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1.0 TECHNICAL REPORT SUMMARY

General Dynamics Data Systems Division is under con-

tract to Rome Air Development Center to conduct a study

entitled Distributed Processing Tools Definition. The

objectives of this study are to investigate the

requirements for software lifecycle support of embedded

distributed processing systems and then to specify

tools and techniques pertinent to each lifecycle phase.

This study is divided into three phases as illustrated

in Figure 1-1. Phase I of the study has been

completed, and its results are described in this

Technical Report.

Two generic classifications of military systems are ad-

dressed in this study: weapon systems (including

armament, aeronautical, and missile and space

configurations) and communication systems (including

command/control/communication and mission/force

management type configurations). This classification

is based upon characteristics inherent to each group

(ref. Appendix A) and permits specification of

requirements for software tools and techniques for a

larger class of generic military systems.
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The principal technical conclusion of the Phase I study

is the requirement that software lifecycle phase sup-

port tools for embedded distributed processing systems

must view the hardware and software from a total sys-

tems perspective. Thds perspective is accomplished by

using the Concept of Object-Oriented Modularization

(ref. Paragraph 6.0). Particular manifestations of the

Concept of Object-Oriented Modularization applied to

embedded distributed processing systems yield the fol-

lowing additional conclusions:

(1) Software tools must be small and integrated

with larger environments; for example, the Ada

Programming Support Environment or an

Integrated Software Support Environment as

proposed in the DOD Candidate R&D Thrusts for

the Software Technology Initiative. In

addition, these tools must be available at the

beginning of the software development program

(ref. Paragraphs 5.2.1, 5.2.2, and 5.2.7).

(2) Static analysis techniques may not be useful

because of the probabilistic nature of dis-

tributed systems. This conclusion is cor-

roborated by recent work of Dr. W. E. Howden

(ref. Paragraphs 7.1.4 and 7.3.1).

3



(3) Rapid prototyping and impact analysis tools

are critically needed (ref. Paragraphs 7.1.3

and 7.3.3).

(4) The real-time rendezvous and package set

capabilities of the Ada language need further

analysis in a distributed processing environ-

ment (ref. Paragraph 7.1.2 and Appendix B).

(5) Simulation of distributed hardware intercon-

nections and networking must be done before

the system is built because performance is

critically dependent on these features (ref.

Paragraphs 5.1.2 and 5.1.3).

In addition, the anticipated effects of static

analysis, branch testing, and impact analysis tech-

niques upon the lifecycle phases of embedded dis-

tributed processing systems are evaluated (ref.

Paragraph 7.3). Finally, global timing and methods of

distributed data base management have been identified

as topics worthy of future research efforts.

Software lifecycle phase support tools are also

required for communication systems (i.e.,

command/control/communication and mission/force

4



management configurations). In such applications dis-

tributed processing has increased the importance of

Object-Oriented Modularization (ref. Paragraph 6.0).

Specific manifestations of such modularization are

evident in the following conclusions concerning com-

munication systems:

(1) Data distribution can vary throughout diff-

erent levels of a multi-layered network.

Object-Oriented Modularizations require alter-

native layering be examined (ref. Paragraphs

6.1 and 7.2.2).

(2) The performance behavior of multi-layered

networks with distributed intelligence must be

established before such networks are im-

plemented (ref. Paragraphs 7.1 and 7.1.2).

(3) The capability to simulate a multi-layered

network must become part of the Integrated

Software Support Environment. (ref.

Paragraphs 5.2.7 and 7.1.3).

Decision making concerning embedded distributed

processing systems as well as communications systems

requires knowledge of data movement and computational

5



efficiency. Enough information must be known within

specific real-time constraints to reach appropriate

decisions. Subsequent functionality is a product of

such decisions. Distributed processing functions are

performed upon data bases residing within intercon-

nected architectures. Growth in these data bases can

force changes in their tightly-coupled architectures to

accommodate increased information flow. The bottom

line is functionality for both weapon systems and com-

munication systems. The systems themselves can be

viewed as interconnected hardware components but their

functionality is a result of software. Using

analytical techniques, such software can be validated

and optimized. Without analytical techniques, the mul-

tiple processor operating system will allocate its

resources. Under such an approach validation and op-

timization issues would not be addressed before the

start of a weapon or communication system's operational

software. Higher reliability at reduced costs and

shorter development schedules would not be produced.

Instead the emergence of a "fix it later" attitude

would ensue. When real-time performance of both hard-

ware and software is not considered at the outset, they

will force subsequent consideration when problems

inevitably occur. Proper analytical techniques an-

ticipate and eliminate whole groups of validation and

6



optimization problems. They also establish what per-

formance can reasonably be expected from specific mul-

tiple processor configurations. Taken as a whole,

these techniques become part of a support environment.

The functionality of such a support environment can

best be described as a configuration testbed. Although

the issues addressed by an embedded system are diff-

erent from a communications system, a single con-

figuration testbed can accommodate both. In conclusion

the need for testing command/control/communication sys-

tems and embedded distributed systems can be addressed

by a single testbed built upon a programming support

environment, e.g., the Ada Programming Support

Environment. Such an effort is worthy of future

research initiatives.

Phase II of the Distributed Processing Tools Definition

Study will research industrial, university and

Department of Defense tools that satisfy the

requirements established in Phase I. Finally, Phase

III will identify and describe candidate research and

development efforts to solve any Phase I requirements

not supported by a Phase II tool or technique.

7



2.0 SCOPE AND PURPOSE OF THIS DOCUMENT

Projected military requirements for improvements in

performance, reliability, and field maintainability of

weapon and communication systems, indicate an increased

utilization of embedded distributed processing

technology. Software tools and techniques need to be

identified and developed that support the already

existing and future embedded distributed processing

hardware. Consequently, General Dynamics Data Systems

Division and Rome Air Development Center have con-

tracted to conduct a study of software tools and tech-

niques pertinent to embedded distributed processing

* systems (EDPS). This effort is entitled Distributed

Processing Tools Definition (DPTD) study, and it is

being conducted in three phases, namely:

Phase I - Study of Hardware and Software

Technologies

Phase II - Survey of Existing Tools and

Techniques

Phase III- Analysis of Problem Areas and

Recommendation of Candidates for

Research and Development Efforts.

8



The objectives of the DPTD study are to investigate the

requirements for software lifecycle support of embedded

distributed processing systems and then to identify and

specify tools and techniques pertinent to each lifecy-

cle phase. The availability of specifications for sof-

tware tools and techniques to support embedded dis-

tributed processing systems will enable the tools to be

developed prior to the start of the weapon or com-

munication system operational software. This prior

availability will result in higher reliability of the

operational software at reduced costs and shorter

development schedules.

The purpose of this document is to present the results

of Phase I of the DPTD study in accordance with the

requirements of paragraph 4.1.1 of the Statement of

Work. The results of Phases II and III of the DPTD

study will be concatenated to this Phase i report. The

benefits of this approach are a smooth transition of

the description of the results of the three phases for

the reader and the opportunity to update previous sec-

tions as newer technologies are identified and deeper

insights are gained into their impacts upon embedded

distributed processing systems.

9



3.0 INTRODUCTION AND BACKGROUND

The gap between literature and practices is a chasm

when viewed from the standpoint of distributed systems.

While researchers advocate symbolic execution or proofs

of correctness or even automated verification systems,

currently operating distributed systems require hun-

dreds of thousands of lines of computer code to be

maintained. Consequently, the overriding commitment of

the present is to maintain what has already been

implemented. In most instances these systems have been
developed without the benefit of automated

verification. Static analysis has been limited to

diagnostics produced by a typical compiler.

Consistency checking and documentation about the

definition, reference, and communication of data within

a program has not been addressed. As processing is

distributed over several nodes, dynamics become more

important. Analysis of a program can be performed at

the statement-level or through the examination of

global execution. Most currently operating distributed

systems have not been analyzed from a dynamic

standpoint. These current systems accommodate a wide

variety of hardware architectures and an even wider

variety of software algorithms and data structures.

The maintenance of these systems has grown too com-

10



plicated for any one person to comprehend. However,

their complexity continues to grow and their ap-

plications continue to expand. New techniques to cope

with their increased complexity are beginning to

emerge. Foremost among these techniques is the process

of object-oriented modularization.

When implementing object-oriented modularization tech-

niques individuals do not need to understand all

modules within a distributed system. Although the idea

is simple, its realization is often difficult.

Obviously someone must know how all the modules of a

system fit together. Furthermore, the operations in

one module should not rely upon operations within

another module unless very carefully controlled. These

operationally independent modules characterize the

object-oriented approach and distinguish it from the

more conventional modularization techniques. The in-

dividual who performs the object-oriented

modularization does not have to know the operational

details in each module. Those details are decided by

individuals who implement the specific modules.

Several factors contribute to the difficulty encoun-

tered during modularization. First, the modules in

software are produced completely independent of the

: 11



modules in hardware. The subsequent operational mix is

sometimes mismatched. Hardware modularization takes

place on a process basis. Each process is a module of

concurrency with programs being constructed from one or

more processes. If several processes are involved,

communication between them becomes increasingly

important. Such considerations originated within mul-

tiprogramming environments where each job could be

viewed as a process. From multiprogramming the present

methodology for implementing concurrency has evolved.

As new hardware instruction sets are envisioned, they

are implemented in terms of concurrency architectures.

An example would be the MIL-STD-1750A Instruction Set

Architecture implemented by RCA and TRACOR for Wright-

Patterson Air Force Base. The CPU is subdivided into

two pairs of General Processor Units (GPUs) and

operates on an 8-bit slice architecture. The micro-

code is partitioned between the two GPUs and has no

duplication. These partitions are accessed as needed

and operate as concurrency modules. The instruction

set of MIL-STD-1750A is accommodated through access to

16 different partitions or concurrency modules. To op-

timize a process requires knowledge of its access

sequence. Of course such an approach emphasizes the

importance of hardware modularization. Once the

operating system has been written the emphasis on hard-

12



ware modularization is downplayed. The importance of

software and its associated algorithms and data struc-

tures is elevated. Object-oriented modularization is

applied' producing software with operationally indepen-

dent modules. When these modules run concurrently,

they can be viewed as concurrency modules within their

respective hardware environments. Each such module ex-

hibits its own efficiency with respect to access

sequences on the hardware level. In most instances

those access sequences are closely associated with the

operating system. To bridge that gap between object-

oriented modularization and hardware modularization

requires a precise software tool. In the case of the

MIL-STD-1750A implementation that tool was a derivative

of SPICE which was developed at Carnegie-Mellon

University. It is a message-based system containing

two kinds of entities: messages (a collection of types

and data) and ports (queues of messages). It does not

emulate the object-oriented modularization but

specializes in concurrency modules. Consequently, the

implementation of the MIL-STD-1750A Instruction Set

Architecture by RCA and TRACOR illustrates how modules

in hardware are developed independently of modules in

software.

13
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Another difficulty encountered during modularization

originates with scheduling. Production schedules for

distributed systems are usually controlled by external

factors. Such systems are usually components within

larger systems; i.e., they are embedded. The schedules

imposed by the larger systems take precedence over the

embedded distributed processing systems. Despite this

scheduling precedence, the need for object-oriented

modularization persists.

Also, unless the interface between software modules is

completely established, the subsequent software effort

may be unclear.

Lack of clarity extracts a price later in the main-

tenance of the software system. Of course, clarity has

its price too. More effort must be expended during the

requirements study and preliminary design phase of the

software development lifecycle. Such additional effort

is a one time cost and it reduces the maintenance ef-

fort which is an ongoing cost. Consequently, unclear

interfaces between software modules perpetuate a main-

tenance effort. The more complicated those interfaces,

the larger the effort. Much can be avoided through an

object-oriented modularization when software systems

are initiated.

14
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As distributed systems become more complex, a consensus

concerning modularization has formed. It applies the

principle of "information hiding" to distributed sof-

tware procedures and data structures. Its basic idea

is to group related procedures and their data struc-

tures together. The subsequent groupings comprise

modules which can be viewed as either software or

hardware; i.e., object-oriented modules or concurrency

modules. Assuming the hardware stance is taken,

related procedures refer to operational state

transitions. Since computers are state-driven devices,

their hardware transitions transform their internal

operating states. Concurrency modules transform inter-

nal operating states in parallel and independently.

Since such modules operate concurrently, the access

problem among data abstractions is highlighted. Extra

precautions must be taken to manage accesses to the

same data by multiple concurrency modules. The tools

to regulate access are in their infancy. In effect,

the ability to produce concurrency modules has out-

stripped the present capability of simulation tools.

Complicating the situation are software procedures

which transform operating states by way of algorithms.

Since these algorithms are usually expressed in higher

order language statements, the operating trans-

formations are more obscure. The subsequent tools

15



available for access control are based upon logic and

are divorced from considerations of hardware. Their

analysis is static while the operational situation is

concurrently dynamic. The problem has now been as-

signed the subsequent implementation of a higher order

language, e.g., Ada. Whether the language can solve

the problem has not been addressed because other issues

must be resolved first. Until that language is

implemented, the problem has simply been deferred.

Despite the delay the access problem between concur-

rency modules remains significant.

Several programming languages are attempting to support

"information hiding" modularization techniques. The

latest such language is Ada which has been y:,tac-

tically specified by the Department of Defense. Its

implementation is underway but no validated compiler

has yet been produced. Consequently, observations

concerning its algorithms and data structures are con-

strained to its present syntactic definition. To make

any observation assumes a future compiler will meet the

syntactic specifications and will survive validation.

Obviously the current definition of Ada is far removed

from the actual state transitions within the concur-

rency modules of a computer. In instances of

concurrency, Ada relies upon the rendezvous technique.

16



Under that technique, the fastest concurrent operation

is completed and waits upon the slowest concurrent

operation to complete. Consequently, all concurrent

operations complete before processing is resumed. The

programming location at which these concurrent

operations await completion is called the rendezvous

point. Actual wait time within a specific rendezvous

depends upon the specific mix of concurrent operations.

From the standpoint of an Ada compiler, these wait

times are beyond the scope of object-oriented

modularization. Such an observation is invalid from

the standpoint of hardware concurrency modules. Unless

such times are carefully delineated, the rendezvous

becomes non-deterministic. In this document the non-

deterministic concept will refer to a process whose

outcome depends upon the choices and transitions made

by the system components. This is in contrast to a

deterministic process whose outcome depends only on the

current system state. Such non-determinism is not ac-

ceptable within most military applications. The per-

formance limitations of embedded distributed processing

systems in most military applications must be known

before implementation. Otherwise limits could be ex-

ceeded under catastrophic circumstances; e.g., bat-

tlefield conditions. Since Ada syntactic constructs

accommodate non-deterministic situations, a problem is

17



created for subsequent Ada Programming Support

Environments (APSEs). The expectation that such APSEs

will solve all instances of concurrency modularization

is unrealistic. The state transitions available within

hardware of the present and immediate future should be

accessible from higher order languages like Ada.

Otherwise the state transitions will be manipulated at

the machine language level.

Obviously Very-Large-Scale-Integration (VLSI) devices

capable of concurrent operations are impacting the

marketplace. As more of these devices meet or exceed

military specifications, the capability for embedded

distributed processing systems increases. Beyond the

present VLSI devices are the Very-High-Speed-

-: Integrated-Circuit (VHSIC) technologies. Such tech-

nologies have as their objective the insertion of speed

into defense systems. To achieve this objective, cer-

tain barriers must be overcome and subsystems must be

built to demonstrate improved capability.

Consequently, a VHSIC program has been created to ad-

dress these barriers on a tri-service basis under the

Under Secretary of Defense for Research and

Engineering. In addition to the Air Force, Army, and

Navy, the program involves the industrial and scien-

tific communities. It has been subdivided into four

18



phases: Phases 0, I, II, and III. While Phases 0, I,

and II must operate consecutively, Phase III can

operate concurrently. Phase 0 is the Study Phase which

defines the work and generates a detailed approach.

