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''N!'-':ABSTRACT \ ' '

-We---erivehe most general equations of motion for the

electrons and the electromagnetic field in a free electron laser

including the effects of diffraction and pulse propagation. The

field evolution is expressed in terms of the amplitudes and

phases of a complete set of transverse mode. The analytic

solution is given in the small signal regime, where the theory is

shown to be in excellent agreement with a recent experiment at

Orsay.
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Stimulated by the original free electron laser experiments

[I] in 1977, a number of authors have contributed to the develop-

ment of a purely classical theory for the electron dynamics and

-. the electromagnetic wave growth in these devices. The initial

work assumed the light could be represented by a single frequency*

plane wave [2,3]. The first generalization was required to ex-

plain the extremely short pulse phenomena observed at Stanford

[4,51. The inclusion of the longitudinal modes in the theory

[6,7,8] permitted the explanation of the cavity detuning curve,

and predicted a range of phenomena in the pulse structure which

have yet to be observed. More recently, the theory has been

broadened to include the transverse mode structure of the optical

* beam [9-15). Until our work at orsay [161, no experimental in-

formation has been available to test the validity of these so-

called 3D theories.

In this paper, we present a new approach to calculating the

three dimensional effects operative in free electron lasers. The

previously mentioned approaches consider the growth of the field

6(*r,t) along the propagation or z axis by evaluating its change

at each point (x,y), and integrating numerically through the

interaction region in the time domain [9-14] or in the frequency

domain (15). These techniques all demand long conputer runs if

they are to be applied to a real experimental situation. Our

approach decomposes the problem into the minimum number of phys-

ically observable quantities: the transverse optical modes of

the system. The field evolution is expressed in terms of a com-

plete set of orthogonal transverse modes; equations are developed
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for the propagation of the amplitude and phase of each mode. in

physical systems which operate on a few of the lowest order

modes, this approach greatly increases the accuracy, and may

reduce the required computer time for the calculation by working

in a vector space veil matched to the solution of the problem.

For the oscillator case, the appropriate choice of modes is the

set of eigenmodes of the cavity. For the amplifier, the vector

space of modes is determined by the characteristics of the input

mode, which is presumably a TEH0 Gaussian mode. In either
'p.0

device, an optimum design would result in the excitation of as

few of the higher order modes as possible. The modal decompo-

sition method is therefore well adapted to the prediction and

10 optimization of the operation of the free electron laser.

In the first section, we derive in their most general form

the equations governing the dynamics of the complex mode ampli-

tudes. The subsequent sections reduce these equations to the

familiar case of the small signal, low gain result (Sect. 2).

Here, the problem becomes linear, the mode evolution can be

described by a matrix transformation, and we retrieve the well

known gain equation complete with filling factor. The theory is

then applied to the case of the Orsay experiment, where the re-

suits are in excellent agreement with an experiment (16] per-

formed recently which exhibits the off-diagonal terms of the gain

1. THEORETICAL DEVELOPMENT OF THE FUNDAMENTAL EQUATIONS

The FEL system is properly described by the coupled Maxwell

* * 7 L

'A . *
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and Lorentz force equations. From these, we shall derive a self-

consistent set of equations describing the electron and the

transverse optical mode dynamics. We use the dimensionless nota-

tion originally developed by W. B. Colson (in fact this work is

a generalization of Colson's work to include transverse modes and

we shall stay as close as possib-le to his original notation).

Let us recall his main equations describing the field and elec-

tron dynamics in the slowly varying phase and amplitude approxi-

mation [18]:

dv
-- = a' cos(C + (1)

d.r

- M V(2)
d T

da'
- -- =-r' < ei, > (3)

where

-(t) (k + k )z(t) - Wt dimensionless (4)
0 electron phase

v(t) - (k + k )(t) -k dimensionless (5)
L o z k resonance parameter

ct
dimensionless (6)

L interaction time

P'4.~ ~4weNLKE( z, t)e i z t

a'(zt) = 2 2 dimensionless complex (7)
y mc field amplitude

...,,, , .:..:..- : ... . . .. .. ........ .. .. . .. . .... .. . ..... .. . . . .. .. , .: . . * -,- , *. * , , ,, -, : ', . , 9.,.',
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SW 2e 2NL2 K2 P(z(t))
r'(z(t)) 3 2 dimensionless (8)

