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OPTIMAL CONTROL AND FILTER GAINS FOR THE STATIONARY CONTINUOUS
OR DISCRETE TIME LQG PROBLEM - A FORTRAN PROGRAM
INTRODUCT ION

In this report the solution to the continuous and discrete-time linear-
quadratic regulator (LQR) and Kalman filter (KF) is presented, and a FORTRAN
program is included. The LQR or KF design model for a stationary process is
described as a continuous or discrete vector-matrix equation. The output is
the control system or filter eigenstructure and the optimal steady state LOR
or KF gain matrices. The method used to compute the gains is the classical
elgenvalue-eigenvector approach.

The common requirement in the design of an optimal LOR control law or a
KF is the solution to the control or filter Riccati equation [l1]. In the
general case, the solution is obtained by a backwards in time propagation from
a known te:minal boundary for the LQR, and by a forward in time propagation
for the KF.

In most practical design problems, it is assumed that the control or
filter design model is time-invariant. With this assertion, the Riccati
solution reaches a steady state value in a few sytem time constants. The
steady state solution to the Riccati equation is subsequently used to compute
the steady state LQR or KF gains, which are used to implement the candidate
LR or KF. In many cases, a KF is used to estimate the state vector in the
LQR control law, This latter strategy is referred to as a linear-quadratic-

gaussian (LQG) control design [2].

Manuseript approved October 11, 1983.
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The soluton to the Riccati equation by integration requires the solution
of n, x (nx + 1)/2 coupled differential equations, where n, is the dimension
of the plant model. When only the steady-state solution is required, an
alternative is to solve the algebraic version of the Riccati equation, i.e.,
the derivative elements are set at zero. This results in a set of
simultaneous equations, which must be solved by computer for plant models of
greater than 2nd-order.

There are several possible methods of solving the algebraic Riccati
equation. The method used in this effort is the classical eigenvalue-
eigenvector approach, which was first described by MacFarlane [3] and Potter
[4]. The MacFarlane~Potter method, which originally was applied to
continuous~-time plant models, was extended to discrete-time plant
representations by Vaughn [5]. This latter development enables us to use the
same basic approach to design a LQR or KF for a discrete or continuous-time
design model. Another #dvantage of this approach is that the eigenstructure
of the closed loop LQR or KF is a by-product of the Riccati equation
solution., These results are an invaluable aid in evaluating the candidate
designs. This is particularly true in the scaler input cases, where the
position of.closed loop eigenvalues are a direct indication of the control or
filter transient response.

The selected method requires the computation of the eigenvalues and
eigenvectors of the appropriate Hamiltonian matrix. This difficult
computation is facilitated with the use of a few subroutines from EISPACK
[{6]. EISPACK is a software package which is the product of an intensive
effort to develop reliable methods of computing the eigenstructure of various
matrix types. The appropriate Hamiltonian matrix is easy to set up from a

common set of input matrices for all design model and problem options
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Notation

The following notation is used throughout this report:

Underlined uncapitalized letters will denote column vectors, with the
dimension indicated by, for example, n, for the vector x. In the continuous
time case, vectors are an implied function of time. In the discrete time case
the notation (k), (k + 1), ... will denote the vector at discrete times tes
Cpsls oo where k = 0, 1, ... n. T denotes the constant time interval
tk+] — ty. The superscript T denotes the transpose of a matrix or vector, and
* and ° over a vector denotes the time derivative and estimate of,
respectively.

A standard set of matrix symbols, which are denoted by capital letters,
are used to define the plant models and design parameters for all options.
This is done to simplify the input data required. The subscripts c and ¢ in
the equations indicates whether the particular matrix is associated with a LOR
or KF, A~ err the matrix denotes the discrete-time equivalent of a matrix
in the continuous-time model, 1.e.,‘k.

The symbol E is the expectation operator, (i.e., the average value of),
and 8 is the Laplace transform operator.

