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1.0 Technical Report Summary

General Dynamics Data Systems Division is under contract

4 to Rome Air Development Center to conduct a study entitled

Distributed Processing Tools Definition. The objectives
--

are to investigate the requirements for software life cy-

cle support in embedded distributed processing systems and

to specify applicable software tools and techniques by

life cycle phase.

1.1 Project Overview

4, 
"The 

study is divided into three phases which are illus-

trated in Figure 1-1. Phases I and II of the study have

been completed, and their results are described in the

present Technical Report.
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Figure 1-1 Overview of the Distributed Processing Tools
Definition Study
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1.2 Phase II Conclusions

The principal technical perspective used in the following

conclusions assumes a combined system functionality for

hardware and software. Embedded distributed processing

systems require both to be operable at the same time.

Each conclusion is followed by a reference to its appro-

priate discussion in the Technical Report.

1) Development of Distributed Processing Systems is best

supported by an Integrated Software Support

Environment (ISSE) (see paragraph 3.0).

4"%

2) It is economically efficient to make ISSEs for dis-

tributed processing open-ended (see paragraph 3.0).

3) Efficient static analysis of deterministic systems is

possible (see paragraph 3.1).

4) Further research is needed on static analysis of non-

deterministic systems (see paragraph 3.1).

5) Ada will require a cross-reference tool with extensive

capabilities (see paragraph 3.1.1).

3
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6) Ada will require static analyzers for its concurrency

constructs (see paragraph 3.1.1).

7) The requirements and design ,phases must be heavily

stressed and further automated to build cost efficient

and reliable distributed systems (see paragraph 3.2).

8) Rapid prototypers and simulators are necessary support

for distributed processing system designers (see para-

graph 3.2).

9) An automated requirements tool consisting of a

requirements interface processor, a requirements

document generator, a requirements analyzer, and a

requirements language translator has proven to be

", useful during the requirements phase and should be

further developed for distributed systems (see para-

graph 4.2.1).

10) The design phase is virtually poverty-stricken with

regard to tools. The only tools available currently

in this area are program design language processors,

even though this phase is one of the most important in

determining the overall quality of the finished system

(see paragraph 4.2.2).

4
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11) The tools of the coding phase can be divided into two

categories: tools dealing with languages and tools

dealing with standards. The tools dealing with lan-

guages exist for any usable high level language, with
.-.

the possible exception of checkout compilers. Since

*' the functions of a checkout compiler overlap both the

coding and the testing phase, checkout compilers

should be developed where possible. Standards

auditors and formatters should be developed to enhance

4 consistency of code (see paragraph 4.2.3).

12) The tools of the testing phase are concerned with

checking for adherence to requirements and design and

resolving coding errors. Referring to Table 4-2, all

needed criteria for the life cycle phase of testing

(Table 4-1) have been enhanced. Due to the ap-

plicability of the testing tools to other phases,

criteria not identified as needed have been enhanced

in the testing phase. Testing has an abundance of

tools; however, tools should be more concerned with

distributedness of the software (see paragraph 4.2.4).

13) The tools of the maintenance phase consist of a ver-

sion generator, rapid reconfiguration, and report

generator. Many criteria are not addressed in the

maintenance phase (Table 4-2) according to the

5
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prescribed criteria in Table 4-1. More tools should

be developed to satisfy the requirements since it is

the phase ensuring the continuation of quality

throughout the life of the software (see paragraph -"

4.2.5).

14) The operations phase has few tools since it is usually

a user phase with little software engineering

activity; however, tools should be developed to ensure

operational quality of the system. Comparing Table 4-

2 with the required criteria for the operations phase

in Table 4-1, the diagnostic analyzer and system buil-

der enhance less than one-half of the criteria.

Criteria such as control of data access and ease of

use, which are critical user criteria, need to be ad-

dressed by new tool development (see paragraph 4.2.6).

15) Knowledge-based systems will be components of far-term

artificial intelligence techniques both in development

support systems and in operational application

systems. Near-term tool definition should take into

account the potential for integration into future

highly intelligent systems (see paragraph 3.2.4).

6
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2.0 Scope of Embedded Distributed Processing Systems

Distributed processing systems can be characterized by

their position within a three-dimensional space. Each

axis of that space can be used to separate the non-

distributed environment from its distributed counterpart.

The first of these axes concerns the distribution of

hardware. It ranges from a single central processor unit

to multiple computers. The single central processor unit
W. -,

is characterized by one control unit, one arithmetic logic

unit, and one central memory. The multiple computers are

characterized by multiple general purpose central process-

ing units which have their own control units, arithmetic

logic units, central memories, and input/output systems.

Several configurations lie somewhere between these two

extremes. In summary, the five following generic hardware

configurations have been isolated and are in common use.

1) Single central processor unit characterized by

i) one control unit

ii) one arithmetic logic unit and

iii) one central memory.

2) Multiple execution units characterized by £4

i) one control unit

ii) mutiple, identical arithmetic logic units

and

7
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iii) possibl multiple, independent central

memories.

3) Separate "specialized" functional units charac-

terized by

i) one general purpose control unit and

ii) multiple arithmetic logic units or process-

ing units

a) some may be specialized units

b) each is limited and

c) all may be identical general purpose

units.

at.'4) Multiple processors characterized by

i) multiple control units

ii) multiple arithmetic logic units

aiii) possibly multiple, independent, central

memories and

iv) a single, coordinated input/output system.

5) Multiple computers characterized by

i) multiple general purpose central processing

units with their own control unit, arith-

metic logic unit, central memory, and

* input/output system.

Distributed processing systems are usually composed of

multiple processors and multiple computers which are the

fourth and fifth generic hardware configurations. The

8
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non-distributed environment is typified by the single cen-

tral processor unit and multiple execution units which are

the first and second generic configurations.

The second axis within the three-dimensional space

concerns the distribution of control. It ranges from a

single, fixed point of control to multiple control points

which are not necessarily homogeneous but which cooperate

on the execution of a task. In all there are seven

categories of generic control:

1) Single, fixed control point;
2) Fixed master-slave relationship;
3) Dynamic master-slave relationship;

4) Multiple points of control which are totally
autonomous;

5) Multiple points of control which cooperate on the

execution of a task which has been subdivided

into sub-tasks;

6) Replicated, identical points of control

cooperating on the execution of a task; and

7) Multiple control points which are not necessarily

homogeneous but which cooperate on the execution

of a task.

9
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Distributed processing systems are usually typified by the

top three categories of generic control, i.e., multiple
,.

points of control, replicated points of control, and mul-

tiple control points. Conversely, non-distributed

processing systems are characterized by the bottom two

categories, i.e., single control points and fixed master-

slave reltionships.

After an examination of only two of the three dimensions,

several obvious observations can be made. First, the

movement within the marketplace has been and will continue

to be from single processors to multiple processors. As

these multiple processors become more prevalent, non-

distributed control policies become questionable. Second,

as individual nodes reach parity within multiple processor

configurations, choosing one node over another for control

purposes is increasingly difficult to defend. Third, con-

figurations which run without an overriding executive are

now possible. In summary, the multiple processor con-

figurations have complicated the present situation.

The third and final axis within the three-dimensional

space concerns the distribution of data bases, in terms

of complexity it ranges from a single copy data in secon-

• -dary storage to a completely partitioned data base without

a master file or director. Many gradations exist between

10
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these two extremes. To date approximately seven generic -:

- .'. -- - -- ..-.--- ,.. -

The first three are associated with centralized data bases

while the last four are associated with the emerging dis-

-. i

tributed data bases.he ns d

Centralized data bases include:

1) single copy, secondary storage;

2) single copy, primary memory; and

3) distributed files with single, centralized

directories.

Distributed data bases include:

4) replicated data bases;

5) partitioned data base with a complete master

copy;

6) partitioned data base with a master directory;

and

7) partitioned data base without a master file or

directory.

File structures must not only accommodate the serialized h

requests from a single processor but must also accommodate

*- the concurrent requests from several processors.

t- 11.
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When all three axes of the three-dimensional space are

considered, the spatial location of distributed processing

is clearly different from non-distributed or centralized

processing. That difference is illustrated in Figure 2-1.

Such distributed processing systems are usually components

within larger systems, i.e., they are embedded.

-. 112
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The application functions performed by these larger sys-

tems commonly take precedence over their embedded L
'h-.

components. Examples would include large mainframes com-

posed of tightly-coupled multiple processors. The users

of such mainframes are seldom aware of their embedded com-

ponents and assume a centralized environment. Of course

". '* the tools available to such users are designed to operate

in a centralized environment. The capability of a
tightly-coupled, concurrently-operated environment is sel-

dom made available to users because of a shortage of

tools. Despite this shortage, decision making concerning

embedded distributed processing systems requires mastery

of data movement and a solid understanding of com-

putational efficiency. Enough information about the dis-

tribution of hardware, control, and data bases must be

known within appropriate real-time constraints in order to

reach informed decisions. The functionality of the final

product depends upon these informed decisions.

Because of inter-relations between axes, the analogy of a

three-dimensional space can only be carried so far.

Hardware, control, and data bases are not independent of

one another in a distributed processing environment. A

change in one impacts the other.

14
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Growth in data bases can and does force change in tightly-

coupled hardware to accommodate increased information

flow. As tightly-coupled hardware changes, the control

process is impacted. The bottom line remains func-

tionality despite what happens to either the data base,

hardware, or control. That functionality represents a

- massive tradeoff between hardware and software.

Furthermore, each one of these tradeoffs can be charac-

terized by its position within the inter-related, three-

dimensional space.
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2.1 Increased Distribution of Hardware

As distributed processing systems are winning wide ac-

ceptance within the marketplace, their ability to move and

efficiently process large amounts of data has attracted

military interest. Current military computer systems span

V the spectrum from "smart bombs" and bullets to global com-

munications systems. The resultant military applications

fall into two very large generic classifications:

1) Weapon systems and

2) Communications systems

Included within weapon systems are armament, aeronautical,

missile, and space applications. Included within com-

munications systems are command/control/communications ap-

plications as well as mission and force management

functions. Each category occupies a characteristic

.*. -position within the three-dimensional space whose axes are

the distribution of control, the distribution of hardware,

and the distribution of data bases. These positions are

presented in Figure 2-2.
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*" Currently the communications systems contain the charac-

teristics of non-distributed systems. However, growth is

occurring and such systems are expanding their capability.

* Dynamic master-slave relationships and separate

"specialized" functional units are beginning to appear.

Furthermore, distributed files with single, centralized

*[ directories are beginning to appear in some leading-edge

communications systems. Notably the connections remain

loosely-coupled and are exemplified by

command/control/communications systems. Such loose-

coupling results from the constrained bandwidth of the

connection technologies currently in use. However, these

technologies are undergoing great change. Bandwidths are

increasing and as they increase, the capability for

tighter-coupling is enabled. Possibly replicated data

bases with multiple processors will be available in the

near term.

Currently weapon systems lie somewhere between the non-

distributed and distributed technologies. Their connec-

tions are more tightly-coupled than the communications

systems. Although their bandwidths are usually greater

than communications systems, they are not as high as the

distributed systems. As a consequence, some of the

capability of distributed systems is not available in cur-

rent weapon systems. The reason lies in the control

18
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functions. By their nature, weapon systems must be

tightly controlled. A stores management system may

inventory, fire, and update a particular weapon system's

status. However, that same system is not fail-safe and

must verify its action beforehand through the concurrence

of a control system. Its actual operation is charac-

teristic of an embedded system, not a completely dis-

tributed system. In the near term, weapon systems will

retain their present orientation. Completely fail-safe

operation of distributed systems remains a concept for

future implementation.

2.1.1 Weapon Systems

Advanced weapon systems are becoming increasingly complex
and rely upon computers and embedded processors to

operate. One example is provided by self-contained sur-

face mobile weapon systems used by the Army. Such systems

rely heavily upon an internal fire control computer and an

embedded navigation system to provide operational

direction. As newer systems evolve, an increasing number

of remote functions are being incorporated. One such

function is a remote operating console which requires more

tightly-coupled data bases and a high level of data

exchange. Traditional methods of fault detection and

isolation no longer apply in such configurations.
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Failures can occur and remain undetected simply because of

sheer complexity. An example would be a minor logic error

* which occurred intermittently within the internal fire

control computer. If a sufficient number of errors were

generated, the weapon's accuracy would be destroyed.

* Since the problem is intermittent, routine maintenance

would probably not perceive it.

Intermittent malfunctions are a problem for weapon systems

in general, not surface mobile systems in particular. if

these malfunctions occur at a critical time during an

* engagement, the effectiveness of a weapon system may be

*nullified. The internal fire control computer in a self-

contained surface mobile weapon system illustrates how im-

portant a malfunction can be. Its embedded navigation

* system could have shifted modes from targjet search to

target track when a malfunction caused the reverse shift.

Instead of directing the system to the target, the fire

5,..

control computer begins to search for that target.

observing such a phenomenon from the remote operating con-

sole does not alleviate the situation. To regain the lost

* target tracking mode, some sort of direct intervention

must be initiated. Alternative modes of optical sighting

and infrared detection schemes are often activated. In

any case, the preferred action is to resolve and correct

the malfunction source. This involves the direct detec-

20

r r ~ ~ ... * :.,..- _-

engagement,~ th effctieneso a.eaonsyte ma be ,

.," Z~~::~~:..-5.- ::.-

' ...*.. ..



tion and isolation of faults in real-time which is no

trivial matter. Compounding the problem in our example is*-1

the implementation of a mode shift. Such a shift is

related to the distribution of control. The embedded

navigation system is capable of directing the fire control

computer to the target but needs the concurrence of the ---

fire control computer itself. This concurrence is a fail-

safe mechanism to assure adequate operation of the surface

mobile weapon system. In essence, the fire control com-

puter concurs on the changes in operational modes. As

illustrated, the ability of this computer to override the

embedded navigation sytem can also create problems. What

emerges is a need for new software tools.

Real-time fault isolation requirements are being satisfied

in aircraft systems as well as spacecraft systems. The

approach used by both systems is system redundancy through

the use of multiple processors. When malfunctions occur,

the redundant system automatically activities itself to

maintain the operational mode and the same level ofN performance. The problem with such an approach is cost.

The architecture in surface mobile weapon systems simply

cannot afford the extra cost for redundancy. k-A

Consequently, software tools must be relied upon to accom-

plish the same objectives as system redundancy. These ob-

jectives are two in number:
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1 ) provide real-time fault detection and advise a

console operator of his alternatives and

2) achieve real-time fault isolation and retain

specific failure parameters to diagnose the in-

termittent malfunctions.

As weapon systems have grown more complex, the

verification of software has assumed greater importance.

Missile systems provide a good example of evolving

complexity. The transition from ballistic capability to

cruise capability requires significantly greater amounts

of software to be written and verified. General Dynamics

has studied various software verification techniques and "J

determined some of their shortcomings. In the context of

weapon systems these shortcomings include computational

overflows and program time constraints. Other methods of

verification are required to address such problem areas,

e.g., program testing based upon realistic simulations.

