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Q “He~deriue.fhe most general equations of motion for the .
S electrons and the electromagnetic field in a free electron laser
including the effects of diffraction and pulse propagation. The
field evolution is expressed in terms of the amplitudes and
phases of a complete set of transverse mode The analytic
solution is given in the small signal regime, where the theory is
shown to be in excellent agreement with a recent experiment at
Orsay.
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Stimulated by the original free electron laser experiments
f1] in 1977, a number of authors have contributed to the develop-
ment of a purely classical theory for the electron dynamics and
the electromagnetic wave growth in these devices. The initfial
work assumed the light could be represented by a single frequency"
plane wave [2,3]. The first generalization was required to ex-
plain the extremely short pulse phenomena observed at Stanford
[4,5]. The inclusion of the longitudinal modes in the theory
. [6,7,8) permitted the explanation of the cavity detuning curve,

and predicted a range of phenomena in the pulse structure which
have yet to be observed. More recently, the theory has been
¥ broadened to include the transverse mode structure of the optical
- beam [9-15]. Until our work at Orsay [l6], no experimental in-
formation has been available to test the validity of these so-
called 3D theories.

In this paper, we present a new approach to calculating the
three dimensional effects operative in free electron lasers. The
previously mentioned approaches consider the growth of the field
E(;,t) along the propagation or z axis by evaluating its change
at each point (x,y), and integrating numerically through the
interaction region in the time domain [5-16] or in the frequency
domain [{15]). These techniques all demand long conputer runs if
they are to be applied to a real experimental situation. Our
approach decomposes the problem into the minimum number of phys-
ically observable quantities: the transverse optical modes of
the system. The field evolution is expressed in terms of a coum-

plete set of orthogonal transverse modes; equations are developed
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for the propagation of the amplitude and phase of each mode. 1In
physical systems which operate on a few of the lowest order
- modes, this approach greatly increases the accuracy, and may
reduce the required computer time for the calculation by working
in a vector space well matched to the solution of the problem.
For the oscillator case, the appropriate choice of modes is the
. set of eigenmodes of the cavity. For the amplifier, the vector
space of modes 1s determined by the characteristics of the input
mode, which is presumably a TEMOO Gaussian mode. In either
device, an optimum design would result in the excitation of as
few of the higher order modes as possible. The modal decompo-
gition method is therefore well adapted to the prediction and
optimization of the operation of the free electron laser.

In the first section, we derive in their most general form
the equations governing the dynamics of the complex mode ampli-
tudes., The subsequent sections reduce these equations to the

familiar case of the small signal, low gain result (Sect. 2).

Here, the problem becomes linear, the mode evolution can be
described by a matrix transformation, and we retrieve the well
known gain equation complete with filliqg factor. The theory is
then applied to the'case of the Orsay éxperiment, where the re-~
sults are in excellent agreement with an experiment [16] per-
formed recently which exhibits the off-diagonal terms of the gain

matrix.

1. THEORETICAL DEVELOPMENT OF THE FUNDAMENTAL EQUATIONS

The FEL system is properly described by the coupled Maxwell
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and Lorentz force equations, From these, we shall derive a self-

.
’

Sh' consistent set of equations describing the electron and the

)

Eii transverse optical mode dynamics. We use the dimensionless nota-
ﬁﬁ tion originally developed by W. B. Colson (in fact this work is
b~ a generalization of Colson’s work to include transverse modes and
%;E we shall stay as close as possible to his original notation).

By ty
v.l-t

Let us recall his main equations describing the field and elec-
tron dynamics in the slowly varying phase and amplitude approxi-

mation [18]):

dv
— = a’ cos(g + ¢) (1)
drt
dg
-_— =y (2)
dt
da’ -
— = -’ £ e %> (3)
dt 8oV
where
g(t) = (k + k JYz(t) - wt dimensionless (4)
° electron phase
v(t) = L[(k + k )8, (t) - k] dimensionless (s)
resonance parameter
ct
T ® —-— dimensionless (6)
L interaction time
AleNLKE(z,t)ei¢(?’t)
a’'(z,t) = 52 dimensionless complex (7)
Y me field amplitude

e e N e N T Y Y
e e 1t T e e e

~




< 87 2e2nL2k2p (2(t))
= r’(z(t)) = I dimensionless (8)
Y mc gain parameter

N Here we consider an N period helical undulator of length L, mag-
Y netic period Ao - 2ﬂ/k°, peak magnetic field B, and deflection
parameter K = 93,4 B(gauss)lo(cm). An electron beam of energy