Phase I is subdivided into two efforts: one to im-

plement electronic brassboards within three years and

another to extend Integrated Circuit technology into

submicron dimensions. Phase II is also subdivided into

two parallel efforts: one provides subsystem demon-

strations of the brassboards produced under Phase I and

the other continues the submicron work begun under

Phase I. Phase III addresses near-term efforts in key

technologies which impact the total program. This par-

ticular phase is intended to encourage participation by

universities and small businesses in very specific

problems, e.g., advanced architecture and design

concepts. The capability for modularization within

VHSIC devices exceeds the current VLSI marketplace.

The impact of VHSIC technologies on software languages

is not completely understood. Several VHSIC Phase III

contracts are addressing that issue. Results have not

yet been generated. The non-deterministic nature of

the present Ada rendezvous techniques is a crucial is-

sue in VHSIC technologies. The reason rests with the

capability of VHSIC hardware environments to provide

ever-increasing concurrency modularization.

19



Furthermore, software produced by "information hiding"

must reside in these new VHSIC environments. The near-

term and far-term capability for concurrent operation

will be enhanced significantly.

Appropriately defined object-oriented modules and con-

currency modules proceed independently through their

individual lifecycle phases. The reconciliation of

these software lifecycle phases to hardware lifecycle

phases is of paramount importance to "information

hiding" modules. VLSI technologies are putting larger

numbers of electronically active devices in hardware

modules. As these numbers increase, the operational

verification of each electronically active device

becomes more difficult. The test phase of such high

density VLSI hardware now depends upon statistical sam-

pling techniques. When such hardware is released to

the marketplace, its subsequent operation is non-

dete-ministic or probabilistic. The Boolean logic ac-

commodated by such hardware has seldom been completely

tested before delivery to the customers. The future

deliveries of VHSIC devices will only exacerbate the

situation. The problem of marginally functional hard-

ware modules has become the hidden problem of embedded

distributed processing systems. Many compromises must

be made before such equipment becomes functional. In
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most instances hardware deficiencies are subsumed by

the software process itself. This creates a double

bind for the software modularization effort. As sof-

tware modules are designed and implemented, they may

not run because of previously undetected hardware

errors. If a software module does not run under such

circumstances, is the problem attributable to hardware?

Alternatively, the problem could lie with software.

Furthermore, as a worst case, the problem could lie

with both hardware and software. The end result of

this situation is that the software development lifecy-

cle phases are becoming the test phase for hardware

modularization. Any discussion of software lifecycle

phases must address the hardware testing issue. To ig-

nore such an issue only compounds the problem faced by

software modularization and development. An inventory

of software tools must be accumulated to test the ac-

tual operation of hardware modules. Such a toolset

serves the purpose of hardware quality assurance. Its

objective would be the elimination of hardware problems

within the subsequent software lifecycle phases. If

the objective is achieved, software development costs

should be reduced. Whether the reduction is temporary

or permanent has not been established.
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Assuming the quality of hardware modules can be

assured, the subsequent software lifecycle phases need

construction tools for separate software modules. Each

tool should be associated with one or more lifecycle

phases. Taken collectively all tools would cover the

lifecycle spectrum: requirements tools, design tools,

coding tools, testing tools, documentation tools, and

maintenance tools. A clever design for such a toolkit

would use "information hiding" concepts. Such concepts

accommodate the trend toward increasing hardware

modularization. Shrinking hardware modules present

shrinking targets to the software development toolkits.

These hardware modules are often overlooked by develop-

mental toolkits. The present situation is summarized

by the following observation. Tools for software life-

cycle phases in distributed systems should operate

within the distributed systems themselves. To accom-

plish such operation requires lifecycle tools to become

smaller and more specialized. Such a trend runs coun-

ter to the current tool marketplace.

Currently available tools address a general systems

orientation and combine several lifecycle phases

together. The immediate result of such an orientation

is to place tools in large uniprocessor configurations.

The computer talent in such computer settings seldom
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appreciates the real-time problems of the distributed

system. Ada suffers from the same orientation.

Although capable of targeting small hardware modules,

it must reside in an excessively large computer

environment. In this large computer environment the

modularization in the uniprocessor configuration itself

is seldom evident. Unless the computer talent exerts

extraordinary effort to discover how the large uni-

processor operates, the software tools it produces is

not likely to exhibit such understanding.

Smaller and more specialized lifecycle tools can be

combined into larger sets to accommodate a general sys-

tems orientation. The combination capability is

provided by the process of software modularization.

Current tools can be converted to these smaller and

more specialized formats through additional analysis.

Their components with respect to lifecycle phases have

not been analyzed in sufficient detail. Upon com-

pletion of such an analysis, the resulting tools would

be smaller and more specialized with respect to hard-

ware modules. The optimal environment for these new

toolkits is the emerging Ada Programming Support

Environment (APSE). The intent of Ada has never been

to reside in a distributed system but eventually it

must. The current proponents of Ada subsets exhibit a
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distributed system orientation. As currently defined,

Ada allows no subsptting. However, such constraints

apply to the Dept. of Defense and the U.S. defense

industry. The policy of U.S. allies is not as clearly

delineated, e.g., Japan and France. To complicate mat-

ters Russia is even translating the Ada syntax. If an

unauthorized subset of Ada succeeds quickly and impacts

the marketplace, the continued insistence against sub-

setting may itself be called into question. In effect,

the complete syntactic definition of Ada requires a

very large uniprocessor to accommodate it. Subsets of

the syntactic definition can easily be accommodated

within the distributed environment itself; e.g., the

Telesoft configuration. Systems are definitely

becoming more distributed which means the argument for

a distributed Ada is growing. Since Ada can be made

sufficiently modular, it can eventually fit into a dis-

tributed system. Sufficiently modularized toolkits can

also fit into distributed systems. Consequently, both

Ada and a toolkit of highly specialized tools become

part of an integrated software support environment.

Obviously how well Ada accommodates itself to un-

derlying hardware state transitions is of paramount

importance. The future plans of the Department of

Defense software efforts assume the availability of

this integrated software support environment.
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Subsequent sections will emphasize the importance of

such an environment.
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4.0 CHARACTERISTICS OF DISTRIBUTED PROCESSING SYSTEMS

The past several years have seen an increasing interest

in the application of distributed computing systems,

because a distributed processing system is one in which

the computing functions are dispersed among several

physical computing elements. These computing elements

may be colocated or geographically separated. The dis-

tributed computing systems take many forms covering a

diverse range of system architectures. In fact, the

very term distributed processing may invoke radically

different images of technology and problem solutions

depending upon the user. To some, a distributed

processing system is a collection of multiple computers

or processing elements working closely together in the

solution of a single problem. An example might be an

Air Defense/Command Management system which is com-

prised of many data processing subsystems linked

together by shared memory, communication

lines/networks, or common buses. Each data processing

center processes a subset of air/ground situation tran-

sactions and updates a portion of a common data base to

develop a dynamic composite-air-situation picture

against which force management can be exercised. Users

of such systems are concerned with issues of hardware

and software design, reliability, operating/executive
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systems, and how to optimally decompose programs and

data bases. Figures 4-1 through 4-6 illustrate this

type of modern distributed processing system in a

generalized manner. Figure 4-1 shows the overall Air

Defense Ground Environment (ADGE) System with Figures

4-2 through 4-6 showing the generic data processing

elements in increasing detail. Since distribution of

control is a key characteristic element of distributed

processing systems, Figure 4-3 was included to high-

light this characteristic.

To other users, a distributed system is a set of intel-

ligent terminals located at the point of use to give

local organizational elements more responsive computer

support. These terminals perform most of the computing

functions for the local group. When necessary the ter-

minals communicate with remote host computers and each

other for enhanced support. An example might be the

remote Data Entry Display Stations (DEDS) shown in

Figure 4-2 which could be located at weather control

centers. To yet another set of users (e.g., aircraft

pilots), distributed processing systems may mean a very

tightly-coupled distributed system used for navigation,

weapon delivery, or control of an aircraft.

Figure 4-7 illustrates this type of distributed system

by showing the architecture of data processing systems

27



.NNW

u5

Ir 0

uj a u . j
V5.-

< -=

0

z cz

=) C0 C

rw N 0
0 0 <

in z

Q)
ri , r I-

uU u

C.J ..-

0 Cz z

I I

cc. Cc < ) u.

0Ul

28



E- 0 Z z >0 w
Z.4 " 0 w 4wc -4 1

"I 4 E " E El W W.0 ~ E w0

E-0u E, .3u 00 E-a0

< n . 0~ /0 L L 0-4 1)

0w w

0 0~

c.- L)

0 Dix ~C
Lo0

04 H c

E-'

LO X w

< N4 0

0x 0 0

w 129



)-a a , 4 - 4

< 4-

I I

I ;

- - -

. . .. l I " I . - i i_ _ - - I. .



IU t IIt1

I 16

I' h

uiI t

LI

131



oo 0

-- - --- - -

LCi Kl 0

Ix
- U k I

(L ) r, a

ca)

~A. 10..

~L

0IJ

32



o a.
M

En

U- zI -I o00

10 ~ ~ ~ W 0 0- O
a. Uu C40 14

I~ Du I U..

100

CD'-

Ia cJI I

I L1

I 1. I.

=.-Q-

323



RADAR/ED IEFREIETA HEAD-UP
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Figure 4-7 Distributed Data Processing Architectu',-e
for F-16 Aircraft
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with MIL-STD-1553B Multiple Bus for the F-16 aircraft.

The fire control computer is the systems integrator for

this F-16 avionics and armament system. In this inte-

gration role, the fire control computer uses inputs

from computer-controlled on-board sensor systems (e.g.,

radar, navigation, central air data computer, target

identification set, etc.) to accomplish air-to-air and

air-to-ground weapon delivery, navigation, fuel

management, and stores management and control. Results

of pertinent calculations are displayed on the radar E-

0 displays, NAV panels, and various other cockpit

displays that are human-engineered for single-pilot

operation. The F-16 system is unique in that it im-

plements the standard military bus (MIL-STD-1553) with

the latest version of this bus (MIL-STD-1553B) in-

cluding additional subaddress modes, broadcast

capability, improved noise rejection, and error-rate

specifications. Use of this bus allows for dis-

tribution of the functional requirements to the various

distributed computer systems and sensors.

As discussed previously, military computer systems span

the spectrum from single microprocessors in "smart-

bombs" or communications line controllers to multiple,

distributed mainframes in world-wide

Communication/Command/Control systems. These dis-
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tributed processing systems can, however, be visualized

as a region of a volume bounded by axes describing (1)

distribution of hardware, (2) distribution of control,

and (3) distribution of data bases. Figure 4-8 shows

this volume as well as the relationship of uniprocessor

systems to distributed processing systems. The par-

ticular use and performance, including reliability and

maintainability, requirements of the computer system

will determine where in the characteristic volume the

system will be placed. Appendix A (Definition of the

Scope of Embedded Distributed Processing Systems)

discusses (1) the distribution of the various different

types of military systems within this characteristic

volume of Figure 4-8 and (2) the formulation of the

various distributed processing systems into two high-

level generic classifications: weapon systems and com-

munication systems. Also presented in Appendix A (see

Table A-1) are the key characteristics of the dis-

tributed processing systems which comprise these two

generic categories.

The common thread linking the different types of dis-

tributed systems is the requirement to interconnect and

communicate data and messages between the various

processing elements. In many systems, serial com-

munications lines are used as the interconnecting
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links. For geographically dispersed systems, these

links are usually provided by the common carriers or

dedicated microwave systems. Hence, the designer of

distributed systems is faced with significant com-

munications issues. Generally, the analysis of these

communications issues and interconnect technologies,

with associated characteristics, is aided by grouping

the various interconnect techniques and architectures

into three generic classifications: 1) computer buses

(elements geographically dispersed within 200 feet), 2)

local area networks (elements geographically dispersed

within 6000 feet), and 3) long haul networks (elements

geographically dispersed over many miles). Figure 4-9

depicts the physical distance relationship for these

communication networks. Table 4-1 identifies 12 common

interconnect technologies, together with their

performance, reliability, geographic distribution, and

modularity and expandability characteristics that sup-

port maintainability. In addition to these intercon-

nect topologies, a logical structure or protocol must

be used to allow for meaningful communications.

Protocol can be classified in five levels, not all of

which exist in all networks:

(1) Line control procedures. This is the lowest

level of protocol. It administers the phys-

ical transmission medium.
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Table 4-1 System Reliability Is a Driving Force
for the Interconnect Technology
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(2) Procedures to control data flow between com-

munications processors (packet flow).

(3) Procedures to control data flow between a host

computer and a communications processor.

(4) Procedures to allow flow between two distant

host computers.

(5) Procedures to allow message flow between two

user processes.

However, the particular categories of military systems

most affected by technological advancements in embedded

distributed processing include primarily the first two

categories, local area networks and computer buses.

The expansion of the von Neumann architecture within a

multiprocess environment is typified by the diagram in

Figure 4-10 and is characteristic of the interconnect

technologies associated with the computer buses. Also

in the computer bus technologies, the advances in Very-

Large-Scale-Integration (VLSI) circuitry has offered

new interconnect architectural alternatives which are

shown in Figure 4-11 and are discussed in paragraphs

5.1 and 7.1. The key characteristic of the layered bus

architecture is associated with its operation; in that,
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the communication between layers becomes probabilistic

instead of deterministic as is the case with the von

Neumann architecture. (Refer to paragraph 7.1.1 for a

full explanation of this terminology.)

Local area networks (LAN) have evolved primarily from a

need to provide data communication on a packet basis

between increasingly intelligent terminals and host

computer systems. The intelligent terminals are

generally separated over larger distances than the in-

ternal workings of the computer buses, but at the same

time these terminals are not nearly so distant as to

require a communication link such as microwave or other

long haul communication systems. Furthermore, LAN ar-

chitecture and protocol is generally compatible with

computer systems on a level not always achieved with

long haul networks. Examples of the local area networ:.

are shown in Figure 4-2 and 4-3 in terms of the dual

serial data bus. Dual bus topology is generally the

preferred topology used with LAN systems since they of-

fer acceptable performance and high reliability.

Figure 4-12 shows some of the key advantages and disad-

vantages associated with the LAN bus topology. In a

like manner, bus control strategies, examples of bus

systems, and examples of transmission media are shown

in Figures 4-13, 4-14, and 4-15, respectively. Table
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Figure 4-10 Expanded von Neumann Architecture
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4-2 is a compilation of the majority of LAN's currently

available.

Six additional distributed processing characteristics

which serve as motivations for the continued develop-

ment of parallel (concurrent) processing systems are:

0 Response time

• Flexibility

0 Resource sharing

0 Reliability

0 Availability

0 Transportability

The common denominator and ultimate result of im-

provements in these characteristics is improved overall

system performance, usually measured also on the basis

of cost effectiveness. These characteristics are fur-

ther discussed as follows:

(1) Reliability - Redundancy, which is related to

reliability, can be achieved in a relatively

inexpensive manner in a distributed system

since the entire system does not have to be

replicated as is the case with a single

computer. Only an incremental number of

processors must be added to insure the
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Figure 4-12 Linear Bus Subnetwork Topology
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Figure 4-13 Bus Control Strategies
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* Ethernet (Xerox)

" Mitre-bus (Mitre)

" Ford net (FACC)

" NSC-hyperchannel (Network Systems)

" LCN (UNIVAC)

" CABLENET (AMDAX CORP.)

Figure 4-14e Examples of Bus Systems
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Figure 4~-15 Transmission Media
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MaxTrans- No. Network
Local Mission of Archi- AccessNetwork Company Medium Nodes tecture Scheme

Attached Datapoint Broad- 255 Star Proprie-
Resource Corp. band tary
Computer coax/non-
(ARC) coherent

infrared
energy

Cluster/ Nestar Baseband 64 Arbi- CSMA/
One Systems multi- trary CD
Model A Inc. conductor (bus,

cable star,
etc.)