Such realistic simulations can be used to verify more than

computational overflows and program time constraints iv,

within weapon systems application software. Both software '

verification techniques and realistic simulations can be

used to detect the following types of software errors:

1) Input conversion problems;

2) Output conversion problems;
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3) Mathematical calculation problems;
4) Logic decision problems; -
5) Path analysis problems;

6) Mathematical precision problems;

7) Lack of computational precision;

8) Initialization problems; and

9) Switches in operational modes.

Testing efforts based upon realistic simulations are

clearly related to the distributions of hardware and

control. The software verification techniques ignore the

distribution of hardware but concentrate on the dis-

tributions of data bases and control.

As the complexity of weapon systems increases, the dis-

tribution of hardware also increases. The use of multiple

processors has already been referenced. Such processors

are usually tightly-coupled since they share common

resources, e.g., the same data base. Viewed from the

standpoint of statistics, such resource sharing increases

the degrees of freedom over which a weapon system can

operate. State of the art realistic simulations can now

accommodate six degrees of freedom, i.e., six parameters

can vary concurrently. The more de-centralized a system

becomes, the greater its degrees of freedom. Extremely

complex weapon systems require rigorous software testing.
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If the actual operation of such weapon systems is to be

avoided, realistic simulations and software verification

techniques become extremely important. In a sense, the

complexity of weapon systems will be constrained to our

ability to verify their software or to simulate their sub-

sequent operation realistically.

2.1.2 Communication Systems

Advanced communication systems are becoming increasingly

complex and rely upon computers and embedded processors to

operate. Such systems include

command/control/communication applications as well as mis-

sion and force management functions. From the standpoint

of users such systems seem to be loosely-coupled or com-

pletely uncoupled. From the standpoint of network

designers, such systems are becoming tightly-coupled.

-" Both viewpoints are valid although they seem to be

contradictory. An explanation can be developed through an

examination of Figure 2-3 concerning the nodes and links

within a generic network system. Several levels of com-

munication take place concurrently within such a system.N The most essential layers concern the operation of the

network itself. Tn the example this includes the network

hosts X, Y, and Z. Their communication links comprise the

_ backbone or trunk of the network. They incorporate the
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lowest three levels of the International Standards

Organization Open System Interconnection Model devoted to

the movement of bits, frames, and packets. These back-

bones or trunks support the next three layers of the Open

System Model which, in turn, support the user node

requirements for the transport, interaction, and presen-

tation of information. In the context of user ap-

plications the communication appears to be loosely-coupled

or completely uncoupled because of the operation of those

presentation, session, or transport layers. However, the

backbones or trunks operate in a tightly-coupled format,

i.e., resources are shared between network nodes.
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In the context of Figure 2-3, software is operating at

several different locations. Each location addresses a

particular layer or set of layers within the Open System

- Model. Growth within distributed systems can be measured

in terms of increased computational power being placed at

these strategic locations within networks. Starting from

the standpoint of a user, several observations can be made

concerning the software operating characteristics of

various implementations of the Open System Interconnection

Model. The first location at which significant com-

putational power is encountered occurs at the network host

level. Each host has its own front end to support a

variety of user nodes. Two types of software are evident

at this juncture. One resides upon each network host and

addresses the computational function. The other resides

within the front end of each network host and within the

user nodes serviced by the front end of that particular

host. It addresses the management functions of formatting

and routing messages, nodal commands, transferring data,

and updating status information. The differences between

these two types of software are illustrated in the fol-

lowing table.

L-
A.
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Network Host Front End and User Nodes Functions

Computational Functions Management Functions

Requires data in binary format Handles dato in one of
several transmission codes

" Requires uncompressed data Data compressed for
efficient transmission

Processes complete blocks Data transmitted in
of data bit-by-bit serial format

Processes only data Transmits data and
line protocol information L

Controls own timing Handles a variety of
timings dependent upon
devices and operator
speeds.

Obviously communication software between the network host

and its user nodes must accommodate both the computational

and management functions. It does so by addressing the

problem at a variety of levels. The first is the physical

interface itself. It concerns how the network host ac-

tually transfers the bits and frames between itself and

the user nodes it services. These are the first two

layers of the Open System Interconnection Model. The

second level used to address the software problem concerns

line control. It uses the bits and frames of the physical

interface to direct the flow of information the network

host and its user nodes. When software satisfies the

physical interface and line control requirements, the

first three layers of the Open System Interconnection

Model have been implemented between the network host and

its user nodes. These layers are called the communication

28
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subnet. A variety of such subnets are available within 4

the communications marketplace, e.g., IEEE 802 interfaces

and Ethernet. The third level used to address the com-

munications software problem concerns control of the

network. Whereas the previous two levels usually operate

within loosely-coupled and uncoupled formats, network con-

trol usually does not. Such control addresses com-

munication between individual network hosts. Within this &

level, resources are usually shared and software operates

concurrently on the various network hosts. In effect,

this level parallels the first level of the physical in-

terface between an individual network host and its user

nodes. The major difference is that this third level deals

with the physical interface between network hosts

- themselves. When this latter interface operates, the

network backbone or trunk is implemented. The efficiency

of that backbone or trunk is a product of how the physical

interface between network hosts is used. The software ad-

dressing that issue occurs within the fourth level of ab-

straction in the approach to communication software. At

this level a network operating system resides. It dis-

tributes control, operates the various network hosts, and

distributes the network databases. Obviously such sof-

tware operates within a concurrent environment and is

tightly coupled. In summary, the following four levels of
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abstraction are used to address the communication software

between the network hosts and their respective user nodes.

1. Physical Interface (loosely-coupled or uncoupled)

2. Line Control (loosely-coupled or uncoupled)

3. Network Control (tightly-coupled and concurrent)

* 4. Operating System (tightly-coupled and concurrent)

The following diagram relates these levels of abstraction

to one another.

r -------------------------------------------------------- U:

FRONT END PROCESSOR

HARDWARE/ OPERATING SYSTEM

- . SOFTWARE LINE NETWORK COMPUTER

-. = INTERFACES CONTROL CONTROL CHANNEL "
-- I INTERFACE I
:. AND BUFFERING

L---------------------------------------------------------

.- 3
. ,VN

-,p
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Information flows between the individual network hosts and

their respective user nodes via the user line interface.

Such flow can be accoMplished through hardware itself or

software driving such hardware. Software drivers serve to

transmit control information to user nodes and monitor

traffic conditions. The software drivers at the line con-

trol level actual regulate those traffic conditions being

monitored at the line interface level. They do not

concern themselves with message content but simply concen-

trate on the movement of packets, frames, and bits.

Network control software performs the formatting function.

It creates a single data stream and imposes a message

structure upon the subsequent information flow between

.* network hosts. This latter flow is managed by the network

operating system which can range from single routine han-

Idling peripheral devices to very complex routines handling

concurrent environments. The sophistication required of a

network operating system is related to the hardware

topology. Some of the most notable network topologies

follow:

1. fully connected topology

2. generalized tree topology,

3. minimal spanning tree (MST) topology.

4. bus topology,
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5. loop (or ring) topology

6. single-center,single-star (SCSS) topology,

7. single-center, multidrop (SCMD) topology,

8. multicenter, multistar (MCMS) topology, and

9. multicenter,multidrop (MCMD) topology.

The decreasing cost of hardware favors the implementation

of MCMS and MCMD topologies. Two examples of an MCMS are

presented in Figure 2-4 while a two-level, hierarchical

MCMD is presented in Figure 2-5. Such network topologies

require very sophisticated software operating systems.

However, such topologies are characteristics of the mark-

etplace in general and not the military in particular.

Bus topologies will continue to be popular within the

military architecture because they emphasize single

processor architectures. The bus structure is a simple

and economical interconnection between processing elements

and memory modules in a multiprocessor architecture. As a

consequence, bus structure are widely chosen during the

design of local computer networks based upon distributed r

"*[[ control. .2'
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User Link
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-Network Lik

SUsers Node

Network Node

..--

A two-level, hierarchical I1CrS topology

S.

A three-level MCMS topology

Figure 2-4 Two Examples of a Multicenter, i 4

Multistar Topology
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Users Node User Link

(~)Network Node Network Link

Physical SCMD Topology

* Logical SCMD Topology
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A distributed bus topology is presented in the following

diagram.

Y .

* 4 444:

Peripheral Apparatuses ..

NN

In most instances, the bus itself is controlled by a central .

controller which is illustrated in the followirg diagram. -

Peripheral Apparatuses
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The military situation is typified by advancements within

sensors. As more sensors are involved and newer sensors
.,* ...+

come on-line to existing force management systems, the

data rates within existing networks 
increase. The effect

is to shorten decision times. Since the increased data

must be accommodated within shorter times, the counter-

force capacity must be increased. As this additional

capacity becomes available, newer sensors come on-line and

the cycle starts again. In such an environment three is-

sues become apparent:

1. What type of system is involved?

2. What kind of distribution is involved?

3. Who is going to use the system?

Each issue impacts the definition of software tools. The

force management decision making process can be viewed in

"I rt N_ ...I I ItrscmI [Poe+n
gement

(Manalgmn
Commander
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Each situation requiring a decision has two extremes.

Furthermore, conflicts between these extremes must be

resolved in shorter periods of time. Different decision

making scenarios are being studied through simulation,

e.g., the Martin Marietta Advanced Modeling System.

However, the bottom line returns to network architecture

considerations. Figure 2-6 presents such architectural

considerations as well as the generic diagram of the

military command/control/communication system of the

future. The complexity of such a system will be con-

strained to our ability to verify its software or to

simulate its subsequent operation realistically.

2.2 Increased Distribution of Control

Figure 2-7 presents the two levels of control evident in a

distributed processing system. In current technology the

network operating system resides in only one host and is

not replicated throughout all hosts. The Bolt, Beranek

and Newman Jericho system is an example. However,

* replicated copies of the network operating systems present

a worst case analysis for consideration. The network

level of resource allocation represents the highest level

of resource allocation.
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a) Architectural Considerations in a Command/Control/Communication
System

; '.' (Between Network"
'-' .... [ Hosts) Global
" (-- (Front end Archi- "

Stectures) Local

- Trades in LAN Services - Long Haul Communications
- Implementation by Vendors - System Survivability

." - Network Resource Management - Interfacing Systems
- Buffer Build-up - Time Lateness
- Protocol Effects - "False Track" Phenomena
- What goes Where, When, How

b) Trends in Networking and Command/Control

" [ Today 1980's

"< --Ar--"
Air Defense Sensors Users a

• --I a,
Ocean Surveillance , i Communications I

I Network a

*.: Electronic Warfare--

- Fire Control L ------
Cruise Missile Control

,a .. -.

Data
L.-Data Basis ... -

Figure 2-6 Architectural Considerations and
Trends in Command/Control/Communication
Systems
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Issues: Should a centralized computer have systemwide executive control
to limit the kind of processing which can be embedded in remote
1/O systems? Should the network impose little restriction on
the physical dispersal of processing and not achieve global
executive control?

Figure 2-7 The Two Levels of Control Within a Distributed Processing
System
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Consequently, work flow is controlled at that level, i.e.,

jobs are submitted at the network operating system level.

In such an architecture the language capability at the

network level is a high level one. Consequently, the

network operating system itself must not only allocate

network resources but also translate its instructions into

the operating levels within each network node. To accom-

plish such objectives is not a trivial task. The leading

edges of several issues must be resolved. Object-Oriented

Modularization must be applied on two levels

simultaneously, i.e., at the network operating system

level and at the noda± operating system level.

'" Conventional Modularization is precluded by the concurrent

operating characteristics of the distributed architecture

itself. In summary, two great issues arise:

'V%'

1) Should control be centralized and to what extent?
and,

2) What restrictions should be placed upon

dispersion?
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2.2.1 System-Wide Control With and Without Centralization

Figure 2-7 presented the two levels of distributed

processing control. In effect, a single applications en-

vironment is presented to the network user. From the

standpoint of that user a job is submitted and it is

executed. The architecture could just as easily have been

a uniprocessor as opposed to several uniprocessors con-

figured into a network (provided execution does not

require the concurrent operation of several

uniprocessors). The issues faced within the network

operating system should remain transparent to the user.

To illustrate the complexity being handled by the network

operating system, a generic job is submitted on one of the

network hosts. Figure 2-8 presents the resultant

modularization performed on that job by the network

operating system. The job could have been submitted by

any node within the network, i.e., Host A, Host B, Host C,

Host D, etc. From an executive standpoint the network

operating system apportions the job to be performed over

the nodes in the network. When more than one node is used

the relationship between segments becomes all-important.

Since each node operates independently of other nodes, the

sequence by which segments are completed determines the

validity of results.

S 41i"2":4
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Figure 2-8 Segmentation of a Job Submitted to the

Network Operating System
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Such sequencing is termed serialization. In the example

the assumed serialization is that Segment 1 is completed ,

before Segment 2 which is completed before Segment 3 which

is completed before Segment 4. The difficulty enters when

many network jobs produce many segments operating concur-

rently throughout the various nodes of the network.

Serialization becomes difficult to maintain. As traffic

increases, the serialization problem becomes greater. How

the network operating system handles the problem deter-

mines subsequent operating characteristics.

Underlying the network is a specific number of nodes at

,.. any given point in time. Each node has its own intel-

ligence and probably has its own nodal operating system.

In a classic sense these nodal operating systems address

the Von Neumann functions of I/O, Processing, Memory, and

ALU within each node. Consequently, each node exhibits

A, its own serialization problem. Of course serialization at

the nodal level is constrained to sequencing segments ex-

clusively within that particular node. Such sequencing

may or may not meet the requirements of the network

operating system. How that particular sequencing is

satisfied raises the issue of centralized control versus

dispersed control. The situation is characterized by

Figure 2-9.
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Figure 2-9 Multiple Segmentation on Multiple Hosts Within a Network
Operating System
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Serialization is normally performed within each particular

node exclusive of the other nodes. Consequently, ordering

from the standpoint of a network requirements is an abnor-

mal situation. In most instances this situation has been

controlled by delegating a single host within the network

as the network operating system host. In such a context V..

this new host exerts control throughout the network for

subsequent queueing of its own host and the others as

well. In effect, the network operating system delineates

the kind of processing which can be embedded in the remote

input/output systems.

2.2.2 Replication to Combat Degradation

Figure 2-7 presented the two levels of distributed

- . processing control. Replicated versions of the network

operating system were presented throughout the various

hosts within the network. The reason for such replication

concerns network degradation. Individual hosts may come

up as well as go down without impacting the network. If

the architectural philosophy is to allow such coming and

going, new problems are created. The resources presented

to a network job vary from job to job. Worse yet, the

resources may vary within a network job. Such variance

impacts the network operating system as well as the in-
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dividual host operating systems. To accommoaate it is a

nontrivial task.

Tightly-coupled resources within a particular local-area-

network have the same problem. Accesses to those

resources may vary as a local-area-network job stream is

-' processed. The access structure may vary with time, e.g.,

one processor may go down while its shared memory and

. another processor continue to function. In fact, the ac-

cess structure may change during the operation of a single

job. To accommodate this coming and going of access

structures is also a nontrivial task.