Y 3 mc 2  gain parameter

Here we consider an N period helical undulator of length L, mag-

netic period A = 2W/ko, peak magnetic field B, and deflection

parameter K - 93.4 B(gauss)o (cm). An electron beam of energy
0

Ymc2 , and number density P travels along the axis of the undula-

tor; an Individual electron has longitudinal coordinate z(t) and

.. longitudinal velocity cz (t) at time t. A helically polarized

.-* plane wave of wavelength A - 2W/k, frequency w, and electric

field e(z,t) - E(z,t)e(kz- t+f ( z 't)) interacts with the elec-

trons. In Eq. (3), 0 i v is the average over the initial phase
00

Co and resonance parameter v of the electron population at the

position z.

Eqs. (1),(2) are derived directly from the Lorentz force

equation and describe the effect of the radiation field on the

electrons. The work done by the longitudinal field on the elec-

trons is neglected here, which is a good approximation provided

2
that the modes are not too divergent [141 A/w «< 2' KN/Y.

Eq.(3) is derived from the Maxwell equations and describes the

effect of the electron on the radiation field. The set (1), (2),

and (3) is self-consistent. Indeed those equations are very

close to being the most general classical equations describing

the FEL dynamics. They apply to high and low gain devices (r' l

or r'<«1), high field and low field cases (a' >l or a'(<l), and

include the effects of multiple longitudinal modes (laser leth-

argy effects) through the z dependence of r', E, and *. Slight

modifications allow their extension to the cases of:
.9.

-_ - . . . . . . -U, ' , , , , . , .



- the planar undulator [19]

- the tapered undulator [181

- the optical klystron [14], and

- space charge effects [191.

However, the plane wave approximation cannot accurately

describe the transverse effectsproduced by the finite transverse

extent of the optical mode and the electron beam. A filling fac-

tor calculated with an ad-hoc overlap integral can be added to

the results of this calculation, and gives satisfactory results

in the small signal regime only so long as one is not interested

in the exact transverse field profile.

To relieve this last restriction on the theory, we assume

the field to be described in free space by the paraxial wave

Eq. [201:

2 2( +-- - 21k E(,t)ei9(rt) . 0 9)
ax 2  a 2 a 02

This equation is derived from the wave equation(2 - i-0
C2 at 2

in the slowly varying amplitude and phase approximation, and has

been widely used in laser field calculations [17,201. The gen-

eral solution of Eq. (9) can be expressed as a linear combination

of a complete set of orthogonal modes. If we define these modes
i~m

by the complex amplitude E Me where Em is real and m is the

generalized index of the mode (in the two dimensional transverse

space we consider, m represents two integer numbers), the most

general expression for the field is

44 : ... 4 .4 - . 4 22. : .4 -
S. 4 * *. . 4 .- 4 . .
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E•r+t)ei+rt ic (e
E(rt r - , 1m(t)E (r)e (10)

m

where c is complex and time-independent in free space. The
M

orthogonality relation reads

(dxd Y 
3m a- 

(11)
ww.2y E ma E ne =mn "(I

0

where we have chosen a convenient normalization which makes the

-i Em dimensionless. The modes can be chosen in a variety of

symmetries, but it is useful to exhibit their specific form in

cylindrical symmetry:

r( r . ei"  L 2r2 e r2/w 2 (z)E(.€) - - - e "e (12

(p+>)I w( Z) w( z) w(z)

i kr 2  z

p ) - - (2p + I + 1)tan-  - (13)

2R(z) z°

" where r is the radial and 8 is the azimuthal coordinate, w is

the beam waist, L t2r is the associated Laguerre polynomial,.Lp w-2

and ,

R (z) - w( + z2 (14)

0w2

S-.-0 (16)

0 0

*z2

.... . .. . . .. . . . - - ." .. . .-. , .' ..- =' . " .. . '.. .' - . , . -.. " T - .- ~ .:,,L:



, ,'*v r ~ a. . . a " a" :. ' ''., : .. . ' . ' * .' ' " "

-7-

These modes are very useful for the case of a cylindrical elec-

tron beam aligned to the axis of the light beam. For an ellip-

soidal electron beam profile, or off-axis electron injection, the

rectangular eigenmodes are more appropriate. Although we will

Ul use the cylindrical modes in the examples, we proceed with the

general theoretical development'which makes no assumptions on the

specific form of the modes.

