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1.0 TECHNICAL REPORT SUMMARY

General Dynamics Data Systems Division is under con-
tract to Rome Air Development Center to conduct a study
entitled Distributed Processing Tools Definition. The
objectives of this study are to investigate the
requirements for software lifecycle support of embedded
distributed processing systems and then to specify
tools and techniques pertinent to each lifecycle phase.
This study is divided into three phases as illustrated
in Figure 1-1. Phase I of the study has been

completed, and its results are described in this

Technical Report.

Two generic classifications of military systems are ad-
dressed in this study: weapon systems (including
armament, aeronautical, and missile and space
configurations) and communication systems (including
command/control/communication and mission/force
management type configurations). This classification
is based wupon characteristics inherent to each group
(ref. Appendix A) and permits specification of

requirements for software tools and techniques for a

larger class of generic military systems.
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The principal technical conclusion of the Phase 1 study

is the requirement that software lifecycle phase sup-
port tools for embedded distributed processing systems
must view the hardware and software from a total sys-
tems perspective. Tlis perspective is accomplished by
using the Concept of Object-Oriented Modularization
(ref. Paragraph 6.0). Particular manifestations of the
éoncept of Object-Oriented Modularization applied to
embedded distributed processing systems yield the fol-

lowing additional conclusions:

(1) Software tools must be small and integrated
with larger environments; for example, the Ada
Programming Support Environment or an
Integrated Software Support Environment as
proposed in the DOD Candidate R&D Thrusts for
the Software Technology Initiative. In
addition, these tools must be available at the
beginning of the software development program

(ref. Paragraphs 5.2.1, 5.2.2, and 5.2.7).

(2) Static analysis techniques may not be useful
because of the probabilistic nature of dis-
tributed systems. This conclusion 1is cor-
roborated by recent work of Dr. W. E. Howden

(ref, Paragraphs 7.1.4 and 7.3.1).




(3) Rapid prototyping and impact analysis tools
are critically needed (ref. Paragraphs 7.1.3

and 7.3.3).

(4) The real-time rendezvous and package set
capabilities of the Ada language need further
analysis 1in a distributed processing environ-

ment (ref. Paragraph 7.1.2 and Appendix B).

(5) Simulation of distributed hardware intercon-
nections and networking must be done before
the system is built because performance is
critically dependent on these features (ref.

Paragraphs 5.1.2 and 5.1.3).

in addition, the anticipated effects of static
analysis, branch testing, and impact analysis tech-
nigues upon the 1lifecycle phases of embedded dis-
tributed processing systems are evaluated (rof.
Paragraph 7.3). Finally, global timing and methods of
distributed data base management have been identified

as topics worthy of future research efforts.

Software lifecycle phase support tools are also
required for communication systems (i.e.,

command/control/communication and mission/force
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management configurations). In such applications dis-
tributed processing has increased the importance of
Object-Oriented Modularization (ref. Paragraph 6.0).
Specific manifestations of such modularization are
evident in the following conclusions concerning com-

munication systems:

(1) Data distribution can vary throughout diff-
erent levels of a multi-layered network.
Object-Oriented Modularizations require alter-
native layering be examined (ref. Paragraphs

6.1 and 7.2.2).

(2) The performance behavior of multi-layered
networks with distributed intelligence must be
established Dbefore such networks are im-

plemented (ref., Paragraphs 7.1 and 7.1.2).

(3) The capability to simulate a multi-layered
network must become part of the Integrated
Software Support Environment. (ref.

Paragraphs 5.2.7 and 7.1.3).

Decision making concerning embedded distributed
processing systems as well as communications systems

requires knowledge of data movement and computational




efficiency. Enough information must be known within

specific real-time constraints to reach appropriate
decisions. Subsequent functionality is a product of
such decisions. Distributed processing functions are
performed upon data bases residing within intercon-
nected architectures. Growth in these data bases can
force changes in their tightly-coupled architectures to
accommodate increased information flow. The bottom
line is functionality for both weapon systems and com-
munication systems. The systems themselves can be
viewed as interconnected hardware components but their
functionality is a result of software. Using
analytical techniques, such software can be validated
and optimized. Without analytical techniques, the mul-
tiple processor operating system will allocate its
resources, Under such an approach validation and op-
timization issues would not be addressed before the
start of a weapon or communication system's operational
software. Higher reliability at reduced costs and
shorter development schedules would not be produced.
Instead the emergence of a "fix it later™ attitude
would ensue. When real-time performance of both hard-
ware and software is not considered at the outset, they
will force subsequent consideration when problems
inevitably occur. Proper analytical technigues an-

ticipate and eliminate whole groups of validation and




nen -

. amy *$

optimization problems. They also establish what per-
formance can reasonably be expected from specific mul-
tiple processor configurations. Taken as a whole,
these techniques become part of a support environment.
The functionality of such a support environment can
best be described as a configuration testbed. Although
the issues addressed by an embedded system are diff-
erent from a communications system, a single con-
figuration testbed can accommodate both. 1In conclusion
the need for testing command/control/communication sys-
tems and embedded distributed systems can be addressed
by a single testbed built upon a programming support
environment, e.g., the Ada Programming Support
Environment. Such an effort 1is worthy of future

research initiatives.

Phase I1 of the Distributed Processing Tools Definition
Study will research industrial, university and
Department of Defense tools that satisfy the
requirements established in Phase 1I. Finally, Phase
III will identify and describe candidate research and

development efforts to solve any Phase 1 requirements

not supported by a Phase Il tool or technique.




2.0 SCOPE AND PURPOSE OF THIS DOCUMENT

Projected military requirements for improvements in
performance, reliability, and field maintainability of
weapon and communication systems, indicate an increased
utilization of embedded distributed processing
technology. Software tools and technigues need to be
identified and developed that support the already
existing and future embedded distributed processing
hardware. Conseqguently, General Dynamics Data Systems
Division and Rome Air Development Center have con-
tracted to conduct a study of software tools and tech-
nigues pertinent to embedded distributed processing
[ systems (EDPS). This effort 1is entitled Distributed
‘{N { Processing Tools Definition (DPTD) study, and it is

j being conducted in three phases, namely:

Phase 1I - Study of Hardware and Software
Technologies
Phase 11 - Survey of Existing Tools and
Techniques
|
Phase III - Analysis  of Problem Areas and

Recommendation of Candidates for

Research and Development Efforts.
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The objectives of the DPTD study are to investigate the
requirements for software lifecycle support of embedded
distributed processing systems and then to identify and
specify tools and techniques pertinent to each 1lifecy-
cle phase. The availability of specifications for sof-
tware tools and techniques to support embedded dis-
tributed processing systems will enable the tools to be
developed prior to the start of the weapon or com-
munication system operational software. This prior
availability will result in higher reliability of the
operational software at reduced costs and shorter

development schedules.

The purpose of this document is to present the results
of Phase I of the DPTD study in accordance with the
requirements of paragraph 4.1.1 of the Statement of
Work. The results of Phases 11 and 111 of the DPTD
study will be concatenated to this Phase i1 report. The
benefits of this approach are a smooth transition of
the description of the results of the three phases for
the reader and the opportunity to update previous sec-
tions as newer technologies are identified and deeper
insights are gained into their impacts upon embedded

distributed processing systems.
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3.0 INTRODUCTION AND BACKGROUND

The gap between literature and practices is a chasm
when viewed from the standpoint of distributed systems.
While researchers advocate symbolic execution or proofs
of correctness or even automated verification systems,
currently operating distributed systems require hun-
dreds of thousands of lines of computer code to be
maintained. Consequently, the overriding commitment of
the present 1is to maintain what has already been
implemented. In most instances these systems have been
developed without the benefit of automated
verification. Static analysis has been 1limited to
diagnostics produced by a typical compiler.
Consistency checking and documentation about the
definition, reference, and communication of data within
a program has not been addressed. As processing is
distributed over several nodes, dynamics become more
important. Analysis of a program can be performed at
the statement-level or through the examination of
global execution, Most currently operating distributed
systems have not been analyzed from a dynamic
standpoint. These current systems accommodate a wide
variety of hardware architectures and an even wider
variety of software algorithms and data structures.

The maintenance of these systems has grown too com-

10
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plicated for any one person to comprehend. However,
their complexity continues to grow and their ap-
plications continue to expand. New techniques to cope
with their increased complexity are beginning to
emerge. Foremost among these techniques is the process

of object-oriented modularization.

When implementing object-oriented modularization tech-
niques individuals do not need to understand all
modules within a distributed system. Although the idea
is simple, 1its realization is often difficult.
Obviously someone must know how all the modules of a
system fit together., Furthermore, the operations in
one module should not rely upon operations within
another module unless very carefully controlled. These
operationally independent modules characterize the
object-oriented approach and distinguish it from the
more conventional modularization technigues. The in-
dividual who performs the object-oriented
modularization does not have to know the operational
details in each module. Those details are decided by

individuals who implement the specific modules.

Several factors contribute to the difficulty encoun-
tered during modularization, First, the modules in

software are produced completely independent of the

11
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modules in hardware. The subsequent operational mix is
sometimes mismatched. Hardware modularization takes
place on a process basis. Each process is a module of
concurrency with programs being constructed from one or
more processes. If several processes are involved,
communication between them becomes increasingly
important. Such considerations originated within mul-
tiprogramming environments where each 3job could be
viewed as a process. From multiprogramming the present
methodology for implementing concurrency has evolved.
As new hardware instruction sets are envisioned, they
are implemented in terms of concurrency architectures.
An example would be the MIL-STD-1750A Instruction Set
Architecture implemented by RCA and TRACOR for Wright-
Patterson Air Force Base., The CPU is subdivided into
two pairs of General Processor Units (GPUs) and
operates on an 8-bit slice architecture. The micro-
code is partitioned between the two GPUs and has no
duplication. These partitions are accessed as needed
and operate as concurrency modules. The instruction
set of MIL-STD-1750A is accommodated through access to
16 different partitions or concurrency modules. To op-
timize a process requires knowledge of its access
sequence, Of course such an approach emphasizes the
importance of hardware modularization. Once the

operating system has been written the emphasis on hard-

12
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ware modularization is downplayed. The importance of
software and its associated algorithms and data struc-
tures is elevated. Object-oriented modularization is
applied’ producing software with operationally indepen-
dent modules. When these modules run concurrently,
}' they can be viewed as concurrency modules within their
respective hardware environments. Each such module ex-

hibits its own efficiency with respect to access

sequences on the hardware level. In most instances

those access sequences are closely associated with the

; operating system. To bridge that gap between object-

: oriented modularization and hardware modularization
reguires a precise software tool. In the case of the
MIL-STD-1750A implementation that tool was a derivative
g‘ : of SPICE which was developed at Carnegie-Mellon
. University. It is a message-based system containing
31 | two kinds of entities: messages (a collection of types
and data) and ports (queues of messages). It does not

i. emulate the object-oriented modularization but
specializes in concurrency modules. Consequently, the

implementation of the MIL-STD-1750A Instruction Set

Architecture by RCA and TRACOR illustrates how modules

] in hardwvare are developed independently of modules in

software.

13




Another difficulty encountered during modularization
originates with scheduling. Production schedules for
distributed systems are usually controlled by external
factors. Such systems are usually components within
larger systems; i.e.,, they are embedded. The schedules
imposed by the larger systems take precedence over the
embedded distributed processing systems. Despite this
scheduling precedence, the need for object-oriented

modularization persists.

Also, unless the interface between software modules is
completely established, the subsequent software effort

may be unclear.

Lack of <clarity extracts a price later in the main-
tenance of the software system. Of course, clarity has
its price too. More effort must be expended during the
requirements study and preliminary design phase of the
software development lifecycle. Such additional effort
is a one time cost and it reduces the maintenance ef-
fort which 1is an ongoing cost. Conseguently, unclear
interfaces between software modules perpetuate a main-
tenance effort. The more complicated those interfaces,
the larger the effort. Much can be avoided through an
object-oriented modularization when software systems

are initiated.

14
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As distributed systems become more complex, a consensus
concerning modularization has formed. It applies the
principle of “"information hiding™ to distributed sof-
tware procedures and data structures. Its basic idea
is to group related procedures and their data struc-
tures together. The subsequent groupings comprise
modules which can be viewed as either software or
hardware; i.e., object-oriented modules or concurrency
modules. Assuming the hardware stance 1is taken,
related procedures refer to operational state
transitions. Since ccmputers are state~driven devices,
their hardware transitions transform their internal
operating states. Concurrency modules transform inter-
nal operating states in parallel and independently.
Since such modules operate concurrently, the access
problem among data abstractions is highlighted. Extra
precautions must be taken to manage accesses to the
same data by multiple concurrency modules. The tools
to regulate access are in their infancy. 1In effect,
the ability to produce concurrency modules has out-
stripped the present capability of simulation tools.
Complicating the situation are software procedures
which transform operating states by way of algorithms,
Since these algorithms are usually expressed in higher
order language statements, the operating trans-

formations are more obscure, The subsequent tools

15
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available for access control are based upon logic and
are divorced from considerations of hardware. Their
analysis 1is static while the operational situation is
concurrently dynamic. The problem has now been as-
signed the subsequent implementation of a higher order
lanquage, e.g., Ada. Whether the 1language can solve
the problem has not been addressed because other issues
must be resolved first. Until that language is
implemented, the problem has simply been deferred.
Despite the delay the access problem between concur-

rency modules remains significant.

Several programming languages are attempting to support
"information hiding" modularization techniques. The
latest such 1language 1is Ada which has been sy:'tac-
tically specified by the Department of Defense. Its
implementation is underway but no validated compiler
has yet been produced. Consequently, observations
concerning its algorithms and data structures are con-
strained to its present syntactic definition. To make
any observation assumes a future compiler will meet the
syntactic specifications and will survive wvalidation.
Obviously the current definition of Ada is far removed
from the actual state transitions within the concur-
rency modules of a computer. In 1instances of

concurrency, Ada relies upon the rendezvous technique.

16




Under that technique, the fastest concurrent operation
is completed and waits wupon the slowest concurrent
operation to complete,. Consequently, all concurrent
operations complete before processing is resumed. The
programming location at which these concurrent
operations await completion is called the rendezvous
point. Actual wait time within a specific rendezvous
depends upon the specific mix of concurrent operations.
From the standpoint of an Ada compiler, these wait
times are Dbeyond the scope of object-oriented
modularization, Such an observation is invalid from
the standpoint of hardware concurrency modules. Unless
such times are carefully delineated, the rendezvous
becomes non-deterministic. In this document the non-
deterministic concept will refer to a process whose
outcome depends upon the choices and transitions made
by the system components. This is in contrast to a
deterministic process whose outcome depends only on the
current system state. Such non-determinism is not ac-
ceptable within most military applications. The per-
formance limitations of embedded distributed processing
systems in most military applications must be known
before implementation. Otherwise limits could be ex-
ceeded under catastrophic circumstances; e.g., bat-
tlefield conditions. Since Ada syntactic constructs

accommodate non-deterministic situations, a problem is

17
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created for subsequent Ada Programming Support
Environments (APSEs). The expectation that such APSEs
will solve all instances of concurrency modularization
is unrealistic. The state transitions available within
hardware of the present and immediate future should be
accessible from higher order 1languages like Ada.
Otherwise the state transitions will be manipulated at

the machine language level.

Obviously Very-Large-Scale-Integration (VLSI) devices
capable of concurrent operations are impacting the
marketplace. As more of these devices meet or exceed
military specifications, the capability for embedded
distributed processing systems increases. Beyond the
present VLSI devices are the Very-High-Speed-
Integrated-Circuit (VHSIC) technologies. Such tech-
nologies have as their objective the insertion of speed
into defense systems. To achieve this objective, cer-
tain barriers must be overcome and subsystems must be
built to demonstrate improved capability.
Consequently, a VHSIC program has been created to ad-
dress these barriers on a tri-service basis under the
Under Secretary of Defense for Research and
Engineering, In addition to the Air Force, Army, and
Navy, the program involves the industrial and scien-

tific communities. It has been subdivided into four

18




phases: Phases 0, I, II, and II1l1. While Phases O, 1I,
and II must operate consecutively, Phase III can
operate concurrently. Phase 0 is the Study Phase which
defines the work and generates a detailed approach.
Phase 1 is subdivided into two efforts: one to im-
plement electronic brassboards within three years and
another to extend Integrated Circuit technology into
submicron dimensions. Phase II is also subdivided into
two parallel efforts: one provides subsystem demon-
strations of the brassboards produced under Phase 1 and
the other continues the submicron work begun under
Phase I. Phase IIl1 addresses near-term efforts in key
technologies which impact the total program. This par-
ticular phase is intended to encourage participation by
universities and small businesses in very specific
problems, e.g., advanced architecture and design
concepts. The capability for modularization within
VHSIC devices exceeds the current VLSI marketplace.
The impact of VHSIC technologies on software languages
is not completely understood. Several VHSIC Phase III
contracts are addressing that issue. Results have not
yet been generated. The non-deterministic nature of
the present Ada rendezvous techniques is a crucial 1is-
sue in VHSIC technologies. The reason rests with the
capability of VHSIC hardware environments to provide

ever-increasing concurrency modularization,
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Furthermore, software produced by "information hiding"
must reside in these new VHSIC environments. The near-
term and far-term capability for concurrent operation

will be enhanced significantly.