Ymcz

» and number density P travels along the axis of the undula-
tor; an individual electron has longitudinal coordihate z(t) and
longitudinal velocity ch(t) at time t. A helically polarized
plane wave of wavelength A = 27/k, frequency @, and electric
field €(z,t) = E(z,t)ei(kz'wt+¢(z‘t)) interacts with the elec-

trons. In Eq. (3), <> is the average over the initial phase

v
LI o

;o and resonance parameter V  of the electron population at the
position z.

Eqs. (1),(2) are derived directly from the Lorentz force
equation and describe the effect of the radiation field on the
electrons. The work done by the longitudinal field on the elec-
trons 18 neglected here;‘which is a good approximation provided
that the modes are not too divergent ([l4] A/Uo << v 2N/,
Eq.(3) 1is derived from the Maxwell equations and describes the

effect of the electron on the radiation field. The set (1), (2),

and (3) 1is self-consistent. 1Indeed those equations are very

close to being the most general classical equations describing
the FEL dynamics. They apply to high and low gain devices (r’>>1
or r’<<l), high field and low field cases (a’>>1 or a’<<1l), and
include the effects of multiple longitudinal modes (laser leth-
argy effects) through the : dependence of r’, E, and ¢. Slight

modifications allow their extension to the cases of:
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the planar undulator [19]

the tapered undulator (18]

~ the optical klystron [1l4], and

space charge effects {19].

However, the plane wave approximation cannot accurately
describe the transverse effects produced by the finite transverse
extent of the optical mode and the electron beam. A filling fac-
tor calculated with an ad-hoc overlap integral can be added to
the results of this calculation, and gives satisfactory results
in the small signal regime only so long as oﬂe is not interested
in the exact transverse field profile.

To relieve this last restriction on the theory, we assume

the field to be described in free space by the paraxial wave

Eq. [20]):
2 2
9 9 9 >
-2+ -, 21k o= E(?,t)ei°(r't) =0 (9)
X 3y 3z
, 1 37
This equation is derived from the wave equation|V® - = 3 €=0
c® 9t

in the slowly varying amplitude and phase approximation, and has
been widely used in laser field calculations [17,20]. The gen-
eral solution of Eq. (9) can be expressed as a linear combination
of a complete set of orthogon?l modes. If we define these modes
by the complex amplitude Emeivm where E, 1s real and m is the
generalized index of the mode (in the two dimensional transverse

space we consider, m represents two integer numbers), the most

general expression for the field is
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where ¢ 1s complex and time-independent in free space. The
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orthogonality relation reads
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dxdy ivy -iy

n -
r(' :;T Exe Eje " %o (11)
2 °
s

where we have chkosen a convenient normalization which makes the
Em dimengsionless. The modes can be chosen in a variety of

symmetries, but it is useful to exhibit their specific form in

cylindrical symmetry:

21+1p' W r 2 2t2 2, 2
E "(;) - 2] ( ) eileL 2 (2 ) e-t /w (z) (12)
P (p+2)! w(z)\w(z) P \wi(2)
kr2 1 z
Vou(F) = —— - (2p + & + Ltan™" — (13)
2R(z) z

2]

where r is the radial !ﬂh 8@ is the azimuthal coordinate, wo is

2r
the beam waist, Lpl(-3-> is the associated Laguerre polynomial,
w
and
2 2 :? B
we(z) = ve 1 + :5 (14)
o
25
R(z) » z {1 + == (15)
z
‘lwz

[
zo - T : (16)
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”f: These modes are very useful for the case of a cylindrical elec-
!l . tron beam aligned to the axis of the light beam. For an ellip-
o8

{{f soidal electron beam profile, or off-axis electron injection, the
:fﬁ rectangular eigenmodes are more appropriate. Although we will

. N

_. use the cylindrical modes in the examples, we proceed with the

general theoretical development which makes no assumptions on the
specific form of the modes.