Distri- Apollo Broad- Several Ring Token
* buted Computer band hundred passing

Operating Corp. coax
Multi
Access
Inter
Network
(DOMAIN)

ETHERNET Xerox Baseband 100 Bus CSMA/
Corp. coax CD

HYPER- Network Base- 16 Bus CSMA/
channel Systems band Low CA

Corp. coax

HYPER- Hybrid
bus CSMA/CD

(ACK)

Table 4-2 Typical Local Area Net
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Max length
of Interno-
dal trans- Max

hess mission Data
eme medium Rate Applications Comments

prie- 4 miles 2.5Mb/s Office auto- Each processor

for coax. mation, data node can parti-
1 mi.for processing cipate in up to
infrared 6 ARCs

1000 ft 250 kb/s Office auto- Free-form
Low mation,person- topology due to

al computers, low data rates
general-
purpose

n 3000 ft 12Mb/s Engineering Virtual file
sing Mb/s scientific, accessing, can

CAD/CAM, gen- page across
eral-purpose network in a

virtual en-
vironment

2.5 km 10 Mb/s Office Maximum separa-
automation tion between

stations is
2.5 km.

Unavail- 50 Mb/s Scientific, Link adapters
able large computer allow a node to

centers be attached to
4 independent
trunk-to-trunk

d6 Mbs interfacing via

D mici-owave,fiber
optics, and com-
mon-carrier
lint s.

ea Network Products



Max
Trans- No. Network

Local Mission of Archi- Acc
Network Company Medium Nodes tecture Sch

Modway Modcon Base- 250 Arbi- Toke
Div. of band or tary passi
Gould broad- (bus,
Inc. band star,

coax,fi- etc.)
ber optics

WANGNET Wang Labs Broad- Open
Band Loop
coax

Utility Wang Labs 7 None
Band Channels

Intercon- 32 None
nect Band

16

Wang Broad Many CSMA)
Band Band (802)

coax

Loosely Control Base 108 Trunk Rotat
coupled Data Band + Prio
Network Corp. coax Node Sync
LCN our

OK
IMUX SCI, Base 100 Bus Cont

Systems Band tion

Table 4-2 (coI /



Max length
of Interno-

Network dal trans- Max
Archi- Access mission Data
tecture Scheme medium Rate Applications Comments

Arbi- Token 15,000 ft 1,544 Data process- Compatible with
tary passing Mb/s ing, process microwave and
(bus, control satelite-commun-
star, ications faci-
etc.) lities for com-

mon-carrier
transmissions

Open
Loop

None N/A N/A video Supplies 7
els channels to com-

posite video
equipment

None N/A 9.6Kb/J Modem

64 Kbs Modem

CSMA/CD N/A 12 MHz X.25 SDLC com-
(802) patible and

CSMA/CD com-
patible

Trunk Rotating 3000 ft 50 MHz Large Not x.25
+ Priority Computers compatible

Node Synchron- compares with
our mode Hyperchannel
TOKEN

Bus Conten- 1000 ft. 10 MHz Data Bus
tion Systems

Table 4-2 (continued)
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Max
* IMax of

Trans- No. Network dal
Local Mission of Archi- Access mis
Network Company Medium Nodes tecture Scheme med

Net/One Unger- Base- 250 Bus CSMA/ 400
manu- Land CD
Bass Inc. coaz

Omnlink Northern Broad- 9 Ring Token 500
Telecom band Low passing
Inc. coax

Primenet Prime Base- 15 Ring Token 750
computer band Low passing
Inc. coax

Z-Net Zilog Base- 255 Bus CSMA/ 2 km
Inc. band CD

coax

Table 4-2 (Continued)
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Max length
of Interno-
dal trans- Max

cess mission Data
heme medium Rate Applications Comments

/ 4000 ft 4 Mb/s OEM systems, Intelligent net-
data process- work interface
ing,scientific units can be
office auto- programmed to
mation, pro- interface to a
cess control wide variety of

terminals

ken 5000 ft 40 kb/s Data process- Each node can
ssing ing, office have indepen-

automation dent and
accessible files
peripherals and
processors

)ken 750 ft 10 Mb/s Data process- CCITT X.25-com-
ssing ing, large patible for

computer interfacing to
centers other networks

over long dis-
tances

1/ 2 km 800 kb/s Office auto- Emulator pack-
Low mation,small age allows

business data transfer
computers between Zilog

equipment and
other vendors'
equipment

(Continued)



Max
Trans- No. Network

Local Mission of Archi- Acc
Network Company Medium Nodes tecture Sch

Localnet Sytek Broad- 256/ Bus CSMAj
Systems Inc. band channel CD
20 & 40 coax

Cablenet Amdax Coax 16,000 Bus Hybr
Corp. Broad TDMA

Band cont
tion

DPS Litton Loop SDLC

MITRE X MITRE Coax Bus Hybr
Broad
Band

Cambridge Cambridge Twisted 15 Ring Rotal
Ring Univ. Pair Expand- Slot

(Logica cable able
Ltd. Fiber Optic
(Toltec cable
Data, Ltd)

Table 4-2 (C-

/



Max length
of Interno-

Network dal trans- Max
Archi- Access mission Data
tecture Scheme medium Rate Applications Comments

Bus CSMA/ 30 km 120 kb/s, Distributed Each channel
CD 2 Mb/s processing has CSMA/CD

design auto- accessing. Up
mation to 120 channels

per cable

Bus Hybrid 50 miles 14 MHz Universal Protocol Free
TDMA
conten-
tion

Loop SDLC 200M 20 MHz Main Computer
tie-in using
noses $100,000/
node - see
Electronics
July 14, 1981

Bus Hybrid 1 MHz LWT

Ring Rotating looM 10 MHz For terminals, Will interface
Slots Long Computer tie with most

Distances ins

Table 4-2 (Continued)
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required degree of availability. Also

simpler, and hence more reliable, software

structures may be achievable in a collection

of small distributed processors.

(2) Response time - The distributed system can be

more responsive because direct access to a

computer or processing element can be provided

to smaller user communities. This respon-

siveness can take the form of reduced turn-

around time in a batch environment and faster

response times in a real-time environment.

(3) Flexibility - A distributed system in danger

of overload can be expanded incrementally at

low cost by the addition of more processors.

Also a host computer system in danger of

overload can be preserved by offloading func-

tions onto smaller processors.

(4) Resource sharing - A distributed network of

computing systems allows users at one location

to take advantage of resources that are

available at other locations. These resources

could consist of programs, data buses, and

computational power. Resource-sharing
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networks allow load balancing, backup, and

reduced duplication of effort.

(5) Availability - Enhanced system availability

can be achieved in a distributed system by

means of improved reliability and

maintainability. Specifically, system main-

tenance functions can be performed in parallel

with system operation, if appropriate redun-

dancy in key system elements, such as

processors, memory, displays and peripherals

is also provided.

(6) Transportability - Redundancy also supports

system transportability by providing the means

whereby the system processes can be shifted to

the various distributed data processor

elements.

In summary, the grouping of (1) the distributed

processing systems, (2) the interconnect technologies,

and (3) the overall system characteristics has benefit-

ted the Distributed Processing Tools Definition study

by allowing the requirements for tools and techniques

to be layered by classes of generic military systems

with associated interconnect technologies.
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5.0 STATE-OF-THE-ART TECHNOLOGIES

The scope of embedded distributed processing sys-

tems has grown too broad for the computer

specialists of today to understand. These

specialists concentrate on a single aspect of the

whole instead of the whole itself. Until a new

group of computing professionals assumes the more

general viewpoint the specialist of today must be

used. Their use requires some degree of

modularization. Different groups of specialized

individuals should be able to maintain separate

modules without interfering with one another. This

requires clever design of both hardware and

software. Furthermore, the dichotomy between hard-

ware and software is not clear within embedded dis-

tributed processing systems. A clever design in

hardware impacts software and vice versa. The cur-

rent situation is doubly serious because of the

highly specialized nature of existing computing

personnel. An obvious polarity existswithin these

personnel. Some prefer the hardware issues and

gravitate to an engineering orientation. Others

prefer software issues and gravitate toward real-

time systems, operating systems, compilers,

security, network systems, etc. However, such a
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polarity only indicates the knowltdge gap which

must be overcome by a new group of computer

professionals.

Current organizations generally group their com-

puting design efforts together. Their span of con-

trol ranges from a purely hardware orientation to a

software orientation. The subsequent section ac-

knowledges such an organization. In the following

section, hardware technologies will be addressed.

After those, a section on software technologies is

presented. The issues raised in either section im-

pact the other. Such cross correlation should be

kept in mind as the sections are read.

5.1 Hardware Technologies

Modern embedded distributed processing systems are

being influenced primarily by two hardware circuit

technologies: (1) Very-Large-Scale-Integrated

(VLSI) circuits and (2) Very-High-Speed-Integrated

Circuits (VHSIC). In fact, these hardware tech-

nologies in conjunction with the current software

crisis (software cost, reliability, and management)

has caused a flurry of research during the past few

years; and, this research has resulted in a number
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of technological advances that relate to the em-

bedded distributed processing systems. Figure 5-1

illustrates the industrial trends in VLSI and

VHSIC. The key technological advances can,

generally, be grouped as follows:

Development of algorithmically

specialized processors; e.g., nxn mesh of

interconnected microprocessors

Development of new computer

architectures; e.g., Intel iAPX432 com-

puter System

S Development of specialized embedded

processors with appropriate protocol to

support local area bus networks; e.g.,

VLSI chips to support Ethernet.

5.1.1 Algorithmically Specialized Processors

Examples of algorithmically specialized processors

include designs for (1) Logical Unit (LU) matrix

decomposition which is the main step in solving

systems of linear equations; (2) tree processors

which are used in searching, sorting and expression
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evaluation; (3) dynamic programming matrix proces-

sors which are used for general problem solving;

and (4) joint processors which are used for data

base querying. Many researchers are, however,

going to a more flexible approach which is to

replace these dedicated processing elements with

more general microprocessors and simply to program

the algorithmically specialized processors. This

solution is much more flexible since different com-

ponents can use the same devices by changing pro-

grams and, with more recent research results, the

interconnection patterns. Figure 5-2 shows some

examples of the interconnection patterns used for

* specific functions. Figure 5-3 shows three exam-

ples of switch lattices which are used to recon-

figure the matrices of general purpose microproces-

sor systems. The switch lattices are regular

structures which are formed from programmable swit-

ches connected by data paths.

The Department of Computer Science personnel at

Purdue University has developed a multimicroproces-

sor computer system (which is part of the research

under the Blue CHiP Project) using this general

processor and switching lattices network technology

named the Configurable, Highly Parallel (CHiP)
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(d)

(a)

Ce)
(b)

NOTES:
(a) Mesh, used for dynamic

programming
E f(b) Hexagonally connected mesh

used for LU decomposition
(c) Torus used for transitive

closure
(d) Binary tree used for

sorting
(e) Double tree used for

searching

(c)

Figure 5-2 Interconnection Patterns for Algorithmically

Specialized Processors
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(') (b)

(C)

NOTE: Circles represent switches;
Squares represent processors

Figure 5-3 Three Switch Lattice Structures
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Computer. The objective of this project is to

provide the flexibility needed to compose general

problem solutions while retaining the benefits of

uniformity and locality that the algorithmically

specialized processors exploit. The CHiP computer

is a family of architectures each constructed from

three components: (1) a collection of homogeneous

microprocessors with associated memory, (2) a

switch lattice, and (3) a controller. The switch

lattice is the most important component and the

main source of differences among family members;

i.e., Figure 5-3(a), 5-3(b), and 5-3(c). The con-

troller is responsible for loading the switch

memory. CHiP processing begins with the controller

broadcasting a command to all switches to invoke a

particular configuration setting. For example sup-

pose it is a mesh pattern (see Figure 5-2(a)) and a

three switch lattice representation is used (see

Figure 5-3). With the entire structure intercon-

nected into a mesh, the individual microprocessor

systems synchronously execute the instructions

stored in their local memory. When a new phase of

processing is to begin, the controller broadcasts a

command to all switches to invoke a new con-

figuration setting, say the one for a tree. With

the lattice restructured into a tree interconnec-
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tion pattern (see Figure 5-2(d)), the microproces-

sor systems resume processing, having spent only a

single logical step in interphase structure

reconfiguration. All three switch lattice struc-

tures of Figure 5-3 are capable of representing

such an interconnection pattern. Other modes of

operation include the operation of the microproces-

sor matrix with multiple instruction streams and

multiple data streams. In this mode of

parallelism, each processor takes its instructions

and its data from its associated memory. As in the

other mode, the interconnection network provides

interprocessor communication. The overview of the

CHiP computer family has been superficial, but it

provided a context in which to present one hardware

technological advancement category. Figures 5-4

and 5-5 show other system level architectures of

the microprocessor matrix being used by the

government, under support from System Development

Corporation, at ARC Huntsville, Alabama.

5.1.2 Local Area Networks

In the area of other VLSI/VHSIC technology

advancements, interconnect techniques/technologies

are of vital importance to multiprocessor system
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SYSTEM CONFIGURATOR

6 OBJECTIVES

- EMULATION OF DISTRIBUTED PROCESSING ARCHITECTURES

- HIGH FIDELITY SIMULATION OF LWIRS SENSORS AND RADAR
ANTENNA ELEMENTS

- SUPPORT INTERFACES WITH SPECIAL-PURPOSE OPTICAL PROCESSORS

, FOURTH GENERATION MICROPROCESSOR HARDWARE

- INTEL 8086

- ZILOG Z8000

- MOTOROLA MC 60000

0 SYSTEM CONFIGURATOR

- SWITCHING NETWORKS

- PROGRAMMABLE INTERCONNECTION WITH BIT-SLICE

Figure 5-4 Multiple Microprocessor System
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operation. In fact, all distributed data process-

ing systems are characterized by the requirements

to interconnect and communicate data and messages

between the various processing elements. However,

local area networks and computer bus technologies

have increasingly occupied the attention of

research workers. As discussed in paragraph 4.0,

local area networks are data communications systems

for the interconnection of terminal and distributed

data processing elements that are within one

building, in several buildings on the same

property, or in close proximity; as contrasted with

the morefamiliar local and long-haul networks for

private lines, public switched services, and

private switched systems. The total extent of a

local area network may thus be as little as a few

hundred meters, or as great as several kilometers.

Furthermore, the characteristic that sets recently-

announced local area networks apart from conven-

tional local and long-haul networks is bandwidth.

It is feasible and relatively inexpensive to im-

plement bandwidths or data rates of 10 megabytes

per second (Mbps) in local area networks. Because

of (1) the varying views of local network designers

and users in regard to the diversity of types of

devices to the connected, (2) the need for con-
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sistency of local network protocols with mainframe

protocols, and (3) the desire to interoperate local

networks and various external networks, such as the

packet-switched common carrier networks,

standardized, off-the-shelf local area networks are

somewhat limited. DEC, Intel, and Xerox are,

however, developing a specification with associated

VLSI chips to support Ethernet Carrier Sense

Multiple Access with Collision Detection (CSMA-CD)

method of control. Xerox provides the basic local

network design; DEC contributes the system design

expertise in the area of communication transceivers

and mini-computer networks; and Intel supplies the

expertise in the partitioning of complex com-

munisations functions into micro-computer systems

and VLSI components. The main problem with

Ethernet occurs when two stations begin transmit-

ting at the same instant. Such an event wastes the

channel for an entire packet time. In this method

a station wishing to transmit listens first for

channel clear, and then transmits if such is the

case. Collision detection is also implemented for

the case where two stations transmit

simultaneously. The characteristics of this

network include a 10-Mbps data rate, coaxial cable

medium with 500 meter Computer Interface Unit (CIU)
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spacing, and a datagram link-level protocol. The

VLSI/VHSIC technologies are allowing many other

companies, such as Zilog, to follow suit with their

network versions as well. As discussed previously,

detailed discussions of the characteristics of

various interconnects/networks are presented in

paragraph 4.0.

5.1.3 Bus Technologies

Primary advances in the computer bus technologies,

as related to embedded distributed processing

systems, are computer architectures which are

characterized by multiple computer buses. Detail

discussions of these multiple bus architectures are

presented in paragraphs 6.3 and 7.1.1.