Appropriately defined object-oriented modules and con-
currency modules proceed independently through their
individual 1lifecycle phases. The reconciliation of
these software lifecycle phases to hardware 1lifecycle
phases is of paramount importance to "information
hiding" modules. VLSI technologies are putting larger
numbers of electronically active devices in hardware
modules. As these numbers increase, the operational
verification of each electronically active device
becomes more difficult. The test phase of such high
density VLSI hardware now depends upon statistical sam-
pling techniques. When such hardware 1is released to
the marketplace, 1its subsequent operation 1is non-
dete-ministic or probabilistic. The Boolean logic ac-
commodated by such hardware has seldom been completely
tested before delivery to the customers, The future
deliveries of VHSIC devices will only exacerbate the
situation. The problem of marginally functional hard-
ware modules has become the hidden problem of embedded
distributed processing systems. Many compromises must

be made before such egquipment becomes functional. In
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most instances hardware deficiencies are subsumed by

the software process itself. This creates a double
bind for the software modularization effort. As sof-
tware modules are designed and implemented, they may
not run because of previously undetected hardware
errors, If a software module does not run under such
circumstances, is the problem attributable to hardware?
Alternatively, the problem could 1lie with software.
Furthermore, as a worst case, the problem could lie
with both hardware and software. The end result of
this situation is that the software development lifecy-
cle phases are becoming the test phase for hardware
modularization. Any discussion of software 1lifecycle
phases must address the hardware testing issue. To ig-
nore such an issue only compounds the problem faced by
software modularization and development. An inventory
of software tools must be accumulated to test the ac-
tual operation of hardware modules. Such a toolset
serves the purpose of hardware quality assurance. Its
objective would be the elimination of hardware problems
within the subsequent software 1lifecycle phases. 1f
the objective 1is achieved, software development costs
should be reduced. Whether the reduction is temporary

or permanent has not been established.




Assuming the quality of hardware modules can be
assured, the subsequent software lifecycle phases need
construction tools for separate software modules. Each
tool should be associated with one or more lifecycle
phases. Taken collectively all tools would cover the
lifecycle spectrum: requirements tools, design tools,
coding tools, testing tools, documentation tools, and
maintenance tools. A clever design for such a toolkit
would use "information hiding" concepts. Such concepts
accommodate the trend toward increasing hardware
modularization, Shrinking hardware modules present
shrinking targets to the software development toolkits.
These hardware modules are often overlooked by develop-
mental toolkits. The present situation 1s summarized
by the following observation. Tools for software life-
cycle phases in distributed systems should operate
within the distributed systems themselves, To accom-
plish such operation reguires lifecycle tools to become
smaller and more specialized. Such a trend runs coun-

ter to the current tool marketplace.

Currently available tools address a general systems
orientation and combine several lifecycle phases
together. The immediate result of such an orientation
is to place tools in large uniprocessor configurations.

The computer talent in such computer settings seldom
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appreciates the real-time problems of the distributed
system, Ada suffers from the same orientation.
Although capable of targeting small hardware modules,
it must reside in an excessively large computer
environment. In this large computer environment the
modularization in the uniprocessor configuration itself
is seldom evident. Unless the computer talent exerts
extraordinary effort to discover how the large uni-
processor operates, the software tools it produces is

not likely to exhibit such understanding.

Smaller and more specialized 1lifecycle tools can be
combined into larger sets to accommodate a general sys-
tems orientation. The combination capability is
provided by the process of software modularization.
Current tools can be converted to these smaller and
more specialized formats through additional analysis.
Their components with respect to lifecycle phases have
not been analyzed in sufficient detail. Upon com-
pletion of such an analysis, the resulting tools would
be smaller and more specialized with respect to hard-
ware modules. The optimal environment for these new
toolkits is the emerging Ada Programming Support
Environment (APSE). The intent of Ada has never been
to reside in a distributed system but eventually it

must. The current proponents of Ada subsets exhibit a
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distributed system orientation. As currently defined,

Ada allows no subsetting. However, such constraints
apply to the Dept. of Defense and the U.S. defense
industry. The policy of U.S. allies is not as clearly
delineated, e.g., Japan and France. To complicate mat-
ters Russia is even translating the Ada syntax. 1If an
unauthorized subset of Ada succeeds quickly and impacts
the marketplace, the continued insistence against sub-
setting may itself be called into question. 1In effect,
the complete syntactic definition of Ada requires a
very large uniprocessor to accommodate it. Subsets of
the syntactic definition can easily be accommodated
within the distributed environment itself; e.g., the
Telesoft configuration. Systems are definitely
becoming more distributed which means the argument for
a distributed Ada 1is growing. Since Ada can be made
sufficiently modular, it can eventually fit into a dis-
tributed system. Sufficiently modularized toolkits can
also fit into distributed systems. Consequently, both
Ada and a toolkit of highly specialized tools become
part of an integrated software support environment.
Obviously how well Ada accommodates itself to un-
derlying hardware state transitions is of paramount
importance. The future plans of the Department of
Defense software efforts assume the availability of

this integrated software support environment.
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Subsequent sections will emphasize

such an environment.
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4,0 CHARACTERISTICS OF DISTRIBUTED PROCESSING SYSTEMS

The past several years have seen an increasing interest
in the application of distributed computing systems,
because a distributed processing system is one in which
the computing functions are dispersed among several
physical computing elements, These computing elements
may be colocated or geographically separated. The dis-
tributed computing systems take many forms covering a
diverse range of system architectures. In fact, the
very term distributed processing may invoke radically
different images of technology and problem solutions
depending wupon the user,. To some, a distributed
processing system is a collection of multiple computers
or processing elements working closely together in the
solution of a single problem. An example might be an
Air Defense/Command Management system which is com-
prised of many data processing subsystems linked
together by shared memory, communication
lines/networks, or common buses. Each data processing
center processes a subset of air/ground situation tran-
sactions and updates a portion of a common data base t¢
develop a dynamic composite-air-situation picture
against which force management can be exercised. Users
of such systems are concerned with issues of hardware

and software design, reliability, operating/executive
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systems, and how to optimally decompose programs and
data bases. Figures 4-1 through 4-6 1illustrate this
type of modern distributed processing system 1in a
generalized manner. Figure 4-1 shows the overall Air
Defense Ground Environment (ADGE) System with Figures
4-2 through 4-6 showing the generic data processing
elements in increasing detail. Since distribution of
control is a key characteristic element of distributed
processing systems, Figure 4-3 was included to high-

light this characteristic.

To other users, a distributed system is a set of intel-
ligent terminals located at the point of use to give
local organizational elements more responsive computer
support. These terminals perform most of the computing
functions for the local group. When necessary the ter-
minals communicate with remote host computers and each
other for enhanced support. An example might be the
remote Data Entry Display Stations (DEDS) shown in
Figure 4-2 which could be located at weather control
centers. To yet another set of users (e.g., aircraft
pilots), distributed processing systems may mean a very
tightly-coupled distributed system used for navigation,
weapon delivery, or control of an aircraft.

Figure 4-7 illustrates this type of distributed system

by showing the architecture of data processing systems
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with MIL-STD-1553B Multiple Bus for the F-16 aircraft.

The fire control computer is the systems integrator for
this F-16 avionics and armament system. In this inte-
gration role, the fire control computer uses inputs
from computer-controlled on-board sensor systems (e.g.,
radar, navigation, central air data computer, target
identification set, etc.) to accomplish air-to-air and
air-to-ground weapon delivery, navigation, fuel
management, and stores management and control. Results
of pertinent calculations are displayed on the radar E-
O displays, NAV panels, and various other cockpit
displays that are human-engineered for single-pilot
operation. The F-16 system is unigque in that it im-
plements the standard military bus (MIL-STD-1553) with
the latest version of this bus (MIL-STD-1553B) in-
cluding additional subaddress modes, broadcast
capability, improved noise rejection, and error-rate
specifications. Use of this bus allows for dis-
tribution of the functional requirements to the various

distributed computer systems and sensors.

As discussed previously, military computer systems span
the spectrum from single microprocessors in "smart-

bombs" or communications line controllers to multiple,

distributed mainframes in world-wide
Communication/Command/Control systems. These dis-
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tributed processing systems can, however, be visualized

as a region of a volume bounded by axes describing (1)
distribution of hardware, (2) distribution of control,
and (3) distribution of data bases. Figure 4-8 shows
this volume as well as the relationship of uniprocessor
systems to distributed processing systems. The par-
ticular use and performance, including reliability and
maintainability, requirements of the computer system
will determine where in the characteristic volume the
system will be placed. Appendix A (Definition of the
Scope of Embedded Distributed Processing Systems)
discusses (1) the distribution of the various different
types of military systems within this characteristic
volume of Figure 4-8 and (2) the formulation of the
various distributed processing systems into two high-
level generic classifications: weapon systems and com-
munication systems. Also presented in Appendix A (see
Table A-1) are the key characteristics of the dis-
tributed processing systems which comprise these two

generic categories.

The common thread linking the different types of dis-
tributed systems is the requirement to interconnect and
communicate data and messages between the various
processing elements. In many systems, serial com-

munications 1lines are wused as the interconnecting
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links. For geographically dispersed systems, these

links are wusually provided by the common carriers or
dedicated microwave systems. Hence, the designer of
distributed systems is faced with significant com-
munications issues. Generally, the analysis of these
communications 1issues and interconnect technologies,
with associated characteristics, is aided by grouping
the wvarious interconnect technigues and architectures
into three generic classifications: 1) computer buses
(elements geographically dispersed within 200 feet), 2)
local area networks (elements geographically dispersed
within 6000 feet), and 3) long haul networks (elements
geographically dispersed over many miles). Figure 4-9
depicts the physical distance relationship for these
communication networks., Table 4-1 identifies 12 common
interconnect technologies, together with their
performance, reliability, geographic distribution, and
modularity and expandability characteristics that sup-
port maintainability. 1In addition to these intercon-
nect topologies, a logical structure or protocol must
be used to allow for meaningful communications.
Protocol can be classified in five levels, not all of

which exist in all networks:
(1) Line control procedures. This is the lowest
level of protocol. It administers the phys-

ical transmission medium.
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Table 4-1

System Reliability Is a Driving Force

for the Interconnect Technology

INTERCONMECT TECHNDLOGY RELIABILITY i | maouLamTy | renroamancs
TN

COMPLETE INTERCONNECTION - THE COMPLETELY ONLY LOCAL PAOBLEM MAXIMUM UNLIMITED FAIR TYMCALLY
INTERCONNECTED ARCHITECTURE IS CONCEPTUALLY 16 MINEFAILS NUMBER 0F 20004808 oo
THE SIMPLEST OESIGN IN THIS DESIGN EACH RECUNOCANT PATNS PORTS OF 50 Kagn ARD
PROCESSOA (S CONNECTED 8Y A DEDICATED PATH FORSINGLE EACK MINI 1 544 Mo
TQ EVERY QTHER PROCESSGR COMMUNICATIONS LINK FAILURES oM 1 POSSIBLE
COST BECOME PROMIBITIVE AS THE NUMSER OF
PROCESSORS AND DISTANCES INCREASE
PACKET SWITCHED NETWOAK ~ MESSAGES SROKEN (NTO PACKETS ONLY LOCAL PROBLEM UNLIMITED G000 TYMCALLY
AND TRANSMITTED VIA AVAILASLE NODES. AT LEAST TWO PATHS 15 MmNl FAILS LT
EXIST ETWEEN ANY TWO COMPUTERS IN THE SYSTEM
REGULAR NETWORK - EVERY COMPUTEN 1S ONLY LOCAL PROOLEM CAN BE POGR fymcaLLy
CONNECTED TOQ (TS TWO KEIGHSORS AND TWO 16 MERLFAILS UNLIMITED, 15 Mo
COMPUTERS ABOVE AND SELOWIT THE NETWDAX REQUNDANT PATHS TYPMCALLY
GETS COMPLICATED IF TMERE ARE VERY MANY o FORSIAGLE VERY LIMITED
COMPUTERS. THE “TREE™ 1S A MIERARCHICALLY CONNECT FAILURE (10'S OF FEET)
STRUCTURED VARIATION WiTH ANY PROCESSOR ABLE et
TO COMMUNICATE WiTH ITS SUPEAIQR ANDITS g =g o
SUSQROINATES AS WELL AS TS TWO NEIGNBORS

>

-
IAREGULAR NETWORK - THIS CONFICURATION HAS PARTIAL REOUNCANCY H uaLInTED FAIR TYMCALLY
NO CONSISTEAT NEIGHBOR AELATIONSHIPS. IT IS FOR LINK « 1600 9600 o0
COMMON 1N GEQGAAPRICALLY OISPERSED NET FAILURES 1
WOAKS WHEAE COMMUNICATION LINKS CONTROL H
THE QESIGN a

g
HIERARCHY - THIS CONFIGURATION IS USED IN SYSTEM GPERABILITY AEDUCED : UBLIMITED 6000 TYymCaLLY
PROCESS CONTROL AND DATA ACTUISITION WITH SINGLE POINT FAILURE s 1400-9400 v;n
APPLICATIONS. THE CAPABILITIES ARE SPECIALIZED MORE SERIOUS THE MIGHER =
AT LOWER LEVELS ANO MORE GENERAL PURPOSE UP THE FAILURE OCCURS
AT THE TOP
LOQP OR RING - (O0P ARCNITECTURE EVOLVED SYSTEM UNAFFECTED WITM SINGLE LIMITED G000 PARALLEL
FAOM THE OATA COMMUNICATIONS ENVIRONMENT. LOOP FAILURE FOR TWO.LOOP (100310003 LIMITED TAL
N THIS CONFIGURATION EACN COMPUTER IS SYSTEM CATASTROPMIC FOR OF FEET Y M S0% KL 0
CONNECTED T0O TWQ NEIGHBORING COMPUTENS. SINGLE UNIOIRECTIONAL LOQ? ADDAESSIING | NORDS/SEC
THE TAAFFIC COULD FLOWIN 30TH DIRECTIONS, CAPARILITY HLITTN
SUT CIRCULATING TRAFFIC IN ONE OIRECTION (§ 1) v
LESS COMPLICATED
GLOSAL BUS ~ THE USE OF A COMMON OA GLOSAL ONLY LOCAL PROSLEM IF LIMITED Gooo UP 10 $0 Mags
BUS RECUIRES SOME ALLOCATION SCHEME FOR MM FAILS CATASTAOPMC (100873 0¢ TYMCAL ')
SENOING MESSAGES FROM ONE COMPUTEN TO wiTH BUS FAILURE FEET) LTV
ANOTHER

SWITCH
STAR — THIS CONFIGURATION HAS & CERTRAL ONLY LOCAL PROBLEM (F WINY LMTEQ 6000 [N AL
SWITCHING AESQURCE. EACN COMPUTER IS CON. / OR BUS FAILS. CATASTROPMIC 110003 0 UNTIL L T
NECTED 7O THE CENTRAL SWITCN. TRAFFICIS 15 SWITCM FAILS. SWITCH FEET) SWITCH
1N BOTH DINECTIONS POSSIBLY LESS AELIABLE THAN SATURATES
fus oA L0OP
_ SWITCH .

LOOP WITH SWITCN - THIS REFINEMENT OF CATASTROPMIC IF EITHER = LIMITED G000 FaiR [RL 1]
THE LOQP PROVIOES A SWITCHING ELEMENT THAT SWITCH GR LOOP FAILS =2 11003-10003 URTIL SWITCN
AEMOVES MESSAGES FAOM THE LOOP MAPS THEIR H OF FEET) SATURATES
ADOAESSES. AND REPLACES THEM ON THE LOGP =
PROPERLY AGORESSED TO THEIR INTENDED H
OESTINATION -

-

ES
SUS WIRDOW - THIS CONFIGURATION NAS MORE SERICUS CONTERTION e VERY LIMTED] POOR 200 500 KILO
TMAN ONE SWITCH. MESSAGESMAY §€ TRANSMITTED PROBLEMS [ (103 0F FEET) WORDS.SEC
ON THE PATM THEY ARE RECEIVED OR ON ANOTHER. PARTIAL SYSTEM
THE SWITCHES PAOVIOE “WINDOWS™ FOR PASSING FAILURE IF SWITCH
MESSAGES OETWEEN SUSES. OA BUS FAILS
SUSWITH SWITCH - THIS IS MORE LIKE THE GLOBAL BUS wTen CATASTAOPWC IF SUS ¢ LIWmTED G000 fAIR ur g
SECAUSE EACH COMPUTEA IS CONNECTED TO THE CENTAAL OR SWITCN FAILS (1000°S OF UNTIL SWITCH | JWem
SWITCH AND TRAFFIC FLOWS FAQM THE ORIGINATING FERT) SATURATES FORSEAIAL
COMPUTER TO THME SWITCH, AND FAOM THE SWITCH TO TNE s
OESTINATION COMPUTER. TNE COMPUTEARS SHARL THE PATH
(BUS) TO SHARE ACCESS TO THE SWITCH
SHARED MEMOAY - THE MOST COMMON WAY CATASTAOPWIC tF VERY LIMTED| POOR MEMORY SPEED
TO MTERCONAECY COMPUTER SYSTEMS IS TQ MEMORY FAILS (10 QF FEETI| LiTRD S08 xw3EL
COMMUNICATE 8Y LEAVING MESSAGES FOR ONE TO NUMSER T0 1MW 3EC
ANOTHER IN A COMMONLY ACCESSIBLE MEMORY 0Ff MEMORY
THE XEY CHARACTERISTIC IS THAT THE MEMOAY MInISUM PORTS
1S USED AS A DATA PATIH AS WELL AS STORAGE.
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(2) Procedures to control data flow between com-

munications processors (packet flow).

