HD-A137 687 DISTRIBUTED PROCESSING TOOLS DEFINITION YOLUME 2
APPLICATION OF SOFTHWARE.. (U) GENERAL DYNAMICS FORT
WORTH T% DATA SYSTEMS DIV H C CONN ET AL. JUN 83

UNCLASSIFIED RADC-TR-83-187-Y0L-2 F38682-81-C-0142

e \

i&ﬁ«i

4\

‘rt.lt M

PR

. T m 2.5
Jlio § &
X ‘g“ K H20
s = ,"-.8

IA
o

22 s

MICROCOPY RESOLUTION TEST CHARTY
NATIONAL BUREAU OF STANDARDS-1963-A

L ..Q\'«

AR A |

AT N R R ‘~a*_.w—_llf‘.'.‘Ar-."'_'v“ e

4 RADC-TR-83-107, Vol Il (of three)
2 Final Technical Report
June 1983

cale

DISTRIBUTED PROCESSING TOOLS

DEFINITION Agplication of Software :
Engineering Technology B
General Dynamics Co;'porcﬂon

g

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, NY 13441

DTIC

ELECTE
S;eww"
{ B __

]

=

g 87 ok /0 00S &
v ST . o 4

Sl R L L i & s aimlanl]

5 This report has been reviewed by the RADC Public Affairs Office (PA) and e
is releasable to the National Technical Information Service (NTIS). At NTIS o
- it will be releasable to the general public, including foreign nations.

ol RADC-TK-83-107, Volume II (of three) has been reviewed and is approved
e for publication.

N

- .f-.-
- APPROVED: fﬂ-ﬁ ‘(/ﬁjﬁ,@. '
2 LAWRENCE M. LOMBARDO ’ "3
-:'3. Project Engineer : ‘ Ny
e o]
p —
{ i
- N
'._'-;j} APPROVED: -
= N
.-;:J‘ CINIAK, Colonel, USAF -
> Command and Control Division é-
o _ . -
2 - “4
- | FOR THE COMMANDER: 2‘”‘. ~ 7“4-1/ o
. JOHN P. HUSS T
3N Acting Chief, Plans Office

»
& g
o h
i
: ¥
Sod

L .
»
- :.‘{

I1f your address has changed or if you wish to be removed from the RADC L ‘
mailing list, or if the addressee is no longer employed by your organization, -

- please notify RADC (COEE) Griffiss AFB NY 13441. This will assist us in
) } maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
” on a specific document requires that it be returned.

) UNCLASSIFIED
SZCURITY CLASSIFICATION OF THIS PAGE (When Dace Entered)
REPORT DOCUMENTATION PAGE BEFORE COMPLETNG FORM
T, REPORT NUMBER 2 GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
hzmc-m—s:’.-lm, Vol II (of thr N-A137 641

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
ISTRIBUTED PROCESSING TOOLS DEFINITION gi“aél'recg“icg; Report
plication of Software Engineering Technology i __-an

8. PERFORMING OG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

.C. Conn, Jr. S.L. Nelson W.D. Baker
.L. Kellogg S.L. Harmon P.B. Dobbs F30602-81-C-0142
.M. Bond S.A. Johnson

PERF NIZATION NAME AND AOORESS 10. PROGRAM ELEMSNT. PROJECT, TASK

enera "B‘yqn"a';ﬂcs rporation AREA & WORK UNIT NUMBERS

: ta Systems Division 62702F
» O Box 748, Fort Worth TX 76101 55811829
. 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
:, Lame Air Development Center (COEE) iut:t:“:ffi)
¥ Criffiss AFB NY 13441 178
t'; MONITORING AGENCY NAME & ADORESS(if dilferent trom Controlling Oflice) 15. SECURITY CLASS. (of this report)
¥ UNCLASSIFIED
. ‘Same l}:a/.Agg&éé\&‘s.n;ucumu/ootncnomc
A T GITRTSUTION STATERENT o7 His Heperh
Approved for public release; distribution unlimited.
¥
‘l 17. DISTRIBUTION STATEMENT (of the sbetract entered in Block 20, if dillerent from Report)
; Same
a) 10. SUPPLEMENTARY NOTES
:: RADC Project Engineer: Lawrence M. Lombardo (COEE)
%
19. KLY WORDS (Continue on eide I y and ly by block ber)
Computer Embedded Distributed Processing Systems
; Computer Software Technologies
X Computer Hardware Technologies
¥ Computer Object Oriented Modularization
| Computer System Life Cycle Phase Snpg:grt
- 20. ABSTRACT (Continue on reverse side il necessary and Identily by block number) -
- __#¥The objective of this three-phase effort is to,d’) Identify the hardware/
. software technology pertinent to the implementation {3:(tightly-coupled ;_-.::1
N embedded distributed systems for DoD applications, (&) Establish an o
¥ integrated approach regarding the total life-cycle software development v
N period with correlation as to the applicability of existing/near-term J:.}j
\ software engineering methodology, techniques and tools to each life-cycle At (e DN
phase, and (3) Define the functional design requirements pertinent to the -? : oy
1‘ DD . j5a": 1473 eoimion oF 1 nov 6813 oasoLETE UNCLASSIFIED .\

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

PR

PSS A ER CO TR A T S
Ny . L) P
3 CoRL e ORI RN

- - a g

ORRS CRLRL NS Ny
N AN A,

- LAty o o
N ’-‘.\i\f] *

UNCLASSIFIED
SECUR TY CLASSIFICATION OF THIS PAGE(When Data Entered) .

A et AR LA AL A AR S A N QR S A QNN S R A S e

ul
.,.'

[)
b.‘n

.

4
A

»
el

s_‘.,v.lll
Y ¥

a
. P

.2
nl‘ ']"t‘:|"’
ARPCACA ¢

1

S 4,
)
LI}
L

&

vl
RFXILTY

XN X
A-.‘

N
NN

1 A 4!

- «
& -0 &%t
. D SOOI
a LR L S —.

&
a4t

% S UL T, .
‘.‘,?:LI; ‘.‘\-.'

far-term development of needed software engineering methodology,
techniques and tools. A proddct of this effort is the recommended
design of a system support environment encompassing the integrated
implementation of candidate software engineering tools.

AN

i
!
i

UNCLASSIFIED

SECURITY CLASSIFICATION OF Tu's 2AGE(When Dets Ente:

A_'.L"L'.n"

!
4

N 4

Pl
N)

T
N

-r. e, ey
by

e v &g B B
« ¥ ° & 2 0
[Y LY YT

o

v X 5 s B s
IR TR)

r

»
»,

P,

22

o

'.'.‘a *

P A A A
SIS

'.* Ld

2%

‘ i ALy

WY

. X

/)

o
LR ALY

[)

“.".

s
7
-
S

Paragraph
Number

1.0

2.0

3.0

4.0

TABLE OF CONTENTS

Title

List of Figures
List of Tables

Technical Report Summary
1.1 Project Overview
1.2 Phase II Conclusions

Scope of Embedded Distributed Processing
Systems

2.1 Increased Distribution of Hardware
2.1.1 Weapon Systems
2.1.2 Communication Systems

2.2 Increased Distribution of Control
2.2.1 System-Wide Control With and

Without Centralization

2.2.2 Replication to Combat

Degradation
2.3 Increased Distribution of Data
Bases
2.3.1 Serialization Under Increased
Segmentation

2.3.2 Access Control

Integrated Software Support
Environments
3.1 Impact of Ada
3.1.1 Host Programming Support
3.1.2 Target Prograrnming Support
3.2 Design and Development
Considerations
3.2.1 Operating Systems
3.2.2 Interconnect Architectures
3.2.3 Data Bases
3.2.4 Intelligence in Environments

Near-Term Generic Tools
4.1 Criteria and Software Life Cycle
Phases
4.1.1 Software Life Cycle Phases
4,1.2 Tool Criteria
§.1.3 Correlation of Life Cycle

Page

Number

iii
vi

W = -

®
el
o~
-
o
B |
S

-’a

... ,,,,.,.
BN) SODNOMNDE +AROERTORAOA

.......................

3
W
AN o
o TABLE OF CONTENTS :
T .
"-4 Paragraph Page
% Number Title Number
Phases and Criteria o
a} 4,2 Correlation of Tools to Criteria 116 .
o 4.2.1 Requirements Tools 118]
N 4.2.2 Design Tools 120 K
o 4.2.3 Coding Tools 121]
4.2.4 Testing Tools 127 3
Y3 4,2.5 Maintenance Tools 133
Y ! 4,2.6 Operations Tools 134 "
&= 4.3 Recommended Near-Term Tools 135 "
‘,;_"vf and Their Flowcharts A
4.4 Near-Term Generic Tools Conclusions 150 >
o 5.0 Far-Term Generic Techniques 153 i
.;_u :"
-;g List of Abbreviations 161 -
$:-'
s~ Bibliography 162)
2 5
+3 bt
.‘_.. :‘:
) e
% X
X -
o e
& :
— ¥
o o
=

A t .
. e :
‘c"—l
.
D)

183

11

) X
!
. N
: . K N -.
-"'
’

Lotk it al st (ol el ol iR AR Sl by LRI RN AR s

-

(
|
*
1
ﬂ

’

’
.

’

I'd

*

I

’

&

..
v, 47,

ale

“A—

s LIST OF FIGURES
E?t Figure Page
R Number Title Number
e 1=1 Overview of the Distributed Processing 2
Eﬁj Tools Definition Study
Eﬁ: 2-1 Characterization of Distributed Processing 13
o Systems Within the Three-Dimensional

Space Comprised of the Following Axes:
N Distribution of Hardware, Distribution
N of Control, and Distribution of
SN Data Bases :
AN
¥ 2=2 Characterization of Weapon Systems 17

and Communications Systems Within

the Three-Dimensional Space Comprised
of the Following Axes: Distribution
of Hardware, Distribution of Control,
and Distribution of Data Bases

Classification of Nodes and Links 26
Within a Network System

Two Examples of a Multicenter, 33
Multistar Topology

A Single-Center, Multidrop Topology 34 -
and its Equivalent, Multilevel B
Tree Topology 3

-1

Architectural Considerations and 38 Q
Trends in Command/Control/Com- !
munication Systems .

The Two Levels of Control Within 39 -
a Distributed Processing System 3

Segmentation of a Job Submitted 42 B
to the Network Operating System -

Multiple Segmentations on Multiple 4y :
Hosts Within a Network Operating -
System ™

..

114 :

&

<

e et e e e L et T 27 LSRR CL RO SRR SR

""""" }?f?}?l'32315‘v3'1'2f3 1{{’Ci?;£151512151£i§.a{\ix“ - ;tfui fnjx;\:ﬂi*:\.}}\zx;
D LR G R SRR Mur S S d A 7 2P O PRSI S A

BB NELPRTAY 2 aF o Vo VoVl s taCaia™

3
0%

'_‘.'

i
..p\.j,
he 40
%
N 3 Figure

i Number
o 2-10
“o e
A

e 2-11
(‘
Y
T
oA\ 2=-12
l.‘."g
‘ §.‘. 3-1
932

1_ .
#, _‘-:; 3-2
13

3-3

'w_).g

!‘. .
b]
i
- ':
ol

\ 3=5
e
\:;,.

~Te

"’ u-
N !
[~ 28

4.2

4-3
44

4-5
4-6
47

PR APV A i A Seg U S O R A A A PR AC OIS B B A e 4

LIST OF FIGURES

Title

Multiple Segmentations on Multiple
Hosts Within a Network Operating
System Using Auxiliary Directories

The Four Levels of Control Which
Impact Data Bases Within a
Distributed Processing System

Segmentation of DBMS Jobs
Throughout a Distributed Processing
System Network

Generic Life Cycle Phase

Data Flow Diagram of Generic
Software Dependency Tool

Tool Support for Interconnection
Architecture Classifications

DBMS Job Segmentation and
Redundant DBMS File Storage

Hierarchical Structure of
the DBMS Jobs

Generic Requirements Tool
Flowchart

Rapid Prototyper Flowchart
Calling Tree Generator Flowchart

Cross Reference Generator
Flowchart

Structure Checker Flowchart
Optimizing Compiler Flowchart

Cross Compiler Flowchart

Page

Number

48

50

52

75

82

91

98

100

143

144
144
144

144
145
145

{3::.‘; LIST OF FIGURES

b~
i+ Figure Page
v Number Title Number

4.8 Linker/Loader Flowchart 145
N 4.9 Checkout Compiler Flowchart 145
N 4-10 Standards Auditor Flowchart 146
2 4-11 Formatter Flowchart 146
¥ 4-12 Testing Tools Flowchart 147
A 4-13 Maintenance Tools Flowchart 148
A 4.14 Operations Tools Flowchart 149

ST
s 2ol

A
L4

Fea
‘Wes

e
'l‘&"

a's 2

>

AN

-

Accession For |
NTIS GRARI
DTIC TAB

Unannounced O
Justification . . |

19

) By
Distribution/
Availability Codes
= I R lAvail end/or
'.j [st Special .4

A- J']

«,

: '...' n
% -’.1
> R
Y v .
5y X
‘} A

A AT s & Sl BRI a2 Ay ™ Aol A Yo 3.3, e

i %,

LIST OF TABLES

Fexld

Page
Number Title Number

W
-3
)
o
-
o

&
]
—

Life Cycle Phases Versus 115
Criteria

4.2 Criteria Versus Generic 117
Tools :

e RN 3

LY

2
,I

‘ r.
o
-,
o
g K
prond
5t e
h. '-

g
[Nl
a -
3 L
PR
o
A l'?‘-‘
Pl]
Pt
v
. \-.
o N
. -t
; -
. \. -~
v -
ks ¢ =
B e
e “a
: SRS
K ¢ .~."_-
b .,
\
|
-
4
,
b
-
Ko
3
x

vi

e,

N S e P e
AN I AV RICA A o -
T LT

°e® Lo

o o -,

(2

. '.‘ .9
LA NS s 4

1.0 Technical Reﬁbrt Summary

‘% General Dynamics Data Systems Division is under contract
3; to Rome Air Development Center to conduct a study entitled
i Distributed Processing Tools Definition. The objectives
5? are to investigate the requirements for software life cy-
g cle support in embedded distributed processing systems and
\, to specify applicable software tools and techniques by
fs life cycle phase.

N

. 1.1 Project Overview

;

'3 The study is divided into three phases which are illus-
Y trated in Figure 1-1, Phases 1 and II of the study have
- been completed, and their results are described in the
’a Present Technical Report.

oA

$

[]
*, SRR S A

EANANPDATADA
LI
‘\.Q.l.l.... AT
:
_a

. t

'.'. . L]
. 1) .'.' 'n.l
LUN PO

_—
.'.“./ .,
.":"5“

1t

s *

8 N LY R
AT {..IJIAA-. .

E 2
)

¥

¢ - '..:..) -.,‘:‘. I - v‘,‘\
A S ;: e 4,4..,{'_-:. ‘,:.' "

'~ }"“‘h\(":.l.\\ e Tt e e o A '-'_.- _'l':'tl..' ..’N- ‘-.‘ st T
.‘f‘. LGNy

- \ ~
b 2R BRI A S W VAR .
Y 1'.--. LA v.-‘...‘..'\- b e " Tag et e T R R
NI T I - . -
v . ’, » :
MR n . T et . A

o -
2%

L8,

X
s T aTa" &8

» By J

Tea'a'& 8

B P PP

Phase I > Phase 11—
Near-Term
Technolog
Study of Identifica- Survey of
Hardware/Software| |[tion of Existing
Techniques for 3+ Techniques [MEDPS Toolps
Embedded distri- Requirements| | Inven-~
buted Processing Impact Assmt| |[tories
Systems (EDPS) for Each
[EDPS Life-
cycle Phase | |Near-Term
ool
.éﬁ?é 1/777] ’Characizﬁ's'{i'ég

Life Cycle
“Phase //, /
:Require-

V.
Completed
P27

In-Work

Figure 1-1 Overview of the Distributed Processing Tools

fof EDPS for ///
IWeapon Systems

Definition Study

Current Tools
for EDPS by
Lifecycle
Phase.

Lifecycle
Phases
Without
Tools.

Software
Criteria by
Lifecycle
Phase.

—4 Problem

A

“ 9
o
S

L
R

PR A2 IR PR
o YN i3 L"Lv" L

4

Phase 11]—>~

' l,::‘." aates
* .. ‘- '. [N “ p
s W

S

“
. &
PRLIN

Future
Weapon Sys-
tems Require-
ments for
EDPS

!

Analysis
of EDPS

.“ . .
SR §

Areas

Far Term
Technologies

»
¢ 4
sx

-,

.
‘a’e’e
.
T

1.2 Phase 11 Conclusions

L
B
By Sy gty

The principal technical perspective used in the following
conclusions assumes a combined system functionality for
hardware and software. Embedded distributed processing
systems require both to be operable at the same time.
Each conclusion 1is followed by a reference to its appro-

priate discussion in the Technical Report.

l) Development of Distributed Processing Systems is best
supported by an Integrated Software Support
Environment (ISSE) (see paragraph 3.0).

2) It 1is economically efficient to make ISSEs for dis-

tributed processing open-ended (see paragraph 3.0).

3) Efficient static analysis of deterministic systems is

possible (see paragraph 3.1).

4) Further research is needed on static analysis of non-

deterministic systems (see paragraph 3.1).

5) Ada will require a cross-reference tool with extensive £

capabilities (see paragraph 3.1.1). 3

., - - LA b \-.."‘..' uy % -..‘-..:. ..\-’.'.‘

I‘f“f‘ ::*;{':‘.':‘. (\’\'_' »’ _,':\{."’.‘_"gﬁ\‘:' - -.‘_.'-_ X

) O A “ ."/‘_--.‘.- 7N .-..-f- ,<
SN

XY

DO

Al

N B e i
024,

20,7

r.' |' I.
I A)

e
".4"{-‘

;'.f.z

8oeT e
PN

n.‘

C] C - v 0y - hd
AT ATA T A T A B R R o R RN RN AR T A T Y LA R A R

6)

7)

8)

9)

10)

Ada will require static analyzers for its concurrency

constructs (see paragraph 3.1.1).

The requirements and design phases must be heavily
stressed and further automated to build cost efficient

and reliable distributed systems (see paragraph 3.2).

Rapid prototypers and simulators are necessary support
for distributed processing system designers (see para-

graph 3.2).

An automated requirements tool consisting of a
requirements interface processor, a requirements
document generator, a requirements analyzer, and a
requirements language translator has proven to be
useful during the requirements phase and should be
further developed for distributed systems (see para-

graph 4.2.1).

The design phase 1is virtually poverty-stricken with
regard to tools. The only tools available currently
in this area are program design language processors,
even though this phase is one of the most important in
determining the overall quality of the finished system

(see paragraph 4.2.2).

‘4 3 - - v ® T et LT e
SRR O N . e

Qe St t wa g 2ot A et GO AL MR AR NS AR
.

> v,
.

VY.

[N T

11) The tools of the coding phase can be divided into two

categories: tools dealing with lanquages and tools

dealing with standards. The tools dealing with lan-

Ol oy

A

guages exist for any usable high level language, with

the possible exception of checkout compilers. Since

the functions of a checkout compiler overlap both the

X
? coding and the testing phase, checkout compilers
| should be developed where possible. Standards
'1 auditors and formatters should be developed to enhance
f; consistency of code (see paragraph 4.2.3).
E 12) The tools of the testing phase are concerned with
i checking for adherence to requirements and design and
resolving coding errors. Referring to Table 4-2, all
3 needed criteria for the life cycle phase of testing
i (Table 4-1) have been enhanced. Due to the ap-
‘ plicability of the testing tools to other phases, D
i criteria not identified as needed have been enhanced ;E
' in the testing phase. Testing has an abundance of &;
tools; however, tools should be more concerned with ‘i;
: distributedness of the software (see paragraph 4.2.4). -5i
: 13) The tools of the maintenance phase consist of a ver- :;e
; sion generator, rapid reconfiguration, and report ﬁ;ﬁ
‘E generator. Many criteria are not addressed in the ;Eé
; maintenance phase (Table 4-2) according to the %%#
5 o
’ T
T s L e T T e L L RS LT D LG e D
T S N T T T R T e T ;

14)

15)

prescribed criteria in Table 4-1. More tools should
be developed to satisfy the requirements since it is
the phase ensuring the continuation of quality
throughout the life of the software (see paragraph
4.2.5).

The operations phase has few tools since it is usually
a user phase with little software engineering
activity; however, tools should be developed to ensure
operational quality of the system. Comparing Table 4-
2 with the required criteria for the operations phase
in Table 4-1, the diagnostic analyzer and system buil-
der enhance 1less than one-half of the criteria.
Criteria such as control of data access and ease of
use, which are critical user criteria, need to be ad-

dressed by new tool development (see paragraph 4.2.6).

Knowledge-based systems will be components of far-term
artificial intelligence techniques both in development
support systems and in operational application
systems. Near-term tool definition should take into
account the potential for integration into future

highly intelligent systems (see paragraph 3.2.4).

]
B
%
g
g
4
P
4
F
r
»
A
‘A
4
4
4
.1
'J
1

.........

(~l"
s

RANIEE |

NA

2.0 Scope of Embedded Distributed Processing Systems

P4

Distributed processing systems can be characterized by

2

their position within a three-dimensional space. Each

axis of that space can be used to separate the non-

2

distributed environment from its distributed counterpart.

LA S

» 'J.'.I AEL

The first of these axes concerns the distribution of

[0
R

hardware. It ranges from a single central processor unit

¥
~ 's"\

to multiple computers. The single central processor unit

e
s

"F
v,
A

is characterized by one control unit, one arithmetic logic

a s

unit, and one central memory. The multiple computers are
characterized by multiple general purpose central process-
ing wunits which have their own control units, arithmetic
logic units, central memories, and input/output systems.
Several configurations 1lie somewhere between these two
extremes, In summary, the five following generic hardware

configurations have been isolated and are in common use.

1) Single central processor unit characterized by
i) one control unit
ii) one arithmetic logic unit and

iii) one central memory.

2) Multiple execution units characterized by

i) one control unit

b4
A

ii) mutiple, identical arithmetic 1logic units

and

=
beed
-

E
O -'.‘1"

et

P V4
. s

i %t ‘s

[
’
2

........

..........

...............
.................................

.....

iii) possibly multiple, independent central
memories.
3) Separate "specialized" functional units charac-
terized by
i) one general purpose control unit and
ii) multiple arithmetic logic units or process-
ing units
a) some may be specialized units
b) each is limited and
¢) all may be identical general purpose
units.
4) Multiple processors characterized by
i) multiple control units
ii) multiple arithmetic logic units
iii) possibly multiple, independent, central
memories and
iv) a single, coordinated input/output system.
5) Multiple computers characterized by
i) multiple general purpose central processing
units with their own control wunit, arith-
metic logic unit, central memory, and

input/output system.

Distributed processing systems are usually composed of
multiple processors and multiple computers which are the

fourth and fifth generic hardware configurations. The

...

.............................

- gty Pt it v_" b "‘.‘I—‘\" y‘.'i'— -,
M"’ : t L d na el sl s e i nl adi b L AR A AL S AT RS ESCWEIEAE SN

e
‘,.

‘- -$.

o

’,
.l

£,

non-distributed environment is typified by the single cen-
tral processor unit and multiple execution units which are

the first and second generic confiqurations.

.‘.‘

oA

(R
‘?)\"
The second axis within the three-dimensional space
b . . .
) concerns the distribution of control. It ranges from a

single, fixed point of control to multiple control points
wvhich are not necessarily homogeneous but which cooperate
on the execution of a task. In all there are seven

categories of generic control:

1) Single, fixed control point;

2) Fixed master-slave relationship;

3) Dynamic master-slave relationship;

4) Multiple points of control which are totally
autonomous;

5) Multiple points of control which cooperate on the
execution of a task which has been subdivided
into sub-tasks;

6) Replicated, identical points of control
cooperating on the execution of a task; and

7) Multiple control points which are not necessarily

homogeneous but which cooperate on the execution

of a task.

»f - St e
PN

-
,- - ST R .
oy :‘;u_ PNV s' JL;‘._\'A(‘L\ PR A g

-
A

P o
‘3 -
,: Distributed processing systems are usually typified by the

; top three categories of generic control, i.e., multiple

.§ points of control, replicated points of control, and mul-

;3 tiple control points. Conversely, non-distributed

_ processing systems are characterized by the bottom two

El categories, i.e., single control points and fixed master-

;E slave reltionships.

:3 After an examination of only two of the three dimensions,

35 several obvious observations can be made. First, the

f movement within the marketplace has been and will continue

Ef to be from single processors to multiple processors. As

i these multiple processors become more prevalent, non-

. distributed control policies become gquestionable. Second,

Aé as individual nodes reach parity within multiple processor

f: configurations, choosing one node over another for control

j purposes is increasingly difficult to defend. Third, con-

;S figurations which run without an overriding executive are

:: now possible. In summary, the multiple processor con-

‘ figurations have complicated the present situation.

.&

‘é The third and final axis within the three-dimensional

Ti space concerns the distribution of data bases. in terms

t; of complexity it ranges from a single copy data in secon-

dary storage to a completely partitioned data base without

a master file or director. Many gradations exist between

EAC A ™
ey eV el oW ¥ Ne¥aVa?uVa

Ry SO

3’

these two extremes. To date approximately seven generic

55

4

categories of distributed data bases have been isolated.
The first three are associated with centralized data bases
vhile the last four are associated with the emerging dis-

tributed data bases.

Centralized data bases include:
1) single copy, secondary storage;
2) single copy, primary memory; and
3) distributed files with single, centralized

directories.

Distributed data bases include:
4) replicated data bases:;
5) partitioned data base with a complete master
copy;
6) partitioned data base with a master directory;
and
7) partitioned data base without a master file or

directory.

