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ABSTRACT

The current trend to higher and higher signal processing speeds in
radar, communication and EW systems is well known. The flexibility offered by
sampling techniques for carrying out these processing functions is also widely
recognized. To provide high effective sampling rates, a novel distributed
parallel sampling approach using relatively narrow-band parallel channels has
been developed at DREO. This unique integration of delay lines, sampling gates
and amplifiers allows for amplification of wideband r.f. signals at frequencies
far above the cut-off frequencies of the amplifying devices used.

A discussion of the distributed sampling concept, the design of a
prototype circuit and a comparison of theoretical and experimental results,
demonstrating successful signal amplification approaching the gigahertz regime,
are presented in this report. Other potential application areas which are well
matched to this type of processing are also mentioned.

RE SUME

La tendance actuelle d'utiliser des vitesses de traitement de signaux
de plus en plus élevées dans les systémes radar, de communications et d'alerte
avancée est bien connue. On reconnait également largement la souplesse offerte
par les techniques d'échantillonnage pour le traitement de ces signaux. Afin
d'obtenir un taux d'échantillonnage trés élevé, le CRDO a mis au point une
nouvelle méthode d'échantillonnage distribué en paralléle, utilisant des voies
paralléles de largeur de bande relativement faible. Cette intégration unique de
lignes de retard, de portes d'échantillonnage et d'amplificateurs permet
1'amplification de signaux RF & large bande & des fréquences bien supérieures
aux fréquences de coupure des dispositifs amplificateurs utilisés.

Le rapport présente une discussion du principe de 1'échantillonnage
distribué, la conception d'un prototype de circuit et une comparaison des
résultats théoriques et expérimentaux démontrant 1a réussite de cette
méthode d'amplification de signaux proches des gigahertz. 11 mentionne égale-
ment d'autres domaines possibles d'application correspondant bien a ce genre de
traitement.
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c speed of light (3 x 10!% cm/sec)

% : C input intrinsic capacitance of the amplifier
Y Co output intrinsic capacitance of the amplifier
3 D.U.T. device under test

. G overall system gain

-y

Q-

i, Gy final output filter gain
o Gp, amplifier-filter network gain

\
Q[
N h microstrip dielectric substrate thickness
‘-

¥
> N number of parallel channels

z Rsi resistance of the input sampling gate under a forward bias
i . .
a : (ON) condition

% Rin input resistance of the amplifier
. Rpy termination resistance

>

Ro series source resistance in the amplifier's output model

" network

\ R1 output load resistance
N

3' Rso resistance of the output sampling gate under a foward bias
i (ON) condition
A Ri parallel combination of the output load resistance (R1) and
¥ Rpn/2
&

. R diode's forward bias resistance

»

N Rp sampling gate's bias resistance

q - Ry effective load resistance which the sampling gate sees
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p 1.0 INTRODUCTION
-ﬁ: 1.1 Introduction

XS
ﬂ}: The development of the sampling amplifier based on a distributed

A J'.

- - sampling technique is described. This is a new concept for wideband microwave
:i amplification in which microstrip meander delay lines, picosecond sampling gates
7

5:? and video amplifiers are the key components., Using this scheme, voltage samples
e

of a wave distributed along a delay line are taken at a number of points on the

’3£ line. These voltages are subsequently amplified by Tow frequency (video)

-"'.

{E; amplifiers and then resampled onto an output delay line, reconstructing the

o
~ input signal at an amplified level.

::* The attractive aspects of the distributed sampling concept include the
>
:Nﬁ i following potential characteristics:

) " (a) very wideband amplification
o7 . .
od (b) electrically linear input, hence no intermodulation products with
J_:_-"

o simultaneous signals

¢
. (c) parallel construction for redundancy and gradual degradation,

s
a and
:‘& (d) solid state low frequency components for low cost and ruggedness.

2 Potential applications include:

E:: (a) wideband microwave amplification
.r;': ] .

oo (b) microwave signal storage
X
- (c) signal analysis, and
o
:3 (d) frequency conversion.

H -
"

-:5 To prove the feasibility of the distributed sampling concept the
:* prototype device of Fig, 1.1 was developed, thereby successfully demonstrating
o
; ‘
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R0 FIGURE 1.1 - TWENTY CHANNEL PROTOTYPE SAMPLING AMPLIFIER
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the concept of wideband amplification by providing 11 dB of gain over the band

from dc to 840 MHz.

AT TR S

1.2 Background and Objective

Sampling techniques which permit amplification of wideband signals

-
L}

using lowpass narrowband amplifiers were first reported by Lathi |1| and

subsequently by Tucker, Conway and Bouchard |2|. These techniques allow the

e T

acquisition, amplification and reconstruction of wideband signals.

With present r.f. amplifiers limited to octave bandwidths (with some
covering up to two octaves) the wideband characteristic of the sampling
amplifier was found to be a very desirable feature for a number of

applications, since large portions of the frequency spectrum

may be covered with a single device. Moreover, its multi-signal

....
Aaatort, % ferte

handling capability is in itself very attractive as a multitude of signals are
able to be reproduced exactly without the generation of intermodulation

products.

‘...'." .h‘h a ‘:..'

Overall long term goals of 0-16 GHz bandwidths with 40 dB of gain,

~30 dBm of sensitivity and output power levels of 1 watt CW are envisioned using

~
;f this technology.
~ The remainder of this report describes the sampling amplification
% process in greater detail and reports on the results obtained from an
{Z;I experimental device.
: *
A 2.0 SYSTEM DESCRIPTION
.ﬂ - 2.1 Introduction
| The basic operation of the sampling amplifier is presented in this
'g section. The theory which models the distributed sampling approach has been

previously described in reference |[3). The primary equations defining the




.........
......

jj theoretical overall system gain, freguency response and maximum output power are
summarized enabling a comparison of theoretical and experimental values.