(3) Procedures to control data flow between a host

computer and a communications processor.

(4) Procedures to allow flow between two distant

host computers.

(5) Procedures to allow message flow between two

user processes.

However, the particular categories of military systems
most affected by technological advancements in embedded
distributed processing include primarily the first two
categories, local area networks and computer buses.
The expansion of the von Neumann architecture within a
multiprocess environment is typified by the diagram in
Figure 4-10 and is characteristic of the interconnect
technologies associated with the computer buses. Also
in the computer bus technologies, the advances in Very-
Large-Scale-Integration (VLSI) <circuitry has offered
new interconnect architectural alternatives which are
shown in Figure 4-11 and are discussed in paragraphs
5.1 and 7.1. The key characteristic of the layered bus

architecture is associated with its operation; in that,
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the communication between layers becomes probabilistic
instead of deterministic as is the case with the wvon
2 Neumann architecture. (Refer to paragraph 7.1.1 for a

full explanation of this terminology.)

Local area networks (LAN) have evolved primarily from a
need to provide data communication on a packet basis
between increasingly 1intelligent terminals and host
computer systems, The intelligent terminals are
generally separated over larger distances than the in-
ternal workings of the computer buses, but at the same
time these terminals are not nearly so distant as to
require a communication link such as microwave or other
long haul communication systems. Furthermore, LAN ar-
chitecture and protocol is generally compatible with
computer systems on a level not always achieved with
3§ long haul networks. Examples of the local area networ.
' are shown in Figure 4-2 and 4-3 in terms of the dual
; serial data bus. Dual bus topology 1is generally the
g preferred topology used with LAN systems since they of-
fer acceptable performance and high reliability.
Figure 4-12 shows some of the key advantages and disad-
ﬁ‘ vantages associated with the LAN bus topology. In a
like manner, bus control strategies, examples of bus
systems, and examples of transmission media are shown

! in Figures 4-13, 4-14, and 4-15, respectively. Table
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4-2 is a compilation of the majority of LAN's currently
available.

Six additional distributed processing characteristics
which serve as motivations for the continued develop-

ment of parallel (concurrent) processing systems are:

. Response time

] Flexibility

] Resource sharing
° Reliability

o Availability

® Transportability

The common denominator and ultimate result of im-
provements in these characteristics is improved overall
system performance, usually measured also on the basis
of cost effectiveness. These characteristics are fur-

ther discussed as follows:

(1) Reliability - Redundancy, which is related to
reliability, can be achieved in a relatively
inexpensive manner in a distributed system
since the entire system does not have to be
replicated as 1is the case with a single
computer. Only an incremental number of

processors  must be added to insure the
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ADVANTAGES DISADVANTAGES
e No Active Taps e Bandwith Limitations
® Interface Simplicity ® Probabilistic Access

e Fully Connected
e High Reliability
(Distributed Control)

Figure 4-12 Linear Bus Subnetwork Topology

Contention
L] Transmit
] Listen before talk

] Listen while talk

Back Oft Strategies
¢  Fixed delay
e  Adaptive delay

e Random delay

Figure 4-13 Bus Control Strategies
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Figure 4-14
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Figure 4-15 Transmission Media
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Max
Trans- No. Network
Local Mission of Archi- Access
Network Company Medium Nodes tecture Scheme
Attached Datapoint Broad- 255 Star Proprie-
Resource Corp. band tary
Computer coax/non-
(ARC) coherent
infrared
energy
Cluster/ Nestar Baseband 6U Arbi- csMma/ i
One Systems malti- trary CD
Model A Inc. conductor (bus,
cable star,
etc.)
Distri- Apollo Broad- Several Ring Token *
buted Computer band hundred passing
Operating Corp. coax
Multi
Access
Inter
Network
(DOMAIN)
ETHERNET Xerox Baseband 100 Bus CSMA/ 4
Corp. coax CD
HYPER- Network Base- 16 Bus csma/
channel Systems band Low ca
Corp. coax
HYPER- " n " " Hybrid «
bus CSMA/CD !
(ACK)
Table 4-2 Typical Local Area Neg
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Max length
of Interno-
dal trans- Max
pess mission Data
!gme medium Rate Applications Comments
n
prie- 4 miles 2.5Mb/s Office auto- Each processor
for coax. mation, data node can parti-
1 mi.for processing cipate in up to
, infrared 6 ARCs
]
;
P/ 1000 ft 250 kb/s | Office auto- Free-form
Low mation,person- topology due to
al computers, low data rates
general-
purpcse
n 3000 ft 12Mb/s Engineering Virtual file
ing Mb/s scientific, accessing, can
CAD/CAM, gen- page across
eral-purpose network in a
virtual en-
vironment
k/ 2.5 km 10 Mb/s | Office Maximum separa-
automation tion between
stations is
2.5 km,
Unavail- 50 Mb/s Scientific, Link adapters
able large computer allow a node to
centers be attached to
4 independent
trunk-to-trunk
" 6 Mbs interfacing via
D micr-owave, fiber
optics, and com-
mon- carrier
lin: s.

ea Network Products




Max
Trans- No. Network j
Local Mission of Archi- Acc
Network Company Medium Nodes tecture Sch
Modway Modcon Base- 250 Arbi- Tok
Div. of band or tary pass
Gould broad- (bus,
Inc. band star,
coax, fi- etc.)
ber optics
WANGNET Wang Labs Broad- Open
Band Loop
coax
Utility Wang Labs " 7 None
Band Channels
Intercon- " " 32 " None
nect Band
16
Wang " Broad Many " CSMAA
Band Band (802)
coax
Loosely Control Base 108 Trunk
coupled Data Band +
Network Corp. coax Node
LCN
IMUX SCI, Base 100 Bus
Systems Band




—
Max length
of Interno-

Network dal trans-
Archi- Access mission
k tecture Scheme medium
Arbi- Token 15,000 ft
tary passing
(bus,
star,
‘ etc.)
Open
Loop
None N/A
Fels
" None N/A
" CSMA/CD N/A
(802)
Trunk Rotating 3000 ft
+ Priority
Nnde Synchron-
our mode
TOKEN
Bus Conten- 1000 ft.
tion

Max
Data
Rate

Applications

Comments

1,544
Mb/s

N/A

9.6Kb/J

64 Kbs

12 MHz

50 MHz

10 MHz

Data process-
ing, process
control

video

Large
Computers

Data Bus
Systems

Compatible with
microwave and
satelite-commun-
ications faci-
lities for com-
mon~-carrier
transmissions

Supplies 7
channels to com-
posite video
equipment

Modem

Modem

X.25 SDLC com-
patible and
CSMA/CD com-
patible

Not x.25
compatible
compares with
Hyperchannel

Table 4-2 (continued)




Max
Max of
Trans- No. Network dal
Local Mission of Archi- Access mis
Network Company Medium Nodes tecture Scheme med
Net/One Unger- Base~ 250 Bus CSMA/ 000]
manu- kand CD
Bass Inc. coaz
Omnlink Northern Broad- 9 Ring Token 500
Telecom band Low passing
Inc. coax
Primenet Prime Base- 15 Ring Token 750
computer band Low passing
Inc. coax
Z-Net Zilog Base- 255 Bus CcsMa/ 2 km
Inc. band ¢b
coax
4
Table U4-2 (Continued)
{
]
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Max length
of Interno-

dal trans- Max
cess mission Data
heme medium Rate Applications Comments
/ 4000 ft 4 Mb/s OEM systems, Intelligent net-
data process- work interface
ing,scientific units can be
office auto- programmed to
mation, pro- interface to a
cess control wide variety of
terminals
ken 5000 ft 40 kb/s Data process- Each node can
ssing ing, office have indepen-
automation dent and
accessible files
peripherals and
processors
ken 750 ft 10 Mb/s Data process- CCITT X.25-com-
ssing ing, large patible for
computer interfacing to
centers other networks
over long dis-
tances
/ 2 km 800 kb/s | Office auto- Emulator pack-
Low mation,small age allows

business
computers

data transfer
between Zilog
equipment and
other vendors'
equipment

(Continued)




Max

Trans- No. Network
Local Mission of Archi- Accey
Network Company Medium Nodes tecture Sch
Localnet Sytek Broad- 256/ Bus csmaj
Systems Inc. band channel CD
20 & 40 coax
Cablenet Amdax Coax 16,000 Bus Hybr
Corp. Broad TDMA
Band cont
tion
DPS Litton Loop SDLC
MITRE X MITRE Coax Bus Hybr*
Broad
Band
Cambridge Cambridge Twisted 15 Ring Rota
Ring Univ. Pair Expand- Slot
(Logica cable able
Ltd. Fiber Optic
(Toltec cable
Data, Ltd)

Table 4-2 (cq




Max length
of Interno-

Network dal trans- Max
Archi- Access mission Data
tecture Scheme medium Rate Applications Comments
Bus CSMA/ 30 km 120 kb/s,| Distributed Each channel
CDb 2 Mb/s processing has CSMA/CD
design auto- accessing. Up
mation to 120 channels
per cable
Bus Hybrid 50 miles 14 MHz Universal Protocol Free
TDMA
conten-
tion
Loop SDLC 200M 20 MHz Main Computer
tie-~in using
noses $100,000/
node - see
Electronics
July 14, 1981
Bus Hybrid 1 MHz LWT
Ring Rotating 100M 1C MHz For terminals, wWill interface
Slots Long Computer tie with most
Distances ins

Table 4-2 (Continued)
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L (2)

(3)

(4)

required degree of availability. Also

simpler, and hence more reliable, software
structures may be achievable in a collection

of small distributed processors.

Response time - The distributed system can be
more responsive because direct access to a
computer or processing element can be provided
to smaller user communities. This respon-
siveness can take the form of reduced turn-
around time in a batch environment and faster

response times in a real-time environment.

Flexibility - A distributed system in danger
of overload can be expanded incrementally at
low cost by the addition of more processors.
Also a host computer system in danger of
overload can be preserved by offloading func-

tions onto smaller processors.

Resource sharing - A distributed network of
computing systems allows users at one location
to take advantage of resources that are
available at other locations. These resources
could consist of programs, data buses, and

computational power. Resource-sharing
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networks allow 1lcad balancing, backup, and

reduced duplication of effort.

(5) Availability - Enhanced system availability
can be achieved in a distributed system by
means of improved reliability angd
maintainability. Specifically, system main-
tenance functions can be performed in parallel
with system operation, if appropriate redun-
dancy in key system elements, such as
processors, memory, displays and peripherals

is also provided.

(6) Transportability - Redundancy also supports
system transportability by providing the means
whereby the system processes can be shifted to
the various distributed data processor

elements.

In summary, the grouping of (1) the distributed
processing systems, (2) the interconnect technologies,
and (3) the overall system characteristics has benefit-
ted the Distributed Processing Tools Definition study
by allowing the requirements for tools and technigues
to be layered by classes of generic military systems

with associated interconnect technologies.
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5.0 STATE-OF-THE-ART TECHNOLOGIES

The scope of embedded distributed processing sys-
tems has grown too broad for the computer
specialists of today to understand. These
specialists concentrate on a single aspect of the
whole 1instead of the whole itself. Until a new
group of computing professionals assumes the more
general viewpoint the specialist of today must be
used. Their use requires some degree of
modularization, Different groups of specialized
individuals should be able to maintain separate
modules without interfering with one another. This
requires clever design of both hardware and
software. Furthermore, the dichotomy between hard-
ware and software is not clear within embedded dis-
tributed processing systems. A clever design in
hardware impacts software and vice versa. The cur-
rent situation 1is doubly serious because of the
highly specialized nature of existing computing
personnel, An obvious polarity existswithin these
personnel. Some prefer the hardware issues and
gravitate to an engineering orientation. Others
prefer software issues and gravitate toward real-
time systems, operating systems, compilers,

security, network systems, etc. However, such a
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5.1

polarity only indicates the knowlcdge gap which
must be overcome by a new group of computer

professionals.

Current organizations generally group their com-
puting design efforts together. Their span of con-
trol ranges from a purely hardware orientation to a
software orientation. The subsequent section ac-
knowledges such an organization. 1In the following
section, hardware technologies will be addressed.
After those, a section on software technologies is
presented. The issues raised in either section im-
pact the other. Such cross correlation should be

kept in mind as the sections are read.

Hardware Technologies

Modern embedded distributed processing systems are
being influenced primarily by two hardware circuit
technologies: (1) Very-Large-Scale-Integrated
(VLSI) circuits and (2) Very-High-Speed-Integrated
Circuits (VHSIC). In fact, these hardware tech-
nologies in conjunction with the current software
crisis (software cost, reliability, and management)
has caused a flurry of research during the past few
years; and, this research has resulted in a number
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of technological advances that relate to the em-
bedded distributed processing systems., Figure 5-1
illustrates the industrial trends in VLSI and
VHSIC. The key technological advances can,

generally, be grouped as follows:

L] Development of algorithmically
specialized processors; e.g., nxn mesh of

interconnected microprocessors

L Development of new computer
architectures; e.g., Intel 1iAPX432 com-

puter system

: ° Development of specialized embedded
o ; processors with appropriate protocol to
i i support local area bus networks; e.g.,

VLSI chips to support Ethernet.
5.1.1 Algorithmically Specialized Processors

Examples of algorithmically specialized processors
| include designs for (1) Logical Unit (LU) matrix
decomposition which is the main step in solving
systems of linear equations; (2) tree processors

which are used in searching, sorting and expression
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-F evaluation; (3) dynamic programming matrix proces-
. sors which are used for general problem solving;
and (4) joint processors which are used for data

base querying. Many researchers are, however,

going to a more flexible approach which 1is to

replace these dedicated processing elements with

more general microprocessors and simply to program

the algorithmically specialized processors. This

solution is much more flexible since different com-
ponents can use the same devices by changing pro-
grams and, with more recent research results, the
if~ interconnection patterns. Figure 5-2 shows some
examples of the interconnection patterns used for
j specific functions. Figure 5-3 shows three exam-
ples of switch lattices which are used to recon-
: figure the matrices of general purpose microproces-
sor systems., The switch lattices are regular
structures which are formed from programmable swit-

ches connected by data paths.

The Department of Computer Science personnél at
Purdue University has developed a multimicroproces-
.- sor computer system (which is part of the research
under the Blue CHiP Project) wusing this general
processor and switching lattices network technology

named the Configurable, Highly Parallel (CHiP)
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(d)
: (a)
: i (e)
E ; (b)
= B J J
NOTES:
| (a) Mesh, used for dynamic
programming
(b) Hexagonally connected mesh
used for LU decomposition
B B (c) Torus used for transitive
closure
(d) Binary tree used for
- sorting
’ (e) Double tree used for
1| ] 3y }
‘ searching
(c)

Figure 5-2 Interconnection Patterns for Algorithmically
Specialized Processors
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Computer. The objective of this project is to
provide the flexibility needed to compose general
problem solutions while retaining the benefits of
uniformity and locality that the algorithmically
specialized processors exploit. The CHiP computer
is a family of architectures each constructed from
three components: (1) a collection of homogeneous
microprocessors with associated memory, (2) a
switch lattice, and (3) a controller. The switch
lattice is the most 1important component and the
main source of differences among family members;
i.e., Figure 5-3(a), 5-3(b), and 5-3(c). The con-
troller 1is responsible for loading the switch
memory. CHiP processing begins with the controller
broadcasting a command to all switches to invoke a
particular configuration setting. For example sup-
pose it is a mesh pattern (see Figure 5-2(a)) and a
three switch lattice representation is used (see
Figure 5-3). With the entire structure intercon-
nected into a mesh, the individual microprocessor
systems synchronously execute the instructions
stored in their local memory. When a new phase of
processing is to begin, the controller broadcasts a
command to all switches to invoke a new con-
figuration setting, say the one for a tree. With

the lattice restructured into a tree interconnec-
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tion pattern (see Figure 5-2(4d)), the microproces-
sor systems resume processing, having spent only a
single logical step in interphase structure
reconfiguration. All three switch lattice struc-
tures of Figure 5-3 are capable of representing
such an interconnection pattern. Other modes of
operation include the operation of the microproces-
sor matrix with multiple instruction streams and
multiple data streams. In this mode of
parallelism, each processor takes its instructions
and its data from its associated memory. As in the
other mode, the interconnection network provides
interprocessor communication. The overview of the
} CHiP computer family has been superficial, but it
provided a context in which to present one hardware
technological advancement category. Figures 5-4
and 5-5 show other system level architectures of
the microprocessor matrix being used by the
government, under support from System Development

Corporation, at ARC Huntsville, Alabama.