In the FEL, the coefficients in (10) become time dependent.

We wish to calculate the evolution of the amplitud- and phase of

these mode coefficients. Proceeding through the derivation of

Eqs. (1)-(3), making only the slowly varying amplitude and phase

approximation, but now using (10) and (11), we find.' ....

= -, YaIEcos(4 + iL, + Om) (17)
m m

--- v (18)

dam  -y d-
rEme < (19)

.- 0e

4weNLK
a (zt) - c (z't) (20)M 2 2 m

Y mc

81Tf2 e 2 NL 2 K2

r(*,t) . 2 p(t,t) (21)
Y mc

* ... ipm(Z,t)
c,(z,t)- c (z't)I e (22)

- * = . .
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As before, Eqs. (17) and (18) describe the effect of the radia-

tion field on the electrons, and (19) describes the growth or

decay of the radiation field due to its interaction with the

electrons. The change in (17) is quite straightforward. Equa-

tion (19) shows clearly the fact that the growth in the mth mode

amplitude and phase is given by'the overlap integral of the in-

phase and out-of-phase components of the charge density with the

complex conjugate of that mode, as one would expect. We note

i m
that the only assumptions made on the modes E e used in

m
(17)-(19) are orthogonality and completeness. This means these

equations are also valid for the cases of waveguide modes and

dielectrically loaded cavities. In this case, w is no longer

the mode waist in the usual Gaussian sense, but is defined by Eq.

(11). As before, these equations are self-consistent. An ex-

ample of this fact is the energy conservation equation

- F, I.a  2 - ,(3I" a 2 r dxd y ja vu\ v3T - -2 r (23

which is derived from Eqs. (17) and (19). The left hand side of

(23), the total energy gained by all the modes, is equal to the

energy loss integrated over all of the electrons in the beam.

The Eqs. (17)-(19) retain all of the generality of Eqs. (1)-

(3). They are valid for high and low fields, and high and low

gain systems. They take into account the evolution of the trans-

verse modes explicitly, and the evolution of the longitudinal

modes implicitly, by keeping track of the z dependence of

the charge density r(t,t) and of the mode amplitudes a(z,t). For

• ",',', ~~~~~.. ... .. ...... ... ..... .... .. " . '.... .. -.... .................. ... "... ..... ,,. . . " : -
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simplicity in the following development, we drop the explicit z

dependence which has been thoroughly discussed by Colson [18],

and concentrate on the transverse phenomena.

As discussed in (19], the generalization to the case of the

planar undulator is no more than a change in the definition of

the two parameters

alifi- 2eNLK(JJ' c(t) '4)fin2
am 2 mc 2

4w 2 e 2 NL 2 K2 [jJ] 2

r". - 3 2p(,t) (25)
Y 3mc

where

Jo C +2K; ) - Jl (_ (26)[JJ o + 2K 2) + 2K 2 )

The Eqs. (17)-(19) can be integrated numerically to find the

evolution of the optical wave in any Compton regime FEL. In a

high field experiment, Eqs. (18) and (19) are nonlinear in a, and

the wave evolution can only be obtained numerically. In this

case, (17)-(19) provide a precise and efficient technique for

solving the general problem. In a low field situation such as we

find at Orsay, however, the problem becomes linear, and can be

solved analytically. We proceed with the low field case in the

next section.

2. THE LOW FIELDS SOLUTION

*' The low field case is defined by ,ap
<1 for every mode.
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In other words, the electrons do not become overbunched. Experi-

ments which operate in this domain include the low field ampli-

fier experiments, and storage ring FEL oscillators which saturate

by mechanisms other than overbunching. The ignition of any FEL

oscillator also occurs in this domain.