R
Bnla’a's

RV IR
PN

B 2 A
Eo
R IR

File structures must not only accommodate the serialized

L7

regquests from a single processor but must also accommodate

the concurrent requests from several processors,

11

When all three axes of the three-dimensional space are
considered, the spatial location of distributed processing
is clearly different from non-distributed or centralized
processing. That difference is illustrated in Figure 2-1,
Such distributed processing systems are usually components

within larger systems, i.e., they are embedded.

o et

¥,

. $
ROV

2%

AL MR

SE

P b

I‘.
ot

ety tni)
* TN

n

LAY N R

“.tatala

VetV " 4"

2APNPIPH JO UOTINQIIISIQ

Non-Distributed

Systems

Distributed

Figure 2-1

{7 -

o W, N -'}. _'. S _‘Tﬁ_‘- ‘;f_‘.»'-s P R -7

ol
o 556¥
Q * ‘O" &‘:(\ \‘@9
< ° oY o ¥ o*
A2 3 ot e®
b 3 o%' kO &§$b>‘e o8
’0’
?
3"
e
o
5‘:06"

\{
W\
A

Characterization of Distributed
Processing Systems Within the Three-
Dimensional Space Comprised of the
Following Axes: Distribution of
Hardware, Distribution of Controls
and Distribution of Data Bases

13

N
éﬁ; The application functions performed by these larger sys-
ﬁ ; tems commonly take precedence over their embedded L
?&S components. Examples would include large mainframes com- ﬁ
Eg posed of tightly~coupled multiple processors. The users i
._ of such mainframes are seldom aware of their embedded com- :
1;: ponents and assume a centralized environment. Of course
‘ﬁj the tools available to such users are designed to operate ;
;‘ in a centralized environment. The capability of a :
é% tightly-coupled, concurrently-operated environment is sel- a
ZSS dom made available to users because of a shortage of ?
f? tools. Despite this shortage, decision making concerning i‘
:ﬁé embedded distributed processing systems requires mastery
:Ef of data movement and a solid understanding of com-
. putational efficiency. Enough information about the dis-
,i% tribution of hardware, control, and data bases must be E
éij known within appropriate real~time constraints in order to ;
-;1. reach informed decisions. The functionality of the final j
ﬁﬁ product depends upon these informed decisions. j
o g
_: Because of inter-relations between axes, the analogy of a
;g three-dimensional space can only be carried so far.
%; Hardware, control, and data bases are not independent of
5;? one another in a distributed processing environment. A
-%;3 change in one impacts the other.
=]
3
% 14
=

......
.....................................

b * P
.....................
''''''''''
B

............................
.................................
....................
...
............................

T T TR T A A YA Aed G- At A AN SN e e iet et It CRASMISRCINCASL I SRR |

Growth in data bases can and does force change in tightly-
coupled hardware to accommodate increased information aﬂ#
Zi flow. As tightly-coupled hardware changes, the control :
; process is impacted. The bottom line remains func-
tionality despite what happens to either the data base,

X hardware, or control. That functionality represents a
-

massive tradeoff between hardware and software.
Furthermore, each one of these tradeoffs can be charac-

. terized by its position within the inter-related, three-

dimensional space.

ARAR

”
.

15

. .‘_A"‘.-‘-.-_‘..\- R S, ‘._:.
PR Y AR A s P, VLR T

i Y e e S itihg g - g 3 v S en 4 Wi A R, NCRA T I St S A A A A A it A o ot e aSl stk el e Nt N e T e e e e

LI
’, l, . 'y
LR
S
6 0
.

..
Y ERs

e
RN 2.1 Increased Distribution of Hardware :
2 .
';f. As distributed processing systems are winning wide ac- .
}i. ceptance within the marketplace, their ability to move and
; efficiently process large amounts of data has attracted :
Tﬁj military interest. Current military computer systems span :
B 1
kqi the spectrum from "smart bombs" and bullets to global com-
b {=1
N munications systems. The resultant military applications .
e
~.‘ h.] "
sxgg fall into two very large generic classifications: .
o :
- l) Weapon systems and ’
s 2) Communications systems
R >
N
B ~.1 ‘-
P Included within weapon systems are armament, aeronautical, -
v s ‘s '
NN missile, and space applications, Included within com-
e .
T munications systems are command/control/communications ap- N
» plications as well as mission and force management :
e
SN ¢
:fQ functions, Each category occupies a characteristic ’
Q\ N
> v
'{ﬁ position within the three-dimensional space whose axes are s
¥ the distribution of control, the distribution of hardware, !
X2¢ . . . - K
:25 and the distribution of data bases. These positions are .
iiﬁ presented in Figure 2-2. ;
by -
3 .: 1,:: ':
Y R
1.
i 16
o >, X
o, K

- —— ———
-— -— Y T v X o e T T at I SAr O S EE iRt e AT AP
I T i St T YT T T AL L S NN AL T T T
. i .y ., L ‘.“- *. - NN ‘. ‘. - - . . - . - . B
TR TR TN WLTS NG TS T .
B

-y
e
Ne'
U3
[S e
. °1b$ & P \e"
0% ' o O > °°¢Q <
e (,’} . "] e
(\‘b\ 82 t'.°"'$i g‘o‘ 0}@»}00 R oy &9“
o o (e > A
R Q} &‘ 5 eb ‘9 b% ,6}‘
c,\'o c» 5’0" \\1' a N4 o o
39 A 4 e 2)
) < 3 > .
o e > 22 s° e o
S g} 2% 29% X
(3 2% AO" of & 0? (&
oS \q oo B RO
5> 2ot S ot (e
) > < x0 e ¢ %
9"‘& Q'b(‘ \j(»eo 39 \)"e
> 8 e F
LA
N 1%
a? &2°
\9\‘ C—g ~
¥ < EN
se ¥
4 - o o \?9
@ - o
- o
g / - Qﬁ‘ &0‘\0 "\vo
" XA eo\)
AN —— / g
° - o / "»
=4 Y — / ‘_:.,\\\’\“9 ®
5 — 7/ / o« S oY
" e %
3 / :&“Q}e‘é"o
& ot
P / ¢
J]Q
2 e
%o Ol 0y
e S0, Cs €y
23 % % 4L op o,
o % Co,, 9¢, Co, Yo
y o, I L o 2, S °2¢
% " Uy, enlle 0L Tag, o, %e,
- 4§ Of ¢ 1p 274 N e 7 @oa(
:: Communications q n 0-"0 %o, 2o o‘o“b Ces A
L) & A,
[Systems €g o 910?% L ety L
t:’ 'Q *@v Jo Ot & s
Ry S, L 3,
- :e:E::: 0010‘91 QQO Qatsr 610 °l-\01 *a g/ s
e y LYAEA S, 2, 8y e LR 0p
e *@d M e
. o,
] Qe
%0,
]
i
h',
:‘: Figure 2-2 Characterization of Weapon Systems and
0 Communications Systems Within the Three-
o Dimensional Space Comprised of the Following
LM Axes: Distribution of Hardware, Distri~
3 bution of Control, and Distribution of
- Data Bases
4 i
e 17
-
bl]

AL LRI GRS 2L AT, YS VRV VL)

. RN - et . S Al
A w el manTe Te

-y LAY "y b s, 4
) PR R 10“"{& "_l '} .“ ,'A‘t'..f o

I.I
L

ORI,

,.-v:‘ .., : :

o

o
<
>
»
s

o,

i At OSSN A e i Sty G it A TR T

...................

Currently the communications systems contain the charac-
teristics of non-distributed systems. However, growth is
occurring and such systems are expanding their capability.
Dynamic master-slave relationships and separate
"specialized” functional wunits are beginning to appear.
Furthermore, distributed files with single, centralized
directories are beginning to appear in some leading-edge
communications systems. Notably the connections remain
loosely-coupled and are exemplified by
command/control/communications systems. Such loose-
coupling results from the constrained bandwidth of the
connection technologies currently in use. However, these
technologies are undergoing great change. Bandwidths are
increasing and as they increase, the capability for
tighter-coupling 1is enabled. Possibly replicated data
bases with multiple processors will be available in the

near term,

Currently weapon systems lie somewhere between the non-
distributed and distributed technologies. Their connec-
tions are more tightly-coupled than the communications
systems. Although their bandwidths are wusually greater
than communications systems, they are not as high as the
distributed systems. As a consequence, some of the
capability of distributed systems is not available in cur-

rent weapon systems. The reason lies 1in the control

18

“ ot

- y——— e e S T e A R R I R i L I P L K R . P |
o e A B A Rachiec A s R I PR AC A ACEARIAREAL IR SR R T e P - . .)

h e Su)
‘..‘.
-
lia". .
S A
ot

[T
et b v e
4
¢
L RPY .

f [
l'-'.;' e,

functions. By their nature, weapon systems must be

tightly controlled. A stores management system may

P
P

i 1
PO B Py

inventory, fire, and update a particular weapon system's

status. However, that same system is not fail-safe and

YN

must verify its action beforehand through the concurrence
of a control system. Its actual operation 1is charac-
teristic of an embedded system, not a completely dis-
tributed system. In the near term, weapon systems will
retain their present orientation. Completely fail-safe
operation of distributed systems remains a concept for

future implementation.

2.1.1 Weapon Systems

Advanced weapon systems are becoming increasingly complex
and rely upon computers and embedded processors to
operate. One example is provided by self-contained sur-
face mobile weapon systems used by the Army. Such systems
rely heavily upon an internal fire control computer and an
embedded navigation system to provide operational
direction. As newer systems evolve, an increasing number
of remote functions are being incorporated. One such
function is a remote operating console which requires more
tightly-coupled data bases and a high 1level of data
exchange. Traditional methods of fault detection and

isolation no longer apply in such configurations.

19

.................

Failures can occur and remain undetected simply because of
sheer complexity. An example would be a minor logic error
which occurred intermittently within the internal fire
control computer. If a sufficient number of errors were
generated, the weapon's accuracy would be destroyed.
Since the problem is intermittent, routine maintenance

would probably not perceive it.

Intermittent malfunctions are a problem for weapon systems
in general, not surface mobile systems in particular. 1f
these malfunctions occur at a critical time during an
engagement, the effectiveness of a weapon system may be
nullified. The internal fire control computer in a self-
contained surface mobile weapon system illustrates how im-
portant a malfunction can be. 1Its embedded navigation
system could have shifted modes from tarqget search to
target track when a malfunction caused the reverse shift.
Instead of directing the system to the target, the fire
control computer begins to search for that target.
Observing such a phenomenon from the remote operating con-
sole does not alleviate the situation. To regain the lost
target tracking mode, some sort of direct intervention
must be initiated. Alternative modes of optical sighting
and infrared detection schemes are often activated. In
any case, the preferred action is to resolve and correct

the malfunction source. This involves the direct detec-

e

i 1A

g ’I_ /

w a @
ORI

oA

L g LI 4
:' AJJ"Jl

), .“
I\I
a2

tion and isolation of faults in real-time which is no
trivial matter. Compounding the problem in our example is
the implementation of a mode shift, Such a shift is
related to the distribution of control, The embedded
navigation system is capable of directing the fire control
computer to the target but needs the concurrence of the
fire control computer itself. This concurrence is a fail-
safe mechanism to assure adequate operation of the surface
mobile weapon system. In essence, the fire control com-
puter concurs on the changes in operational modes. As
illustrated, the ability of this computer to override the
embedded navigation sytem can also create problems. What

emerges is a need for new software tools.

Real-time fault isolation requirements are being satisfied
in aircraft systems as well as spacecraft systems. The
approach used by both systzms is system redundancy through
the use of multiple processors. When malfunctions occur,
the redundant system automatically activities itself to
maintain the operational mode and the same level of
performance. The problem with such an approach is cost.
The architecture in surface mobile weapon systems simply
cannot afford the extra cost for redundancy.
Consequently, software tools must be relied upon to accom-

plish the same objectives as system redundancy. These ob-

jectives are two in number: Lo
S

_nf,“

21 NN

i\‘_'.

A

i

-“ -.

.................... I '.-‘-"-‘-.".
.. D T S I
- : T R : R '.‘ B U ... ‘A":"--.‘. “ ."‘-.' . '.-\;"-

e e e e e e e SRR RS I L S L U Kol SRR
N, P o ‘(.'-L'.:;"’l'.".':,\'l.":_l‘:f:f- ARSI PV PE P N AR PO s S Y Al ata R Casat

AR IR G it e 34 2y Jotriha S SR 2 An it A i e v N Y M e A S it e L. e e T T T T TN T NN TR T TSRS Y
. IS BN .

-

1) provide real-time fault detection and advise a ;éé
console operator of his alternatives and :f:

2) achieve real-time fault isolation and retain l;;
specific failure parameters to diagnose the in- 'ffi

termittent malfunctions, i

As weapon systems have grown more complex, the
verification of software has assumed greater importance.
Missile systems provide a good example of evolving
complexity. The transition from ballistic capability to
cruise capability requires significantly greater amounts
of software to be written and verified. General Dynamics
has studied various software verification techniques and
determined some of their shortcomings. 1In the context of
weapon systems these shortcomings include computational
overflows and program time constraints. Other methods of

verification are required to address such problem areas,

-

e.g., program testing based upon realistic simulations.
Such realistic simulations can be used to verify more than

computational overflows and program time constraints

~TIRESA

within weapon systems application software. Both software

Ay

v
-

verification techniques and realistic simulations can be

>

: ‘m‘ X
n
. -

used to detect the following types of software errors:

1) Input conversion problems;

i 2) Output conversion problems;

3) Mathematical calculation problems;

4) Logic decision problems;

5) Path analysis problems;

6) Mathematical precision problems;
7) Lack of computational precision;
8) Initialization problems; and

9) Switches in operational modes.

Testing efforts based upon realistic simulations are
clearly related to the distributions of hardware and
control. The software verification techniques ignore the
distribution of hardware but concentrate on the dis-

tributions of data bases and control.

As the complexity of weapon systems increases, the dis-
tribution of hardware also increases. The use of multiple
processors has already been referenced. Such processors
are usually tightly-coupled since they share common
resources, e.g., the same data base. Viewed from the
standpoint of statistics, such resource sharing increases
the degrees of freedom over which a weapon system can
operate., State of the art realistic simulations can now
accommodate six degrees of freedom, i.e., six parameters
can vary concurrently. The more de-centralized a system
becomes, the greater its degrees of freedom. Extremely

complex weapon systems require rigorous software testing.

23

2
i
1

If the actual operation of such weapon systems is to be

T e e T
e et

.. . .

W e ,“_," RO L

P o U

avoided, realistic simulations and software verification

R
NI

techniques become extremely important. In a sense, the

complexity of weapon systems will be constrained to our

ability to verify their software or to simulate their sub-

sequent operation realistically.
2.1.2 Communication Systems

Advanced communication systems are becoming increasingly
complex and rely upon computers and embedded processors to
operate. Such systems include
command/control/communication applications as well as mis-
sion and force management functions. From the standpoint
of users such systems seem to be loosely-coupled or com-
pletely uncoupled. From the standpoint of network
designers, such systems are becoming tightly-coupled.
Both viewpoints are valid although they seem to be
contradictory. An explanation can be developed through an
examination of Figure 2-3 concerning the nodes and links
within a generic network system. Several levels of com-
munication take place concurrently within such a system.
The most essential layers concern the operation of the
g¥ network itself. T'n the example this includes the network
hosts X, Y, and Z. Their communication links comprise the

backbone or trunk of the network. They incorporate the

hﬁz lowest three 1levels of the International Standards

b
ﬂ' Organization Open System Interconnection Model devoted to

the movement of bits, frames, and packets. These back-
N bones or trunks support the next three layers of the Open
' System Model which, 1in turn, support the user node
:?E requirements for the transport, interaction, and presen-
: tation of information. In the context of wuser ap-
plications the communication appears to be loosely-coupled
or completely uncoupled because of the operation of those
l{ presentation, session, or transport layers. However, the
backbones or trunks operate in a tightly-coupled format,

i.e., resources are shared between network nodes.

)

'

25

EIURURR T
Pols

-’a

.7

i .'; }.'_‘. ."’."“.‘-« A

LA

g)
AR

I AL

Lo)

¥

1 LN

\’\v"‘."u ‘—.., /

0

A
8N4

R 15

% B0
»

]]
]]
: [Presentation Layer | Frontend] :
' 1o e Network '
{ [Session Laver | Host X '
: Eransgort Layerl '
1 0(]
' “6 |
' ¥ ;
: :
]

| Frame [Frame! !
! Br——Hid '
: % :
' 7 !
[1
]]
: Communications Subnet !
' !
' t
' Network Link Network !
: Host Y Network Host 2 '
: Frontend Frontend :
| RPN . APy Jd

User
Link
D
User User User
Node sze Node
D
[X;plication LayerJ
Layer EXCHANGE UNIT
7 [} _Application layer [~]Message
[} resentation Layer [~] Méssage

6 _P g
5] [Session layer]] Message
4 [} J;ans.pm_l.an:__{: Message
3 [CF—H 3 —+{ {7 Packet
2 ::}—T’:_—_L———r JL [Frane
1 }———{] Bit

I§0 Open System Interconnect

Model

Figure 2-3 Classification of Nodes and Links Within

a Network System

ot K tat e
K B R
. ' - -~
- . .
. N . St T STl .
T et LT L A e T e e e et e e e Ce .
RS PRI I AR A VI, YA - I A A A, S

........

In the context of Figure 2-3, software is operating at

several different locations. Each 1location addresses a
particular layer or set of layers within the Open System
Model. Growth within distributed systems can be measured
in terms of increased computational power being placed at
these strategic locations within networks. Starting from
the standpoint of a user, several observations can be made
concerning the software operating characteristics of
various implementations of the Open System Interconnection
Model. The first 1location at which significant com-
putational power is encountered occurs at the network host
level. Each host has its own front end to support a
variety of user nodes. Two types of software are evident
at this juncture. One resides upon each network host and
addresses the computational function. The other resides
within the front end of each network host and within the
user nodes serviced by the front end of that particular
host. It addresses the management functions of formatting
and routing messages, nodal commands, transferring data,
and updating status information. The differences between
these two types of software are illustrated in the fol-

lowing table.

27

Network Host Front End and User Nodes Functions

Computational Functions Management Functions 37‘

Requires data in binary format Handles data in one of ﬁ{ﬂ

several transmission codes 2]

Requires uncompressed data Data compressed for if
efficient transmission .

Processes complete blocks Data transmitted in -ij

of data bit-by-bit serial format s

Processes only data Transmits data and TT

line protocol information hi'

Controls own timing Handles a variety of ﬁ;

timings dependent upon KNy

devices and operator e

speeds. £

Obviously communication software between the network host 51

~

and its user nodes must accommodate both the computational o

and management functions, It does so by addressing the 2

problem at a variety of levels. The first is the physical .
interface itself. It concerns how the network host ac- -

tually transfers the bits and frames between itself and Qf

the user nodes it services. These are the first two _if

layers of the Open System Interconnection Model. The ifi

second level used to address the software problem concerns :"

b

line control. It uses the bits and frames of the physical o
interface to direct the flow of information the network fﬁr

host and its user nodes. When software satisfies the N

physical interface and 1line control requirements, the ;il

. first three layers of the Open System Interconnection 'f
- '.'?'.
o Model have been implemented between the network host and Ta
1 @]
- its user nodes. These layers are called the communication e
% 28 Ny
N v

2 N

P
L.
™ T T e e T A) PR . o Lo
. LT P L L PN e e .. PR - -

-W\'.\‘d"-'."\'.'.‘.~.-.~‘_q‘_-"'. atoe . AU L

AFUIM I B T AR L LT] . o e TN L
T A Y N e T LS
EUA T N

.....

g LA e A arn S ant A AL SHICIME SIS SN AR

subnet. A variety of such subnets are available within

.
Ve et <'_ ©e r. '.. s
POV P NIRT S A MINDAL

Lk

the communications marketplace, e.g., IEEE 802 interfaces
and Ethernet. The third level used to address the com-
munications software problem concerns control of the
network. Whereas the previous two levels usually operate
within loosely-coupled and uncoupled formats, network con-
trol wusually does not. Such control addresses com-
munication between individual network hosts. Within this
level, resources are usually shared and software operates
concurrently on the various network hosts. In effect,
this 1level parallels the first level of the physical in-
terface between an individual network host and its user
nodes. The major difference is that this third level deals
with the physical interface between network hosts
themselves. When this 1latter interface operates, the

network backbone or trunk is implemented. The efficiency

of that backbone or trunk is a product of how the physical

interface between network hosts is used. The software ad-

- ‘-.
l‘ .h.'
-
RS
AAY
NN

"

dressing that issue occurs within the fourth level of ab-

straction in the approach to communication software. At

“ Cll :’l
O R Sk T]
. s .
.
| Sva

mtaa’n o8 A

»

this level a network operating system resides. It dis-
tributes control, operates the various network hosts, and

distributes the network databases. Obviously such sof-

e e
. e ’ . . '.l‘
L . ’

. IE . AL

a4 B . . .
. ‘

tware operates within a concurrent environment and is

G
T
tightly coupled. In summary, the following four levels of ﬂﬁ{
-
29

. -l - % e ~
PR PV VL ITVE GL SIPLERLIGULGE §

abstraction are used to address the communication software

between the network hosts and their respective user nodes.

.
.

1
2.
3
4

Physical Interface (loosely-coupled or uncoupled)
Line Control (loosely-coupled or uncoupled)
Network Control (tightly-coupled and concurrent)

Operating System (tightly-coupled and concurrent)

The following diagram relates these levels of abstraction

to one another,

== e e e e 1
FRONT END PROCESSOR | (e
B =
S HARDWARE/ OPERATING SYSTEM | B
&) el pd SOFTWARE LINE NETWORK COMPUTER BRI

g INTERFACES co CHANNEL [
S NTROL CONTROL ATEREACE |
& AND BUFFERING i =
=

—— ————

.
A PRV S TR

B 3

(
P

.
g g e e e e

L Y

'n. ’OJ‘ :

£] ‘.
A

¥ 17/

#,

.

Information flows between the individual network hosts and

s
Yy o % e

N
& S

their respective user nodes via the user 1line interface.

Such flow can be acconiplished through hardware itself or

-
ha

software driving such hardware. Software drivers serve to

’

Y
%
)
)

Is
]

transmit control information to wuser nodes and monitor
traffic conditions. The software drivers at the line con-
trol level actual regulate those traffic conditions being
monitored at the 1line interface 1level. They do not
concern themselves with message content but simply concen-

trate on the movement of packets, frames, and bits.

Network control software performs the formatting function.
It creates a single data stream and imposes a message
structure upon the subsequent information flow between
network hosts. This latter flow is managed by the network
operating system which can range from single routine han-
dling peripheral devices to very complex routines handling
concurrent environments. The sophistication required of a
network operating system is related to the hardware
topology. Some of the most notable network topologies

follow:

1. fully connected topology
2. generalized tree topology,
3. minimal spanning tree (MST) topology.

4. bus topology,

31

...........

. BT

DRPLRS '\'vh‘..-" ORI '\-' . B . . . ‘e L e e s R R
ORI R e AT e PRI A AT N, T S e A e T T T T (Y T e A
' @ g i o f&ﬁi\:‘:\':\':\'::;t\:i';‘:‘[U ._.M-.—:.AA‘_L I TIROADIE, WA Ok S P I S A AT . WS .J

A

(4

j: 5. loop (or ring) topology :

) -
{ 6. single-center,single-star (SCSS) topology, -
7. single-center, multidrop (SCMD) topology, .Ef
8. multicenter, multistar (MCMS) topology, and e

_ 9. multicenter,multidrop (MCMD) topology. -
2 The decreasing cost of hardware favors the implementation 5{;

- :
of MCMS and MCMD topologies. Two examples of an MCMS are k-

& presented in Figure 2-4 while a two-level, hierarchical :f
. MCMD is presented in Figure 2-5. Such network topologies lf
'i require very sophisticated software operating systems. ;f_
Iﬁ However, such topologies are characteristics of the mark- o
L] =,
“ h
o etplace in general and not the military in particular. e
ﬁ_ Bus topologies will continue to be popular within the if»
?: military architecture because they emphasize single ;;
> : : : X
aN processor architectures. The bus structure is a simple .
and economical interconnection between processing elements ?i

ﬁf and memory modules in a multiprocessor architecture. As a
g; consequence, bus structure are widely chosen during the

_ design of local computer networks based upon distributed gg
:f control.)
o -
'f‘ .. .

b {. .
) 3
. -
N
N RS
. o

,I
o
‘e 32

r 4
N N
Q O S 4
User Link N\
O’ bs s (Q
=—=======. Network Link \ x\ \\\\ / \\\\\ \

§ Users Node _ /

O Network Node ~) // S

Q
S S

A two-level, hierarchical MCMS topology

Q) N\

o5 1o
\°/

1\\\\\/’
s

N\

208

el § = ‘ Ny »
[~ N \
S / ®
Nos BENCIN

A three-~level MCMS topology

Figure 2-4 Two Examples of a Multicenter, ih_«i'
Multistar Topology Sy
33 R

- — ql h
!
B T S o]
T AN w fe e

o C

|]

[i

. .M NE |

b e ~

2 -1 - .

.)

' = 3

. @ o

v, 0 e

W. =] =z

. Q.

T o

. v

: el

b :

-< t

s z

. 3

3 > =

g &]

. s : -

. W. > L] ™

3 Y §

.) o 3

P (3 — &)

i. o -

. L m a v >

. o o [e} — 00

. o (<} 3 (=1 o0 O

, .M = .m 10.

. Z 4 o e w o

. - O 8

£ » o 3 1z < =

R M 3 0

, o o —

, 0] >] n

. =1 2z £ U |

: s o

m. 3 b

; @ :

]

.

: -
e

..f..n-.-)..... W .:. ..44

YK -
AR S

-t

B e

,,«
4

Dy iy
CINE S N

- -
a a

RABI

g z“'.’\l

‘t-f el
AAAANAN

v {;

F
N

[N S

e
“~

LA INE AT AL SR A R T N e O IR IR A IR A R T T T IR St S T Tl BT L T R A O

A distributed bus topology is presented in the following

diagranm.

Bus

Peripheral Apparatuses

Peripheral Apparatuses

In most instances, the bus itself is controlled by a central

controller which is illustrated in the following diagram.

Peripheral Apparatuses

1
8 *

Peripheral Apparatuses

35

P

-]
A
v
L

e e]
P p
NN k4

L

p."-:;
.

AV R
/2

e e
S

The wmilitary situation is typified by advancements within
sensors. As more sensors are involved and newer sensors fﬁ
come on-line to existing force management systems, the ‘
data rates within existing networks increase. The effect
is to shorten decision times. Since the increased data
must be accommodated within shorter times, the counter-
force capacity must be increased. As this additional
capacity becomes available, newer sensors come on-line and
the cycle starts again. In such an environment three is-

sues become apparent:

1, What type of system is involved?
2, What kind of distribution is involved?

3. Who is going to use the system?

Each issue impacts the definition of software tools. The

force management decision making process can be viewed in

‘knvironment K

o Sensors and | mmunication Computer :d Military 5
g Force .

IS Management Commander

:}',-.':

.

T

Y.

[

o

! * -

8!