In a concurrently operating environment the resources that

stay have knowledge of the operating environment while the

resources that go, do not. When such resources return,

their knowledge must be updated if they are to assume

- parity within the operating network. Furthermore, what

happened to their network tasks while they were gone? In

general, the fewer restrictions imposed on the dispersal

.[ of computational power in a network, the more important

such quections become. If strong centralized control is

not exerted within a network, new kinds of problems arise

to accommodate concurrency and degradation.
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One alternative to solve the coming and going problem is

to build software environments which automatically

generate pending tasks for network nodes as they return to

service. The same approach seems feasible in software ap-

plications for the concurrent environment. In Figure 2-9

' the multiple segmentations on various hosts of a network

operating system were presented. Using the same tasking,

an auxiliary directory can be implemented on each host.

That directory can be used by a host to determine the

location of tasks allocated for a specific host when that

host returns to service. The auxiliary directory is il-

lustrated in Figure 2-10. Assume Host B went down. From

V jobs accumulated on the remaining hosts, B can assemble

its pending tasks from the auxiliary directories when it

returns to service. The following table can be

constructed.

Auxiliary Directory Network Job Instruction

Host A Job X 3

Host D Job T 2

Inserting the execution of pending network operating sys-

tem instructions into a proper sequence is a nontrivial

task. Serialization is difficult enough but serialization

with network components coming and going is extremely

rigorous.
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Figure 2-10 Multiple Segmentation on Multiple Hosts Within a Network
Operating System Using Auxiliary Directories
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However, such coming and going is part of the real world. j
Consequently, the capability for a network operating sys-

tem to accommodate degradation and regeneration is an im-

portant attribute of a concurrently operating environment.

Software designed and implemented for such an environment

'N must rely upon such capability being available. Otherwise

the software itself must address degradation and

regeneration within its operating environment. Such tools

are relatively rare but the need for them is great. Many

tradeoffs exist when such problems are addressed. A major

consideration is the number of operational restrictions to

put into place. Each restriction constrains the com-

putational dispersement within a network. Whether the

configuration is loosely-coupled or tightly-coupled mat-

ters little. The issues are the same. As each tradeoff

is made, it should be carefully documented to enable users

to understand its full consequence.

2.3 Increased Distribution of Data Bases

-' Figure 2-11 presents the four levels of control which im-

pact data bases within a distributed processing system.

In current technology the DBMS resides on only one host

and is rot replicated throughout all hosts.
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However, such replication represents a worst case

analysis. Furthermore, as particular nodes may come and

go within the network, such an analysis is not too

farfetched.

An important relationship exists between distributed data

bases and network operating systems. Since such data

bases must accommodate input/output throughout the

network, they rely upon the network operating systems to

accomplish such I/O. Beyond I/O their similarities cease.

However, they share several issues in common. In fact,

their approaches to such issues must remain compatible

with one another. Much work on the compatibilities

between network operating systems and distributed data

base management systems remains to be done. S."

2.3.1 Serialization Under Increased Segmentation

The four levels of control which impact the specific

host's operating system, the DBMS files residing on each

;5" host, and the DBMS itself. These are presented in Figure

2-11. However, that particular presentation does not con-

*vey the relationship of the DBMS to serialization and

segmentation. To illustrate these concepts Figure 2-12

. has been developed.
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Included in its presentation are the specific host's

operating system, the DBMS files residing on each host,

and the DBMS itself. The network operating system is ex-

cluded since its only purpose is to provide network I/0

for the DBMS.

Similarities exist between the operation of a DBMS and the

network operating system. Both accept jobs throughout the

network. Consequently, the process of

modularization/segmentation of these network level jobs

remains essentially unchanged. In Figure 2-12 four

separate jobs have been submitted to the network at four

separate locations. Assuming the DBMS files have been

dispersed throughout the network, each job requires sear-

ches by each of the separate processors. Once a search

has been completed the results must be consolidated over

all processors. Once consolidated, the data is formatted

and outputed on the originating processor. Obviously the
processors need to be carefully orchestrated since they

are tightly-coupled from the standpoint of a DBMS. Such

an observation is valid even if the actual network

operating system architecture is loosely-coupled.

Resource sharing within a DBMS can usually be classified

as tightly-coupled despite the network operating system.

Under such circumstances serialization is not a trivial

problem. Serialization from the standpoint of the network '
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operating system can be achieved while serialization

within the DBMS goes unaddressed.

To queue the pending segments within individual network

hosts from the standpoint of a DBMS requires some network-

wide knowledge of the DBMS. Current state of the art

exerts such knowledge by applying a single DBMS located on

a single processor of a network for control and processing

of all DBMS jobs. Such central control obviously con-

strains the DBMS to a non-distributed, batch-oriented

approach. The alternative is obvious but how to establish

system-wide DBMS control is not. One key rests with the

DBMS files themselves. Access control to those particular

files is a means whereby queuing may be accomplished. If

.5 the file structures themselves are provided decision- p-

making capability, they can determine when more than one

segment is demanding access. They can insure only one

*. segment is operating within them at any given time.

* Whether this access control interferes with the DBMS

serialization from a negative standpoint is a function of

how the DBMS is attempting to serialize its segments on a

. network-wide basis. Both efforts must be carefully or-

chestrated and designed to operate concurrently.

Since decision-making capability can be supplied the file

structures, it can also be supplied the DBMS segments
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themselves. How these separate intelligences are combined

N and orchestrated is the subject of much current research.

Much remains to be done before such techniques become

available in the marketplace. Currently such software

resides in the ROMs of the very few hardware products

, being marketed as database machines. In any case, the

distributed architecture is a generation away in computer

technology.

2.3.2 Access Control

By its nature a DBMS in a distributed processing environ-

ment is tightly-coupled. Its DBMS files are a memory

resource shared throughout the nodes of a network. In

effect, each node is a processor capable of accessing that

DBMS memory regardless of location. Figure 2-12 presented

the worst case analysis for a distributed processing

network involving four nodes. Each node can accommodate a

DBMS job concurrently with every other node.

Serialization is a problem summarized in the previous

section. However, other problems also exist and are

characteristic of distributed networks. Individual hosts

may come up as well as go down without impacting the

network. If those hosts also control DBMS storage, their

presence or absence definitely impacts the DBMS throughout

the network. Two areas are of specific concern to the
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DBMS viewpoint: file storage and the DBMS modules

themselves. In a truly decentralized architecture the

.- DBMS modules are replicated at each node to enable nodes

to come and go without impacting each other. However, if

those particular nodes also control some aspects of DBMS

storage, what becomes of that storage? Obviously if its

controlling node goes down, it is no longer available to

the network. Consequently, even though the network can

continue to operate, a data base request involving its

missing file would be severely impacted. The mere

presence or absence of a node within a network is not

enough for a DBMS to continue to operate. The DBMS

storage controlled by those present or absent nodes must

be known at all times. The network operating system can

gracefully degrade itself while the DBMS may not. Basic

issues on a distributed or decentralized DBMS have yet to

be resolved. One is the location of tightly-coupled DBMS

,' file storage. As nodes come and go, DBMS files may mi-

grate to stay within an active distributed processing

network. Not only is access controlled within such an en-

vironment but the files themselves must be capable of mi-
gration when nodes go down. Otherwise the DBMS will have

limited application to the distributed or decentralized

- environment.

S..
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3.0 Integrated Software Support Environments

Because of their inherent complexity, distributed process-

ing systems are best supported by an integrated software

support environment (ISSE). Such an environment provides

economy of support through tools which work in conjunction

with one another. This eliminates the need for obviously

redundant tools which are characteristic of the non-

4 "integrated support environments. Integrated support en-

vironments also provide tool sets which can be used to ad-

dress specific problems. The modular nature of such tool

sets provides a flexibility which allows problems to be

subdivided into object-oriented task statements. Such

statements are compatible with emerging languages like

Ada, Pascal, and Jovial. Another desirable characteristic

-. of integrated support environments is their open-ended'Cn

nature. As particular applications need new tools, they ON

can be added. Tools to characterize particular target

structures and/or operations can also be added when

needed. This capability to add new tools as they are

developed makes such environments easy to update and helps

prevent their obsolescence.

Open-ended integrated software support environments do

have their liabilities as well as their previously men-

tioned assets. As new tools are added to such
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environments, extreme care must be exercised. Unless

these new tools are added properly, their subsequent use

and recall within the integrated environment can be

severely curtailed. In such a case, the advantages of the j
integrated environment will be lost. The probability of

such an occurrence is lessened by the inherent simplicity

of the tools themselves. Integrated support environments

encourage simpler tools since tasks are accommodated by

straightforward combinations of less complex tools. As

individual tasks are accommodated exclusively by their own

tools, tool complexity increases. Although such tools

would be difficult to add to an integrated environment,

they are precisely the type of tools which are noncharac-

teristic of it. Consequently, the extreme care which must

be exercised when adding new tools to an integrated en-

vironment is offset by the simplicity of those tools.

What appears to be a liability becomes an asset when the

tools remain sufficiently simple. In summary, the utility

of an integrated software support environment is a direct

result of the simplicity and/or complexity of the tools it

contains.
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3.1 Impact of Ada

The major impact of Ada is the standardization thrust

which accompanies its introduction. As a new language, it

also has the impact of any new language which is charac-

* terized by the change in features that it provides in com-

parison to other available languages. Additionally, to

meet the DoD objectives connected with the introduction of

Ada, the language alone is insufficient and must be sup-

ported by a comprehensive integrated software support

environment.

•. .% '.

The standardization associated with the Ada language is ..:*.

being infused into the required support environment. To

facilitate standardization the support environment has

" been divided into three components: 1) the KAPSE (Kernel

Ada Programming Support Environment) which is the host

dependent portion of the environment software, 2) MAPSE

(Minimal Ada Programming Support Environment) which con-

sists of a minimal comprehensive tool set, and 3) APSE

(Ada Programming Support Environment) which is a full en-

vironment based upon a particular MAPSE. The KAPSE

Interface Team is tasked with standardizing the definition

of the KAPSE Interface. Once a standard is established,

tools designed to it will be portable to any system with a

standard KAPSE. The task of establishing an APSE on a new

59 ',. -1

-- .- . " .. , .-- . . .. .- . .-. . . .. . . ... ... . . .. ". . . . . . ..,",*". -.,..,. .-.-.*......,.' .- .. .. ...-..-. .--.-.... ... .-.. '-.-..-.... ... .... . . .. ..-. .. , - -.-.-



--- 
; * .

host will be reduced to constructing a KAPSE for the new

host which meets the standard and a code generator for the

Ada compiler that is targeted to the new host, along with

N a rewrite of any target dependent Runtime Support Library

routines. This done, the moving of source code of any

desired APSE tool to the new host and compiling on that

new host is greatly simplified.

Since Ada is a new language it will require the develop-

ment of the various language dependent tools that are

*: generally available for existing languages. This set of

tools is expected to change slightly as Ada was designed

to help programmers avoid the known common mistakes. The

Ada compilers will be required to provide some checks

(previously done by separate tools) in regard to types and

range constraints. Ada compilers are also expected to

produce set/used listings. A relatively new area for lan-

guage tools will be the analysis of the concurrency con-

structs which are available in Ada. Taylor studied the

use nf the rendezvous mechanism which is used in Ada. His

research indicates that it will not be possible to con-

struct efficient algorithms in the general case where no

restrictions are placed on the synchronization structure.

His work indicates that algorithms can be constructed in

certain clases of special situations. The principal

feature of these special situations is restrictions in the
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runtime determination of the scheduling of processes.

When the scheduling of processes and process interaction

can be made deterministic, then efficient static analysis

algorithms can be constructed to detect a wide variety of

possible data flow and process scheduling anomalies.

Additional research needs to be conducted to ascertain if

there are restrictions on nondeterministic scheduling and

interaction, which will yield classes for which efficient

static analysis algorithms can be constructed.

