATRIX FtSPFiIRPNNvNL*4)
CALL USUCII(16HEIGEN VALUES/NCL,16rE!G~vrR49NN2.1v4)
CALL USWCM(16I4EIGEN VALUES/NCLv16,EI12,R4,NN,1.4)

C NOMINAL AND PERTURBED CLOSED LOOP COSTS
C
10 CALL MIJLT (BOAl2pNNNMtNNvZR.!RIR)
15 CALL NULT(FvMvA21vNNrNLpNNvIRpIRvIR)

20 CALL MADDSB(A.Al2,A2lNNA22#!RrIRXRIR)
25 CALL MULT(D9,G.A32,NNNMNNIRv!RIR)
30 CALL MATADD(AvDAvA33vNNNNvIR)

35 CALL MATADD(Al2vA32pA34vNNvNNvIR)
40 CALLMULT(FDN.A41,NNwNLNNPIRIRPIR)

45 CALL NATADD(A21vA41vA43vNNvNNpIR)
CALL MATFT2(AtA12,A21.A22,NNNNNNNN.AF11,NN2,NN2,IR2.IR,!R)
CALL MATFT2(DAA32,A41,ZERONNNNNN.NNtAF2lNN2,NN2,1R2,PIRIR)
CALL MATFT2 (A33,A34,A43,A22,NNNNFNNNNAF22Pl4N2pNN2iIR2,ZR.XR)

52 CALL MATFT2(D.ZER0.ZER0,PFNNNNNONLDF1,NN29NOL
1PIR2,IRpIR)

60 CALLMATFT2(DDZERGiPZEROPZERO#NNPNNNONLiDF2,NN2
lNGLP1R29!RPIR)

WRITECS,*)(CAF21(1,J)PJ1,HN2)ZinI:NN2)

70 CALL NATFT4(CPZERO.ZEROZERODCPZEROC23,ZEROZEROOZEROZERO
1gZEROPZEROZERO.GCFPNKHKPNMNMeNNuNNNNNNNK42,NN4,IR, IR
lorRIRP!R4)

90 CALL MATFT2(I5,ZEROPZEROVNONLNONQuWFNOLNOL,1R2,IRXR)
C SOLVE LIAPUNOV'S EOUATION:
c (A) PF11.AF11T+AF11.PFII+DF11.U.DFIIT-0
95 CALL MP32(1R2.NN2,DF1,XR2,NOLLFIFR2,NOLNN2,OF1

1vIR2rPR1)
CALL MEO(AF11,DUMNN2,NN2#rR2,1rR'2

100 CALL EIGRF(DUMNN2,1R2,1,EIO1,MODlvIR4vWKIER)
105 CALL CINV(MOD1IIMOD1,UK,!R4fNN2)qL 110 CALL LYAP2(E101 .!R4,MODI vIMO~1,XR2,PR1 ,1R2.PFII

0*NNrW -



115 CALL MULRrT(PF1,AF21,PR21,NN2,NN2,NN2,1R2,1R2,1R2)
~L. 120 CALL MP32 (IR2,NN2,DFlXR2,NOLWFIR2,NOLNN2tDF2,IRI.

1PPR22)
125 CALL MATADCPR21ePR22,PR2,NN2.NN2,!R2)

CALL MEO(AF22#DUMvNN29NN2vIR2vIR2)
130 CALL EIGRF(DUMPNN2,1R2,1,E02MOD21R4bIKIER)

135 CALL CINV(MOD2v1MOD2vWKP1R4iNN2)r'140 CALL LYAP5(NN2,EIG1,IR4,MODltXMODleNN2pElO2,IR4vMOD2
IPXMOD2vIR2pPR2vIR2PPF12PWKC)
CALL USWCM(16HEXOEN VALUES/PCLv16,EIGIPIR4pNN2t1w4)