2.1 The Gain Matrix

Equations (17)-(19) can be solved by integrating (17) and

(18) to lowest order in the fields am and inserting the result

for 4 into Eq. (19). If the electrons are uniformly distrib-

uted initially in phase, we find

*3a (~ JT) T r"
-- ~ jd' d" n, T")a n (27)aTn

f f

0 0

. where

i fdxdy
To Telr) -- ~~) xyrE(~,'

mn 2 ffw2  r(xny)Em(XYT)En(X'YT")
0
0(28)

i ~ 4 -i(m(X'y. T)- *n(x'Y' T"))<eiV°Cr-T")1

-. • 0

Equation (27) describes a linear evolution of the mode ampli-

tudes, and upon integration, gives the relation

am T ) (I + G) mnan(T O) (29)

where I is the identity matrix, and G, which is generally not

Hermitian, has elements
4%

44 4 4 . . -
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fdg Jd' T"d ."mntu(.c")

• 0(30)

1 T T t 2  r3  T4 T5

+JdT1 J T2 dT 3MCt( 3 )fdT4 fd 5JT 6 M( 3 6 ) + "'"

The higher order terms in gmn are proportional to r2 and higher

powers of r, and are negligible in the low gain case.

Evidently this matrix is of great interest since multiple

passes of the electron beam will result in multiple products of

this matrix, greatly simplifying the calculation of the modes'

growth. We shall discuss the consequences for an oscillation

experiment in Sect. 2.2.

