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Component Relevancy in Multistate Systems

by

Emad El-Neweihi and Frank Proschan

Abstract

We define a hierarchy of six successively weaker conditions for component

relevancy in a ultistate structure of MdI performance levels. We show that

the six conditions are distinct except for M=l,2. We-pr"evtbasic structural

properties corresponding to the six conditions: (a) the definition and proper-

ties of the dual structure, (b) redundancy at a lower level is preferable to

redundancy at a higher level, and (c) the definition and properties of the

structural importance of components.
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0. Introduction and Summary.

In defining a binary coherent system, a key requirement is that each

component be relevant to system functioning or failure. This requirement

avoids the possibility of components that play no role in system fu.ctionnkg

or failure. Only one natural definition of relevancy is possible.

In the multistate model, where each component may be in any of states

O, 1, ..., 14 > 1, a variety of alternative relevancy requirements are pos-

sible. In this paper we list six reasonable relevancy requirements, forming

a hierarchy of increasingly weaker requirements.

In Section 1, we present notation and terminology. Section 2 lists the

six relevancy conditions ranging from the strongest to the weakest. We show

that the six conditions are distinct except for the cases M = 1,2. Finally,

in Section 3, we present basic structural properties corresponding to the

six relevancy conditions. Thus, we define and study the dual structure, ob-

tain the well known design principle that redundancy at a lower level is

preferable to redundancy at a higher level, and define and study the struc-

tural importance of components.

1. Notation and Terminology.

The vector x (x, ..... x n) denotes the vector of states of components
n.n= I, *.., n.

C - (1, ... , n) denotes the set of component indices.

(*i. x_) - (x I , ... , xi. I , • , xi I  *.,n.

S(j, -.. , 3), where) 0, , ... , M.

a ' ' % " ' %' .., ". 0"[,. ... .. 1 ..
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x v y 5 max (x,y).

xa Vy- (x 1  Is ... I' Xn v yn).

" A y s min(x,y).

x A y S (x I A y , ...' Xn A y).

When we say €(xl, ..., xn) is nondecreasing we mean * is nondecreasing

.4 in each argument. n . th

Given a set S,Sn  denotes its r.- Cartesian power.

2. Levels of Component Relevancy.

A basic ingredient in the theory of binary coherent systems is the

structure function *: {0,1 )n . (0,11 which determines the state of the

system in terms of the states of the n components. The following two con-

ditions are required for a binary system to be a coherent structure

[1, Def. 2.1, p.6]:

(i) The function #() is nondecreasing.

(ii) For each i there exists a vector (-i,!) such that

SWi-D_ :0#Oi

Condition (i) expresses the reasonable assumption that improving com-

ponent performance should not degrade system performance. Condition (ii)

asserts that each component is relevant to system performance, thus elim-

inating from consideration components that have no effect on system perfor-

mance. It follows from (i) and (ii) that

(iii) j() a 1 and #(P) =0.

Recently researchers felt the need to develop the theory of multistate

coherent lystems to describe more adequately the performance of components

sad systems which have more than two levels of performance. Again a basic

= ., ' ',' ,, , i, b. : ,,. .. '... *. . a';-.. '_. . ," a' .'. .cc'/ '.'.'..... . .'.-."
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ingredient in such a theory is the structure function n: Sn a 5, where

S = (0,1, ..., M) is the set representing levels of performance varying

from perfect functioning M to total failure 0. (We concentrate in this

paper on the case where S is finite.) One possible approach to extend the

concept of binary coherent structures is to impose on * a set of

"reasonable" conditions which generalize conditions (j) and (ii). Condi-

tion (i) is extended in a straightforward manner by requiring * to be non-

decreasing. It turns out, however, that the relevancy condition can be

extended in many different ways, each leading to a distinct class of multi-

state "coherent" structures. In a multistate model, relevancy becomes a more

complex concept that admits different mathematical formulations. The follow-

ing are successively weaker versions of relevancy:

(ii)' For every component i, there exists a vector (.,x such

that *(Jji. a j, j " 0,1, ..., M.