C (C) PF22.AF22T+AF22.PFZ22TPF12.AF21T+AF21.PF12
C +DF2.U.DF2T - 0

DO 145 I-1rNN2
DO 145 J-lPHN2

k. ~145 TPF12(I.J)-PF12(JtI)
150 CALL MULRRT(TPF12,AF21,PR31,NN2.NN2tNN2eZR2t.l2eXR2)
155 CALL MULT(AF21,PF12.PR32.NN2pNN2iNN2eXR2.IR2iIR2)
160 CALL MP32(1R2,NN2,DF2,1R2,NOLIJF,!R2,NOLvNN2,DF2.1R2

1, PR33)
165 CALL MATADD(PR31,PR32,DUMPNN2,NN2,1R2)
170 CALL MATADD (DUN .PR33,PR3INN2'NN2v 1R2)
195 CALL LYAP2(EXGZ,1R4,MOD2,!MOD2,1R2,PR3,1R2,PF22,NN2WKC)
C FORM MAT PF:
195 CALL MATFT2(PF1IPF12,TPFI2,PF22,NN2pNN2,NNZNN2,PFNN4

1PNH4#1R4v1R2v1R2)

C FORM CFTGFI.CFP CFT.OF2.CFv CFT.OF.CF

196 20 CALL MATFT4(ZEROZEROZEROZEROZEROZEROZEROZEROZEROZEROZEDER
1.,ZERZEREORRONKPMNKNKNMNNKNMNIK2NKMM2,IRIRIRI

205 CALL MP31( 1R4.NN4,CF,1R4,NKM2,OF,1R4,NKM2,NN4,CF,1R4,COC)
201 JUP-TRAC2(1R4.PF,1R4,COCNN4,NN4)
207 CALL 1ATFT4(OOPZEROZEROPZOZEROZEROPZEROPEROPRZEROZERO.

I P RPROFKNKNMNMN NKPNKPNMPNIIPNKKMPNMIR.IR,!RI2iIRP 

1PIRM2IRR.!,I,14
1001 CALL MP31(IR4,tN4.CF,1R4NKMi2,0FR4,vNKM2,NN4,CF,!R4,COC)
1002 JNN-TRAC2(XR4,P~vR4vCOCNN4,NN4)
1003 CALL MATFT4(OQZEROPZEROZEROZEROZERZEROZEROZROPZEROPEO

.4 1,ZEROZEROZEROZEROPZERO.ZEROIOFNKIPtNKMNMNKNKNMNMR

10 CALL MP31(IR4.NN4,CF!R4NKMl2,OF.IR4gNKM2pNN4pCFIR4,COC)*:; [ 105 JXNNTRAC2(IR4PIR4,CO~NNANN4)
106CALL MATFT4(GZEROZEROZEROZEROZEROZEROZEROZEROZERO
1,RZEROPZEROZEROZEROPZZEROEROOFNKNNMPNMKNKvNKNMN

107 NNNKM2NKN2Rt ~IRPIR4):14

1006 CALL KXI DENTO PFPI4NK2POP R PMpN4PC I4PCC

103CALL MATFT4(0,ZEROZEROZEROZEROPZEROZEROZEROZEROZEROZR
1 tZEROvZERO. ZEROPZEROZROPZONKNKNMNKNK.NMPNKPNNMI2NKM

-. 1PNKvIRNKR2#RPR) PIPI4
104CALL MP31IR4,NN4,CPR4,NKM2,OFZR4eNKM2,NN4,CFv1R4COC)

1005 YTYN-TRAC2(R4PF1R4CCN4NN4)
1006 CALL MATFT4 (ZERO, ZERO, ZEROZVROP ZEROP ZEROP ZERO PZEROPZERO

1. ZEROPOZERO tZERO, ZEROPZERO, ZEROOF.NK ,NK NM, NM ,NKPNKNM ,N

107CALL USPFM(14pNPECLOP COSTN 14~O~P,1v#NNi1,4 CPR4
MRXTE(ITYS('NtgCLOS LOPCO STS'9NN )