PROBLEM DEFINITION AND SOLUTION

A. Continuous-Time LQR Problem

The design model for the plant to be controlled is

x=Ax+Bu (1a)
g=Cx (1b)

where x, u, and 2 are the state, control input, and output vectors of
dimensions n,, 0,, and n; x 1, respectively. A, B, and C are constant real

plant, control imput (distribution), and output matrices, respectively. The
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control law to be used is of the linear state variable feedback (LSVF) form

u=Gex (1c)
where G, 1s a constant n, x n, matrix of control gains (to be selected). The
LQR design procedure, which results in a control law in the form of (le) is to
be used to select an optimal gain matrix in the linear quadratic (L0O) sense.
We note that there‘are various other design procedures for selecting non-
optimal gains, i.e., pole-placement, classical frequency domain methods, etc.
In the LQR design procedure used here, a quadratic cost function of one
of the following forms is selected.
(a) state regulator cost
2 =[7 " o x+u’ R wat (14)
(b) output regulator cost

2% =[5 (2" cT o cz+u' R wt (le)
Qc and R, in (1d, le) are symmetric, real state and control input

weighting matrices, respectively, with Q. restricted to be positive semi-
definite (> 0) and R, restricted to be positive definite (> 0). The optimal
gain which minimizes J; or Jy is

G, =-r18Tx (1f)
where K is a constant matrix (> 0) in the time invariant case. K is obtained
by solving the algebraic control Riccati equation

1

T ' -1 .T
A'K+KA+Q -KBR B 'K=0 (1g)

|
where QE - chor the state regulator, and
C ‘
Qc - cT Q. C for the output regulator

Remark on the constant LQ gain strategy:

An alternate method of computing K is to solve the differential control

Rccati equation

1

%(e) = AT R(t) + R(e) A + o; - K(t) B R_' BT K(¢) (1h)
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backwards in time from K(») = 0. K(t) converges to K in a few system time
constants. The use of K to compute a constant optimal gain is referred to as
the infinite-time LQR in the literature, cf [7, Chap. 9]. If A, B, C, and 0c
and (or) R, are not constant, the solution of K(t) is indicated. However, the
time histories of these matrices are rarely known a-prior. Hence the strategy
in the time-varying case is to select a set of stationary plant models
corresponding to expected operating points, i.e., various equilibrium
conditions. The corresponding set of LOR gains are computed and scheduled as
a function of some convenient measured variable, f{.e., dynamic pressure in an
aircraft. An alternative is to select a constant gain matrix which satisfies
the set of plant models (i.e., by simulation studies). See [7, Chap. 9] for
an excellent discussion on the impracticalness of implementing Gc(t).

B. Algebraic Riccati Equation Solution

The Hamiltonian matrix associated with the LQR problem [3] is

-A S
H = '
c T
Qc A
where S=B R;I BT

Hc, which is a 2 n, x 2 n, matrix, has 2 n, eigenvalues. For each eigenvalue
A, which appear in conjugate pairs if complex, - A is also an eigenvalue. |
Those eigenvalues with negative real parts are the closed loop eigenvalues of
the LQR, that is, they are poles of the system characteristic equation

[s1 - (A+BG,)| =0 (1)
We note that the LQR design procedure guarantees a stable control law, with

certain gain and phase margins, if the plant is controllable [9] [10].
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W= (1k)
Where

contains the upper and lower half elements of the eilgenvectors associated
with the eigenvalues of H, with positive real parts. The eigenvectors can be
arranged in any order, except that those due to complex conjugate eigenvalues
are adjacent. The solution to the algebraic Riccati equation is 3, 4}

KW, =W, | (11)
Instead of solving for K by computing the inverse of W);, it is best to
manipulate (2d) into the linear system form

Wirl K= Wérl (1m)
K 1is computed with the use of any a linear system solver. In this effort we
use the method described in [11].
Remark on the Hamiltonian:

The Hamiltonian matrix is associated with the Euler-Lagrange system of

linear equations (7]