In the FEL, the coefficients in (10) become time dependent.
We wish to calculate the evolution of the amplitud- and phase of
these mode coefficients. Proceeding through the derivation of
Eqs. (1)-(3), making only the slowly varying amplitude and phase
approximation, but new using (l10) and (11), we find
v

;: = %;[amiﬂncos(; + oyt ¢m) (17)

L4

_— =y (18)
ot

da dxdy -1y
-t 2 - [ TE e m(e-i;> (19)

ey nwz n Co\’o

o

where we have made the new definitions

4weNLK
am(z,t) = 7-2::2- Cm(z)t) (20)
gn2eZyL2k2
r(E,t) = T3 p(E,t) (21)
Y me
19m(z)t)

calz,t) = Jea(z,t)] e (22)
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As before, Eqs. (17) and (18) describe the effect of the radia-

Y

tion field on the electrdns, and (19) describes the growth or

P

decay of the radiation field due to its interaction with the

AP
v re s

[

electrons. The change in (17) is quite straightforward. Equa-

»
a

tion (19) shows clearly the fact that the growth in the ath mode

amplitude and phase is given by the overlap integral of the in-

AR

(4
X3 Y

phase and out-of-phase components of the charge density with the

complex conjugate of that mode, as one would expect, We note
that the only assumptions made on the modes Emeiwm used in
(17)-(19) are otthogonality and completeness. This means these
equations are also valid for the cases of waveguide modes and
dielectrically loaded cavities. 1In this case, v is no longer
the mode waist in the usual GCaussian sense, but is defined by Eq.

(11). As before, these equations are self-consistent. An ex-

ample of this fact is the energy conservation equation

? 2 dxdy 3v
m 2
9T n uwo T ZoVo

which 18 derived from Eqs. (17) and (19). The left hand side of
(23), the total energy gained by all the modes, is equal to the
energy loss integrated over all of the électrons in the beam.

The Eqs. (17)~(19) retain all of the generality of Eqs. (1)-
(3). They are valid for high and low fields, and high and low
gain systems. They take into account the evolution of the trans-
verse modes explicitly, and the evolution of the longitudinal

modes implicitly, by keeping track of the ; dependence of

the charge density r(f,t) and of the mode amplitudes a(z,t). For
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simplicity in the following development, we drop the explicit ;
dependence which has been'thoroughly discussed by Colson [18],
and concentrate on the transverse phenomena.

As discussed in {(19], the generalization to the case of the
planar undulator is no more than a change in the definition of

the two parameters -

2meNLK[JJ]
lin
a = cL(t) 48)
" Yzmc2 n
Lin anelyix?yny? |
r - 3 3 p(l‘,t) (25)
Y me
where
K2 k2
[JJ] = J -J (26)
4 + 2k A VERIPIE

The Eqs. (17)-(19) can be integrated numerically to find the
evolution of the optical wave in any Compton regime FEL. 1In a
high field experiment, Eqs. (18) and (19) are nonlinear in a, and
the wave evolution can only be obtained numerically. 1In this
case, (17)-(19) provide a precise and efficient technique for
solving the general problem. In a low field situation such as we
find at Orsay, however, the problem becomes linear, and can be
solved analytically. We proceed with the low field case in the

next section.

2. THE LOW FIELDS SOLUTION

The low field case 1s defined by lapl<< 1 for every mode.

"
~ -
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In other words, the electrons do not become overbunched. Experi-
'l ments which operate in this domain include the low field ampli-~
fier experiments, and storage ring FEL oscillators which saturate
;Q by mechanisms other than overbunching. The ignition of any FEL
i. oscillator also occurs in this domain.
: 2.1 The Gain Matrix

Equations (17)-(19) can be solved by integrating (17) and
(18) to lowest order in the fields a and inserting the result

for ¢ into Eq. (19). 1If the electrons are uniformly distrib-

uted initially in phase, we find

aam(t) T T
-0 =fd'r’ dt" Yy Mo (T, ™)a () (27)
at n
o o
where
1 [dxdy
3 " = - ———— "
Mo (T, T) ol b r(x,y)E (x,y,DE (x,y,T1")
o