- C~~~~BTRALL SI(15I4REOULATIN CS.SJNN111
CALL USUFM(I2HCNTROLCS,2JUN111

CALL USWIIRPIOHOA CSuO.N,,11

[CALL USUVM(IR4ONOALCOSIR41OeJPCvI,14)MMpNiFI~CC
100CALL MSWFT(ZERU T U,5,UTUG.1,1,1,4)R09EROZER

CALL USUM(9NYpltY*~12,3,tY1,g1,,
101CALL USVF1(SR~NTU*31/2,gTNK1,1,1,14)NMtNrFI~CC

URITE(ITTYP*)SePELO OSTE')
CALL USWFH(14HDEA LP CODTp.1,1,1,4) l

12 WRMT(F1U.S*)(IO* DLO OT'
13 CAT 1.5 USF(SR-LTO 36 -5JX~tppI

CALUTOP2CNRO.CSY19U~lors4
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- SUBROUTINE MADDSO (AvSeCvNrABPIAPI~vICrIA9C)

C THIS DOES ABC-A+B-C
REAL A(IA.N),3(ID.N),C(ICN),ADC(IASCN,
00 41 I lpN

41 ABC(IVJ)mA(IPJ)+D(IJ) -C(Iqj)
RETURN
END

SU BROUTINE MATFIT (AlltAI2,A13pA21uA22vA23oA31PA32pA33

DO 421 JI NCI)P2(RrC)
1AIJ)* (IR IeJC)A3(RNC)A2RtN2A3(RN3#CRN)

DO 42 I INRi
DO 42 J 1rNC2

40 A(IvNJ)A1( ,J

DO.41 1 -leNRl4 r DO 43 J *1.NC3
43 A(IreN- l+C2*J)3I

DO 44 I w1,NR2
DO 42 J -lrNC2

44 A(IN1+J -A2(IJ)

DO 43 I IepNRl
4D 3 J IevNC3

43 A(IN1+NCl*J)- A3(IeJ)
DO 46 1 IerNR2
00 46 J wleNC1

46 A(MR1*I9N)l- A21+J)3~
DO 47 I *IvNR3
DO 47 J IerNCI

47 A(NR14lN2+J)-A22IJ)
~ 1 30 46 I * INR

48 A(NRl*NR2+XeCJ)A3(IJ)
g DO 48 1 aleNR3

DO 49 J alp NC2
./ 5 49 A(NR1*NR2*IPNCI4+J)-A3(IJ)

RETURN 1sNR

SUBROUTINE ADS (AAeNRPNCrIA)

C THIS GIVES ABSOLUTE VALUES OF ALL ELEMENTS OF
C AA MATRIX AND OUTPUT IS STORED BACK INTO 'AA'

REAL AACIArNC)

SU0R71INEp
CSS 0SSS$SS2*1**SS*2*RS*** 2 ***g~***

SUROUTINE MAKES 'AD' A Dl~IAONL AIX

CDIAGONAL ELEMENTS AS REAL PART EIGEN VALUES OF
C ANOTHER MATRIX OF SIMILAR ORDER

REAL AD(IAD.ND)
COMPLEX EIG(IEIO)
DO 81 I-leND

A. S AD(IPJu@*
DO 92 ImleND

62 AD(IvI) -REAL(EIG(I))L RETURN
END
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C
-C; SUBROUTINE MATFT4pgc

C
C *
C 3*2 THIS SUBROUTINE COMPILES 4*4 MATRICES INTO A SINGLE MATRIX.
C ***
C ** All A12 413 A14

C 3s A21 A22 A23 A24 mA

C* AII-NRISNCI, A12-NR1.NCz, A13-NRI*NC3p A14-NRI*NC4'C-C 3 A21-NR2*NCIP A22-NR2*NC29 A23-NR2*NC3v A24-NR2*NC4
C 3*A31-NR3*NCIP A32-NR3*NC2p A33-NR3*NC3, A34-NR3*NC4
C **A41-NR4*NC1, A42-NR4*NC2p A43-NR4*NC3p A44-IiR4*NC4
C 3*A-NR*NC