Po* In®
ro

where '2 is the n, x 1 costate vector. The solution of the above set 1s a 2-
point boundary value problem with x(0) and p(») known. The solution of the
state equation which minimize J; or & is

. - -1 .T

x=A ~-B Rc B p
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. C. Discrete-Time LQR Problem

In the discrete~time case,the (normally continuous) plant design model is

described in the form

x (k+l) = A x (k) + B u (k) (2a)

2 (k) =Cx (k) (2b)
where .A and -B are discrete-time equivalents of A and B in (la), and u (k) is
assumed to be piecewise continuous in the constant time interval

T =ty =t Kk=0,1,...
‘.A and ~13 are given by

A= exp (AT) (2c)
B=/IA(T, ©)B at (24)

Since (1b) and (2b) are algebraic,‘- C does not change.

ﬁe have used various metﬁods, which are not presently included in the

software described here, to compute jﬁ and -is The potential methods and.

possible problems are an interesting subjiect, c.f. [8]. If T is selected to

be sufficiently small, in comparison with the plant time constants, the

following first order approximation are useful:
e A= I+AT (2e)

B~ BT (2f)
| The LQR design procedure [12] for the discrete plant is outlined below:

1Q Countrol Law:

a(k) = G_ x(k) (28)
where Ec is a constant LQ gain matrix
“ Quadratic Cost ?unct:lons:

state regulator

23 =] [0 o 20 +u"00 R, u(k)] (2h)
=
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output regulator
N T T T, .~
24 =) [z ¢ o Cz@k) +u (k) R, ulk)] (21)

- ~ kmo
where Qc and Rc are the discrete time equivalents of Oc and Rc.

K A (2§)
where K is the solution to the discrete algebraic Riccati equation.

Discrete algerbraic Riccati equation:

ATra -aTkB(3TkB+R]7!BTk A+ -k=0 (2k)
~y -
where Qc = Qc (state regulator)
or CT'bcC (output regulator)
Hamiltonian:
. a1 a2l
c ~1~_1 ~r~_1-~
Q. A AT + Q. A S
-1 5T

where S = B R

hb has 2 n, eigenvalues with the following property: For each eigenvalue
A (assumed to be within the unit circle), A-l is also an eigenvalue (outside
the unit circle). Complex eigenvalues appear in conjugate pairs. The
eigenvalues within the unit circle of the z~plane are the closed loop poles of
the discrete LQR characteristic equation.

Discrete Riccati equation solution:

The method follows that of Vaughn [5].
let fﬁl be a partitioned matrix of eigenvectors corresponding to
those oigenvzitors outside the unit circle, i.e., the unstable poles. An

eigenvalue A 1is outside the unitcircle if A, or its vector sum, is > 1.0. The

organization of the eigenvectors is as in the continuous time case. The

-

, I TR e SV e e e tp A
’”“'“Wwiil4ﬂq\ ARELGEER ‘ b?' \\\Jm
. B ‘ A o

RN o Y Iy




¥ XL

2
e

AL HREN ),

o' v S L~

P A

Ly iR e e,

: A

solution to (2k) is
> T ~ T
Wi K =¥
Where K is solved as in the continuous-time case.

D. Kalman Filter Problem

Continuous Time Filter
In the KF problem the objective is to estimate the state of the linear
stochastic plant
.E‘_'AE"'BE"'E (3a)
z-Cx+yv (3b)
where x, u, 2z, A, B, and C are as previously defined, and W and v are
independent, zero-mean, gaussian white plant and output (measurement) noise
processes, respectively. The intensity matrices (spectral densities) of w and
v are Q¢ (> 0) and Re (> 0).
The Al(alman filter for this system (c.f. [1] 1s
.inA;_t_+Bg+Gf[_z_-CA£] (3e)

Where x is the optimal estimate of x and Ge is a ng, x n, matrix of constant

2z
Kalman gains. The state error covariance matrix P is defined as

P=E({$ x$ _ET}
where §x = x - ::5
The initial state error covariance P (t=0) = P, is assumed to be knowm.