5.1.2 Local Area Networks

In the area of other VLSI/VHSIC technology
advancements, interconnect techniques/technologies

are of vital importance to multiprocessor system
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Figure 5-4 Multiple Microprocessor System
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operation. In fact, all distributed data process-
ing systems are characterized by the requirements
to interconnect and communicate data and messages
between the various processing elements. However,
local area networks and computer bus technologies
have increasingly occupied the attention of
research workers. As discussed in paragraph 4.0,
local area networks are data communications systems
for the interconnection of terminal and distributed
data processing elements that are within one
building, 1in several buildings on the same
property, or in close proximity; as contrasted with
the more familiar local and long-haul networks for
private lines, public switched services, and
private switched systems. The total extent of a
local area network may thus be as little as a few
hundred meters, or as great as several Kkilometers.
Furthermore, the characteristic that sets recently-
announced local area networks apart from conven-
tional 1local and long-haul networks is bandwidth.
It is feasible and relatively inexpensive to im-
plement bandwidths or data rates of 10 megabytes
per second (Mbps) in local area networks. Because
of (1) the varying views of local network designers
and users in regard to the diversity of types of

devices to the connected, (2) the need for con-
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sistency of local network protocols with mainframe
protocols, and (3) the desire to interoperate local
networks and various external networks, such as the
packet-switched common carrier networks,
standardized, off-the-shelf local area networks are
somewhat limited. DEC, 1Intel, and Xerox are,
however, developing a specification with associated
VLSI chips to support Ethernet Carrier Sense
Multiple Access with Collision Detection (CSMA-CD)
method of control. Xerox provides the basic local
network design; DEC contributes the system design
expertise in the area of communication transceivers
and mini-computer networks; and Intel supplies the
expertise in the partitioning of complex com-
munications functions into micro-computer systems
and VLSI components., The main problem with
Ethernet occurs when two stations begin transmit-
ting at the same instant. Such an event wastes the
channel for an entire packet time. 1In this method
a station wishing to transmit listens first for
channel clear, and then transmits if such 1is the
case. Collision detection is also implemented for
the case where two stations transmit
simultaneously. The characteristics of this
network include a 10-Mbps data rate, coaxial cable

medium with 500 meter Computer Interface Unit (CIU)
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spacing, and a datagram link-level protocol. The
VLSI/VHSIC technologies are allowing many other
companies, such as Zilog, to follow suit with their
network versions as well. As discussed previously,
detailed discussions of the characteristics of
various interconnects/networks are presented in

paragraph 4.0.

5.1.3 Bus Technologies

Primary advances in the computer bus technologies,
as related to embedded distributed processing
systems, are computer architectures which are
characterized by multiple computer buses. Detail
discussions of these multiple bus architectures are

presented in paragraphs 6.3 and 7.1.1.

ooy T i

5.1.4 New Computer Architectures - iAPX432

-5 B

The Intel 1iAPX432 computer architecture includes,
in addition to multiple buses, the total impact of
-‘ the VLSI/VHSIC technologies on modern computer
architectures, Figure ©5-6 presents the Intel
1APX432 structure along with key
§ features/characteristics. As noted on the figure,

bus bandwidth limits system performance. Figure 5-
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Figure 5-7 Impact of Performance Planning for iAPX432
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7 further 1illustrates this characteristic by
showing that 2 million instructions per second
(MIPS) is the upper throughput performance 1limit
with current memory bandwidth and a single memory
bus. The figure also shows the relationship of the
effective number of processors versus the number of
memory buses. As an example, a five processor con-
figuration with only one memory bus would have
throughput performance capabilities (measured in
MIPS) of only three processors; whereas, two memory
buses would increase the effective number of
processors to about 3.5. However, a ten processor
configuration would require two memory buses to
achieve a five processor throughput. Figure 5-8
shows the performance of the Intel iAPX432 computer
as compared to other computer types; and Figure 5-9
shows the new approach to hardware fault detection
which can be implemented within 1Intel iAPX432
architecture. With this new hardware fault
detection, the iAPX432 hardware can detect many
different fault conditions, from attempting to
execute data, to complex faults involving several
processes. Once a fault is detected, the operation
is aborted, and a complete description of the fault
is reported. In a multiprocess system, a fault may

cause one processor to suspend itself and begin

70




! | ﬂ | N

running diagnostics, but the other processors can
usually keep the system operating.

In summary, advances in VLSI circuits and VHSIC
technologies are having major impacts on modern em-
bedded distributed processing systems. Specific
impacts, on computer system capacity trends are

itemized as follows:

) Increasing Programming Payloads

] Exceeding Reguirements of Existing
Military Standards
- 1750A
- 1553B

- 1765 (Proposed)

L Increasing Tightly-Coupled Configurations
. Increasing Concurrent Hardware Operation
° Improving Error/Correction Capability

In a like manner, the impacts of VLSI/VHSIC tech-
nologies on computer timing trends are summarized

as follows:
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: Figure 5-9 Hardware Fault Detection
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3 o Faster Hardware Performance
E: . Increases in Concurrent Software
° Increases in Solution Complex Timing
;. Problems
&,
° Transparent Higher Order Languages (HOL)
With Hardware-Related Timing Mechanisms
° Transaction-Driven Systems
o Highly-Distributed Intelligence with
"
Independent Decision Making
3 ‘ 5.2 Software Technologies
4 3
As the scope of embedded distributed processing
systems continues to grow, their productivity
becomes increasingly important. Software en-
gineering is crucial to meeting that need. More
f manageable approaches to software development are
;
i essential. Important new aspects of software en-

gineering address the following areas:

- Improved tools for software developments
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- Improved facilities for software development

- Powerful specification and implementation lan-
guages

- Effective human interfaces with software

- Software performance engineering

- Appropriate modularizations

- Enhanced adaptability and reusability of
modules

- Assurance of correctness.

Present embedded distributed processing systems are
being implemented with VLSI components. Such com-
ponents require their own internal operating sys-
tems which are usually implemented in microcode.
Software development tools for these VLSI com-
ponents can be characterized as inadequate. This
characterization 1is not new. Users of large main-
frames have long encountered inadeguacies when they
attempt to build integrated portfolios of ap-
plications programs upon a centralized data base.
The availability of tools within the large main-
frame environment has been scarce. In the VLSI en-
vironment such tools are virtually non-existent.
Despite such obvious tool shortages embedded dis-
tributed processing systems continue to grow and

expand. Underlying this growth and expansion is a
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universal desire to increase productivity. The
problem comes in realizing that desire. The objec-
tive 1is difficult to achieve. Some degree of per-
formance management must be applied in the initial
stages of the design phase. Furthermore, perform-
ance management issues must continually be ad-
dressed throughout the remaining software develop-
ment lifecycle phases. Subsequent sections will
address the new aspects of software engineering
which have been enumerated above in the present

section.

5.2.1 Improved Tools for Software Development - Set(s)

of Tools Covering Entire Lifecycle

The Ada Programming Support Environment (APSE)
provides its own set of tools; 1i.e., compiler,
debugger, linker-loader, editor, run controller,
and configuration manager. With the growing use of
object-oriented modularization such tools are not
sufficient. Additional ones with carefully defined
links to each phase of the software system lifecy-
cle are required. Additional simulation tools
would help. Examples would include simulators to
simplify feasibility analyses, requirements

languages, software specification languages, design
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A languages, and static analysis. Most helpful would
be formal verification tools, testing tools, change
E - impact analyzers, and optimizers. Management aids

for planning and control are also needed.

More than a single set of tools covering the entire

L .

lifecycle remains a distinct possibility. No sin-
gle methodology seems to be emerging which means
divergence might require several tool sets. Such
divergence 1is not in concert with standardization.
Consequently, unless a methodology offers an impor-
P tant feature which is unique, it should not be used

as justification for an independent tool set.

Many individual tools establish development
! requirements of their own. Despite such need the
subsequent concentration should be toward the com-
plete tool set applicable throughout the lifecycle
phases. The obvious benefit would be the reduction
of errors but greater continuity would also be

evident between the phases.

; Several efforts have already been undertaken to
develop a toolset for the entire lifecycle. One
such effort is the Unix Programmer's Workbench

(PWB) which possesses tools with crude
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compatibility. That compatibility derives from the

byte-string nature of all Unix files which enables
any tool to read the output from any other tool.
Meaningful programming is another matter. Another
effort is Maestro which exhibits clear com-
patibility as well as clear incompatibilities.
Neither Unix nor Maestro contains the full spectrum
of desired tools. Other efforts include the
develiopment environment CADES by I1CL, USE by UCSF,
Gandalf by CMU, and DREAM by the University of

Colorado at Boulder.

5.2.2 Improved Facilities for Software Development -

Programmer Workstation

The arrival of VLSI circuitry enables processing
power and memory to be consolidated locally for use
by programmers. The concept is to provide advanced
graphics and displays in a single unit called a
programmer workstation. These multi-media, multi-
screen stations can provide poverful
programmer /computer interfaces which can increase
programmer productivity. One example of this ap-

proach is the SPICE workstation at Carnegie-Mellon

University.




Workstations can provide an interface between the
programmers and software engineers with their
respective computer systems. The centralized com-
putational power provides the data base management
capability. Modularity of both hardware and sof-
tware allows modification to match individual pro-
¢ grammer need and the installation of wupdated
‘ technology. Standardized features and interfaces
within the workstation can reduce training time for

programmers assigned under new projects.

Considerable research into workstations is needed.
Low cost configurations with appropriate modularity
must be combined for ease of use by the programmer.
Workstation software has yet to be established.
~ 1 Such software must be modified easily, portable,

and capable of rapid installation.

N

i Current interest in local area networks has
heightened the interest in programmer workstations.
Groups in human factors research and standar-

dization are also interested in such workstations.

Many types of workstations are currently under
development, Most prominent is SPICE at the

Carnegie-Mellon University. Another is being
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developed by Xerox at its Palo Alto Research
Center. The National Science Foundation is spon-
soring Project Quanta at Purdue University to

generate a problem solving environment.

s 5.2.3 Powerful Specification and Implementation
Languages - Configurable, Highly Parallel

Computers
Under von Neumann architecture used by

B uniprocessors, computer functionality can be
;L changed simply by changing programs. This ability
: to change has become so familiar that it 1is now
considered to be obvious and is seldom discussed.
?; Structured programming has produced a top-down
» | methodology 1ideally suited for this uniprocessor
architecture. However, programs can be viewed from
a variety of directions. 1In their most basic form
they simply are sequences of operations on a group
of data structures. Conseguently, programs can be
typified by two sets: 1) a set of data structures
and 2) a set of operations on those data
structures. Obviously such a view of programs does
not necessarily imply von Neumann architecture.
Furthermore, the top-down methodology of structured

programming does not enjoy its previously favored
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status. This basic and more general view of pro-
grams was not important until computers were con-
figured around data structures and their
operations. With the advent of VLSI circuitry that

point has now been reached.

Currently VLSI circuit technology provides the
potential for highly parallel computers which do
not rely on von Neumann architecture. These
devices have parallel functionality which can be
changed by changing programs operating in parallel.
The original approach used by structured program-
ming needs modification. In its place 1is an
object-oriented modularization which emphasizes
data structures. Each data structure is carefully
delineated and the operations allowed on that data
structure 1is precisely defined. The data struc-
tures themselves are strongly typed as are their
allowable operations. Each module is handled as if

it were a single entity.

VLSI circuit technology raises the following issues

which must be addressed.
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- Should algorithmically specialized
processors be built focusing on com-

putationally intensive problems?

- How should alternative architectures be
evaluated?
- How should alternative software ap-

proaches be compared?

Several efforts are underway to examine the impact
of configurable, highly parallel computers. One
such effort is under Dr. Lawrence Synder of Purdue
University under the sponsorship of the Office of
Naval Research. Another is under Dr. Ron Krutz at
Carnegie-Mellon University under the sponsorship of
the VHSIC program. The impact of non-von Neumann
architecture is not sufficiently known as far as
software is concerned. Alternative software ap-
proaches become probabilistic under highly parallel
configurations. Testbeds capable of comparing data
structures and data structure operators need to be
implemented immediately. Otherwise the problems
will be addressed after they occur and under

situations of duress.
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5.2.4 Effective Human Interfaces with Software -

Presentation and Manipulation

Human factors are important in achieving the best
interface between machines and software engineers.
These factors relate to the characteristics of pro-
blems being solved as well as the tasks being
performed. Although such factors are not part of
an automated program development environment, their
presence or absence impacts that environment.
Under a human factors approach the resources of
local hardware, communications, and software tools
are brought to bear on the basic needs of a
programmer. The user interface is tailored to the
semantics and usage patterns peculiar to each

programmer.

The timesharing systems of today are not oriented
to video and/or non-keyboard communications with
high-bandwidth input/output. New systems must ac-
commodate many different communications media, in-
cluding audio, graphics, light pens, image
processing, optical character recognition, and
movable devices. As yet the necessary softwvare to
implement such highly interactive forms of

human/computer interface has not been developed.
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Several efforts are underway to improve the human
factors associated with software engineering. Most
are in the conceptual stage; e.g., the professional
programmer based systems (PPBS) by DEC and the
Automatic Software Generation System (ASGS) by John
G. Rice. As concept becomes reality, the impact of
improved human factors will complement software

productivity.

5.2.5 Software Performance Engineering - Performance

Management Technigues

Performance is one of the most important aspects of
software quality. Among users of distributed
i processing services, it can be the difference
I between satisfaction and absolute rejection. High-
I performance internal support systems are vital to
the routine operations of distributed networks.
Without rapid response time, productivity is
impacted. Extra time is required for implemen-
tation and extra effort is required to modify sub-
sequent performance problems. Performance 1is not
normally considered, but only when it becomes a
problem. Performance management technigues must be

applied from the initial design stage throughout

the entire lifecycle.




Engineering for performance throughout the lifecy-

cle has obvious advantages. The quality of a sof-
tware product can. be improved and productivity can
be increased through such engineering. As a first

analysis the following information is necessary:

- work-load specifications,
- software structure,

- execution environment,

- performance goal, and

- resource requirements.

The work-load specifications are derived from the
users of distributed processing services. Software
structure is established during the design phase.
The execution environment anticipates a hardware
configuration and an operating system. The per-
formance goal is established by management in
agreement with users. Resource requirements are
derived projected usage levels. The relevance of
results depends on the accuracy of information

sighted previously.

Several efforts have been made to establish per-
formance techniques. The longest standing such ef-

fort is under Dr. J. C. Browne at the University of
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Texas and Information Research Associates. Under
sponsorship of NASA Langley Dr. Browne has im-
plemented a strategy to analyze software perform-
ance called ADEPT, i.e., A Design-based Evaluation
and Prediction Technique. Extensions to ADEPT have

been made and have been included in PAWS, a

; Performance Analyst Workbench System. Much remains
to be done. More extensions need to be made if

recent VSHIC architecture and software advances are

to be accommodated. The impacts of non-
deterministic, transaction-driven VLS1I con-
figurations are 1little understood. To avoid mas-
sive performance problems in the future the present
trends must be completely understood in terms of
: performance management. To do otherwise would be

unconscionable.

5.2.6 Appropriate Modularizations - Object-Oriented

Modularization

Although the term object-oriented is new, its
concept is not. Over a decade ago structured pro-
; gramming evolved a methodology which could produce
partially independent modules of programming

statements., The approach was top-down with semi-

independent modules being broken down into sub-
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modules until program statements are eventually
produced. Under an object orientation the charac-
teristics of such a process change. Related pro-

gramming statements are grouped around like data

?n structures. The data structure is emphasized and
| the operations which can be allowed are carefully
delineated. These structures are strongly typed as
are their allowable operations. Data modules are
handled as if they were single entities. The num-
ber of data types available are patterned to the
needs of individual programs. The approach is
bottom-up with data structures being combined to
produce even more complex data structures. The
structured programming and object-oriented tech-

nigues complement each other.

Object-oriented techniques have remained conceptual

in scope since implementation requires support from

a programming language. The strong typing
capability complicates the language facilities.
Each type of definition must support "visible" as
well as "hidden" parts. Unless some parts remain ]
"hidden" every user would be able to modify each
definition. Consequently, the goal of an object-
oriented implementation 1is to 1limit users to

"visible" parts within definitions. This limited
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access has important implications. None of the
popular languages implement such a concept with the
exception of Ada. However, no validated Ada com-
piler has yet been produced. Complete implemen-
tations of object-oriented techniques await the ar-

rival of these Ada compilers.

Ada packages for embedded distributed systems
should receive special emphasis. The standar-
dization of signal processing and navigational al-
gorithms are distinct possibilities. Such standar-
dizations have impact in
command/communication/control systems. Packages
for graphics can address line drawing, sub-screen
manipulation, character manipulation, three-

dimensional manipulation, shading, sealing, etc.