CS:
C 33MRl9MR2IMR3IMR4,MCIFMC2,MC3,MC4,MRMC-DIMENSIONS

C*3

C

SUBROUTINE MATFT4(AllA12,A13,A14,A21,A22.A23,A24,A
3 lA 3 21eA33eA34,A41 1A42.A43PA44.A.NRlPNR2,NR3,NR4,NC1,NC2INC3,NC

4

lPNRvNCpMRlrMR2IMR3.MR4vMR)

REAL AI(RPR)A2M1M2P1C~PR)~4MIM4
REAL A2 1(MR2.MR1),A22(MR2eMR2),A23(MR2,MR3),A24(MR2,MR4)
REAL A31CMR3.MR1).A32(MR3,MR2),A33(MR3,MR3),A34(MR3vMR4)
REAL A41(MR4,MRl),A42(MR4,MR2),A43(MR4,HR3),A44(MR4vMR4)

~ I REAL A(MRPMR)

DO 50 1-19NR
DO 50 J~l.NC

50 A(IJ-0
DO 100 I-lNRI
Do 100 JulvNCI

100 A(IvJ)inA11(Ipj)

DO 110 I-lrNR1
DO 110 JlivNC2

110 A(IPNC1+J)UA12c1,J)
C

DO 120 I-1,NRI

DO 120 JinlrNC3

DO 130 I-lvNR1
~; I DO 130 JuINC4

130 ACZNC1*NC2*NC3+J)-414(IPJ)

D0 140 1-1,NR2
DO 140 JuNC1

140 ACNR1+IPJ)OA21c1,J)

DO 150 Z*1,NR2
DO 150 JulNC2

150 A(NRl+IPNC1+J)wA22(1?J)

D0 160 INR2
DO 160 J1,pNC3

I. DO 170 I11NR2
DO 170 J-lpNC4

17 (N.RI1NC+J2mAI1(J)-A4IJ

DO 190 I-1pNR3
'DO 1s0 J1,N"C2

180 A(NRI+NR2+1,NJ).A3(Ij)

DO 200 I-1pNR3
DO 200 JwliNC2,1 ~ 200 A(NRI+NR2+Ie,NCJ)A3 1,J)
DO 210 I-IuNR3
00 210 JUI,NC3

210 A(NR1+NR2+INC1+NC2+NJ)A
3 (lj)

I.
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DO 220 JwluNCl
220 ACNR1+NR2+NR3+ItJ)-A41(ItJ)
C

DO 230 IinlvNR4
DO 230 JinlvNC2

230 A(NR1+NR2+NR3+IPNCI+J)-A42(IPJ)

DO 240 I1lNR4
DO 240 J-IiNC3

240 A(NR14NR2+NR3+INC1+NC2+J)-A43(IPJ)
CI DO 250 11eHNR4

DO 250 J-1#NC4
250 A(NRI+NR2+NR3+1.NCI+NC2+NC3+J)-A44(z.J,
C

RETURN
- END

SUBROUTINE MATFT2 (AllpAl2pA2lA22vNR1pNR2v
lNClrNC2pAvNRpNCrIRrIRlpIR2)

C THIS FORMS A MATRIX FROM A11PA12PA21PA22
c

%C All' A12
.~IC A21 A22 TO FORM A

C NRwNRl+NR21 NC&NCI+NC21
* C
2.C NR-NR1+NR2

C NCoNCI+NC2

REAL ACIRIR),All(IRI4IRl).A12(IRlIR2)
REAL A2l(1R2vIRl)pA22(1R2,1R2)

4 DO 10 IinlNR
DO 10 J-IrlNCI-10 A(IiJ)-0
DO 1 IwlvNR1
DO I JmI.NCI

1 A(IJ) *AllCItJ)
DO 2 IinlvNR1
DO 2 Jml&NC2

2 A(INC1*J)uAl2(IJ)
DO 3 I-IuNR2
DO 3 JinlNC1

DO 4 ImlNR2

DO 4 JulNC2
4 h(NR1+INC1IJ)oA22(IJ)