£ 2.2 Basic Operation

A block diagram of the sampling amplifier is shown in Fig., 2.1. An

r.f. signal is received at the input to the sampling amplifier and is

LN vy s
e )

distributed in time along the input meander delay line. At this point a signal
is initiated by the control unit to activate the input pulse generator. The

pulse generator in turn activates each of the samplers thereby obtaining samples

s e i o ¥ 3
'c' n'_’:' H85%0

%: of the signal at the various points along the line. These sampled voltages
3: (which are video signals at this point) are then stored on the capacitor
N elements which act as analog memories. The stored samples are subsequently
S: amplified by the video amplifier units producing amplified signal samples at
E& their outputs. The amplifiers having responded, enable the control unit to
;;: initiate a signal activating the output pulse generator which subsequently “turn )
f& on" each of the output samplers. This allows each of the amplified input signal
?: samples to be reconstructed on an output delay line. The output sampled
e waveforms then propagate in both directions on the output delay line where they
:3 are terminated at one end and transmitted at the other. The output low pass
4 (passive) filter element eliminates any of the high frequency components which
}3 result from the sampling process. Total reconstruction of the input signal
.i: requires that the control unit initiate a signal at a rate equal to the inverse
-; of the delay time of the meander delay line. -
5 This unique integration of delay lines, sampling circuitry and video

amplifiers provides the capability to receive, store, amplify and retransmit
complex wideband radio frequency signals at frequencies far above the frequency

] cut-off characteristics of the amplifying devices used.
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2.3 Mathematical Description

The basic equations defining the overall system gain, frequency

s

‘{: response and maximum output power, which were developed in reference [3], are
o~ summarized, thereby affording verification of theoretical values with those

ISE obtained from an experimental circuit.

i&: A single channel of the sampling amplifier system may be modelled as
. in Fig. 2.2, where v represents the applied open circuit voltage, Ri is the

‘EE series source resistance and is equal to Rm’ Rm is the termination resistance,
f{ z, is the characteristic impedance of the delay line and is equal to Rm, Rsi is
" the equivalent series resistance of the input sampling network, Vji is the

,?g voltage appearing at the input to the amplifier network, C and Rin are the

Q intrinsic capacitance and input resistance of the amplifier circuit, Gn is the
¥ open circuit gain of the amplifier, Ro is the output series source resistance, )
a; Co is the intrinsic output shunt capacitance, R, is the output load resistance
%ﬁ (R, is necessary to ensure stability of the amplifier when the output sampling

gate is reverse biased), Rso is the equivalent series resistance of the output

2t

t? sampling network and Go is the gain of the output passive filter. In this case,

:’3,

jj the intrinsic capacitance of the amplifier serves as the analog memory.

v The overall system gain for the sampling amplifier can be expressed as

»

o 3

:a l J K K

g G = 6,(2B/N)6 (2B)7 7o{2K, |1 - 7271 [Ky[(Ky - Ks)e™ ©72 + Ky ]} (2.1) .

L

P |
poS
b
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N
p Rin
M where Ky =
YA 2R_. + 2R. + R
:”\; si in m 1
»‘b' K 1
ﬁt 2 K1(2R51 + Rm)C
v Rm {
K3 S amm—
:3:. 2Rso + Rm
?t} K Rl
"‘- " S ————
. K5 = R + Rl
P, Ry + R0
e “RTRTC_
oy

Ri = Rluleo + (Rm/Z)J

and where 1, and 1, are the input and output sampling pulse widths,

I :"w*'fw
e a8 a 8 &

» b4

respectively.

The upper 1imit on the bandwidth (Bmax) that can be amplified by the 1

‘L

‘:é sampling amplifier is determined by the pulse width of the output sampling pulse
N and is given by |3]
fQ‘ B oy = 1/212 (2.2)
;i The maximum output power (Po)max is dependent on the sampling network.
= For the sampling gate of Fig. 2.3 the maximum power is expressed in terms of the
ﬁtg bias voltage, Vb, the bias resistance, Rb’ the load resistance which the
PO
i;} sampling gate sees, RL’ and the equivalent series resistance of the sampling
‘ gate, Rs' This maximum output power is given by 1
5 R 2R R. V
L b b 2
N (Podmax =7 - | ] (2.3)
f‘? (R, + R[(RS + 2R))(R + R) - R R W
2]
)
Y
¢ e . :
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3.0 DESIGN OF A PROTOTYPE SAMPLING AMPLIFIER

3.1 Introduction

To demonstrate the concept of wideband r.f. amplification using the
distributed sampling technique, an experimental prototype device was developed.
The physical characteristics of the proposed system, its design goals and the
design of the meander delay line are described. The selection of suitable
sampling gate, amplifier and pulse generation units are also examined.

3.2 Experimental Circuit

The physical characteristics of the prototype circuit are shown in
Fig. 3.1. Regions (1), (4)-(7), (12)-(15) and (18) are constructed in
microstrip using RT/duroid 5880 material. Again, line (1) carries the input
signal to be sampled and etement (2) serves to terminate the input meander delay
line. When a sampling pulse is generated at the input to transformer (10)
complementary pulses are produced at the output of the transformer. These
complementary pulses travel down line (4) and (5) to "turn-on" the sampling
gates (3) for a brief period of time. The inductors (8) and capacitors (9)
serve to d.c. shift the output sampling pulses to aid in voltage biasing the
sampling gates. Lines (6) and (7) also provide voltage bias for proper
operation of the sampling gates. Once the input signal is sampled, the sampled
waveforms are amplified by the amplifier circuits (11). These amplified
waveforms are subsequently applied to the output delay line (18) through the
output diode switch (16) at predetermined positions which are similar to the
input tap positions. This reconstructed wave then propagates down the delay
Tine (18) to its output. Element (17) is a termination resistor for the output
delay line. Lines (12) and (13) correspond to the output pulse lines and lines
(14) and (15) provide the voltage bias lines for the output sampler units. The
transtormer (21) provides the complementary output sampling pulses when

triggered by a sample pulse,
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The design goals for the prototype circuit were selected on the basis
of availability of pulse generatior devices, the size of the prototype circuit
and the standard impedance for microwave circuits., Design goals satisfying

these requirements are given as follows:

Input bandwidth 0-2 GHz
Input impedance 50s
Sampling rate 10 MHz
OQutput impedance 50
Number of parallel channels 20

A 20 channel prototype device was selected in order to verify the concept
experimentally. This represents reconstruction and amplification of about 10%

of the signal. In most applications full reconstruction and amplification would

be carried out.