Proposed standards for certain usage areas such as
data base management and graphics already exist.
Other candidates for software standardization are
already underway. The primary benefit to object-
oriented modularization is the exploitation of com-
monality between various embedded computer systems.
The resulting emphasis will be for rigid definition
of language, portable compilers, and special lan-

guage constructs for packaged software.
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5.2.7 Enhanced Adaptability and Reusability of Modules

- Integrated Software Support Environment

System adaptability is the ease with which changes
can be made. At one extreme are systems with many
capabilities which are fixed and not subject to
change. The other extreme are systems with few
features which are easy to modify. Such systems
are good items for software toolkits. However,
they do have problems. They must be recombined to
fit the situation 1in which they are used.
Depending upon the process, the recombination can
be formidable. Beginning programmers find systems
with many fixed capabilities easier to implement.
Experts prefer systems with few, easily-modified
features, Such capability for modification is of-
fered by the integrated software support
environment. Beginning programmers must undergo
rigorous training in order to use it effectively.
The integrated software support environment will
evolve from the Ada Programming Support
Environment. The environment should be easy to
learn and equally easy to use. The thrust of such
an environment is the generation of a compatible
tool set covering the entire 1lifecycle. This

thrust provides a framework for other thrusts.
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The greatest potential exists for synergy between
tools and in the cumulative improvement in
producticn. The concept of monitoring accesses to
specific tools is the beginning of a toolkit op-
timization process. The most frequently used tools
can be cached for quick access. Furthermore, the
more popular a tool becomes, the more general its
access should be. The concept of reusable generic
tools awaits the implementation of an integrated

software support environment.

The foremost effort to implement an integrated sof-
tware support environment is associated with the
implementation of the Ada Programming Support
Environment. A layer of structure will be needed
between the APSE and sets of individual tools.
Such a layer should support other languages besides
Ada. It should provide standards for combined and
hidden invocation, maintain data structures, and
manage multiple representations, Within such an
environment, different sets of tools based upon

different methodologies can evolve.
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5.2.8 Assurance of Correctness - Automated

Verification Systems

The sooner an error is detected, the less it costs
to repair. The activity associated with error
detection is termed verification. Such activity
validates the result of each successive step in the
software development cycle. Validity is esta-
blished by verifying the intent of the previous
step has been satisfied by the results of the
present step. The objective of an automated
verification system is to detect and correct errors
as rapidly as possible. New theory needs to be
developed concerning the points at which various
types of errors can be committed and detected.
Practical methods need to be constructed for
verification and detection. Errors obviously occur
in all aspects of software development including
requirements, design, and documentation. Knowing
the earliest theoretical point at which
verification can be done would help. If that
earliest point could be established, the form of
the verification itself could be determined. Once
determined the verification might possibly be
automated which would present the best of all poss-

ible worlds.
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A number of efforts have already been undertaken to
verify statements of requirements and design. Most
prominent has been the University of Michigan and
its Problem Statement Language/Problem Statement
Analyzer (PSL/PSA). The approach acknowledges the
best design and best code in the world will not do
the job if the user requirements are not adequately
stated. Without proper requirements definition,
structured design and structured programming help
disaster arrive more quickly. Consequently,
PSL/PSA concentrates on the documentation as-
sociated with requirements definition and the dif-
ficulty of producing and managing manually
generated documentation. The techniques used by
PSL/PSA have been extended and revised by efforts
originating elsewhere. These other efforts include
TRW, Boeing, Hughes, and the Army Ballistic Missile
Defense Advanced Technology Center. Additicnal ef-
forts have been undertaken by High Order Software

and Computer Sciences Corporation.
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6.0 OBJECT~ORIENTED MODULARIZATION

The concept of ohject-oriented modularization
provides a high-level abstraction of the essential
characteristics of embedded distributed processing
systems, described in section 4.0, and the key
features of the state-of-the-art hardware and sof-
tware technologies, described in section 5,0. This
abstraction plays a central role between these ob-
served features and the specific requirements and
technigues needed to support each lifecycle phase
of embedded distributed processing systems that are
described in section 7.0. It will be shown in sec-
tion 7.0 that particular manifestations of object-
oriented rodularization are directly relatable to
support of the embedded distributed processing sys-
tem lifecycle phases. Hence, in this section 6.0
the concept of object-oriented modularization will
be introduced, developed, and explained.
Subsequent subparagraphs cf this section will (1)
indicate the relationship of object-oriented
modularization to abstract data structures and in-
formation hiding, (2) extend the object-oriented
modularization abstraction to hardware and software

for embedded distributed processing systems, and,
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finally, (3) discuss the benefits of this viewpoint

to embedded distributed processing systems.

Description of Object-Oriented Modularization

This section begins by defining the terms object

and modularization; then describes object-oriented

modularization, and finally concludes with an exam-
ple contrasting object-oriented modularization to

conventional modularization.

An object is an entity that contains information in
an organized manner. This definition 1is pur-
posefully general to enable its application to both
hardware and software. For example, in software an
object <can be thought of as a data structure; viz,
a simple variable or an array or a complex record.
In hardware an object could be a register, an I1/0
buffer, or even a VLSI component of a larger
system. An object has three additional charac-
teristics that permit segregation of similar

objects.
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(1) Bach object has defined for it a set of
operations, that manipulates the contained
information.

(2) Each object can be addressed (referenced) as a
whole.

(3) Bach object has a label that tells the

object's type.

Objects are a very useful concept in dealing with
distributed systems and increasingly sophisticated
hardware designs. For example, communications
ports, schedulers, and support software packages
can all be considered as objects. This viewpoint
creates a unified framework for the discussion of
requirements for embedded distributed processing
systems. Previously, communication ports,
schedulers, and support software packages were con-
sidered as separate entities - as being inherently
different, Objects provide a higher level, con-
sistent method for analysis, design, and implemen-
tation of these kinds of entities for embedded dis-

tributed systems.

Modularization is traditionally viewed as the par-
titioning of the hardware/software task based upon

a stated criterion, There are many ways to
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modularize; by function, by interface

communications, by priority, etc. This traditional
concept of modularization can be directly extended
to include "modularization by object". Here, the
basis for the partitioning of the tasks 1is the
creation of objects. Modularization is now more
than a simple partitioning; it is the recognition
and assignment of a particular responsibility as-
sociated with the object. Modularity is now raised
to a higher-level commensurate with the object

concept.

Combining these two definitions, object-oriented
modularization is the segmentation of the
hardware/software task based upon the respon-
sibility and domain of extent of the identified
objects. The key feature of object-oriented
modularization is that each object executes its
responsibility without the need to know of the
details of the internal structure of other objects.
The objects communicate amongst themselves in a
very well defined manner. In an object-oriented
modularized system, the internal representation of
any module could change, and the other object
modules would not have to be changed. This feature

is a great benefit in the software maintenance
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environment. As an example contrasting conven-
tional modularization with object-oriented
modularization, consider Figure 6-1.

The conventional modules (M's) could, for example,
represent major processing steps and the data
structures (D's) are accessed by the modules. 1In
conventional modularization, it is possible for a
particular data structure, for example D1, to be
accessed by more than one module. The disadvantage
of conventional modularization is that whenever a
module or data structure is changed, several other
modules or data structures may also have to be
changed. This single fact decreases the system
reliability. However, in object-oriented
modularization, the central theme is a one-to-one
correspondence between object modules and their
data structure. A change in a module or data
structure affects only that module or data struc-
ture - no others. The internal details of object
modules and data structures are shielded from other
system elements. The resulting benefits are easier

maintenance and improved reliability.
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CONVENTIONAL OBJECT-ORIENTED
MODULARIZATION | MODULARIZATION

y
M. D

N

y
M; D’

Conventional Data Object Data
Modules Structures Modules Structures

Arrows indicate data structures directly manipulated by
the module.

Figure 6-1 Conventional Modularization Versus
Object-Oriented Modularization
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6.2 Relationship of Object-Oriented Modularization to

Abstract Data Structures and Information

Hiding

An abstract data structure defines a class of at-
tributes that is completely characterized by the
operations available on those attributes. The goal
of an abstract data structure is to permit the ex-
pression of relevant details and the suppression of
irrelevant details. In modern higher order 1lan-
guages it 1is desirable to provide the capability
for user defined abstract data structures. This
capability eases the programming task, makes the
resulting code easier to understand, and provides a
mechanism for the user to more easily communicate
in a natural manner., Consequently, system
reliability 1is enhanced. The particular implemen-
tation of the abstract data structure in a language
is accomplished by the procedures and utilities

that embody the defined operations.

The principle axiom of the Theory of Information
Hiding as proposed by D. L. Parnas is that a sof-
tware design methodology should shield information
developed at one level of design from its wuse on

another level of design. consider two procedures A
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and B which do not reference each other directly.
The Theory of Information Hiding states that the
fundamental output (considered as level 1) of
procedure A should not depend on the detailed im-
plementation (considered as level 2) of procedure
B. For example, if procedure B implements a stack
operation by using a linked list and if the output
of procedure A 1is to return the top item of the
stack, then procedure A should not depend upon
procedure B's linked 1list implementation,
Procedure A only needs to know that procedure B
provides a stack; how the stack is implemented is
unimportant to procedure A, The detailed in-
formation of procedure B is "hidden" from procedure
A. The benefit of this methodology is that if the
implementation of procedure B changes, for example
the linked 1list 1is replaced by an array or
utilization of PUSH and POP hardware capabilities,

procedure A remains unchanged.

The object-oriented modularization described in
section 6.1 incorporates the main features of both
abstract data structures and information hiding.
Recall that each object has a set of operations
defined for it that manipulates its information.

This aspect directly draws from the domain of ab-
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stract data structures. As shown in Figure 6-1,
X the key feature of object-oriented modularization
is to partition module, data structure pairs from
other module, data structure pairs and thereby
minimize the access of a particular data structure
by more than one module. The effect is the same as
information hiding; namely, changes to a particular
module do not affect other modules, Hence, the
object-oriented modularization 1is in concert with
the current theories of abstract data structures

and information hiding.

i; Object-orieﬁted modularization is more than simply
the amalgamation of abstract data structures and

i information hiding. Both of these concepts have
traditionally been limited to software. However,
' the object-oriented modularization can also be ap-
| plied to hardware elements. The key benefit here
is that for embedded distributed processing system,

object-oriented modularization provides a unifying

concept for analysis and design at the

hardware/software system level.
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6.3 Example Application of Object-Oriented
Modularization to an Embedded Distributed

Processing System

As a concrete example of the application of the

object-oriented modularization to an actual em-

3 bedded distributed processing system, we shall
examine the Intel iAPX432 System. The iAPX432 is a

new product from Intel. It is a high technology

device that is anticipated to have a profound im-

1; pact upon the design of future embedded distributed
. processing systems. The design of the iAPX432 it-
self 1is an outstanding example of object-oriented

¥ . ‘ modularization., For these reasons, it has been
| chosen to illustrate object-oriented

. modularization,

Figure 6-2 shows the top-level architecture of a
typical product that would contain an embedded
iAPX432 system to accomplish the product's ap-

plication task. 1In addition, the most important

objects are indicated, and these objects will be
discussed in greater detail in the following

subparagraphs.
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Figure 6-2 Top-Level Architecture and Objects in the

1APX432 Svstem
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The peripheral subsystems represent sensors,
input/output devices, or functional wunits (e.q.
inertial navigators, radars, line drivers, etc.),
and these subsystems communicate via a common com-
munications bus. The peripheral subsystems could
also contain locally accessible memory. The inter-
face processor 1is an intelligent link between the
subsystems communications bus and the iAPX432 in-
terconnect bus. The interface processor permits
data transfer from the peripheral subsystems to
iAPX432 main memory, and the interface processor
contains the software for determining task
execution priorities, scheduling, and dispatching
(i.e., the policy object). Any number of iAPX432
general data processors can be put onto the inter-
connect bus and access main memory. Memory conten-
tion is resolved via the object-oriented
modularization mechanisms in the 1APX432, The
small arrow (--->) represents a reference of one
object to another object. (Recall that two of the
characteristics of an object are that it can be
referenced as a whole and it has a label.) One ob-
ject can access another object if and only if it
contains an object reference. This mechanism
provides protection of objects from other objects

that do not have explicit access authorization.
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The processor, task, context, and dynamic data ob-
jects are new concepts present in the iAPX432., The
linkage of these objects minimizes erroneous access
to software modules and provides a highly flexible
capability that supports the dynamic environment
needed for distributed processing. All of these
objects are recognized by the iAPX432 hardware;
hence, these object 1linkages do not degrade
throughput. The application software modules
reside, of course, in main memory. These modules
are designed and coded by the user to accomplish
the product's application task. The application
modules are developed using standard practices of
software engineering; preferably using the object-
oriented modularization techniques described in
section 6.1. The user application software (i.e.
the domain objects) represents the bulk of main
memory usage. The processor, task, context, and
dynamic data objects are very minor tasks. The
1APX432 object-oriented modularization provides
flexibility and protection for the user application
software; it does not burden the software develop-

ment activity.
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Policy Object

policy object has the responsibility of deter-

to be executed are shared

ngst the general data processors. Some typical

criteria for policy decision are first-come-first-

ser

ved, round-robin, priority, deadline, etc.

Because the policy object must be tailored to the

par

ticular application, the policy object is im-

plemented in software and resides in the interface

processor.

The scheduling and dispatching of tasks

are accomplished in a manner consistent with the

peol

icy object. However, 1in order to increase

throughput, the scheduling and dispatching func-

tions are supported by hardware, The policy object

con

obj
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tains a reference to the dispatching port

ect.

Dispatching Port

dispatching
ognized object
ween the policy
a processor. 1If

policy object

Object

port object 1is a hardware-
that provides communications
object and a particular general
all the processors are busy,

can queue tasks in the dispat-

ching port object awaiting a processor to become
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available. Likewise, if a processor is idle, it

can wait at a dispatching port object for a task.
Special hardware instructions SEND and RECEIVE

provide rapid dispatching of tasks.

6.3.3 Processor Object

The processor object contains the information per-
tinent to a particular general data processor at
each 1instance of time. Each processor has a
processor object. The processor object contains
information such as the processor status (e.g. run-
ning or waiting), diagnostic and machine check
information, and an object reference to the par-
ticular task being executed. The object reference
to the task being executed dynamically changes as
the task being executed changes. Figure 6-3 shows
an example of three processor objects at two points
in time. At time tl, processor 1 is executing task
B, processor 2 1is halted, and processor 3 is
executing task A. At a later time t2, processor 1
is still executing task B, processor 2 is now
executing task C, and processor 3 1is now halted.
The processor objects dynamically changes as the
tasks and processors are dispatched by the policy

object. However, at each instance of time the
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status of each processor is completely determined
by 1interrogation of its processor object. The
processor object is referenced by the dispatching

port object.

6.3.4 Task Object

The task object is the data structure that contains
information about the task being executed; for
example, the status of the task (running or
waiting), how the task should be scheduled, and an
object reference to the particular instance of the
task being executed. The task objective is also a
hardware recognized object to speed processing.
Figure 6-4 shows how the task object changes as two

tasks take turns running on a single processor. At

time tl, task A is running and task B is waiting.
At a later time t2, task A is now waiting and task

3 B is now running.
6.3.5 Context Object and Dynamic Object

{ A task object can have more than one instance (or
copy) of the procedures in memory at the same time;
however, only one copy can be executing at a time

in a particular general data processor. This
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Figure 6-4 Task Objects Snapshots at Two

Instances in Time,
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3
- situvation commonly occurs for re—-entrant
1
-

procedures. A context object is the data structure
that contains information pertinent to the par-
ticular instance of the task that is being
executed. For example, the data contained in the
context object includes an instruction pointer for

this context, a stack pointer for this context, a

s

return link to the task object, and references to
all objects that can be accessed by this context.
The context object is the fundamental vehicle for
access of a particular 1instance of the task.
Figure 6-5 shows how the context object changes in

a typical subroutine calling segquence.

; 6.3.6 Domain, Instruction, and Static Objects

The domain object is a list of all the static ob-
ject references to other applications modules,
executable instructions, anrd static data. The
object-oriented modularization is realized in the
applications area by the structure of the modules
and data structures written by the applications
software engineer in accordance with the discus-
sions presented in section 6.1. The domain object
contains a reference to all of these objects. The

instruction object contains oniy executable
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Changes in the Context Object During

a Subroutine Calling Sequence.
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instructions. The general data processor only uses
the instruction object as a source of instructions
to fetch and execute. The static data object con-~
tains static data that remains in memory after a
particular context execution is complete. The in-
struction and static data objects are typically the

end leaves of the iAPX432 object tree.

6.3.7 Summary of Benefits

The object-oriented modularization as exemplified
by the iAPX432 has three distinct benefits. First,
the object-oriented modularization is used in both
the hardware and software. This approach provides
a unified viewpoint to the entire iAPX432 system.,
It is anticipated that future embedded distributed
processing systems must address the hardware and
software as a total system. Object-oriented
modularization provides a convenient, consistent,
and flexible systems methodology. Secondly,
frequently used objects (e.g., dispatching port,
processor, task, and context objects) are supported
by hardware capabilities to provide improved
performance. Finally, the use of object references
provides a flexible system that still incorporates

careful control of object access. The control of

113




vt

‘object access is a vitally important problem in em-

bedded distributed processing systems. The iAPX432
illustrates many of the problems of embedded dis-
tributed processing systems, and it is felt that
the 1iAPX432 offers many viable solutions to these

problems.