RETURN
END

SUBROUTINE STABLE(A#B3teWKvN~tDtAEPNPWPZ
1 ,IAvtbvICrIDeIAErIZ)

REAL A(IAPN).D(IDtN)PC(ICN)PK(NI).D(IDN) ,AECIAEN)
INTEGER N, IJOD. IER
COMPLEX U(IZ)#Z(IZPN)vZN
IJODno
DO 55 tulpfN
DO 55 juloN

* C FORMS INV DIAGONAL MATRIX ONLY
90 DO 66 l
DO 66 Jin1,N

J £ IF(I.EO.J) 0O TO 64
y(IrJ)ftB(I.J)
0O TO 66

64 CONTINUE
5(IeI)ul.O/3(II)

46 CONTIZNUE
cc WRITE(39*)('AD MATRIX')
C WRITE(5,*)((3(IJ),Jm1,N),Iu1,N)lb CALL UMULFF (AEtB#NNNIAEIDCpICIER)
C WRITE(3v8)('AE MATR')
C WRITE(5.s)((AECIJ),Ju1,N),I.1,N,
C WRITE(5.*)('C MAT')
C WRITE(5,S)((CCIeJ),J.1,N)uImlN)

30 9 InloN
DO 9 JuloN

9 D(IuJ)w C(C(IJ)+C(JPX))/2)
CALL CIORF (DpNrIDvIJODWrZrIZpVK#IER)
END

b 39



SUBROUTINE MARSCE!OPIRtNSMALL)
C THIS SUBROUTINE FINDS MIN VALUE REAL PART OF COMPLEX
C VALUES
C REAL REL(IR)

COMPLEX EIO(IR)
SMALL-REAL(EIOC 1))

SMAL-ABSSMALL)

REL-ADS(REL)I RF(REL.OE.SMALL) 00 TO 1
SMALL-REL

I CONTINUE
RETURN
END

. I SUBROUTINE MARD(EIOPIRPNPBIG)
COMPLEX EIG(IR)
81IOIREAL(EIG( 1))
VIGWABS ( IG!)

REL-REAL(EIG(l))
~ F REL=ADS (REL)

IFCREL.LE.DIG) GO TO 1
310-REL

1 CONTINUE
RETURN
END

SUBROUTINE STADR(ACLeECLYALPHAIDAEPEIGuZ.N,

REAL ACLCIRPN),PECL(IRN)PIDCIRN),AECIRN),IiKIWKo
COMPLEX EXO(XEIO)PZ(ZZN)pZN
ZJOD-2

12 CALL IDENT(IDNIR)

4.14 CALL MADD(ACLuIDrAEvNv~IRvIRTIRp1)
is CALL ADS(AErNNIR)
16 CALL NADD(AEPECLPAEtNPIRIRPiIRil)

DO 1 IIN"
30 1 Jo1,N
1 D(rrJ)m(AE(IJ)4AE(JvI) )/2
ALPHAII1/ALPHA

17 CALL SCAHULtALPHAIrIRoIDu!RrID9NN)
is CALL EISRF(IDNPMIRIJODEIGPz.IZVKIER)

RETURN
END.
SUBROUTINE HAR(EIGIRPN.SMALL)

THIS SUBROUTINE FINDS MIN VALUE REAL PART OF COMPLEX
C VALUES
C REAL REL(IR)

COMPLEX EIOCIR)
BRALLaREAL(EIG(l))
DO 1 talpN
RELwREALCEIO(I))
ZF(REL.oEoSMALL) GO TO 1
SMALLmREL

I CONTINUE
.EN
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PROGRAMI TEST
REAL ACL(O.9).ECL(9,e).CC(9O)AE(8.D),UK(1000)
COmPLEX EIGN(B)eEE(8@U)
Iowa

~. N-n4
MRITE(3@*)('GIVE SIZE OF MATRIX')