3.1.1 Host Programming Support

The Host is the system on which a major portion of

development and maintenance is carried out. This is the

system on which the integrated software support environ-

ment resides. Thus to support an APSE a KAPSE must be

developed for the host system. Then a MAPSE must be

developed which will include tools such as command lan-

guage interpreter, compiler, linker, loader, symbolic

debugger, editor, formatter, database management system,

and configuration manager. Additionally an APSE for dis-

tributed processing systems will be extended with tools to

assist a programmer with handling aspects specific to dis-

tributed systems. As Ada matures as a standard, APSE

tools will be moved from host to host. The most portable

will be generic tools which analyze Ada programs without

...
" 61 °

~~~~~~~~.:.. :. . ....:.:C. . :. :............ . .........,.. . . .. .. :,... . . ..... -



L- 7.- 7 -

,, .-.-. -.-. !

using implementation or target dependent information. In

the near-term many tools exist which are applicable and ,

*- .. usable without change. Although these are not written in $
Ada and therefore cannot reside in an APSE, they can be

hosted on the same host as an APSE and be used to augment

the capabilities available.

There are also existing tools which can easily be modified

to recognize the Ada constructs pertinent to their

analysis without a complete rewrite. For the near-term,

it will be economical to modify these in the language in

which they are presently written. Later, when it becomes

necessary to rewrite them in Ada in order to facilitate 0%

their installation in an APSE, any desirable modifications
V..

which have been discovered during their interim use can be

included.

For tools that require significant extensions or rewrites

in order to be applicable to Ada, it may be desirable to

have them written in Ada. Due consideration must be

given, however, to the availability and suitability of Ada

environments in which to develop those tools. A cross

reference generator for Ada will be required to accom-

modate the multiple compilation units which Ada supports.

In conjunction with this it will need to be able to
.5.

generate listings by unqualified names and by qualified
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names. It will need to distinguish overloaded names and

n indicate which instance is referenced in each case.

Resolving overloaded references may be too complex for

,. rudimentary cross-reference tools as some cases are con-

text sensitive and require extensive analysis. In an APSE

a compiler can resolve the overloading and store the

necessary information such that a cross-reference

generator can access it and quickly generate any desired

cross-reference listing with any desired level of

qualification. Additionally, certain "referenced by"

listings will require that a compiler store information in

the data base for the modules referenced by the module it

is actually compiling. A similar tool, the call tree

generator, also has to obtain information which may span

several compilation units. This may also be facilitated

by the compiler recording pertinent information in the

data base.

Static analyzers will be required to process Ada

- statements in doing many of the now traditional analyses.

* This will include detection of references to uninitialized

variables. It may be desirable that it also be capable of

indicating when default initialization is invoked, as Ada

has the capability of defining a default initialization

for data types. The strong data types in Ada have

relegated to the compiler the checking of the legality of
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data types, the consistency of use of variables, and type

matching of parameters. Other data analysis will include

the detection of dead definitions of variables. This will

need to provide the capability to specify any variables

which are memory mapped I/O ports in order that analysis -'

reports will be meaningful.

A relatively new area for static analyzers will be the Ada

concurrency constructs. The element of concurrency also

adds complexity to previously mentioned static analysis of

uninitialized variables and dead definitions of variables.

Problems that arise are situations in which a variable is

global to two or more concurrent tasks, with referencing

occurring in one task and definition occurring in another.

The referencing may occur prior to the definition due to a

lack of synchronization. Another similar situation is

when two tasks may define the common variable, but it may

be indeterminate as to which definition will occur first.

Again, due to a lack of synchronization, static analyzers

will need to be able to analyze the concurrent structures

.. to detect and flag these situations.

Another class of problems is involved with the scheduling

and rendtzvous of concurrent tasks. Ada may have

eliminated the possibility of scheduling a task in paral-

lel with itself; however, it does permit multiple copies
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of identical tasks, and they may be allocated using an

identical name, but the name can only indicate the last

. task allocated. The Ada synchronization mechanism the

rendezvous can permit a number of anomalies. A task may

attempt to rendezvous with an unscheduled task, this is

not an error in Ada as the task may eventually be

scheduled. Static analyzers will be needed to detect when

tasks attempt rendezvous with tasks that will never be

scheduled. A task may also attempt to rendezvous with a

terminated task or a task which terminates prior to ser-

vicing the call. This will generate a runtime exception

in Ada. It will, therefore, be desirable to have a static

analyzer to indicate where and under what circumstances

this situation can occur. It is also possible that a task

'V enter a state in which it will never service certain of

its entries. Other tasks which attempt to call those en-

tries will wait forever. Situations of this sort need to

be detected by a static analyzer. Ada has a restriction

that a block, subprogram body, or task body may not be

left until all dependent tasks have terminated. This may

lead to situations in which a task is deadlocked because a

dependent task is in a nonterminating state or cannot

proceed to termination because it is waiting on an event

which will not occur. Detecting these situations with a

static analyzer is desirable. As previously mentioned,

65
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this will be difficult for programs in which the

scheduling of tasks is nondeterministic.

A similar class of problems deals with the allocation and

termination of tasks. In Ada, tasks are not necessarily

dependent on the block, subprogram body, or task body in

.s> which they are allocated. It is, therefore, possible to

allocate a task using a local variable, then exit and lose

any means of accessing that task. This is not always an

error, as the intention may be to start up an independent

Aactive task with which no additional interaction will be

* required. This may even occur at the main program level,

as a task may be dependent on a library package, and

therefore, may not be required to terminate prior to the

completion of the main program. Such an occurrence

generates an operational task which appears to be an

orphan, i.e., it has no living parents. A static analyzer

should easily be able to discover the tasks which belong

in the above mentioned categories and provide a list of

them for consideration. Another scheduling problem can

occur when an unlimited number of tasks can be generated

without requiring that any terminate. These situations

are difficult to dissect with a static analyzer as they

are quite often very dependent on external stimulus. A

static analyzer should, however, be able to flag these

areas for further examination. A thorough static analysis
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of task scheduling would produce statistics on how many of

each type of task could be in each queue. An analysis

this thorough is ambitious even for deterministic

scheduling cases and likely impractical for many nondeter-

ministic schedules. The problem of orphan tasks exacer-

bates the situation.

3.1.2 Target Programming Support

Ada's main impact on the Target Programming Support is

that it is a language that supports concurrent aspects in

programs. There are several features that current

research has recognized as required to support distributed

processing. They are: 1) a basic software unit for

" distribution, 2) a means of exchange of information

* between units, 3) a means of synchronization between

units, 4) a control structure to handle nondeterminism,

and 5) a kernel to interface between high level program

language and hardware. Ada provides its particular brand

of each of these features.

*" One is a basic software unit for distribution which is em-

bodied by the task in Ada. They may be specified at com-

pile time or allocated dynamically at runtime. The Ada

loop construct permits a run forever version of a task.

However, a task may terminate by completing its code or by
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a terminate statement in a selective wait statement. It

can also be the object of an abort statement. The maximum

permitted number of active tasks is limited only by

N available resources. There is some control over resource

utilization provided to the programmer through the -

specification of storage space allotment for a task or

task type. The interrelationship between tasks is hierar-

chical as each task is dependent on the block, subprogram

body, task body, or library package in which it or its ac-

cess type is declared. Calling another task, however, is

limited only by visibility rules. Thus a programmer has a

, great deal of discretion in the call structure he

'x utilizes. The call mechanism known as the rendezvous in

Ada is a well defined synchronized interaction mechanism.

Another means of interaction would be via global variables

for which there is no implicit control other than normal

scoping rules.

A second necessary feature is a means of exchanging in- i.

formation between tasks. This is supported by the above

mentioned rendezvous in Ada. This high order language

construct hides the hardware configuration from the pro-

gram level software. It utilizes the very powerful and

general technique of message passing. Automatic buffering

is not provided; therefore, the first task ready to com-

municate is blocked until the other task is ready.
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Because of this blocking, the rendezvous also satisfies

the third required feature which is a means of

synchronization. In Ada the rendezvous is not required to

include a parameter list for message passing, thus

parameter passing overhead is not imposed on rendezvous

used simply for synchronization. An additional feature

included with the Ada rendezvous is a critical region of

code which is guaranteed to be executed prior to the call-

p- ing task being released to proceed with its own execution.

The fourth feature required is a control structure to ac-

comodate nondeterminism. This is provided by the selec-

tive wait construct in Ada. There are additional select

constructs which provide for conditional and timed delay

on rendezvous requests. Conditions may also be associated

with each possible rendezvous in the selective wait

construct.

The fifth feature is a kernel to act as an interface

between high level program language and the hardware. A

kernel, because of its interface role, is extremely sen-

sitive to the hardware characteristics as well as the

language. The Ada language definition does not address

the kernel. Ada is intended to be used on a variety of

target systems; therefore, a specific target system hard-

ware has not been defined. There is a move to define -4
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specific kernels by developing formal requirement

specifications for Ada Target Machine Operating Systems

for the target machines used in military systems.

In the distributed processing environment, the target

operating systems must provide not only an interface to

the hardware but must also support an interface to the

distributed structure of the entire target system

environment. It must correlate the Ada tasks, which are

software units for distribution, to the distributed

processing units in the hardware system. This a non-

N "trivial problem and has a multitude of possible solutions.

Some possibilities are one Ada task per processor, or any *1
number of Ada tasks running indiscriminately or any number

of identical processors, or selected groups of Ada tasks

.* running on specific different processors. There are other

more complex possibilities such as systems which permit

Ada tasks to migrate from processor to processor via sub-

program calls. Particular associations between tasks and

processors supported by individual target systems will

vary greatly. For this reason system designers will need

modeling tools to support rapid prototyping and

simulations in order to try out various possibilities and

make intelligent decisions concerning the best target sys-

tem for each specific application.
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Scheduling of tasks is another aspect which must be sup-

ported by the target operating system. This can vary

greatly both with what is supportable by the particular

target system and with the requirements of the particular

application program. In some systems scheduling may be

deterministic, in others nondeterministic. In conjunction

with scheduling, allocation of resources to tasks may be

static or dynamic. Complications arise when tasks in one

process can initiate or invoke the scheduling of tasks in

another processor. In some systems the control of

resources will reside solely within the network operating

system. In other systems there will be a need for Ada im-

plementation pragmas which will provide limited control of

resources to the application program level. Again,

modeling of resource allocation will need to be supported -

so that various schemes may be evaluated by the designers

prior to commitment to a particular scheme for

implementation.

Another level of support in the operating system is for

the intertask communication embodied by the rendezvous in

i, Ada. The operating system must provide an interface

between this software communication mechanism and the ac-

tual hardware communication between distributed

processors. The solutions available here are closely tied

to how tasks have been distributed throughout the system.
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if tasks have been assigned one for one to processors then

the software rendezvous can be implemented directly by the

hardware communication mechanism. In systems using a

homogenous structure of identical processors the rendez-

vous could be supported strictly at a software level, thus

. only indirectly affecting hardware processors through its

affect on task queue status. For all the other various

system structures the rendezvous support may require more

customizing in order to accommodate rendezvous between

tasks residing in the same processor or processor group,

and to accommocate rendezvous between tasks in separate
. processors either identical or of diverse types. Passing ""-

rendezvous information between processors is complicated

by the blocking nature of the rendezvous since in most

cases it is desirable that only the task and not the

processor be blocked. These types of interactions will

not only need to be prototyped during early states of

design, but also need to be exercised in a full scale

simulation or on the actual target system during the

coding and implementation phase in order to tune the sof-

tware to provide the desired response.

3.2 Design and Development Considerations

". With the near-term certainty of distributed computing

systems, as both host and target, much attention must be
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given to the methods and vehicles used for system

development. The development of distributed systems is in

some ways similar to the development of conventional, cen-

tralized systems, but in many ways far different.

_ Workshops must be aware of the fact that environments that

support centralized systems development cannot simply be

massaged" slightly to accommodate distributed systems

development. Rather, an ISSE must be built for the

• -specific types of distributed systems to be developed.

As discussed in section 2.1, the current military systems

range from centralized to what can be termed "moderately

distributed" (see Figure 2-2). For the near-term then,

tools needed to build very loosely coupled systems need

-. not be included in a military ISSE.

The rest of this section deals with the types of tools and

methodologies that are of prime importance for building an

ISSE for military use. First, some overall policies and

basic tool requirements are presented. Then, the specific

*i impact of distributed operating systems, interconnection

architectures, and data bases is presented.

Design methodologies and the methods by which these

methodologies are conceived must be altered to reflect the

nature of distributed systems development and the problems

....
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inherent to it. The main responsibility for prevention,

detection, and correction of errors must be assumed by the

requirements (taken here to mean both requirements

specification and analysis) and design phases of the sof-

tware life cycle (see Figure 3-1). Conversely, the

coding, testing and maintenance phases must be relieved of

".v.-as much of the responsibility for system soundness as

possible. The main reasons for this are:

1) EASE OF CORRECTION & DETECTION - If errors are

detected and corrected in the requirements and

design phases, much less effort is required to

correct these errors than after they are "hard-

coded" in the implementation phase.

2) COMPLIANT SOFTWARE - Traditional error correction

and detection (coding, testing, maintenance

phases) leads directly to noncompliant software

which can radically shorten the system's life.

-" A more detailed discussion of these issues follows.
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Since the definition of distributed systems states the

presence of more than one node, once the software is coded

*. it becomes truly distributed. Software errors usually im-

pact other elements of software (and usually other nodes), -i

and therefore, error detection and correction requires the

identification and correction of any and all software im-

,Z: pacted by that error. For example, if it is decided that

a data type be changed, then a maintenance programmer must

find all statements and declarations that reference that

type and update them accordingly. This task is extremely

time consuming, and system degradation is almost certainly

accelerated. When the software is distributed over many

nodes, totally repairing an error is a very difficult task

for a programmer to perform without the aid of tools, and

may leave the system in worse shape than before. If the

error is detected in the requirements or design phase,

correction is far easier and system integrity is main-

tained much longer.

The insurance of software compliance, or implementation

that complies with its design, is another argument for

shifting error detection and correction "upward" in the

software life cycle. If errors are detected and corrected

after the final design, it is easy for the software to

become noncompliant and, therefore, not as maintainable as

10 it should be.
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This upward shift of responsibility in the software life

cycle must be implemented by development methodologies and

the framework used to form these methodologies. This

framework must be designed to produce methodologies that

place special emphasis on the requirements specification,

analysis, and design phase of the software life cycle.

With the importance of design methodologies recognized, we

can proceed to a discussion of the creation of an ISSE

that sufficiently supports production of distributed

systems. This ISSE will be composed of a standardized

minimal tool set (see section 3.1), as well as all the

tools necessary to accommodate any and all methodologies

that might be developed. The remainder of this section

discusses the major tool needs and sketches outlines of

their design.

* There exist several areas of tool classifications that

need improvements or extensions to make them useful to the

software engineer who is building a distributed system.

*Many of the tools that exist now and were designed for use

on centralized systems development lend themselves well to

distributed systems as well. It is not that old tools

will no longer be useful in the distributed environment,

but rather that more tool support will be needed due to