(ii)'" For every component i and level j, there exists a vector

(*ixV such that *(Ji,xV a j while *(Li,V_ * j for I * j.

(ii)"' For every component i and level j > 1, there exists a vector

(-i,x such that #(ji,xV a j and f((j-l)i,_ < j-l.

(ii)(iv) For every component i and level j > 1, there exists a vector

(*iD such that *((j-l)i,2)_ < #(j,,3).

(ii)(v) For every component i and level j Z 1, there exists a vector

such that *(Oi,) < (Ji,V.

(ii) (v i) For every component i, there exists a vector (.i,x such that

g(Ois!) < #(Mirv_)

Among the six conditions above, the first five indicate a degree of

relevancy of each component to every level of performance, whilc' the last

merely states that every component is relevant to the system. Condition
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(ii) " is due to El-Neweihi, Proschan, and Sethuraman (1978), Condition

(ii)'. is due to Natvig (1982), Conditions (ii) (iv) (v) are due to

Griffith (1980), and the remaining conditions are new. It should also be

remarked that the condition

" (iii), (j) j, j = 0,1, ..., M,

which generalizes Condition (iii) is not necessarily satisfied by a non-

decreasing structure function 0 which satisfies one of the relevancy axioms

(except, of course, when M a 1).

When M a 1 all the above relevancy conditions are equivalent; also when

N = 2 Conditions (ii)' and (ii)" are equivalent. The following examples

show that in general the above relevancy axioms are not equivalent.

Example 2.1. Let n = 2, M a 3. Define 0 by 0(0,0) = 0, 0(1,0) = 0(0,1)

*(ll) = 1, 0(0,2) a 0(0,3) = 4(1,2) = f(2,0) = 0(2,1) = 0(2,2) = 0(3,0) :- 2,

#(1,3) = #(2,3) # *(3,1) = #(3,2) - 0(3,3) = 3. Then 0 satisfies Condi-

tion (i) but * does not satisfy Condition (ii)'.

Exaqple 2.2. Let n a 2, M a 2. Define 0 by 0(0,0) 0, 0(0,1) * 0(0,2)

a #(1,0) = 0(1,1) - #(1,2) a #(2,0) - #(2,1) - 1, f(2,2) = 2. Then 0

satisfies Condition (ii)... but # does not satisfy Condition (ii)".

'.4 " Example 2.3. Let n a 2, M a 2. Define 0 by 0(0,0) # 0(1,0) = f(0,1) = 0,

*(ll) - (2,1) a (2,0) a (0,2) - 1, (1,2) a (2,2) = 2. Then 0

satisfies Condition (ii)(iv) but does not satisfy Condition (ii)"'.

Exale 2.4. Let n a 2, M - 2. Define 0 by f(0,0) - 0, 0(0,1) - f(1,0)

# *(1,1) - 4(2,0) - 4(2,1) a 1, 0(0,2) = 4(1,2) -0(2,2) - 2. Then 0

(iv)
satisfies Condition (ii)(V) but * does not satisfy Condition (ii)

L I W"" d q " ,", e ": t """, ,,- ,", .".% '.".". ". ".".. -.". ."" - ." ." . ",,%"""""",, ",-""•.
:~& L N1 : o ~ t Az -- 1". "'P€ ' - - - -r - ' i-' ,_ , "e ,
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Example 2.5. Let n = 2, M 2. Define * by 0(0,0) = 0(1,0) = 0, 0(0,1)

4 *(0,2) a *(1,I) # 0(1,2) = 0(2,0) = 0(2,1) = 1, 0(2,2) = 2. Then 0

satisfies Condition (ii)(vi) but does not satisfy Condition (ii)(v).

A class of nondecreasing structure functions which satisfy (iii), and

one of the relevancy axioms may be designated as a class of multistate

coherent systems. In the following section we examine some interesting

properties and concepts for such classes which are closely related to the

relevancy axioms.