CD READ(30R)N
WRXTE(S.*)('INPUT VALUES OF ACL')
READ(36.*)((ACLCIuJ)tJ-1,N)r ,IN)

::~ I RITE(Sp*)('INPUT VALUES OF ECL')
READ(36.*)( (ECL(I.J) ,J-1 ,N)PI-IN)
DO 1 I-1,23

* WRITE(5.*)('GIJE VALUE OF ALPHA')
READ(59*)ALPHA
CALL STADR(ACLPECLALPHAPCCACEEINrEEPNP
11BIDIB1DKrl800)
CALL UGETIO(3tOv5)

C CALL USUFM(3HACLt3,ACLPIDNPN,4)5: 1C CALL USWFM(3HECL#39ECLPZBPNPNt4)
CALL USUCH (6HElGENS,6pEIGNrIBrN,1,41
CALL MARB(EIGNvXRrv.IG)
WRXTE(59*)('/NAX EIOEN/ - ',DIG)

.' j IF(BXG.LT.1)GO TO 10
IF(DIG.GE*1)WRITE(5.8)C'SYS IS NOT STABLE')
WRITE(39*)('TYPE 1 TO CONTINUE')
WRITE(5t*)('TYPE 2 TO STOP')
READ (5 * )NT
IF(MT.EO.l) GO TO 1
50 TO 100

1 CONTINUE
10 CONTINUE

WRITE(59*)C'SYS IS STABLE')
CALL EXORF(ACLrNZD.2,EII3NEEuI~eWKrIER)*1 ~ CALL USICC6HEIGACLr6rEXGNIDNr1,4)
CALL MARS(EIGNrIDNrSMACL)

- URITE(5pS)(SACL 'uvSMACL)
* ,. CALL MATADD(ECLACLrACLrNNrIB)
* CALL EIGRF'ACLNXD,2.E!GN.EEIDUKIER)

CALL USICN(HACLECLv6tElGNI3,N,1,4)
CALL HARS(EIGNrZ3vNtSNPER)
WRtTE(5w*l('S(PR -',SIPER)
9STA9=(AS SNACL-ShPERI )/SIACL.

100 CONTINUE

* STOPI END
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Application Example:

.. Consider the Scalar System

00

x + u, x0 =1, J (x2 + p u2) dt

- i.e. a =-1., b = 1

Let kal = 0.5; Ijbl = 1.207. The closed loop system is given by

x = (a * bg) x = aCL X

.?I and the perturbation is given by AaCL.

[ We now consider three cases of the perturbation AaCL.

- Case I: •Aa +
-. ~~CL Ia ~~

Case II: AaCL = I~al+ [Abl Igj

Case III: Aa -- - Abl Ig 1)

The robustness indices 0S.R. and 0P.R. are calculated for different

values of p and tabulated in Table I. Note that all the controllers

corresponding to the range of p c considered satisfy the stability ro-

bustness condition.

Note that the testing of stability condition is done with the per-

turbation AIL corresponding to Case II to satisfy theorem B. Then by

virtue of theorem B, if the perturbed system with Case II perturbation is

stable then the perturbed systems of Cases I & III will also be stable.
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T T Case I Case II Case III

P C (x x) u u a S.R. BP.R. 6S.R. 8P.R. aS.R. aP.R.
-- F-

1/8 0.408 0.816 0.638 0.39 0.97 0.494 0.97 0.494

1/4 0.473 0.584 0.443 0.31 0.89 9.15 0.89 0.47

-

---

1 1/2 0.537 0.393 0.22 0.18 0.798 3.97 0.798 0.44

S13/4 0.572 0.302 0.08 0.08 0.744 2.91 0.744 0.43

F,1 0.594 0.246 0 0 0.707 2.4 0.707 0.414

- -,- ---

S' " 5/4 0.610 0.209 0.065 0.07 0.680 2.125 0.680 0.405

3/2 0.6225 0.181 0.116 0.132 0.658 1.93 0.658 0.397
- -

- -

2 0.639 0.143 0.187 0.23 0.63 1.70 0.63 0.385

From the above table, it can be observed that Case II gives the worst case

8 S.R. and worst case $P.R.- Thus, we use these indices for comparison of

Idifferent controllers from stability and performance point of views. The
S.>

information corresponding to Case II is presented graphically in figures

A,BC and.D. A reasonable choice for robust controller could be the one

corresponding to Pc = 1/2, 3/4 or 1.