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the non-deterministic nature of concurrent software. The

areas of particular need are:

1) AUTOMATED SPECIFICATION LANGUAGE/ANALYSIS -

Network communications are not specifically ad-

dressed by any current specification language,

and this area should be the one most stressed for

tool development.

2) STATIC/DYNAMIC ANALYSIS - The existing tools need

to be extended to tell programmers when the poss-

ibilities exist for certain concurrent software

phenomenon.

3) SOFTWARE INTERRELATIONSHIPS - The internodal

dependencies of all software in a distributed

system need to be permanently catalogued to

reduce time and cost related to the testing main- "

tenance phases.

A more detailed discussion of these areas follows.

The methods currently used to assist in the systems

requirements and design phases are insufficient to fully

support development of distributed systems. Since it is

of paramount importance to give the development of dis-

8..
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tributed systems maximum support at the requirements and

design phases, new methodologies and tools must be

developed to further automate these phases. Automation of

these phases is the key to making the design methodologies

as useful as they should be. Specifically, they must ad-

dress the issues of protocol definition and bulk data

communications, to assist in determining optimum network-

ing methods. These tools must also produce reports that

are easily reviewed and modified by humans and then fed

back to the computer to be reanalyzed. So-called

"Feedback Development" must be used when developing dis-

tributed systems.

Once the requirements and design phases have been

completed, the programmers charged with implementation of

the defined system must be provided with tools to aid them

in producing sound distributed software. If the

A' methodology being used is a good one, the programmer will

be provided with a specific design with all of the dis-

tributed processing considerations already addressed and

resolved.

The problems arise when program errors inherent to dis-

tributed processing occur and no testing tools exist to

detect or prevent them. For example, orphan spawning (see

section 3.1.1) and deadlock are two of the problems that

79

. . . . . , . .p. 5.. . .. .



I .-.- ',. 

-,"~~~-- 

- - -

. - .

arise in distributed software and further study is ,

required to specifically address these problems. Static

analysis techniques such as path analysis can be extended

to tell programmers when the possibility for these

phenomena exists, and the programmer can then investigate

further. For example, if a programmer wants to test his .. .

code for orphans, static test tools (extensions of exist-

ing ones, that is) can analyze the program and identify

points in the code where orphan processes might be spawned

and which processes they might be. Because of the non-

deterministic nature of distributed software, current

static analysis tools can do no more than this. Dynamic

analysis tools also need to be extended to allow for

detection of orphan processes via instrumentation schemes.

Finally, the problem of software interdependency must be

addressed. Distributed software that is non-deterministic

operates as separate autonomous entities, and maintenance

is extremely difficult. When one area or module of sof-

tware must be altered, the impact on other modules is

usually far reaching and unpredictable. Since maintenance1.4"

represents approximately 75% of the software life cycle,

and even more in the distributed environment, tools and

methods must be incorporated into any ISSE to help

categorize software interdependencies. Although tools

that manage these types of software interdependencies
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exist, there are several shortcomings with them. First of

all, the data is not managed by computer, and usually

takes the form of a post-mortem listing. Therefore, no

categorization is performed and no easy cross-reference

ability exists. Second, the only way to build an accurate

final copy of the relationships is to manually update when

modules are recompiled. In a large distributed system,

this task represents quite a problem. Therefore, a tool
must be developed to completely automate these data col- a

lection and management functions. Figure 3-2 depicts a

tool that makes use of the symbol table built by the com-

piler to collect software dependency data. This tool

builds and maintains a permanent data base consisting of

this symbol table information. This data base can then be

queried interactively by programmers or evaluated by the

static analysis tools of the ISSE. Programmers could then

determine all of the changes required to repair a problem

and avoid hasty and ill-advised "patches".
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This technique would greatly slow the phenomenon of

"software rot", a major problem with distributed software.

These tools designed and added to a standardized tool set

will allow for more efficient and complete distributed

system design and development. Most importantly, the

methodologies adapted bya particular workshop should all

be totally supportable by any such ISSE.

Any ISSE built to support distributed systems design and

development should have the characteristics outlined by

the preceeding section. Also, the specific types of dis-

tributed systems to be created has an impact on which

tools comprise the ISSE4 Following is a discussion of the

three most important variables used in describing dis-

tributed systems. The military's near-term target com-

puter systems are analyzed with respect to operating

systems, interconnect architectures, and data bases, and

the impact of each of these on the ISSE is presented.

3.2.1 Distributed Operating Systems

Distributed Operating Systems (DOS) are the entities th,c

coordinate the activities of many concurrently functioning

processors and other resources. The scope of this section

is limited to a discussion of DOSs only and not individual
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Constituent Operating Systems (COS). Distributed process-

ing considerations only impact COSs when it is being

determined how much, if any, of the COS responsibilities

will be relegated to the DOS when designing a network.

This section also limits its discussion to the military's

current and near-term distributed systems technology,

e.g., low to mid-range distribution of control (see sec-

tion 2.1). The basic functions of a DOS and its design s-.

considerations are discussed with respect to the *.

military's two basic distributed processing areas: com-

munications systems and weapons systems.

Although communications systems and weapons systems occupy

mutually exclusive volumes in the distributed processing

three-space pictured in Figure 2-2, the design and

development considerations of the DOSs for these systems

are very similar. The functions which both types of sys-

tems must provide are the same, though these functions

vary in relative importance. Three basic functions are:

1) Resource management (including data

transfer/communications)

2) Fault tolerance/recovery

3) Transparency of system control.
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Resource management is the main function of executive con-

trol (DOS). This is the function of sending messages and

coordination of the different nodes of the network. These

resources consist of all the separate entities of the

network to be united into a single functioning whole.

Communications systems executive control typically manages

4.oa large quantity of data transfer devices, e.g., satellite

communication links, packet radio controllers, as well as

the standard types of nodes. It is important for most

communications systems to be easily reconfigured,

relocated or added to quickly, so the executive control

must lend itself to this dynamic resource configuration.

Weapons systems, by contrast, are more static in their

configuration but their resources demand a high level of
- coordination by the DOS. This is because of the stringent

real-time environments in which they operate. For

instance, up to date information on the state of all

processor queues must be kept or quickly obtainable to in-

sure the high throughput of time-critical tasks. So,

though in each environment (communications, weapons) the

DOS must place emphasis on different resource management

issues, the same basic functions are performed by each

type of DOS.

Fault tolerance and recovery is another main function of
,.

the DOS and, like resource management, receives different
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emphasis depending on the type of system. Extreme fault

tolerance is usually required of weapons systems and the

. DOS must be designed to accommodate this. High

replication of hardware and a highly distributed DOS,

usually with multiple autonomous points of control, insure

*" this high level of fault tolerance. In the case of com-

munications systems, where faults can be tolerated

relatively more often, more emphasis is placed on quick,

state-resuming recovery. In these systems, though hard-

ware is often replicated, the DOS is uaually of a dynamic

master-slave nature. This usually takes the form of one

processor possessing all the DOS modules and functioning

as master, but upon an abend, one or more "slave" proces-

sors are capable of assuming possession of the DOS modules

* and becoming master. In this environment, the DOS is

charged with the responsibility of maintaining a high de-

gree of state information in its local tables for ef-

*. ficient recovery purposes. Also the various network nodes

(especially communications processors) are designed to

retain recent data transmissions for a short time in case

" the current master abends and another processor must as-

sume master status. In this way, fault recovery can occur

with a minimum of state information lost.

The network operating system must also provide trans-

parency of system control (a virtual machine layer) to all

86

* . * * * .* .*

. * ' .'°" ,. ° .-" ° .' .'°.°, *'*" **%• .[ . " "** *'' " " " " . " ' i"" ' °- " " .'".- " * " " ' ' *' "" "' " ' '"



RD -Ai37 68? DISTRIBUTED PROCESSING TOOLS DEFINITION VOLUME 2 2/2
'APPLICATION OF SOFTWARE..(U) GENERAL DYNAMICS FORT

WORTH TX DATA SYSTEMS DIY N C CONN ET AL- JUN 83

UNCLASSIFIED RADC-TR-83-10-VOL2 F3628i-C-142 F/G 9/2 N



4.-.U

L.18.

2ill 1.V 4aa01.6

MICROCOPY RESOLUTION TEST CHART
KATMMAL BUREAU OF STANOARDS-M93.A

-ob-

S-.*

%a

.spU~~ % %. %Y~ %a % * . * * ' . .. * . . * . - . . D

.4s %. '- U%~.4U . ~~ *%**- %a 
%. % U %.% %~y ...... \.~~. I 4~I'.~ ~i %~~.E~%'- A.-

% *Ua



user and most applications programs. The exception to

4.1 this is found in some embedded weapons systems, when ap-

plications must be programmed using knowledge of the

network configuration. In these real-time systems, the

DOS functions mostly as a communications supervisor, turn-

ing much of its responsibility over to the application

software. But usually the DOS must provide a level of.

transparency allowing user and application to proceed

without specific information about the different network

nodes. Reference by name, rather than address, is an

example of this. In communications systems, this DOS.

function enables packages of messages to be sent by. users

to people without concerning themselves with the specific

location and routing information. Flexible DOS protocol.

techniques implement these communications and allow for

easy reconfiguration of the network. Likewise, the DOS in

.- N

most weapons systems allows for applications software to,

be designed and run as processor-independent code. Also,

*interprocessor communications are handled by the DOS

allowing, for instance, an application program to

reference data without knowing which of many data bases it

is stored on. Such flexibility serves to greatly enhance

fault tolerance and retard system degradation.

The design and development of these distributed operating

systems is quite obviously complex and the overall per-
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formance of the resultant network depends highly on the

soundness of this design and development effort. As is

the case with distributed target software development, DOS
a'.

design and development must be accomplished within an

ISSE. The extensions to be made to the ISSE discussed in

"-'. sections 3.0 and 3.2 in order to accommodate DOS develop-

ment are few. The need for tools and methodologies in the

requirements specification phase, the requirements
-S..

analysis phase, and the design phase, is particularly

pressing- when developing DOS software. Specifically,

simulation tools that expose the operating characteristics

of models of proposed DOSs must be incorporated into the

ISSE. Several simulation tools exist today that test the

operating characteristics of most of the network models
being proposed. The only shortcom'ng is in simulating in-

terfacing between nodes that are not compatible as far as

protocols and data structures. The encoding, decoding,

and transmission of data between nodes using non-

standardized protocols needs to be simulated accurately in

order to satisfactorily evaluate proposed models in the

design phase.

Beyond the need for this added simulation capability, the

ISSE discussed in earlier sections will prove to be suf-

ficient to support the design of distributed operating

systems. When development of the DOS is conducted
.5°
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separately from the development of applications software

targeted for the same system, i.e., most weapons systems,

the same methodologies and ISSE will be sufficient to

provide sound support to both efforts.

3.2.2 Interconnect Architectures

The means in which various components of a network are in-

terconnected has a direct and profound impact on overall

system performance. The schemes for interconnection, or

interconnect architectures (IA), can vary greatly from

system to system. Therefore, system designers must be

provided with the means to fully evaluate the advantages

and disadvantages of various proposed architectures before

committing manhours of labor to implementation and ..

detailed design. This function must be provided by the

ISSE (see section 3.0). This section discusses various

-p ways of classifying IAs and the types of tool support

needed within an ISSE for modeling, prototyping and

simulating these U~s. Note that specific architectures

and design criteria are not addressed in this section.

Rather, software design and support considerations are the

*primary concerns. Finally, this section discusses some

second-level issues of the interconnection of various

-: networks and the problems in designing tools to support

these types of architectures.
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," Several major researchers have made attempts to categorize .-,

different types of as. The one common factor between

: these attempts is a range in IA design from very loosely- .-

S.I-

• coupled architectures to very tightly-coupled ones. The..'

various ways this continuum is broken into distinct clas- '

.':: sifications is not important to this discussion. what is :

... important is the fact that there exist different clas-. .

sifications of Uks, and tool support must be grouped in

. the same classifications..-.

Figure 3-3 illustrates a proposed grouping of support

.. °,
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Different tool groups may consist of many of the same

tools. For example, the analysis and design of IA can be p..

completely supported by TG . This group may consist of a

,a' text editor, one or more simulators, a rapid prototyping

tool, etc. Some or all of these tools may also be part of

another tool group, but the union of all the tool groups

is the total set of tools needed to support any IA design.

, As indicated above, the requirements phase of the software

life cycle is where most of the tools to support IA design

are required. Specifically, rapid prototyping, simulation

- and modeling techniques and methodologies must be

refined/developed to support the entire spectrum of IA

possibilities. There are several aspects of distributed

architectures that suggest changes required to simulation

tools. The remainder of this section deals with these

issues.

The current general method for iterative modeling is top-

down. That is, a model of the overall system is

developed, then simulated, and from the results of the

simulation a new, more specific model is developed. This

process continues until the results are sufficient to make

sound design decisions or until the simulator tool(s)

being used can get no more specific. Unfortunately, the

latter is usually the case. For this reason, and because
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networks are becoming increasingly complex and layered

(e.g., networks within networks), it will be necessary to

use simulation tools to simulate various nodes of a dis-

tributed system while the overall system is itself being

simulated by a tool using the data from the nodal

simulators. Take, for example, the design of a dis-

tributed system consisting of four major nodes, A, B, C,

and D. Each of these nodes is in turn a network of its

own and may or may not be implemented already. It is ex-

tremely advantageous to be able to test different IAs

before deciding on a final configuration for the overall

network. To this end, the four nodes A, B, C, and D can

be simulated while another tool concurrently simulates the

operation of the entire system using the simulation of A,
B, C, and D as inputs. As stated earlier, the tools :'-

4.•

picked for incorporation into the ISSE must be able to

support the design of the entire spectrum of As. Also,

they must be capable of operating concurrently together as

any level of a proposed network. Much further study needs

to be done in this field before tools that possess this

functionality can be built.
-4-'

Keeping the ultimate goal of a highly functional, modular

set of simulators in mind, a repertoire of simulators can

be built up in ISSEs. There already exist network ..-

simulators which are quite flexible and powerful. They
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need to be extended to reach the desired goal of

functionality. Such extensions are necessary within the

near-term time frame.

3.2.3 Data Bases

In section 2.3.1 a discussion of data bases in the context

of a decentralized system was presented. However, such a

discussion is incomplete until the impact of data bases

within the target environments is discussed. These target

environments are the weapon systems problems. State of

the art development systems involving host-to-target down-

loading characteristically operate on a point-to-point

basis. In other words, a single target's program is

developed and downloaded from the host environment. When

programs for more than one target are involved, they are

developed on a sequential basis for one target after

another. Underlying such approaches is an implicit as-

sumpt ion that targets themselves are controlling their own

resources, e.g., memory and mass storage. In reality such

control is often shared, e.g., two targets accessing the
n-.5

.

same memory buffer. This happens in a tightly-coupled ar-

chitecture and when it occurs the data base can be

described as the contents of that shared memory buffer.

The complicating factor is that such a data base is not

under the complete control of either target. Furthermore,

94
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when one target goes down, the other continues to operate

as long as the memory buffer functions. If that memory

buffer malfunctions, both targets lose access to the data

base. Of course the data base could be important enough

to be provided redundant storage, i.e., an alternative

memory buffer in which to reside. In either instance, the

applications development environment of a multiple target

configuration is not a straightforward use of point-to-

point communications between host and target.

Application programs residing within targets manage the

As i databases controlled by those targets. Such management

addresses the following issues%

- how the databases are structured;

* how interconnects between targets are

accomplished;

j-'o

" how the "typical" application is accomplished;

-• how the data model is structured;

• how the targets are synchronized;

" etc. -
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The key -motivation behind such environments is high data

base availability and accessibility. When data bases are

shared between targets, the objective is to increase ac-

• .. ,." cessibility while enhanching reliability. In fact, the

reliability of a system composed of several targets is

greater than the reliability of each single target.

However, such gains in reliability extract a price in

terms of data base software. The data bases must remain