3.3 Delay Line Design

3.3.1 Introduction

The delay lines were fabricated of microstrip using RT/duroid 5880
material. The ease in implementing circuits in microstrip and the superior

characteristics of the RT/duroid material (i.e. constant €. and Tow loss

tangent) were the primary reasons for its selection. Determination of both the
strip conductor width of microstrip lines and the required sampling interval

(TS) between adjacent channel (and its corresponding microstrip length) are

outlined in this section. In addition, a calculation of transmission line

losses and their effects on the operation of the circuit is addressed.
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3.3.2 Strip Conductor Width for a 50u Line

" Hammerstad |4] has characterized the microstrip geometry of Fig. 3.2
for given characteristic impedances. His expressions include useful
relationships which define both characteristic impedance (ZO) and effective
dielectric constant (eeff). The equations are expressed in terms of the

dielectric constant of the material (er), the substrate thickness (h), the strip

conductor thickness (t) and the strip conductor width (W). These expressions
are outlined in Appendix A. A computer program, also given in Appendix A,
determines the value of Zo for specified W/h values. For h = 20 mils, t = 1.5

mils and €. = 2.2, a strip conductor width (W) of about 60 mils is required for

the 500 delay lines (printout in Appendix A).
3.3.3 Sampling Interval (TS)

The propagation of the meander line between adjacent channels, TS,

completely defines the upper frequency for which a Nyquist sample set exists.

An extension of the general Nyquist sampling theorem states that any 2BT' unique
(independent) uniformly distributed pieces of information are needed to
completely specify a signal over an interval T' seconds long {5]. Thus for the

meander delay line of Fig. 3.3,

=
[

= 2BT' = ZBNTS

and

B

1/2TS (3.1)

where B is the upper frequency, N is the number of independent samples and TS is

the sampling interval between adjacent channels.
The above statement is true if all samples are activated
simultaneously, however, in the prototype device there is some finite delay

between activation of each of the samplers. This results from the propagation

delay of the sampling pulse as it travels along the pulse line. Consequently,
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the propagation delay of the meander line between adjacent channels, TS, will be

- modified to reflect the effective time delay (Tse) between adjacent channels.

;: The physical layout of the input side of the prototype sampling

amplifier circuit is illustrated in Fig. 3.4. The spacing between adjacent

:Q channels (%,;) was set to .8 inches allowing for easy assembly of components.
-

:: The input signal and sampling pulses were chosen to propagate in the same

direction. Thus, the effective time delay, Tse’ is given by |[3]

B Tse = Ts = tpe

: where tp is the propagation delay between adjacent channels along the pulse
}j line. For an upper frequency limit of 2 GHz
2

o~ 1

;: TSe 8 250 psec.

-'\

) Assuming the quasi-TEM mode of propagation, the propagation delay in microstrip
’ is given by |6

-

Cd [

o’ 1 _ "Ceff

< b i v T T

p

I From the computer printout in Appendix A

4

S €aff = 1.872.

‘

Thus,

N

= tA = 45,61 psec/cm = 115.84 psec/in.
s

‘o Given

" 2 = .8 inches,

:5 tp =t, . 2 = 92.7 psec. -
by

) Therefore,

.S: TS = Tse + tp = 342.7 psec

o"‘ !

(: and
e
) T

1

L, = = = 2.958 inches.




T ettt S fams el Bl A e S ol L v TF LW WL TN T AT e My T Ty T T e LT T e . . -
N B 2ot b i f St e kRO Itae S sChu i Rt s RS AL AR M S A AR e

>’ 'J

KL

- 17 -

LA

-
4

5

20
."o

A)

CHANNEL CHANNEL ' oo o CHANNEL
2

At
Py
z

4

et
Pa
KA

R A

PULSE LINE

4y

} } PULSE LINE

o

>
>
D

- - 1 . . INPUT MEANDER
. . DELAY LINK

U U

l1a

. —

b
.

Pl

- A

. o'y, o

l,-PHYSICAL LENGTH OF THA PULSE L INE
BETWEEN ADJACENT CHANNELS

0
o 2

la-PHY.ICAI_ LENGTH OF THE MEANDER LINEK
BETWEEN ADJACENT CHANNELS

W ROA)
- LIV S SN

e ale

FIGURE 3.4 - PHYSICAL LAYOUT OF THE INPUT SIDE OF THE PROTOTYPE CIRCUIT

i d

)

T TN T e N T N NN

s'n
1‘~

-w\w..'i'h'
‘ h

L “

,.1\1\ *-\-.“\ ‘.-‘f\q .*\.‘\-‘~_-_~ .
e S

N\ -
\ \-"n\ x‘l..\.\-‘\.ﬂ~h‘
v

.ay\ oy




...........

0 - 18 -
e
A
i" Hence, a maximum delay line of 2.958 inches is required between adjacent taps in
Zti order to reconstruct and amplify input signals to 2 GHz. In the prototype

o
I ¥
-25 circuit £, was set to 3.160 inches, allowing for the acquisition of Nyquist
sl
: sample set up to a maximum input frequency of 1.8 GHz. i
‘Q This derivation assumes that no capacitive effects (loading) exist
“2 along the delay line. In the case of the prototype circuit this is valid at low
o

frequencies but may not apply at higher frequencies as a result of the diode

- . . .

i; sampling gates being tapped along the line,

- 3.3.4 Transmission Line Losses

7 Conductor loss (ac) and substrate dielectric loss (ad) account for the
sy

Jﬁ two sources of dissipative losses in microstrip. The total loss may be
_i} expressed as
" g a=a + a, dB/unit length, (3.2) .
G C d
(N,
N Expressions describing these two sources of dissipative losses are
RN
! outlined in Appendix B. For the prototype sampling amplifier circuit, the total
P4 loss is given by

~
2 a = 1,417 x 10-11 /F + 7.43 x 10-° f dB/cm.
P
et A plot of the total loss as a function of frequency for the meander delay line
o having a total length (%) of 63.2 inches is given in Fig. 3.5. Clearly, the

3.:
35; total loss of the meander line will have little effect on the overall

N performance of the sampling amplifier within the design region. o
2} 3.4 Sampling Gate
N \¢‘ -
b 3.4.1 Introduction
15X
Lgf Basic considerations in the selection of a sampler unit are input-to-
. output offset, input-to-output feedthrough in the "off" state and sample pulse

4

?f feedthrough onto the output line. In a conventional discrete circuit, the

(X

commonest configuration uses a ring of Schottky diodes driven by a transformer
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which has the advantages of high "on" to “off" ratio, reasonably low offset with
selected devices and a degree of sample pulse feedthrough cancellation due to
the balanced drive to the circuit [10|. A six-Schottky-barrier-diode
arrangement was thus selected and is shown in Fig. 3.6. Each of the sampler
units in the experimental device is formed of six HP 5082-2815 Schottky barrier
diodes having picosecond switching times |11].