:-:w:‘ 36

b.' -‘

,'.;.1

A I

LN

- AT -

.’-.'_‘ S .'-'_

[

AR RD

\.l

4

e ., . e DR A -.-".‘ AR
e e R AR SN IV " Sl
R A PRI AP . A A a8 4 L;IJA—“L&(

.

;E Each situation requiring a decision has two extremes.
i Furthermore, conflicts between these extremes must be
;; resolved in shorter periods of time. Different decision
i} making scenarios are being studied through simulation,
. e.qg., the Martin Marietta Advanced Modeling System.

However, the bottom line returns to network architecture
y considerations. Figure 2-6 presents such architectural
considerations as well as the generic diagram of the
military command/control/communication system of the
future. The complexity of such a system will be con-

strained to our ability to verify its software or to

a

.

-
~

-
-
X

simulate its subsequent operation realistically.

v
PR

1 "
Y

2.2 Increased Distribution of Control

Figure 2-7 presents the two levels of control evident in a
distributed processing system. 1In current technology the
network operating system resides in only one host and is
not replicated throughout all hosts. The Bolt, Beranek
and Newman Jericho system is an example. However,
replicated copies of the network operating systems present
a worst case analysis for consideration. The network

level of resource allocation represents the highest level

of resource allocation. S

]
Tt
2

’ 1‘7‘
PR N 3
el et l

XAV BAN
e e
55

-
v

.
f'f,n
(%

37

(- '-. '.l
PN
a“t

V,..
. N
L2 T
',
.
AR

R LR N PRSI
WP T TG T N .-., “.'.4_-,.~,\‘\~_-,-_'~", t . _’.'_..".' i ."-,'..‘
-.V‘ﬂﬂf"“ﬂf*wwﬂ-nVFJa“ﬁmhku. NI B

e e N L L N s RO T
L) ~ l

\'. -

A U AT Y LY
s av o " RPN T AT W I W W]

a) Architectural Considerations in a Command/Control/Communication

System

(Between Network
Hosts) Global

(Frontend Archi-
tectures) Local

Trades in LAN Services
Implementation by Vendors
Network Resource Management
Buffer Build-up

Protocol Effects

What goes Where, When, How

Long Haul Communications
System Survivability
Interfacing Systems

Time Lateness

"False Track" Phenomena

b) Trends in Networking and Command/Control

F “Today | 1980's 1

Air Defense W rggn-s;;;-i {asers 1.
| — = 1!

Ocean Surveillance L-——-J'\,\:I-:::-:—_—_—::}____Communicat:ions 1 '
1 Network [T — |

1

C '

]]

(]
Electronic Warfare »///:
]

. PRI I o
I. - .n: . ot .
s ' IJ-II"' Lt s

KR
'y

.
.

.
Al 4

Fire Control I Jd | I J

Cruise Missile ControlJ [aladafebeduiiathalindnl hnlntndusieduliui

f [B N
. et e

e ET s
S PN

Figure 2-6 Architectural Considerations and
Trends in Command/Control/Communication
Systems

38

L ﬂ -

‘e

;’ 'l'.r’ !
athte dncia

et I RN I N L
DI IR I T R TP Y
.t -, P

.) Jete e T . I L0 .

a

.. ST T L P et
BRI T T T T S NIRRT P T e S N T T
PSS I PN I N G S A LSS L SIS P A

P
s .

................

w ""‘
A S At e A ACINER R paCRe e eSS A B

Host A [Host B Host C Host D .
Network 05 etwork 0% [Network 0S [Network 03 .
[Network I/0 Lm Network I/0 o
[Network ALU]| |{liNetwork ALU | twork ALU
[Network CPU__] [Network CPU] [Network CPU__ Jill | (Network CPU]
(Network Memoty] | | |{Network Memory) i | | (Network Memory)
° []
° e ¢
) b4 *
L]
rHost A 0S8 Host B 0S Host C OS Host D OS
[Host A 170 1||||[Host B 170 J|||{{[Host € 170 1}|||Host D 1/0 J
lHost A ALU | |Host B _ALU_]||||[Host C ALU | |Host D ALU)
|Host A CPU | |Host B CPU | [ﬁast cC CrU | |Host D CPU l
Host A Memor Host B Memor [Host C Memoryl |Host D Memor
[y11} | | [Hos ory] emory]

Issues: Should a centralized computer have systemwide executive control
to limit the kind of processing which can be embedded in remote
I1/0 systems? Should the network impose little restriction on
the physical dispersal of processing and not achieve global
executive control?

Figure 2-7 The Two Levels of Control Within a Distributed Processing
System

........

“" e RPN
-, T 1_ RN
.F . J'\t_an PPy c’.‘!.‘-.u;‘fh)

TR
Ll
PG - KREAL A

4N\

rone

Consequently, work flow is controlled at that level, i.e.,
jobs are submitted at the network operating system level.
In such an architecture the language capability at the
network level is a high 1level one. Consequently, the
network operating system itself must not only allocate
network resources but also translate its instructions into
the operating levels within each network node. To accom-
plish such objectives is not a trivial task. The leading
edges of several issues must be resolved. Object-Oriented
Modularization must be applied on two levels
simultaneously, 1i.e., at the network operating system
level and at the nodail operating system level.
Conventional Modularization is precluded by the concurrent
operating characteristics of the distributed architecture

itself., 1In summary, two great issues arise:

1) Should control be centralized and to what extent?

and,

2) What restrictions should be placed upon

dispersion?

40

Py — [ML Sl Sadt Sl Pl Sl he' AT " o
AT AT R A AN IO S A N O e it A A RSSO B
" & & e " T - e ST et - . " - - -~ - - - - .

"i'"-
«

1
afd T NS

2.2.1 System-Wide Control With and Without Centralization

e 240 L4
P

N

s

- -
()
-

Figure 2-7 presented the two levels of distributed

.«

processing control. 1In effect, a single applications en-

I A
e
.:*-:..

vironment is presented to the network user. From the
F? standpoint of that user a job is submitted and it is
N executed. The architecture could just as easily have been

a uniprocessor as opposed to several uniprocessors con-

> figured into a network (provided execution does not
..: :.’
i: require the concurrent operation of several
‘

uniprocessors). The 1issues faced within the network

! operating system should remain transparent to the user.
s: To illustrate the complexity being handled by the network
operating system, a generic job is submitted on one of the

E network hosts. Figure 2-8 presents the resultant
g modularization performed on that job by the network
' operating system. The job could have been submitted by

‘a any node within the network, i.e., Host A, Host B, Host C,
:2 Host D, etc. From an executive standpoint the network

operating system apportions the job to be performed over
the nodes in the network. When more than one node is used
the relationship between segments becomes all-important.
Since each node operates independently of other nodes, the
ﬁ sequence by which segments are completed determines the

validity of results.

«; =
A RA AN
2000 A A

EREAE)
0
. e !
Y
. .
LS
ata’

Y

o
-

Host A Host B Host C Host D
Network OS Network OS Network OS Network OS ,
Fetwork /01— N T Metvark 70— |\ Fetwork 170 K{™Network 179 e j:

Network A Network ALU w .
[Network CPU] R 2
[Network Memory] [Network Memorﬂ [Network Hemo@.l [Network Memory)
Network Job ¢ .
1 {Input] ¢ . .
2 i‘\ . .
\‘\55‘*~. .
\ ~]
Segment 3 Segment] Segment 1
1 (Input Host Bl 1 nput Host { 1 Input Host D
2 Qutput Host BIf{ | [2 Bxocess Host Cljf | (2 Output Host D}
3 Qutput Host CV
Host A OS Host B OS Host C OS Host D OS
Host A 1/0 [Host B 1/0[[Host C I1/0 (Host D 1/0)
Eost B ALD oSt CALD [Host D ALD -
[Hiost A CPU) ;::
| Host A Memoryi| fHost B Memoryl Host C Memory] [Host D Memory]| N
Figure 2-8 Segmentation of a Job Submitted to the
Network Operating System
42

.................

Such sequencing is termed serialization. 1In the example
the assumed serialization is that Segment 1 is completed
before Segment 2 which is completed before Segment 3 which
is completed before Segment 4. The difficulty enters when
many network jobs produce many segments operating concur-
rently throughout the various nodes of the network.
Serialization becomes difficult to maintain. As traffic
increases, the serialization problem becomes greater. How
the network operating system handles the problem deter-

mines subsequent operating characteristics.

Underlying the network 1is a specific number of nodes at

any given point in time. Each node has its own intel-

{ ligence and probably has its own nodal operating system.

e In a classic sense these nodal operating systems address
133 the Von Neuﬁann functions of 1/0, Processing, Memory, and
%. ALU within each node. Consequently, each node exhibits
f;: its own serialization problem. Of course serialization at
:ﬁ the nodal level is constrained to sequencing segments ex-
= clusively within that particular node. Such sequencing
ia may or may not meet the regquirements of the network
Eé operating system. How that particular sequencing is
?f satisfied raises the issue of centralized control versus
ei dispersed control. The situation 1is characterized by
‘éi Figure 2-9.

N

§

. 43

. i
=

[} Y
s e
.

T
) .

)
L.

-
< e
. .
s el
A R A

—"w’ -". ..—' ulll. '.-r‘ﬁ
O] f
VR - AN NN

»

TN SN
.

)

.o '.i

Operating System
44

LA A R W e T e A S AR A A ARNONDOL SIS A AN A OIS I R A Sk
»
Host A Host B Host C Host D
Network OS5 Network OS Network OS Network 0S c
Network 10| SHetwork 70k | [T Retwork 170 | N e
Betwork CPU) Network CPU o
Eégwogk Memorx“ INet:work Memoril‘ iNetwork Memory] !Eetwork Memory!‘ ‘
Network Job X Network Job Y Network Job Z Network Job T -
1 (Tnput D 1 1 (Input] 1
2 2 2 [Output DJ 2
3 3 3
4 Job X Segment 2 4
Job X Segment 3 Host C Input]
Job X Segment 4 Host B Input [Host C Process Job X Segment 1
lHost A Input] Host B Output] Host C Qutput] {Host D Input]
[Host A Memory] {Host D Output]
Job Y Segment 3 Job Y Segment 1
Job Z Segment 1 [Host B Input] (Host C Input]| Job Y Segment 2
Host A Input] [Host B Memory] lHost C Output] [Host D Input]
w st D Process
Job T Segment 2 Job T Segment 3 (Host D Outpud
Job T Segment 1 [Host B Input] (Host C Input]
lHost A Input) Proce {Host C Output] Job Z Segment 2
[Host A Output] {Host B Outputl [Host D Input]
Host C 0S |[Host D Output]
Host A 05 Host B 05
[Host A 1]0] [Host C ALVl Job T Segment &
Host A ALU] (Host C CPU] [Host D Input]
[Host A CPU] (Host _C Memory| [Host D Memory)
Host A Memory] !gost B Memorg!
Host D OS
Host 1/0]
[Bost D ALY
(Host D Memory]
Issue: Serialization
y
Figure 2-9 Multiple Segmentation on Multiple Hosts Within a Network -

*u

ay
o

.
» e e

T

Serialization is normally performed within each particular
node exclusive of the other nodes. Consequently, ordering
- from the standpoint of a network requirements is an abnor-
‘: mal situation. In most instances this situation has been
.ii controlled by delegating a single host within the network
r“ as the network operating system host. In such a context

this new host exerts control throughout the network for

subsequent queueing of its own host and the others as
well. In effect, the network operating system delineates

the kind of processing which can be embedded in the remote

input/output systems.

2.2.2 Replication to Combat Degradation

<]

Figure 2-7 presented the two 1levels of distributed

:f processing control. Replicated versions of the network
operating system were presented throughout the various L

hosts within the network. The reason for such replication

concerns network degradation. Individual hosts may come

up as well as go down without impacting the network. If
the architectural philosophy is to allow such coming and
going, new problems are created. The resources presented
to a network job vary from job to job. Worse yet, the
resources may vary within a network job. Such variance

impacts the network operating system as well as the in-

45

........... ISR L _ e e A) N PR
L% PRI s AT o S T R Y .
FC Y ';.':.A'.:f Lt et et ;'\l PN IO - WA SRR A PRI AU CIEP S I TSIV STV S S S S S B0 - 5

S T N S T T T I R R T T

dividual host operating systems. To accommodate it is a s

nontrivial task. =

Tightly-coupled resources within a particular local-area-~

network have the same problem. Accesses to those ?é
resources may vary as a local-area-network job stream is z
processed. The access structure may vary with time, e.g., :ﬁ
one processor may go down while its shared memory and
another processor continue to function. In fact, the ac-
cess structure may change during the operation of a single
job. To accommodate this coming and going of access

structures is also a nontrivial task.

In a concurrently operating environment the resources that
stay have knowledge of the operating environment while the
resources that go, do not. When such resources return,
their knowledge must be updated if they are to assume
parity within the operating network. Furthermore, what
happened to their network tasks while they were gone? In
general, the fewer restrictions imposed on the dispersal
of computational power in a network, the more important
such Qquections become. If strong centralized control is
not exerted within a network, new kinds of problems arise

to accommodate concurrency and degradation.

.

R

O
oy 1
» 4 .

el

.

AN

g D)

......................................

One alternative to solve the coming and going problem is
to build software environments which automatically
generate pending tasks for network nodes as they return to
service, The same approach seems feasible in software ap-
plications for the concurrent environment. In Figure 2-9
the multiple segmentations on various hosts of a network
operating system were presented. Using the same tasking,
an auxiliary directory can be implemented on each host.
That directory can be used by a host to determine the
location of tasks allocated for a specific host when that
host returns to service. The auxiliary directory is il-
lustrated in Figure 2-10. Assume Host B went down. From
jobs accumulated on the remaining hosts, B can assemble

its pending tasks from the auxiliary directories when it

returns to service. The following table can be
constructed.
Auxiliary Directory Network Job Instruction
Host A Job X 3
Host D Job T 2

Inserting the execution of pending network operating sys-
tem instructions into a proper sequence is a nontrivial
task. Serialization is difficult enough but serialization
with network components coming and going 1is extremely

rigorous.

47

. -

A A A O A A |

e Ve
- at
e n

B
ed

D) .
nevlth b

{‘.

vt

.:_. P Bt Bt St g Jigie e M et] --_-—v}—"-;.-.;--:v.;ﬂ._‘.v\:.‘h'_‘br.-'.*:ﬁ’_T__ -_g‘l’ - i._ Ve e ‘E .“;.r"."'.'-;v‘-..—'-' ._W-__ . _f.‘.‘j'.__‘?__". fatd g .".]
o
RO Host A Host B Host C Host D
"'_:‘_- Network 0S Network OS Network 0S Network 0S -
i (Retwork 170+ |\ Network 170 ||\ T{Network 170} | STTHEetwork 1707 »
BN [Network CPU] Network CPU Network CPU k{
‘:... INetwork Memory] [Network Memory] | [Network Memory]j [Network Memory] .}.',‘.‘1
[‘.:_ ’.:-'.
b Network Job X Network Job Y Network Job T T
o a2y
) | Kol | G | Gt E
L 2 Frocess 0 2 Brocess 1 2 [Frocess &) 3
s 3 3 Tob X Segment 3 3 2
:
« Biore &) ot semet | | | e || | T
ob X Segment 4 s Process Job X Segment 1
[Fost B Gutpug] st D Tnput]
:s'.'} [Host A Memory] Job Y Segment 3 Job Y Segment 1 fHost D Output
SN
~ Job Z Segment 1 [Host B Input] Job Y Segment 2
A [Host A Input] os M [Host C Output} Host D Input]
590 .
A ost A O Job T Segment 2 Job T Segment 3 Host D Proces
IHost D Output]
Tob T Segment 1] | | | Eost & Tnputl [Fost C Inpul -
e (Host A Input] IHost B Process) [Host C Outputl fob Z Segment 2
y put] [Host D TInput]
q o {Host A Output] [Host B Output oot C 05 Host D Input
o Host A 0S Host B 0S ost € 170] liost D Output]
-
T Host B 1/0 Host C ALU] Job T Segment &
e [Host € CPU]
v d L ! B D
- [Bost A CPU] | [Hose € Memory] [Host D Memory]
————JMM MM Auxiliary Host D OS
: \ Auxiliary Auxiliary Directory [Host D I/0]
,:\ Directory Directory A Job Z 1 fiost D ALU
b DJob X1 Clob Y1 D Job Z 2 .
o € lob X2 Db ¥ 2 B
::-.", B Job X 3 B Job Y 3 ‘
o A Job X 4 Auxiliary o
e Directory S
s AJobT1 | o
L ! 4
AN BJob T2 D
R :
s CJob T3 | o
N D Job T 4 =2
A5 -
-\h “od
\.. Figure 2-10 Multiple Segmentation on Multiple Hosts Within a Network >3
o Operating System Using Auxiliary Directories T
:‘ 48 3

oa e
IR
n"-'l‘
1t

.
Ly

-

‘.“n A.
BRI S -
. 0.

)
3

-
‘.

s LT
. - S -

. e

[SRR

However, such coming and going is part of the real world.
Consequently, the capability for a network operating sys-
tem to accommodate degradation and regeneration is an im-
portant attribute of a concurrently operating environment.
Software designed and implemented for such an environment
must rely upon such capability being available. Otherwise
the software itself must address degradation and
regeneration within its operating environment. Such tools
are relatively rare but the need for them is great. Many
tradeoffs exist when such problems are addressed. A major
consideration is the number of operational restrictions to
put into place. Each restriction constrains the com-
putational dispersement within a network. Whether the
configuration is loosely-coupled or tightly-coupled mat-
ters little. The issues are the same. As each tradeoff
is made, it should be carefully documented to enable users

to understand its full consequence.
2.3 Increased Distribution of Data Bases

Figure 2-11 presents the four levels of control which im-
pact data bases within a distributed processing system.
In current technology the DBMS resides on only one host

and is rot replicated throughout all hosts.

A A AT NN N T T T L T T T T T 5
DTN NN N NN AN SR e e e ;
AT AN A AL AR AN I T T
- “ @ o= P L R N Sl ~.. R I

:' Host A Host B Host C Host D —jﬁ
'Network 0S Network OS Network OS Network OS f:%
- K d LA |
[Network I/0 L.% {Network 170 I-,.S S‘ Wetwork 170 Jff « ¢ -
Fetwork A0 || || Femwork amo——1|| || (Retwork a0 [Network ALT]
[Network CPU___] (Network CPU__ | [Network CPU__] :
otk M [Netuork Memory] [Fetwork Vepory] 4
- - R
B 5 : ; : 5
o Host A 05 Host B 0S Host C 08 Host D 03
' [Host & 170] [ost B 170] st C 170 (Host D 170] =
{Host A ALU] st U {Host D ALU]
[Host A CPU_] (Host B CPU___ | (Host D CPU]
[Host A Memorv | (Host B Memory | [Host D Memorv]
Host A Host B Host C Host D “H
DBMS DBMS DBMS DBMS
Files Files Files Files
(Bccess Controll [Access Control
N DBMS DBMS DBMS DBMS
N Wetwork I/0% | i (Network I/0* | (Network I/0% (Network I/0%*]
DBMS _ ALU (DBMS ALU]
{DBMS CPU] [DBMS_CPU] [DBMS CPU] [DBMS CPU |
ﬂﬂﬂﬂi_ﬂgmg;j;gljl [DBMS Memory) [DBMS Memory] [DBMS Memory]

* Note DMBS I/0 depends upon the Network I/0

Figure 2-11 The Four Levels of Control
Which Impact Data Bases Within
a Distributed Processing System

‘‘‘‘‘‘

R L T St SN

However, such replication represents a worst case

analysis. Furthermore, as particular nodes may come and %;
5

go within the network, such an analysis is not too

farfetched.

An important relationship exists between distributed data
bases and network operating systems. Since such data
bases must accommodate input/output throughout the
network, they rely upon the network operating systems to
accomplish such 1/0. Beyond 1/0 their similarities cease.
However, they share several issues in common. In fact,
their approaches to such issues must remain compatible
with one another. Much work on the compatibilities
between network operating systems and distributed data

base management systems remains to be done.

2.3.1 Serialization Under Increased Segmentation

The four 1levels of control which impact the specific
host's operating system, the DBMS files residing on each
host, and the DBMS itself. These are presented in Figure
2-11. However, that particular presentation does not con-
vey the relationship of the DBMS to serialization and
segmentation. To illustrate these concepts Figure 2-12

has been developed.

51 u

|
NS

-

-

".. .‘ l. ‘l.)‘
"." .’ ‘

b,

AR A NN JEAC A SRl AR L R e

Host A Host B Host C Host D
TE».TT‘OS_\' Host B 05 Host C 03 Host D 05
[iosc A 170] (Bost B 1/0] o=t € 170 [Host D 170]
(Host CALU o A
Host A Host B | Host D
DBMS DBMS DBMS I
Files Files Files
| liccess Controll [becess Controll
DBMS DEMS DBMS
Ne < 1/0 Network I/0%
DEMS 4 {DBEMS_ALU) [DBMs ALU]
DBMS CPU {DBEMS CPU] [oBMs_cpu]
@s Job W DBMS Job X DBMS Job Z
1 Examine File 1 [Examine Filesl 1 [Examine Files] 1
2 2 Compile Data 2 Compile Datal 2 Compile Data

Job W Segment 1

Job W Segment 1

Job W Segment 1

Job W Segment 1

[Job w Segment 3

[Examine Filesl Examine Files (Examipe Files {Examine Files]
[Output Datal [urput Datal [Output Data) [Output_Datal
Pob W Segment 2 pob X Segment 1 Job X Segment 1 ob X Segment 1
Enput Datal Exanige Filed) Examipe Files (Exanine Filed
Consolidatel Outp Qutput Da

Job X Segment 2

Job Y Segment 1

Job Y Segment 1

(Formad Gnput Datal Tne Files (Examine Filed
Konsolidare] {outpur Darad
Job X Segment 1| ob X Segment 3 gob Y Segment 1 ob Z Segment 1
Examine Files) [Eormat] (Examine Filed
utput patad [osr B 170) [Consolidatel (Qutput Daral

Job Y Segment 1 Job Y Segment 1 ‘ ob Y Segment 3 Job Z Segment 2
Exanine Filed [Examine Filesl [Ecrmat] (nput Datal

Job Z Segment 1 Job Z Segment 1 Job Z Segment 1 Job Z Segment 3
Exanige Files) Exanine Files) [Examine Files) (Eoxmat]

’r .t..l&

* Note DBMS 1/0 depends upon the Network I/0 (not pictured).

Figure 2-12 Segmentation of DBMS Jobs Throughout a
Distributed Processing System Network

52

Fal

i
'/('("f. '
g ot £ . . !

_a

.

.......
.........

L avel aren Mrul ta S-Sl . T
F-“-:. < }-.;_'-‘—v...-. v J-.‘..'_n":?' . v, vy AR ".‘.__.‘
.

' s e
RN

“ROAT

At O

Included in its presentation are the specific host's

operating system, the DBMS files residing on each host,
4 and the DBMS itself. The network operating system is ex-
cluded since its only purpose is to provide network 1/0

for the DBMS.

Similarities exist between the operation of a DBMS and the
network operating system. Both accept jobs throughout the
7 network. Consequently, the process of
: modularization/segmentation of these network 1level jobs
remains essentially unchanged. In Figure 2-12 four
- separate jobs have been submitted to the network at four
T separate locations, Assuming the DBMS files have been
dispersed throughout the network, each job requires sear-
- ches by each of the separate processors. Once a search
has been completed the results must be consolidated over
all processors. Once consolidated, the data is formatted
and outputed on the originating processor. Obviously the
processors need to be carefully orchestrated since they
are tightly-coupled from the standpoint of a DBMS. Such
an observation 1is valid even if the actual network
operating system architecture is loosely-coupled.

Resource sharing within a DBMS can usually be classified

as tightly-coupled despite the network operating system.

Under such circumstances serialization is not a trivial A

) .
——
i..‘

.'_.

N

.
-

&

problem. Serialization from the standpoint of the network

P

.
» s

"I 'l- ‘"
LY s

R

L 29 LAY/ A A o i gl A N i o S L IS R & R RIANUIIC RN A SRR AR S R S

operating system can be achieved while serialization

: within the DBMS goes unaddressed.

To queue the pending segments within individual network
hosts from the standpoint of a DBMS requires some network-
wide knowledge of the DBMS, Current state of the art
exerts such knowledge by applying a single DBMS located on
a single processor of a network for control and processing

of all DBMS jobs. Such central control obviously con-

PR S -
L Wl W

strains the DBMS to a non-distributed, batch-oriented

“a

approach. The alternative is obvious but how to establish
system~wide DBMS control is not. One key rests with the

DBMS files themselves. Access control to those particular

a T2tk ala)

files is a means whereby queuing may be accomplished. 1If

the file structures themselves are provided decision-

ALLL“

making capability, they can determine when more than one
segment is demanding access. They can insure only one
segment 1is operating within them at any given time.
Whether this access control interferes with the DBMS
serialization from a negative standpoint is a function of

how the DBMS is attempting to serialize its segments on a

478 a b

network-wide basis. Both efforts must be carefully or-

2 chestrated and designed to operate concurrently.

. Since decision-making capability can be supplied the file

< structures, it can also be supplied the DBMS segments

i W s gl MR T et e IO AR S Sk Sl R AL AN .

[SN

themselves. How these separate intelligences are combined 3hﬂ

i and orchestrated is the subject of much current research. yfq
g Much remains to be done before such technigques become :3
:ﬁ available in the marketplace. Currently such software Q;
. resides in the ROMs of the very few hardware products —“i?
. 1

being marketed as database machines. In any case, the

distributed architecture is a generation away in computer

technology.