5.1.4 New Computer Architectures - iAPX432

The Intel iAPX432 computer architecture includes,

in addition to multiple buses, the total impact of

the VLSI/VHSIC technologies on modern computer

architectures. Figure 5-6 presents the Intel

iAPX432 structure along with key

features/characteristics. As noted on the figure,

bus bandwidth limits system performance. Figure 5-
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84 3

7

EFFECTIVE 62
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__

PROCESSORS

3 A or UEI.MEMORY BUS

O 5 10 15 20
NO. OF PROCESSORS

a BUS BANDWIDTH LIMITS
PERFORMANCE

9 INCREASING THE NUMBER OF
BUSES. INCREASES
INTERCONNECTIVITY
PROBLEMS

e INCREASING INTERCONNECTIVITY,
INCREASES CONCURRENT
OPERATING CAPABILITY

a INCREASING CONCURRENT
OPERATION INCREASES
DEMAND 09~ THE HOL FOR
CONCURRENT SOFTWARE

Figure 5-7 Impact of Performance Planning for iAPX432
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7 further illustrates this characteristic by

showing that 2 million instructions per second

(MIPS) is the upper throughput performance limit

with current memory bandwidth and a single memory

bus. The figure also shows the relationship of the

effective number of processors versus the number of

memory buses. As an example, a five processor con-

figuration with only one memory bus would have

throughput performance capabilities (measured in

MIPS) of only three processors; whereas, two memory

buses would increase the effective number of

processors to about 3.5. However, a ten processor

configuration would require two memory buses to

achieve a five processor throughput. Figure 5-8

shows the performance of the Intel iAPX432 computer

as compared to other computer types; and Figure 5-9

shows the new approach to hardware fault detection

which can be implemented within Intel iAPX432

architecture. With this new hardware fault

detection, the iAPX432 hardware can detect many

different fault conditions, from attempting to

execute data, to complex faults involving several

processes. Once a fault is detected, the operation

is aborted, and a complete description of the fault

is reported. In a multiprocess system, a fault may

cause one processor to suspend itself and begin
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running diagnostics, but the other processors can

usually keep the system operating.

In summary, advances in VLSI circuits and VHSIC

technologies are having major impacts on modern em-

bedded distributed processing systems. Specific

impacts, on computer system capacity trends are

itemized as follows:

0 Increasing Programming Payloads

0 Exceeding Requirements of Existing

Military Standards

- 1750A

- 1553B

- 1765 (Proposed)

0 Increasing Tightly-Coupled Configurations

0 Increasing Concurrent Hardware Operation

0 Improving Error/Correction Capability

In a like manner, the impacts of VLSI/VHSIC tech-

nologies on computer timing trends are summarized

as follows:
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Figure 5-9 Hardware Fault Detection
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Faster Hardware Performance

Increases in Concurrent Software

Increases in Solution Complex Timing

Problems

* Transparent Higher Order Languages (HOL)

With Hardware-Related Timing Mechanisms

* Transaction-Driven Systems

Highly-Distributed Intelligence with

Independent Decision Making

Vt 5.2 Software Technologies

As the scope of embedded distributed processing

systems continues to grow, their productivity

becomes increasingly important. Software en-

gineering is crucial to meeting that need. More

manageable approaches to software development are

essential. Important new aspects of software en-

gineering address the following areas:

Improved tools for software developments

74



Imprdved facilities for software development

Powerful specification and implementation lan-

guages

- Effective human interfaces with software

- Software performance engineering

- Appropriate modularizations

- Enhanced adaptability and reusability of

modules

Assurance of correctness.

Present embedded distributed processing systems are

being implemented with VLSI components. Such com-
ponents require their own internal operating sys-

tems which are usually implemented in microcode.

Software development tools for these VLSI com-

ponents can be characterized as inadequate. This

characterization is not new. Users of large main-

frames have long encountered inadequacies when they

attempt to build integrated portfolios of ap-

plications programs upon a centralized data base.

The availability of tools within the large main-

frame environment has been scarce. In the VLSI en-

vironment such tools are virtually non-existent.

Despite such obvious tool shortages embedded dis-

tributed processing systems continue to grow and

expand. Underlying this growth and expansion is a
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universal desire to increase productivity. The

problem comes in realizing that desire. The objec-

tive is difficult to achieve. Some degree of per-

formance management must be applied in the initial

stages of the design phase. Furthermore, perform-

ance management issues must continually be ad-

dressed throughout the remaining software develop-

ment lifecycle phases. Subsequent sections will

address the new aspects of software engineering

which have been enumerated above in the present

section.

5.2.1 Improved Tools for Software Development - Set(s)

of Tools Covering Entire Lifecycle

The Ada Programming Support Environment (APSE)

provides its own set of tools; i.e., compiler,

debugger, linker-loader, editor, run controller,

and configuration manager. With the growing use of

object-oriented modularization such tools are not

sufficient. Additional ones with carefully defined

links to each phase of the software system lifecy-

cle are required. Additional simulation tools

would help. Examples would include simulators to

simplify feasibility analyses, requirements

languages, software specification languages, design
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languages, and static analysis. Most helpful would

be formal verification tools, testing tools, change

impact analyzers, and optimizers. Management aids

for planning and control are also needed.

More than a single set of tools covering the entire

lifecycle remains a distinct possibility. No sin-

gle methodology seems to be emerging which means

divergence might require several tool sets. Such

divergence is not in concert with standardization.

Consequently, unless a methodology offers an impor-

tant feature which is unique, it should not be used

as justification for an independent tool set.

Many individual tools establish development

requirements of their own. Despite such need the

subsequent concentration should be toward the com-

plete tool set applicable throughout the lifecycle

phases. The obvious benefit would be the reduction

of errors but greater continuity would also be

evident between the phases.

Several efforts have already been undertaken to

develop a toolset for the entire lifecycle. One

such effort is the Unix Programmer's Workbench

(PWB) which possesses tools with crude
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compatibility. That compatibility derives from the

byte-string nature of all Unix files which enables

any tool to read the output from any other tool.

Meaningful programming is another matter. Another

effort is Maestro which exhibits clear com-

patibility as well as clear incompatibilities.

Neither Unix nor Maestro contains the full spectrum

of desired tools. Other efforts include the

development environment CADES by ICL, USE by UCSF,

Gandalf by CMU, and DREAM by the University of

Colorado at Boulder.

5.2.2 Improved Facilities for Software Development -

Programmer Workstation

The arrival of VLSI circuitry enables processing

power and memory to be consolidated locally for use

by programmers. The concept is to provide advanced

graphics and displays in a single unit called a

programmer workstation. These multi-media, multi-

screen stations can provide powerful

programmer/computer interfaces which can increase

programmer productivity. One example of this ap-

proach is the SPICE workstation at Carnegie-Mellon

University.
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Workstations can provide an interface between the

programmers and software engineers with their

respective computer systems. The centralized com-

putational power provides the data base management

capability. Modularity of both hardware and sof-

tware allows modification to match individual pro-

grammer need and the installation of updated

technology. Standardized features and interfaces

within the workstation can reduce training time for

programmers assigned under new projects.

Considerable research into workstations is needed.

Low cost configurations with appropriate modularity

must be combined for ease of use by the programmer.

Workstation software has yet to be established.

Such software must be modified easily, portable,

and capable of rapid installation.

Current interest in local area networks has

heightened the interest in programmer workstations.

Groups in human factors research and standar-

dization are also interested in such workstations.

Many types of workstations are currently under

development. Most prominent is SPICE at the

Carnegie-Mellon University. Another is being
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developed by Xerox at its Palo Alto Research

Center. The National Science Foundation is spon-

soring Project Quanta at Purdue University to

generate a problem solving environment.

5.2.3 Powerful Specification and Implementation

Languages - Configurable, Highly Parallel

Computers

Under von Neumann architecture used by

uniprocessors, computer functionality can be

changed simply by changing programs. This ability

to change has become so familiar that it is now

A. considered to be obvious and is seldom discussed.

Structured programming has produced a top-down

methodology ideally suited for this uniprocessor

architecture. However, programs can be viewed from

a variety of directions. In their most basic form

they simply are sequences of operations on a group

of data structures. Consequently, programs can be

typified by two sets: 1) a set of data structures

and 2) a bot of operations on those data

structures. Obviously such a view of programs does

not necessarily imply von Neumann architecture.

Furthermore, the top-down methodology of structured

programming does not enjoy its previously favored
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status. This basic and more general view of pro-

grams was not important until computers were con-

figured around data structures and their

operations. With the advent of VLSI circuitry that

point has now been reached.

Currently VLSI circuit technology provides the

potential for highly parallel computers which do

not rely on von Neumann architecture. These

devices have parallel functionality which can be

changed by changing programs operating in parallel.

The original approach used by structured program-

ming needs modification. In its place is an

object-oriented modularization which emphasizes

data structures. Each data structure is carefully

delineated and the operations allowed on that data

structure is precisely defined. The data struc-

tures themselves are strongly typed as are their

allowable operations. Each module is handled as if

it were a single entity.

VLSI circuit technology raises the following issues

which must be addressed.
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Should algorithmically specialized

processors be built focusing on com-

putationally intensive problems?

How should alternative architectures be

evaluated?

How should alternative software ap-

proaches be compared?

Several efforts are underway to examine the impact

of configurable, highly parallel computers. One

such effort is under Dr. Lawrence Synder of Purdue

University under the sponsorship of the Office of

Naval Research. Another is under Dr. Ron Krutz at

Carnegie-Mellon University under the sponsorship of

the VHSIC program. The impact of non-von Neumann

architecture is not sufficiently known as far as

software is concerned. Alternative software ap-

proaches become probabilistic under highly parallel

configurations. Testbeds capable of comparing data

structures and data structure operators need to be

implemented immediately. Otherwise the problems

will be addressed after they occur and under

situations of duress.
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5.2.4 Effective Human Interfaces with Software -

Presentation and Manipulation

Human factors are important in achieving the best

interface between machines and software engineers.

These factors relate to the characteristics of pro-

blems being solved as well as the tasks being

performed. Although such factors are not part of

an automated program development environment, their

presence or absence impacts that environment.

Under a human factors approach the resources of

local hardware, communications, and software tools

are brought to bear on the basic needs of a

programmer. The user interface is tailored to the

semantics and usage patterns peculiar to each

programmer.

The timesharing systems of today are not oriented

to video and/or non-keyboard communications with

high-bandwidth input/output. New systems must ac-

commodate many different communications media, in-

cluding audio, graphics, light pens, image

processing, optical character recognition, and

movable devices. As yet the necessary software to

implement such highly interactive forms of

human/computer interface has not been developed.
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Several efforts are underway to improve the human

factors associated with software engineering. Most

are in the conceptual stage; e.g., the professional

programmer based systems (PPBS) by DEC and the

Automatic Software Generation System (ASGS) by John

G. Rice. As concept becomes reality, the impact of

improved human factors will complement software

productivity.

5.2.5 Software Performance Engineering - Performance

Management Techniques

Performance is one of the most important aspects of

software quality. Among users of distributed

processing services, it can be the difference

between satisfaction and absolute rejection. High-

performance internal support systems are vital to

the routine operations of distributed networks.

Without rapid response time, productivity is

impacted. Extra time is required for implemen-

tation and extra effort is required to modify sub-

sequent performance problems. Performance is not

normally considered, but only when it becomes a

problem. Performance management techniques must be

applied from the initial design stage throughout

the entire lifecycle.
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Engineering for performance throughout the lifecy-

cle has obvious advantages. The quality of a sof-

tware product can. be improved and productivity can

be increased through such engineering. As a first

analysis the following information is necessary:

- work-load specifications,

- software structure,

- execution environment,

- performance goal, and

- resource requirements.

The work-load specifications are derived from the

users of distributed processing services. Software

structure is established during the design phase.

The execution environment anticipates a hardware

configuration and an operating system. The per-

formance goal is established by management in

agreement with users. Resource requirements are

derived projected usage levels. The relevance of

results depends on the accuracy of information

sighted previously.

Several efforts have been made to establish per-

formance techniques. The longest standing such ef-

fort is under Dr. 3. C. Browne at the University of
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Texas and Information Research Associates. Under

sponsorship of NASA Langley Dr. Browne has im-

plemented a strategy to analyze software perform-

ance called ADEPT, i.e., A Design-based Evaluation

and Prediction Technique. Extensions to ADEPT have

been made and have been included in PAWS, a

Performance Analyst Workbench System. Much remains

to be done. More extensions need to be made if

recent VSHIC architecture and software advances are

to be accommodated. The impacts of non-

deterministic, transaction-driven VLSI con-

figurations are little understood. To avoid mas-

sive performance problems in the future the present

trends must be completely understood in terms of

performance management. To do otherwise would be

unconscionable.

5.2.6 Appropriate Modularizations - Object-Oriented

Modularization

Although the term object-oriented is new, its

concept is not. Over a decade ago structured pro-

gramming evolved a methodology which could produce

partially independent modules of programming

statements. The approach was top-down with semi-

independent modules being broken down into sub-
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modules until program statements are eventually

produced. Under an object orientation the charac-

teristics of such a process change. Related pro-

gramming statements are grouped around like data

structures. The data structure is emphasized and

the operations which can be allowed are carefully

delineated. These structures are strongly typed as

are their allowable operations. Data modules are

handled as if they were single entities. The num-

ber of data types available are patterned to the

needs of individual programs. The approach is

bottom-up with data structures being combined to

produce even more complex data structures. The

structured programming and object-oriented tech-

niques complement each other.

Object-oriented techniques have remained conceptual

in scope since implementation requires support from

a programming language. The strong typing

capability complicates the language facilities.

Each type of definition must support "visible" as

well as "hidden" parts. Unless some parts remain

"hidden" every user would be able to modify each

definition. Consequently, the goal of an object-

oriented implementation is to limit users to

"visible" parts within definitions. This limited
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access has important implications. None of the

popular languages implement such a concept with the

exception of Ada. However, no validated Ada com-

piler has yet been produced. Complete implemen-

tations of object-oriented techniques await the ar-

rival of these Ada compilers.

Ada packages for embedded distributed systems

should receive special emphasis. The standar-

dization of signal processing and navigational al-

gorithms are distinct possibilities. Such standar-

dizations have impact in

command/communication/control systems. Packages

for graphics can address line drawing, sub-screen

manipulation, character manipulation, three-

dimensional manipulation, shading, sealing, etc.

Proposed standards for certain usage areas such as

data base management and graphics already exist.

Other candidates for software standardization are

already underway. The primary benefit to object-

oriented modularization is the exploitation of com-

monality between various embedded computer systems.

The resulting emphasis will be for rigid definition

of language, portable compilers, and special lan-

guage constructs for packaged software.
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5.2.7 Enhanced Adaptability and Reusability of Modules

- Integrated Software Support Environment

System adaptability is the ease with which changes

can be made. At one extreme are systems with many

capabilities which are fixed and not subject to

change. The other extreme are systems with few

features which are easy to modify. Such systems

are good items for software toolkits. However,

they do have problems. They must be recombined to

fit the situation in which they are used.

Depending upon the process, the recombination can

be formidable. Beginning programmers find systems

with many fixed capabilities easier to implement.

Experts prefer systems with few, easily-modified

features. Such capability for modification is of-

fered by the integrated software support

environment. Beginning programmers must undergo

rigorous training in order to use it effectively.

The integrated software support environment will

evolve from the Ada Programming Support

Environment. The environment should be easy to

learn and equally easy to use. The thrust of such

an environment is the generation of a compatible

tool set covering the entire lifecycle. This

thrust provides a framework for other thrusts.
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The greatest potential exists for synergy between

tools and in the cumulative improvement in

production. The concept of monitoring accesses to

specific tools is the beginning of a toolkit op-

timization process. The most frequently used tools

can be cached for quick access. Furthermore, the

more popular a tool becomes, the more general its

access should be. The concept of reusable generic

tools awaits the implementation of an integrated

software support environment.

The foremost effort to implement an integrated sof-

tware support environment is associated with the

implementation of the Ada Programming Support

Environment. A layer of structure will be needed

between the APSE and sets of individual tools.