3.4,2 Six-diode Sampling Gate

When the gate of Fig. 2.7 transmits no signal, diodes D5 and D6 are
conducting and acting as clamps while all other diodes are open. During signal
transmission, diodes D5 and D6 are reverse biased while diodes D1 through D4

conduct,

If the points P, and P, are clamped at a voltage Vn - Vd and -Vn + Vd

respectively, where Vd is the forward diode drop, then none of the transmission

diodes (D1-D4) will conduct until Vg exceeds V_. Therefore,

(v ) =V

n'min S
Conversely, if the clamping diodes D5 and D6 are to remain reverse-biased for a
signal amplitude V., then

(vc)min = vs

Furthermore, the required voltages Vb and -Vb depend on the amplitude of the

input signal Vs and are determined by the condition that the current conduction

be in the forward direction for all four diodes Dl and D4. The derivation of

the d.c. bias voltages is carried out in reference [3| and is given by
_ 2Rb + RS Rb(Rs + 2RL) "

Joig = —— 11 - - ,
b/min RS (RS + ZRL)(RS + 2Rby’ 2RLRb S

where Rs is the forward diode resistance. The above equations assume that the

(v

forward diode resistance RS in all four conducting diodes are approximately

equal.

. W‘r‘_v’_ﬁ a T om o m W :':'b S A R L I R - - -
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3.4.3 Drawbacks of the Six-diode Sampling Gate

The six-diode switch confiquration, although providing picosecond
sampling capability, requires a low impedance driving source. Since the diode
sampling gate is largely current dependent, sufficient pulse drive is necessary
to enable sampling of large signal amplitudes. When 20 samples are driven in
parallel the situation is even more critical. To ease the drive requirements a

relatively large resistance Rb was necessary. Consequently, the experimental

device is limited to relatively small output power levels.

A second difficulty occurs when the diodes (D1-D4) are reverse-biased
in that their associated shunt and junction capacitances and lead inductances
begin to limit the "on" to "off" ratio of the sampling gate at higher
frequencies [12]. This will 1imit the frequency of operation for the device.

For a maximum sampling pulse amplitude of approximately 4 volts the
following design values were found suitable for the input and output sampler

units in the experimental device.

vn > Vc = 2V
:vb = 12V
Rb = 4,7kQ

3.5 Amplifier Selection

The bandwidth of the amplifier is a function of the sampling rate.
The minimum bandwidth required must be slightly in excess of one-half the
sampling rate as was shown in reference |3]. Thus, for a sampling rate of 10
MHz an amplifier bandwidth of about 5-10 MHz is required. The Motorola MC 1590G
satisfies this requirement and was chosen as a result of its high gain
characteristic. The layout for the amplifier network as recommended by the
manufacturer |13] is shown in Fig. 3.7. From the specifications outlined in

reference [13] the following parameter values are obtained:

v Ei Sl TN A Y AT A A AR P Tl o e
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C = 6.4 pf,
Rin = 2500 .,
Co = 2.7 pf,
R0 = 20k,
Gn = 3328.

In addition to the bandwidth requirement, the amplifier's input RC
time constant when the sampler is reverse biased must be small in comparison to
the time between samples. This is necessary in order to avoid interference from
sample to sample in individual channels, The amplifier's input RC time constant

when the gate is "OFF" is given by RinC = 16 nsec. Thus for a 10 MHz sampling

rate, the input capacitor is fully discharged before the next sample is acquired
and no interference from successive samples will occur.

Moreover, the gain equation given in Chapter 2 assumes that the output
capacitor is fully charged when the sample waveform is sampled out onto the
output delay line. The amplifier's output RC time constant when the switch is

R, R_C

L o

"OFF" is given by —ﬁz-;—§§-= 2.6 nsec. Consequently, for a 10 MHz sampling

rate, the output capacitor is fully charged and the gain equation may therefore

be used to compute the overall gain for the system.

3.6 Pulse Generation Devices

To provide suitable sampling pulses having picosecond pulse widths,
specialized pulse generators and power splitters have been developed by Avtech
Electrosystems Limited under the sponsorship of DREO. The larger units in Fig.
3.8 are impulse generators which provide 200 psec - 2 nsec pulse widths, 0-25
MHz pulse repetition rates and output pulse amplitudes to 15 volts (Fig. 3.9).
The smaller units in Fig. 3.8 are special wideband power splitters which divide
the input pulse into complementary positive and negative pulses (Fig. 3.10).
These devices have exhibited risetimes of less than 60 picoseconds.
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4.0 EXPERIMENTAL RESULTS

4.1 Introduction

The results of the overall system performance are reported in this
section. Basic subsystem parameter measurements are initially introduced in
order to identify some of the system parameters and limitations. Overall system
parameter measurements such as gain, frequency response and maximum output power
are subsequently described and compared with theoretical values.

4,2 Subsystem Parameter Measurements

4.2.1 Introduction

This section discusses a number of subsystem parameters including the
insertion loss of the input and output meander delay lines for both the
unassembled and assembled circuit board and the insertion Tloss, input-to-output
feedthrough and "on" resistance of the sampling gate. The effect of the sampler

units on the meander delay lines is also described.