' (28)
o e-i((lhm(X.Y.T)-vn(x,Y.T )) <e_1vo(t_ru)>v

o

Equation (27) describes a linear evolution of the mode ampli-

tudes, and upon integration, gives the relation

At e 1) -§(1+c)mnan(r-0) (29)

where I 1s the identity matrix, and G, which is generally not

Hermitian, has elements
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1 <’
8un {dr _zdr' '!:dr"blmn(t,.t")

:‘_::: (30)
R
(O
b }- U ! 15 T VR
+ Jdr fdt fd'rM (t r)fd'r fdt fdrM (Tastr) + cee
o 1 A 2 A 3'mgr "12"3 o 4 A 5 )y 6 2n" 3’76
The higher order terms in Bun aTE proportional to tZ and higher

powers of r, and are negligible in the low gain case.
Evidently this matrix is of great interest since multiple

passes of the electron beam will result in multiple products of

this matrix, greatly simplifying the calculation of the modes’
growth, We shall discuss the consequences for an oscillation
experiment in Sect. 2.2.

Let us note that this gain matrix is generally complex and
defines the growth of the amplitude of the field. Sometimes
people speak of the gain in a mode '"m" as the energy gained by
this mode in a pass through the undulator. This gain is simply
2 Real (g _) + lgmmlz' 0f course, one must keep in mind that
energy is radiated into other modes, and that cross terms will
mix a multiple mode input. If the input beam is truly monomode,

th

the power radiated into the n mode 1s lower than that into the

ut? mode by the ratio IgmnIZ/ZRe(gmm) which is small for low gain

(r << 1) systems. It is only in this case that it makes sense to

speak of the gain of a mode. In high gain systems, however; the
off-diagonal terms can lead to substantial emission of energy
into the higher order transverse modes. If the input beam is

multimode, of course, mode mixing occurs at all power levels,
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Let us calculate 8on in the simple case of experimental
interest where the electron beam is cylindrical, and a good
choice of modes 1is the cylindrical cavity eigenmodes (12) and

(13). We restict ourselves to the weakly diverging case
'voz >> AL where the gain takes on its most familiar form. The
mode amplitudes and phases in (2.8) become independent of 1, and
we can integrate the first term in (30) to find the gain. The

average over the resonance parameter in (28) becomes, under the
assumption of a Gaussian distribution of centroid Ve and devia-

tion o,
-y - (t - )2 oy (t=1")
(-iv (1-1 ')> - e 2° e Ve _ (31)

Under the weak divergence approximation, and assuming negligible
pulse slippage effects (long electron bunch length 9, >> NA), the
only time~dependence in (28) is that of (31). For small spread

v << 1 the integral gives the well known gain spectrum

dxdy . -1¢m(x,y) 1wn(x,y)
8an = | 7 r(x,y)E (x,y)E (x,y)e e
o . (32)
v v v
1 - cosv_ - =Sgyny - - - Scosv_ + siav,
2 ¢ 2 2 ¢
® + 1
v3 v
c c

In the usual experimental case (unfortunately), Igmnl << 1 and

the energy gain Gm on the mode m becomes
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Gm = 2Re(gmm) = ;:3- 2rEm
o

This is exactly the gain one

L T T L

-13=~
Ve
1 - cosv. - ;—sinvc
(33)
w3
c

calculates by using the filling

factor obtained by integrating the mode profile overlap with the

gain profile. Specializing to the TEMOO case with a Gaussian

electron beam of width g, we

find

v
l - cosv - —Esinv
2 ¢ 1
oo = 2%, =3 (34)
uz 1 - -2
4o

complete with the familiar filling factor.

The v, dependence of G
ence. The imaginary part of
phase shift of the radiation
The inhomogeneous broadéning
reduces the magnitude of the

the integral of (30).

is the well known spectral depend-
8un is not new. It describes the
field as described by Colson [18].
term in (31) clearly distorts and

gain spectrum if it is present in

The effect of the divergence of the beam on the diagonal

terms in G is, to first order, and for a filamentary electron

beam, the addition of a time-varying phase which shifts the res-

onance curve in Eq. (32) by a constant depending on the mode

AL

V + vV = == (2p + £ + 1)
¢t Ve T2 .