Such a layer should support other languages besides

Ada. It should provide standards for combined and

hidden invocation, maintain data structures, and

manage multiple representations. Within such an

environment, different sets of tools based upon

different methodologies can evolve.
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5.2.8 Assurance of Correctness Automated

Verification Systems

The sooner an error is detected, the less it costs

to repair. The activity associated with error

detection is termed verification. Such activity

validates the result of each successive step in the

software development cycle. Validity is esta-

blished by verifying the intent of the previous

step has been satisfied by the results of the

present step. The objective of an automated

verification system is to detect and correct errors

as rapidly as possible. New theory needs to be

developed concerning the points at which various

&types of errors can be committed and detected.

Practical methods need to be constructed for

verification and detection. Errors obviously occur

in all aspects of software development including

requirements, design, and documentation. Knowing

the earliest theoretical point at which

verification can be done would help. If that

earliest point could be established, the form of

the verification itself could be determined. Once

determined the verification might possibly be

automated which would present the best of all poss-

ible worlds.
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A number of efforts have already been undertaken to

verify statements of requirements and design. Most

prominent has been the University of Michigan and

its Problem Statement Language/Problem Statement

Analyzer (PSL/PSA). The approach acknowledges the

best design and best code in the world will not do

the job if the user requirements are not adequately

stated. Without proper requirements definition,

structured design and structured programming help

disaster arrive more quickly. Consequently,

PSL/PSA concentrates on the documentation as-

sociated with requirements definition and the dif-

ficulty of producing and managing manually

generated documentation. The techniques used by

PSL/PSA have been extended and revised by efforts

originating elsewhere. These other efforts include

TRW, Boeing, Hughes, and the Army Ballistic Missile

Defense Advanced Technology Center. Additional ef-

forts have been undertaken by High Order Software

and Computer Sciences Corporation.
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6.0 OBJECT-ORIENTED MODULAR!ZATION

The concept of object-oriented modularization

provides a high-level abstraction of the essential

characteristics of embedded distributed processing

systems, described in section 4.0, and the key

features of the state-of-the-art hardware and sof-

tware technologies, described in section 5.0. This

abstraction plays a central role between these ob-

served features and the specific requirements and

techniques needed to support each lifecycle phase

of embedded distributed processing systems that are

described in section 7.0. It will be shown in sec-

tion 7.0 that particular manifestations of object-

oriented rodularization are directly relatable to

support of the embedded distributed processing sys-

tem lifecycle phases. Hence, in this section 6.0

the concept of object-oriented modularization will

be introduced, developed, and explained.

Subsequent subparagraphs of this section will (1)

indicate the relationship of object-oriented

modularization to abstract data structures and in-

formation hiding, (2) extend the object-oriented

modularization abstraction to hardware and software

for embedded distributed processing systems, and,
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finally, (3) discuss the benefits of this viewpoint

to embedded distributed processing systems.

6.1 Description of Object-Oriented Modularization

This section begins by defining the terms object

and modularization; then describes object-oriented

modularization, and finally concludes with an exam-

ple contrasting object-oriented modularization to

conventional modularization.

An object is an entity that contains information in

an organized manner. This definition is pur-

posefully general to enable its application to both

hardware and software. For example, in software an

object can be thought of as a data structure; viz,

a simple variable or an array or a complex record.

In hardware an object could be a register, an I/O

buffer, or even a VLSI component of a larger

system. An object has three additional charac-

teristics that permit segregation of similar

objects.
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(1) Each object has defined for it a set of

operations that manipulates the contained

information.

(2) Each object can be addressed (referenced) as a

whole.

(3) Each object has a label that tells the

object's type.

Objects are a very useful concept in dealing with

distributed systems and increasingly sophisticated

hardware designs. For example, communications

ports, schedulers, and support software packages

can all be considered as objects. This viewpoint

creates a unified framework for the discussion of

requirements for embedded distributed processing

systems. Previously, communication ports,

schedulers, and support software packages were con-

sidered as separate entities - as being inherently

different. Objects provide a higher level, con-

sistent method for analysis, design, and implemen-

tation of these kinds of entities for embedded dis-

tributed systems.

Modularization is traditionally viewed as the par-

titioning of the hardware/software task based upon

a stated criterion. There are many ways to
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modularize; by function, by interface

communications, by priority, etc. This traditional

concept of modularization can be directly extended

to include "modularization by object". Here, the

basis for the partitioning of the tasks is the

creation of objects. Modularization is now more

than a simple partitioning; it is the recognition

and assignment of a particular responsibility as-

sociated with the object. Modularity is now raised

to a higher-level commensurate with the object

concept.

Combining these two definitions, object-oriented

modularization is the segmentation of the

hardware/software task based upon the respon-

sibility and domain of extent of the identified

objects. The key feature of object-oriented

modularization is that each object executes its

responsibility without the need to know of the

details of the internal structure of other objects.

The objects communicate amongst themselves in a

very well defined manner. In an object-oriented

modularized system, the internal representation of

any module could change, and the other object

modules would not have to be changed. This feature

is a great benefit in the software maintenance
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environment. As an example contrasting conven-

tional modularization with object-oriented

modularization, consider Figure 6-1.

The conventional modules (M's) could, for example,

represent major processing steps and the data

structures (D's) are accessed by the modules. In

conventional modularization, it is possible for a

particular data structure, for example Dl, to be

accessed by more than one module. The disadvantage

of conventional modularization is that whenever a

module or data structure is changed, several other

modules or data structures may also have to be

changed. This single fact decreases the system

reliability. However, in object-oriented

modularization, the central theme is a one-to-one

correspondence between object modules and their

data structure. A change in a module or data

structure affects only that module or data struc-

ture - no others. The internal details of object

modules and data structures are shielded from other

system elements. The resulting benefits are easier

maintenance and improved reliability.
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CONVENTIONAL OBJECT-ORIENTED

MODULARIZATION MODULARIZATION

M, D M' D',

Conventional Data Object Data
Modules Structures Modules Structures

Arrows indicate data structures directly manipulated by
the module.

Figure 6-1 Conventional Modularization Versus
Object-Oriented Modularization
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6.2 Relationship of Object-Oriented Modularization to

Abstract Data Structures and Information

Hiding

An abstract data structure defines a class of at-

tributes that is completely characterized by the

operations available on those attributes. The goal

of an abstract data structure is to permit the ex-

pression of relevant details and the suppression of

irrelevant details. In modern higher order lan-

guages it is desirable to provide the capability

for user defined abstract data structures. This

capability eases the programming task, makes the

resulting code easier to understand, and provides a

mechanism for the user to more easily communicate

in a natural manner. Consequently, system

reliability is enhanced. The particular implemen-

tation of the abstract data structure in a language

is accomplished by the procedures and utilities

that embody the defined operations.

The principle axiom of the Theory of Information

Hiding as proposed by D. L. Parnas is that a sof-

tware design methodology should shield information

developed at one level of design from its use on

another level of design. consider two procedures A
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and B which do not reference each other directly.

The Theory of Information Hiding states that the

fundamental output (considered as level 1) of

procedure A should not depend on the detailed im-

plementation (considered as level 2) of procedure

B. For example, if procedure B implements a stack

operation by using a linked list and if the output

of procedure A is to return the top item of the

stack, then procedure A should not depend upon

procedure B's linked list implementation.

Procedure A only needs to know that procedure B

provides a stack; how the stack is implemented is

unimportant to procedure A. The detailed in-

formation of procedure B is "hidden" from procedure

A. The benefit of this methodology is that if the

implementation of procedure B changes, for example

the linked list is replaced by an array or

utilization of PUSH and POP hardware capabilities,

procedure A remains unchanged.

The object-oriented modularization described in

section 6.1 incorporates the main features of both

abstract data structures and information hiding.

Recall that each object has a set of operations

defined for it that manipulates its information.

This aspect directly draws from the domain of ab-
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stract data structures. As shown in Figure 6-1,

the key feature of object-oriented modularization

is to partition module, data structure pairs from

other module, data structure pairs and thereby

minimize the access of a particular data structure

by more than one module. The effect is the same as

information hiding; namely, changes to a particular

module do not affect other modules. Hence, the

object-oriented modularization is in concert with

the current theories of abstract data structures

and information hiding.

Object-oriented modularization is more than simply

the amalgamation of abstract data structures and

information hiding. Both of these concepts have

traditionally been limited to software. However,

the object-oriented modularization can also be ap-

plied to hardware elements. The key benefit here

is that for embedded distributed processing system,

object-oriented modularization provides a unifying

concept for analysis and design at the

hardware/software system level.
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6.3 Example Application of Object-Oriented

Modularization to an Embedded Distributed

Processing System

As a concrete example of the application of the

object-oriented modularization to an actual em-

bedded distributed processing system, we shall

examine the Intel iAPX432 System. The iAPX432 is a

new product from Intel. It is a high technology

device that is anticipated to have a profound im-

pact upon the design of future embedded distributed

processing systems. The design of the iAPX432 it-

self is an outstanding example of object-oriented

modularization. For these reasons, it has been

chosen to illustrate object-oriented

modularization.

Figure 6-2 shows the top-level architecture of a

typical product that would contain an embedded

iAPX432 system to accomplish the product's ap-

plication task. In addition, the most important

objects are indicated, and these objects will be

discussed in greater detail in the following

subparagraphs.
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Subsystems Communications Bus

LAPX 3 e~c Processor
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Figure 6-2 Top-Level Architecture and Objects in the

iAPX432 System
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The peripheral subsystems represent sensors,

input/output devices, or functional units (e.g.

inertial navigators, radars, line drivers, etc.),

and these subsystems communicate via a common com-

munications bus. The peripheral subsystems could

also contain locally accessible memory. The inter-

face processor is an intelligent link between the

subsystems communications bus and the iAPX432 in-

terconnect bus. The interface processor permits

data transfer from the peripheral subsystems to

iAPX432 main memory, and the interface processor

contains the software for determining task

execution priorities, scheduling, and dispatching

(i.e., the policy object). Any number of iAPX432

general data processors can be put onto the inter-

connect bus and access main memory. Memory conten-

tion is resolved via the object-oriented

modularization mechanisms in the iAPX432. The

small arrow (--->) represents a reference of one

object to another object. (Recall that two of the

characteristics of an object are that it can be

referenced as a whole and it has a label.) One ob-

ject can access another object if and only if it

contains an object reference. This mechanism

provides protection of objects from other objects

that do not have explicit access authorization.
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The processor, task, context, and dynamic data ob-

jects are new concepts present in the iAPX432. The

linkage of these objects minimizes erroneous access

to software modules and provides a highly flexible

capability that supports the dynamic environment

needed for distributed processing. All of these

objects are recognized by the iAPX432 hardware;

hence, these object linkages do not degrade

throughput. The application software modules

reside, of course, in main memory. These modules

are designed and coded by the user to accomplish

the product's application task. The application

modules are developed using standard practices of

software engineering; preferably using the object-

oriented modularization techniques described in

section 6.1. The user application software (i.e.

the domain objects) represents the bulk of main

memory usage. The processor, task, context, and

dynamic data objects are very minor tasks. The

iAPX432 object-oriented modularization provides

flexibility and protection for the user application

software; it does not burden the software develop-

ment activity.
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6.3.1 Policy Object

The policy object has the responsibility of deter-

mining how the tasks to be executed are shared

amongst the general data processors. Some typical

criteria for policy decision are first-come-first-

served, round-robin, priority, deadline, etc.

Because the policy object must be tailored to the

particular application, the policy object is im-

plemented in software and resides in the interface

processor. The scheduling and dispatching of tasks

are accomplished in a manner consistent with the

policy object. However, in order to increase

throughput, the scheduling and dispatching func-

tions are supported by hardware. The policy object

contains a reference to the dispatching port

object.

6.3.2 Dispatching Port Object

The dispatching port object is a hardware-

recognized object that provides communications

between the policy object and a particular general

data processor. If all the processors are busy,

the policy object can queue tasks in the dispat-

ching port object awaiting a processor to become
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available. Likewise, if a processor is idle, it

can wait at a dispatching port object for a task.

Special hardware instructions SEND and RECEIVE

provide rapid dispatching of tasks.

6.3.3 Processor Object

The processor object contains the information per-

tinent to a particular general data processor at

each instance of time. Each processor has a

processor object. The processor object contains

information such as the processor status (e.g. run-

ning or waiting), diagnostic and machine check

information, and an object reference to the par-

ticular task being executed. The object reference

to the task being executed dynamically changes as

the task being executed changes. Figure 6-3 shows

an example of three processor objects at two points

in time. At time tl, processor 1 is executing task

B, processor 2 is halted, and processor 3 is

executing task A. At a later time t2, processor 1

is still executing task B, processor 2 is now

executing task C, and processor 3 is now halted.

The processor objects dynamically changes as the

tasks and processors are dispatched by the policy

object. However, at each instance of time the
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status of each processor is completely determined

by interrogation of its processor object. The

processor object is referenced by the dispatching

port object.

6.3.4 Task Object

The task object is the data structure that contains

information about the task being executed; for

example, the status of the task (running or

waiting), how the task should be scheduled, and an

object reference to the particular instance of the

task being executed. The task objective is also a

hardware recognized object to speed processing.

Figure 6-4 shows how the task object changes as two

tasks take turns running on a single processor. At

time ti, task A is running and task B is waiting.

At a later time t2, task A is now waiting and task

B is now running.

6.3.5 Context Object and Dynamic Object

A task object can have more than one instance (or

copy) of the procedures in memory at the same time;

however, only one copy can be executing at a time

in a particular general data processor. This
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situation commonly occurs for re-entrant

procedures. A context object is the data structure

that contains information pertinent to the par-

ticular instance of the task that is being

executed. For example, the data contained in the

context object includes an instruction pointer for

this context, a stack pointer for this context, a

return link to the task object, and references to

all objects that can be accessed by this context.

The context object is the fundamental vehicle for

access of a particular instance of the task.

Figure 6-5 shows how the context object changes in

a typical subroutine calling sequence.

6.3.6 Domain, Instruction, and Static Objects

The domain object is a list of all the static ob-

ject references to other applications modules,

executable instructions, anJ static data. The

object-oriented modularization is realized in the

applications area by the structure of the modules

and data structures written by the applications

software engineer in accordance with the discus-

sions presented in section 6.1. The domain object

contains a reference to all of these objects. The

instruction object contains only executable
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instructions. The general data processor only uses

the instruction object as a source of instructions

to fetch and execute. The static data object con-
tains static data that remains in memory after a

particular context execution is complete. The in-

struction and static data objects are typically the

end leaves of the iAPX432 object tree.

6.3.7 Summary of Benefits

The object-oriented modularization as exemplified

by the iAPX432 has three distinct benefits. First,

the object-oriented modularization is used in both

the hardware and software. This approach provides

a unified viewpoint to the entire iAPX432 system.

It is anticipated that future embedded distributed

processing systems must address the hardware and

software as a total system. Object-oriented

modularization provides a convenient, consistent,

and flexible systems methodology. Secondly,

frequently used objects (e.g., dispatching port,

processor, task, and context objects) are supported

by hardware capabilities to provide improved

performance. Finally, the use of object references

provides a flexible system that still incorporates

careful control of object access. The control of
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object access is a vitally important problem in em-

bedded distributed processing systems. The iAPX432

illustrates many of the problems of embedded dis-

tributed processing systems, and it is felt that

the iAPX432 offers many viable solutions to these

problems.

6.4 Benefit of Object-Oriented modularization to

Embedded Distributed Processing Systems

Embedded distributed processing systems are typ-

ically utilized in real-time, process control

applications. These applications require a careful

orchestration of the hardware and software;

consequently, the hardware and software tasks must

be viewed from a total systems standpoint. Object-

oriented modularization as described in section 6

provides such a system level viewpoint. It is

proposed that object-oriented modularization

provide a central theme for the analysis, design,

and implementation of embedded distributed process-

ing systems. In section 7 we will explore specific

manifestations of this object-oriented

modularization theme and relate them to

requirements and techniques to support the embedded

distributed processing lifecycle phases.