The Kalman gain matrix is given by
- T p-1

Gf PC Rf (3a)
Where the symmetric matrix P, > 0, 1s obtained by solving the algebraic
covariance Riccati equation

AP +PAT +Q -PCTRICPa0 (3e)
Note that the dimension of G, and G¢ are different.

The KF can be viewed as a closed loop control sytem. The eigenvaiueo of
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2N the KF are the roots of
'.;:;:.'
N |sT-A+G:C|l =0
Covariance Riccati equation solution:

O The Hamiltonian matrix for the KF is
N
\"' _AT R—l
B % A
Al Where He is 2 n, x 2 ny,. He has the same properties as the control
?*% Hamiltonian H., Vaughn [5]. Hence the steady state covariance matrix is
\
Y obtained from
e Wi P o= ' (3)
%'J where the partitioned matrix
\‘ki Wi

L3

contains the eigenvectors of He assoclated with the positive eigenvalues.

Comment on the time varying Kalman gain:

The time varying state error covariance matrix P(t) is obtained by

éi‘ integrating the differential Riccati equation

§' P(e) = AP (t) + B(t) A+ Qe - P(t) CT Rg' C P(E)

= forward in time from Py« Hence it 18 feasible to compute Gg(t) in real

nﬁ time. The only advantage to this approach in the case of a stationary olant
is that :!g will converge to x more quickly. In the case of a time-varying

1?7 plant, it is normal to implement the time varying Kalman filter.

st Discrete time Kalman filter:

;Eﬁ Since the continuous KF equation (3c) contains the deterministic portion

_‘ of the plant model, it is quite complex to implement with analog circuitry.
This indicates the use of a digital computer, and the discrete version of the
KF. For this reason, (3c) is seldom used. The discrete version of the

continuous stochastic plant model is

10
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3 x(k+1) = A x(k) + B u(k) + w(k) (4a)

. 2(k) = C x(k) + v(k) (4b)

Where w(k), v(k) are discrete white noise sequences representing plant
and measurement noise, and~Qf and ~Rf are the covariances of w(k) and v(k),

; respectively. There are two common forms of the KF in general use. These are

¥ (1) the filter form, where

. x(k+1) = E (x(k+1) | 2(0), .u., 2z (k41)}

f . and (i1) the one step ahead predictor form where

’ ‘gm) = E{x(k+l) | z (0) ,e0s, 2z (KD}

X However both forms are referred to as a "filter" in the literature.

:’ (1) Filter algorithm

X

The filtered x is normally computed in time and measurement update

stages, where x “(k) and X +(k) will denote the time and measurement updated

DR,

state estimates
Time update

i X T(k+1) = A x (k) + B u(k) (4¢)

Measurement update

x Tt = x TG + 6 [2 (k41 - Cx (k)] (4d)
where ..Gf is a matrix of constant filter gains.

(11) Predictor Algorithm
The one-step ahead predictor algorithm is

x(k+1) = A x(k) + B u(k) + 6 [2(0) - € x(k)] (4e)

A

where Gp is a constant matrix of predictor gains.

. Remarks:

N

The notation (k+1]|k), (k]k-1), etc is often used to denote the one-step

- ahead predicted estimate of x.
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Optimal Gains

The filter and predictor gains are given by

Go=pc'[crpct +r]™ (4f)
and Gp = A Gf (4g)

Where P is the steady-state, discrete. state error covariance, and is obtained

by solving the discrete algebraic covariance Riccati equation

APAT+q -Aarcicrct+r] 1 cPaT-2=0 | (4h)

Riccati Equation Solution

The Hamiltonian associated with the discrete KF is

. AT AT R?
L T
Q A A+Qp AT R

Where the 2 n, x 2 n, matrix Hf contains 2 n, eigenvalues with the same

properties as the discrete LQR Hamiltonian Hc. The eigenvalues A of H_. which

f
are inside the unit circle are the closed loop poles of the discrete KF. } is
computed using the same method as in the discrete LQR equation (2k), and as
first described in [5].
FORTRAN PROGRAM DESCRIPTION