Benefit of Object-Oriented modularization to

Embedded Distributed Processing Systems

Embedded distributed processing systems are typ-
ically wutilized in real-time, process control
applications. These applications require a careful
orchestration of the hardware and software;
consequently, the hardware and software tasks must
be viewed from a total systems standpoint. Object-
oriented modularization as described in section 6
provides such a system level viewpoint. It is
proposed that object-oriented modularization
provide a central theme for the analysis, design,
and implementation of embedded distributed process-
ing systems. In section 7 we will explore specific
manifestations of this object-oriented
modularization theme and relate them to
requirements and techniques to support the embedded

distributed processing lifecycle phases,
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7.0 IDENTIFICATION OF REQUIREMENTS AND TECHNIQUES

FOR SUPPORT OF EDPS LIFECYCLE PHASES

Because of rapid advances in hardware technology
both large and small computing systems will grow at
an ever-increasing rate. The effective use of such
systems will depend upon the ability of people to
develop effective software. This software develop-
ment must be of high quality and low cost. Because
people have grown more expensive than machines,
automation has an important role to play. The Kkey
element in that automation is the development of
effective software tools. Major issues associated
with the development of these software tools are as

follows:

- the tools must form an integrated system which
supports software throughout its lifecycle

- the role of breadboard models in requirements
analysis and design phases of software
development must be fully supported, and

- these tools must be developed under conditions

which assure their successful use.

Much progress has been made in program development

tools. However, much remains to be done on system
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construction tools. Tools are needed now to sup-
port independent specification and implementation

of software modules.

The introduction of distributed systems on a large
scale brings new challenges to the development of
software. The design, development, testing and use
of these systems demand increased simulation test-
ing and more analysis tools in software
development. In many hardware development
activities, the product design phase reguires the
development of breadboard versions to investigate
the difficult 1issues of system construction, A
great need exists to gquickly assemble and test
breadboard versions. Performance needs to be
analyzc3 and software design solidified before im-

plementation begins.

Specific Manifestations of Object-Oriented

Modularizations

Under object-oriented modularization the process of
programming is transformed into a generic activity.
Related programming statements are grouped on the
basis of data structures. Operations are defined
in terms of their impact on specific data
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structures. Both data structures and operations

are strongly typed as to whether they are permissi-
ble or not. Furthermore, access to specific data
structures can be tightly controlled. Once access
has been accomplished, permission to change the ac-
cessed data structure may or may not be granted.
I1f permission is not granted, the data structure is
considered to be private. 1If allowed, the struc-
ture is visible. Graduations of access are a
powerful tool under object-oriented
modularizations. Data files and programs themself
are handled as if they were individual data
structures. A bottom-up orientation 1is possible
with data structures being combined to form more
complex structures, This emphasis on data struc-
tures demands an appreciation based upon
experience. Novice programmers will undoubtedly
prefer the simplicity of individualized programs
and file structures. To program generically, more
rigor is required. Object-oriented modularizations
have many manifestations. Their consequences are
only now being understood. The following para-
graphs only begin to document such manifestations.
Undoubtedly many more manifestations will be added

as experience is gained. Most importantly an ef-
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fort to gain needed experience must start

immediately.

7.1.1 Deterministic Versus Probabilistic Systems

Von Neumann architecture within a uniprocessor en-
vironment is typified by Figure 7-1. Obviously the
confiqguration is comprised of five functional com-
ponents connected by a systems bus. The bus is
somewhat misleading since 1its operation 1is not
straightfoward. It is a combination of three
distinctly different buses itself, Those three
parts are a control bus, an address bus, and a data
bus. Each has its characteristic architecture.
The control bus 1is obviously the agent of the
Process Control function within the von Neumann
architecture. It instructs the actions to be taken
by all the other functions within the architecture.
Input and Output functions either place 3ata on the
data bus or take data off the data bus. Of course
what action is performed is under the direction of
the control bus. The Arithmetic Logic Unit or ALU
performs either the arithmetic or logic required by
the Process Control function. The results are
usually placed on the data bus for subsequent usage

within the architecture; e.g., Output or Storage.
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Figure 7~1 Von Neumann Architecture in
Uniprocessor Environment
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The Storage function either takes data from the
data bus and places it in the location designated
by the address bus or vice versa. The action taken
is directed by the control bus. 1In summary the
Systems Bus represents the concerted action of its

three components,

Data flow between functions within a von Neumann
architecture requires the use of registers. In ef-
fect such registers represent the beginning and
ending points for the System Bus function. Since
each register can be thought of as a "box" whose
contents can be filled or emptied, the System Bus
can be visualized as a postal service system. Each
"box" is a mailbox in which letters are either
delivered or dispatched. Such an analogy is valua-
ble to illustrate certain architectural problems.
When a letter is needed, it may not have arrived at
its mailbox. Worse yet, the letter which was
previously dispatched may not have been picked up
and erroneously be misinterpreted as newly-arrived.
In uniprocessor configurations which tend to be von
Neumann in nature, the architectural problems are
easy to avoid. The straightforward architecture

illustrated previously can be expanded to exhibit
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the necessary mailboxes, Figure 7-2 illustrates
this expanded von Neumann architecture.

Such expansions offer new architectural
alternatives. The advances by Very-Large-Scale-
Integration (VLSI) <circuitry are exploring these
alternatives., As a result, concurrent operations
are becoming commonplace. Intelligence is being
expanded to new architectural locations within von
Neumann architecture. As an example, the mailboxes
alluded to previously can assume their own
intelligence. More appropriately they can be
termed intelligent Interface Processors. Each such
processor has its own von Neumann architecture with
its own Input/Output being provided by either the
System Bus or other von Neumann components.
Furthermore, the actual computational process
within a von Neumann architecture can be separated
from the input/output process. In effect, two
buses are introduced under such an arrangement: a
system bus and a periphery bus. Figure 7-3 1illus-
trates such an architecture. It is exemplified in
the marketplace by the INTEL iAPX432
micromainframe. What emerges in such architectures
is a layering of specialized buses. Figure 7-3 re-

presents the architecture of a layered bus

architecture.
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The important property of layered bus architecture

concerns its operation. The communication between
layers becomes decidedly non-von Neumann or
probabilistic. Such a phenomenon is enabled by the
way the different buses are operating. Each is
capable of operating independently of the other
with communication occurring within mailboxes. At
the topmost level the device appears to be
interrupt-driven. However, at lower levels the
device becomes transaction-driven which 1is the
preferred architecture for distributed processing
applications. Transactions occur independently of
one another without an assumed interrupt schema.
Such a philosophy has been adopted by the com-
munications used with satellites and packet swit-
ching radio networks. New channel allocations have
been implemented around open system, transaction-
driven interconnect architectures. Projected ad-
vances in VLSI «circuitry and Very-High-Speed-
Integrated Circuitry (VHSIC) are adopting open sys-
tem architectures to accommodate distributed
systems. As a consequence, the operation is
becoming more probabilistic. Various layers within
the architecture can be operating independently of
one another. Furthermore, components within a sin-

gle interconnect level may also be operating in-
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dependently of one another. To comprehend the
operation of such configurations requires a
knowledge of an underlying probability
distribution. Not only must the transactions to be
processed be known but their probability of occur-
rence must also be known. This requirements is new
and very necessary in the emerging non-von Neumann
architecture. The more layers of independently
operating buses implemented, the more probabilistic
subsequent operation becomes. Tools developed for
von Neumann architecture are confronted with a non-
von Neumann operation. The applicability of as-
sumed von Neumann tools has yet to be established.
Software tools are lagging behind VLSI and VHSIC

developments. The situation needs to be corrected.

7.1.2 Global Timing

Advances within VLSI circuitry and the emerging
VHSIC technology are enabling transaction-driven
architectures to be implemented. In such architec-
tures the predictability of time divided mul-
tiplexing 1is not available. Transactions either
occur or they do not. Such operation accommodates

2 degree of spontaneity never before achieved.
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When spontaneity is accommodated, a whole new ap-
proach must be applied. Transactions can overlay
one another and compete for the same system
resources. In the worst case transactions occur
simultaneously with one another. Under such cir-
cumstances not only must transactions be processed
but their overlap or coincidence must be
recognized. In the case of either overlap or
coincidence, the offending transactions must be
reissued. If they are reissued, some means to as-

sure they do not overlap or coincide a second time

must be implemented.

Configuration throughputs have traditionally been
modelled through the use of queuing networks. Such
networks implement multiple job classes, mixed
architectures, and hierarchical models. However,
the wunderlying assumption remains von Neumann ar-
chitecture which connotes a uniprocessor structure.
As that architecture becomes more probabilistic and
less von Neumann, the problem of timing becomes
more acute. Characteristically the problem is
either addressed directly or ignored completely.
The easier solution is to ignore it completely
which amounts to a "fix-it-later” attitude, By far

the more rigorous approach is to confront it
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directly. Performance and global timing must be
considered in the initial design stage and com-
plicates subsequent software effort. The
requirement for simulating different Poisson dis-
tributions is evident. Poisson mathematics is nor-
mally not addressed during the system lifecycle
phases. However, Poisson distributions are
mathematical tools available for the consideration
of different probability density functions. Such
functions underlie messages transmitted between in-
dependently operating bus structures within dis-
tributed architectures. As layered buses become
more prevalent, the importance of the wunderlying

message distribution functions is increased.

Presently available gueuing networks can simulate
multiple job <c¢lasses, mixed architectures, and
hierarchical models. However, each assumes an un-
derlying Poisson distribution which does not wvary.
What is needed is the ability to vary the Poisson
as well. When that wvariability 1is accomplished,
the consequences of global timing can be
appreciated. In the absence of such capability,
purely software techniques are assumed to be valid
with little or no justification. An example is the

software technique called rendezvous within the Ada
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a syntax definition. By virtue of its syntactic
3 definition, such a technigque may or may not accom-
modate subsequent operational distributions within
the bus architecture of a particular system, In
effect, by defining the rendezvous from a syntactic
standpoint the whole issue of global timing is
relegated to a "fix-it-later" approach. The cur-
rent situation can be 1likened to the absence of
ability to measure. Since global timing is not
measured, the assumption is that it does not pose a
problem. Until an architecture throttles itself
there may not be a problem. But if the architec-
ture ever does throttle, the problems are immense.
They are much larger than necessary since their oc-
:{ ) currence could have been avoided by including
global timing as a design phase activity. The sub-
sequent absence of problems should serve as

B justification for putting timing in the design

phase within the system lifecycle phases.

7.1.3 Rapid Prototyping

System requirements have always been difficult to
formulate. The difficulty is even encountered when
similar automated applications are attempted.

However, the similarity does provide information
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that ncrmally is not available during the system
requirements phase. It enables a quick prototype
to be constructed to aid in the development of ad-
ditional system requirements. This alleviates some
of the problems usually faced by users and analysts
when they attempt to specify complete sets of
: requirements. However, the present situation
: concerning such prototyping 1is not clear. The
proliferation of differing software support en-
vironments has obscured its usefulness. When sof-
tware support environments begin to standardize
their capability, the importance of rapid
prototyping will increase. This standardization is
scheduled to proceed under the Ada implementation
; effort with the DOD. Once the Ada Program Support

Environment (APSE) is implemented, rapid

2 prototyping can demonstrate a reduction in time
et needed to produce requirements as well as an im-

¢} provement in their quality.

An underlying question in rapid prototyping is what
can best be ignored by the prototype. Many design
‘i details seem to be extraneous during the
requirements phase. As Ada techniques become more
widely known, this question becomes even more

subtle. Because of the syntactic approach taken to
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global timing considerations by Ada, the design
details previously thought to be extraneous may, in
fact, not Dbe. A suspicion begins to grow that
clever deferring by Ada definers may complicate
subsequent rapid prototyping efforts. As an ad-
junct to this line of reasoning, the applicability
of rapid prototyping itself may be changing. As
Ada usage grows, the capability for rapid
prototyping becomes far more important. Not only
must Ada programs be written but their subsequent
interaction with the Integrated Software Support
Environment (ISSE) must be known completely prior
to the design phase; i.e., during the requirements
phase. Obviously the language of choice to im-
plement a rapid prototyping system should be Ada.
Furthermore, once implemented, the prototyper

should become part of the APSE.

A parallel effort to the development of a rapid
prototyper for an ISSE should be the capability for
simulating the ISSE. Such simulation would provide
numbers or measurements which could be used to
determine if an application is feasible or not. 1If
not feasible, the effort could stop at that point.
1f feasible, the requirements phase could be ad-

dressed through the use of a rapid prototyper.
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Such an approach simplifies the design of a
prototyper since that prototyper does not have to

handle impossible situations.

The wuse of rapid prototyping promises to improve
the quality of requirements analysis. Subsequent
systems should demonstrate improved relevance and

usefulness.

Presently many companies are claiming competence in
rapid prototyping based upon their efforts in
general data base management systems. Components
of such systems which come into play are con-
figuration managers and specialized data storage
and retrieval mechanisms. In most instances the
storage involves hierarchical structures containing
simulation parameters which are subsegquently com-~
pared to each other. Rapid prototyping capability
is closely related to the verbs contained in the
data base management systems. However, such exper-
tise may not apply when the APSE is implemented.
Much of the capability claimed within a general
data base management system will be offered by the

APSE which offsets some of their expertise claimed

in rapid prototyping. 1In effect, Ada ushers in an




entire new set of circumstances for rapid

prototyping.

7.1.4 Static Analysis Techniques

Static analysis techniques refer to the validation
and verification techniques in which the analyst
examines software without executing it. 1In its
general sense it applies to all types of software
products like designs, specifications, etc. In its
restricted sense it applies only to data flow
through a program in an attempt to detect anomalies
like references to uninitialized variables. Until
static analysis can be made to work in the res-
tricted sense, it can not work in a general sense.
Consequently, the following comments are limited to

the restricted sense.

The best known early work on static analysis has
been done by Osterweil and Fosdick. They built a
system called DAVE which analyzed Fortran programs
for data flow anomalies. It detected possible
references to wuninitialized variables and the as-
signment of value to a variable not referenced by
the remainder of a program, Several criticisms

have been levelled at DAVE, First, it carries out
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data flow analysis one variable at a time rather

than simultaneously for all variables. Second, it
non-selectively prints out too much data. Third,
it is too large which may, in fact, pertain to the
use of Fortran, Fourth, it 1is too slow and
reguires too much computer time. However, these
criticisms can be ameliorated by viewing DAVE as a
prototype product of a research project as opposed

to a production line tool.

The research project which produced DAVE has ena-
bled Fosdick and Osterweil to study the
relationship between data flow in static analysis
and data flow in program optimization. They were
the first to observe data flow algorithms developed
for optimizations could also be wused for static
analysis. The basic idea is that variables can be
in different states and that operations such as
value assignment and referencing can change those
states. The set theory resulting from their obser-
vations 1is wuseful to the extent it indicates how
existing well defined and efficient data flow al-
gorithms can be wused for static analysis. It is
not useful as an end unto itself. The gen, Kkill,
live, and avail sets are not good vehicles for the

discussion of static analysis in general. However,
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this is not just a shortcoming of the work done

with DAVE. No general problem-oriented approach to
static analysis 1is presently available. Several
ideas are beginning to emerge. First, static
analysis can be viewed as a kind of program
execution mechanism which operates in different
programming language semantics. The analysis done
on HAL/S for NASA is an example of such an effort.
Such an approach needs to be applied to Ada con-
structs before its exception handling capability
creates semantic problems within existing hardware
configurations. Another idea is the abstract com-
putation type which includes patterns of operators.
Applying a set theory of its own will serve to
verify and validate static data flow through
programs. The end result would be to discriminate
legal operator pattern sets from illegal operator

pattern sets,

Distributed processing introduces massive com-
plications in static analysis. The reason involves
asynchronous processes. This enables referencing
and defining of variable values in parallel
processes. This, in turn, enables ambiguous varia-
ble definitions due to multiple variable

definitions within parallel tasks. Underlying
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these problems is the problem of synchronization.
Taylor has attacked the problem in a stepwise
manner. He first examined concurrent programs with
no interprocess communication. Upon completion of
that highly restrictive case, Taylor examined the
rendezvous technique of Ada. What has resulted
from this effort has been the determination of
whether or not a syntactically possible rendezvous
violates the semantics of synchronization. The end
result has been the realization that arbitrary sys-
tems of concurrent processes can not be analyzed
efficiently using static analysis techniques.
Although static analysis has been demonstrated to
be an effective error detecting mechanism for
analyzing single programs, they may or may not be
applicable to concurrent programs. Their ap-
plicability rests upon the synchronization proper-
ties of the distributed system. An interesting ad-
junct to such a conclusion would be a future study
of different kinds of process scheduling with diff-

erent capabilities for distributed processing

structures.
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7.2 Relationship of Manifestations to EDPS

The increasing density of electronically active

, .y

devices on VLSI semiconductors is fueling a
revolution, More and more compute power is being
squeezed into less and less space. The limiting
factor 1is the speed of light which means quicker
response times for new, smaller devices. VHSIC
technology optimizes response times by shrinking
circuitry within specialized hardware structures.
In a sense, compute power is being distributed
within its own architectures. So much power is
being distributed that problems are generated in
three general directions. First, access to all
' this new power is becoming increasingly difficult.
Controlling that access 1is no longer trivial.
Access can be used to perform a task within a given

- architecture or it can be wused to modify the

operating characteristics themselves. These
operating characteristics are functions of hardware

distribution  which introduces another general

consideration. How the compute power is dis-
! tributed within hardware is becoming more
important. As single buses are replaced by mul-
tiple buses, how information flows within an ar-

chitecture is sometimes obscured. The von Neumann
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characteristics of a single processor are trans-
formed into configurations displaying probabilistic
characteristics, Working around these
probabilistic characteristics emphasizes the impor-
tance of a third general consideration; i.e., the
distribution of data bases. The architecture of a

particular data base should parallel the operation

-

of the hardware architecture which contains it.
Obviously magnetic tape data structures would not

be expected to operate optimally within disc

architectures. Taken as a group, considerations
concerning the distribution of control, the dis-
tribution of hardware, and the distribution of data
bases are becoming increasingly important. The
subsegquent paragraphs will examine specific
manifestations of such considerations within em-

bedded distributed processing systems.