2.3.2 Access Control

By 1its nature a DBMS in a distributed processing environ-
ment is tightly-coupled. 1Its DBMS files are a memory
resource shared throughout the nodes of a network. 1In

effect, each node is a processor capable of accessing that

DBMS memory regardless of location. Figure 2-12 presented

the worst case analysis for a distributed processing

network involving four nodes. Each node can accommodate a
DBMS job concurrently with every other node.
Serialization is a problem summarized in the previous
section. However, other problems also exist and are
characteristic of distributed networks. 1Individual hosts
may come up as well as go down without impacting the

network. If those hosts also control DBMS storage, their

) presence or absence definitely impacts the DBMS throughout

the network. Two areas are of specific concern to the

DBMS viewpoint: file storage and the DBMS modules
themselves, In a truly decentralized architecture the
DBMS modules are replicated at each node to enable nodes
to come and go without impacting each other. However, if
those particular nodes also control some aspects of DBMS
storage, what becomes of that storage? Obviously if its

controlling node goes down, it is no longer available to

the network. Consequently, even though the network can
continue to operate, a data base request involving its
missing file would be severely impacted. The mere
presence or absence of a node within a network 1is not
enough for a DBMS to continue to operate. The DBMS
storage controlled by those present or absent nodes must
be known at all times. The network operating system can
gracefully degrade itself while the DBMS may not. Basic
issues on a distributed or decentralized DBMS have yet to

be resolved. One is the location of tightly-coupled DBMS

file storage. As nodes come and go, DBMS files may mi-

grate to stay within an active distributed processing
network. Not only is access controlled within such an en-
vironment but the files themselves must be capable of mi-
gration when nodes go down. Otherwise the DBMS will have
limited application to the distributed or decentralized

environment.

ate
5 "

‘s Bt e ",
.‘}~.:.-’.’) SR

AN A

= S 2

.....................

i s
A
s

s « .
L Ay te %
KRN R R

3.0 Integrated Software Support Environments

-}_{‘ LA

&

vZw g

Because of their inherent complexity, distributed process-

v ol

ing systems are best supported by an integrated software

&

Pl A
>N

support environment (ISSE). Such an environment provides
economy of support through tools which work in conjunction
with one another. This eliminates the need for obviously
redundant tools which are characteristic of the non-
integrated support environments., Integrated support en-
vironments also provide tool sets which can be used to ad-
dress specific problems. The modular nature of such tool
sets provides a flexibility which allows problems to be
subdivided into object-oriented task statements. Such
statements are compatible with emerging languages 1like
Ada, Pascal, and Jovial. Another desirable characteristic
of integrated support environments is their open-ended
nature, As particular applications need new tools, they
can be added. Tools to characterize particular target
structures and/or operations can also be added when
needed. This capability to add new tools as they are
developed makes such environments easy to update and helps

prevent their obsolescence.

Open-ended integrated software support environments do

have their liabilities as well as their previously men-

.
tioned assets. As new tools are added to such T
N
oA
S
I. ~‘
57 .
o
.-. -..
o e
-,., ATt T A A e T Tttt .
A s N N e NS o ESATI
¢ -'_ n A . -’ ._.-.: R RN, . ‘_.-.,_ . . "-.‘_ e A N T e e e s e e et . TR « AN
N N N e NN e N T e el R WO E AR AN

environments, extreme care must be exercised. Unless
these new tools are added properly, their subsequent use
and recall within the integrated environment can be
severely curtailed. 1In such a case, the advantages of the
integrated environment will be lost. The probability of
such an occurrence is lessened by the inherent simplicity
of the tools themselves. Integrated support environments
encourage simpler tools since tasks are accommodated by
straightforward combinations of less complex tools. As
individual tasks are accommodated exclusively by their own
tools, tool complexity increases. Although such tools
would be difficult to add to an integrated environment,
they are precisely the type of tools which are noncharac-
teristic of it. Conseqguently, the extreme care which must
be exercised when adding new tools to an integrated en-
vironment 1is offset by the simplicity of those tools.
What appears to be a liability becomes an asset when the
tools remain sufficiently simple. 1In summary, the utility
of an integrated software support environment 4s a direct
result of the simplicity and/or complexity of the tools it

contains,

58

Tt e A e A AR I O T LR S e S s et S R A i

’n
_-'

~v
g
LI T |

e v
s
n‘-.'-

v
|

P T RIS PRI
P A (IR LN R N

O I TSR
7 RN T ol a eyt

A
A

2"
O

. « %
[

PV, L
Sl Wt
[

s
r

AR

~¥ T v, = o 7oAl e e LT R R A R B b |
b 3 R A -9 e e 5<p 8 o LA A IR A S LSS L R DAL I A RPRCH AT PR L T Tl P Pl
.

3.1 Impact of Ada h'f'_‘f-:

The major impact of Ada 1is the standardization thrust
which accompanies its introduction. As a new language, it

also has the impact of any new language which is charac-

VIS LSS LSS RN VYR,

terized by the change in features that it provides in com-

parison to other available languages. Additionally, to

e e P
AR A

meet the DoD objectives connected with the introduction of

Ada, the language alone is insufficient and must be sup-

SEELS S

ported by a comprehensive integrated software support

environment.

> 2

The standardization associated with the Ada language is
being infused into the required support environment. To
facilitate standardization the support environment has
been divided into three components: 1) the KAPSE (Kernel
Ada Programming Support Environment) which is the host
i dependent portion of the environment software, 2) MAPSE
(Minimal Ada Programming Support Environment) which con-
sists of a minimal comprehensive tool set, and 3) APSE
(Ada Programming Support Environment) which is a full en-

vironment based upon a particular MAPSE. The KAPSE

+ Al ol il ™

Interface Team is tasked with standardizing the definition
of the KAPSE Interface. Once a standard 1is established,
tools designed to it will be portable to any system with a

standard KAPSE. The task of establishing an APSE on a new

B Tt R S A A /S e AL et R Ui b e I ISl 20 AT A S S PR R N e Jion) - A S v

...................

e ‘0 S0 s
PR R

'ij host will be reduced to constructing a KAPSE for the new e

host which meets the standard and a code generator for the el

3: Ada compiler that is targeted tc the new host, along with ;}
;ﬁ a rewrite of any target dependent Runtime Support Library 1?:
e routines. This done, the moving of source code of any

?ﬁ desired APSE tool to the new host and compiling on that

i% new host is greatly simplified.

] Since Ada 1is a new language it will require the develop-

- ment of the various language dependent tools that are
-

ix generally available for existing languages. This set of

o

" tools is expected to change slightly as Ada was designed

o] .

y to help programmers avoid the known common mistakes. The
- Ada compilers will be required to provide some checks

0 . .

> (previously done by separate tools) in regard to types and

4§f range constraints., Ada compilers are also expected to

. produce set/used listings. A relatively new area for lan-

.\.

:: guage tools will be the analysis of the concurrency con-
A,
7 structs which are available in Ada. Taylor studied the
}. use of the rendezvous mechanism which is used in Ada. His
e o .
- research indicates that it will not be possible to con-

53 struct efficient algorithms in the general case where no

K restrictions are placed on the synchronization structure.

0N

$: His work indicates that algorithms can be constructed in

ﬁi certain clases of special situations. The principal

-

-~ feature of these special situations is restrictions in the =
v o
- e
R 60 '.:w':"
o iy
v{: - ‘:-q

i Y - PR P N L A
L it A i I S T A e R

-3
9
’

P A
s %

LAY {2
. .J\.}'-)'} el
¢ T
AR
_A.

A
»

R 2
- "o '.- ..- ’ . l.

runtime determination of the scheduling of processes.

Xs
s

When the scheduling of processes and process interaction

can be made deterministic, then efficient static analysis

algorithms can be constructed to detect a wide variety of
possible data flow and process scheduling anomalies.
Additional research needs to be conducted to ascertain if
there are restrictions on nondeterministic scheduling and
interaction, which will yield classes for which efficient

static analysis algorithms can be constructed.

3.1.1 Host Programming Support

The Host 1is the system on which a major portion of

L
SRS)

development and maintenance is carried out. This 1is the

f' system on which the integrated software support environ-

fs ment resides. Thus to support an APSE a KAPSE must be ;2?
A developed for the host system. Then a MAPSE must be Eﬁ%
fi developed which will include tools such as command lan- ?:%
23 guage interpreter, compiler, linker, loader, symbolic E?ﬁ
debugger, editor, formatter, database management system, é%é

f and configuration manager. Additionally an APSE for dis- ;i
tributed processing systems will be extended with tools to ?ﬁ:

assist a programmer with handling aspects specific to dis- ;;4

/ tributed systems. As Ada matures as a standard, APSE >--
32 tools will be moved from host to host. The most portable ;ﬁj
¢ will be generic tools which analyze Ada programs without é:i

I I P I o A T A A D I AL A o S A i A S AR A i

oA

T, ?‘¢
. S
CRRT N

5 156

7,7

- - -.a

2 WY
l."
«'2

«Ta"a "
e 4N

AN w4 e e

using implementation or target dependent information. 1In
the near-term many tools exist which are applicable and
usable without change. Although these are not written in
Ada and therefore cannot reside in an APSE, they can be
ho§ted on the same host as an APSE and be used to augment

the capabilities available.

There are also existing tools which can easily be modified
to recognize the Ada constructs pertinent to their
analysis without a complete rewrite. For the near-term,
it will be economical to modify these in the language in
which they are presently written. Later, when it becomes
necessary to rewrite them in Ada in order to facilitate
their installation in an APSE, any desirable modifications
which have been discovered during their interim use can be

included.

For tools that require significant extensions or rewrites
in order to be applicable to Ada, it may be desirable to
have them written in Ada. Due consideration must be
given, however, to the availability and suitability of Ada
environments in which to develop those tools. A cross
reference generator for Ada will be required to accom-
modate the multiple compilation units which Ada supports.
In conjunction with this it will need to be able to

generate 1listings by ungualified names and by qualified

H‘i‘*ﬁ*f-i

¢,
l')

s
‘aleln

v W5
P

e
X

Ul e &% 2
f &
2.4 % %

¥ ARy

=

s

n-"l T,
. 8, A
PR BT SV I R

&

L 4 & * - St M AN A WAt SRd Senll Vi WAL sl Sabh, S S

ot e A A e R el K e S 10 AL AL A CARMSUDALE SIEAERE RAREAL MRS LS S

names. It will need to distinguish overloaded names and
indicate which instance 1is referenced in each case.
Resolving overloaded references may be too complex for
rudimentary cross-reference tools as some cases are con-
text sensitive and require extensive analysis. In an APSE
a compiler can resolve the overloading and store the
necessary information such that a <cross-reference
generator can access it and quickly generate any desired
cross-reference 1listing with any desired level of
qualification. Additionally, certain "referenced by"
listings will require that a compiler store information in
the data base for the modules referenced by the module it
is actually compiling. A similar tool, the call tree
generator, also has to obtain information which may span
several compilation units. This may also be facilitated
by the compiler recording pertinent information in the

data base.

Static analyzers will be required to process Ada
statements in doing many of the now traditional analyses.
This will include detection of references to uninitialized
variables. It may be desirable that it also be capable of
indicating when default initialization is invoked, as Ada
has the capability of defining a default initialization
for data types. The strong data types in Ada have

relegated to the compiler the checking of the legality of

63

R I I S N A S A A et P A At A A AR bk QAT AR S A3 e 200 200 e 0 i il A ol i)

® -
B

—

data types, the consistency of use of variables, and type

matching of parameters. Other data analysis will include

::::

the detection of dead definitions of variables. This will oy
need to provide the capability to specify any variables ';3
which are memory mapped 1/0 ports in order that analysis EE
reports will be meaningful. i{
A relatively new area for static analyzers will be the Ada Ea

e s,

concurrency constructs. The element of concurrency also

adds cémplexity to previously mentioned static analysis of o

]
.
1.2

uninitialized variables and dead definitions of variables.
Problems that arise are situations in which a variable is
global to two or more concurrent tasks, with referencing
occurring in one task and definition occurring in another.
The referencing may occur prior to the definition due to a
lack of synchronization. Another similar situation is
when two tasks may define the common variable, but it may
be indeterminate as to which definition will occur first.
Again, due to a lack of synchronization, static analyzers
will need to be able to analyze the concurrent structures

to detect and flag these situations,

Another class of problems is involved with the scheduling
and rendezvous of concurrent tasks. Ada may have
eliminated the possibility of scheduling a task in paral-

lel with itself; however, it does permit multiple copies

1S 7 < LA T e Ty AT Ty T T T R BT e e
b 3 S TP A R IR S I i g T R P A I R .
L] "o

P v e
L]
»
A
. .

Bl

‘>, -
\‘r'll.‘

(] l‘lS
sSSP

.

P

/J

of identical tasks, and they may be allocated using an

. .
¢
LN
.

identical name, but the name can only indicate the last

Y
s

o
g .("
s -

task allocated. The Ada synchronization mechanism the

o rendezvous can permit a number of anomalies. A task may
- attempt to rendezvous with an unscheduled task, this is o
ﬁ?f not an error in Ada as the task may eventually be ié
Eﬁé scheduled. Static analyzers will be needed to detect when ;j
’\‘ tasks attempt rendezvous with tasks that will never be Eg
é% scheduied. A task may also attempt to rendezvous with a Ef
;ﬁg terminated task or a task which terminates prior to ser- ;;
ii. vicing the call. This will generate a runtime exception Ei
£§3 in Ada. It will, therefore, be desirable to have a static Zﬁ
§§ analyzer to indicate where and under what circumstances E;
‘ j this situation can occur. It is also possible that a task ??
fg& enter a state in which it will never service certain of 'gi
ﬁi% its entries. Other tasks which attempt to call those en- R
. tries will wait forever. Situations of this sort need to
:ﬁi be detected by a static analyzer. Ada has a restriction
E?E that a block, subprogram body, or task body may not be
; left until all dependent tasks have terminated. This may
;g lead to situations in which a task is deadlocked because a
:5: dependent task is in a nonterminating state or cannot
};. proceed to termination because it is waiting on an event
'§§ which will not occur. Detecting these situations with a
%;; static analyzer 1is desirable. As previously mentioned,
T.
2o
a;z " ;
5 N
T e _ L ‘
P AR AN AN ‘ A SO LI e PRI AR - e

R N A AR SO O OSSN S LA NEACAE L1 2 A2 SO E A C G INLIOUIA A AU i Al G RN

y.
this will be d@difficult for programs in which the 'Z
scheduling of tasks is nondeterministic., E
l‘?

A similar class of problems deals with the allocation and

| RO

¥
A

termination of tasks. 1In Ada, tasks are not necessarily

o

dependent on the block, subprogram body, or task body in
which they are allocated. It is, therefore, possible to
allocate a task using a local variable, then exit and lose

any means of accessing that task. This is not always an

error, as the intention may be to start up an independent

active task with which no additional interaction will be
required, This may even occur at the main program level,
as a task may be dependent on a library package, and
therefore, may not be reguired to terminate prior to the
completion of the main program. Such an occurrence
generates an operational task which appears to be an
orphan, i.e., it has no living parents. A static analyzer
should easily be able to discover the tasks which belong
in the above mentioned categories and provide a 1list of
them for consideration. Another scheduling problem can
occur vwhen an unlimited number of tasks can be generated
without requiring that any terminate. These situations
are difficult to dissect with a static analyzer as they
are quite often very dependent on external stimulus, A
static analyzer should, however, be able to flag these

areas for further examination. A thorough static analysis

AR SRR A CR ARG A e SR) i
i z
. -
E; of task scheduling would produce statistics on how many of i;j
ii each type of task could be in each queue. An analysis uﬁ{
kj this thorough 1is ambitious even for deterministic ;fﬁ
;; scheduling cases and likely impractical for many nondeter-
= ministic schedules. The problem of orphan tasks exacer-
g bates the situation.
4
oS
] 3.1.2 Target Programming Support
i Ada's main impact on the Target Programming Support is
X that it is a language that supports concurrent aspects in
§ programs. There are several features that current
i research has recognized as required to support distributed
processing. They are: 1) a basic software unit for
‘ distribution, 2) a means of exchange of information
; between units, 3) a means of synchronization between
’ units, 4) a control structure to handle nondeterminism, o
; and 5) a kernel to interface between high level program ::?
% language and hardware. Ada provides its particular brand .};j
: of each of these features. Eﬁg
YRS
2
One is a basic software unit for distribution which is em- E;%
bodied by the task in Ada. They may be specified at com- ﬁ;;
‘E pile time or allocated dynamically at runtime. The Ada EEE
5 loop construct permits a run forever version of a task. i§§
However, a task may terminate by completing its code or by %é;

a terminate statement in a selective wait statement. It

can also be the object of an abort statement. The maximum

BN
—

fod e
permitted number of active tasks 1is limited only by E;S
available resources. There is some control over resource -;gz
utilization provided to the programmer through the ?ié
specification of storage space allotment for a task or ;ii
task type. The interrelationship between tasks is hierar- gﬁ?

chical as each task is dependent on the block, subprogram
body, task body, or library package in which it or its ac-
cess type is declared. Calling another task, however, is
limited only by visibility rules. Thus a programmer has a
great deal of discretion in the call structure he
utilizes. The call mechanism known as the rendezvous in
Ada is a well defined synchronized interaction mechanism,
Another means of interaction would be via global variables

for which there is no implicit control other than normal

.t

scoping rules,

A second necessary feature is a means of exchanging in-

formation between tasks. This is supported by the above

R

mentioned rendezvous in Ada. This high order language

. 8
P

construct hides the hardware configuration from the pro-

gram level software. It utilizes the very powerful and
general technique of meéssage passing. Automatic buffering

is not provided; therefore, the first task ready to com-

L A A o8 f -

!

b municate is blocked wuntil the other task 1is ready.

5

.

lﬁ' 68

)

b N

’ :

-..,.J‘.,‘ - a\}‘tn.\‘v'v-‘ i“.-.- \..-_.‘-\ 'i:.'\., \.N\'."'f‘.-"'\"...",’ ‘,._”.“_. " ..,..., (O -..‘.._.'«A: B ". .{ .- ,...,. L L - IR

s I A e T T e e

)) AN N e

WK VY. YD S R Wl Vo L Tl i el i

Because of this blocking, the rendezvous also satisfies
il the third required feature which is a means of
?g synchronization, In Ada the rendezvous is not reguired to
ﬁ: include a parameter 1list for message passing, thus
il parameter passing overhead is not imposed on rendezvous

used simply for synchronization. An additional feature

included with the Ada rendezvous is a critical region of
code which is guaranteed to be executed prior to the call-

ing task being released to proceed with its own execution.

The fourth feature required is a control structure to ac-
comodate nondeterminism. This is provided by the selec-
tive wait construct in Ada. There are additional select
constructs which provide for conditional and timed delay
on rendezvous requests. Conditions may also be associated
with each possible rendezvous in the selective wait

construct.

The fifth feature is a kernel to act as an interface
between high level program language and the hardware. A
kernel, because of its interface role, is extremely sen-
sitive to the hardware characteristics as well as the
language. The Ada language definition does not address
the kernel. Ada is intended to be used on a variety of
target systems; therefore, a specific target system hard-

ware has not been defined. There is a move to define

e TET B " "
Se e .

< specific kernels by developing formal requirement

- specifications for Ada Target Machine Operating Systems

for the target machines used in military systems. 2

In the distributed processing environment, the target -
operating systems must provide not only an interface to -
the hardware but must also support an interface to the <
distributed structure of the entire target system b
environment. It must correlate the Ada tasks, which are
software units for distribution, to the distributed
processing units in the hardware system. This a non-
trivial problem and has a multitude of possible solutions.
Some possibilities are one Ada task per processor, or any
number of Ada tasks running indiscriminately or any number
of 1identical processors, or selected groups of Ada tasks
running on specific different processors. There are other
more complex possibilities such as systems which permit
Ada tasks to migrate from processor to processor via sub-

program calls. Particular associations between tasks and

processors supported by individual target systems will

> "
5
'd

vary greatly. For this reason system designers will need

«
)

)

modeling tools to support rapid prototyping and

posl

simulations in order to try out various possibilities and
make intelligent decisions concerning the best target sys-

tem for each specific application.

Y

‘r\'-.'v‘..' - \-.."'...0 \- _";- " '”- 4.‘...-..".._ -.q_ .\ T N T N S S U e "- .
'&"-b":\‘;.',xfsﬁu’_w;-,‘:\ﬁ-.::-.:’,ﬂ'f SO IORRR LR S e LT
Wiy '\'s."s.-s‘--),«.'-. " e

L0s At Ade Seoeron 3 o ftous e i Sean S 6 B SRS VIR St St R St AP
. A% IS B I aa - e v p4n i PRLD A Rl I e v ren B B AU SRR Ol AT R AR ST - s
la 2 s 29 el i e A R e B SR LD LR R v o

.

¢ (O

LA

- a

Scheduling of tasks is another aspect which must be sup-

.."--',' S ";

. ported by the target operating system. This can vary
= greatly both with what is supportable by the particular
* target system and with the requirements of the particular
application program. In some systems scheduling may be
deterministic, in others nondeterministic. 1In conjunction
with scheduling, allocation of resources to tasks may be
static or dynamic. Complications arise when tasks in one
process can initiate or invoke the scheduling of tasks in
another processor. In some systems the control of
resources will reside solely within the network operating
system. In other systems there will be a need for Ada im-
plementation pragmas which will provide limited control of

resources to the application program level. Again,

PR

[IR
*

ta'al

P
alel
PPN

modeling of resource allocation will need to be supported

 =d

EI

L.
PRETRE A
.
» A
' .
i ‘ '
(]

so that various schemes may be evaluated by the designers

4
-
WL

prior to commitment to a particular scheme for Ry
implementation. ;{ﬁ
oS
Another level of support in the operating system is for ¥#§
the intertask communication embodied by the rendezvous in -
Ada. The operating system must provide an interface)
between this software communication mechanism and the ac- L;§
tual hardware communication between distributed
processors. The solutions available here are closely tied .
to how tasks have been distributed throughout the system, éff

71

If tasks have been assigned one for one to processors then
the software rendezvous can be implemented directly by the
hardware communication mechanism. In systems using a
homogenous structure of identical processors the rendez-
vous could be supported strictly at a software level, thus
only indirectly affecting hardware processors through its
affect on task gqueue status. For all the other various
system structures the rendezvous support may require more
customizing in order to accommodate rendezvous between
tasks residing in the same processor or processor group,
and to accommocate rendezvous between tasks in separate
processors either identical or of diverse types. Passing
rendezvous information between processors is complicated
by the blocking nature of the rendezvous since in most
cases it is desirable that only the task and not the
processor be blocked. These types of interactions will
not only need to be prototyped during early states of
design, but also need to be exercised in a full scale
simulation or on the actual target system during the
coding and implementation phase in order to tune the sof-

tware to provide the desired response.

3.2 Design and Development Considerations

With the near-term certainty of distributed computing

systems, as both host and target, much attention must be

72

R
.

-t atar .

«* T ®
A R

* ‘\N‘. ..l..'.\-\..‘ .‘_"- -‘h.

........

T . - et e -
LA . . ISR
- - w ot T ot .. - - ~ . - . .
“~ - R U e e b
- - . - . =~

T, P A I O R S R A T O

o auhene hisww _Shaetel Slasw Siaat JRatt RinhL bt el Rl et Bt ath L Sl ShaiR 4
L ALV sl an st bl R Lt ‘-_‘~“_3',-. \-1__."_‘-\1 SR U T)

e el e
N {3

I

L7

given to the methods and vehicles used for system

XX 3o

s l(-l..‘,

4.

development. The development of distributed systems is in

some ways similar to the development of conventional, cen-

tralized systems, but in many ways far different.

Yy
<

T P T
(A o

e
»

Workshops must be aware of the fact that environments that
support centralized systems development cannot simply be

"massaged"” slightly to accommodate distributed systems

2

development. Rather, an ISSE must be built for the

specific types of distributed systems to be developed.

As discussed in section 2.1, the current military systems

”

range from centralized to what can be termed "moderately

a & &
‘-J\J NN

distributed" (see Figure 2-2)., For the near-term then,

4 5

tools needed to build very loosely coupled systems need

not be included in a military ISSE.

The rest of this section deals with the types of tools and
methodologies that are of prime importance for building an

I
5
] ISSE for military use. First, some overall policies and

basic tool requirements are presented. Then, the specific
impact of distributed operating systems, interconnection

architectures, and data bases is presented.

Design methodologies and the methods by which these iiﬁ
methodologies are conceived must be altered to reflect the ﬂﬁ;i
nature of distributed systems development and the problems %;%

Y e LS Ly T e e e T N T, T RNTST AT T

«eteV'atw'ats ‘aTe‘a"e" W P A L T S A A AP IO B S S P S RO

& §

-
* q‘l ‘- .l ..‘

B
a L
A PR N N

ﬂ?&ﬂ
e

4

,‘.
S

r
R 3

L

!
!

LN
A
L]

MRS
2
DA

&T
Y
Iy JONDN

-
* 0

inherent to it. The main responsibility for prevention,
detection, and correction of errors must be assumed by the
requirements (taken here to mean both requirements
specification and analysis) and design phases of the sof-
tware life cycle (see Figure 3-1),. Conversely, the
coding, testing and maintenance phases must be relieved of
as much of the responsibility for system soundness as

possible. The main reasons for this are:

1) EASE OF CORRECTION & DETECTION - If errors are
detected and corrected in the requirements and
design phases, much 1less effort is required to
correct these errors than after they are "hard-

coded"” in the implementation phase.

2) COMPLIANT SOFTWARE - Traditional error correction
and detection (coding, testing, maintenance
phases) leads directly to noncompliant software

which can radically shorten the system's life,

A more detailed discussion of these issues follows.,

74

RO NV A S T TR T LN Y

A SN

2
‘a

RN RV

A

-,
[}

w O

LISA N

4

0

U I P

MO g g DR T TS Y Y TR AT
REQUIREMENTS
SPECIFICATIO
REQUIREMENTS
ANALYSIS
DESIGN
f 1
IMPLEMENTATION
[(CODING) ‘
TESTING
MAINTENANCE
DOCUMENTATION
Figure 3-1 Generic Life Cycle Phases
75
. ‘:". RS _-;‘:\.';.'_‘. . -\..\’. ..
e A AL ARATAL AT AN Tl

e,

-
.ﬂ
Kl
.
-

1

v

o r’ e X
. Dot e e
- » 1 . .
P B

NN

ity

- =y T T W T T TS TR TR T % W
e .'..f."\‘\‘..' 4“-\~.'.\ . At et Lt et

Since the definition of distributed systems states the
presence of more than one node, once the software is coded
it becomes truly distributed. Software errors usually im-
pact other elements of software (and usually other nodes),
and therefore, error detection and correction requires the
identification and correction of any and all software im-
pacted by that error. For example, if it is decided that
a data type be changed, then a maintenance programmer must
find all statements and declarations that reference that
type and update them accordingly. This task is extremely
time consuming, and system degradation is almost certainly
accelerated. When the software is distributed over many
nodes, totally repairing an error is a very difficult task
for a programmer to perform without the aid of tools, and
may leave the system in worse shape than before. 1If the
error is detected in the requirements or design phase,
correction is far easier and system integrity is main-

tained much longer.

The insurance of software compliance, or implementation

DI
. N
Y
- e
RS
>
" .
o
.
L)
R
P
Caft
[
"

that complies with its design, 1is another argument for

B AL

shifting error detection and correction "upward" in the

T
" b. e e
CROKE
A

software life cycle. If errors are detected and corrected

it

after the final design, it is easy for the software to

AR RN N
AN

become noncompliant and, therefore, not as maintainable as

&

it should be.