This section describes a FORTRAN progrm which computes the steady state
LQR or KF gainsg, as given in the ﬁrevious section., A program listing is given
in Appendix A. Several separate programs, which have been used by this author
over a period of several years, were combined to produce the version
described. Hence the result is not as optimal, from a viewpoint of work
vectors and matrices, execution time, and modularity, as the program could be
if we had started from scratch. Subroutines were used only to eliminate

obvious duplications. In some cases, we use a loop instead of an available

subroutine, 1if only 2 or 3 statements are required.
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All real FORTRAN variables or constants are in double precision, as
defined in the IMPLICIT statement. This allows for easy change from double to
single precision computations (with appropriate subroutine changes). In
general, matrix and vector names end in M and V, respectively. The exceptions
are the real vectors TV1l, TV2, and integer vectors IV1, IV2. All integer
variables and constants begin with I and loop counters begin with I or J.

The maximum dimension of the state vector is set to 15 in the listed
version. This limit can be expanded by changing the integer INXMX to the
desired value, and by expanding the matrix and vector dimensions
accordingly. All subroutines use variables dimensions.

Data Input

The FORTRAN input file (FTOSF00l) for each run consists of the following
types of data cards:

(a) Control/title card (No. 1)

The integers in the first five columns are used to set the status of
the five internal option control flags shown in Table 1. The characters in
columns 6 through 65 are used for run identification. The format of this card
is (SIl, 15A4). Note that the flag IDATAF is used to terminate the run (= 0),
i.e., a blank card.

(b) Plant dimension card (No. 2)

The dimensions of x, u, and z are input in columns 1-2, 3-4, and
5-6, respectively (FORMAT = 312). These integers determine the dimensions of
the matrices to follow.

(c)Matrix data cards

Each matrix to be read in is preceded by a card containing a read
(1)/no-read (0) matrix flag in column 1. We use columns 6 on to identify the

matrix; however, this is not printed out. The coefficients of the matrix to
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Table 1 - Control/Title Card Option Flags

N
R Flag Card Column Option
X3
§ IDATAF 1 1 = run, 0 = stop

IOREGF 2 0 = gtate regulator, 1 = output

regulator (LOR option only)

continuous plant

IDISCF 3 0
1 discrete plant model

. IPRTF 4 normal print
ﬂg3 1 = extended print option

[=]
L}

%
w§% ITYPE 5 0 = LOR option
e 1 = Kalman filter option

T
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be input are read in by rows on cards following the read/no-read flag card.
‘ The matrix coefficient card format is 6D12.8. The order and dimensions of the
, matrices are:
;3 A (ng x n), B (n, x ), C(n, x ny), O (n, x n), and R, which is
;1 n, x n, for the LOR option, and n, x n, for the Kalman filter option. Prior |

to the first run, A, B, and C are cleared, and O and R are set to identify

matrices. If a matrix is not input, its previous setting does not change.

'

Note that a read/no-read card must be provided for each matrix.

3

Output Data
7‘ The print flag (IPRIF) setting is used to select the normal or extended
i print-out options. A brief description of the print out data follows:
® (1) Normal output (IPRTF = Q)
‘ 1. Title field characters and control flag settings (Input card No. 1)
2. Input Data (A, B, C, O, and R matrices)
K 3. Eigenvalues of A
~ 4. Q' (= CT 0 C) 1f IOREGF = 1 (output regulator)
S. Eigenvalues of the Hamiltonian (closed loop eigenvalues)

6. LQR or KF gains

§ (11) Extended Output (IPRTF = 1)
i Items 1-6 in normal output
¥

7. Hamiltonian matrix
8. Packed eigenvectors of H-matrix from EISPACK subroutine HQR2

9. Normalized eigenvectors

SEALRACAT L,

. 10. Positive eigenvector matrices w1T1 , wél‘l

11. Riccati equation solution

XA
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Computational Details
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The A-matrix eigenvalues are computed by calling the EISPACK subroutine
BALANC, ELMHES, ELTRAX1, and HOR2, The latter subroutine also computes the
eigenvectors, which are not needed. HQR, which computes the eigenvalues only,
can be used in place of HQR2 (with the call to ELTRAN deleted).