7.2.1 Support of EDPS by Object-Oriented

Architecture

Current trends indicate significant departures from
the usual von Neumann architecture of the present.
Multiple processor configurations are becoming more
prevalent and interconnect networks are offering

unprecedented 1increases in their throughput. How
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to take advantage of these advances is becoming a

growing problem. First, users must comprehend the
advantages offered by such architectures. Such
knowledge is in short supply. Second, suppliers of
such architectures must explain their advances to
the marketplace. These explanations are becoming
more subtle and the required communication talent
increasingly rare. Third, present commitments to
existing architectures make revolutionary in-
novation difficult to learn. Simply maintaining
existing architectures is a full time job requiring
great technical expertise. Such workforces have
little time to spend assessing revolutionary
breakthroughs. In the absence of assessment the
breakthroughs continue with a quickened pace. The
suppliers are driven into popularity contests
within the marketplace. In some instances single
suppliers produce products which compete with one
another; e.g., the IBM System/38 and the IBM 4300.
Such antics exacerbate the problem. When single
suppliers introduce innovative products competing
with one another in 1identical marketplaces, the
situation is out of control. Assessments which
should originate within the marketplace have not
occurred. Consequently, fragmentation occurs

driving the suppliers to more innovation, more
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breakthroughs, and more chaos. One of the true
ironies of such circumstances is the emerging role
of colleges and wuniversities. In attempts to
remain abreast of the accelerating breakthroughs,
groups of faculty and students concentrate on the
assessment of specific revolutionary breakthroughs.
In some instances they may even design and im-
plement them; e.g., Ada and Diana. When the break-
throughs are introduced to the marketplace, the
workforces acquired by that marketplace to assess
them are recruited from the originating faculty and
students. Attempts to adapt the breakthrough to
specific needs within the marketplace rest upon
these newly acquired workforces. Such workforces
seldom appreciate the needs of the marketplace.
Producing the revolutionary breakthroughs is a full
time job with little time available for assessments
within unknown marketplaces. As new generations of
innovative researchers proceed to the marketplace,
they are replaced by new faculty and new students.
Neither has allegiance to existing architectures or
ways of doing things. Consequently, they offer
ideal test-beds for the development of
revolutionary innovation. The present cycle works
so well that colleges and universities have in-

creasing difficulty in attracting and keeping com-
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petent computer faculty members. The marketplace

pays a premivm for the talent which understands

revolutionary breakthroughs.

The job migration phenomenon mentioned above is

particularly evident within the embedded dis-

E .

tributed processing marketplace. Talent to main-
tain existing commitments is extremely scarce.
Consequently, talent to assess technological break-
throughs is wvirtually non-existent. Significant
departures from existing methodologies have few ad-
vocates but in the absence of independent
assessment, revolutionary breakthroughs are being
:p ' produced and adopted. The reorientation of exist-
% ing workforces 1is becoming imperative. The adop-

tion of an object-oriented modularization approach

expedites this reorientation. Only with such an

orientation can be consequences of non-von Neumann

architecture be grasped. The understanding of a
distributed system becomes more generic. The \
conceptualization of interconnect buses and their
architectures is heightened. The emerging impor-

i tance of distributed data bases is clarified. 1In

fact, the object-orientation of the data bases

themselves becomes evident. 1In summary, the per-

formance of embedded distributed processing systems
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will be enhanced by object-oriented modularization.
This will be evident. in faster response times, in-
creased flexibility, massive resource sharing, in-
creased reliability, wider availability, and highly
F transportable systems. Failsafe architectures and

operation will be the hallmark of distributed sys-
2 tems of the future. Underlying all such architec-

tures and operations will be object-oriented

modularizations.

7.2.2 Object-Oriented Modularizations and State-of-

the-Art Technologies

¥ . The multi-layered architecture produced by VLSI
; 3 circuits and VHSIC technologies has consequences
k. i far beyond simple departures from the von Neumann
architecture of uniprocessors. It affects geo-

graphic location, data base partitioning, and sys-

tem control. When multi-layered architecture is

combined with multiple processors, the situation

can become non-deterministic. Many of the

operating characteristics of the past are being

' transformed in the present. Genuine multi-
processing hardware now exists. Each component

operates independently of the other configuration

components, They operate simultaneously. The
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network connecting all components is highly
sophisticated and operates at a variety of levels.
Each layer typifies a different level of
abstraction. In the International Standards
Organization's (ISO) Open Systems Interconnection
(OSI) there are seven levels of abstraction. These
are presented in Figure 7-4. The lowest level is
physical and involves the movement of bits within a

network.

Obviously, the next lowest level is grouping bits
into frames. The frames can be grouped into pack-
ets for the third level of abstraction. Taken as a
group these first three levels comprise the com-
munication subnet boundary which exists for every
architecture. Four additional 1layers have been
provided for higher levels of abstraction. At the
highest level is the application layer which is not
transparent to network users. This is the level at
which most users interface with the network.
Ethernet is an example of communications alter-
natives which embody the OSI suggested by the 1SO.
As multi-layered architectures become prevalent,
the operation of tightly-coupled buses approximates
the operation of an OSI model. This layering ef-

fect is evident in the architecture of the 1iAPX432
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Layer 7 - the application layer encompasses information peculiar to the network's
end users, It i{s the only layer which is not transparent to the user,

Layer 6 - the presentation layer translates messages between the various formats, codes
and languages penerated by different network residents.

Layer 5 - the session layer handles the logical exchange of messages between network
stations.

Layer 4 -~ the transport layer manipulates message transport between end users
like computers and communication networks.

Layer 3 ~ the network layer controls the switching and routing of messages between nodes
to effect transparent data delivery.

Layer 2 - the data link layer regulates the coding and decoding of data packets for
reception and delivery over data communication lines. 1t also performs error
detection and can provide correction services.

i
|

Layer 1 ~ the physical layer incorporates the mechanical, electrical and functional
characteristics of the line between network nodes.

Figure 7-4 International Standards Organization's Open
Systems Interconnection Model
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and is presented in Figure 7-5. 1In the previous
analysis of the 1iAPX432 architecture the layers
above the interface processor were interrupt-driven
while those below were transaction-driven. Such an
observation 1is tantamount to stating levels 4 to 7
are interrupt-driven and 1levels 1 to 3 are
transaction-driven. Much of the knowledge needed
to operate the multi-layer architecture of the
iAPX432 1is provided by a thorough knowledge of the
0SI model.

In effect, the breakthroughs of VLSI and VHSIC
technologies are forcing an wunderstanding of the
0S1 model and its ramifications upon the
marketplace. Object-oriented modularization is
valuable because it enables applications (i.e.,
layer 7 issues of the I1SO model) to be implemented
without 1loss of control. As more powver is dis-
tributed throughout EDPS networks the issues remain
unchanged. The object-oriented approach by Ada
will prove extremely valuable in future multi-
layer, distributed architectures. Hence, immediate
effort should concentrate upon thorough understand-
ings of multi-layered architectures, open system
interconnects, and Ada application packages. The

subsequent integrated software support environments
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should accommodate effort from all three directions.
The largest unresolved problem remains distributed
data base structures and their parallel algorithms.
Such environments have simply not been sufficiently
available to resolve the problem. Advances in VLSI
and VHSIC technologies virtually assure the ready
availability of such environments in the immediate
future. The subsequent section addresses the
highly technical and complex issue of tractability
within such environments. The problem is so new

that basic issues must again be examined.

7.2.3 Benefits of Object-Oriented Modularization to

EDPS

The evolving environments of multi-layered ar-
chitecture loosen the present constraints placed on
computing power. Access to computational power is
becoming commonplace. Communication networks with
parallel structures are being implemented on a
global basis. Data bases and their inherent struc-
tures are stored wherever needed. The cost of sof-
tware has become greater than the cost of hardware,
All these factors impact embedded distributed

processing systems,
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To combat costs and expedite development, an inte-
grated software support environment remains
essential, Before such an environment is realized
the Ada program support environment is necessary.
The commitments to the APSE have been made.
Ultimately all advances are contingent upon the ap-
plications which are to be implemented. The most
valuable technique during these implementations is
object-oriented modularizations. However, this
technigue has its shortcomings as well. Most sig-
nificant is the matter of tractability; i.e.,
whether the solution can be automated under all
conditions. In effect, the absence of constraints
introduces the tractability problem. The order of
computation becomes increasingly important. Fewer
constraints mean more alternatives for state
transitions. Some orders of computation become
indeterminant. The technical term is NP-complete.
This problem was not encountered as often in uni-
processor architectures. Static analysis tech-
niques had the problem in the uniprocessor
environment. The problem with static analysis has

increased with distributed systems.

In summary, object-oriented modularization solves

many software problems within embedded distributed
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processing. It also raises other issues concerning
tractability. The problems can be solved if they
are recognized but this recognition is becoming in-
creasingly subtle. New technigues are beginning to
emerge and will be discussed in the subsequent
phases of the Distributed Processing Tools

Definition study.

Categorization of EDPS Requirements and Techniques

by Lifecycle Phase

The Ada Programming Support Environment (APSE)
provides an initial set of tools. They include a
compiler, a debugger, a linker-loader, an editor, a
run controller, and a configuration manager.
Additional tools will be needed. Furthermore, each
phase of the software system lifecycle must be
addressed. As each new application is developed,
where the software 1is wused must be determined.
Once that environment has been established, whether
the requirements can be achieved by allocating an
acceptable 1level of resources must be determined.
1f an unacceptable level of resources is required,
why continue? Assuming the requirements phase is-
sues can be resolved, the design phase should

carefully weigh several more issues. An expected
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level of performance should be calculated. Such a
calculation can be wused to satisfy an expected
level of performance. It verifies a proposed con-
figuration and isolates what parts of the sub-
sequent system must be monitored very closely. As
the design phase continues, the impact of each
change on the expected levels of performance must
be carefully documented. Careful documentation
will refine the expected performance, With each
refinement the expected performance will become
more realistic. During the coding phase, alter-
native ways to achieve the same operating expec-
tations should be compared. As unforeseen problems
are encountered, they should be carefully
documented. Each critical component should be
carefully monitored during the testing phase. The
trade-off between resource requirements and
critical component performance should be esta-
blished as a matter of record. The documentation
phase is aided by the compilation of adequate
documents throughout the previous phases. When
modifications are requested, the maintenance phase
should assess the effect of each modification.
From these assessments a long-range confiquration
requirements plan can be accumulated for the

future,
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In summary, performance is a primary consideration
throughout the lifecycle. When requirements are
being defineﬁ and the initial software design is
being formulated, a performance analysis verifies
the feasibility and desirability of the functional
architecture. Once feasibility and desirability
have been verified, the actual configuration
required to support the new application is
determined. Such a determination establishes the
pover required from the support hardware as well as
the operating system software. Configuration and
design are not separate issues. Design depends
upon requirements while configuration depends upon
design. Therefore, several iterations of
requirements-design-configuration activities are
usually needed before the best combination |is
b, known. The subsequent sections will illustrate

this process.

.
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7.3.1 Static Analysis of Concurrent Programs

The problems of referencing wundefined program
j variables are compounded by asynchronous processes.

Related problems include:
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- referencing and defining variable values
in parallel processes

- ambiguous variable definition due to mul-
tiple variable definitions in parallel
tasks

- waiting for synchronization with a
process which has already been guaranteed
to have terminated

- waiting for synchronization with a
process which may never have been
scheduled, and

- the 1illegal scheduling of a process in

parallel with itself.

Taylor studied concurrent programs in which there
was no interprocess communication in his first
paper on the subject. Such programs could schedule
and then wait for completion of processes but con-
currently running processes could not explicitly
communicate with each other or affected each
other's progress while running except through ac-

cess to shared global variables.

Subsequent effort by both Taylor and Osterweil on
concurrent programs can be carried out in an ef-

ficient way -- provided the programs require no in-
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terprocess communication. Furthermore, the pro- i
grams disallow run~time determination of which
processes will be scheduled. A related restriction
is that the directed graph model of the process in-
vocation structure of either program must be
acyclic. Recursive subroutine calls are not

allowed.

In addition to his work with Osterweil, Taylor has
investigated different synchronization primitives.
In particular, he studied the rendezvous mechanism
of Ada. This mechanism allows interprocess com-
munication and synchronization precluded
, previously. Taylor argues a flow model describing
the set of possible flows of control through the
system of simultaneously operating processes must
be completed before static analysis can be
performed. When single programs are examined, many

of their syntactically possible flows are seman-

Lo 2o ot R

tically infeasible. 1In single programs a flow path

is infeasible if no set of input data exists which

can satisfy the set of branch conditions occurring

———

along its path. When concurrent programs are
examined, their infeasible paths occur because of
the semantics in the synchronization primitives.

An example would be a process with two "calls" on
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an entry in another process and that second process
waiting at the entry point for a call. 1I:f the two
processes contain no cycles, the second call can
never be synchronized with the entry point. In
general, efficient static analysis for arbitrary
systems of concurrent processes can not be

constructed.

Depending upon the synchronization properties of
the distributed system, the construction of data
flow analysis -algorithms may or may not be
feasible. The work by Taylor indicates efficient
algorithms for the general case can not be
constructed. Taylor and Osterweil have shown ef-
ficient algorithms can be constructed for special
situations in which the run-time determination of
process scheduling 1is tightly constrained. When
the scheduling of processes and the process in-
teraction can be made deterministic, efficient
static analysis algorithms can be constructed to
detect a wide variety of possible data flow and
process scheduling anomalies. Table 7-1 1indicates
the anticipated effect of static analysis tech-

nigques on EDPS lifecycle phases.
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Additional work concerning different kinds of
process scheduling (e.g., non-deterministic or
probabilistic) and interaction capabilities is
required. Such scheduling and interaction presen-
tly exist within various kinds of distributed

processing structures.
7.3.2 Branch Testing

Branch testing 1is the most common form of testing

in which program structures rather than black box

F functional specifications are used to guide the
testing efforts. The goal 1is to construct test

- | data in such a way that every program branch is
; executed at least once. The method 1is appealing
and tests all parts of the program. Furthermore,

it is easy to audit and provides each programmer

with criterion for a complete set of tests.

However, many errors go unfound because every

branch is usually tested only once. Attempts have

been made to extend the method by requiring the

testing of combinations of branches or classes of

‘ program paths. The problem with these extensions
is that their number becomes very large, very

quickly. The number can be reduced by relying upon

the data flow relationships between program
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constructs. As an example, some test may cause the

execution of two statements sl and s2 if the first
(sl) defines the values required by the second
(s2). Otherwise sl and s2 could be tested

separately with two different tests.

The difficulties of extending branch testing to
more powerful methods have caused a re-examination
of functional testing. If a systematic approach to
requirements specification is used, rules for iden-
tifying functions to be tested can be developed.
Empirical evidence indicates that many errors can
be found using a systematic approach to functional
testing. Such errors cannot be found by branch
testing alone, The best approach is probably a
complimentary one using both functional testing and

branch testing.

The techniques that have been developed for single,
non-distributed programs or systems can obviously
be applied to individual components within a dis-
tributed system. The special properties of dis-
tributed systems make them more difficult to test
and require the development of additional test data
generation techniques. Single programs can be

thought of as being at a certain point in com-
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putation when the flow of control reaches that as-

sociated point 1in the program. To test such
computations, test data must be constructed to
reach that point in the program. In a distributed
system several programs must cooperate to produce
the desired effect. The state of the system
becomes increasingly important because certain com-
putations can only be performed while in an appro-

priate state.