4,2.2 Meander Delay Line Insertion Loss

An automated set-up was used to obtain the insertion loss and return
loss of the meander delay lines. The system set-up and programmivu are reported
in reference |3|. The insertion loss and return loss for the unassembled
circuit board is shown in Fig. 4.1. The measured meander delay line insertion
loss is essentially the same as the calculated insertion loss given in the
previous section. There is, however, a band-reject filter characteristic within
the expected range of operation. The center frequency of this filter
characteristic corresponds to approximately one wavelength between adjacent

channels (TS).

A second set of measurements were conducted on the assembled

experimental circuit. These measurements were carried out with the sampler

units reverse-biased to 2 volts. Fig. 4.2 and Fig. 4.3 show the insertion loss
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:;:’ and return loss of the input and output meander delay lines, respectively.

E§:: These measurements indicate a low pass filter response within the expected range
:E;; ’ of operation. It will be shown that the sampler units contribute to the

\::‘ . increase in insertion loss about the input frequency of 900 MHz. As a result of
:752 the frequency response of the meander delay lines, the sampling amplifier will
'fzs be limited in bandwidth. It should be noted that even though losses in the

- meander delay lines are present, the overall system will remain substantially

ﬁbﬁ linear. This results from the fact that the signal sample which is attenuated
ﬁt; the most at the input is attenuated the least at the output and vice-versa.

%:2 4.2.3 Sampler Characteristics

ﬁfif Measurements of insertion loss, input-to-output feedthrough and switch
E;;' resistance were carried out on the sampling gate. Fig. 4.4 illustrates the

~ insertion loss of the sampler under the forward bias ("on") condition. The

:ﬁi ) response is reasonably flat over the 0-2 GHz range. The input-to-output

ii2§ feedthrough in the "off" state may be obtained by subtracting the sampler’'s

A%N "off" state insertion loss of Fig. 4.5 from the "on" state insertion loss of
w;k Fig. 4.4. The feedthrough component is less than -25 dB up to 800 MHz. It

f?g rises linearly from this point to 1 GHz where it reaches a maximum of -7 dB.
5?? This explains the increased insertion loss of the meander delay lines above 900
':::::f MHz.

F;ﬁf The sampler's "on" resistance (Rs) when pulsed is different from the
i;s : continuous biased "on" condition. The experimental set-up of Fig. 4.6 was used
i,s‘ to conduct a measurement for obtaining the sampler's resistance. For a pulse
:35 width of 850 psec a switch resistance of 49 was obtained.

;ft 4,3 System Measurements

‘é§§ 4,3.1 Basic Experimental Set-up

:i: The experimental sampling amplifier circuit is shown in Fig. 4.7. The
%

— input meander delay line, output meander delay line and input and output pulse
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lines are shown. The components (diodes, amplifiers, etc.) are situated on the
back side of the board (Fig. 4.8).

Fig. 4.9 illustrates the basic erxperimental set-up used to measure the
system parameters. A frequency synthesizer served 25 the input signal source to
the prototype sampling amplifier. A second synthesizer activated general
purpose synchronized pulse generators which in turn triggered custom picosecond
pulse generators thereby producing the required sampling puises. Both input and
output sampling pulse lines contained phase shifters. These devices aligned the
sampling pulses thus insuring that their respective sampling gates were being
activated by both pulses simultaneously. A 18 GHz sampling scope, a 1 GHz real-
time oscilloscope and a spectrum analyzer were used for conducting various
measurements.

4.3,2 Time Domain and Frequency Domain Responses

Fig. 4.10 (a) shows the input and output time domain waveforms of the
20 channel sampling amplifier circuit. A 496 MHz synthesized input CW signal of
21 mvp_p translates into an output pulse signal Jf approximately 6 nsec at 100

mvp_p. Clearly, this illustrates that the use of the distributed sampling

technique to carry out amplification of r.f. signals using low frequency video
amplifiers is possible. The time domain and frequency domain waveforms of the
output signal are shown in Fig. 4.10 (b). The (sir x)/x frequency response for
the pulse signal is clearly shown in this figure. As a result of the frequency
response of the meander delay lines, the (sin x)/x response is limited to the
low pass region of the delay line.

Fig. 4.11 illustrates the frequency spectra of an amplitude modulated
signal. In Fig. 4.11 (a), the input CW signal has 1 KHz 50% amplitude
modulation. The output as produced by the sampling amplifier is shown in Fig.

4.11 (b). The peak to sidelobe level as well as the frequency content is shown
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FIGURE 4.8 - COMPONENT SIDE OF THE EXPERIMENTAL SAMPLING AMPLIFIER CIRCUIT
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to be maintained through the sampling amplification process. Fig. 4.12
illustrates the input and output frequency spectra of an FM signal, again
illustrating that frequency information 1is preserved throughout the processing.

4.3.3 System Peformance Measurements

Various measurements were conducted to determine the sensitivity, 1 dB
compression point, dynamic range, gain and frequency response of the
experimental circuit. Fig. 4.13 (a) illustrates the output frequency spectrum
of the device when an input CW signal of -27 dBm is applied. When no signal is
applied, as in Fig. 4.13 (b), a noise spectrum is evident. These noise
components result from a slight misalignment of the sampling diodes. Phase
shifters were inserted to align the sampling pulses to avoid any pulse
feedthrough, however, since the diodes are not accurately positioned some degree
of noise is expected. Thus, the sensitivity S* of the experimental circuit will
be defined as the input signal level for which its corresponding output reaches
the self induced noise level. An input signal level -40 dBm at 496 MHz was
measured for the sensitivity S*. Accurate alignment of individual diodes would
substantially decrease the self induced noise level thereby improving the
sensitivity.

The 1 dB compression point was measured using precision attenuators at
the input to the circuit. The output was monitored on a spectrum analyzer as
the input level was increased in 1 dB steps. An input of -27 dBm at 496 MHz was
obtained for the 1 dB compression point.

The dynamic range defined as the difference between the 1 dB
compression point and the sensitivity level S* is therefore 13 dB.

The gain G given by equation 2.1 assumes the input signal is

completely sampled.