All eigenvalues and eigenvectors of the Hamiltonian (HAM) are computed by
calling the EISPACK subroutines BALANCE, ELMHES, ELTRAN HOR2 and BALANC.
However, only the positive (or negative) eigenvalues and eigenvectors of HAM
need actually to be computed. An alternate strategy could be used, for
example, to reduce storage requirements or execution time (see [6] for
details). Note that the subroutine HOR2 will fail for repeated eigenvalues.

The eigenvectors of HAM are normalized for print-out only. This step is
not actually required.

The FORTRAN name KM is used to denote the control (K) or filter (P)
Riccat; equation variable. The linear system to be solved is

W1lM x KM = W21M
vhere  WIIM = W5 ,, W2IM = Wy
KM is computed by using the method and subroutines described in [11]. The
subroutines used are DECOMP and SOLVE, which were supplied by Dr. L. R.
Anderson of Virginia Polytechnic Institute.

These subroutines are variable dimension, double-precision versions of
the subroutines DECOMP and SOLVE given in [l11, Chap. 17]. Note that the
subroutine SING, which is called by DECOMP, is also required (see
reference). Note also that one could use the appropriate subroutines from

LINPACK [13] to replace DECOMP and SOLVE.

16
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Additional Subroutines Called

The following matrix handling subroutines are used throughout the orogram

HHCAEAR,

and are included in the listing.

PRTMAT - prints out a matrix by rows

READM -~ reads in a matrix by rows

be
=
e
)
L
B

MULMAT - multiplies two matrices Ml x M2 and stores the result in M3
MATINV - inverts matrix M1l and stores the result in M2. MATINV calls

DECOMP and SOLVE

Limitations

If the LQR or KF has repeated eigenvalues, HQR2 will fail. This
-ﬁé limitation can be removed by using the method described by Laub [14]. This
method, which uses the Schur vector approach, is dependent on the subroutines
ORTHES and ORTRAN, which are in EISPACK, and HQR3, which is not (see reference

for details).

In the set up of the H-matrix, we assumed that R was diagonal. This
}{[ assumption is generally true, because it is difficult to determine what the
gg off-diagonal elements of R should be in the LQR option. In the KF option the
output noise elements are assumed to be uncorrelated. When the inverse of R
is called for, it is computed by inverting the diagonal elements of R. This

limitation can be easily removed by using the subroutine MATINV to invert R.

RO e o
‘.r',;’.;ﬁ:!;ﬁfii’.’r-f

There are no checks for proper dimensions, plant model controllability

;% ) and observability (required for Riccati equation solution to exist) or for
?g proper matrix characteristics.
| ] CONCLUDING REMARKS
?ﬁ: We have described the methods and software for solving the LQR and Kalman
;5 filter pfoblemn for a stationary continuous or discrete-time process. The
methods described have been used for aircraft and submersible control system
> 17
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design. We use a separate, undocumented FORTRAN program to compute the plant
dynamics (A) and control input (B) matrices from the vehcle stahility
derivatives and, mass and geometric properties. The candidate control or
filter design is tested with a linear system simulator, or a 6 degree-of-
freedom simulator. The latter programs are also undocumented. However,
equivalent programs are commonly used.