Let us note that this gain matrix is generally complex and

defines the growth of the amplitude of the field. Sometimes

people speak of the gain in a mode "m" as the energy gained by

this mode in a pass through the undulator. This gain is simply

2 Real (g m ) + I 2 Of course, one must keep in mind that2 Rel (mm) + mm*

energy is radiated into other modes, and that cross terms will

mix a multiple mode input. If the input beam is truly monomode,

.oh
the power radiated into the nth mode is lower than that into the

mth mode by the ratio 1gn 2 /2Re(gmm) which is small for low gain

(r << 1) systems. It is only in this case that it makes sense to

speak of the gain of a mode. In high gain systems, however, the

off-diagonal terms can lead to substantial emission of energy

into the higher order transverse modes. If the input beam is

multimode, of course, mode mixing occurs at all power levels.

~~~~~~. . .. .... ... . -- .. ..-.. ".. .. . ... .. ... .'. -'--" -i-. " "":
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Let us calculate gmn in the simple case of experimental

interest where the electron beam is cylindrical, and a good

choice of modes is the cylindrical Lavity eigenmodes (12) and

(13). We restict ourselves to the weakly diverging case

WW2 > AL where the gain takes on its most familiar form. The
0

mode amplitudes and phases in (2.8) become independent of T, and

. we can integrate the first term in (30) to find the gain. The

average over the resonance parameter in (28) becomes, under the

assumption of a Gaussian distribution of centroid v and devia-

tion (
1 02 -

-,. iv (-
iv0(-Tt > e- (31)

Under the weak divergence approximation, and assuming negligible

pulse slippage effects (long electron bunch length a i>> NX), the

only time-dependence in (28) is that of (31). For small spread

o « 1 the integral gives the well known gain spectrum
V

"-'" Pxdy -i* Pl(y ) 1 *n(Xly )

- r(x,y)Em(x,y)En(xy)e e
. o (32)

V Vc  Vc

I - cosy- -a-stnvc - - -cosVc + 8invc2 2 2

3  3V cc c

In the usual experimental case (unfortunately), 9 mn< < 1 and

the energy gain C on the mode m becomes,.. m

• " * . *. . . .+** .. '. * , + , ** ... ... . . .
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V

p cOsv -E-sinv

G - 2Re(g dxdy 2rE 2  (33)m m w2  m 3
0 c

This is exactly the gain one calculates by using the filling

factor obtained by integrating the mode profile overlap with the

gain profile. Specializing to the TEM case with a Gaussian
00

electron beam of width a, we find

--- Csinv\
c~svc 2 

1
Ge 0 0 2re 2 (34)

V3 1 0c 42

complete with the familiar filling factor.

The v dependence of Gm is the well known spectral depend-

ence. The imaginary part of g is not new. It describes the

phase shift of the radiation field as described by Colson (18).

The inhomogeneous broadening term in (31) clearly distorts and

reduces the magnitude of the gain spectrum if it is present in

the integral of (30).

The effect of the divergence of the beam on the diagonal

terms in C is, to first order, and for a filamentary electron

beam, the addition of a time-varying phase which shifts the res-

onance curve in Eq. (32) by a constant depending on the mode

V + V - - w (2p + I + 1)(35)
c C L

0

Equation (35) means that the gain curves of the modes are shifted
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with respect to each other. This effect has been calculated for

the fundamental TEH mode in the energy loss approximation [141,
00

and has recently been observed experimentally at Orsay [211. It

should be noted that for many practical situations where the cav-

Ity is optimized for gain on the TEN mode, this expression is
00

* V valid for only the lowest order'mode. The higher modes become

. distorted in form as well as simply shifted in resonance para-

meter by equation (35).

2.2 The Low Field Oscillator

We now discuss some consequences of the linearity of the low

field problem on the optimization of an optical cavity for an FEL

oscillator experiment. In such an experiment the light pulses

*reflect n times on the cavity mirrors (n o 2) between inter-

actions with electrons in the undulator. The matrix governing

the mode evolution from one amplification to the next is

(I + G)C (36)

where C in the gain matrix defined previously, and C is the cav-

ity matrix describing the n reflections on the mirrors. In a set

of cavity eigenmodes, C is diagonal

Cxi ix (37)

with c - j pe where 1 - are the total losses on the

n reflections, including transmission, absorption, scattering,

and diffraction. If diffraction is negligible, the eigenvectors

x become the Gaussian TEN modes, and the phase shift per round

trip aI becomes, for n - 2 reflections per amplification and
.i

, - *-- o

r... ',.. *'.,,'. . . -", -,',, .. , t*._', -'' -A', : .'\ ' , - *", . - ' ' * - .. *-
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identical radius of curvature mirrors,

ap 4(2p + I + .)tan-l(L c -) where L is the optical cavityP12z /c

length. 0

The matrix (36) is the fundamental matrix of the problem.HIts diagonalization allows the calculation of the mode evolution

up to the onset of saturation:

(I + G)C - PAP-1  (38)

I + G) - PAmp-l (39)

where the columns of P are composed of the eigenvectors of

(I + G)C, and A is diagonal. The fastest mode growth will be

obtained with the eigenmode having the highest eigenvalue modu-