Since this is a scalar example it is easy to see which case of perturbation

L represents the worst case situation. This may not be easily inferred for

matrix cases. To determine which case of perturbation (among the possible

I. three cases considered) represents the worst case situation for general

matrix case is suggested as a future research topic.
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II.Conclusions and Recommendations for Future Research:

I The main theme of the Mini grant research has been to investigate further

into the development of a stability robustness condition in time domain and

the extension of these results in the computer implementation of a robust

I control design algorithm that incorporates both stability robustness and

performance robustness into the control design procedure. Towards this

direction, first a new stability robustness condition is developed in time

~: j-domain (in terms of eigenvalues) and it is shown that the proposed time

domain condition is less conservative than the corresponding frequency

4 domain condition as well as another recently developed time domain con-

- dition. Also, further observations are made in the comparison of proposed

time domain development to the frequency domain development. Then new

measures of 'stability robustness' and 'performance robustness' are developed

and incorporated into the robust control design algorithm proposed in the

.* I'simmer research. Finally, computer software is developed to implement the

proposed control design algorithm and examples are presented which involve

the use of the software.

The experience with Large Space Structure examples carried out in-

dicates that for these models the stability condition in its present form

is still conservative and that more research is needed to specialize the

* analytical development to LSS models.

As it normally occurs, another result of this study is that many in-

teresting research topics surfaced for further investigation. In the next

V V%-.
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section, we project those areas which merit serious research effort in the

form of shponsorship from AFOSR.

Avenues for Further Research:

1) The foremost area of research would be to look further into the'

* stability robustness condition from two viewpoints.

.%a) To improve the 'optimism? of the proposed condition particularly

with reference to LSS models.

~R: fb) To investigate the possibility of developing a new stability

~ 4 robustness condition which is both necessary and sufficient.

F (Recall that the present condition is a sufficient condition).

2) Another area of immediate concern is to arrive at an algorithm

(a technique) that would give the worst case 0 S.R and worst case

p.. F$P.R. for given perturbations, for comparison purposes.

3) An area of extreme interest would be to develop an algorithm for

'Maximum Allowable Perturbations' that would destabilize a given

stable system. In a way this is an 'inverse' problem. This

problem is apparently related to the task number one indicated

above.

*~4) An important area of research is to investigate any computation

'~ ~ reduction schemes for the proposed algorithm.

5) It is also of interest to probe further into the relationship

- between frequency domain treatment and the proposed time domain

treatment.
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Appendix A

j Proof of Theorem 1:

Let p{[E (Fs) ]s

-A (CE(FS) -1 ) I <
max

x l i(Es (Fs) 1)s 1< I i

I - 1 + X{[E s(F s)-1] s > 0 Vi

-. 1 + (Es(Fs )- Is > 0 'i

[X.(I + E }(F ) > 0 i

r- [I + E (F)-I is positive definite

1 + E s(F s) -  [-Fs] has positive, real eigenvalues because 1) if
A and B are positive definite, AB has positive

Snreal eigenvalues. (Ref [24,25])

I and

2) If A is negative definite, -A is positive

definite and hence -F is positive definite
5

(Ref [26]).

(Fs + E ) has positive, real eigenvalues

[because [I + E(F) [-F] = -(F + E)

S- (F s+ E s) is positive definite (because - (F s+ E ) is symmetric too)

. * (Fs + E s) is negative definite

* (F+E) is negative definite

* (F+E) has negative real part eigenvalues

S4- (F+E) is stable

I
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