At present the output from one program is manually manipulated into the
input for the next program in the design stage. With the recent acquistion of
time-shared operating system based computers, we intend to modify and combine
the separate FORTRAN programs above in order to provide an integrated

interactive aircraft or submersible control system design package.
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APPENDIX A

FORTRAN Program Listing

LINGAR GUADRATIC QAUSSIAN CONTROLLER DESIGN PROGRAM

VERS = 1B, 9/21/82

CUT OUY SOME PRINT IN "A“ VERS

THIS VERS I8 A COMBINMNATION OF SEVERAL SEPARATE VERSIONS

AND THERErOR IS A BIT LENGTHY & MESSY, IE.,COULD BE MODULARIZED
WIVH SOME ADD’L EFFORT: NQO EFFORT WAS MADE TO OPTIMIZE FORT CODE
ADDED FILTER & PREDICTOR GAINS FOR DISCRETE KF ON 6/30

DISCRETE AND CONTINUOUS LGR & KAL FILT COMBINED

CHEY OZIMINA, D38, B20.747-3171

COMPUTES: STEADY STATE QAIN FOR A LINEAR QUADRATIC
RECULATOR CR KALMAN FILTER

saunes ITYPE = O ( LINEAR QUADRATIC REGULATOR ) #uases

SRS CONT INUOUS SYSTEM #aaaassss

PLANT DYNAMICS XD = A # X + B » U
OU1PUT PROCESS Z=sC»X
CO3Y FUNCTION J = .3 » INTEGRAL OF ( X(T) » G & X +
U(T) #*» R » U ) DT )
Q MUST BE POS SEMI-DEF, SYMMETRIC
R MUST BE POS DEF.DIACONAL(IN THIS PROG)
STATE OR OQUTPUT REGULATOR OPTIONS AVAILABLE
IOREGF = 0/1 ( STATE/QUTPUT REGULATOR )
SEF ATMANS & FALD.CHAP 9 FOR DETAILS
NOTATION OGENERALLY FOLLOWS THAT OF ATHANS
MAYRICES IN FORT CODE QENERALLY END IN M.IE. A = AM, ETC.
VECTORS GEN END IN V
68 SOL 10 THE RICCATI EGN IS OBTAINED VIA MACFARLANE-
POYIER METHOD
EISPACK I8 USED TO COMPUTE THE REG'D E-VECTORS
THIS VERE USES DP EISPACK
DECOMP & SSOLVE ARE USED TO SOLVE LINEAR SYST IN PLACE
OF MATRIX INVERSION
NOTE: BISPACK S8R HGR2Q FAILS FOR REPEATED E-VALUES

aassensnes DISCRETE VERSION ( IDISF = 1 ) avannss

PLANY DYNAMICS X(K+1) = A # X(K) + B & U(K)

QUIPUT PROCESS I(K) = C #» X(K)

COS1 FUNCT J = .3 & SUM( X(K)(TRANS) # G » X(K) +
UKI(TRANS) # R # WKK) ), K= 0 TO N

STATE OR OUTPUT REC OPTION ( IOREGF = 0/1 )

NOTE: A.B,0.R ARE DISCRETE EQUIVALENTS OF CONT PLANT

REF: PAPER BY DORATO & LEVIS, IEEE TRANS ON AUTO CNTRL.

PP 513-620, DEC. 1971

sanenss ITYPE = 1 ( STEADY STATE KALMAN FILTER ) #snssaes

PLANT & OBSERV MODELS:

XDt A® X+ W Z=C#» X+ V, WHERE W:V ARE .
INDEPENDENT GAUSIAN WHITE NOIPROCEGSES
WITH INTENBITY MATRICES OF @ => O,R > O .