accessible even though targets malfunction. Coping with

such failures is not an easy task. Furthermore, ef-

ficiency suffers when more and more coping takes place. A

graceful degradation is required which departs from the

point-to-point orientation between host and target. To

illustrate the problem Figure 3-4 presents a redundant

DBMS scattered throughout a network composed of four

targets. Jobs submitted to the network have been

segmented. Auxiliary Directories are provided for each

network job for backup purposes. Each directory as-

sociates itself with a particular host and documents the

source of that host's segments. In case that host goes

down, a backup Auxiliary Directory is provided on an al-

ternative host. This duplicate directory can be used to

regenerate the original host's Auxiliary Directory when it

returns to the network. The threesome composed of the

DBMS job, the Auxiliary Directory, and the Auxiliary

Directory Backup, iddresp ietwork tasking but ignore the
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distributed data base problem. Consequently, Figure 3-4

includes DBMS files associated with each host and provides

redundant backup. That backup resides on a different host

within the network, i.e., the same host providing the

Auxiliary Directory backup. Under such an architecture

the ingredients for graceful degradation of both the

network operating system and distributed data bases are

evident. When such degradation is perceived becomes

important. Obviously Auxiliary Directories and their

backups should be updated coincidentally. Point-to-point

communication does not achieve such coincidence. When

Host A originates a segment for Host B it updates the

Auxiliary Directory for Host B as well. However, updating

of the duplicate Auxiliary Directory on Host C should be

done coincidentally. In point-to-point schemata Host A

updates Host B and then Host C.
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Figure 3-4 DBMS Job Segmentation and Redundant DBMS File Storage
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The same observation can be made of the distributed data

base. In both instances, a reliable broadcast approachi

must be implemented.

The structure behind DBMS jobs is presented in Figure 3-5.

Note the tight-coupling of examinations to the DBMS files

*controlled by each host. Whereas individual hosts can

compile and produce reports, the very tight coupling

across all partitions is required within truly de-

centralized data bases. Under circumstances of graceful

degradation, some of the nodes vithin Figure 3-5 will

disappear. How long their disappearance is tolerated and

what happens while they are gone is a decentralized data

base problem. it involves failure detection,

partitioning, and the operating around missing nodes.

Tools to develop such architectures and software systems

are not readily available. File allocation schemes within

distributed DBMS approaches lack generality. User demand

for joining the relations between two targets is not being

addressed. Complete synchronization with sufficient

redundancy is also not being addressed. Finally, tools to

reassign DBMS files to different hosts and locations

within network operating systems are not sufficiently

general in their scope.
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3.2.4 Intelligence in Environments

The term "intelligent" has begun to appear in discussions

of automated environments. While the term often signifies

merely a high degree of functional automation, it in-

creasingly refers to a set of characteristics bearing on

issues of adaptability, action on incomplete information,

heuristics for search and evaluation, and organized

knowledge of application domains and of programming lan-
guage rationale.

Exploration of these issues in depth has implications for

far-term generic techniques in distributed processing.

Therefore, most of the discussion of sophisticated ar-

tificirlly intelligent tools in this report appears in

Section 5. Nevertheless, there is a place in the present

section for a preliminary discussion of intelligence in

,, support environments which will serve as a bridge between

near-term design and development considerations on one

hand and far-term tools and techniques on the other. In

this section we mainly want to point out that near-term

tool definition should consider ease of integration with

intelligent systems of the future.

Although intelligent development support systems may be

designed essentially independently of evolving concepts of

101
" P

4%" ,"°-',°."' , - *- . . o'- , , , 
"

- " * °



intelligence in the operational systems, both systems will

employ the same generic technology. For example, in the

s, design of an application system, there likely will be an

integrated intelligent toolkit to synthesize strategies

for an intelligent application (e.g., decomposition of a

task definition and assignment to distributed components).

One implication for near-term tool definition is that the

tool's potential support for or enhancement to intelligent

systems should be addressed. For example, it will be

desirable to address the tool's potential support for the

type of knowledge base that will be the foundation of

future intelligent systems. Further, it will be profita-

ble to consider the relation of support tools to the

predictable characteristics of evolving intelligent run-

time support systems for application programs.
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, 4.0 Near-Term Generic Tools-.-

, K .tI -

This section of the report serves to correlate information ,''

known about existing software tools and the software,".-

development life cycle, as well as to propose tools which ,

will be needed in the near future. The tools proposed ""

will provide support to new projects in the area of dis--".

-°.

tributed processing, a complex and evolving aspect of com-

puer science.nerc:Tol

Two basic approaches were available to identify_

i! requirements for new tools. The first approach would be to , .

survey all tools; to identify the functionality of each "''
Itool with respect to the life cycle; and to determine if

any aspect of the life cycle had not been addressed. This

approach was not chosen primarily because of the unneces-

sary work that would be performed in evaluating the

capabilities of functionally redundant tools. areaofdis

Additionally, the task's complexity would be high because

uthe search would entail looking for a functional charac-

°'*°

tsurve all toos; to idmetify the functionalitycofreac

teristics of software without knowing what the members of

the set were. l c h o n ri
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- The second approach consisted of a chronological reversal

of the first approach. The characteristics of software

are used as the basis for investigation of tools. Knowing
4.. -. 4. .4

the characteristics of software, a single (not all) tool

can be found which enhances or evaluates those
9.

characteristics. If no tool can be found, that charac-

* teristic becomes a basis for tool development. The redun-

dancy of the first approach would disappear because only a

single tool-to-characteristic evaluation would be

required; and the complexity of the first approach would

be decreased because the starting point would be a known

set of characteristics. Attempts will not be made to

evaluate criteria that might be decreased when one or more

other criteria are enhanced. Obvious relationships will

be identified, but extensive evaluation will not occur.

4.1 Definition of Criteria and Life Cycle Phases

for Software

This section contains definitions of the criteria for

judging software characteristics which we have chosen, and

the software life cycles to which they apply. The

criteria were chosen after a study of the criteria defined

in RADC-TR-80-109, "Software Quality Metrics

Enhancements", by General Electric, and a slide presen-

b_*. tation made by Boeing at the Distributed Processing
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Technology Exchange Meeting at RADC on 18-20 May 1982.

The list of criteria developed by these companies was much

longer and more detailed than required for the purposes of

*: this report, so categories of criteria were combined and

deleted, and new definitions were written for those which

were left. The life cycle phases used in this report are

also a somewhat smaller set than sometimes used, since it

was felt that this less detailed breakdown was more in

keeping with the needs of the report.

4.1.1 Software Life Cycle Phases4. .

The development of software requires that it progress

through a life cycle consisting of requirements, design,

coding, testing, maintenance and operation. The first

four phases are concerned with the creation of the

software. The latter two phases are concerned with the

quality and reliability of the existing software. The

following subsections are concerned with the definition of

each of the life cycle phases.

4.1.1.1 Requirements Phase

-s The specification of system requirements is the first step

in the software development life cycle. This phase begins

with the statement of a problem to be solved and ends with
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a specification of what the system to solve the problem

must look like. The goal of this phase is to clearly

define and document the set of criteria by which a program

will be ultimately examined for adherence to the

specifications. The specification and documentation of

the requirements of a system can be partially automated

"-'i through the use of software tools. These tools allow the ".'

development of requirements specification documents using

defined methodologies and analysis of the specifications

for data flow and control sequences.

4.1.1.2 Design Phase

The second step in the software development life cycle is

to develop an implementation for the previously esta-

blished requirements. This ideally takes the form of a

complete design that provides both an outline of the func- * -

tional components of the system to be implemented and an

explanation of how the requirements specifications will be

met using the outlined system. This would additionally

provide for precise, accurate and orderly transitions

between the requirements design and coding activities. To

this end the detail of the resulting design must be suf-

ficient so that an implementors decisions cannot interfere

with the ultimate satisfaction of specified requirements.
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4.1.1.3 Coding Phase

Following or possibly overlapping the design phase is the

implementation (coding & debug) phase. This phase is

generally a manual process though defined methodologies do

exist to help organize and improve the activity such as

structured programming, and bottom-up and top-down

.mpiewentations. - .

4.1.1.4 Testing Phase

The testing phase is a validation process that examines

the implemented system to insure that the initial

requirements are met. This process should additionally

include tests to insure the quality and reliability of the

system. This has become especially important as systems

continue to grow in size and complexity. As with the

other life cycle phases this process may overlap the

previous (code and debug) phase. The two main elements of

testing and quality assurance are static and dynamic test-

ing both of which are characterized by the virtual neces-

sity for the use of automated tools.

4.1.1.5 Maintenance Phase

107
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The maintenance phase is a process continuing throughout

the life of the software to ensure quality and

reliability. Maintenance begins when changes in the sof-

tware are required by management or when errors are found

by the user during the operation of the software. When

maintenance begins, it may require additional

requirements, design, coding and testing. Since 75% or

more of the time is spent in the maintenance phase, this

phase is critical in the life cycle of software. It

necessitates that effective tools exist to aid the sof-

tware support personnel to provide timely and effective

maintenance.

-S'

4.1.1.6 Operations Phase

The operations phase is that user-oriented phase in which

software performs its planned and required function. With
*1.*'

"S the aid of documentation and error-reporting tools, the

user is provided the capability for monitoring and in-

teracting with operatonal software to assure intended

functionality is reached. When errors occur, they are

either identified as user-originated or reported to sof-

tware support personnel for correction. The operations

*- phase requires correct documentation and effective error-

reporting tools. User capability for monitoring and in-
teracting with operational software is not required for
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embedded weapon systems. Such capability is more charac-

teristic of communication systems.

4.1.2 Tool Criteria

The following definitions concern criteria for judging

software characteristics. The criteria will be used to

choose a minimum set of generic tools for the software

life cycle phases.

Traceability - A program is traceable (exhibits

traceability) if a thread exists to tie the modules of the

program back through design to requirements. Traceability

can exist independently in two directions: from

requirements to the program, and from the program's

4.-. modules to the requirements. In order to be fully tracea-

ble a program must exhibit traceability in both

directions. Traceability must include design. That is, .5-'

whatever design documents were retained as program

documentation must be included in the thread.

..

Consistency - A program exhibits consistency if the

requirements, design, and implementation techniques and

notation are uniform throughout. Use of standardized lan-

guages and techniques are necessary to insure consistency.
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Fault Tolerance - A program is fault tolerant if it is

capable of operating in a consistent manner in spite of

program errors, errors in input data, and hardware

* malfunctions. Total fault tolerance is an impossible

goal, since there are hardware malfunctions and program

V errors from which no recovery is possible. The degree of

fault tolerance which is desired and the actions to be

taken under various conditions should be specified in the

requirements document.

Simplicity - A program exhibits simplicity if each in-

dividual module is coded in an understandable manner, and

the modularity has been established wit-h consideration to

a specific method, i.e., data structure, control flow,

functionality, etc.
4'..;

Modularity - A program is modular if its structure con-

sists of highly independent modules. A module is indepen-

dent if it could be implemented in a different manner4'-"

without affecting the other modules of the program.

Functional Generality - A program or a module exhibits

functional generality if its functions are not unneces-

sarily restricted. One example would be a routine to

produce a line of print. If the line length is passed as

a parameter rather than being "hard coded", the routine

V 110
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viii be more general at a cost of very little additional

complexity.

Expandability - A program is expandable if it is easy to

add new functions, to enhance its current functions, or to

increase the amount or types of data handled.

Instrumentation - Instrumentation provides the user and/or

the maintainer with information on the operation of the

program. For the user, it generally means status

information. For the maintainer, it means such in-

formation as how many times a particular function is

called, how data is distributed among differing types, and

records of type and frequency of errors.

Resource Utilization - Resources utilization is the

measure of how well a program conserves system resources.

These resources include time, memory and external storage.

How much priority is given to the conservation of each of

these resources is a function of the requirements of the

system.

Control of Data Access - Control of data access reflects

two conflicting requirements: ease of access and restric-

tion of access to sensitive data. Program data should be

easily accessible to all modules and users who need it.
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Ease of access is especially important in distributed sys-

tems where the user may be physically distant from the

data being accessed. However, modules which do not need a

particular datum and users who are not authorized to have

specific information should be prohibited from access.

In addition, a requirement may be that the system keep

records of attempted and successful accesses to sensitive

data.

Ease of Use s Ease of use meaLres the amount of effort

which must be put forth to operate the system. It in-

cludes simplicity of input preparation, simplicity and un-

derstandability of operator commands, understandability of

output data, and the amount of training required for new

users of the system.

Independence -A program' s independence is determined by

the extent to which it relies on a specific hardware sys-

tem or a specific underlying software system (operating

system or run time system). A program is more independent

when those functions which must be made specific to most

hardware or software are isolated in lower level modules

or are parameterized to allow easy change during system

.5,

* , builds.
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Commonality - A program exhibits commonality to the extent

that standard interfaces are used between modules and that

standard data formats are used. An effect of commonality

should be the development of reusable software.

Compliance - A compliant program meets all the

requirements laid down for it. This includes, but may not

be limited to, normal processing, error handling, response

time, memory/resource usage, and the accuracy of results.
,-. .

Clarity - A program exhibits clarity through its

documentation, including its internal documentation, to

the extent that that documentation is readable and

understandable.

Virtuality - A program exhibits virtuality if the user is

not required to have a knowledge of the hardware implemen-

tation in order to run the system. Such things as the

number and type of auxiliary storage devices, the amount

- of main storage, and even the type of CPU should be trans-

parent to the user.
5%*

Distributedness - Distributedness is the extent to which

elements of the system are logically and/or geographically

separated. The word elements as used above includes both

software and hardware. Software specific considerations

,.-. .

113
e.:C

. . .* * 5

., -. ... .. . ....... ..' ....' .. "J. .-.-. --X .' ...' ' . .: $ i . .-. ' .' ...-" ... .. .- .-. .. ." ... "



are distribution of control, interconnect architectures,

and data bases.

4.1.3 Correlation of Life Cycle Phases and Criteria

The correlation between life cycle phases and the criteria

is given by Table 4-1. Almost all criteria apply to the

initial phases from requirements through coding. The

criteria that do not apply to requirements (simplicity,

modularity, and functional generality) all deal

specifically

a114
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with design and coding. Criteria that do not apply to

coding (fault tolerance, expandability, instrumentation

and control of data access) are areas which have already

been settled by design and requirements. The testing

phase is concerned with measuring compliance, which in-

. cludes resource utilization. This is accomplished with

the use of instrumentation. Traceability and distributed-

ness must be maintained through this phase. The

operations and maintenance phases affect all criteria.

4.2 Correlation of Tools to Criteria

.1

This section contains a list of generic tools with their

definitions. Each tool is related to the life cycle phase

of its primary use. Criteria enhanced by each tool during

its primary life cycle phase are discussed (refer to Table

4-2).
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4.2.1 Requirements Tools

- 4.2.1.1 Automated Requirements Document Generator

This tool generates a requirement by accepting an im-

plementation independent specification couched in a for-

malized language, performs processing to format requested

output, anJ then generates the output in graphic or tex-

tual r-presentations as required. Expandability is en-
hanced when new requirements are generated during the

'

maintenance phase.

4.2.1.2 Automated Requirements Analyzer

Assuming the requirements are specified in a formalized

language, this tool will provide checks for completeness,

consistency, and redundancy of information given.....

Compliance is enhanced since the completeness of the

specification is checked, and clarity is enhanced by not

allowing redundant names or functions.

SI...

4.2.1.3 Automatic Language Translator

. 1.