lus. Optimization of the FEL oscillator will then consist of

maximizing the desired eigenvalue of (I + C)C.

If the gain is low (as it is, unfortunately, for our system

on ACO), one can diagonalize the evolution matrix (36)

(I + G)Czi . A z (40)

ii

using the cavity eigenmodes xL as the basis for a perturbation

expansion of the new modes z . To firs.t order in the nondegen-

erate case, the result is:

*
T 

. iaj(
Aj (je i + g (41)

[ •-' J j + me mp e gmj x (42)

E i aj a m

mOJ Pje - pme.

Under these conditions, the FEL design is optimized by maximizing

* .... F ."..

i •.° .
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the diagonal term g corresponding to the desired mode. From

Eqs. (33) and (12) it is clear that the beam size w 0must be

reduced down to the order of the electron beam size in order to

optimize the coupling, but if the mode becomes too divergent, the

time dependent terms in E m and E n of (28) begin to reduce the

gain. The optimal situation liis between these two extremes, and

has been calculated in detail (using the energy loss approxima-

tion) by Colson and Elleaume [141.

The optimization procedure must also be limited by the

stability condition (171 on the cavity. For the Orsay experi-

ment, the radius of curvature chosen to optimize the small signal

gain was R - 3m, which is acceptably close to the stability limit

of 2.75 m. There are cavity designs in which C is degenerate for

which the optimization procedure is not necessary. For these de-

*.signs, a is a constant independent of the index. In these cay-

ities, any combination of modes reproduces itself after n reflec-

tions. If n - 2 as in the Stanford and the Orsay experiments,

the concentric and the plane parallel cavities are degenerate,

and the confocal cavity is degenerate on the p modes (quasi-

degenerate). These cavity designs, however, are useless since

they stand critically on the stability boundary. The tolerance

on the mirror radius of curvature is on the order of 101(ob-

tained from the perturbation expansion) which Is difficult to

meet if the gain is low. For two mirror devices where n > 2,

such as the Novosibirsk experiment where a - 8, in general for
n

mirrors of equal radius of-curvature there exist - + 1 cavity
2

designs with a degenerate C matrix:
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Lc
Z - M (43)

2tan -

and - with a quasi-degenerate C matrix in which the odd I modes
2

change sign on every amplification. Only two of the degenerate

and one of the quasi-degenerate cavities correspond to the un-

stable cavities; the others are potentially useable in an ex-

periment. The value of a degenerate C matrix is that the eigen-

vectors of the amplifier plus cavity matrix (36) are equal to

those of the gain matrix alone, multiplied by a constant. This

degeneracy allows the cavity to oscillate on the most favorable

combination of modes which best fits the electron beam shape. In

this manner, the gain can be increased by factors of two or three

over the gain of an optimized TE0 mode, particularly if the

electron beam size is smaller than the TE'o mode. The tolerance

on the mirror radius for the degeneracy of C will still be tight,

and the experimental utility of these cavities remains, to be in-

vestigated.

3. APPLICATION TO GAIN-va-APERTURE EXPERIMENT

3.1 Description of the Experiment

I. The gain of the Orsay FEL has recently been measured with

the optical klystron in place 1221 in an amplifier experiment

using an external argon ion laser to provide the coherent mode.

A detailed description of the apparatus can be found in Ref.

1231, and a schematic description is given in Fig. 1. The laser

beam is analyzed at a distance d from the optical klystron after

%"aJ ~~K~ - *-. ~*** -. *



-18-

passing through an adjustable collimating iris (Fig. 1), which is

centered on the laser mode emerging from the interaction region.

The gain is measured as the ratio of the power detected in phase

with both the electron repetition frequency and the chopper fre-I quency (the amplified power) divided by the power in phase with

the chopper alone (the incident'laser power). Calibration is

performed as in 1231.

The gain is recorded as a function of the iris aperture, and

large variations are observed [161. One set of data points is

reproduced in Fig. 2, where the gain is normalized to its value

for the iris completely open, and the iris diameter is normalized

to the measured beam waist at the iris. The data is taken at

maximum gain, which means v Z0 for the optical klystron, and the
C

laser beam was carefully aligned to within about .05 mm of the

axis of the electron beam. The change in the measured gain as

the iris Is closed means that the laser is not uniformly ampli-

* fied in its transverse profile. In fact, this experiment pro-

vides a very sensitive technique for measuring the power emitted

Into the higher order modes even in tha small gain limit and for

a monomode Input beam. Clearly a calculation of the g mnis

necessary in order to explain these results. In the next sec-

tion, we apply the theory we have developed to the case at hand,

and in Sect. 3.3, precise comparison is made between the experi-

mental and the theoretical results.

3.2 Multimode Emission mna Single Mode Amplifier Experiment

In this section, we assume the incident wave is a single