114



7.0 IDENTIFICATION OF REQUIREMENTS AND TECHNIQUES

FOR SUPPORT OF EDPS LIFECYCLE PHASES

Because of rapid advances in hardware technology

both large and small computing systems will grow at

an ever-increasing rate. The effective use of such

systems will depend upon the ability of people to

develop effective software. This software develop-

ment must be of high quality and low cost. Because

people have grown more expensive than machines,

automation has an important role to play. The key

element in that automation is the development of

effective software tools. Major issues associated

with the development of these software tools are as

follows:

- the tools must form an integrated system which

supports software throughout its lifecycle

- the role of breadboard models in requirements

analysis and design phases of software

development must be fully supported, and

- these tools must be developed under conditions

which assure their successful use.

Much progress has been made in program development

tools. However, much remains to be done on system
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construction tools. Tools are needed now to sup-

port independent specification and implementation

of software modules.

The introduction of distributed systems on a large

scale brings new challenges to the development of

software. The design, development, testing and use

of these systems demand increased simulation test-

ing and more analysis tools in software

development. In many hardware development

activities, the product design phase requires the

development of breadboard versions to investigate

the difficult issues of system construction. A

great need exists to quickly assemble and test

breadboard versions. Performance needs to be

-analyz¢i. and software design solidified before im-

plementation begins.

7.1 Specific Manifestations of Object-Oriented

Modularizations

Under object-oriented modularization the process of

programming is transformed into a generic activity.

Related programming statements are grouped on the

basis of data structures. Operations are defined

in terms of their impact on specific data
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structures. Both data structures and operations

are strongly typed as to whether they are permissi-

ble or not. Furthermore, access to specific data

structures can be tightly controlled. Once access

has been accomplished, permission to change the ac-

cessed data structure may or may not be granted.

If permission is not granted, the data structure is

considered to be private. If allowed, the struc-

ture is visible. Graduations of access are a

powerful tool under object-oriented

modularizations. Data files and programs themself

are handled as if they were individual data

structures. A bottom-up orientation is possible

with data structures being combined to form more

complex structures. This emphasis on data struc-

tures demands an appreciation based upon

experience. Novice programmers will undoubtedly

prefer the simplicity of individualized programs

and file structures. To program generically, more

rigor is required. Object-oriented modularizations

have many manifestations. Their consequences are

only now being understood. The following para-

graphs only begin to document such manifestations.

Undoubtedly many more manifestations will be added

as experience is gained. Most importantly an ef-
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fort to gain needed experience must start

immediately.

7.1.1 Deterministic Versus Probabilistic Systems

Von Neumann architecture within a uniprocessor en-

vironment is typified by Figure 7-1. Obviously the

configuration is comprised of five functional com-

ponents connected by a systems bus. The bus is

somewhat misleading since its operation is not

straightfoward. It is a combination of three

distinctly different buses itself. Those three

parts are a control bus, an address bus, and a data

bus. Each has its characteristic architecture.

The control bus is obviously the agent of the

Process Control function within the von Neumann

architecture. It instructs the actions to be taken

by all the other functions within the architecture.

Input and Output functions either place 3ata on the

data bus or take data off the data bus. Of course

what action is performed is under the direction of

the control bus. The Arithmetic Logic Unit or ALU

performs either the arithmetic or logic required by

the Process Control function. The results are

usually placed on the data bus for subsequent usage

within the architecture; e.g., Output or Storage.
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The Storage function either takes data from the

data bus and places it in the location designated

by the address bus or vice versa. The action taken

is directed by the control bus. In summary the

Systems Bus represents the concerted action of its

three components.

Data flow between functions within a von Neumann

architecture requires the use of registers. In ef-

fect such registers represent the beginning and

ending points for the System Bus function. Since

each register can be thought of as a "box" whose

contents can be filled or emptied, the System Bus

can be visualized as a postal service system. Each

"box" is a mailbox in which letters are either

delivered or dispatched. Such an analogy is valua-

ble to illustrate certain architectural problems.

When a letter is needed, it may not have arrived at

its mailbox. Worse yet, the letter which was

previously dispatched may not have been picked up

and erroneously be misinterpreted as newly-arrived.

In uniprocessor configurations which tend to be von

Neumann in nature, the architectural problems are

easy to avoid. The straightforward architecture

illustrated previously can be expanded to exhibit
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the necessary mailboxes. Figure 7-2 illustrates

this expanded von Neumann architecture.

Such expansions offer new architectural

alternatives. The advances by Very-Large-Scale-

Integration (VLSI) circuitry are exploring these

alternatives. As a result, concurrent operations

are becoming commonplace. Intelligence is being

expanded to new architectural locations within von

Neumann architecture. As an example, the mailboxes

alluded to previously can assume their own

intelligence. More appropriately they can be

termed intelligent Interface Processors. Each such

processor has its own von Neumann architecture with

its own Input/Output being provided by either the

System Bus or other von Neumann components.

Furthermore, the actual computational process

within a von Neumann architecture can be separated

from the input/output process. In effect, two

buses are introduced under such an arrangement: a

system bus and a periphery bus. Figure 7-3 illus-

trates such an architecture. It is exemplified in

the marketplace by the INTEL iAPX432

micromainframe. What emerges in such architectures

is a layering of specialized buses. Figure 7-3 re-

presents the architecture of a layered bus

architecture.
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The important property of layered bus architecture

concerns its operation. The communication between

layers becomes decidedly non-von Neumann or

probabilistic. Such a phenomenon is enabled by the

way the different buses are operating. Each is

capable of operating independently of the other

with communication occurring within mailboxes. At

the topmost level the device appears to be

interrupt-driven. However, at lower levels the

device becomes transaction-driven which is the

preferred architecture for distributed processing

applications. Transactions occur independently of

one another without an assumed interrupt schema.

Such a philosophy has been adopted by the com-

munications used with satellites and packet swit-

ching radio networks. New channel allocations have

been implemented around open system, transaction-

driven interconnect architectures. Projected ad-

vances in VLSI circuitry and Very-High-Speed-

Integrated Circuitry (VHSIC) are adopting open sys-

tem architectures to accommodate distributed

systems. As a consequence, the operation is

becoming more probabilistic. Various layers within

the architecture can be operating independently of

one another. Furthermore, components within a sin-

gle interconnect level may also be operating in-
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dependently of one another. To comprehend the

operation of such configurations requires a

knowledge of an underlying probability

distribution. Not only must the transactions to be

processed be known but their probability of occur-

rence must also be known. This requirements is new

and very necessary in the emerging non-von Neumann

architecture. The more layers of independently

operating buses implemented, the more probabilistic

subsequent operation becomes. Tools developed for

von Neumann architecture are confronted with a non-

von Neumann operation. The applicability of as-

sumed von Neumann tools has yet to be established.

Software tools are lagging behind VLSI and VHSIC

developments. The situation needs to be corrected.

7.1.2 Global Timing

Advances within VLSI circuitry and the emerging

VHSIC technology are enabling transaction-driven

architectures to be implemented. In such architec-

tures the predictability of time divided mul-

tiplexing is not available. Transactions either

occur or they do not. Such operation accommodates

a degree of spontaneity never before achieved.
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When spontaneity is accommodated, a whole new ap-

proach must be applied. Transactions can overlay

one another and compete for the same system

resources. In the worst case transactions occur

simultaneously with one another. Under such cir-

cumstances not only must transactions be processed

but their overlap or coincidence must be

recognized. In the case of either overlap or

coincidence, the offending transactions must be

reissued. If they are reissued, some means to as-

sure they do not overlap or coincide a second time

must be implemented.

Configuration throughputs have traditionally been

modelled through the use of queuing networks. Such

networks implement multiple job classes, mixed

architectures, and hierarchical models. However,

the underlying assumption remains von Neumann ar-

chitecture which connotes a uniprocessor structure.

As that architecture becomes more probabilistic and

less von Neumann, the problem of timing becomes

more acute. Characteristically the problem is

either addressed directly or ignored completely.

The easier solution is to ignore it completely

which amounts to a "fix-it-later" attitude. By far

the more rigorous approach is to confront it
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directly. Performance and global timing must be

considered in the initial design stage and com-

plicates subsequent software effort. The

requirement for simulating different Poisson dis-

tributions is evident. Poisson mathematics is nor-

mally not addressed during the system lifecycle

phases. However, Poisson distributions are

mathematical tools available for the consideration

of different probability density functions. Such

functions underlie messages transmitted between in-

dependently operating bus structures within dis-

tributed architectures. As layered buses become

more prevalent, the importance of the underlying

message distribution functions is increased.

Presently available queuing networks can simulate

multiple job classes, mixed architectures, and

hierarchical models. However, each assumes an un-

derlying Poisson distribution which does not vary.

What is needed is the ability to vary the Poisson

as well. When that variability is accomplished,

the consequences of global timing can be

appreciated. In the absence of such capability,

purely software techniques are assumed to be valid

with little or no justification. An example is the

software technique called rendezvous within the Ada
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syntax definition. By virtue of its syntactic

definition, such a technique may or may not accom-

modate subsequent operational distributions within

the bus architecture of a particular system. In

effect, by defining the rendezvous from a syntactic

standpoint the whole issue of global timing is

relegated to a "fix-it-later" approach. The cur-

rent situation can be likened to the absence of

ability to measure. Since global timing is not

measured, the assumption is that it does not pose a

problem. Until an architecture throttles itself

there may not be a problem. But if the architec-

ture ever does throttle, the problems are immense.

They are much larger than necessary since their oc-

currence could have been avoided by including

global timing as a design phase activity. The sub-

sequent absence of problems should serve as

justification for putting timing in the design

phase within the system lifecycle phases.

7.1.3 Rapid Prototyping

System requirements have always been difficult to

formulate. The difficulty is even encountered when

similar automated applications are attempted.

However, the similarity does provide information
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that ncrmally is not available during the system

requirements phase. It enables a quick prototype

to be constructed to aid in the development of ad-

ditional system requirements. This alleviates some

of the problems usually faced by users and analysts

when they attempt to specify complete sets of

requirements. However, the present situation

concerning such prototyping is not clear. The

proliferation of differing software support en-

vironments has obscured its usefulness. When sof-

tware support environments begin to standardize

their capability, the importance of rapid

prototyping will increase. This standardization is

scheduled to proceed under the Ada implementation

effort with the DOD. Once the Ada Program Support

Environment (APSE) is implemented, rapid

prototyping can demonstrate a reduction in time

needed to produce requirements as well as an im-

provement in their quality.

An underlying question in rapid prototyping is what

can best be ignored by the prototype. Many design

details seem to be extraneous during the

requirements phase. As Ada techniques become more

widely known, this question becomes even more

subtle. Because of the syntactic approach taken to
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global timing considerations by Ada, the design

details previously thought to be extraneous may, in

v fact, not be. A suspicion begins to grow that

clever deferring by Ada definers may complicate

subsequent rapid prototyping efforts. As an ad-

junct to this line of reasoning, the applicability

of rapid prototyping itself may be changing. As

Ada usage grows, the capability for rapid

prototyping becomes far more important. Not only

must Ada programs be written but their subsequent

interaction with the Integrated Software Support

Environment (ISSE) must be known completely prior

to the design phase; i.e., during the requirements

phase. Obviously the language of choice to im-

plement a rapid prototyping system should be Ada.

Furthermore, once implemented, the prototyper

should become part of the APSE.

A parallel effort to the development of a rapid

prototyper for an ISSE should be the capability for

simulating the ISSE. Such simulation would provide

numbers or measurements which could be used to

determine if an application is feasible or not. If

not feasible, the effort could stop at that point.

If feasible, the requirements phase could be ad-

dressed through the use of a rapid prototyper.
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Such an approach simplifies the design of a
prototyper since that prototyper does not have to

handle impossible situations.

The use of rapid prototyping promises to improve

the quality of requirements analysis. Subsequent

systems should demonstrate improved relevance and

usefulness.

Presently many companies are claiming competence in

rapid prototyping based upon their efforts in

general data base management systems. Components

of such systems which come into play are con-

figuration managers and specialized data storage

and retrieval mechanisms. In most instances the

storage involves hierarchical structures containing

simulation parameters which are subsequently com-

pared to each other. Rapid prototyping capability

is closely related to the verbs contained in the

data base management systems. However, such exper-

tise may not apply when the APSE is implemented.

Much of the capability claimed within a general

data base management system will be offered by the

APSE which offsets some of their expertise claimed

in rapid prototyping. In effect, Ada ushers in an
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entire new set of circumstances for rapid

prototyping.

7.1.4 Static Analysis Techniques

Static analysis techniques refer to the validation

and verification techniques in which the analyst

examines software without executing it. In its

general sense it applies to all types of software

products like designs, specifications, etc. In its

restricted sense it applies only to data flow

through a program in an attempt to detect anomalies

like references to uninitialized variables. Until

static analysis can be made to work in the res-

tricted sense, it can not work in a general sense.

Consequently, the following comments are limited to

the restricted sense.

The best known early work on static analysis has

been done by Osterweil and Fosdick. They built a

system called DAVE which analyzed Fortran programs

for data flow anomalies. It detected possible

references to uninitialized variables and the as-

signment of value to a variable not referenced by

the remainder of a program. Several criticisms

have been levelled at DAVE. First, it carries out
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data flow analysis one variable at a time rather

than simultaneously for all variables. Second, it

non-selectively prints out too much data. Third,

it is too large which may, in fact, pertain to the

use of Fortran. Fourth, it is too slow and

requires too much computer time. However, these

criticisms can be ameliorated by viewing DAVE as a

prototype product of a research project as opposed

to a production line tool.

The research project which produced DAVE has ena-

bled Fosdick and Osterweil to study the

relationship between data flow in static analysis

and data flow in program optimization. They were

the first to observe data flow algorithms developed

for optimizations could also be used for static

analysis. The basic idea is that variables can be

in different states and that operations such as

value assignment and referencing can change those

states. The set theory resulting from their obser-

vations is useful to the extent it indicates how

existing well defined and efficient data flow al-

gorithms can be used for static analysis. It is

not useful as an end unto itself. The gen, kill,

live, and avail sets are not good vehicles for the

discussion of static analysis in general. However,
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this is not just a shortcoming of the work done

with DAVE. No general problem-oriented approach to

static analysis is presently available. Several

ideas are beginning to emerge. First, static

analysis can be viewed as a kind of program

execution mechanism which operates in different

programming language semantics. The analysis done

on HAL/S for NASA is an example of such an effort.

Such an approach needs to be applied to Ada con-

structs before its exception handling capability

creates semantic problems within existing hardware

configurations. Another idea is the abstract com-

putation type which includes patterns of operators.

Applying a set theory of its own will serve to

verify and validate static data flow through

programs. The end result would be to discriminate

legal operator pattern sets from illegal operator

pattern sets.

Distributed processing introduces massive com-

plications in static analysis. The reason involves

asynchronous processes. This enables referencing

and defining of variable values in parallel

processes. This, in turn, enables ambiguous varia-

ble definitions due to multiple variable

definitions within parallel tasks. Underlying
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these problems is the problem of synchronization.

Taylor has attacked the problem in a stepwise

manner. He first examined concurrent programs with

no interprocess communication. Upon completion of

that highly restrictive case, Taylor examined the

rendezvous technique of Ada. What has resulted

* from this effort has been the determination of

whether or not a syntactically possible rendezvous

violates the semantics of synchronization. The end

result has been the realization that arbitrary sys-

tems of concurrent processes can not be analyzed

efficiently using static analysis techniques.

Although static analysis has been demonstrated to

be an effective error detecting mechanism for

analyzing single programs, they may or may not be

applicable to concurrent programs. Their ap-

plicability rests upon the synchronization proper-

ties of the distributed system. An interesting ad-

junct to such a conclusion would be a future study

of different kinds of process scheduling with diff-

erent capabilities for distributed processing

structures.
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7.2 Relationship of Manifestations to EDPS

The increasing density of electronically active

devices on VLSI semiconductors is fueling a

revolution. More and more compute power is being

squeezed into less and less space. The limiting

factor is the speed of light which means quicker

response times for new, smaller devices. VHSIC

technology optimizes response times by shrinking

circuitry within specialized hardware structures.