Since the input is a CW signal the gain of the system may
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FIGURE 4.13 - (A) OUTPUT PULSE SIGNAL
(B) OUTPUT NOISE FREQUENCY SPECTRUM
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ﬁ{{: be obtained by subtracting a representative "output CW" signal level from the

input CW signal level. Hence, for an input CW signal of -23 dBm at 371 MHz an

output pulse signal of -40 dBm is obtained. Taking the pulse desensitization a

|14] into account, a representative "output CW" signal level is given by

-40 dBm - 20 log (t . PRF)

eff
where Toff is the effective pulse width of the output [14}. The effective pulse

width Toff Was calculated from the main frequency lobe width and has a value of

E:ZE: eff = TTXI00 W - 645 nsec.

;ii Consequently for Toff = 6.45 nsec and PRF = 10 MHz, the representative "output
i::' CW" signal level is -16.2 dBm, resulting in a gain (G) of |-16.2 dBm - (28 dBm) |

;;is =~ 11.8 dB. De-embedding the delay 1ine insertion loss at the input frequency of
_235 371 MHz produces a gain (G) of approximately 13 aB.

*'-‘ The theoretical gain (G) for G = 3328, (28/N) . 71, =1, 2B . 1, = 1,
E&é 6, = 1, Ry = 508, R_; = 499, R, = 25008, C = 6.4 pf, 1, = 850 psec, R = 20K,
ﬂig Co = 2.7 pf, Ry = 1000%, Rso = 494 and 1, = 850 psec is 11.1 dB. It should be
f. noted that the gain equation given in Section 2.0 was derived assuming the

'j;% sampling pulse width was less than or equal to the propagation delay time

fis between adjacent channels [3]. Since the pulse width is larger than the

f;f‘ propagation delay time between adjacent channels, the slight difference in the

‘E;g theoretical and experimental values is believed to be a result of this.

%Ei} The maximum output power level is

f;' -27 dBm + G = 15.2 dBm

f;f? or -14,0 dBm for the de-embedded microstrip line. With the aid of equation 2.3,

553; the theoretical maximum output power level for V, = 12V, Rg = 49w, R = 25¢ and

R, = 4,7 Ku is -14.1 dBm,

b
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The (output) frequency response of the system, for a sampling pulse

width of 850 psec, is given in Fig. 4.14, The 3 dB cutoff frequency of 640 MHz

4

- - . g s L

E; in this case is governed by the band-reject filter characteristic of the meander

F;i delay lines. Consequently, the theoretical cutoff frequency cannot be compared
. ] for a sampling pulse width of 850 psec. However, by increasing the output pulse
} width the cutoff frequency can be lowered enabling verification of the

5? theoretical expression. For an output pulse width of 1.25 nsr . a theoretical

o cutoff frequency of (1/2t, = B) 400 MHz is predicted. The experimentally

~

.E§ determined cutoff frequency for a 1.25 nsec pulse width as shown in Fig. 4.15 is

3:3 615 MHz. It appears from this result that the empirical formula used to predict
2 the cutoff frequency considerably underestimates the actual cutoff frequency.

:3 Given present minimum pulse widths of 100 picoseconds amplification of signals
;; to 5-8 GHz appears feasible using the techniques outlined in this report.

wx 4.3.4 Multiple Signal Reconstruction

The ability to reproduce complex mulitiple signals simultaneously is
important in many applications. This capability has been found to exist in the
sampling amplifier as is illustrated in Fig. 4.16. In Fig. 4.16 (a) a single

output signal centred about 372 MHz is shown. When a second signal is applied

| AAXATR

at 633 MHz no additional frequency spectra, besides the primary ones, are

5 evident, indicating that the prototype sampling amplifier is a linear device.

:% It should be noted that the maximum input (and output) amplitude of individual
é; . signals in this case is further limited since the 1 dB compression point is a

{n function of the combined signal levels.

iz - 4,3.5 Frequency Conversion

%ﬁ Another important feature of the sampling amplifier is illustrated in
:d Fig. 4.17. The top trace represents a properly terminated sampling amplifier.
3 The lower trace illustrates what is created by having an open-circuit at one end
\{ of the output meander line. A primary output pulse as well as a reflected
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waveform, as a result of the open circuit, are produced. The delay between the
primary and reflected pulse was created by inserting an extra iength of cable at
the open circuit end. It is evident that the reflected pulse is of a differenct
fundamental frequency. This difference in the reflected pulse frequency from
the input frequency is a result of the sampling method undertaken. The delay
introduced in the pulse line (Fig. 4.18) as the sampling pulse travels from the
first channel to the second channel and so on, results in the first channel
being sampled before the second and the second before the third and so on.
Proper reconstruction of the input frequency will be maintained if the method of
sampling at the output is identical to that of the input. However, the waveform
which travels towards the open circuit end has a greater delay between sampled
waveforms changing its fundamental frequency component to a lower value. This
frequency conversion in the prototype sampling amplifier reduces the sampled
input frequency by a factor of approximately 1.7.

Other methods are possible to obtain frequency conversion of this
nature. Particularly, lengthening the output meander line with respect to the
input meander line will down-convert the input frequency, while shortening the
output meander line with respect to the input meander line will up-convert the
input frequency [3]. This conversion process may have application in a
communication type of repeater where isolation between the receive channel and
transmit channel is necessary.

4.3.6 Summary of Results

A summary of the results is given in Table 4.1. Both experimental and

de-embedded experimental values are shown. Theoretical values which exclude the

N meander delay line's insertion loss are also given.
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TABLE 4.1

SUMMARY OF RESULTS

z T TN Te

e T e e e

o T T T ¥ . e

1 dB MAX. PEAK MAXIMUM
SENSITIVITY|COMPRESSION} OUTPUT I{DYNAMICI!GAIN FREQUENCY
S* (1) POINT POWER RANGE G OF OPERATION (2)
(INPUT) LEVEL
dBm dBm dBm dB dB MHz
P.W. nsec
0.85 1.25
-40 =27 =15.2 13 11.8 - -
-38.5 '2505 "14.0 13 1300 840 840
- - -14.1 - 11.1§ 588 400

(1) The sensitivity level is reduced for the de-embedded values since the noise
level increases in this case.