The role of computation states in a distributed

system affects testing in two principle ways:

L detailed systematic documentation of sys-

tem states is absolutely necessary and

L] the condition under which a system or

program can change states must be known.

Much such information comes from design.
Consequently, systematic design specification is
more important for distributed systems than for
non-distributed ones. The anticipated effects of
branch testing techniques on EDPS lifecycle phases

are indicated in Table 7-2.
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7.3.3 Impact Analysis

When a system object is altered there is always the
danger that the change will have unforseen effects
due to a forgotten relationship between the object
which was changed and other objects. Automated im-
pact analysis can be used to avoid this problem if
relationships between objects are recorded in a
machine readable format. There is a wide variety

of kinds of objects and relationships.

Source code is the most commonly available object
for impact analysis. A traditional cross reference
testing tool can be thought of as a very simple im-
pact analysis aid. Impact analysis tools can range
in sophistication from tools that are as simple as
cross reference listers to tools which are capable

of complex data flow analysis.

Interesting, powerful tools can be built for source
code impact analysis. It is important, however, to
construct tools which are cost effective for
dealing with real maintenance problems that really
occur rather than with 1imagined problems whose
principal appeal is that they can be attacked using

an elegant methodolngy. For this reason it is sug-
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gested that research on impact analysis tools focus

»

on studies of maintenance problems and on studies
of the types of changes that are commonly made to

source code.

TR T, AR O

= Maintenance problems that arise due to changes in
source code can be due not only to change itself
but to bad design and imprecise specifications.
Studies of maintenance problems should consider how
the problems can be avoided with different design
and specification methods. This 1is nececsary in
order to avoid building impact analysis tools for
dealing with problems which might be avoidable
through: the use of better software development
techniques. Structured design, for example, em-
phasizes the use of modular decompositions in which
there is low inter-module coupling and high module

cohesion. Parnas' design emphasizes the hiding of

design decisions (e.g., data structure
implementations) 1inside modules. Both methods are
useful for reducing the potential effects of change
and in reducing the need for elaborate impact

analysis technigues and tools.

The special problems of doing impact analysis on

distributed systems source code will include those
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v




of doing static analysis on distributed systems

source code. In order to determine data dependen-
cies between parts of a system it is necessary to
do data flow analysis. The special problems of
doing data flow analysis on distributed systems
code are described in the static analysis critique.
The limitations on distributed system structure
which are necessary to allow data flow analysis to
be carried out efficiently must be very carefully
considered in any proposal to construct a change

impact tool for distributed systems.

In distributed system design it is necessary to
consider not only software design but also the
hardware configuration onto which the software must
be mapped. The effects of changes on hardware are
likely to impact the design of a distributed system
more than the design of a non-distributed system.
It is necessary to model both the software system
and the hardware resources in order to do automated
impact analysis. It is also necessary to consider
timing and synchronization, and to construct models
for these. Table 7-3 shows the anticipated effect
of impact analysis upon the 1lifecycle phases of
EDPS. Little research has been completed on the

representation of this kind of information for dis-
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tributed systems and any proposed research into im-
pact analysis for distributed systems should in-
clude resources for studying first the primary pro-

blems of design and requirements representations.

Coy

B

162




saseiyd 313493l Sdad uo sanbiuyoal sysd(euy joedwy 3o 3133731% §-~¢ 3jqel

FU01BaYOd Ream suLaW L € “uajsayol

adeloae sueaw 7, ‘UOFSayod Buoals suead [, vSu31d 3 .2
19430 42e 03 A135012 a8eaone w:m“_m.d :ou.“cdzammwu”o..nmcmv”«maso“v
Aaaa punog jon 31e I Npow eyl U} SUCTI wln 11 1 s alu N
~Jn1asul IY1 Msel 332IDSFP dUO ueyl 3Ilou s3op *SuU0Y323uu0d 3soyl jo K3yxaidmoo
rrapom J{ *ITNpom B UIYITM IIE SUOTIONIISUY ay1 01 SP [{3m Se 3 npow pajred e pue Juyyres
»43 334312803 punog A13Yy811 Moy saqyiosap £ U23M13q SUOY3IDAUUDD JO IaquWnu 01 81333l
I N
indino
T
t 1NdN1
[
i
s
<
¢ £ I 041N m ~
T 1 1 $S3004d W ~
"S
¢ ¢ ¢ LINn
21907
1 Z 1 J11IWHLT NV
{
¢ ¢ Z
39vY0LS
A ¢ ¢
JINYN NOTIVL SINIW
~-3ANIVW | -N3WND0Ca ON11S3L 9N14dQ2 NO1S3d -341n03A )




8.0 REMAINING WORK TO BE ACCOMPLISHED IN THE DISTRIBUTED

k PROCESSING TOOLS DEFINITION STUDY

The Distributed Processing Tools Definition (DPTD)

study is divided into three phases:

Phase I - Study of Hardware and Software
Technologies

Phase II - Survey of Existing Tools and i
Techniques

Phase III - Analysis of Problem Areas and

Recommendation of Candidates for

Research and Development Efforts.

This report includes the results of the Phase I study
only. The hardware and software technologies pertinent
W to embedded distributed processing systems have been
A analyzed and their requirements and impacts have been
é categorized with respect to the software life cycle
| phases. This categorization of requirements and im-
pacts forms the basis of the Phase II survey. In Phase
11, industrial, university, and Department of Defense

1 software tools and techniques will be researched, and

we will 1identify those tools and technigues that
satisfy the lifecycle phase support requirements esta-

blished in Phase 1. Also in Phase Il we will denote as
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Jroblem areas those Phase I lifecycle reguirements that
are not supported by tools or techniques. Finally, in
Phase III these problem areas will be analyzed and a
prioritized list of candidate research and development
efforts to solve the problem areas will be recommended.
These candidate efforts will be fully described with
estimates of manhours, schedules, technical
feasibility, benefits, and probable users. Phase II1I

completes the DPTD study.

The results of the tools survey will be submitted to
RADC in an interim technical report upon the completion
of Phase 1II. This report will be concatenated to the
Phase 1 report. The benefits of this approach are
twofold. First, the phases of the DPTD study are
closely 1linked, and each phase builds upon the
preceding phase,. The wunderstanding of the work com-
pleted to date on the DPTD study requires an under-
standing of the previously accomplished work. It is
easier for a reader to understand the results 1if they
are all bound in a single volume with smooth transition
between phases. Secondly, in the course of the study
modifications and updates can be easily incorporated.
These updates arise because of recent technological ad-
vances or deeper insight gained in a particular area

during the course of the study. Modifications to the
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text of previously submitted reports will be summarized

in a list of page changes and change bars will be in-
serted in the text denoting the affected portions, ‘
Therefore, the final technical report for the DPTD L
study will be submitted to RADC in a single volume that !

reports the results of Phases 1, II, and I11.
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APPENDIX A é

DEFINITION OF THE SCOPE OF EMBEDDED

DISTRIBUTED PROCESSING SYSTEMS

Military computer systems span the spectrum from single
microprocessors in "smart-bombs" to multiple, dis-
tributed mainframes in world-wide communications

systems. The particular categories of military systems “
most affected by technological advancements in embedded
distributed processing include: (1) armament, (2)
aeronautical, (3) missile and space, (4)
command/control/communication, and (5) mission/force
management systems, The analysis of the impact of
?: ; technological advancements upon these five categories
| of systems 1is aided by grouping the five categories
i{ into two, higher-level, generic classifications. The
armament, aeronautical, and missile and space systems
will be classified as weapon systems, and the

command/control/communication and mission/force

management systems will be classified as communication

systems. These generic classifications are based upon

'| common characteristics of the members within each
class. These common characteristics are defined later

in this appendix. Hence, in this technical report we

will use the generic classifications of weapon systems
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and communication systems, and it 1is understood that
observations and conclusions pertinent to a generic

classification apply to all members of the class.

Distributed processing systems can be visualized as a
region of a volume bounded by axes describing (1) dis-
tribution of hardware, (2) distribution of control, and
(3) distribution of data base. Figure A-1] shows this

volume.

The portion of this volume characterized by a single
CPU, a single, fixed executive controller, and a single
copy of the data base represents the common uniproces-
sor systems of today. Moving toward multiple
computers, multiple operating systems, and partitioned
data bases 1is characteristic of fully distributed
processing systems. Weapon systems and communication
systems occupy different regions within the charac-
teristic volume, but are definitely within the dis-
tributed processing domain, Figure A-1 shows the
relationship of uniprocessor systems to distributed
processing systems and where weapon and communication

systems fit in these descriptions.

The differences between weapon systems and com-

munication systems are rooted in implementation of the
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following two key features of distributed processing

environments:

(1) the degree of human interaction required by
the hardware/software system

(2) the timing constraints of system operation.

Weapon systems must require human decision before a
weapon is released; for safety requirements a system
should not automatically switch from a non-attack
situation to an attack with weapons launch capability
without explicit human consent. However, once this
consent is acknowledged, the hardware/software system
must execute in real-time because of the speeds as-
sociated with targets and launch platforms. Therefore,
prior knowledge of system state transitions is a
prerequisite for weapon systems mode design. Other
characteristics of wveapons systems that are commen-

surate with these two features are shown in Table A-1.

In contrast, communication systems permit a higher de-
gree of automation without human intervention. 1f no
human response is received the system can automatically
queue messages or resend the transmissions to provide
backup capability. Consequently, the system mode

design 1is often interrupt driven with queuing
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permitted. The system timing constraints are often
near real-time; that is, between one millisecond and
one second. Table 'A-1 1lists the characteristics of
communication systems. A study of Table A-1 shows that
both weapon systems and communication systems strongly
exhibit features of distributed processing; however,
there are significant differences within this dis-
tributed processing domain to warrant the two generic
classifications of weapon systems and communication

systems that we have identified.

In summary the grouping of armament, aeronautical, and
missile and space systems into the generic clas-
sification of weapon systems and the grouping of
command/control/communication and mission/force
management 1into the generic classification of com-
munication systems recognizes the differences between
the groups and benefits the distributed processing
tools definition study by specifying the requirements
for tools and techniques for a larger class of generic

military systems,
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Table A-1

Characteristics of Weapon and Communication

Embedded Distributed Processing Systems

CLASSIFICATION

CHARACTERISTICS WEAPON SYSTEMS

(Armament & Aero-
nautical &
Missile & Space)

COMMUNICATION
SYSTEMS
(Command/Control
Communications &
Mission/Force
Management)

Timing
Constraints

Real-Time
(usually less
than a few
milliseconds)

Near Real-Time

(usually between
milliseconds and
several seconds)

Spatial
Constraints

Close physical
proximity (often
less than 1000
feet) of compo-
nents

Large geographi-
cal separations
(often more than
100,000 feet) of
components

: ; System
g Mode
’ Design

All transitions
between system
States are a
priori known to
satisfy safety
requirements

System state tran-
sitions are often
interrupt/trans-
action driven
with queuing per-
mitted and may be
random

Data
Transfer

Usually rela-
tively small
guantities of
data transferred
at high data
rates

Very large
amounts of data
transferred




CHARACTERISTICS
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Table A-1 (Continued)

CLASSIFICATION

WEAPON SYSTEMS

(Armament & Aero-
nautical &
Missile & Space)

COMMUNICATION
SYSTEMS
(Command/Control
Communications &
Mission/Force
Management)

Hardware/
Software
Resources

Hardware and
software func-
tions are often
distributed to
special-purpose,
dedicated units

Usually a multi-
plicity of gen-
eral purpose hard-
ware components
(disks memories,
CPU, etc.) and
software must be
transparent to
hardware peculiar-
ities

Operating
System

Minimum size with
limited capabili-
ties for support
of system mode
designs

High-level, very
capable system
that integrates
and controls the
distributed compo-
nents

System
Component
Inter-
connection

Highly standard-
ized communica-
tion protocols to
permit easy add-
on of new units
to bus

"Cooperative au-
tonomy" whereby
the various sys-
tem components

work largely in-
dependently but

in a coordinated
manner under the
control of the

operating system

Cohesiveness

Tightly-coupled

Loosely-coupled
to fully distrib-
uted
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Table A-1 (Continued)

CLASSIFICATION

WEAPON SYSTEMS

(Armament & Aero-
nautical &
Missile & Space)

COMMUNICATION
SYSTEMS
(Command/Control
Communications &
Mission/Force
Management)

Backup
Capability

System degrada-
tion must be pre-
dictable

System degrada-
tion is minimized
by redundant data
processing ele-~
ments and commu-
nication links

Security

Security must be
maintained at the
entire system lev-
el because the
weapon system must
be isolated from
external manipula-
tion

Security must be
maintained within
the individual
components be-
cause of exten-
sive communica-
tion links to the
external environ-
ment
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APPENDIX B

RATIONALE FOR THE SELECTION OF ADA
AS THE HIGHER ORDER LANGUAGE
TO STUDY FOR EDPS
Ada has now been adopted by the Department of Defense.
k As far as the United States Air Force is concerned, Ada
is scheduled for introduction and use by 1983. By 1986
all new embedded distributed processing systems must
use Ada. Present strategy relies upon the continued
use of JOVIAL (J73) until sufficient development time

has been provided for Ada.

The Office of the Under Secretary of Defense for
, Research and Engineering (OUSDRE) has been assigned
responsibility for planning the Software Technology
Initiative (STI) of the  Department of Defense.

Subsequent coordination alsoc rests with OUSDRE. The

present is particularly propitious for a concerted and
concentrated effort on Ada. All candidates for short-
term research initiatives must emphasize technology
transfer, standardization of software environments,
' tools, packages, workstations, and preliminary results
from thrusts whose payoffs occur later. 1In summary
they must produce reusable Ada packages within inte-

grated software support environments which are them-
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selves dependent upon Ada. As presently envisioned,

the 1integrated software support environment of the
future will evolve .from or be incorporated by the Ada
Programming Support Environment (APSE). Active efforts
are underway to design and implement the APSE. All
future software tools concerning embedded distributed
processing systems must link to the APSE. The con-
sequences of Ada will be felt throughout the entire in-
dustry as well as all the Federal Government. The in-
tegrated software support environment provided by Ada

will provide important contributions for many years.

Meeting the overall goals of the Ada effort depends
upon the wide availability of effective support
environments. In particular these environments must be
rigorously engineered to support Ada throughout the
software 1life cycle phases. Specific features of such

environments include:

] layered approaches to maximize subsequent
portability of tools;
o completely engineered Ade compilers which

produce high quality object code;

° comprehensive basic toolsets;
° careful separation of roles between hosts and
targets;
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. user friendly interfaces;
. sophisticated database techniques; and
° complete sets of control tools.

Many attempts at integrated software support environ-
ments have been made. Few have succeeded. The frag-
ments of both the successful and unsuccessful attempts
still exist and are constantly being used,. All these
remainders need to be converted to the integrated scf-
tware support environment that Ada enables. The tools
of this emerging environment have yet to be developed.
Most are generic in nature and will probably exhibit
unique properties, All will be developed through the
system lifecycle phases. Consequently, of primary im-
portance to embedded distributed processing systems is
a complete understanding of Ada and what its impact
will be on the software development lifecycle.
Subsequent effort within the Distributed Processing
Tools Definition Study for RADC will concentrate upon
Ada. The justification for such a concentration is of-

fered in the preceding remarks.
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ADEPT

ADGE
ALU
APSE
ARC
ASGS
CADES
CHiP
ClU
CMU
CPU
CSMA-CD

DAVE

DEC
DEDS

DPTD
DREAM
EDPS
E/O
GPU

LIST OF ABBREVIATIONS

A Design-based Evaluation and Prediction
Technique

Air Defense Ground Environment

Arithmetic Logic Unit

Ada Programming Support Environment

Advanced Research Center

Automatic Software Generation System
Computer Analytical Design Evaluation System
Configurable, Highly Parallel

Computer Interface Unit

Carnegie Mellon University 1
Central Processor Unit |
Carrier Sense Multiple Access with

Collision Detection

Documentation, Analysis, Validation and
Error-detection

Digital Equipment Corporation

Data Entry Display Stations

Department of Defense

Distributed Processing Tools Definition

Design Requirements Evaluation Analysis Method
Embedded Distributed Processing Systems
Electro/Optical

General Processor Unit
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HAL/S

HOL
ICL
1/0
IS0
ISSE
LAN
LU
Mbps
MIPS
NASA
NAV
NP
OooM
0Ss1
OUSDRE

PAWS
PPBS
PSA
PSL
PWB
STI
TRW
UCSF
VHSIC

Hierarchical Analysis Language/System
Higher Order Language

International Computers Limited
Input/Output

International Standards Organization
Integrated Software Support Environment
Local Area Network

Logical Unit

Megabytes per second

Million Instructions Per Second

National Aeronautics and Space Administration
Navigation

Non-deterministic Polynomial
Object-Oriented Modularization

Open Systems Interconnect®>n

Office of the Under Secretary of Defense
for Research and Engineering

Performance Analyst Workbench System
Professional Programmer Based System
Problem Statement Analyzer

Problem Statement Language

Programmer's Work Bench

Software Technology Initiatives

Thompson Ramo Woolridge

University of California at San Francisco

Very High Speed Integrated Circuits
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