(35

Equation (35) means that the gain curves of the modes are shifted
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with respect to each other. This effect has been calculated for
the fundamental TENOO modé in the energy loss approximation [14],
and has recently been observed experimentally at Orsay [21]. It
should be noted that for many practical situations where the cav=-
ity is optimized for gain on the TEMOO mode, this expression is
valid for only the lowest order mode. The higher modes become
distorted in form as well as simply shifted in resonance para-
meter by equation (35).
2.2 The Low Field Oscillator

We now discuss some consequences of the linearity of the low
field problem on the optimization of an optical cavity for an FEL
oscillator experiment. In such an experiment the }ight pulses
reflect n times on the cavity mirrors (n » 2) between inter-
actions with electrons in the undulator. The matrix governing

the mode evolution from one amplification to the next {is

(I + G)C (36)

where G in the gain matrix defined previously, and C is the cav-
ity matrix describing the n reflections on the mirrors. 1In a set

of cavity eigenmodes, C is diagonal

Cx" = uyx (37)
) i} eiaj
; F I ’

n reflections, including transmission, absorption, scatteriﬁg,

2

with ¢ where 1 - pJ are the total losses on the

and diffraction. If diffraction is negligible, the eigenvectors

x1 become the Gaussian TEHbz modes, and the phase shift per round

trip a, becomes, for n = 2 reflections per amplification and

At
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identical radius of curvature mirrors,
L
apz = 4(2p + 2 + l)tan-1<-£*>, where Lc is the optical cavity

22
length, °
The matrix (36) is the fundamental matrix of the problem.

Its diagonalization allows the calculation of the mode evolution

up to the onset of saturation: -

(1 + G)c = ppp~1 (38)
m
[(1 + c)c] = pp®p~! (39)

where the columns of P are composed of the eigenvectors of

(I + G)C, and A is diagonal, The fastest mode growth will be

YR

obtained with the eigenmode having the highest eigenvalue modu-

'r'n' % % "

£,

')

lus. Optimization of the FEL oscillator will then consist of
maximizing the desired eigenvalue of (I + G)C.
If the gain is low (as it is, unfortunately, for our system

on ACO), one can diagonalize the evolution matrix (36)

(1 + 6)czt -yt | (40)
using the cavity eigenmodes x1

expansion of the new modes zi. To first order in the nondegen-

as the basis for a perturbation

erate case, the result is:

101
Aj = pje (1 + 8jj) (41)
ia
m

3 3 pme m
zJ) =& xJ 4 g .X (42)

Z 101 ian  J

my j pye - pge:

Under these conditions, the FEL design is optimized by maximizing

. . N .t e A - T S D R N A .
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the diagonal term SJJ corresponding to the desired mode. From

Eqs. (33) and (12) it is clear that the beam size w, must be

-

;? reduced down to the order of the electron beam size in order to
;3 optimize the coupling, but if the mode becomes too divergent, the
.l time dependent terms in Em and En of (28) begin to reduce the

gain. The optimal situation 1liés between these two extremes, and

T a
LY

)
J

has been calculated in detail (using the energy loss approxima-~
tion) by Colson and Elleaume [l4].

The optimization procedure must also be limited by the
stability condition ([17] on the cavity. For the Orsay experi-
ment, the radius of curvature chosen to optimize the small sigunal
gain was R = 3m, which is acceptably close to the stability limit
of 2.75 m. There are cavity designs in which C is degenerate for
which the optimization procedure is not necessary. For these de-~
signs, Gj is a constant independent of the index. In these cav-

ities, any combination of modes reproduces itself after n reflec-

tions. If n = 2 as in the Stanford and the Orsay experiments,
the concentric and the plane parallel cavities are degénerate,
and the confocal cavity is degenerate on the p modes (quasi-
degenerate). These cavity designs, however, are useless since
they stand critically on the scability-boundary. The tolerance
on the mirror radius of curvature is on the order of lgool (ob-
tained from the perturbation expansion) which is difficult to
meet if the gain is low. For two mirror devices where n > i,

such as the Novosibirsk experiment where n = 8§, in general for

n
mirrors of equal radius of curvature there exist - + 1 cavity

2
designs with a degenerate C matrix:
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and - with a quasi~degenerate C matrix in which the odd £ modes