3. Structural Properties Related To Relevancy.

As in the binary case, a dual structure for each multistate structure

can be defined:

Definition 3.1. Let * be the structure function of a multistate system.

The dual structure function *D is given by:

SCx)a M - (M -

The following interesting question naturally arises: Do the components of

the dual structure *D inherit the rolevancy property enjoyed by the com-

ponents of 0? The following theorem asserts that with the exception of

Condition (ii)(v), the answer is yes.

Theorem 3.2. Let # be a multistate structure function which satisfies one

of the Conditions (ii)" through (ii) (iv) or Condition (ii)(vi). Then the

dual structure function #D satisfies the same condition.

Proof. The proof is straightforward and is therefore omitted.

Exgple 3.3. Let # be defined as in Example 2.4. Then # satisfies

Condition (ii)(v) but *D does not satisfy the same condition.

......-. ,.--._,:-.;
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Design engineers have used the well known principle that redundancy at

the component level is preferable to redundancy at the system level. This

principle still holds in the multistate model and is translated into mathe-

natical form in (a) of the following theorem; (b) is a dual result.

Theorem 3.4. Let * be a nondecreasing multistate structure function.

Then

(a) *(x v y a O(_ v *(y) for all x and y.

(b) *(x A < * (D_ A *(y) for all x and y.

The above theorem is an immediate consequence of the monotonicity of *.

The following less trivial result is due to El-Neweihi, Proschan, and

Sethuraman (1978):

Let the nondecreasing structure function 0 also satisfy Condition

(ii)". Then equality holds in (a) ((b)) for all x and y implies that

the system is parallel (series).

An extension to the above result is achieved by Griffith (1980) by replacing

(ii)" with the weaker Condition (ii)(iv). However, Griffith (1980) showed

by an example that the same result is not true if (ii)" is replaced by

(ii) (v). The following example shows that Condition (ii)(v) is not

sufficiently strong.

Example 3.S. Let n = 2, M a 2. Let # be as defined in Example 2.4. Then

# satisfies Condition (ii)(v), (x v y) #() v 0(y) for all x and y

but *(.V a max xI

lsisn
A measure of the structural importance of each component to a given

system is of obvious practical significance. In the binary case the impor-

tamce of component i to a coherent structure 4 is given by

L
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= I Card((.i.D: fCOi. < (li,_ ). Note that the relevancy

Condition (ii) guarantees that I(i) > 0 for each i = 1, ... , n.

Generalizations of such a measure in the multistate setting are now evident.

Let # be a nondecreasing multistate structure. A measure of the impor-

tance of component i to the structure * can be given by

I(i) 1 Card((oi.. : = j, j = 0,1, ... , M]. Note t

V'(i) 0 for each i if and only if * satisfies Condition (ii)'.

measures I"(i), IA"i), I(iv)(i), ICV)(i), and I Cvi)i) are similazy

defined. Note that l'(i) : l"Ci) < l'"(i) 5 1 (iv) M I(v)(i) ! I (vi)

Also observe that each of those six measures of structural importance has its

natural probabilistic counterpart (see Block and Savits (1982)).

Finally, we shed some light on preservation of the various relevancy

axioms under modular decomposition. A question raised and answered by

Griffith (1980) is whether a "relevant" component within a "relevant" module

is "relevant" in the system. The answer is yes if relevancy is defined in

terms of Conditions (ii)" and (ii)(iv). However, an example is given by

Griffith (1980) to show that this is not necessarily the case for Condition

(ii)(VI). It can be easily shown that the answer is still yes if relevancy

is defined in terms of Conditions (ii)" and (ii)"'. The following example

shows that this is not necessarily the case for Condition 
(ii)M

Eznple 3.6. Let n = 2, M = 2. Define # by #(0,0) = #(I,0) # *(2,0)

so, #(0,1) - #(l,l) # *(2,1) •#(0,2) - 1, #(1,2) # *(2,2) = 2. Now let

#(XlXz2X 3) -a ) ,x3).
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