" One of multiple languages is selected to be the target

• .language for the implementation independent specification.

This tool then automatically translates the specification

118.4: ii
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into a compilable program in that language. Traceability,

consistency, and comnonality are all enhanced by this L41r-

tool. Simplicity and clarity would probably be decreased

[ "by this tool.

4.2.1.4 Requirements Interface Processor

4%•

This tool is a front end to the automated requirements

document generator. Its function is to provide user-

friendly access and use of the tool as well as provide a

powerful modification capability to support rapid

" prototyping and simulation. Multiple data entry

techniques, such as graphic representation, menu

representation, default selection, etc. should be

support d. Criteria enhanced indirectly include ease of

use, resource utilization, compliance, fault tolerance,

functional generality, expandability, instrumentation,

virtuality, and distributedness since these may be modeled -

.'. -.. 4

during development of the requirements specification

(assuming an analyzer and translator are present). No

-' criteria are directly enhanced by this tool since the

final product could achieve the same status through manual

methods of analysis and documentation over an extended

, period of time.

4.2.1.5 Rapid Prototyping
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This process involves automating the labor intensive por-

tions of feasibility studies through computer simulation

and modeling techniques.

4.2.2 Design Tools

4.2.2.1 Program Design Language (PDL) Calling

Tree Generator

A calling tree generator is similar in operation to a

cross reference generator, but is restricted to subprogram

names rather than all identifiers. The output is arranged

in the opposite manner to that in which cross reference

shows where a particular name is used, that is, that C is

called by A and B, while the calling tree shows that A

calls B and C. This different orientation makes a valua-

ble addition to documentation, increasing clarity.

4.2.2.2 PDL Cross Reference Generator

A cross reference generator accepts as input a design ex-

pressed in PDL and produces as output a listing of all

points of definition and all references which can be

retained as documentation, thus improving clarity.

4.2.2.3 Structure Checker
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A structure checker for PDL is a program that accepts as

input a design expressed in PDL and produces as output the

same PDL with its structures checked for correctness and

completeness. Structure here refers to programming lan-

guage structures such as if-then-else, begin-end and the

case statement. Since PDL may be kept as documentation

for the finished product, clarity is improved by this

process.

4.2.3 Coding Tools

4.2.3.1 Optimizing Compilers "..-

Optimization is a compiler function which improves the

quality of the machine language code produced by the

* compiler. Most optimizations improve both speed of

execution and the size of the executable program. They

therefore improve resource utilization. In extreme cases

of memory size limits or response time constraints, op-

timization may be required for compliance. Six common op-

timizations are: constant propagation, common subexpres-

sion elimination, strength reduction, code motion, dead

code elimination, and the elimination of induction

* variables. Constant propagation occurs when the optimizer

recognizes computations for which all data is available.

Since the data is available, the compiler can do the
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computation, providing its result as a constant.

Therefore, the time and code required to compute the

result during execution is saved. Common subexpression

elimination takes place when the compiler recognizes that

the same result will be computed in two or more places.

(To derive the same result, not only must the expressions

be the same except possibly for commutivity, but the data

must be the same.) The compiler saves the result from the

first computation, and uses it to replace the code

required for the subsequent computations. Strength reduc-

tion occurs when the compiler is able to replace an arith-

metic operation with another operation which requires less

time. A good example would be the replacement of X

-. squared by X times X. Dead code is any part of a program

which will never be reached during execution. This sort

of code is sometimes created by an if statement whose test

always has the same result. If the compiler can detect

this situation, it can eliminate the if test and the un-

reachable code, saving both time and memory. Code motion

and the elimination of induction variables are both loop

optimization techniques. The compiler can often find ex-

pressions whose result is the same for each iteration of

the loop. These expressions are called loop invariants.

Code motion is the removal of these expression from within

the loop, and their placement just before the loop, where

they will only be executed once. Induction variables are
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variables whose values vary in a linear fashion during

execution of the loop. Not all induction variables are ..-

part of the source code. A FORTRAN example might be:

REAL X(10), Y(10)

DO 10,I=1,10

x(I )=0

10 Y(I)=0

There are three induction variables in this code segment:

I and the offsets used to address elements of the arrays X

and Y. If a real occupies 4 address units of storage, the

expression for the offset into X is (I-)*4. The- expres-

sion for Y is the same. A good compiler might first

recognize these two as the same and eliminate the second

computation. (common subexpression elimination). It might

then realize that it could get the same result by setting

the offset to zero outside the loop and adding four to it

on each loop pass. (strength reduction). Finally, it

might realize that it does not need both the offset and I,

since it can determine loop termination by testing the

value of the offset. Therefore, it could eliminate I from

the loop (elimination of an induction variable). Two

types of loop optimization which are rarely used are loop

unrolling and loop jamming. Loop unrolling can only be

done when the number of times a loop will be executed is 9-4

123 2
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known. It consists of duplicating the body of the loop a

number of times in order to eliminate some of the tests

for loop termination. 'This technique saves time, but in-

variably wastes space. Loop jamming can take place when

two loops have the same indices and no result of the first

loop is used in the second. The two loops are merged into

"" one. A (trivial) example might be:

REAL X(10),Y(10)

DO 10,I=1,10

10 X(I)=0

DO 20,I=1,10

20 Y(I)=1| *1

Which might be merged into:

REAL X(10),Y(10)

DO 10,I-1,10

X(I) 0".

10 Y(I)=l

All of the above optimizations save time. Most of them

also save space, with the exception of loop unrolling and

possibly code motion.

4.2.3.2 Cross Compiler

124

W . . . . . . .5. . . ..'.

• / .-,,,, .. . .-. ,. .- ..... .*...'. S-,, ..... -,.'.'j .5.. ....... ~ .-. ' . .. -, ...- .. ... . . . *-,,.. . .. . .



.°7r

A cross compiler is a compiler which is hosted (runs) on a

type of machine different from that for which it generates

code. Usually this means that the host machine is a main-

frame or a mini computer and the target machine is a

microprocessor. Cross compilers allow the use of larger,

more complex compilers (which may be required for complex

* languages such as Ada or PL/I) than could be hosted on the

target. The features of the cross compiler can then in-

clude optimization and/or the options of a checkout (

compiler. Therefore cross compilers may indirectly improve

instrumentation, resource utilization, and compliance,

while also improving ease of development. A cross com-

*! piler makes it possible to use a more complex compiler (or

a compiler for a more complex language) than might be

available on the target system. It may improve resource

utilization, simplicity, and compliance.

4.2.3.3 Linker/Loader

The normal functions of a linker/loader are to allow the

usage of external routines and to allow programs to be

loaded in different locations (relocation). These func-

tions increase commonality, and modularity. In addition,

some linker/loaders may provide facilities for overlaying

program segments. Overlaying allows different program

segments to occupy the same memory locations, with each

125
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segment being read in as it is needed. This improves one

facet of resource utilization (space) at the expense of

another (time). It may be required for compliance.

4.2.3.4 Checkout Compiler

Checkout compilers provide special services during the

compilation of programs which assist during program

checkout. Options in the compiler provide for automatic

printing of variables each time their values change, for

automatic trace of subprogram calls, or for collection of

other statistics such as the amont of time spent in each

routine. In other words, a checkout compiler adds

instrumentation.

4.2.3.5 Standards Auditor

A standards auditor (code auditor) takes as input a source

program in some specific language and produces a report

detailing violations of some set of programming standards.

" By enforcing standards, it improves consistency,

simplicity, and clarity. (Clarity is improved because the

use of procedure headers may be part of the standard being

enforced.)

4.2.3.6 Formatter

126
4 :-

V., -



A formatter is a program which takes as input a source

program in some specific high order language and rear-

ranges the input source into some specified format, en-

forcing standard indentation conventions and other stan-

dards for layout of the program on the printed page. It

therefore improves the consistency of the program. Since

understandability is improved by proper indentation, the

simplicity of the program is also improved.

5%.%

4.2.3.7 Menu Generator

A menu generator is designed to provide optimum usefulness

and versatility in data entry by utilizing video display

terminals. A user-defined form, or mask, for data

manipulation on the display area improves ease of use.

Since the mask resembles a printed form, data is placed

into the form by filling in the appropriate blanks on the

screen.

4.2.4 Testing Tools

4.2.4.1 Completion Analyzer

A completion analyzer (or coverage analyzer) provides data

that shows how thoroughly the source code has been exer-
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cised during the testing with respect to the testing goals I
which provides compliance and adds instrumentation. y

4.2.4.2 Stub Generator

A stub generator provides substitutes during testing for

- ' modules which have not been coded. Testing of individual

modules is thus made much easier. This tool enhances

;' functional generality.

4.2.4.3 Mutation Tester

-.

A mutation tester constructs a set of mutants of the

target program which will test a program's compliance. A

" mutant is a program statement which has been transformed

in such a way as to effect typical program errors. A pro-

grammer could test a program with the assumption that the

current state of the program is a mutant of the correct

one.

4.2.4.4 Path Flow Analyzer

A path flow analyzer is a software technique which

provides instrumentation and compliance by scanning the

source code in order to design an optimal set of test
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cases which exercise the primary paths in a software

module.

4.2.4.5 Storage Dumps

Storage dumps provide program/system status and selected

data values which contribute to instrumentation.

* 4.2.4.6 Connectivity Analysis

Connectivity analysis is used to identify the direct pro-

gram paths between any two sections of code within a

program, segment tracing, which provides a measure of

modularity of the program.

4.2.4.7 Reachability Analysis

Reachability analysis is used to identify the specific

program paths, direct or indirect, exercised in order to

reach a specific module, subroutine or section of code

within a program which provides a measure of modularity of -

the program and distributedness of the system of programs.

It can also be used to identify unreachable modules and

"dead" code.""

4.2.4.8 Timing Analyzer
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* A timing analyzer reads the executable code and produces a

report showing program segment invocation hierarchy and

the actual execution times per complete program segment

cycles. Instrumentation, resource utilization, and comn-

* pliance are measured with respect to the timing in the

operation of the program.

4.2.4.9 Symbolic Debugger

" A symbolic debugger is used to enhance instrumentation.

Since testing is the process of determining whether or not

errors or faults exist in a program, debugging is an at-

tempt to isolate the source of a problem and to find a

solution with snaps of variables and absolute identifiers

which enhances compliance.

4.2.4.10 Historical File Generation

Historical file generation provides instrumentation by the

generation of accumulated execution statistics for all

test cases including blocks executed, paths taken, modules

invoked, etc.

4.2.4.11 Interface Mapping
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- Interface mapping is used to measure commonality with

respect to the identification of program interfaces such

as called and calling modules or modules involved in in-

terprocess communications and the verification of the

range and limits of the module parameters. It is useful

for the analysis of modularity, a module's impact on other

modules, and the identification of data abstractions from

subroutine calls, function calls and macros.

4.2.4.12 Variable Mapping

p -° # .

Variable mapping provides information with respect to the

definition and use of the individual variables in the pro-

gram and may provide actual values and initialization,

during execution of the program. Instrumentation is

measured with respect to the information provided.

4.2.4.13 Assertion Checker

An assertion checker is used to check a program's critical

requirements for compliance with the results derived by

dynamic analysis. It enhances the simplicity and main-

tainability of the program and improves the traceability

*. and consistency of the software. By inserting assertions

concerning the value or condition of program variables in

the program code, assertion checking may be applied to er-
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ror detection activities, understanding program behavior
and clarity through documention of the program's critical

- requirements.
%,."

4.2.4.14 Resource Management Analysis

Resource management analysis dicatates resource

utilization for the purpose of compliance in processing

requirements such that programs and data should be al-

located the minimum amount of time and storage that is

necessary. When additional amounts are needed, they are

acquired and released dynamically.

4.2.4.15 Correctness Analyzer

A correctness analyzer determines the traceability between

a program's total response and the stated response in the

functional requirements and between the program as coded

and the programming requirements. Measuring the program's

response helps to determine instrumentation and

compliance.

4.2.4.16 Usage Counter

V.,. A usage counter reads the executable code and collects

usage data during program execution such as the number of
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times each executable statement, branch and subroutine

calls were executed. Instrtmentation is measured with

respect to how many times a particular statement, branch

or subroutine is executed.

- 4.2.5 Maintenance Tools

4.2.5.1 Version Generator

- A version generator is a system to track and control

changes to files (source, object or text) associated with

software development which enhances the control of data

access, provides expandability, and ensures traceability

in the maintenance life cycle. The system should be able

to store, update and retrieve files including audit trails

as well as maintain historical records on all versions

controlled for the purpose of complete program documen-

tation and clarity.

4.2.5.2 Rapid Reconfiguration

Rapid reconfiguration is an automated process by which a

system is rebuilt after changes which provides fault

tolerance. All file dependencies and processes (resource

utilization, common memory, compilations, preprocessing,

etc) are specified in a hierarchical manner such that a
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change in one module can easily and quickly be related to

changes required in other modules which provides com-

monality and simplicity.

4.2.5.3 Report Generator

-~ A report generator consists of methods for customized

formatting of generated output to provide ease of use and

improve resource utilization.

.

4.2.6 Operations Tools

4.2.6.1 Diagnostic Analyzer

A diagnostic analyzer measures the capability of the sys-

tem to perform its functions in accordance with design

requirements, even in the present of hardware failures.

If the system functions can be performed in the event of

4.+ faults, the system is partially fault tolerant when design

specifications are not met with respect to the time

required or the storage capacity required to complete the

job. Fault tolerance is provided by the use of redundant

resources, resource utilization, for upgraded system

reliability and protection.

4.2.6.2 System Builder
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A system builder identifies all required programs, and it

p compiles, links, relocates and produces an object file for

execution which enhances modularity.

<.4-

4.3 Recommended Near-Term Tools and Their Flowcharts

There are five tools which affect the requirements phase.

They are the Automated Requirements Document Generator,

. the Automated Requirements Analyzer, the Automatic

Language Translator, the Requirements Interface Processor,

and the Rapid Prototyper. The Automatic Language

Translator directly enhances traceability, consistency,

- and commonality. The Automatic Requirements Analyzer en-

hances consistency and compliance. All other criteria in-

fluenced are influenced indirectly (see Table 4-2).

The design phase, in which decisions are made which affect

the most criteria, is almost devoid of automated tools.

There exist several useful methodologies which were

developed mostly for use in the business data processing V

sphere, but none of them have been satisfactorily

automated. Some of the tools discussed for the

requirements phase extend into the design phase, but the

act of design still remains a manual (or even cerebral)

art. The tools which apply to this phase which will be

discussed here all fall into the class of program design
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language processors, and are generally found as a single

tool rather than individually. All three tools (a calling

tree generator, a cross reference generator, and a struc-

ture checker) are concerned with the production or check-

ing of documentation, therefore the only criterion af-

fected is clarity.
S.

Tools for the coding or implementation phase can be

divided into two areas: tools affecting source code, and

tools affecting object code. The tools affecting source

code are the menu generator, the standards auditor, and

the formatter. The menu generator helps coders to lay out

and design screens and menus for interactive input. By.

doing this it affects ease of use of the finished project.

Both of the other tools affect consistency and simplicity

of the source code, and the standards auditor also affects

compliance if coding standards are specified in the

, requirements. The tools affecting object code are the op-

* timizing compiler, the cross compiler, the linker/loader,

and the checkout compiler. The first three of these all

affect compliance and resource utilization by making pro-

grams more time and/or space efficient. The cross com-

piler also affects simplicity and possibly instrumentation

if it has some of the features of the checkout compiler.

The linker/loader affects commonality and modularity as

well. The checkout compiler adds instrumentation only.
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During the maintenance phase, all decisions made prior to j

this phase are either maintained or changed with respect

to errors detected in either operations or requirements

and design changes requested by management. Maintenance

is accomplished with a generic maintenance tool comprised

of a set of specific maintenance tools which provide cor-

rection of errors and requested changes in documentation

and programs by modification, addition or removal of

functions. Additionally, tools must be provided after er-

ror correction or requested changes. Replication of pro-