In a sense, compute power is being distributed

within its own architectures. So much power is

being distributed that problems are generated in

three general directions. First, access to all

this new power is becoming increasingly difficult.

Controlling that access is no longer trivial.

Access can be used to perform a task within a given

architecture or it can be used to modify the

operating characteristics themselves. These

operating characteristics are functions of hardware

distribution which introduces another general

consideration. How the compute power is dis-

tributed within hardware is becoming more

important. As single buses are replaced by mul-

tiple buses, how information flows within an ar-

chitecture is sometimes obscured. The von Neumann
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characteristics of a single processor are trans-

formed into configurations displaying probabilistic

characteristics. Working around these

probabilistic characteristics emphasizes the impor-

tance of a third general consideration; i.e., the

distribution of data bases. The architecture of a

particular data base should parallel the operation

of the hardware architecture which contains it.

Obviously magnetic tape data structures would not

be expected to operate optimally within disc

architectures. Taken as a group, considerations

concerning the distribution of control, the dis-

tribution of. hardware, and the distribution of data

bases are becoming increasingly important. The

subsequent paragraphs will examine specific

manifestations of such considerations within em-

bedded distributed processing systems.

7.2.1 Support of EDPS by Object-Oriented

Architecture

Current trends indicate significant departures from

the usual von Neumann architecture of the present.

Multiple processor configurations are becoming more

prevalent and interconnect networks are offering

unprecedented increases in their throughput. How
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to take advantage of these advances is becoming a

growing problem. First, users must comprehend the

advantages offered by such architectures. Such

knowledge is in short supply. Second, suppliers of

such architectures must explain their advances to

the marketplace. These explanations are becoming

more subtle and the required communication talent

increasingly rare. Third, present commitments to

existing architectures make revolutionary in-

novation difficult to learn. Simply maintaining

existing architectures is a full time job requiring

great technical expertise. Such workforces have

little time to spend assessing revolutionary

breakthroughs. In the absence of assessment the

breakthroughs continue with a quickened pace. The

suppliers are driven into popularity contests

within the marketplace. In some instances single

suppliers produce products which compete with one

another; e.g., the IBM System/38 and the IBM 4300.

Such antics exacerbate the problem. When single

suppliers introduce innovative products competing

with one another in identical marketplaces, the

situation is out of control. Assessments which

should originate within the marketplace have not

occurred. Consequently, fragmentation occurs

driving the suppliers to more innovation, more
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breakthroughs, and more chaos. One of the true

ironies of such circumstances is the emerging role

of colleges and universities. In attempts to

remain abreast of the accelerating breakthroughs,

groups of faculty and students concentrate on the

assessment of specific revolutionary breakthroughs.

In some instances they may even design and im-

plement them; e.g., Ada and Diana. When the break-

throughs are introduced to the marketplace, the

workforces acquired by that marketplace to assess

them are recruited from the originating faculty and

students. Attempts to adapt the breakthrough to

specific needs within the marketplace rest upon

these newly acquired workforces. Such workforces

seldom appreciate the needs of the marketplace.

Producing the revolutionary breakthroughs is a full

time job with little time available for assessments

within unknown marketplaces. As new generations of

innovative researchers proceed to the marketplace,

they are replaced by new faculty and new students.

Neither has allegiance to existing architectures or

ways of doing things. Consequently, they offer

ideal test-beds for the development of

revolutionary innovation. The present cycle works

so well that colleges and universities have in-

creasing difficulty in attracting and keeping com-
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petent computer faculty members. The marketplace

pays a premium for the talent which understands

revolutionary breakthroughs.

The job migration phenomenon mentioned above is

particularly evident within the embedded dis-

tributed processing marketplace. Talent to main-

tain existing commitments is extremely scarce.

Consequently, talent to assess technological break-

throughs is virtually non-existent. Significant

departures from existing methodologies have few ad-

vocates but in the absence of independent

assessment, revolutionary breakthroughs are being

produced and adopted. The reorientation of exist-

ing workforces is becoming imperative. The adop-

tion of an object-oriented modularization approach

expedites this reorientation. Only with such an

orientation can be consequences of non-von Neumann

architecture be grasped. The understanding of a

distributed system becomes more generic. The

conceptualization of interconnect buses and their

architectures is heightened. The emerging impor-

tance of distributed data bases is clarified. In

fact, the object-orientation of the data bases

themselves becomes evident. In summary, the per-

formance of embedded distributed processing systems
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will be enhanced by object-oriented modularization.

This will be evident in faster response times, in-

creased flexibility, massive resource sharing, in-

creased reliability, wider availability, and highly

transportable systems. Failsafe architectures and

operation will be the hallmark of distributed sys-

tems of the future. Underlying all such architec-

tures and operations will be object-oriented

modularizations.

7.2.2 Object-Oriented Modularizations and State-of-

the-Art Technologies

The multi-layered architecture produced by VLSI

circuits and VHSIC technologies has consequences

far beyond simple departures from the von Neumann

architecture of uniprocessors. It affects geo-

graphic location, data base partitioning, and sys-

tem control. When multi-layered architecture is

combined with multiple processors, the situation

can become non-deterministic. Many of the

operating characteristics of the past are being

transformed in the present. Genuine multi-

processing hardware now exists. Each component

operates independently of the other configuration

components. They operate simultaneously. The
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network connecting all components is highly

sophisticated and operates at a variety of levels.

Each layer typifies a different level of

abstraction. In the International Standards

Organization's (ISO) Open Systems Interconnection

(OSI) there are seven levels of abstraction. These

are presented in Figure 7-4. The lowest level is

physical and involves the movement of bits within a

network.

Obviously, the next lowest level is grouping bits

into frames. The frames can be grouped into pack-

ets for the third level of abstraction. Taken as a

group these first three levels comprise the com-

munication subnet boundary which exists for every

architecture. Four additional layers have been

provided for higher levels of abstraction. At the

highest level is the application layer which is not

transparent to network users. This is the level at

which most users interface with the network.

Ethernet is an example of communications alter-

natives which embody the OSI suggested by the ISO.

As multi-layered architectures become prevalent,

the operation of tightly-coupled buses approximates

the operation of an OSI model. This layering ef-

fect is evident in the architecture of the iAPX432

142



EXCHANGE

LAYER UNIT

T - APPLICATION LAYER.. . . . .. MESSAGE

6 PRESENTION LAYER MESSAGE

5 S SSN OR MESSAGE

E-Dr

4 LTI~ &j~BL&E -. = MESSAGE
3 PACKET

2 FRAME

I BIT

HOST A MOST 8

[NETWORK 
LAYER

DATA LINK LAYER

-PHYSICAL LAYER

*, Layer 7 - the application layer encompasses information peculiar to the network's

end users. It is the only layer which is not transparent to the user.

Layer 6 - the presentation layer translates messages between the various formats, codes

and languages generated by different network residents.

Layer 5 - the session layer handles the logical exchange of messages between network

stations.

Layer 4 - the transport layer manipulates message transport between end users

like computers and comunication networks.

Layer 3 - the network layer controls the switching and routing of messages between nodes

to effect transparent data delivery.

Layer 2 - the data link layer regulates the coding and decoding of data packets for

reception and delivery over data coimunication lines. It also performs error

detection and can provide correction services.

Layer 1 - the physical layer incorporates the mechanical, electrical and functional

characteristics of the line between network nodes.

Figure 7-4 Znternational Standards Organization's Open

Systems Interconnection Model
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and is presented in Figure 7-5. In the previous

analysis of the iAPX432 architecture the layers

above the interface processor were interrupt-driven

while those below were transaction-driven. Such an

observation is tantamount to stating levels 4 to 7

are interrupt-driven and levels 1 to 3 are

transaction-driven. Much of the knowledge needed

to operate the multi-layer architecture of the

iAPX432 is provided by a thorough knowledge of the

OSI model.

In effect, the breakthroughs of VLSI and VHSIC

technologies are forcing an understanding of the

OSI model and its ramifications upon the

marketplace. Object-oriented modularization is

valuable because it enables applications (i.e.,

layer 7 issues of the ISO model) to be implemented

without loss of control. As more power is dis-

tributed throughout EDPS networks the issues remain

unchanged. The object-oriented approach by Ada

will prove extremely valuable in future multi-

layer, distributed architectures. Hence, immediate

effort should concentrate upon thorough understand-

ings of multi-layered architectures, open system

interconnects, and Ada application packages. The

subsequent integrated software support environments
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should accommodate effort from all three directions.

The largest unresolved problem remains distributed

data base structures and their parallel algorithms.

Such environments have simply not been sufficiently

available to resolve the problem. Advances in VLSI

and VHSIC technologies virtually assure the ready

availability of such environments in the immediate

future. The subsequent section addresses the

highly technical and complex issue of tractability

within such environments. The problem is so new

that basic issues must again be examined.

7.2.3 Benefits of Object-Oriented Modularization to

EDPS

The evolving environments of multi-layered ar-

chitecture loosen the present constraints placed on

computing power. Access to computational power is

becoming commonplace. Communication networks with

parallel structures are being implemented on a

global basis. Data bases and their inherent struc-

tures are stored wherever needed. The cost of sof-

tware has become greater than the cost of hardware.

All these factors impact embedded distributed

processing systems.
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To combat costs and expedite development, an inte-

grated software support environment remains

essential. Before such an environment is realized

the Ada program support environment is necessary.

The commitments to the APSE have been made.

Ultimately all advances are contingent upon the ap-

plications which are to be implemented. The most

valuable technique during these implementations is

object-oriented modularizations. However, this

technique has its shortcomings as well. Most sig-

nificant is the matter of tractability; i.e.,

whether the solution can be automated under all

conditions. In effect, the absence of constraints

introduces the tractability problem. The order of

computation becomes increasingly important. Fewer

constraints mean more alternatives for state

transitions. Some orders of computation become

indeterminant. The technical term is NP-complete.

This problem was not encountered as often in uni-

processor architectures. Static analysis tech-

niques had the problem in the uniprocessor

environment. The problem with static analysis has

increased with distributed systems.

In summary, object-oriented modularization solves

many software problems within embedded distributed
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processing. It also raises other issues concerning

tractability. The problems can be solved if they

are recognized but this recognition is becoming in-

creasingly subtle. New techniques are beginning to

emerge and will be discussed in the subsequent

phases of the Distributed Processing Tools

Definition study.

7.3 Categorization of EDPS Requirements and Techniques

by Lifecycle Phase

The Ada Programming Support Environment (APSE)

provides an initial set of tools. They include a

compiler, a debugger, a linker-loader, an editor, a

run controller, and a configuration manager.

Additional tools will be needed. Furthermore, each

phase of the software system lifecycle must be

addressed. As each new application is developed,

where the software is used must be determined.

Once that environment has been established, whether

the requirements can be achieved by allocating an

acceptable level of resources must be determined.

If an unacceptable level of resources is required,

why continue? Assuming the requirements phase is-

sues can be resolved, the design phase should

carefully weigh several more issues. An expected
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level of performance should be calculated. Such a

calculation can be used to satisfy an expected

level of performance. It verifies a proposed con-

figuration and isolates what parts of the sub-

sequent system must be monitored very closely. As

the design phase continues, the impact of each

change on the expected levels of performance must

be carefully documented. Careful documentation

will refine the expected performance. With each

refinement the expected performance will become

more realistic. During the coding phase, alter-

native ways to achieve the same operating expec-

tations should be compared. As unforeseen problems

are encountered, they should be carefully

documented. Each critical component should be

carefully monitored during the testing phase. The

trade-off between resource requirements and

critical component performance should be esta-

blished as a matter of record. The documentation

phase is aided by the compilation of adequate

documents throughout the previous phases. When

modifications are requested, the maintenance phase

should assess the effect of each modification.

From these assessments a long-range configuration

requirements plan can be accumulated for the

future.
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In summary, performance is a primary consideration

throughout the lifecycle. When requirements are

being defined and the initial software design is

being formulated, a performance analysis verifies

the feasibility and desirability of the functional

architecture. Once feasibility and desirability

have been verified, the actual configuration

required to support the new application is

determined. Such a determination establishes the

power required from the support hardware as well as

the operating system software. Configuration and

design are not separate issues. Design depends

upon requirements while configuration depends upon

design. Therefore, several iterations of

requirements-design-configuration activities are

usually needed before the best combination is

known. The subsequent sections will illustrate

this process.

7.3.1 Static Analysis of Concurrent Programs

The problems of referencing undefined program

variables are compounded by asynchronous processes.

Related problems include:
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referencing and defining variable values

in parallel processes

ambiguous variable definition due to mul-

tiple variable definitions in parallel

tasks

waiting for synchronization with a

process which has already been guaranteed

to have terminated

waiting for synchronization with a

process which may never have been

scheduled, and

the illegal scheduling of a process in

parallel with itself.

Taylor studied concurrent programs in which there

was no interprocess communication in his first

paper on the subject. Such programs could schedule

and then wait for completion of processes but con-

currently running processes could not explicitly

communicate with each other or affected each

other's progress while running except through ac-

cess to shared global variables.

Subsequent effort by both Taylor and Osterveil on

concurrent programs can be carried out in an ef-

ficient way -- provided the programs require no in-
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terprocess communication. Furthermore, the pro-

grams disallow run-time determination of which

processes will be scheduled. A related restriction

is that the directed graph model of the process in-

vocation structure of either program must be

acyclic. Recursive subroutine calls are not

allowed.

In addition to his work with Osterweil, Taylor has

investigated different synchronization primitives.

In particular, he studied the rendezvous mechanism

of Ada. This mechanism allows interprocess com-

munication and synchronization precluded

* I previously. Taylor argues a flow model describing

the set of possible flows of control through the

system of simultaneously operating processes must

be completed before static analysis can be

performed. When single programs are examined, many

of their syntactically possible flows are seman-

tically infeasible. In single programs a flow path

is infeasible if no set of input data exists which

can satisfy the set of branch conditions occurring

along its path. When concurrent programs are

examined, their infeasible paths occur because of

the semantics in the synchronization primitives.

An example would be a process with two "calls" on
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an entry in another process and that second orocess

waiting at the entry point for a call. Ir the two

processes contain no cycles, the second call can

never be synchronized with the entry point. In

general, efficient static analysis for arbitrary

systems of concurrent processes can not be

constructed.

Depending upon the synchronization properties of

the distributed system, the construction of data

flow analysis algorithms may or may not be

feasible. The work by Taylor indicates efficient

algorithms for the general case can not be

constructed. Taylor and Osterweil have shown ef-

ficient algorithms can be constructed for special

situations in which the run-time determination of

process scheduling is tightly constrained. When

the scheduling of processes and the process in-

teraction can be made deterministic, efficient

static analysis algorithms can be constructed to

detect a wide variety of possible data flow and

process scheduling anomalies. Table 7-1 indicates

the anticipated effect of static analysis tech-

niques on EDPS lifecycle phases.
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Additional work concerning different kinds of

process scheduling (e.g., non-deterministic or

probabilistic) and interaction capabilities is

required. Such scheduling and interaction presen-

tly exist within various kinds of distributed

processing structures.

7.3.2 Branch Testing

Branch testing is the most common form of testing

in which program structures rather than black box

functional specifications are used to guide the

testing efforts. The goal is to construct test

* data in such a way that every program branch is

executed at least once. The method is appealing

and tests all parts of the program. Furthermore,

it is easy to audit and provides each programmer

with criterion for a complete set of tests.

However, many errors go unfound because every

branch is usually tested only once. Attempts have

been made to extend the method by requiring the

testing of combinations of branches or classes of

program paths. The problem with these extensions

is that their number becomes very large, very

quickly. The number can be reduced by relying upon

the data flow relationships between program
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constructs. As an example, some test may cause the

execution of two statements sl and s2 if the first

(sl) defines the values required by the second

(s2). Otherwise sl and s2 could be tested

separately with two different tests.

The difficulties of extending branch testing to

more powerful methods have caused a re-examination

of functional testing. If a systematic approach to

requirements specification is used, rules for iden-

tifying functions to be tested can be developed.