2
change sign on every amplification. Only two of the degenerate

o and one of the quasi-degenerate cavities correspond to the un-
stable cavities; the others are potentially useable in an ex~-
periment. The value of a degenerate C matrix is that the eigen-
vectors of the amplifier plus cavity matrix (36) are equal to
those of the gain matrix alone, multiplied by a constant. This
degeneracy allows the cavity to oscillate on the most favorable
combination of modes which best fits the electron beam shape. In
this manner, the gain can be increased by factors of two or three
over the gain of an optimized TEH°° mode, particularly if the
electron beam size 1is smaller than the TEMOO mode. The tolerance
on the mirror radius for the degeneracy of C will still be tight,

and the experimental utility of these cavities remains to be in-

vestigated.

3. APPLICATION TO GAIN~-vs—-APERTURE EXPERIMENT
3.1 Description of the Experiment

The gain of the Orsay FEL has recently been measured with
the optical klystron in place [22] in an amplifier experiment
using an external argon ion laser to provide the coherent mode.

A detailed description of the apparatus can be found in Ref.

[23], and a schematic dezcription is given in Fig. 1. The laser

beam 18 analyzed at a distance d from the optical klystron after
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s

passing through an adjustable collimating iris (Fig. 1), which is

- ., -
1 NN A ‘e
- o Te_0 0,2 ,% 8"

centered on the laser mode emerging from the interaction region.

.-
‘l.'

The gain is measured as the ratio of the power detected in phase

<
o with both the electron repetition frequency and the chopper fre-
e
quency (the amplified power) divided by the power in phase with
W
5- the chopper alone (the incident "'laser power). Calibration is
o
-7

performed as in [23].

The gain 1is recorded as a function of the iris aperture, and

large variations are observed [16]. One set of data points is

SR ST '
Lt ta%etet! ot

reproduced in Fig. 2, where the gain is normalized to its value

for the iris completely open, and the iris diameter is normalized

b

to the measured beam waist at the iris. The data {s taken at
maximum gain, which means vc ~ 0 for the optical klystron, and the
laser beam was carefully aligned to within about .05 mm of the
axis of the electron beam. The change in the measured gain as

the iris 1s closed means that the laser is not uniformly ampli-
fied in its transverse profile. In fact, ghis experiment pro-
vides a very sensitive technique for measuring the power emitted
into the higher order modes even in the small gain limit and for

a monomode input beam. Clearly a calculation of the 8. 18

necessary in order to explain these results. 1In the next sec-

tion, we apply the theory we have developed to the case at hand,
!' and in Sect. 3.3, precise comparison is made between the experi-

mental and the theoretical results.

3.2 Multimode Emission in-a Single Mode Amplifier Experiment

L e 4 DL AR R c N
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In this section, we assume the incident wave is a single
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mode TEM_ beam with a weak field (jay,} € 1), and perfectly

";‘l'
.
[

aligned onto the electron beam. As discussed previously, we take

.8
L ]

4

the cylindrical eigenmodes based on the form of the input beam.

Using the notation of Sect. 1, the input laser field reads

.“."‘-“ . l'. :‘ N
g“ a" n" [

1y (2)
el(d) - coso(f)e Yo (44)

where the subscript 0 refers to the TEMOO mode of Eqs. (12) and

(13). From (29), the output field E5(#) becomes

[ 1w (?)
=l v c ¥ g, E(D)e ) (45)
o jo~j
=0
‘o Assuming low gain, the output power passing through the iris

aperture is

8P 2 s 1Cy,=vws)
- s]© ~ 2 2 2 * o 'j ’
ﬁsls | = coﬁsso + 2c’Re 3 Z:SjoﬁSEoEje (46)

c j=0

where jhs covers the iris aperture. The gain is therefore
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where z, is the Rayleigh range of the laser mode, 2z 1s the
distance between the iris and the laser beam waist, and
X = r§/2wz(z) where r is the iris diameter. There are two

interesting limiting cases:

G = 2Re(8°°) } X + » (iris open) (49)
12
s i2ptan " —
G = 2Re (goo + éga 8po® z, X » 0 (iris closed) (50)

It is obvious from Eqs. (48)-(50) that the gain changes with iris
diameter in a way which depends on the magnitudes of the off-
diagonal terms in the gain matrix.