grams and documentation is ensured by the specific main-

* - tenance tools providing redundancy in distributed process-

;" ing systems.

The criteria relating to redundancy in requirements and

documentation are traceability, commonality, and clarity.

The criteria relating to maintenance activities such as

* error correction are resource utilization, control of data - -

access and fault tolerance. Since approximately 75% of

the software life cycle is devoted to maintenance, it is

necessary for a generic maintenance tool to enhance the

aforementioned criteria as well as enhance ease of use,

expandability and simplicity.

With reference to Table 4-2, the aforementioned criteria

are enhanced by the version generator and rapid
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* . reconfiguration. Version generation provides an audit

trail for maintenance of programs and their data

dependencies. Using this audit trail, rapid recon-

figuration automates rebuilding of a system.

Additionally, the report generator enhances ease of use

during the maintenance of programs. The combination of

these specific maintenance tools forms a minimum generic

maintenance tool.

During the testing phase, compliance and instrumentation

are the important criteria measured by the specific test-

ing tools as shown in Table 4-2. In order to determine

the specific testing tools which are part of a generic

testing tool, tools which enhance either or both of the
,4.

criteria, compliance or instrumentation, should be

considered.

JOr.

The main group of specific testing tools which may be a

part of a minimum generic testing tool should enhance both

compliance and instrumentation. This group consists of a

completion analyzer, mutation tester, path flow analyzer, 0[:

correctness analyzer, timing analyzer and symbolic

debugger. As shown in Table 4-2, these specific testing

tools also enhance other criteria such as traceability and
. -. *0,

consistency in the correctness analyzer and resource -.

utilization in the timing analyzer. The additional
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criteria improve the minimum generic testing tool which

enhances compliance and instrumentation. L

A secondary group of specific testing tools which may be a

part of a generic testing tool are those which enhance

either compliance or instrumentation, but both of the

criteria are not enhanced. The tools which enhance

compliance, not instrumentation, are an assertion checker

and resource management analyzer. Similarly, the tools

that enhance instrumentation, not compliance, consist of a

usage counter, historical file generator, variable mapper

and storage dump (see Table 4-2). Additionally, the as-

sertion checker enhances traceability, consistency,

simplicity, and clarity, and the Resource Management

Analyzer enhances resource utilization. The additional

enhancements further improve the generic testing tool.

A generic testing tool is composed of its minimum

requirements if it consists of the main group of specific

testing tools which enhance both instrumentation and

compliance. The tool is improved if the secondary group

of specific testing tools, enhancing either instrumen-

tation or compliance, is added. A combination of the main

and secondary groups of specific testing tools form a

generic testing tool during the testing phase.
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During the operations phase, programs must be capable of

operating in a consistent manner with recovery from hard-

ware malfunctions and program errors unless there is no

recovery; therefore, a generic operations tool should en-

hance fault tolerances. Additionally, resource

utilization and modularity should be enhanced since pro-

grams should conserve system resources. The specific

operations tools comprising the generic operations tool VA

should enhance the previously mentioned criteria.

Referring to the specific operations tools in Table 4-2, a

diagnostic analyzer and a system builder form a minimum

generic operations tool. A system builder, linking all of

the programs in a system for execution, enhances

modularity. Since a diagnostic analyzer measures the

capability of the system of programs to perform its func-

tions in accordance with design requirements, it enhances

resource utilization and fault tolerance. Since these

specific operations tools enhance the prescribed criteria,

they form a minimum generic operations tool.

Compiler Generation Tools

,-- The following too,. are somewhat restricted in their

-' application, although the first two could be used to read
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and parse other forms of command input. Their primary

application, though, is the construction of compilers.

Lexical analyzer generators accept a description of the

base elements of a language, which are called tokens, and

generate tables to be used by a standard program in the

recognition of tokens. A token is a sequence of charac-

ters which can be treated as a single logical entity.

Tokens include keywords such as IF and GOTO, numbers,

identifiers and special symbols such as = or <=. The

lexical analyzer reads characters until it has recognized

a token and then returns the type and value of the token.

Syntax analyzer generators accept a description (called a

grammer) of a language and produce tables for use by a

syntax analyzer. Syntax analyzers accept tokens from the

lexical analyzer and parse the language into larger

* constructs. This action is somewhat analogous to the ac-

tions of an English student in diagramming a sentence.

For example, if the lexical analyzer returned the tokens

"article", "adjective" and "noun", then the syntax

* analyzer would recognize that these tokens comprise a "

"noun phrase". At a later phase the "noun phrase" might

be combined with a "verb phrase" and another "noun phrase"

into a "transitive sentence". In terms of a programming

language, this means that a syntax analyzer would combine
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"identifier", "assign", "identifier", "plus" and

"identifier" into "assignment statement". The compiler -. a

then takes this information to generate an intermediate

-- representation of the program.

Code generator generators take as input some form of a

description of a target machine and a description of the

* intermediate representation mentioned above. They produce

as output tables and/or code for use by a standardized

code generator. The code generator takes the intermediate

representation of a program and converts it into target

machine language. These tools are currently not fully

developed, although some industrial use has taken place. -.4.
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4.4 Near-Term Generic Tools Conclusion

In this section, conclusions are drawn based on Tables 4-1
4'..

and 4-2. Each life cycle phase was examined to determine

whether any criterion applicable to that phase was not en-

-' hanced by any of the tools assigned to that phase. These

criteria were then used to determine areas where further

tool development is needed. The tables were also examined

to determine if any criterion which was not applicable to

a phase was enhanced by one of the tools assigned to that

phase. Tools were grouped according to the phase in which

they are more frequently used; however, some tools are

used in other phases. For example, the checkout compiler

was assigned to the coding phase with the other language

tools, but its use overlaps into the testing phase.

4, Because of these overlaps, criteria which were not ap-

plicable to a particular life cycle phase may be enhanced

by tools assigned to that phase.

In the first life cycle phase, requirements, all applica-

ble criteria are covered except control of data access and

independence. It may be that these are difficult criteria

to enhance at this early stage. This would certainly seem

to be true of independence, but some sort of tool for

evaluating the requirements for control of data access

I would seem to be needed.
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The design phase is poverty-stricken with regard to tools.

/ The only tools which exist enhance clarity of

documentation. This would be a fertile area for the

development of tools to automate the many design

methodologies that exist.

, The tools available for the coding phase do not address

several criteria. These criteria are traceability, func-

tional generality, independence, clarity, virtuality, and
.|- ..-

distributedness. Major emphasis should be placed on

traceability and distributo-dness for new tool development.

The coverage of the testing phase shows the fact that most

of the emphasis to date in tool development has been on

testing tools. All criteria appropriate to this phase

have been addressed.

There are eight applicable criteria which were not ad-

dressed for the maintenance phase. The basic problem in

maintenance is to retain good qualities already present in

the software. Those criteria not addressed are:

consistency, modularity, functional generality,

instrumentation, independence, compliance, virtuality, and

distributedness. This lack of coverage is bad because of

the fact that experience shows that approximately 75% of

the budget spent on any piece of software is spent in the
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• maintenance phase. The situation is somewhat ameliorated

by the fact that many of the tools assigned to other

phases can be applied during the maintenance phase.%.4
" A reasonable conclusion to be reached from this is that

the present emphasis in tool development needs to be

S-changed. The testing phase is probably sufficiently

covered, but more research and development needs to be U-4

spent on designing tools for the design and maintenance

phases. In addition, the criterion of independence is not

addressed in any phase; therefore, it looms as a potential

area for exploration and development.
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5.0 Far-Term Generic Techniques

Distributed processing systems are best supported by an

integrated software support environment. Much of the cur-

rent development effort within the Department of Defense

is directed toward such an environment. The subsequent

cost savings provide justification for many on-going

projects, e.g., the Ada Program Support Environment and
• .

various Integrated Software Support Environments. Present

emphasis is on implementation as quickly as it can be

achieved. However, this overlooks the more subtle long

range impact such implementation will have, Why implement

integrated software support environments in the first

place? Are cost savings alone enough to justify them? Do

they provide value-added to the computer users? These and

a host of other questions are not addressed. Problems are

currently arising within these computer user communities

which should be addressed. One such problem concerns the

almost apocryphal aspects behind knowledge based systems..

An increasing number of computer users are justifying all _

sorts of new data bases based upon an enhancement to a

knowledge based system. Of course a precise definition of

what is meant by knowledge based system is usually not

addressed. As these undefined levels of expectation

become more common within the user community, the

relationship of integrated software support environments
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to knowledge based systems becomes increasingly important.

Once implemented, the contribution to specifically defined

knowledge based systems by integrated software support en-

vironments must be made explicit. This contribution is a

function of the emerging role of artificial intelligence.

Actual computer intelligence will become evident within

the databases and operations of the computer environment.

In large part, the success of distributed processing sys-

.-" tems will be circumscribed by their ability to contribute

-. to the knowledge based systems of users. The bottom line

remains functionality, and what users want is functional

knowledge based systems. Consequently, the generic tech-

niques required by distributed processing systems of the

future concern knowledge based functionality. Tools not

presently envisioned will be required. ISSEs will not be

enough. Intelligent and adaptive integrated software sup-

port environments will be required. Under present

circumstances, the distributed processing environment is

complex. Under such future requirements, the complexity

multiplies itself. Techniques which will become the tools

of tomorrow are going to require artificial intelligence

(AI). Although the present only hints of the future, the

following observations concerning AI are evident.

. The prime far-term generic tool and technique for highly

complex systems, including distributed processing systems,
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will be the application of artificial intelligence.

Intelligent components will be a feature of both develop-

mental support systems' and the operational systems. Such

components will thus support the total software life cycle

as well as serve to mediate the complexity of distributed

system functions. The most persuasive rationale for the

appropriateness of AI is precisely in the potential for

managing complexity.

The overall integrating concept here is that of a

knowledge based system (KBS). The realization of a KBS is

of course somewhat different in the two application areas

under discussion (support environments and operational

systems). In support (host) environments, the KBS is the

foundation of the "intelligent programmer's assistant".

In operational (target) systems, intelligence and its sup-

porting knowledge bases function as features of operating

-: systems and data base management. Thus in distributed -'

processing, this knowledge and intelligence will itself be

distributed as a system component. Of course, the design LI
of intelligent systems may itself by carried out on an in-

telligent development system.

Definitions of artificial intelligence usually emphasize

the emulation of human cognitive abilities in such tasks
4.

as problem solving, symbol manipulation, and operations on
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incomplete or inaccurate information. Implicit in this

emphasis is the assumption of the (metaphorical) ability

to "understand". Understanding, in turn, is dependent on

an appropriate and adequate representation of knowledge.

The types of knowledge represented and manipulated in a

KBS will vary according to whether the KBS pertains to a

support environment or to an operational system (though

a!there may be overlap in the content of the two types). A

support environment will optimally include detailed

knowledge of the application domain(s) (and will include a

means for acquiring knowledge about application domains).

The design target may be a total system design including

hardware/software partitioning, or it may be an ap-

plication program for an existing target system. In the

latter case, knowledge of the target configuration would

be part of the knowledge base.

Further, an intelligent support system will have a

sophisticated understanding of the application programming

language. Any compiler for the language will of course

have "knowledge" (but little "understanding") of the syn-

tax and semantics of the language. Various types and

levels of intelligence are candidates for incorporation

into an intelligent compiler (embodying a knowledge of the

pragmatics of the language) and an associated compile-time
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(and run-time) debugger. (Some of these will be discussed

in more detail below.) Understanding of the language (and

of the target system) will be useful in other development

tools as well, such as a requirements analyzer which out-

puts source code text. Here the understanding comes into

play in selection of appropriate language constructs and

facilities. For example, an intelligent encapsulation

mechanism (e.g., for packages in Ada) could define classes

of objects to be packaged together, using heuristics

guided by knowledge of the language rationale, the ap-

plication domain, and measures of software quality. If

low-level objects are specified in a requirements

language, this automatic package definition can be viewed

as the generation of a high-level, more abstract object.

As indicated above, the representation of knowledge is a

fundamentally important issue in KBS development.

Representation schemes include production rules (a set of

conditions together with a conclusion, perhaps with an at-

tached confidence level), frames, and scripts. Detection

of true conditions in production rules may involve

heuristic evaluation. An important aspect of knowledge

representation is the association of teleology (purpose)

with raw information. Inclusion of purpose aids an intel-

r ligent system in evaluation of the relevance of in- -"*.'

formation to a task or problem.

157 " ""

N"a..

d6A~ -. %-A.. A** ~ *..*.*>A % %



Intelligence in knowledge-based, expert consulting systems

- will provide decision aids throughout the system life

cycle. This will be valuable in any activity where the

consequence of experimental adjustment of system

parameters needs to be evaluated. An example is impact

analysis of requirements or design changes, where what is

desired is an evaluation of the severity of a proposed

change. AI techniques can be used to search the knowledge

base for relevant conceptual connections. Efficient

heuristics could make feasible an interactive dialogue

with the decision-maker. The search process in this exam-

ple may be sufficient but not exhaustive. Once a change

decision has been made a detailed analysis of affected

system entities will be necessary. in this case, search

will be exhaustive, but can be intelligently guided to

avoid blind search.

A further desirable component of the knowledge base for

decision aids will be the inclusion of quantitative and

qualitative software metrics. This will enable an intel-

ligent dialogue with program designers in which alter-

native design features can be evaluated against criteria

of goodness. The decisions of the designer can feed back
.-

into the knowledge base so that future decisions can be

more fully automated. A mature design knowledge base will

be useful in rapid system prototyping.

1
4 158 <'

. . . . . . . .
,> . , . " : " ? .v - -... .' - , . . .. - "- "- . ... -". - °'. .-.. " ... . " ' .- .. ' .- ' .

-,..°- '- ..i", . ',. ." .- * .. . ~.*-. . ' ... ** . ... .". "." - " . . . . '- "." ''. .'--"..'.



Support tools of the future will be used in designing and

implementing target systems with artificially intelligent

components. A principal motivation for the use of AI

techniques -in distributed processing is the management of

the inherent complexity of such systems. Since intel-

ligent support systems and intelligent components of

": target systems will use the same generic technology, it is

less expedient to detail the intelligent functions in the

target systems. Likely there will be beneficial tech-

nology exchange in AI between tool development activity

and applications program techniques. For the sake of

completeness, we will lastly consider some important

potential applications of AI in the target systems.

Local operating systems will require intelligence to

direct decisions based on incomplete state information for

resource management and for recovery. Intelligence can be

applied to nondeterministic scheduling and task allocation

in concurrent software. Application algorithms may be

* automatically partitioned and distributed to separate

processors for parallel execution.

There will be intelligent components of data base

management. Intelligent retrieval will make use of in-

ferencing capacity and of strategies for merging schemas "

of distributed data bases. An emerging concept is that of
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active data bases, which will report evolving patterns of";.

interest. Finally, natural language processing will be a '..

feature of the user i nterface."i
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List of Abbreviations

AI Artificial Intelligence

ALU Arithmetic Logic Unit

APSE Ada Programming Support Environment

COS Constituent Operating System

DBMS Data Base Management System

DoD Department of Defense

DOS Distributed Operating System

IA Interconnect Architectures

IEEE Institute of Electrical and Electronic Engineers

I/O Input/Output

ISSE Integrated Software Support Environment
.--p

KAPSE Kernel Ada Program Support Environment

KBS Knowledge Based System

KIT KAPSE Interface Team

MAPSE Minimal Ada Program Support Environment

MCMD Multi-Center, Multi-Drop

MDMS Multi-Center, Multi-Star

MST Minimal Spanning Tree

PDL Program Design Language

RADC Rome Air Development Center

ROM Read Only Memory

SCMD Single-Center, Multi-Drop

* SCSS Single-Center, Single-Star
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