Empirical evidence indicates that many errors can

be found using a systematic approach to functional

testing. Such errors cannot be found by branch

testing alone. The best approach is probably a

complimentary one using both functional testing and

branch testing.

The techniques that have been developed for single,

non-distributed programs or systems can obviously

be applied to individual components within a dis-

tributed system. The special properties of dis-

tributed systems make them more difficult to test

and require the development of additional test data

generation techniques. Single programs can be

thought of as being at a certain point in com-
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putation when the flow of control reaches that as-

sociated point in the program. To test such

computations, test data must be constructed to

reach that point in the program. In a distributed

system several programs must cooperate to produce

the desired effect. The state of the system

becomes increasingly important because certain com-

putations can only be performed while in an appro-

priate state.

The role of computation states in a distributed

system affects testing in two principle ways:

*" detailed systematic documentation of sys-

tem states is absolutely necessary and

the condition under which a system or

program can change states must be known.

Much such information comes from design.

Consequently, systematic design specification is

more important for distributed systems than for

non-distributed ones. The anticipated effects of

branch testing techniques on EDPS lifecycle phases

are indicated in Table 7-2.
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7.3.3 Impact Analysis

When a system object is altered there is always the

danger that the change will have unforseen effects

due to a forgotten relationship between the object

which was changed and other objects. Automated im-

pact analysis can be used to avoid this problem if

relationships between objects are recorded in a

machine readable format. There is a wide variety

of kinds of objects and relationships.

Source code is the most commonly available object

for impact analysis. A traditional cross reference

testing tool can be thought of as a very simple im-

pact analysis aid. Impact analysis tools can range

in sophistication from tools that are as simple as

cross reference listers to tools which are capable

of complex data flow analysis.

Interesting, powerful tools can be built for source

code impact analysis. It is important, however, to

construct tools which are cost effective for

dealing with real maintenance problems that really

occur rather than with imagined problems whose

principal appeal is that they can be attacked using

an elegant methodology. For this reason it is sug-
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gested that research on impact analysis tools focus

on studies of maintenance problems and on studies

of the types of changes that are commonly made to

source code.

Maintenance problems that arise due to changes in

source code can be due not only to change itself

but to bad design and imprecise specifications.

Studies of maintenance problems should consider how

the problems can be avoided with different design

and specification methods. This is necessary in

order to avoid building impact analysis tools for

dealing with problems which might be avoidable

through the use of better software development

techniques. Structured design, for example, em-

phasizes the use of modular decompositions in which

there is low inter-module coupling and high module

cohesion. Parnas' design emphasizes the hiding of

design decisions (e.g., data structure

implementations) inside modules. Both methods are

useful for reducing the potential effects of change

and in reducing the need for elaborate impact

analysis techniques and tools.

The special problems of doing impact analysis on

distributed systems source code will include those
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of doing static analysis on distributed systems

source code. In order to determine data dependen-

cies between parts of a system it is necessary to

do data flow analysis. The special problems of

doing data flow analysis on distributed systems

code are described in the static analysis critique.

The limitations on distributed system structure

which are necessary to allow data flow analysis to

be carried out efficiently must be very carefully

considered in any proposal to construct a change

impact tool for distributed systems.

In distributed system design it is necessary to

consider not only software design but also the

hardware configuration onto which the software must

be mapped. The effects of changes on hardware are

likely to impact the design of a distributed system

more than the design of a non-distributed system.

It is necessary to model both the software system

and the hardware resources in order to do automated

impact analysis. It is also necessary to consider

timing and synchronization, and to construct models

for these. Table 7-3 shows the anticipated effect

of impact analysis upon the lifecycle phases of

SDPS. Little research has been completed on the

representation of this kind of information for dis-
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tributed systems and any proposed research into im-

pact analysis for distributed systems should in-

clude resources for studying first the primary pro-

blems of design and requirements representations.
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8.0 REMAINING WORK TO BE ACCOMPLISHED IN THE DISTRIBUTED

PROCESSING TOOLS DEFINITION STUDY

The Distributed Processing Tools Definition (DPTD)

study is divided into three phases:

Phase I - Study of Hardware and Software

Technologies

Phase II - Survey of Existing Tools and

Techniques

Phase III - Analysis of Problem Areas and

Recommendation of Candidates for

Research and Development Efforts.

This report includes the results of the Phase I study

only. The hardware and software technologies pertinent

to embedded distributed processing systems have been

analyzed and their requirements and impacts have been

categorized with respect to the software life cycle

phases. This categorization of requirements and im-

pacts forms the basis of the Phase II survey. In Phase

II, industrial, university, and Department of Defense

software tools and techniques will be researched, and

we will identify those tools and techniques that

satisfy the lifecycle phase support requirements esta-

blished in Phase I. Also in Phase II we will denote as
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:roblem areas those Phase I lifecycle requirements that

are not supported by tools or techniques. Finally, in

Phase III these problem areas will be analyzed and a

prioritized list of candidate research and development

efforts to solve the problem areas will be recommended.

These candidate efforts will be fully described with

estimates of manhours, schedules, technical

feasibility, benefits, and probable users. Phase III

completes the DPTD study.

The results of the tools survey will be submitted to

RADC in an interim technical report upon the completion

of Phase II. This report will be concatenated to the

Phase I report. The benefits of this approach are

twofold. First, the phases of the DPTD study are

closely linked, and each phase builds upon the

preceding phase. The understanding of the work com-

pleted to date on the DPTD study requires an under-

standing of the previously accomplished work. It is

easier for a reader to understand the results if they

are all bound in a single volume with smooth transition

between phases. Secondly, in the course of the study

modifications and updates can be easily incorporated.

These updates arise because of recent technological ad-

vances or deeper insight gained in a particular area

during the course of the study. Modifications to the
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text of previously submitted reports will be summarized

in a list of page changes and change bars will be in-

serted in the text denoting the affected portions.

Therefore, the final technical report for the DPTD

study will be submitted to RADC in a single volume that

reports the results of Phases I, II, and III.
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APPENDIX A

DEFINITION OF THE SCOPE OF EMBEDDED

DISTRIBUTED PROCESSING SYSTEMS

Military computer systems span the spectrum from single

microprocessors in "smart-bombs" to multiple, dis-

tributed mainframes in world-wide communications

systems. The particular categories of military systems

most affected by technological advancements in embedded

distributed processing include: (1) armament, (2)

aeronautical, (3) missile and space, (4)

command/control/communication, and (5) mission/force

management systems. The analysis of the impact of

technological advancements upon these five categories

of systems is aided by grouping the five categories

into two, higher-level, generic classifications. The

armament, aeronautical, and missile and space systems

will be classified as weapon systems, and the

command/control/communication and mission/force

management systems will be classified as communication

systems. These generic classifications are based upon

common characteristics of the members within each

class. These common characteristics are defined later

in this appendix. Hence, in this technical report we

will use the generic classifications of weapon systems
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and communication systems, and it is understood that

observations and conclusions pertinent to a generic

classification apply to all members of the class.

Distributed processing systems can be visualized as a

region of a volume bounded by axes describing (1) dis-

tribution of hardware, (2) distribution of control, and

(3) distribution of data base. Figure A-i shows this

volume.

The portion of this volume characterized by a single

* CPU, a single, fixed executive controller, and a single

copy of the data base represents the common uniproces-

sor systems of today. Moving toward multiple

computers, multiple operating systems, and partitioned

data bases is characteristic of fully distributed

processing systems. Weapon systems and communication

systems occupy different regions within the charac-

teristic volume, but are definitely within the dis-

tributed processing domain. Figure A-i shows the

relationship of uniprocessor systems to distributed

processing systems and where weapon and communication

systems fit in these descriptions.

The differences between weapon systems and com-

munication systems are rooted in implementation of the
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following two key features of distributed processing

environments:

(1) the degree of human interaction required by

the hardware/software system

(2) the timing constraints of system operation.

Weapon systems must require human decision before a

weapon is released; for safety requirements a system

should not automatically switch from a non-attack

situation to an attack with weapons launch capability

without explicit human consent. However, once this

consent is acknowledged, the hardware/software system

must execute in real-time because of the speeds as-

sociated with targets and launch platforms. Therefore,

prior knowledge of system state transitions is a

prerequisite for weapon systems mode design. Other

characteristics of weapons systems that are commen-

surate with these two features are shown in Table A-i.

In contrast, communication systems permit a higher de-

gree of automation without human intervention. If no

human response is received the system can automatically

queue messages or resend the transmissions to provide

backup capability. Consequently, the system mode

design is often interrupt driven with queuing
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permitted. The system timing constraints are often

near real-time; that is, between one millisecond and

one second. Table A-1 lists the characteristics of

communication systems. A study of Table A-I shows that

both weapon systems and communication systems strongly

exhibit features of distributed processing; however,

there are significant differences within this dis-

tributed processing domain to warrant the two generic

classifications of weapon systems and communication

systems that we have identified.

In summary the grouping of armament, aeronautical, and

missile and space systems into the generic clas-

sification of weapon systems and the grouping of

command/control/communication and mission/force

management into the generic classification of com-

munication systems recognizes the differences between

the groups and benefits the distributed processing

tools definition study by specifying the requirements

for tools and techniques for a larger class of generic

military systems.
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Table A-i

Characteristics of Weapon and Communication

Embedded Distributed Processing Systems

CLASSIFICATION

CHARACTERISTICS WEAPON SYSTEMS COMMUNICATION

SYSTEMS
(Armament & Aero- (Command/Control
nautical & Communications &
Missile & Space) Mission/Force

Management)

Timing Real-Time Near Real-Time
Constraints (usually less (usually between

than a few milliseconds and
milliseconds) several seconds)

Spatial Close physical Large geographi-
Constraints proximity (often cal separations

less than 1000 (often more than
feet) of compo- 100,000 feet) of
nents components

System All transitions System state tran-
Mode between system sitions are often
Design states are a interrupt/trans-

priori known to action driven
satisfy safety with queuing per-
requirements mitted and may be

random

Data Usually rela- Very large
Transfer tively small amounts of data

quantities of transferred
data transferred
at high data
rates
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Table A-i (Continued)

CLASSIFICATION

CHARACTERISTICS WEAPON SYSTEMS COMMUNICATION
SYSTEMS

(Armament & Aero- (Command/Control
nautical & Communications &
Missile & Space) Mission/Force

Management)

Hardware/ Hardware and Usually a multi-
Software software func- plicity of gen-
Resources tions are often eral purpose hard-

distributed to ware components
special-purpose, (disks memories,
dedicated units CPU, etc.) and

software must be
transparent to
hardware peculiar-
ities

Operating Minimum size with High-level, very
System limited capabili- capable system

ties for support that integrates
of system mode and controls the
designs distributed compo-

nents

System Highly standard- "Cooperative au-
Component ized communica- tonomy" whereby
Inter- tion protocols to the various sys-
connection permit easy add- tem components

on of new units work largely in-
to bus dependently but

in a coordinated
manner under the
control of the
operating system

Cohesiveness Tightly-coupled Loosely-coupled
to fully distrib-
uted
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Table A-i (Continued)

CLASSIFICATION

CHARACTERISTICS WEAPON SYSTEMS COMMUNICATION
SYSTEMS

(Armament & Aero- (Command/Control
nautical & Communications &
Missile & Space) Mission/Force

Management)

Backup System degrada- System degrada-
Capability tion must be pre- tion is minimized

dictable by redundant data
processing ele-
ments and commu-
nication links

Security Security must be Security must be
maintained at the maintained within
entire system lev- the individual
el because the components be-
weapon system must cause of exten-
be isolated from sive communica-
external manipula- tion links to the
tion external environ-

ment
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APPENDIX B

RATIONALE FOR THE SELECTION OF ADA

AS THE HIGHER ORDER LANGUAGE

TO STUDY FOR EDPS

Ada has now been adopted by the Department of Defense.

As far as the United States Air Force is concerned, Ada

is scheduled for introduction and use by 1983. By 1986

all new embedded distributed processing systems must

use Ada. Present strategy relies upon the continued

use of JOVIAL (J73) until sufficient development time

has been provided for Ada.

The Office of the Under Secretary of Defense for

Research and Engineering (OUSDRE) has been assigned

responsibility for planning the Software Technology

Initiative (STI) of the Department of Defense.

Subsequent coordination also rests with OUSDRE. The

present is particularly propitious for a concerted and

concentrated effort on Ada. All candidates for short-

term research initiatives must emphasize technology

transfer, standardization of software environments,

tools, packages, workstations, and preliminary results

from thrusts whose payoffs occur later. In summary

they must produce reusable Ada packages within inte-

grated software support environments which are them-
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selves dependent upon Ada. As presently envisioned,

the integrated software support environment of the

future will evolve from or be incorporated by the Ada

Programming Support Environment (APSE). Active efforts

are underway to design and implement the APSE. All

future software tools concerning embedded distributed

processing systems must link to the APSE. The con-

sequences of Ada will be felt throughout the entire in-

dustry as well as all the Federal Government. The in-

tegrated software support environment provided by Ada

will provide important contributions for many years.

Meeting the overall goals of the Ada effort depends

upon the wide availability of effective support

environments. In particular these environments must be

rigorously engineered to support Ada throughout the

software life cycle phases. Specific features of such

environments include:

0 layered approaches to maximize subsequent

portability of tools;

0 completely engineered Ada compilers which

produce high quality object code;

* comprehensive basic toolsets;

* careful separation of roles between hosts and

targets;
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" user friendly interfaceq;

0 sophisticated database techniques; and

* complete sets of control tools.

Many attempts at integrated software support environ-

ments have been made. Few have succeeded. The frag-

ments of both the successful and unsuccessful attempts

still exist and are constantly being used. All these

remainders need to be converted to the integrated sof-

tware support environment that Ada enables. The tools

of this emerging environment have yet to be developed.

Most are generic in nature and will probably exhibit

unique properties. All will be developed through the

system lifecycle phases. Consequently, of primary im-

portance to embedded distributed processing systems is

a complete understanding of Ada and what its impact

will be on the software development lifecycle.

Subsequent effort within the Distributed Processing

Tools Definition Study for RADC will concentrate upon

Ada. The justification for such a concentration is of-

fered in the preceding remarks.
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LIST OF ABBREVIATIONS

ADEPT - A Design-based Evaluation and Prediction

Technique

ADGE - Air Defense Ground Environment

ALU - Arithmetic Logic Unit

APSE - Ada Programming Support Environment

ARC - Advanced Research Center

ASGS - Automatic Software Generation System

CADES - Computer Analytical Design Evaluation System

CHiP - Configurable, Highly Parallel

CIU - Computer Interface Unit

CMU - Carnegie Mellon University

CPU - Central Processor Unit

CSMA-CD - Carrier Sense Multiple Access with

Collision Detection

DAVE - Documentation, Analysis, Validation and

Error-detection

DEC - Digital Equipment Corporation

DEDS - Data Entry Display Stations

DOD - Department of Defense

DPTD - Distributed Processing Tools Definition

DREAM - Design Requirements Evaluation Analysis Method

EDPS - Embedded Distributed Processing Systems

E/O - Electro/Optical

GPU - General Processor Unit
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HAL/S - Hierarchical Analysis Language/System

HOL - Higher Order Language

ICL - International Computers Limited

I/O - Input/Output

ISO - International Standards Organization

ISSE - Integrated Software Support Environment

LAN - Local Area Network

LU - Logical Unit

Mbps - Megabytes per second

MIPS - Million Instructions Per Second

NASA - National Aeronautics and Space Administration

NAV - Navigation

NP - Non-deterministic Polynomial

OOM - Object-Oriented Modularization

OSI - Open Systems Interconnect 4.n

OUSDRE - Office of the Under Secretary of Defense

for Research and Engineering

PAWS - Performance Analyst Workbench System

PPBS - Professional Programmer Based System

PSA - Problem Statement Analyzer

PSL - Problem Statement Language

PWB - Programmer's Work Bench

STI - Software Technology Initiatives

TRW - Thompson Ramo Woolridge

UCSF - University of California at San Francisco

VHSIC - Very High Speed Integrated Circuits
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VLSI Very Large Scale Integration
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