The generalization is straightforward to the case of the
multimode input beam, and to imperfect alignment of the laser and
electron beams, although the calculation becomes more difficult.
This calculation also applies to high power input laser beams
(ao >> 1) provided one keeps in mind that the 8p0 are functions
of a .

3.3 Application to the Orsay Experiment
The experimental points shown on Fig. 2 were taken under the

following approximate conditions

laser
beam: - measured beam waist v, = .67 mm
- wavelength = 5145 X
- measured beam waist at iris w(z) = 2.7 um
- distance from optical klystron to iris d = 11.6 m
electron :
beam: -~ gaussian and cylindrical with ¢ = .32 aom
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- optical
= klystron: - Nd = 80 [19,22,24]

- - resonance parameter corresponding to maximum gain
- with iris open
i' The dark curve of Fig. 2 has been calculated using Eqs.

(27), (28) and (50) for the planar configuration (24) and (25),

o taking into account the 10 lowest order g = (0 modes. The dashed
‘ curves of Fig. 2 show the contribution of each individual mode.
These curves are the same whether an undulator or optical klys-
N tron is used. Very similar curves (not shown) were calculated

E for other resonance parameters indicating that as expected, the

] diffraction effects do not change much as a function of detuning
Y parameter for modes with low divergence.

Fig. 3 shows the calculated effect for several dimensionless

T
electron beam transverse dimensions g = Jg — = .4, .76, 1.5, 3

where L 1s the length of the magnetic inte::ction region.

£ ® .76 corresponds to the value g = .35 mm, close to that used
in Fig. 2. The flattening of the curves as g is increased to

g = 3 is due to the vanishing of goj/goo for j # 0 as g in-
creases.

Fig. 4 shows the calculated effect for various iris dis-
tances d from the optical klystron center, normalized to the op-
3 _ tical klystron length: d/L = .5, 1, 1.8, 2.5 and ». The experi-
mental points of Fig. 2 were obtained for d/L = g._,The inversion

i2ptan "(z2/2 ) .
of the effect 1s due primarily to the term e 0" with
p=14in Eq. (50) which switches from +1 to -1 as z goes from

zero to infinity (the mode p = 1 gives the predominant effect).

At short distances the TEMIO mode interfaces constructively
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. on axis 1, and at long distances, it changes sign. J
.
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FIGURE CAPTIONS

CAL)

éi Figure 1. Simplified schematic diagram of the gain measurement
gﬁ apparatus [23] showing the argon laser focussing system, the

¢ collimating iris, and the double demodulation detection system.
E& Figure 2. The measured gain as a function of the iris diameter
.25 [16]) normalized to the measured beam waist at the iris. The

.; solid points were taken closing the iris and the open points

€§ while opening it. The error bars are the one sigma statistical
‘ig errors. All points have the same horizontal error bar which is
- shown for the point at 2.7. The solid curve is calculated using
,ﬁ? the measured values for the electron and laser beam sizes. The
;éf effect of each higher order wmode is shown by the dashed curves.
1: Figure 3. Calculated curves for the gain as a function of iris
Eg diameter under the conditions of the Orsay experiment [l16]. The
'_5 electron beam dimension I = ¢ V */AL is varied to show the

?7 effects of the beam size on the excitation of the higher order
;1 modes. The value € = .76 corresponds to 0 = ,35 mm which is ver
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close to the value at which the experimental points were re-
corded.
> Figure 4. Calculated gain as a function of iris diameter for
several 1ris positions d, under the conuitions of the Orsay ex-

periment [16]. The ratio of the iris to optical klystron dis-

:i tance d divided by the optical Klystron length L is varied
‘: through the range .5 to », The experimental points of Fig. 2.
were taken for d/L = 9.
o
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