7]

4?':';
A
- e

76

L]
L4
A 0,

XA
'. .‘l ‘.‘ .\ .

;Sgg This upward shift of responsibility in the software life
jii cycle must be implemented by development methodologies and
§§§ the framework used to form these methodologies. This
?ﬁﬁ. framework must be designed to produce methodologies that
;3' place special emphasis on the requirements specification,
E;E analysis, and design phase of the software life cycle.
- With the importance of design methodologies recognized, we
Eéii can proceed to a discussion of the creation of an 1ISSE
'S that sufficiently supports production of distributed
'f; systems. This ISSE will be composed of a standardized
{5% minimal tool set (see section 3.1), as well as all the
;Ei tools necessary to accommodate any and all methodologies
: N that might be developed. The remainder of this section
discusses the major tool needs and sketches outlines of
| their design.
?J There exist several areas of tool classifications that
'ig need improvements or extensions to make them useful to the
Tﬁf software engineer who is building a distributed system. :
f Many of the tools that exist now and were designed for use i
\ on centralized systems development lend themselves well to ?
;f distributed systems as well. It is not that old tools %j
jzi will no 1longer be useful in the distributed environment, ig
;ﬁ but rather that more tool support will be needed due to Ei
-
‘ :.% 77 :j
ad »

(J.
F

SIS AL P
<

o . . et AT Rm - T At e e Mgt ta e e e

3 MY R NS N‘-' ~\-‘~'-" ot I (S ,'--'-,".' N .-'." ‘e -,'-,“~ St Tl o e e, e
o oy = u . ‘I‘..- 'V'q‘.. L ': e '-',~ “ . . 7'- * "~ :- T * . .
AN TR TN AR o AN S Wiy w

AN

A 125

"l‘ " J...

P

PR

-.. " ,, - S . . -
e e e .t
AR ST A R AT

the non-deterministic nature of concurrent software. The

areas of particular need are:

1) AUTOMATED SPECIFICATION LANGUAGE/ANALYSIS -
Network communications are not specifically ad-
dressed by any current specification language,
and this area should be the one most stressed for

tool development.

2) STATIC/DYNAMIC ANALYSIS - The existing tools need
to be extended to tell programmers when the poss-

ibilities exist for certain concurrent software

phenomenon.

3) SOFTWARE INTERRELATIONSHIPS - The internodal
dependencies of all software in a distributed
system need to be permanently catalogued to

reduce time and cost related to the testing main-

tenance phases.

A more detailed discussion of these areas follows.

The methods ¢urrently used to assist in the systems
requirements and design phases are insufficient to fully
support development of distributed systems. Since it is

of paramount importance to give the development of dis-

78

................

SO

S
e V'-_'-_\.‘.'._._-.
N v W s w

...........

-y
L)

y T “cje v . T - . T Te e e
o Dl Tre 3% 2w e dire T - vE o . R P R R R R
O . sty Sath Wi Maty 2 A AN T 3 1 IR D TR AR S AT : N .

T
a’ e,

‘l

.
.

LA

'E; tributed systems maximum support at the reguirements and
{x design phases, new methodologies and tools must be
Ig developed to further automate these phases. Automation of
Ei these phases is the key to making the design methodologies
N as useful as they should be. Specifically, they must ad-
ﬁ dress the issues of protocol definition and bulk data
'é communications, to assist in determining optimum network-
ing methods. These tools must also produce reports that
%f are easily reviewed and modified by humans and then fed
g back to the computer to be reanalyzed. So-called
{ "Feedback Development” must be used when developing dis-
;i tributed systems.
5
. Once the requirements and design phases have been
‘ completed, the programmers charged with implementation of
- the defined system must be provided with tools to aid them
. in producing sound distributed software. 1f the
1? methodology being used is a good one, the programmer will
'; be provided with a specific design with all of the dis-
N tributed processing considerations already addressed and
- resolved.
é: The problems arise when program errors inherent to dis-
i? tributed processing occur and no testing tools exist to
;* detect or prevent them. For example, orphan spawning (see
b section 3,1.1) and deadlock are two of the problems that o
g 79
2 NN

o

,
»
¥
v %
aal a e

pd

. O Soet
R |.‘.'n'-"." %
s 0 v ’ » .o
Py u oy

arise in distributed software and further study is

i{ required to specifically address these problems. Static .
%ﬁ analysis techniques such as path analysis can be extended tﬁf
ii to tell programmers when the possibility for these -EE
. phenomena exists, and the programmer can then investigate fii
%5 further. For example, if a programmer wants to test his]
Tgl code for orphans, static test tools (extensions of exist- ?iﬁ
1; ing ones, that is) can analyze the program and identify g;i
§5 points in the code where orphan processes might be spawned v
{S and which processes they might be, Because of the non- %

deterministic nature of distributed software, current
a¥ static analysis tools can do no more than this. Dynamic
- analysis tools also need to be extended to allow for

{ detection of orphan processes via instrumentation schemes.

:EE Finally, the problem of software interdependency must be
‘i addressed. Distributed software that is non-deterministic
EQ operates as separate autonomous entities, and maintenance
r; is extremely difficult. When one area or module of sof-
_ tware must be altered, the impact on other modules is
Ei usually far reaching and unpredictable. Since maintenance
EE represents approximately 75% of the software life cycle,
;: and even more in the distributed environment, tools and
fé methods must be incorporated into any ISSE to help
Gﬁ categorize software interdependencies. Although tools
i; that manage these types of software interdependencies
Eﬁ

< 80

exist, there are several shortcomings with them. First of
all, the data 1is not managed by computer, and usually
takes the form of a post-mortem 1listing. Therefore, no
categorization 1is performed and no easy cross-reference
ability exists. Second, the only way to build an accurate
final copy of the relationships is to manually update when
modules are recompiled. In a large distributed system,
this task represents quite a problem. Therefore, a tool
must be developed to completely automate these data col-
lection and management functions. Figure 3-2 depicts a
tool that makes use of the symbol table built by the com-
piler to collect software dependency data. This tool
builds and maintains a permanent data base consisting of
this symbol table information. This data base can then be
queried interactively by programmers or evaluated by the
static analysis tools of the ISSE. Programmers could then
determine all of the changes required to repair a problem

and avoid hasty and ill-advised "patches".

%
o

o

. . S
at_a_t_ s

T T

P .
[SERRY S
R R A B B

s

7/

0 O

81

a’s's
.

RN
o
“~

A

...........
......................
................

LA \‘.._' 2.
SR R

A

gt 2y 4§ 4 (] - -
NOAC AT AL AC SRS ARAE A N ARSI A M L A M KA PI S 12 Mk A% eci M e ey o

S
L

—_—

\ SOURCE OBJECT
e CODE COMPILER COLE

.

Yyt 4t
DR}

s

DBMS

At

MO

R

YA

7 1d

[DATABASE

477
SYMBOL TABLE (\

INTERMEDIATE
CODE

_l',l‘ _.l. -'_"

ot

~ -
]
A

b il

u, 4y 8,

P
L]

2,

l_ -"‘ “‘. -

INTERACTIVE STATIC
DATABASE ANALYSIS
ACCESS TOOLS ANALYSIS
REPORTS

‘\/ |

'}

[o &
“‘ _.l _":

S N

.

WX
ﬁ Figure 3-2 Data Flow Diagram of Generic Software
! Dependency Tool

82

1..{"."..".' ..-J 0’ Q.“.'. - .. .
DA A A TR

U

IR
St

.'.'.

- L] -
L e : R

e A "N SRR A DR A R A A .

VU S W Y -i_'n'n-‘\'ﬂ:;': L':' ':i:'.ﬁ y

. N Paniiiihondl M i R
m. DAL R AU ot A S Gl ARSI L AL L NN NN AN R RN
: N S A R e L I A
o

This technique would greatly slow the phenomenon of

!’ "software rot", a major problem with distributed software.

e, These tools designed and added to a standardized tool set
will allow for more efficient and complete distributed
system design and development. Most importantly, the
methodologies adapted by a particular workshop should all

be totally supportable by any such ISSE.

Any ISSE built to support distributed systems design and
development should have the characteristics outlined by
the preceeding section. Also, the specific types of dis-
tributed systems to be created has an impact on which
tools comprise the ISSE. Following is a discussion of the
three most important variables used in describing dis-
tributed systems. The military's near-term target com-
puter systems are analyzed with respect to operating
systems, interconnect architectures, and data bases, and

the impact of each of these on the ISSE is presented.
3.2.1 Distributed Operating Systems

Distributed Operating Systems (DOS) are the entities thac
coordinate the activities of many concurrently functioning
processors and other resources. The scope of this section

is limited to a discussion of DOSs only and not individual

- RN - X

---------- e L S e D e
-------- Al - ~ A < o - L) . - ~ . - - - ~ -
. X o R ..--.‘-._ ."‘_’ --------- S A LI S s
N O AR Ny RO ASERINES :\"a-.“\

AAAAAAAAAAA

.............

i
o
Constituent Operating Systems (COS). Distributed process- E}%
ing considerations only impact COSs when it is being :i;
determined how much, if any, of the COS responsibilities Eﬁ&
will be relegated to the DOS when designing a network. 3;5
o

This section also limits its discussion to the military's

current and near-term distributed systems technology,

..l"h.'
AERTIREE
RN O

e.g., low to mid-range distribution of control (see sec-

tion 2.1). The basic functions of a DOS and its design E;;
considerations are discussed with respect to the ii;
military's two basic distributed processing areas: com- ‘fi

N
munications systems and weapons systems. -i%

Although communications systems and weapons systems occupy

mutually exclusive volumes in the distributed processing

PN 4 LI L
b ,

three-space pictured in Figure 2-2, the design and B
N

development considerations of the DOSs for these systems "
are very similar. The functions which both types of sys- ef‘
tems must provide are the same, though these functions :i;
A

vary in relative importance. Three basic functions are: fﬁi
.

1) Resource management (including data ﬁi"
transfer/communications) :Qﬁ

=

2) Fault tolerance/recovery s

3) Transparency of system control. ;”

o

AN

A

o N

s

..
<
P

"""‘p y

'’

z2 R
s 4‘1 .-‘ . y
e
t

Resource management is the main function of executive con-

7}
./
r{'t

“

trol (DOS). This is the function of sending messages and
coordination of the different nodes of the network. These
resources consist of all the separate entities of the
network to be wunited into a single functioning whole.
Communications systems executive control typically manages
a large quantity of data transfer devices, e.g., satellite
communication links, packet radio controllers, as well as
the standard types of nodes. It is important for most
communications systems to be easily reconfigured,
relocated or added to quickly, so the executive control
must lend itself to this dynamic resource configuration.
Weapons systems, by contrast, are more static in their
configquration but their resources demand a high 1level of
coordination by the DOS. This is because of the stringent
real-time environments in which they operate. For

instance, up to date information on the state of all

processor queues must be kept or quickly obtainable to in-
sure the high throughput of time-critical tasks. So, i?ﬂ
though in each environment (communications, weapons) the “55

DOS must place emphasis on different resource management

issues, the same basic functions are performed by each ‘

type of DOS. £

Fault tolerance and recovery is another main function of

the DOS and, like resource management, receives different ;;
R
l-\\.
e

85 <

g R
emphasis depending on the type of system. Extreme fault ?i-
(~ tolerance is usually required of weapons systems and the ;yﬁ
33 DOS must be designed to accommodate this. High ;iﬁ
is replication of hardware and a highly distributed DOS, ;f%
‘ usually with multiple autonomous points of control, insure i?}
?E this high level of fault tolerance. 1In the case of com- Efﬁ
f munications systems, where faults can be tolerated f;i
- relatively more often, more emphasis is placed on quick, %;;
% state-resuming recovery. In these systems, though hard- fé;:
j; ware is often replicated, the DOS is uaually of a dynamic iéﬁ
i' master-slave nature. This usually takes the form of one Nt
{; processor possessing all the DOS modules and functioning Eii’
as master, but upon an abend, one or more "slave" proces- 52&
f‘ sors are capable of assuming possession of the DOS modules ";
} and becoming master. In this environment, the DOS is f;
: charged with the responsibility of maintaining a high de- .
N gree of state information 1in its local tables for ef- éff
: ficient recovery purposes. Also the various network nodes f;;
5; (especially communications processors) are designed to ;ii
retain recent data transmissions for a short time in case X o8
. the current master abends and another processor must as- iﬁ&
;Z sume master status. In this way, fault recovery can occur Eég
gi with a minimum of state information lost. E::
- e
: The network operating system must also provide trans- ‘
I parency of system control (a virtual machine layer) to all gsé
b~ RS
3 0s B
K~ R
s F
) b

AD-A137 687 DISTRIBUTED PROCESSING TOOLS DEFINITION YOLUME 2
APPLICATION OF SOFTHWARE.. (U)> GENERAL DYNRAMICS FORT
WORTH TX DATA SYSTEMS DIY H C CONN ET AL. JUN 83

UNCLASSIFIED RADC-TR-83-187-YOL-2Z F38682-81-C-08142 F/G 9/2

O T

B e
' ™ | kX m
== u ™"
j | L ¥ 2o
B T

EE

2 b

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

“o® f *v s rs v -
1‘\$\~.~.‘*)"f‘&.‘::‘:& % ‘.. ((- r\
f 5 \ L] \'.ﬁ*
b W b'l"s\s\s’is\‘kn ,LL\ ‘-ﬁ L%,
2 rdr;{ﬁ oo - vy -»m wowiorollihys - vy
Y A
’ ".’ ."'ﬂ-"ﬂ."s’ﬂ."&":\ "'h 0 J:-y A '_ DA AR -3 J, oy '_
(I MEN “ATal ol \ ok ::!f&'.:j\ e :,-\.._',_ -
RSSO0 ") e “ AN D¢ My e
q

.‘7 it l‘(

1.: il Male

o,
5505

.........
......
........................
.............

(4

A

i
N
wa
;ﬁ user and most applications programs. The exception to
R this is found in some embedded weapons systems, when ap-
Qg plications must be programmed using knowledge of the
Ef; network configuration. In these real-time systems, the
n DOS functions mostly as a communications supervisor, turn-
< ing much of its responsibility over to the application
k software. But wusually the DOS must provide a level of.
transparency allowing user and application to proceed
N without specific information about the different network
§§ nodes. Reference by name, rather than address, is an
Z example of this. In communications systems, this DOS
,z function enables packages of messages to be sent by users
§§ to people without concerning themselves with the specific
N location and routing information. Flexible DOS protocol
technigues implement these communications and allow for
2 easy reconfiguration of the network. Likewise, the DOS in
. most weapons systems allows for applications software to.
.;E be designed and run as processor-independent code. Also,
& interprocessor communications are handled by the DOS
allowing, for instance, an application program to
reference data without knowing which of many data bases it
23 is stored on. Such flexibility serves to greatly enhance
: fault tolerance and retard system degradation.
i The design and development of these distributed operating

systems is quite obviously complex and the overall per-

..........
...........................
.....

) * COR AT SR O g Nt S P SR Rt I T)
O T S LN N A AR N AR Y |

{ x"(f')".é‘

‘!‘-.
>,

éi formance of the resultant network depends highly on the
- soundness of this design and development effort. As is
-Ei the case with distributed target software development, DOS
:§ design and development must be accomplished within an
- 1SSE. The extensions to be made to the ISSE discussed in
ES sections 3.0 and 3.2 in order to accommodate DOS develop-
SS ment are few. The need for tools and methodologies in the
" requirements specification phase, the requirements
;ﬁ analysis phase, and the des?gn phase, is particularly
53 pressing' when developing DOS software. Specifically,
;1 simulation tools that expose the operating characteristics
§§ of models of proposed DOSs must be incorporated into the
o ISSE. Several simulation tools exist today that test the
P operating characteristics of most of the network models
E; being proposed. The only shortcoming is in simulating in-
iﬁ terfacing between nodes that are not compatible as far as
,; protocols and data structures. The encoding, decoding,

and transmission of data between nodes using non-

standardized protocols needs to be simulated accurately in

-
)
)

R Py

order to satisfactorily evaluate proposed models in the

‘4

J design phase,

)

~-l
0

- Beyond the need for this added simulation capability, the
1: ISSE discussed in earlier sections will prove to be suf-
{ﬁ ficient to support the design of distributed operating
)
i; systems. When development of the DOS is conducted
8

o 88

&

.« "%t a

.......

- .\,'
e

RN

1 A N i i 2 - S - AR T S A

T ot LT
gmw“m-. L8 eou il el & £ & LA K Al WA DAL O S SESL SRR AL R S
.'ﬁ

separately from the development of applications software
targeted for the same system, i.e., most weapons systems,
the same methodologies and ISSE will be sufficient to

provide sound support to both efforts.
3.2.2 Interconnect Architectures

The means in which various components of a network are in-
terconnected has a direct and profound impact on overall
system performance. The schemes for interconnection, or
interconnect architectures (IA), can vary greatly from
system to system. Therefore, system designers must be
provided with the means to fully evaluate the advantages
and disadvantages of various proposed architectures before
committing manhours of labor to implementation and
detailed design. This function must be provided by the
ISSE (see section 3.0). This section discusses various
ways of classifying IAs and the types of tool support
needed within an ISSE for modeling, prototyping and
simulating these 1IAs. Note that specific architectures
and design criteria are not addressed in this section.
Rather, software design and support considerations are the
primary concerns. Finally, this section discusses some
second-level issues of the interconnection of various
networks and the problems in designing tools to support

these types of architectures.

89

Several major researchers have made attempts to categorize
different types of IAs. The one common factor between
these attempts is a range in IA design from very loosely-
coupled architectures to very tightly-coupled ones. The
various ways this continuum is broken into distinct clas-

sifications is not important to this discussion. What is

Y A B N
K3 'u"\;_\”‘..' y

important is the fact that there exist different clas-

".I
RN

sifications of IAs, and tooi'éupport must be grouped in

i

i
v a

the same classifications.

r

o e 0 o>
-r.t_'-.n.
"oty

Figure 3-3 illustrates a proposed grouping of support

(NN
7 +
&

tools. For each IA category, IA , a corresponding group

"
:

l. 'l_ .'
PR

of tools, TG , must be provided in the ISSE.

» .
| AN

n-\ .
1\'
3
h\ .
o~
h

v

LA

«- ~ . ~a - e e -@ 8 ML) .'
[.-,'.f:'.'.'a,'.'\'.F,:):_'fcf_'.',:-’{.’_\'_:.:' o
X . K . . ua
PRI SO NN e, S

e -
AL RN, (Y SN Sa Ny,

: Yora . WIW o WIW Y a™NMdNE~ ™ RN,
LS e S Yy D0 o e DR I i R ACR B e Pl hev bat Rt AR et e~ il S oA N S A L ML B S A AR A

455N, Fr7 74
.Y-'~l:l

]
--.. -"‘
— ISSE]
¥ oS
@ .';-
e
!‘""?‘.;
A .

R g
N -
. -..h. "-
¥ o NN
> A
N K
) 1A, s
- ".q.!’-
- M Lo
5 ?{n‘
B A
N [] -\ A
P ~ -
- -
L 4 (R € o o
N
- ._'-' :\
“ ,‘-‘:',
~ AR
) IAn
2 L

LEGEND PR

1A { = INTERCONNECT ARCHITECTURE ST
TG TOOL GROUPING Py
ISSE = INTEGRATED SOFTWARE -~

SUPPORT ENVIRONMENT e o
SIMULATOR B

RAPID PROTOTYPER

. e A

SIM1

RPy

> > oy

Figure 3-3 Tool Support for Interconnection
Architecture Classifications

91

ENONCACRENING

4

4
‘ \.‘~ (3
U . - o€, . P L P T R R ST ST SR S SRR - L - e > ™ -~ \ -~ w
S W, SRR ALY . - R AP S SR AT .-‘.» .) RUMCLERILELES P A |
v:. et A,:_ - \,’\. LY ~._.\ A ,_.: :" \.-‘. '._‘ o~ . ‘,.‘n hx\w *n".\ \‘_-‘.: SO :\\
. . '.‘ . - “ - . - - [Sad)
Y . N i o *-‘ ‘s".‘ '*‘

A
e I N B

‘I_l
CA

<

)
P A

B A
.'J"lk}r

-v:"‘
CAR A A AR

Al'

e

4/.." a
':‘_".-'.

o0
PR S

5 .."

7%

Rl
LA LR

) ;.'n
o

I

s
I'...

AN

-~ A

[RS

2! |

-
-

Different tool groups may consist of many of the same
tools. For example, the analysis and design of IA can be
completely supported by TG . This group may consist of a
text editor, one or more simulators, a rapid prototyping
tool, etc. Some or all of these tools may also be part of
another tool group, but the union of all the tool groups

is the total set of tools needed to support any IA design.

As indicated above, the requirements phase of the software
life cycle is where most of the tools to support IA design
are required. Specifically, rapid prototyping, simulation
and modeling techniques and methodologies must be
refined/developed to support the entire spectrum of IA
possibilities. There are several aspects of distributed
architectures that suggest changes required to simulation
tools. The remainder of this section deals with these

issues.

The current general method for iterative modeling is top-
down, That is, a model of the overall system is
developed, then simulated, and from the results of the
simulation a new, more specific model is developed. This
process continues until the results are sufficient to make
sound design decisions or wuntil the simulator tool(s)
being used can get no more specific. Unfortunately, the

latter is usually the case. For this reason, and because

92

0
Y

=

-
0

B, 4
£ a0

networks are becoming increasingly complex and layered
(e.g., networks within networks), it will be necessary to
use simulation tools to simulate various nodes of a dis-
tributed system while the overall system is itself being
simulated by a tool using the data from the nodal
simulators. Take, for example, the design of a dis-
tributed system consisting of four major nodes, A, B, C,
and D. Each of these nodes is in turn a network of its
own and may or may not be implemented already. It is ex-
tremely advantageous to be able to test different IAs
before deciding on a final configuration for the overall
network. To this end, the four nodes A, B, C, and D can
be simulated while another tool concurrently simulates the
operation of the entire system using the simulation of A,
B, C, and D as inputs. As stated earlier, the tools
picked for incorporation into the ISSE must be able to
support the design of the entire spectrum of IAs. Also,
they must be capable of operating concurrently together as
any level of a proposed network. Much further study needs
to be done in this field before tools that possess this

functionality can be built.

Keeping the ultimate goal of a highly functional, modular
set of simulators in mind, a repertoire of simulators can

be built up 1in 1ISSEs. There already exist network

simulators which are quite flexible and powerful. They

e
LE
&
f;é need to be extended to reach the desired goal of
’: functionality. Such extensions are necessary within the <
Eg near-term time frame. §E
15 :'
N]
| 3.2.3 Data Bases e
f% In section 2.3.1 a discussion of data bases in the context ;ﬁ
" of a decentralized system was presented. However, such a E?
.,3 discussion is incomplete wuntil the impact of data bases Eﬁ
'§§ within the target environments is discussed. These target ?;
| environments are the weapon systems problems. State of ;ﬁ
§$ the art development systems involving host-to-target down- E?
;ﬂ loading characteristically operate on a point-to-point 5;
A basis. In other words, a single target's program is ‘ﬁr
‘*j developed and downloaded from the host environment. When i%
25 programs for more than one target are involved, they are EE
] developed on a sequential basis for one target after ?w

another. Underlying such approaches is an implicit as-

sumption that targets themselves are controlling their own e

| gz
XA
a_A

resources, e.g., memory and mass storage. In reality such

X
&N

b"': control is often shared, e.g., two targets accessing the ::
,x; same memory buffer. This happens in a tightly-coupled ar- g;
%:' chitecture and when it occurs the data base can be l%
ég described as the contents of that shared memory buffer. :

;Eg The complicating factor is that such a data base is not %é
it under the complete control of either target. Furthermore, e
b =
35 94 -r

N

when one target goes down, the other continues to operate
as long as the memory buffer functions. If that memory
buffer malfunctions, both targets lose access to the data
base. Of course the data base could be important enough
to be provided redundant storage, i.e., an alternative
memory buffer in which to reside. 1In either instance, the
applications development environment of a multiple target
configuration is not a straightforward use of point-to-

point communications between host and target.

Application programs residing within targets manage the

databases controlled by those targets. Such management

addresses the following issues:

how the databases are structured;

° how interconnects between targets are
accomplished;
L how the "typical" application is accomplished;
[how the data model is structured;
° how the targets are synchronized;
] etc.
95

._.:-..:J:;:.-:‘. :’-.’:i: ‘..:' .

Lol
e %

25} el AR LM T e et At A A A R R AN A L AR AN S Ak iy 3 i) T

The key motivation behind such environments is high data
base availability and accessibility. When data bases are
shared between targets, the objective is to increase ac-
cessibility while enhanching reliability. In fact, the
reliability of a system composed of several targets is
greater than the reliability of each single target.
However, such gains in reliability extract a price in
terms of data base software. The data bases must remain
accessible even though targets malfunction. Coping with
such failures is not an easy task. Furthermore, ef-
ficiency suffers when more and more coping takes place. A
graceful degradation is required which departs from the
point-to-point orientation between host and target. To
illustrate the problem Figure 3-4 presents a redundant
DBMS scattered throughout a network composed of four
targets. Jobs submitted to the network have been
segmented. Auxiliary Directories are provided for each
nectwork job for backup purposes. Each directory as-
sociates itself with a particular host and documents the
source of that host's segments. 1In case that host goes
down, a backup Auxiliary Directory is provided on an al-
ternative host. This duplicate directory can be used to
regenerate the original host's Auxiliary Directory when it
returns to the network. The threesome composed of the
DBMS job, the Auxiliary Directory, and the Auxiliary

Directory Backup, addrese ietwork tasking but ignore the

AR N LA L S T A
DR R Y - 'g.‘]

o
d

L)
y
L

b

==

L
" "s'_..'..."../_ '

T

.
]
P

o
1]

88 8 .tl :t:'? >

.

N

¥

}

KA DN, -
X SRR

distributed data base problem. Consequently, Figure 3-4

includes DBMS files associated with each host and provides
redundant backup. That backup resides on a different host
within the network, i.e., the same host providing the
Auxiliary Directory backup. Under such an architecture
the ingredients for graceful degradation of both the
network operating system and distributed data bases are
evident. When such degradation 1is perceived becomes
important, Obviously Auxiliary Directories and their
backups should be updated coincidentally. Point-to-point
communication does not achieve such coincidence. When
Host A originates a segment for Host B it updates the
Auxiliary Directory for Host B as well. However, updating
of the duplicate Auxiliary Directory on Host C should be
done coincidentally. In point-to-point schemata Host A

updates Host B and then Host C.