(2)

The maximum operating frequency of 840 MHz was limited as a result of the

filter-like characteristic of the input meander delay line. The value

given for the increased input pulse of 1.25 nsec allows verification of the
theoretical cutoff frequency.

¥

PP R i SR N S
NN
' M N \ .‘o i

‘: -'.‘ 1',‘.

~~~~~~~~




ya=
i

Lo

”'?‘624' }‘f.,
. An

FIGURE 4.18 - PROTOTYPE 20 CHANNEL SAMPLING AMPLIFIER

s‘f""’{ St
! ‘o'

LU

A \1.-\ .$\-& \ w.*\ '\.

*.'*.1.,.

T




!
A

~ AP =~ o
LR a o » »

o
N

.,’_,_":. A."A.'

0
-

A

A )

o

G
b S

| KRBT

L% B Y

« e -

- 53 -

5.0 FUTURE WORK AREAS

5.1 Introduction

The development of another sampling amplifier is planned. This
prototype would incorporate improvements to alleviate some of the problems
associated with the sampling gate. In particular, the development of a high PRF
pulse generator/driver, reduction of the sampling gate signal feedthrough,
investigation of suitable amplifiers in recognition of a high sampling rate and
further development of the sampling feed structure should be undertaken.

5.2 Impulse Generator Development

The requirement for a high PRF impulse generator is desirable since
the number of channels for complete reconstruction would be lower reducing the
size and cost of the sampling amplifier. Avtech Electrosystems Ltd. of Ottawa,
under the sponsorship of DREO, have developed a high pulse repetition rate
impulse generator (Fig. 5.1). The unit provides complementing positive and
negative matched outputs. The impulse waveform illustrated in Fig. 5.2 shows an
output impulse of 11 volts having a pulse width of 100 psec measured at half
amplitude for a PRF of 250 MHz.

5.3 Multi-channel Parallel Feed Structure

In the present prototype sampling émp]ifier design, the pulses which
activate the sampling gates as they travel down the line are attenuated and may
be broadened somewhat in width as a result of impedance loading of the sampling
gates. The resulting difference from gate to gate in the sampling pulses
degrades the fidelity of the voltage samples from channel to channel and hence
degrades the fidelity of the reconstructed signal.

A multi-channel parallel feed structure as illustrated in Fig. 5.3

would have N parallel feed lines connected to individual sampling gates. All
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lines would be driven by one pulse generator/driver. Each line would be of

equal length and characteristic impedance thus making simultaneous sampling

possible. {
The property of sampling the parallel channels simultaneously has the

additional advantage of being able to stretch the output r.f. pulse by a factor

of 2. Fig. 5.3 illustrates this concept. A current waveform I, is sampled onto

the output meander line where it divides into two equal portions at node 1. I,

travels down the meander line to the output (2) where it is transmitted. I,

travels towards the load end where a short has replaced the previously used

e termination resistor. Once I, reaches 3 the waveform is reflected causing it to

- travel towards the output (2) where it is transmitted. Applying this concept to
ft% all the waveforms of the other parallel channels one will recognize that an r.f. 1

pulse will be created with twice the pulse width at the same r.f. frequency.

g: This property is extremely useful as the numbgr of parallel channels
fis may be reduced by a factor of 2 which leads to increased efficiency
;;; (pﬁzmgoggzegugn) and cost reduction.
i*g This approach should minimize the serial loading effects due to the
'53 diode gates. Hence, the waveshape and amplitude of the sampling pulses would be
= the same at each of the parallel sampling gates, insuring that each channel
:Sj operates in the same manner. This in turn leads to high fidelity reconstruction
*ié of the r.f. signal. There may be a need for impedance matching between
%— generator and parallel lines for optimum performance. )
3 ~
W 6.0 CONCLUSIONS
| 6.1 Summary.and Conclusions
zi In this report a distributed sampling technique for carrying out
‘\x wideband signal arplification has been proposed. This new concept for microwave
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amplification shows attractive features of very wideband operation and multiple

signal handling capability.

Sampling techniques permit wideband signal amplification using delay

.5

)
-

lines and low pass narrowband amplifiers. The scheme allows amplification of

q&-‘

A
L]

signals at frequencies far above the cutoff frequencies of the amplifying

devices used.

Rl b
[
oA

From the experimental results, it was concluded that it was possible

’'

to achieve amplification of signals to 840 MHz with a gain of 11 dB. The system

!

:3 overall performance was essentially as predicted. Output power level and

" "d

X frequency response limitations observed in the prototype circuit were primarily
- a result of the sampler characteristics. Additionally, sensitivity and dynamic
“w

,: range limitations were due to the electrical mismatch of individual diodes in
N

{§ the sampler units. The maximum frequency of operation is directly dependent on
- the minimum pulse width achievable. Consequently, wideband amplification of

JQ

R r.f. signals to 8 GHz is believed possible using the techniques outlined in

L+

‘: this report. Other circuit techniques may allow even greater bandwidths.