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mode TEM beam with a weak field (laoi < 1), and perfectly
00

aligned onto the electron beam. As discussed previously, we take

the cylindrical eigenmodes based on the form of the input beam.

Using the notation of Sect. I, the input laser field reads

-(f) - C Eo()e (44)

where the subscript 0 refers to the TEN mode of Eqs. (12) and

(13). From (29), the output field Es(M) becomes

Is. (45)

- E + c g joE (t)e (45)

Assuming low gain, the output power passing through the iris

aperture is

8WP 2 2 + 2g S e (46)

--- 2 cEs  " fSE+ 2c Re Sjo *

where fdS covers the iris aperture. The gain is therefore

'5.., Ij O /d :i(p°-*J) I

2Re dSE E e

G = fd 0 " (47)
... ,SE2

t0

For purely cylindrical I - 0 modes, G can be written

x
lz f L (x)e-xdx

G - 2Re g0o + gp e  z (48)00 pal o 0 eo-x dx
. "' -

. 'tl0
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where z is the Rayleigh range of the laser mode, z is the
0

distance between the iris and the laser beam waist, and

X = r2 /2w 2 (z) where r is the iris diameter. There are two

interesting limiting cases:

G - 2Re(go) K + - (iris open) (49)
00

G -Re (go0 + gpoe i 0nX + 0 (iris closed) (50)
p=1

It is obvious from Eqs. (48)-(50) that the gain changes with iris

diameter in a way which depends on the magnitudes of the off-

diagonal terms in the gain matrix.

The generalization is straightforward to the case of the

multimode input beam, and to imperfect alignment of the laser and

electron beams, although the calculation becomes more difficult.

This calculation also applies to high power input laser beams

(a o >> 1) provided one keeps in mind that the gpo are functions

of a

3.3 Application to the Orsay Experiment

The experimental points shown on Fig. 2 were taken under the

* following approximate conditions

laser
beam: - measured beam waist w = .67 mm

-wavelength= 5145

- measured beam waist at iris w(z) = 2.7 mm

- distance from optical klystron to iris d - 11.6 m

electron

r beam: - gaussian and cylindrical with a .32 mm
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optical
klystron: - Nd = 80 [19,22,24]

- resonance parameter corresponding to maximum gain
with iris open

The dark curve of Fig. 2 has been calculated using Eqs.

(27), (28) and (50) for the planar configuration (24) and (25),

taking into account the 10 lowe§t order I = U modes. The dashed

curves of Fig. 2 show the contribution of each individual mode.

These curves are the same whether an undulator or optical klys-

tron is used. Very similar curves (not shown) were calculated

for other resonance parameters indicating that as expected, the

diffraction effects do not change much as a function of detuning

parameter for modes with low divergence.

Fig. 3 shows the calculated effect for several dimensionless

electron beam transverse dimensions £ - .4, .76, 1.5, 3

w~h FerL
where L is the length of the magnetic interaction region.

Z - .76 corresponds to the value a = .35 mm, close to that used

in Fig. 2. The flattening of the curves as E is increased to
J

-" 3 is due to the vanishing of g oj/gee for j 0 0 as a in-

creases*

Fig. 4 shows the calculated effect for various iris dis-

tances d from the optical klystron center, normalized to the op-

tical klystron length: d/L - .5, 1, 1.8, 2.5 and m. The experi-

mental points of Fig. 2 were obtained for d/L - g. The inversion
12ptan (z/zo)

of the effect Is due primarily to the term e with

p 1 1 in Eq. (50) which switches from +1 to -1 as z goes from

zero to infinity (the mode p - 1 gives the predominant effect).

At short distances the TEK1 0 mode interfaces constructively

"S
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on axis 1, and at long distances, it changes sign.
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FIGURE CAPTIONS
2.

Figure 1. Simplified schematic diagram of the gain measurement

apparatus [23] showing the argon laser focussing system, the

collimating iris, and the double demodulation detection system.

Figure 2. The measured gain as a function of the iris diameter

[161 normalized to the measured beam waist at the iris. The

solid points were taken closing the iris and the open points

while opening it. The error bars are the one sigma statistical

errors. All points have the same horizontal error bar which is

shown for the point at 2.7. The solid curve is calculated using

the measured values for the electron and laser beam sizes. The

effect of each higher order mode is shown by the dashed curves.

Figure 3. Calculated curves for the gain as a function of Iris

diameter under the conditions of the Orsay experiment (16). The

electron beam dimension I - 0 Ni/%L is varied to show the

effects of the beam size on the excitation of the higher order

modes. The value c - .76 corresponds to a - .35 which is vet

a* MO. .



L t , , , . p , _ m . .-, - ,,l W :. , . - . , ,. :.. - ,, . .- 7W . ,, - -" . .'•

-23-

close to the value at which the experimental points were re-

corded.

Figure 4. Calculated gain as a function of iris diameter for

several iris positions d, under the con(itions of the Orsay ex-

periment [16]. The ratio of the iris to optical klystron dis-

tance d divided by the optical klystron length L is varied

through the range .5 to o. The experimental points of Fig. 2.

were taken for d/L = 9.

4"
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