97

s
1
/]

iy o

"—I s, "‘Il

]
.

‘l

o«
s 8

P A A
AN

Host A Host B Host C Host D
etwork OS Network OS Network OS etwork 0S
Network ALT
Rezwork CPU
[Network Memoryl [Network Memory] [Network Memorz]_ Network Memor
Host A Host B Host C Host D
DBMS DBMS DBMS DBMS
Files Files Files Files
|Access Contro]] [Access Control] |Access Contﬂl]
DBMS 0s BMS oS BMS oS
[DEMS _ALU
[DBMS Job W [DBMS Job X DBMS Job Y [DBMS Job Z
1 [Examine Files) 1 Examine Files] 1 [Examine Filed |||l [Examine Fileg
2 2 2 2
3 Eioduce Rego;tJ] 3 [Produce Regortl 3 [Produce Repor 3 |[Produce Report}
Back-Up Back-Up Back-Up Back-Up
Host D DBMS Host A DBMS Host B DBMS [Host ¢ DBMS
Files Files Files Files
ccess Control Access Control Access Controll {| [Access Controlll
Host A Host B Host C Host D
Auxiliary Auxiliary Auxiliary Auxiliary
Directory Directory Directory Directory
A Job W1 AJobW1l AJobWl1l AJob W1
B Job X1 B Job X1 B Job X1 B Job X1
CJob Y1 CJob Y1 CJlobY1l CJlobYl1l
D Job Z 1 DJobZ 1 DJob 21 DJob Z 1
A Job W 2 B Job X 2 C Job Y 2 D Job 2 2
A Job W 3 B Job X 3 C Job Y 3 D Job Z 3
Back-Up Host ack-up Host A Back-up Host B rBack-up Host D
Auxiliary uxiliary Auxiliary jAuxiliary
Directory irectory Directory Directory
A Job W 1 A Job W 1 AJobWl1 A Job W 1
B Job X1 B Job X 1 B Job X1 B Job X 1
CJob Y1 C Job Y 1 CJob Y1 IC Job Y 1
DJob Z1 D Job Z 1 DJob Z 1 D Job Z 1
D Job Z 2 A Job W 2 B Job X 2 C Job Y 2
ID_Job Z 3 {A_Job W 3 :ggJob X3 C Job Y 3

Figure 3-4 DBMS Job Segmentation and Redundant DBMS File Storage

98

A

[: :
DRI
e

s o
-+

l.f
AN

VI
l-’ll

.
.

- - e .
[. ‘ s
N PRI ‘e

. s e PR
PSPV DT SN PLEL)

‘v b

22

AN & &
l"‘l".‘.
*s's s

.

)
'»

. s

Ty
;'c’
- I" l.

A

FAAd
AR
ala’ytalets!

'-.‘.." A o
A

DR ‘l.
,
‘LIA. l—..

2
DX

(8

- o .
IR R A
a ﬁ.“.‘ {L’A.,l_,". R '

3

» "}

3
7

N R

N 8

8 b4

.n‘ - -",
14

LAAAL G4

—~

; ";’f.';‘.;é‘.

o

.........

The same observation can be made of the distributed data

base. In both instances, a reliable broadcast approach

must be implemented.

The structure behind DBMS jobs is presented in Figure 3-5.
Note the tight-coupling of examinations to the DBMS files
controlled by each host. Whereas individual hosts can
compile and produce reports, the very tight coupling
across all partitions 1is required within ¢truly de-
centralized data bases. Under circumstances of graceful
degradation, some of the nodes within Figure 3-5 will
disappear. How long their disappearance is tolerated and
wvhat happens while they are gone is a decentralized data
base problem. It involves failure detection,
partitioning, and the operating around missing nodes.
Tools to develop such architectures and software systems
are not readily available. File allocation schemes within
distributed DBMS approaches lack generality. User demand
for joining the relations between two targets is not being
addressed. Complete synchronization with sufficient
redundancy is also not being addressed. Finally, tools to
reassign DBMS files to different hosts and locations
within network operating systems are not sufficiently

general in their scope.

99

A A L P T R

R

SR B ANAAIVIRY Bt 4P A SR b a) YRR | . &8 DR | AEERONE & | LA RRORE. | S SAYANIE | GO0
a
.-
; Sy |“
.] u .
. ; 2 a B .
-. | @ v u mu. "
- | o o P zl
. i N a &
. 12 |8 o e !
' '3 o |3 - k: al !
3 IR Py E I I
) ' by g A 4 '
| 5 | 2 |
Y § R |
—-Illlllll|IIHHHHHHHHHHHHHHNI|....c -H=---
hd .1-"'---'- J -
; &
, H o o
. .| ; s g E
. . 3 : 3 g S
“ ” > | (=1 ={
. (2]
. EEAL P : ot g
X R E .M. r: o ! [=]
_ b 8 m [/:]]
' ' o] » [e] 1 [}
: ¥ O & = | £
(] ? [« ¥ r- L} H pe}
g EorzsTgrsszssssszzzzzzzsscizsfclofizczag -
v " _ 5
' ' H — o]) °
] o —— 1 b
., P o il b
. i o I3 A m ' 8 o
b 1e a f ol o g g
L] - 1
, - - & m| | o
1@ o |3 £ ! 8
A |- E g ol 5
) I g 1l
of 1 o
" = S & Ed 3
: Lecooooooomo- et \ bt A uunu.n.__ 5
(4 1-"" '''''' “
t p— .
' o — = ! o
! o o b
' o 1 9
| g = al | =
. R« - 7 2
“ n < 3 - (=1 o !
wy
b, P E 2 e 2 b <| !]
A o |le E ! .
. “ a - |3 i ol |
;] .M =] m 0 [o
. - 8 2 g ! ;
Y . (¥ [2] ' 2
_ al
. b e e e e e e ————————————————— al
4
[
i
.- e e . v s L - . B "B o .. 5. . opm NN, YR
e x..,.w,v AR) e AR P DA RIS Tl o RARORL | XA, (NN

Ly & %GR SRS & LS 2 N AT A=A A A P £a/ a0 it el dad St Toihal Bl A B LRLE W Lw % o R T R N, e T e e e e e N T T
- To Ve . - - LW e

.........

a e
.‘\C.I

s

S
0 ‘
o at L

Ny g
'n' " '.""l,l

)
A4
AL
s
)
2

3.2.4 Intelligence in Environments s

(&
&

The term "intelligent™ has begun to appear in discussions

t‘
'\“
r

)

of automated environments. While the term often signifies
merely a high degree of functional automation, it in-
creasingly refers to a set of characteristics bearing on
issues of adaptability, action on incomplete information,
heuristics for search and evaluation, and organized
knowledge of application domains and of programming lan-

guage rationale.

Exploration of these issues in depth has implications for
far-term generic techniques in distributed processing.
Therefore, most of the discussion of sophisticated ar-
tificisrlly intelligent tools in this report appears in
Section 5. Nevertheless, there is a place in the present
section for a preliminary discussion of intelligence in
support environments which will serve as a bridge between
near-term design and development considerations on one
hand and far-term tools and techniques on the other. 1In
this section we mainly want to point out that near-term

tool definition should consider ease of integration with

intelligent systems of the future.

7{ Although intelligent development support systems may be

designed essentially independently of evolving concepts of 7

NI R]
s

.','.'l.-'nl ‘
KRR 2

G N 49N -~ v olly
AFARAFN

.
2 82

e
LR,

“ e

’S‘)\r [y

Y

[
.
PR

' NIRRT

N

A

X \;ﬁ t»t" "‘ ': .

\

~

i

e atntptn VW W WL AN S P A N A AT Ao i oo e TR TS T T AN

intelligence in the operational systems, both systems will
employ the same generic technology. For example, in the
design of an application system, there likely will be an
integrated intelligent toolkit to synthesize strategies
for an intelligent application (e.g., decomposition of a
task definition and assignment to distributed components).
One implication for near-term tool definition is that the
tool's potential support for or enhancement to intelligent
systems should be addressed. For example, it will be
desirable to address the tool's potential support for the
type of knowledge base that will be the foundation of
future intelligent systems. Further, it will be profita-
ble to consider the relation of support tools to the
predictable characteristics of evolving intelligent run-

time support systems for application programs.

102

4,0 Near-Term Generic Tools

This section of the report serves to correlate information
known about existing software tools and the software
development 1life cycle, as well as to propose tools which
will be needed in the near future. The tools proposed
will provide support to new projects in the area of dis-
tributed processing, a complex and evolving aspect of com-

puter science.

Two basic approaches were available to identify
requirements for new tools. The first approach would be to
survey all tools; to identify the functionality of each
tool with respect to the life cycle; and to determine if
any aspect of the life cycle had not been addressed. This
approach was not chosen primarily because of the unneces-
sary work that would be performed in evaluating the

capabilities of functionally redundant tools.

Additionally, the task's complexity would be high because
the search would entail looking for a functional charac-
teristic that is a member of the set of all charac-
teristics of software without knowing what the members of

the set were.

................

...........

L)

PO R R S AL
[P RPN, W,

WLEPLE ST

,‘.4.

A -
a

":‘5"- !.‘l. h)

a e

Y YY XX

A,‘

The second approach consisted of a chronological reversal
of the first approach. The characteristics of software
are used as the basis for investigation of tools. Knowing
the characteristics of software, a single (not all) tool
can be found which enhances or evaluates those
characteristics. If no tool can be found, that charac-
teristic becomes a basis for tool development. The redun-
dancy of the first approach would disappear because only a
single tool-to-characteristic evaluation would Dbe
required; and the complexity of the first approach would
be decreased because the starting point would be a known
set of characteristics. Attempts will not be made to
evaluate criteria that might be decreased when one or more
other criteria are enhanced. Obvious relationships will

be identified, but extensive evaluation will not occur.

4.1 Definition of Criteria and Life Cycle Phases

for Software

This section contains definitions of the criteria for
judging software characteristics which we have chosen, and
the software 1life cycles to which they apply. The
criteria were chosen after a study of the criteria defined
in RADC-TR-80-109, "Software Quality Metrics
Enhancements", by General Electric, and a slide presen-

tation made by Boeing at the Distributed Processing

104

-
~
~

S i A o R 0 oA A - RS e Mo - A AR ACIP G SR et A AR a0 Ak o LA el N LSS "..v" 1
o ’*1
) g
2 o
il Technology Exchange Meeting at RADC on 18-20 May 1982.
2 The list of criteria developed by these companies was much
ij longer and more detailed than required for the purposes of
é? this report, 8o categories of criteria were combined and
deleted, and new definitions were written for those which
-2 were left. The life cycle phases used in this report are
_i also a somevhat smaller set than sometimes used, since it
b vas felt that this less detailed breakdown was more in
Sﬁ keeping with the needs of the report.
c
K
4.1.1 Software Life Cycle Phases
J
X
]
j The development of software requires that it progress
X :
through a life cycle consisting of requirements, design,
1ﬁ coding, testing, maintenance and operation. The first
!’ '
K,

four phases are concerned with the creation of the
software. The latter two phases are concerned with the
quality and reliability of the existing software. The

following subsections are concerned with the definition of

e 4 et

each of the life cycle phases.

4.1.1.1 Requirements Phase

.‘AL-L_A‘_I"J-J" o

)

: The specification of system requirements is the first step
“~
'z in the software development life cycle. This phase begins
e
i with the statement of a problem to be solved and ends with
P
¥

105

LN Sl AL g AT o a4 RS ENL AL 2N S TAN e N TR T LR A . N ATETT 8T < T T T RSN A S

2N f{ﬁ
o]
Eﬁ; a specification of what the system to solve the problem i;:
f: must look like. The goal of this phase is to clearly ::i
§§ define and document the set of criteria by which a program ,;;
53 will be ultimately examined for adherence to the ¥
; specifications. The specification and documentation of
;% the requirements of a system can be partially automated
;é through the use of software tools. These tools allow the
‘ development of requirements specification documents using
vgz defined methodologies and analysis of the specifications
isi for data flow and control sequences.
.
3? 4.1.1,2 Design Phase
7

The second step in the software development life cycle is
\5 to develop an implementation for the previously esta-
Eﬁ ' blished requirements. This ideally takes the form of a

' complete design that provides both an outline of the func-
tional components of the system to be implemented and an
explanation of how the requirements specifications will be
met using the outlined system. This would additionally
provide for precise, accurate and orderly transitions

between the requirements design and coding activities. To

ficient so that an implementors decisions cannot interfere

s

o N\

iii this end the detail of the resulting design must be suf-
¥ with the ultimate satisfaction of specified requirements.

LY .
............

..............
.....................

4.1.1.3 Coding Phase

Following or possibly overlapping the design phase is the
implementation (coding & debug) phase. This phase is
generally a manual process though defined methodologies do
exist to help organize and improve the activity such as

structured programming, and Dbottom-up and top-down

‘implenmentations.

4.1.1.4 Testing Phase

The testing phase is a validation process that examines
the implemented system to insure that the initial
requirements are met. This process should additionally
include tests to insure the quality and reliability of the
system. This has become especially important as systems
continue to grow in size and complexity. As with the
other 1life cycle phases this process may overlap the
previous (code and debug) phase. The two main elements of
testing and quality assurance are static and dynamic test-
ing both of which are characterized by the virtual neces-

sity for the use of automated tools.

4.1.1.5 Maintenance Phase

TTTTTY
AR

-

aes

............

The maintenance phase is a process continuing throughout
the 1life of the software to ensure (Quality and
reliability. Maintenance begins when changes in the sof-
tware are required by management or when errors are found
by the user during the operation of the software. When
maintenance Dbegins, it may require additional
requirements, design, coding and testing. Since 75% or
more of the time is spent in the maintenance phase, this
phase 1is critical in the 1life cycle of software. It
necessitates that effective tools exist to aid the sof-
tware support personnel to provide timely and effective

maintenance.

4.1.1.6 Operations Phase

The operations phase is that user-oriented phase in which
software performs its planned and required function. With
the aid of documentation and error-reporting tools, the
user is provided the capability for monitoring and in-
teracting with operatonal software to assure intended
functionality is reached. When errors occur, they are
either identified as user-originated or reported to sof-

tware support personnel for correction., The operations

o phase requires correct documentation and effective error-
Sy
$$ reporting tools. User capability for monitoring and in-
» teracting with operational software is not required for
Nt
s
o~

e 108
.‘..l
e,

~

R AR S T e T RS

- LN

LY wn W l‘v\.

LA
¥l

- PN

embedded weapon systems. Such capability is more charac-

teristic of communication systems.

4.1.2 Tool Criteria

The following definitions concern criteria for judging
software characteristics. The criteria will be wused to
choose a minimum set of generic tools for the software

life cycle phases.

Traceability - A program is traceable (exhibits
traceability) if a tbread exists to tie the modules of the
program back through design to requirements. Traceability
can exist independently in two directions: from
requirements to the program, and from the program's
modules to the reguirements. 1In order to be fully tracea-
ble a program must exhibit traceability 1in both
directions. Traceability must include design. That is,
wvhatever design documents were retained as program

documentation must be included in the thread.

Consistency - A program exhibits consistency if the
requirements, design, and implementation techniques and
notation are uniform throughout. Use of standardized lan-

guages and techniques are necessary to insure consistency.

109

''''''''
L
.......
..........
........
..................

CRC IR T S YT R I T

R R I
CA S NI T TR
i TN e | PPV YRV P A S P8 PR VPR VW

-

T A A

v 00 Y

/

o

.}I

. S ht-dr:sﬂ
ol o

EAVA AN
'l'&‘.l,ll 'l,"

A

g ‘,‘-,-'.I.'I..I.‘

LS

A o h 2 M
,\}'-'\."I’e'a %

R A - s
RERRRT . IR

.
. ¢ o
-

Fault Tolerance - A program is fault tolerant if it is
capable of operating in a consistent manner in spite of
program errors, errors 1in input data, and hardware
malfunctions. Total fault tolerance 1is an impossible
goal, since there are hardware malfunctions and program
errors from which no recovery is possible. The degree of
fault tolerance which is desired and the actions to be
taken under various conditions should be specified in the

requirements document.

Simplicity - A program exhibits simplicity if each in-
dividual module is coded in an understandable manner, and
the modularity has been established with consideration to
a specific method, i.e., data structure, control flow,

functionality, etc.

Modularity - A program is modular if its structure con-
sists of highly independent modules. A module is indepen-
dent if it could be implemented in a different manner

without affecting the other modules of the program.

Functional Generality - A program or a module exhibits
functional generality if its functions are not unneces-
sarily restricted. One example would be a routine to
produce a line of print. If the line length is passed as

a parameter rather than being "hard coded", the routine

110

............

v,

RO

B o L

e BV SN I i .
I':"n/’l""-' ‘-‘“

RO

s

PO’ ¥ o B TN

A

‘.’

. s .D I"‘
POAP Y R B

Ak

..............

will be more general at a cost of very 1little additional

complexity.

Expandability - A program is expandable if it is easy to
add new functions, to enhance its current functions, or to

increase the amount or types of data handled.

Instrumentation - Instrumentation provides the user and/or
the maintainer with information on the operation of the
program. For the user, it generally means status
iﬁformation. For the maintainer, it means such in-
formation as how many times a particular function is
called, how data is distributed among differing types, and

records of type and frequency of errors.

Resource Utilization - Resources utilization 1is the
measure of how well a program conserves system resources.
These resources inciude time, memory and external storage.
How much priority is given to the conservation of each of
these resources is a function of the requirements of the

system.

Control of Data Access - Control of data access reflects
two conflicting requirements: ease of access and restric-
tion of access to sensitive data. Program data should be

easily accessible to all modules and users who need it.

111

e RS DA A AT IR 808 A AN AR IR B S R NS e C ARSI IOt St it St e It Sty

A A At NI S SN anil s Y I AR e L A

Ease of access is especially important in distributed sys-

tems where the user may be physically distant from the iﬁﬂ
data being accessed. However, modules which do not need a .Ei
particular datum and users who are not authorized to have x;i
specific information should be prohibited from access. 2i=

In addition, a requirement may be that the system keep .i?

records of attempted and successful accesses to sensitive }?
data. %.

Ease of Use - Ease of use measures the amount of effort ;}
which must be put forth to operate the system. It in-

cludes simplicity of input preparation, simplicity and un- :%

derstandability of operator commands, understandability of %%
output data, and the amount of training required for new ;

users of the system. 5?

Independence - A program's independence is determined by ;}

the extent to which it relies on a specific hardware sys- %&

tem or a specific underlying software system (operating fﬁ
system or run time system). A program is more independent é}

when those functions which must be made specific to most g?
hardware or software are isolated in lower level modules 5%;

or are parameterized to allow easy change during system {i

builds. i

::;::

112 B

.
.

N
B)

-,- ,‘
IJ'J

OINRN
a2, 1,4
T

'y
L4

.
5 .
-..'l'l

3

NN
Nl

»
2

-‘ .
f

. .
N
e

2oA

AN

Commonality - A program exhibits commonality to the extent
that standard interfaces are used between modules and that
standard data formats are used. An effect of commonality

should be the development of reusable software.

Compliance - A compliant program meets all the
requirements laid down for it. This includes, but may not
be limited to, normal processing, error handling, response

time, memory/resource usage, and the accuracy of results.

Clarity - A program exhibits clarity through its
documentation, including its internal documentation, to

the extent that that documentation 1is readable and

understandable.

Virtuality - A program exhibits virtuality if the user is
not required to have a knowledge of the hardware implemen-
tation in order to run the system. Such things as the
number and type of auxiliary storage devices, the amount
of main storage, and even the type of CPU should be trans-

parent to the user.

Distributedness - Distributedness is the extent to which
elements of the system are logically and/or geographically
gseparated. The word elements as used above includes both

software and hardware. Software specific considerations

113

are distribution of control, interconnect architectures,

{ and data bases.
1§ 4.1.3 Correlation of Life Cycle Phases and Criteria

A The correlation between life cycle phases and the criteria

is given by Table 4-1. Almost all criteria apply to the

initial phases from requirements through coding. The

[~
\)\
N .
"y
“w

modularity, and functional generality) all deal 5

L

criteria that do not apply to requirements (simplicity, N

e

N
L]

}

specifically

4‘ .,..l‘ '." 'l' ." /

4:‘-‘{1""‘"

Y

'f‘t“t"
“

s
€ a2,
» / '

[’

’ K l’.l‘ .." |

LA NOM S

v

'

.
P

a P
Ll
4% %
] .

AT

v ¢ 718 1-’,--'
5

N &

.;'-‘J

AT
‘r S

?.
RN

PeCaiN
e a‘_.‘.'.'k. é 3

114

| 2
o
is &

4
» ..l

v s
s

LA .

s T
".

Ve
»
)

s

N4
-,

dhad

. WL WL W L TN TR T AT VAN T T TN
Fant s art o B A i Lt s e it PTG AL LR LN PRt AR RO S KA

£ 5,
fole M

¥
Kl

D)
R 4

e
%

!
i
4

b
R

.“A' W

SSAN| ~

~QILNGIALSIA
ALITVALYIA

ALTYVIO

[t
.,

v

JONVITdHOD

XLITVNORKOD

JONIANIJIANI

asn 30 3Isvd

Pe————————

SS3JJV VIVA
40 TTOUINOD
01

204NOSTY
NOT1S
~VINANNYISNI

ALT'TIGVANVIXI

 XIITVIANDD
TVNOILONAA
ALI¥VINAOR

VIVIVIVIVI Y
v

vVivivliv

VIVIVIVIIVIVIVIVIVIY

SOFTWARE QUALITY CRITERIA

v/l V/

ALIDITAWIS

IV AIA NIV Y

INVEITOL L10vVd

ADNILSISNOD

Table 4-1 Life Cycle Phases vs. Software Quality Criteria

v
V]V
IVIVIVINVIVIVIVIVIVIVIAY VIV

viv] Vv
v
V] V]
v

XLITIGVIOVEL

g 8l o
3| 8
E Q =zl -
el =] o] 2] @] &
SR EEE
21 =l =]
21 4| 8| 8] 5| &
=] 8] 8] 8] §1 & R
SdSVHd dT0A e
J4I7T TIVMLIOS o 9

...........

SO el e,
. R R i e S A A AR
R AL N PTG U PR VARV WA VAL VA VST A WAL

AN b

—

LS i -
AR

.
A © 4
PR A RNE

P

© U

;.\‘l""‘-.'t A "I)

";‘ Il)

with design and coding. Criteria that do not apply to
coding (fault tolerance, expandability, instrumentation
and control of data access) are areas which have already
been settled by design and requirements. The testing
phase is concerned with measuring compliance, which in-
cludes resource utilization., This 1is accomplished with
the use of instrumentation. Traceability and distributed-
ness must be maintained through this phase. The

operations and maintenance phases affect all criteria.

4.2 Correlation of Tools to Criteria

This section contains a list of generic tools with their
definitions. Each tool is related to the life cycle phase
of its primary use. Criteria enhanced by each tool during
its primary life cycle phase are discussed (refer to Table

4-2).

116

PO

WW« W"(r{'—-:":.".w.":'_".'_—“T_?V_'-*.W.'-—.'V.‘ }-;-‘_-r'.—c '_".'.‘r’. i T . A AR R T A I
\i.
S =
. -

gy
a b

.
«
PRI

4

]
-
[y

N A,

v
.y,
.

J‘
* n‘ l' l, By

BN

-

N, - i - .
R+ PRI S o

() “¢

]
fES

.
o

¥ u“/ «

oL N

Ll

e

A}

D LRERDR
DRENONGS

.

NN, AR

-

A

SOFTWARE TOOLS (by Life Cycle Phase)

¥2ATING KAISAS -+

YIZATVNY DILSONOY1A -+ -+

o

Maint
nanc

YOIVMINID INOodTd -+

YOLVENOTINOITY Q1dv

+
+
+
T

YOIVHIANID NOISUIA | < -+ <+

Testing

Y3INNOD IOVSA

WIZATVNY ONIWIL

rars

YAZATVRV ALITIOVHOVIY

Tt

Y3ZATVNV ALIALILJANNOD

Y3ddVR TTIIVINVA

¥3ddVK FOVANIIND +

YOIVHANID IT14d TVOINOLSIH

q350n93d I I0TUS

AT

WIZATVNY SSINLOTWN0D | 4 -

¥IZATVNV INTHIOVNVR INUNOSTY <+

YIROIHD NOIIWIASSV |l |4

dNg 30V¥0l1S

YIZATVNV MO HIVd

¥A1S31 NOIIV1NW

YOLVYINIO Qnls +

YIZATVNV NOI1ITdWOD

+ 4 [
4

R

Coding

¥OLVY3INID NN +

¥ILIVINO4 +
9401100V SQ¥VANVIS] |-

YIT1dKOD 1NO~ADIHD

+1+
H |+

WAAVO'1/¥IANIT +

¥311dH0D SSOUD +

G+
+

WITIdHOD DON1ZIW11d0

YDOIHD FWNLONYLS

VOIVEANID FDNIWAITY SSOUD

+[++

WOLVEANID 3TUL ONITIVO|

Requirement} Design

4344101044 Q1d4Vy

|+

WOSS3J0¥d FDVIYIINI SININININOT <+ +[+[H+ [+

WOLVISNVEL IOVAONY1 QIIVROLAV | <

T
+
+.

YAZATYNV SINIWINOIY QaIvKolnv

YOIV¥3N3D INIRNO0Q SINTHAEINDIY QAIVROLNY -+

Table 4-2.

Software Quality

Criteria

vS.
Software Tools
FAULT TOLERANCE

SIMPLICITY

MODULARITY

DISTRIBUTEDNESS

INSTRUMENTATION

RESOURCE UTILIZATION

INDEPENDENCE
COMMONALITY
COMPLIANCE

CLARITY
VIRTUALITY

CONTROL OF DATA ACCESS)
EASE OF USE

FUNCTIONAL GENERALITY

TRACEABILITY
CONSISTENTY
EXPANDABILITY

-3 $T)

&

Ta1) KL31TeEn) 31emijos

117

4.2.1 Requirements Tools

;5 4.2.1.1 Automated Requirements Document Generator ;;i

i This tool generates a requirement by accepting an im- .

ﬁi plementation independent specification couched in a for- ;73

s; malized language, performs processing to format requested %
output, and then generates the output in graphic or tex-

§ tual rzpresentations as required. Expandability is en-

:3 hanced when new requirements are generated during the

" maintenance phase.