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ﬁﬁ Hammerstad's expressions |4| include useful relationships defining
h both characteristic impedance and effective dielectric constant:
Eff_'._ ; For W/h < 1,

o _ 60

oN Zo = In(8h/W + 0.25 W/h)

‘ ) leeff

Jg where
B

% : T %

N €aff =5 +—5— [(1 + 12h/W) * + 0.04(1 - W/h)2]
; For W/h > 1,
fr 1207 V¢
NP 7 = . eff
o o W/h +1.393 + 0.667 In(W/h + 1,444)

fi where

3 €n +’ 1 €. - 1 -3

’ Hammerstad notes that the maximum relative error in €aff and Z0 is less than
\ . 0.5 percent and 0.8 percent, respectively, for 0.05 < W/h < 20 and e < 16.
;# If the conductor thickness is taken into account the strip width, W,
l is replaced by an effective strip width we. Expressions for we are:

a
N For W/h > 1/2m,
:”‘ N
R ﬁg_= %— EF (1 + 1n Zﬂ .

Y For W/h < 1/2m,

Ot W

2 e _ W 41IN

= +
.. Rt (l 1n ———

Additional restrictions for applying the above are t < hand t < W/2.
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A

AN
>0

PROGRAM LISTING

-

h]

“MICROSTRIP PARAMETERS":

(S

tﬁ; "We/H+S, W/H+M, eff. dielectric+0{ ": N
.i\ LN _J s

;jQ *MATHEMATICAL FORMULAS WERE OBTAINED FROM *:

£y *MICROWAVES MAY 1977 pP-174 ": .

“ALL CALCULATIONS INCLUDE THE EFFECTIVE WIDTH DUE TO THE ":
" LINE THICKNESS *“:

"FURTHER INFO MAY BE OBTAINED FROM MICROWAVES MAY 1977 ":
"THE SOFTWARE LANGUAGE IS HPL":

RAYN

y- by

VAN

by "FURTHER INFO ON SOFTWARE PROGRAMMING MAY BE OBTAINED FROM REF. [15]":
MX . fxd 4
Iﬂ:

- © ent "dielectric constant”,E

*¥ - ent "line thickness",T

> . . .

A\ : ent "dielectric thickness",H

++ : ent "start W/H at ?",4

* . ent “stop W/H at 2",P

: ent "SET PRINTER 4 LINES BELOW TCP OF FORM ",K

oy M-.01+M

3j "start":0+N

L4 - wtb 6,27,84 b

B wtb 6,27,76,int (928/64) ,int (928) ] e o
: fmt 0x,"MICROSTRIP PARAMETERS" ,4b,8x,"permittivity=",£5,
re &0 £0%s WSSOI E 40,8, ="

wrt R
2D frt 2,8x,"line thickness=",f5.2, "mils",9x, "board thickness=",f5.2, "mils'
.*-' wrt 6.2,7,8
wh fmt 1,2b,10x,"wW/4",10x, "Zo",10x, "Eeff",10x, "W" ,10x ,"We"
o wrt 6.1,13,10
A fmt 1,1b
) wrt 6.1,13
By “one":M+.01-M
Dl H*M+»W
bard if M<l/2w;gtc "first"
ol M+T/%H* (L+1n(2H/T)) »S
i S*H+C
gto "try"
Ko "first":M+(T/mH) (1+1n(47W/T))+S
3 S*H+C
%j "try":if S>1l;qto “"csecond"
: (E+1) /24 (E-1)/2* ((1+12/S) " (-.5)+.04(1-S)"2) +0
(60/¥Q)1n(8/S+.255)+Z ‘
B gto "prin” ‘
%f "second”: (E+1)/2+((E-1)/2) (1+412/S) " (~.5) 0 |
A4 120%/40/(S+1.393+.667*1n(S+1.444))+2 «
¢ "prin®:N+lsn

R fmt 2,10x,f4.2,¢13.2,F13.3,£12.2,f11.3
- wrt 6.2,M,2,Q,W,C
- if 4=P;ato "ocut"”
3f nN>49;gqto "start"
s gto "cne"
0 "out”:end
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MICROSTRIP DESIGN TABLE

MICROSTRIP PARAMETERS

20
1.50 mils

Z

52.33
52.21
52.09
51.98
51.86
51.74
51.63
51.51
51.39
51.28
51.16
51.05
50.94
50.82
50.71
50.60
50.49
50.38
50.27
50.16
50.05
49.94
49.83
49.73
49,62
49,51
49,41
49.30
49.19
49.09
48.99

\&‘\'\"ﬂ\*

it

-3

\\

‘ﬂ!‘

“eff

1.865
1.865
1.866
1.866
1.866
1.867
1.867
1.867
1.868
1.868
1.868
1.869
1.869
1.869
1.870
1.870
1.871
1.871
1.871
1.872
1.872
1.872
1.873
1.873
1.873
1.874
1.874
1.874
1.875
1.875
1.875

N

board thickness

W

56.00
56.20
56.40
56.60
56.80
57.00
57.20
57.40
57.60
57.80
58.00
58.20
58.40
58.60
58.80
59.00
59.20
59.40
59.60
59.80
60.00
60.20
60.40
60.60
60.80
61.00
61.20
61.40
61.60
61.80
62.00

~ .

= 20.00 mils

We

58.045
58.245
58.445
58.645
58.845
59.045
59.245
59.445
59.645
59.845
60.045
60.245
60.445
60.645
60.845
61.045
61.245
61.445
61.645
61.845
62.045
62.245
62.445
62.645
62.845
63.045
63.245
63.445
63.645
63.845
64.045
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Expressions for the conductor loss derived by Pucel [7] account for
the nonuniform current distribution on the conductor. These relationships are
expressed in terms of the characteristic impedance Zo’ the dielectric substrate
thickness h, the conductor and effective conductor strip width W and Ne’ the

conductor strip thickness t, the free space permeability Hy» the conductivity of

the material o and the frequency f. For a fixed characteristic impedance,
conductor loss decreases inversely with substrate thickness and increases with
the square root of the frequency.

In the prototype circuit, where W/h = 3.0 (Appendix A), the conductor
loss is given by |7]

. - 8.68 R We/mh W

(o W W (w
Zhips + 2 1n[2ne(-2-§ +0.98) [}2 o= + 0.94

. {1+ QT- -Tr-(ln( )J}dB/cm,

where R is the surface resistivity for the conductor and is given by

n H
R = 0
g

Thus, for Zo = 5, h = ,0508 cm, we/h = 3.097 (Appendix A), t = .0038 cm, My =

4n x 10~7 H/m, o = 5.80 x 107 u/m (copper conductor)
a. = 1.417 x 10-!! /T dB/cm.

Welch and Pratt [8] and Schneider [9] have derived the expression for
the attenuation constant for a dielectric. The equation given by
- 27.3 r Ceff-1  tan &
L] (E F L] er-l L] Ao
eff

is expressed in terms of the dielectric constant ¢

dB/cm

%
r the effective dielectric
constant Caff? the loss tangent (or dissipation factor) tan 6, and the free

LN
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space wavelength Ao. Thus, for €. = 2.2 €aff = 1.872 (Appendix A), and

.0004 (manufacturer's specification)

3
ay =222 X 10" - 7423 x 10-15 f dB/cm.
0

Consequently, the total loss is

a=a +a, = 1.417 x 10-11 « /¥ + 7,423 x 10-1® « f dB/cm.
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