¥

;j 4.2.1.2 Automated Requirements Analyzer

?3 Assuming the requirements are specified in a formalized

Eg language, this tool will provide checks for completeness,

! consistency, and redundancy of information given,

g Compliance is enhanced since the completeness of the

3 specification 1is checked, and clarity is enhanced by not

) allowing redundant names or functions.

7.

%

Eé 4.2.1.3 Automatic Language Translator

-é} One of multiple 1languages 1is selected to be the target

j;; language for the implementation independent specification.

This tool then automatically translates the specification

" - VT TR T s TR TR AT aTRT YT YT
3 R PN

P. into a compilable program in that language. Traceability,
ﬁl consistency, and commonality are all enhanced by this
: tool. Simplicity and clarity would probably be decreased
by this tool.

4.2.1.4 Requirements Interface Processor

This tool is a front end to the automated requirements
document generator. 1Its function 1is to provide user-
friendly access and use of the tool as well as provide a
powerful modification <capability to support rapid
; prototyping and simulation. Multiple data entry

techniques, such as graphic representation, menu

representation, default selection, etc. should be
support "d. Criteria enhanced indirectly include ease of
use, resource utilization, compliance, fault tolerance,
functional generality, expandability, instrumentation,
virtuality, and distributedness since these may be modeled
during development of the requirements specification
(assuming an analyzer and translator are present). No
criteria are directly enhanced by this tool since the
final product could achieve the same status through manual
methods of analysis and documentation over an extended

period of time,

4.2.1.5 Rapid Prototyping

.’ = . ot .
---- TN

.
IR
PSRN SRR S T G ATV,

This process involves automating the labor intensive por-

s %

- -y
G

‘

tions of feasibility studies through computer simulation K"f
b ~_:
o and modeling techniques. s
2 -
N e »j‘_fi

L4
.

X4

4.2.2 Design Tools ;1;

4.2.2.1 Program Design Language (PDL) Calling

Tree Generator

A calling tree generator 1is similar in operation to a

cross reference generator, but is restricted to subprogram

names rather than all identifiers. The output is arranged

) in the opposite manner to that in which cross reference

shows where a particular name is used, that is, that C is

:; called by A and B, while the calling tree shows that A

@ calls B and C. This different orientation makes a valua-

ble addition to documentation, increasing clarity.

4.2.2.2 PDL Cross Reference Generator

A cross reference generator accepts as input a design ex-

pressed in PDL and produces as output a 1listing of all

points of definition and all references which can be

retained as documentation, thus improving clarity.

4.2.2.3 Structure Checker

..........
.............

-~ A B A R B P Y D R I T T A S P E TR

X Y 1

PN XD

b)

-
IQ

3
e

p

A structure checker for PDL is a program that accepts as
input a design expressed in PDL and produces as output the
same PDL with its structures checked for correctness and
completeness. Structure here refers to programming lan-
guage structures such as if-then-else, begin-end and the
case statement. Since PDL may be kept as documentation
for the finished product, clarity 1is improved by this

process.

4.2.3 Coding Tools

4.2.3.1 Optimizing Compilers

Optimization is a compiler function which improves the
quality of the machine language code produced by the
compiler. Most optimizations improve both speed of
execution and the size of the executable program. They
therefore improve resource utilization. In extreme cases
of memory size limits or response time constraints, op-
timization may be required for compliance. Six common op-
timizations are: constant propagation, common sSubexpres-
sion elimination, strength reduction, code motion, dead
code elimination, and the elimination of induction
variables. Constant propagation occurs when the optimizer
recognizes computations for which all data is available.

Since the data is available, the compiler can do the

121

.....
...........

- - .
« et N

PR A

"~‘-‘“~“».'~".'.. K ‘-.,'-."., “ e
PR TR R LT VL R O

......

e ahye Taly L LI Y 0 - L R R L S L L St e

computation, providing its result as a constant.
i‘; Therefore, the time and code required to compute the
result during execution is saved. Common subexpression
elimination takes place when the compiler recognizes that
the same result will be computed in two or more places.

(To derive the same result, not only must the expressions

fg be the same except possibly for commutivity, but the data
wa must be the same.) The compiler saves the result from the
%ﬁ first computation, and uses it to replace the code
EE required for the subsequent computations. Strength reduc-
‘:; tion occurs when the compiler is able to replace an arith-
ig metic operation with another operation which requires less
’:E time. A good example would be the replacement of X

g squared by X times X. Dead code is any part of a program
which will never be reached during execution. This sort
- of code is sometimes created by an if statement whose test

always has the same result. If the compiler can detect

/

i
5

A; this situation, it can eliminate the if test and the un-
E%E reachable code, saving both time and memory. Code motion

. and the elimination of induction variables are both loop
'ig optimization techniques. The compiler can often find ex-
;E; pressions whose result is the same for each iteration of
;i: the loop. These expressions are called 1loop invariants.
;3; Code motion is the removal of these expression from within
IE; the loop, and their placement just before the loop, where

they will only be executed once. Induction variables are

..

PR Y
.

.....

F-j-s_'r' A M Sl B Re Iearhar MarAchach A echaCh A R I) e SRS A AT, ST A e AT T -_‘ j
P ?j
b :
.;4
> -
+l S
.:E b
>} Rate
;: variables whose values vary in a linear fashion during D
o o
{ execution of the 1loop. Not all induction variables are 5Q{
,i} part of the source code. A FORTRAN example might be: 1fj
2 \:‘) .
X =
5e) o d
REAL X(10), ¥(10) 3

DO 10,1=1,10

10 ¥(1)=0
e
o There are three induction variables in this code segment:
".’I
F; 1 and the offsets used to address elements of the arrays X

:ﬁ and Y. If a real occupies 4 address units of storage, the
.yl expression for the offset into X is (I-1)*4, The expres-
. sion for Y is the same. A good compiler might first
recognize these two as the same and eliminate the second

LR
) computation. (common subexpression elimination). It might

: then realize that it could get the same result by setting
the offset to zero outside the loop and adding four to it
,?; on each loop pass. (strength reduction). Finally, it
might realize that it does not need both the offset and I,
3 since it can determine loop termination by testing the
| value of the offset. Therefore, it could eliminate I from

the loop (elimination of an induction variable). Two

il types of loop optimization which are rarely used are loop

-

:5 unrolling and loop jamming. Loop unrolling can only be

ft done when the number of times a loop will be executed is

= R
';: 1 2 3 ‘:':: .“1‘

..

. »
R L PR .
et ke Kttt

known. It consists of duplicating the body of the 1loop a

number of times in order to eliminate some of the tests

for loop termination. ‘This technique saves time, but in-
variably wastes space. Loop jamming can take place when
two loops have the same indices and no result of the first
loop is used in the second. The two loops are merged into

one. A (trivial) example might be:

REAL X(10),Y(10)
DO 10,1=1,10

10 X(1)=0
DO 20,1=1,10

20 Y(1)=1

Which might be merged into:

REAL X(10),Y(10)
DO 10,1I=1,10

X(1)=0
10 Y(1)=1

All of the above optimizations save time. Most of them
also save space, with the exception of loop unrolling and
possibly code motion.

4.2.3.2 Cross Compiler

124

T T T T T T T e e A S A R e |
t_;. -]
N o
o =
- A cross compiler is a compiler which is hosted (runs) on a e
-1 e
{ type of machine different from that for which it generates %&;‘
ii code. Usually this means that the host machine is a main- ﬁfj
Y R
o frame or a mini computer and the target machine is a]
A

microprocessor. Cross compilers allow the use of larger,
more complex compilers (which may be required for complex

languages such as Ada or PL/1) than could be hosted on the

o4 YA

target. The features of the cross compiler can then in-
clude optimization and/or the options of a checkout

compiler. Therefore cross compilers may indirectly improve

g
AT

instrumentation, resource utilization, and compliance,

% while also improving ease of development. A cross com-

; piler makes it possible to use a more complex compiler (or

' a compiler for a more complex language) than might be

- available on the target system. It may improve resource

& utilization, simplicity, and compliance.

¢

i 4.2.3.3 Linker/Loader

X

- The normal functions of a linker/loader are to allow the

3 usage of external routines and to allow programs to be -
i loaded in different locations (relocation). These func- ‘E;
: tions increase commonality, and modularity. In addition, E;;;
i some linker/loaders may provide facilities for overlaying ﬂ{;ﬁ

program segments. Overlaying allows Jdifferent program

segments to occupy the same memory locations, with each

e "
3 ;
i; segment being read in as it is needed. This improves one g
(v: facet of resource utilization (space) at the expense of

E% another (time). It may be required for compliance.

-
'{~ 4.2.3.4 Checkout Compiler

=

i?ﬁ Checkout compilers provide special services during the

g{ compilation of programs which assist during program

;;z checkout. Options in the compiler provide for automatic

.Ez printing of variables each time their values change, for

}2 automatic trace of subprogram calls, or for collection of

}E other statistics such as the amont of time spent in each

E;E routine. In other words, a checkout compiler adds

(. instrumentation.

i 4.2.3.5 Standards Auditor

E;E A standards auditor (code auditor) takes as input a source

??; program in some specific language and produces a report

‘;; detailing violations of some set of programming standards.

,;;3 By enforcing standards, it improves consistency,

E; simplicity, and clarity. (Clarity is improved because the

s} use of procedure headers may be part of the standard being

%E enforced.)

g 4.2.3.6 Formatter

o

o 126

]
[

.
»

LN
L PN

.a' X ‘l'-‘l

S
. L4
(I

a Ve s e
2"’ 4
TR Y
e,

P+

R

-

5

=

S

3,V
AR LA
P VAR

Iy L-\.-‘n; y
.

L 3
B
N0

»

ﬂ\}ﬂﬁ

At

By

§
v

A formatter is a program which takes as input a source
program in some specific high order language and rear-
ranges the input source into some specified format, en-
forcing standard indentation conventions and other stan-
dards for layout of the program on the printed page. It
therefore improves the consistency of the program. Since
understandability is improved by prcper indentation, the

simplicity of the program is also improved.

4.2.3.7 Menu Generator

A menu generator is designed to provide optimum usefulness
and versatility in data entry by utilizing video display
terminals. A user-defined form, or mask, for data
manipulation on the display area improves ease of use.
Since the mask resembles a printed form, data is placed
into the form by filling in the appropriate blanks on the

screen,

4,2.4 Testing Tools

4,.2.4.1 Completion Analyzer

A completion analyzer (or coverage analyzer) provides data

that shows how thoroughly the source code has been exer-

127

TR e T
3 TR
; R

RN

o

Iy .
SO hj

- Al
»
s

* SRR

¥

XAALA

.,..
D) — i

. o SE 1%
..l - '. a .'

t:' “

..............

cised during the testing with respect to the testing goals

which provides compliance and adds instrumentation.

4.2.4.2 Stub Generator

A stub generator provides substitutes during testing for
modules which have not been coded. Testing of individual
modules 1is thus made much easier. This tool enhances

functional generality.

4,2.4.3 Mutation Tester

A mutation tester constructs a set of mutants of the
target program which will test a program's compliance. A
mutant is a program statement which has been transformed
in such a way as to effect typical program errors. A pro-
grammer could test a program with the assumption that the
current state of the program is a mutant of the correct

one.

4.2.4.4 Path Flow Analyzer

A path flow analyzer is a software technique which

provides instrumentation and compliance by scanning the

source code in order to design an optimal set of test

128

s Bt 1t it dar et f o e At it e AT MDA L AR ROLEAL AN SERERADOSLE S TR T AR .:, ':j
,‘-; -- .'-‘
» ’ Vo 4
~ e
i b ed
> i
'L.J :_.'_\
e cases which exercise the primary paths in a software PR
‘\q S
module.

4.2.4.5 Storage Dumps

Storage dumps provide program/system status and selected

data values which contribute to instrumentation.

4.2.4.6 Connectivity Analysis

Connectivity analysis is used to identify the direct pro-
gram paths between any two sections of code within a
program, segment tracing, which provides a measure of

modularity of the program.

4,2.4.7 Reachability Analysis

Reachability analysis is wused to identify the specific
program paths, direct or indirect, exercised in order to
reach a specific module, subroutine or section of code
within a program which provides a measure of modularity of
the program and distributedness of the system of programs.
It can also be used to identify unreachable modules and

"dead" code.

4.2.4.8 Timing Analyzer

..

A timing analyzer reads the executable code and produces a

R R
N T |
[.' RN -',"v_-
[N T

report showing program segment invocation hierarchy and

(s
[}
LW v

the actual execution times per complete program segment ;ﬁi
: e T

cycles. Instrumentation, resource utilization, and com- RSy
RS

pliance are measured with respect to the timing in the -

.1

operation of the program.

4.2.4.9 Symbolic Debugger

A symbolic debugger is used to enhance instrumentation.
Since testing is the process of determining whether or not
errors or faults exist in a program, debugging is an at-
tempt to isolate the source of a problem and to find a
solution with snaps of variables and absolute identifiers

which enhances compliance.

4.2.4.10 Historical File Generation

Historical file generation provides instrumentation by the

generation of accumulated execution statistics for all

. "-‘;‘:"

test cases including blocks executed, paths taken, modules

.’.'I

invoked, etc.

SN

b

A5

L

LN

4.2.4.11 1Interface Mapping

AN

AAAT

A AAA

130

»

. ~
A AL A R

AR

PIC R

$ PRI]

IO 2V IR

PR a0t

Interface mapping is used to measure commonality with
respect to the identification of program interfaces such
as called and calling modules or modules involved in in-
terprocess communications and the verification of the
range and 1limits of the module parameters. It is useful
for the analysis of modularity, a module's impact on other
modules, and the identification of data abstractions from

subroutine calls, function calls and macros.

4.2.4.12 Variable Mapping

Variable mapping provides information with respect to the
definition and use of the individual variables in the pro-
gram and may provide actual values and initialization,
during execution of the program. Instrumentation is

measured with respect to the information provided.

4.2.4.13 Assertion Checker

An assertion checker is used to check a program's critical
requirements for compliance with the results derived by
dynamic analysis. It enhances the simplicity and main-
tainability of the program and improves the traceability
and consistency of the software. By inserting assertions
concerning the value or condition of program variables in

the program code, assertion checking may be applied to er-

131

.......

T
4

PRS- e

Fo

&
;

“@TLn Tt
A .
e, .
P o
et
Cte ™t . ¢

=
e

.

R TR T 1
o]
et e -

. i d s
‘ o, '
e AT g
.

APRPOPRY SP ST

-
Lt d
Aad s,

’ \
. .-A ‘-n.(.‘:'

4 " ‘.h ‘s
Wt

A

.
)

- N
) .‘S;c;u';‘-_,- , J

a

XA

Ay-iy-4,

"'.‘- a, 4 8 4 ad
AT AN

.

ror detection activities, understanding program behavior
and clarity through documention of the program's critical
requirements.

4.2.4.14 Resource Management Analysis

Resource management analysis dicatates resource

utilization for the purpose of compliance in processing

Y

requirements such that programs and data should be al-

PRI

& a_ & s .
[NN

located the minimum amount of time and storage that is

necessary. When additional amounts are needed, they are

.ilﬁg

-~

r
2

1

acquired and released dynamically.

-
"

- -
o
"
o
“o
<4

‘fl'l'
A A

4.2.4.15 Correctness Analyzer

A correctness analyzer determines the traceability between
a program's total response and the stated response in the
functional requirements and between the program as coded
and the programming requirements. Measuring the program's
response helps to determine instrumentation and

compliance.

4.2.4.16 Usage Counter

A usage counter reads the executable code and collects

usage data during program execution such as the number of

132

v = T WG T T AT T e i s e dT e T T T T AT T s e

.]
L4
L
L,
4
3
o1
J
o
’
4
4
g
4
4
4
A
A
[

~

«

‘.

S 1GNP

f._
a5 e

times each executable statement, branch and subroutine

‘)

I
)

calls were executed. Instrumentation is measured with

- v
)

respect to how many times a particular statement, branch

Pe
b

or subroutine is executed.

4.2.5 Maintenance Tools

4.2.5.1 Version Generator

A version generator is a system to track and control
changes to files (source, object or text) associated with
software development which enhances the control of data
access, provides expandability, and ensures traceability
in the maintenance life cycle. The system should be able
to store, update and retrieve files including audit trails
as well as maintain historical records on all versions

controlled for the purpose of complete program documen-

tation and clarity.
4.2.5.2 Rapid Reconfiguration
Rapid reconfiguration is an automated process by which a

system is rebuilt after changes which provides fault

tolerance. All file dependencies and processes (resource

xS utilization, common memory, compilations, preprocessing,

etc) are specified in a hierarchical manner such that a

3 T e T T e AT TN e T T e e T e e e e \ - - - - -
"\.":.\'-.’:"\'~\~.~ N . N
B . <‘-f’ ' - o R :\-__ e N
5 X R '}:. ORI, WS \-‘.\‘ Soaal
A L OGS

LY

4“4 s,

.
.

&

L]

N - ' Ak

it B S AR A MU AL AL L AN

change in one module can easily and quickly be related to
changes required in other modules which provides com-

monality and simplicity.

4.2,5.3 Report Generator

A report generator consists of methods for customized
formatting of generated output to provide ease of use and

improve resource utilization.

4.2.6 Operations Tools

4.2.6.1 Diagnostic Analyzer

A diagnostic analyzer measures the capability of the sys-
tem to perform its functions in accordance with design
requirements, even in the present of hardware failures.
I1f the system functions can be performed in the event of
faults, the system is partially fault tolerant when design
specifications are not met with respect to the time
required or the storage capacity required to complete the
job. Fault tolerance is provided by the use of redundant
resources, resource utilization, for wupgraded system

reliability and protection.

4.2.6.,2 System Builder

134

.

,. '.""; v‘:,'v

m,‘ ., ‘,
. *a a0

. 2,8 0 5%
¢, NP R e

A system builder identifies all required programs, and it
compiles, links, relocates and produces an object file for

e execution which enhances modularity.

4.3 Recommended Near-Term Tools and Their Flowcharts

There are five tools which affect the requirements phase.
They are the Automated Requirements Document Generator,
the Automated Requirements Analyzer, the Automatic
Language Translator, the Requirements Interface Processor,
and the Rapid Prototyper. The Automatic Language
Translator directly enhances traceability, consistency,
- and commonality. The Automatic Requirements Analyzer en-
hances consistency and compliance. All other criteria in-

fluenced are influenced indirectly (see Table 4-2).

The design phase, in which decisions are made which affect

L the most criteria, is almost devoid of automated tools.

oy s

o There exist several useful methodologies which were o

"f' hAARE
developed mostly for use in the business data processing f

sphere, but none of them have been satisfactorily Sié
ﬁ% automated. Some of the tools discussed for the géi
requirements phase extend into the design phase, but the i:j
act of design still remains a manual (or even cerebral) i;i
,; art. The tools which apply to this phase which will be :ﬁﬂ
L discussed here all fall into the class of program design ?%i

'
[y

I
<
-

“»

L A] e
N AR
A AR
vty et b
. 2

-

......
..................

N0

TR .
e Y

Sm e

| N

language processors, and are generally found as a single
tool rather than individually. All three tools (a calling
tree generator, a cross reference generator, and a struc-
ture checker) are concerned with the production or check-
ing of documentation, therefore the only criterion af-

fected is clarity.

Tools for the coding or implementation phase can be
divided into two areas: tools affecting source code, and
tools atfecting object code. The tools affecting source
code are the menu generator, the standards auditor, and
the formatter. The menu generator helps coders to lay out
and design screens and menus for interactive input. By-
doing this it affects ease of use of the finished project.
Both of the other tools affect consistency and simplicity

of the source code, and the standards auditor also affects

compliance if coding standards are specified in the

requirements. The tools affecting object code are the op- ;ié;
timizing compiler, the cross compiler, the linker/loader, ;;ﬁ
and the checkout compiler. The first three of these all é;é;
affect compliance and resource utilization by making pro- 'i;
grams more time and/or space efficient. The cross com- T
piler also affects simplicity and possibly instrumentation 'g;j
if it has some of the features of the checkout compiler. ;ES
The linker/loader affects commonality and modularity as §§§

o

well. The checkout compiler adds instrumentation only.

136

. ~
..............

Pad

% S
P,
VE During the maintenance phase, all decisions made prior to f
i. this phase are either maintained or changed with respect ;%{
éi to errors detected in either operations or reqguirements gﬁ-
'§‘ and design changes requested by management. Maintenance ';
: is accomplished with a generic maintenance tool comprised

i} of a set of specific maintenance tools which provide cor-

a rection of errors and requested changes in documentation

-‘ and programs by modification, addition or removal of

i; functions. Additionally, tools must be provided after er-

;2 ror correction or requested changes. Replication of pro-

grams and documentation is ensured by the specific main-
tenance tools providing redundancy in distributed process-

ing systems,

The criteria relating to redundancy in requirements and
, documentation are traceability, commonality, and clarity.

The criteria relating to maintenance activities such as

error correction are resource utilization, control of data

§ QP MRV

access and fault tolerance. Since approximately 75% of

the software life cycle is devoted to maintenance, it is
necessary for a generic maintenance tool to enhance the
aforementioned criteria as well as enhance ease of use,

expandability and simplicity.

! With reference to Table 4-2, the aforementioned criteria

are enhanced by the version generator and rapid

137

¥

NI g T R T N Rt N TRt R TR PR RAL UL R PN
:\"-‘J‘-f 'J',' ‘:J.'.\..‘ .{ ‘. _.-...--, ORI e e e
) "': -,$'. I‘."" ".~ s .' - s ERZ.AXK IR

‘bf

¥ i

L0 Ak 2

RRAA

v e
i
IS

ot
-

. v
... Q\ ' »

»
P

e e d
L" l‘_, o
IS L]

o 3

v v

reconfiguration, Version generation provides an audit
trail for maintenance of programs and their data
dependencies. Using this audit trail, rapid recon-
figuration automates rebuilding of a system,
Additionally, the report generator enhances ease of use
during the maintenance of programs. The combination of
these specific maintenance tools forms a minimum generic

maintenance tool.

During the testing phase, compliance and instrumentation
are the important criteria measured by the specific test-
ing tools as shown in Table 4-2. 1In order to determine
the specific testing tools which are part of a generic
testing tool, tools which enhance either or both of the
criteria, compliance or instrumentation, should be

considered.

The main group of specific testing tools which may be a
part of a minimum generic testing tool should enhance both
compliance and instrumentation. This group consists of a
completion analyzer, mutation tester, path flow analyzer,
correctness analyzer, timing analyzer and symbolic
debugger. As shown in Table 4-2, these specific testing
tools also enhance other criteria such as traceability and
consistency in the correctness analyzer and resource

utilization in the timing analyzer. The additional

138

re ey s N
' a’-"- PR 3 54

b DA I o e i) b 4 Tte B iy e sl Wb ion LSRR Ml Sl i AT A SYRIAAYLANLESLINIETCELI N S e

ERAR 47 W a

criteria improve the minimum generic testing tool which

enhances compliance and instrumentation.

TN A
[yct
'y -~
2k

A secondary group of specific testing tools which may be a

part of a generic testing tool are those which enhance
either compliance or instrumentation, but both of the

criteria are not enhanced. The tools which enhance

compliance, not instrumentation, are an assertion checker
and resource management analyzer. Similarly, the tools
that enhance instrumentation, not compliance, consist of a

usage counter, historical file generator, variable mapper

and storage dump (see Table 4-2), Additionally, the as-

sertion checker enhances traceability, consistency,

simplicity, and clarity, and the Resource Management

Analyzer enhances resource utilization. The additional

enhancements further improve the generic testing tool.

A generic testing tool 1is composed of its minimum

regquirements if it consists of the main group of specific

testing tools which enhance both instrumentation and
compliance. The tool is improved if the secondary group
of specific testing tools, enhancing either instrumen-
tation or compliance, is added. A combination of the main

and secondary groups of specific testing tools form a

generic testing tool during the testing phase.

'
- et* . %%

e
‘:‘A.r

[AEN,

,.l.‘a'. 1 Ay

il
. [)
RN,

DADRRE

AL A

o
: L
P

o

)
.

'.

AR
» T s »
A%ttt

'e

During the operations phase, programs must be capable of
operating in a consistent manner with recovery from hard-
ware malfunctions and program errors unless there is no
recovery; therefore, a generic operations tool should en-
hance fault tolerances. Additionally, resource
utilization and modularity should be enhanced since pro-
grams should conserve system resources. The specific
operations tools comprising the generic operations tool

should enhance the previously mentioned criteria.

Referring to the specific operations tools in Table 4-2, a
diagnostic analyzer and a system builder form a minimum
generic operations tool. A system builder, linking all of
the programs in a system for execution, enhances
modularity. Since a diagnostic analyzer measures the
capability of the system of programs to perform its func-
tions 1in accordance with design requirements, it enhances
resource utilization and fault tolerance. Since these
specific operations tools enhance the prescribed criteria,

they form a minimum generic operations tool.

Compiler Generation Tools

The following too.. are somewhat restricted in their

application, although the first two could be used to read

140

£ Il e e ACR R e aC I i e e A SCR ATt A it s e - MELACAIC A I S S ML R oy i Y A h o)
- P T R e e T T R o O P TR N R P DIPAEI

.
N

*

ot
At D

-

LS

Y

' T e
'l I . L
’ . L
et e, L
PYREE SRS N S DR

LA

2ta

and parse other forms of command input. Their primary

application, though, is the construction of compilers.

o HMS S YT R L e

b

el

Lexical analyzer generators accept a description of the

base elements of a language, which are called tokens, and

5 s v,
P a-te %

y: generate tables to be used by a standard program in the
é- recognition of tokens. A token is a sequence of charac-

ters which can be treated as a single logical entity.
ﬁ Tokens include keywords such as IF and GOTO, numbers,
identifiers and special symbols such as = or <=, The
lexical analyzer reads characters until it has recognized

a token and then returns the type and value of the token.

Syntax analyzer generators accept a description (called a
grammer) of a language and produce tables for use by a
syntax analyzer. Syntax analyzers accept tokens from the
lexical analyzer and parse the language into larger
constructs. This action is somewhat analogous to the ac-
tions of an English student 1in diagramming a sentence.
For example, if the lexical analyzer returned the tokens

"article”, T"adjective" and "noun", then the syntax

analyzer would recognize that these tokens comprise a

"noun phrase". At a later phase the "noun phrase®™ might

2 be combined with a "verb phrase” and another "noun phrase"
2 into a "transitive sentence”. In terms of a programming
o*
&l

language, this means that a syntax analyzer would combine

WESAR LR CAEAL A A S AL A MR ORI PR S it S A e S G004 S G 0K 6 E SRR TR At ie -t £ A KU EN s 9 SRt oo st e e |

A
"identifier", "assign", "identifier", "plus” and fﬁi
—
"identifier"™ into "assignment statement". The compiler B
then takes this information to generate an intermediate ;;Q
representation of the program. j%ﬁ
"
A
Code generator generators take as input some form of a e

description of a target machine and a description of the
intermediate representation mentioned above. They produce
as output tables and/or code for use by a standardized
code generator. The code generator takes the intermediate
representation of a program and converts it into target
machine language. These tools are currently not fully

developed, although some industrial use has taken place.

»

P

AR

e

[

Vot
.

f

.

o Y
£

Pl we 2l o 2l
PR [

A)
RS A .

> »
AN

142

Y

AR
Lo

()

REQUIREMENTS
INTERFACE
PROCESSOR

(

I

I
1

Ih A

»

FORMALIZED \
REQUIREMENTS)

Dy

-~

N W

Lo

CONSISTENT
REQUIREMENTS

8

PR
i
)

.
o il

DRI
‘: ®s o

. 0
“.‘.5
T g € *
LN)
P
LN
)

"
.8

5

CONSISTENT AUTOMATED SOURCE
REQUIREMENTS LANGUAGE ‘

TRANSLATOR LANGUAGE

Figure 4~1 Generic Requirements Tool

RAPID PROTOTYPE
PROTOTYPER

Figure 4-2

CALLING CALLING

PDL TREE

GENERATOR

Figure 4-3

® l.
NS v Y d

GENERATOR REFERENCE

W s
A A AP

4 '

Figure 4-4

l'.’bl.-

]
A.L'A.

o

STRUCTURE
CHECKER

PDL
LISTING

PDL

-
S
-

Figure 4-5

144

™ - - L) h 2 ‘e .
RO P PURRIT AT
- ..$,? A

vl S L T \.'.-'-- AR R RA S RN
. - - o« e T e .] o " - . > “ o~
DIPTSR G TN SRS AU ALY

P

A

FrETRTETRITIVRTST,

ARl

,W.
Yt

)

OPTIMIZED
LOAD
MODULE

—

OPTIMIZING

COMPILER

SOURCE
HOL

(

Figure 4-6

TARGET
LOAD
MODULE

COMPILER

CROSS

SOURCE

HOL

Figure 4-7

LINKED

AND
LOADED
CODE

Figure 4-8

INSTRUMENTED

LOAD
MODULE

)

-

CHECKOUT

COMPILER

SOURCE

HOL

(

Figure 4-9

145

T - Te T

COMPLIANCE
REPORT

STANDARDS
AUDITOR

-:1 by .- .' I bl

SOURCE

HOL

YNNI

e

Figure 4-10

FORMATTED

HOL

FORMATTER

SOURCE
HOL

Figure 4-11

\1\\-‘

%y % f..-

o~ JE RN
4TI >

146

-

Figure 4-12 Testing Tools Flowchart

1S
CODING
OMPLETED

GEN%EH%ION 1Allow for program modules not

coded
YES iLf
*—*4

.
N Design o tional{
e set gf P CONNECTIVITY Identify direct
N PATH FLOW ANALYSIS program path
- test ANALYZER
cases to .

. exercise prima REACHABILITY Identify direct and
., paths in progr ANALYSIS indirect program paths
N modules
N

" _CORRECTNESS [Determine traceability between program's response

* ANALYZER and stated response in functional requirements

v VARIABLE Provide definition and use of

a; MAPPING individual variables in program

, INTERFACE | Identification of

% MAPPING program interfaces. A

" Show how thor-

A 223:1z :ource TIMING Show program segment invocation

' a

5 been COMPLETION ANALYZER ziszarchy and actual execution

J exercised ANALYZER

A USAGE Collect usage data such as num-
COUNTER ber of times of execution for

. executable statements, branch
; subroutine calls.

J HISTORICAL FILE Generation of accumulated
f GENERATION execution statistics for
e all test cases

RESOURCE MANAGEMENT Allocation of necessary
y ANALYSIS
& time and storage
X
~ NO

v ERRORS FOUND ——

, Check program's critical require-|
: ASSERTION ments using asser-
’ CHECKER tion in program.

"4

.

- MUTATION SYMBOLIC |Isolate source of
v, TESTER DEBUGGER problem with snaps
% of variables and
B absolute identifiers.

" Construction of a

4 set of mutants of STORAGE

3 target program to DUMPS

Ry test compliance.

- Provide program/system status

J and selected data values.

4
) >
L .
; 147 -

; b d
L

L - . -
A AT AR U R R
AR A AR AN
-.‘-"'J'- G LSRN
L Ny .-"4'.- &
L I A AN e
§ L)

. --
LHARKRAR LY
A 1} L}

T -

Modifications requested in program ORI

IT PROGRAM(S) PORT GENERATO,

EXECUTE PROGRAM(S)

ERRORS JES —

OUND?

NO

RSION GENERATOR Track and control
* modifications to programs

N
[-' RAPID RECONFIGURA Rebuild system of programs
i
e OPERATIONS
2%
)
Figure 4-13 Maintenance Tools Flowchart
v
- 148

o.f v

) P PR I U0 DO IS T
124 -‘:s}'-‘.-.::ﬁ.:,\;-.f-.:s;-.‘,-.',
RSPt I QLR
- » LY - -
o "o IR PO

LA A e S 8 Lo
PV VG e v P WIS r J St St e o e e A A A A
-
"

.
L e B T

IA

i

.. OPERATIONS —att : $
R x

":\ e
Oy ‘ o

Measure system performance.

DIAGNOSTIC ANALYZER i ; DIAGNOSTICS’ i

YES |
—3svSTEM BUILDER [1

Rebuild system of programs

L

LR

T T T
[ADRAG

2

MAINTENANCE

Figure 4-14 Operations Tools Flowchart

ARNGZ-N IOANAORAY 1y

1 4 9 :~. :‘.
N
h SSIONY

2

2 44
kS

AL
s
| NS

f‘.- -

E I]

RN

A b i R A A A o A
¥ o

A,

4
AN

5

"a‘s 2ls

4.4 Near-Term Generic Tools Conclusion

PR
e
Wt
Sl
EANEND
2a‘s

In this section, conclusions are drawn based on Tables 4-1
and 4-2, Each life cycle phase was examined to determine
whether any criterion applicable to that phase was not en-
hanced by any of the tools assigned to that phase. These
criteria were then used to determine areas where further
tool development is needed. The tables were also examined
to determine if any criterion which was not applicable to
a phase was enhanced by one of the tools assigned to that
phase. Tools were grouped according to the phase in which
they are more frequently used; however, some tools are
used in other phases. For example, the checkout compiler
was assigned to the coding phase with the other 1language
tools, but its use overlaps into the testing phase.
Because of these overlaps, criteria which were not ap-
plicable to a particular life cycle phase may be enhanced

by tools assigned to that phase.

In the first life cycle phase, requirements, all applica-
ble criteria are covered except control of data access and
independence. It may be that these are difficult criteria
to enhance at this early stage. This would certainly seem
to be true of independence, but some sort of tool for
evaluating the requirements for control of data access

would seem to be needed.

Pes 150

- Wit Al sl a6 2 & 8 ZR LA A YL SR P A R S I T T
A A e S Ly g s i et B SR A AR A\ 2 BARA Al Sl G L Wit S Sl A/ A A Al N R [T

PyAer il i i e Lt gn it Anfl bad e ¢ N ICRICEL IR BT B I N R R i T P I T A

The design phase is poverty-stricken with regard to tools.
The only tools which exist enhance clarity of
documentation. This would be a fertile area for the
development of tools to automate the many design

methodologies that exist.

The tools available for the coding phase do not address
several criteria, These criteria are traceability, func-
tional generality, independence, clarity, virtuality, and
distributedness. Major emphasis should be placed on

traceability and distributrdness for new tool development.

The coverage of the testing phase shows the fact that most
of the emphasis to date in tool development has been on
testing tools. All criteria appropriate to this phase

have been addressed.

There are eight applicable criteria which were not ad-
dressed for the maintenance phase. The basic problem in
maintenance is to retain good qualities already present in
the software. Those <criteria not addressed are:
consistency, modularity, functional generality,
instrumentation, independence, compliance, virtuality, and

distributedness. This lack of coverage is bad because of

the fact that experience shows that approximately 75% of

the budget spent on any piece of software is spent in the

151

5
\
SRR

!

S fa
o B, 4,

o |
_l-l_l_’

F'..' PPl
} . e

BN - RN

maintenance phase. The situation is somewhat ameliorated
by the fact that many of the tools assigned to other

phases can be applied during the maintenance phase.

A reasonable conclusion to be reached from this is that
the present emphasis in tool development needs to be
changed. The testing phase is probably sufficiently
covered, but more research and development needs to be
spent on designing tools for the design and maintenance
phases. In addition, the criterion of independence is not
addressed in any phase; therefore, it looms as a potential

area for exploration and development.

152

TRy

C T et

— i

;\-'- wt

m_T".‘. L & G e K O S A S Nad e) A ‘2 S Aaiiie I N A XTRTR IS RO Daliciat SatChal I Jub o
v
.!n‘. : e
3]
N . -
2N 5.0 Far-Term Generic Technigues oy
T e ad
' o
ﬁa Distributed processing systems are best supported by an -ﬁi
:§§ integrated software support environment. Much of the cur- iig
2
-l rent development effort within the Department of Defense ?}?

is directed toward such an environment. The subsequent :i;

cost savings provide Jjustification for many on-going

projects, e.g., the Ada Program Support Environment and
various Integrated Software Support Environments. Present
emphasis is on implementation as quickly as it can be
achieved. However, this overlooks the more subtle long
range impact such implementation will have. Why implement
integrated software support environments in the first
place? Are cost savings alone enough to justify them? Do
they provide value-added to the computer users? These and
a host of other questions are not addressed. Problems are
currently arising within these computer user communities
which should be addressed. One such problem concerns the
almost apocryphal aspects behind knowledge based systems.
An increasing number of computer users are justifying all
sorts of new data bases based upon an enhancement to a
knowledge based system. Of course a precise definition of
what 1is meant by knowledge based system is usually not

addressed. As these undefined 1levels of expectation

become more common within the user community, the

relationship of integrated software support environments

P .ot ¢ . -
e, LS S LEPREAE AP AN () g Pl f‘
REPAIE I Y » . ‘o
Wt e, e, LA R B I | Sebd
£ L . L e Te (A - AL
. e 0

.
)
['.l
B
"a’als’s

N
LR
{ I

153

[
o
2

R
3

.........................
...............

......................................

to knowledge based systems becomes increasingly important.
Once implemented, the contribution to specifically defined
knowledge based systems by integrated software support en-
vironments must be made explicit. This contribution is a
function of the emerging role of artificial intelligence.
Actual computer intelligence will become evident within
the databases and operations of the computer environment.
In large part, the success of distributed processing sys-
tems will be circumscribed by their ability to contribute
to the knowledge based systems of users. The bottom line
remains functionality, and what users want is functional
knowledge based systems. Consequently, the generic tech-
nigques required by distributed processing systems of the
future concern knowledge based functionality. Tools not
presently envisioned will be required. ISSEs will not be
enough. Intelligent and adaptive integrated software sup-
port environments will be required. Under present
circumstances, the distributed processing environment is
complex. Under such future reqguirements, the complexity
multiplies itself. Techniques which will become the tools
of tomorrow are going to require artificial intelligence
(AlI). Although the present only hints of the future, the

following observations concerning AI are evident.

f ﬁﬂ The prime far-term generic tool and technique for highly

FES complex systems, including distributed processing systems,

?
N

154

fﬁ*ﬁk
" ”

7
-

agiigu‘
o L . .I
’-".\" IO

e N

CRACE Wt i 29 Rl T R i It ol o/ aiC it i g P Sl A RS
. - R A

will be the application of artificial intelligence.
Intelligent components will be a feature of both develop-
mental support systems' and the operational systems. Such
components will thus support the total software life cycle
as well as serve to mediate the complexity of distributed
system functions. The most persuasive rationale for the
appropriateness of Al is precisely in the potential for

managing complexity.

The overall integrating concept here 1is that of a
knowledge based system (KBS). The realization of a KBS is
of course somewhat different in the two application areas
under discussion (support environments and operational
systems), In support (host) environments, the KBS is the
foundation of the "intelligent programmer's assistant”,
In operational (target) systems, intelligence and its sup-
porting knowledge bases function as features of operating
systems and data base management. Thus in distributed
processing, this knowledge and intelligence will itself be
distributed as a system component., Of course, the design
of intelligent systems may itself by carried out on an in-

telligent development system.

Definitions of artificial intelligence usually emphasize
the emulation of human cognitive abilities in such tasks

as problem solving, symbol manipulation, and operations on

155

.......

L e /g i B a4 EA A ucii an T va B -fihg A iR A i Sh it VLT W IR ‘.’_'.‘_'-,‘._“
BRI S S 2 e
.Y .
..‘-J
R

=

’
¥y VY L §

o

.

\ 4
Y

. * .

o
- .-

RN
Y
4

.

. "n ’

g

‘
’

[
ALY

I.l .

. '
P S e

P f.."/' ‘
. 8 '
» ol

‘s 'y

7 4
P
i

Pl
o~

’
VORI SN

i

2N

LS

v

o

A

incomplete or inaccurate information. Implicit in this S
emphasis is the assumption of the (metaphorical) ability %ﬁ%
O

to "understand". Understanding, in turn, is dependent on D
an appropriate and adequate representation of knowledge. iﬁ:
]

'
3 v

PR

P

The types of knowledge represented and manipulated in a
KBS will vary according to whether the KBS pertains to a

support environment or to an operational system (though

5 R TSRS
U e a8, i
o o0

L
e

there may be overlap in the content of the two types). A ﬁéi

support environment will optimally include detailed
knowledge of the application domain(s) (and will include a
means for acqQuiring knowledge about application domains).
The design target may be a total system design including
hardware/softvare partitioning, or it may be an ap-
plication program for an existing target system. In the
latter case, knowledge of the target configuration would

be part of the knowledge base.

Further, an intelligent support system will have a

sophisticated understanding of the application programming
language. Any compiler for the language will of course

have "knowledge” (but little "understanding") of the syn-

tax and semantics of the 1language. Various types and

levels of intelligence are candidates for incorporation
into an intelligent compiler (embodying a knowledge of the

pragmatics of the language) and an associated compile-time

............

- PO
b vl et e g LS NN ML IS S R S . FETE RTINS
'

C.EERE. Lt

NN

(and run-time) debugger. (Some of these will be discussed
in more detail below.) Understanding of the language (and

of the target system) will be useful in other development

- AT

)

tools as well, such as a requirements analyzer which out-

A

puts source code text. Here the understanding comes into

&

play in selection of appropriate language constructs and

ey W
LOEIN

facilities. For example, an intelligent encapsulation

P

mechanism (e.g., for packages in Ada) could define classes

e

N 5

of objects to be packaged together, using heuristics

.
S

guided by knowledge of the 1language rationale, the ap-
plication domain, and measures of software quality. If
low-level objects are specified in a reguirements
language, this automatic package definition can be viewed

as the generation of a high-level, more abstract object.

As 1indicated above, the representation of knowledge is a
fundamentally important issue in KBS development.
Representation schemes include production rules (a set of
conditions together with a conclusion, perhaps with an at-

tached confidence level), frames, and scripts. Detection

of true conditions in production rules may involve

s heuristic evaluation. An important aspect of knowledge
Ind
i representation is the association of teleology (purpose)
F} with raw information. Inclusion of purpose aids an intel-
iy
iy ligent system in evaluation of the relevance of in-
LY
i formation to a task or problem.

;E;;

157

5

~—y) . - LTI RS Sl e ‘.--'_-.'.-:‘-.'.- MR R R 5 R e et i
e o e e N N A

R A R R

St FIZRFIESINE N SEI S M

G

R RREREY

Ty,
P SO A

L

A A
ISP

NN YRY
" '.' .l", "l \-_

"8
L}l

XA

""*""I .

Intelligence in knowledge-based, expert consulting systems
will provide decision aids throughout the system life
cycle. This will be valuable in any activity where the
consequence of experimental adjustment of system
parameters needs to be evaluated. An example is impact
analysis of requirements or design changes, where what is
desired is an evaluation of the severity of a proposed
change. Al techniques can be used to search the knowledge
base for relevant conceptual connections. Efficient
heuristics could make feasible an interactive dialogue
with the decision-maker. The search process in this exam-
ple may be sufficient but not exhaustive. Once a change
decision has been made a detailed analysis of affected
system entities will be necessary. In this case, search
will be exhaustive, but can be intelligently guided to

avoid blind search.

~~

.

A further desirable component of the knowledge base for
decision aids will be the inclusion of quantitative and
qualitative software metrics. This will enable an intel-
ligent dialogue with program designers in which alter-
native design features can be evaluated against criteria
of goodness. The decisions of the designer can feed back
into the knowledge base so that future decisions can be
more fully automated. A mature design knowledge base will

be useful in rapid system prototyping.

Support tools of the future will be used in designing and
implementing target systems with artificially intelligent
components. A principal motivation for the use of Al
techniques in distributed processing is the management of
the inherent complexity of such systems. Since intel-
ligent support systems and intelligent components of
target systems will use the same generic technology, it is
less expedient to detail the intelligent functions in the

target systems. Likely there will be beneficial tech-

nology exchange in AI between tool development activity

and applications program techniques. For the sake of

e completeness, we will 1lastly consider some important

L*]

;:: potential applications of AI in the target systems.

N

_3 Local operating systems will require intelligence to Efj
> i o
N direct decisions based on incomplete state information for

resource management and for recovery. Intelligence can be

applied to nondeterministic scheduling and task allocation
L in concurrent software. Application algorithms may be 1

-
automatically partitioned and distributed to separate kool

processors for parallel execution.

= There will be intelligent components of data base
$: management. Intelligent retrieval will make use of in-
%

M ferencing capacity and of strategies for merging schemas
15

T of distributed data bases. An emerging concept is that of
< 159

Lo
(]
0
=
-
v
o
2
o
=
ord
>
—
o
>
[
Y]
v
o
o
L
-
—
ord
>
]
v
ord
£
>
7]
v
"
©
Q
<
o
]
o

active
terest.

in

A AL N

.-\qu\.\‘i [

Finally, natural language processing will be a

terface.

n

feature of the user

AR

.I i‘ b.z-‘l\’

R
\I‘

(2K

160

T TS TIW T W TR W i e e e M. '-.'u' -

o Rl Sacasr A REES s B en e b R AGarac ARG AC RS M e
L]
L
“
s

‘

ot
.

List of Abbreviations

PLYATAY

>
L]

Artificial Intelligence

ﬁ ALU Arithmetic Logic Unit
E APSE Ada Programming Support Environment
. cos Constituent Operating System
i DBMS Data Base Management System
{ DoD Department of Defense
| DOS Distributed Operating System
IA Interconnect Architectures

1EEE Institute of Electrical and Electronic Engineers

1/0 Input/Output

ISSE Integrated Software Support Environment

KAPSE Kernel Ada Program Support Environment

KBS Knowledge Based System

K1T KAPSE Interface Team

MAPSE Minimal Ada Program Support Environment

MCMD Multi-Center, Multi-Drop
MDMS Multi-Center, Multi-Star
MST Minimal Spanning Tree

PDL Program Design Language
RADC Rome Air Development Center
ROM Read Only Memory

SCMD Single-Center, Multi-Drop
SCsS Single-Center, Single-Star

R R R A

Bibliography

Andrews, D. M. and Melton, R. A.,, FAVS: FORTRAN
Automated Verification System User's Manual, General
Research Corp. Report CR-1-754/1, April, 1980.
Baklovich, B., Decentralized Systems. Computer
Science Technical Report, University of Connecticut,
AD/A099 195, Storrs, Connecticut, 1980.

Barr, A. and Feigenbaum, E. A., editors, The Handbook

of Artificial Intelligence, Los Altos, CA, William
Kaufman, 1981.

Benoit, John W. and Selander, J. Michael, Knowledge-
Based Systems as Command Decision Aids, First U.S.
Army Conference on Knowledge-Based Systems for C°I,
1981.

Clark, Lori A. et al, Toward Feedback-Directed
Development of Complex Software Systems, University of
Massachsetts, Amherst, Massachusetts.

Cook, R. P., A Review of the Stoneman APSE
Spec1f1cat1on, Consulting Report, June, 1982.

Cook, R. P,, How To Write a Distributed Program,
Consult1ng Report, June, 1982.

Cook, R. P., Kernel Design for Concurrent Programming,
Consultzng Report, June, 1982.

Daley, P. Modeling _of Distributed
Command‘Commun1cat1on7Control Intelligence Systems,
RADC Distributed Processing Technology Exchange, May,

1982,

Department of Defense, Reference Manual for the Ada
Programming Lanquage, July, 1980.

Donahoo, J. D. and Swearinger, D., A Review of
Software Technology, RADC-TR-80-13, February, 1980.

Drazovich, Robert J. and Payne, J. Roland, Artificial
Intelligence Approaches to Information Fusion, First
U.S. Army Conference on Knowledge-Based Systems for
c’1, 1981.

Enslow, P., Performance of Distributed and
Decentralized Control Models for Full Distributed

Processing Systems, RADC-TR-82-105, May, 1982,

ELLI a:x
SRR SRS 394
"\'.s RN

ﬂﬁ"‘~'\.‘ o',

15.

le.

17.

18.

19.

20.

21,

22,

23.

24,

25,

26.

217,

- AT a” Q"

Enslow, P., Support for Loosely-Coupled Distributed
Processin Systems, RADC Distribute Processing
Technology Exchange, May, 1982.

Feng, Tse-Yun and Wu, Chuan-lin, Interconnection

Networks in Multiple-Processor Systems, RADC-TR-79-
304, December, 1979.

Findler, N, V., editor, Associative Networks: The
Representation and Use of Knowledge by Computers, New
York, Academic Press, 1979.

First U.S. Army Conference on "Knowledge-Based Systems
for C°1", Ft. Leavenworth, Kansas, 4-5 November, 1981.
Forsdick, Harry C., et al, Distributed Operatin
System Design Study, RADC-TR-81-384, January, 1%82.
Fortier, P, J. and Leary, R. G., A General Simulation
Model for the Evaluation of Distributed Processing
Systems, Annual Simulation Symposium, November, 1981.
Gannon, C. and Brooks, N. B., JOVIAL J73 Automated

Verification System Functional Description, General
Research Corp. Report CR-1-947, March, 1980.

Giese, C., Research and Development Plan for Ada
Target Machine Operating System (ATMOS) for the Ada

ggge Target Machine, AJPO/U.S. Army AIRMICS, April,
1982.

Gorney, L., Queueing Theorg: A_Problem Solving
Approach, Petrocelli Books, 1982.

Green, Cordell, A Knowledge-Based Approach to Rapid
Prototyping, Software Engineering Symposium: Rapid
Prototyping, 1982.

Hayes-Roth, Frederick, Artificial 1Intelligence and
Expert Systems, A Tutorial, First U.S. Army Conference
on Knowledge-Based Systems for C°I, 1981,

Jensen, D., Decentralized System Control, RADC
Distributed Processing Technology Exchange, May, 1982,
Jensen, E. Douglas, The ARCHONS Project, RADC
Distributed Processing Exchange, October, 1 .

Joobbani, R. and Siewiorek, D, P,, Reliabilit

Modeling of Multiprocessor Architectures, Carnegie-
Mellon University, Pittsburg, PA, 1 .

Kemp, G. H., Debugging. Embedded Computer Programs,
GDPD Technical Memorandum, March, 1980.

McCall, J. A. and Matsumoto, M. T., Software Quality
Metrics Enhancements, RADC-TR-80-109, Volumes I and
I1, April, 1980.

Melton, R., Grunburg, G. and Sharp, M., COBOL
Automated Verification System: Study Phase, RADC-TR-
81-11, March,1981.

Post, J., Quality Metrics for Distributed Systems,
RADC Distributed Processing Technology Exchange, May,
1982.

Reinstein, H. C. and Hollander, C. R., A Knowledge-
Based Approach to Application Develogment for Non-
Programmers, IBM Palo Alto Scientific Center, July,
1979.

Saponas, T. G., Distributed and Decentralized Control
in Full Distributed Processing Systems, GIT-ITC-
81/18, December, 1981.

Sharma, R. L., deSousa, P. J. T., and Ingle, A. D.,
Network Systems, Van Nostrand Reinhold Data Processing
Services, 1982.

Sharp, M., Melton, R. and Greenburg, G., COBOL
Automated Verification System Functional Description,
General Research Corp. Report CR-2-970, November,
1980.

Stenning, V., et al, The Ada Environment: A
Perspective, Computer, June, 1981.

Tanenbaum, A. S., Computer Networks, Prentice-Hall,
Englewood Cliffs, NJ, 1981,

Taylor, R. N., Complexity of Analyzing the Structure
of Concurrent Programs, University of Victoria
Department of Computer Science, 1981.

Taylor, R. N. and Osterweil, L. J., Anomaly Detection
in Concurrent Software by Static Data Flow Anaizsis,
IEEE Transactions on Software Engineering, Volume 6,

1980.

Thomas, R., Distributed Personal Computer-Based
Information sﬁstems, RADC Distributed Processing

Technology Exchange, May, 1982.

14" o
J

i)
P ST Y

,-.:s' (SN

&y
’
.

P
P

-

- o.‘ -

vV

A
R Y

“"\’l
§

n.'

[J

N ety Yyt
e

g - .
f
. ' ,"f A
. Wy

41. Wolfe, M. 1., et al, The Ada Language System,

Computer, June, 1981.

42. Ziegler, K., A Distributed Information System Study, 5;
IBM System Journal, Volume 18, Number 3, 1979, -

165

- v T P e e — - - .‘.—’
A 2 ZedU S Tk "R AL R 90 Iun Jhdn A dn iR ‘_‘G“\"‘.‘.‘S___'..‘:"._'.‘ v " v ‘l'_ R AR Y 'y .
Sttt R T L . T A A R A -

MISSION
of
Rome Air Development Center

RADC plans and executes nesearch, development, test and
selected acquisition programs in suppont of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineening support within areas of technical competence
48 provided to ESD Program Offices (POs) and othen ESD
elements. The principal technical mission areas are
communications, electromagnetic guidance and control, sur-
veillance of ground and aerospace objects, intelligence data
collection and handling, information system technology,
Lonospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.

:
2
3

:

T B e s s B D}

i
H
13
I
Y
'