S8 KAL GAIN @ = K » C(T) #» R(INV), WHERE

K = 8§ 8OL TO THE FILTeR RICCATI EGN .
DISCRETE FILTER CASE:

N(RPLD) = A & X(K) + WIK); Z(K) = C @ X(K) + VIK)

WHERE A.B.C.Q: R ARE DISCR EQUIVALENTS OF CONT PROCESS

S8 FILTER QAIN 18: GF(88)= K(8S)aC(T)#(CuK(88)eCITI+RI(INV)

S8 KAL FREDICTOR OAIN IS OP(88) = A & QF(8S)

WHERE X(G8) 18 THE 88 SOL TO THE DISCR RICCATI EGN

NOIE: TIF DUALITY THEOREM 18 USED TO SOLVE THE FILTER

PROBLEM VIA THE SAME METHOD AR THE LOR PROBLEM

REFS: ASTHOM, K. J, “INTRODUCTION TO STOCHASTIC CONTROL
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THEORY", CR KALMAN'S ORIC PAPERS. OR THE EXCELLENT
TUIORIAL BY I. B. RHODES IN IEEE TRANS ON AUTO CONTR.
DEC 1971.PP. &88-706.

*ennannese IPRIF s |, ADD’L PRINT OQUT FOR DEBUGGING #senw

IMPLICIT REAL#8 (A-M, K~Z)
DIMENSION AM(13,15),BM(13, 19),CM(1S, 15),GM(15, 15), RM(15,19)
DIMENSION HAM(30,30),KM(1S5, 13), GPM(1S, 15), SM(15, 13), TM(19, 15)
DIMENSION AIM(15, 15), W11M(1S: 15), W21M(1S, 15), WM(30, 30), ZM(3C, 30)
DIMENSION WRV(30), WIV(30), TV(30), TV1(1S5), TVR(15)
INTECER IV1(30)., IV2(30)
INTEGER 1INX. INU, INZ, INH, INXMX, INUMX, INZMX, INHMX

REAL#4 1ITLE(1S)

CLEAR SOME VARIABLES
ICASE = O

SET MAX DIMENSIONS

INXMX = 1%

INUMX = INXMX
INZMX = INXMX
INHMX = INXMX # 2

CLEAR SOME ARRAYS
8EY OM.RM TO UNITY MATRICES

DO 10 J=1, INXMX
DO S Irst, INXMX
AMC(I. J) +» 0.0D0
BM(I, J» = 0.0DO
cM(I, Jy» = 0, 0D0
aMcl.J) = 0, 0DO
QPM(I, J) = 0. 0DO
RM(I,J) = 0.0D0
S CONTINUL
aniJd, ) = 3, 0DO
RM(J, Jy = 1. 0DO
10 CONTINUL

READ ALL INPUT DATA HERE

IDATAF = READ DATA FLAG(1/0)

IOREQF = QUTPUT REQULATOR FLAG. NE-D C-MTRX IF ON(1)
IDISF s DISCRETE REQULATOR FLAG

IPRIF ¢ OPTIONAL PRINT FLAO, PROVIDES MORE DATA FOR
DEMUCOLING

ITVPFE = KALMAN FILTER FLO: COMPUTE KALMAN GAIN IF
ONeLY

IRAF « READ A-MTRX, IRBF = READ B-MTRX, ETC.

NOTE: 187 2 INPUT CARDS ARE MANDATORY FOR EVERY CASE
COMMENTS ON CARD #1 BEGINNING AT COL & ON ARE PRINTED
INPUT @ OF ELEMENTS IN X, U, Z ON CARD #2

CARD CONTAINING INPUT/NO INPUT FLAC MUST PRECEDE EACH MATRIX.

-




ARNANARANCAN R A S AT, |

WHETHER OR NOT THE MATRIX IS INPUT: ORDER OF MATRIX INPUTS IS:
A B, C,O.Ri ANY COMMENTS ON MATRIX INPUT/NO INPUT FLAG CARD
FROM COL & ON ARE NOT READ IN

C MAIRTX READ FORMAT IS &4E(D)12.8,DEr ON VERS, IE.,SINGLE OR DP
NEW CARD FOR EACH ROW

OOOAONOO

1 READ(S, 701) IDATAF, IOREGF, IDISF, IPRTF, ITYPE, (TITLE(I). [=1,195)
901 FORMAT(5I1, 19Aa4)
TES1 FOR NEW CASE
IFCIDAIAF .EQ. O ) GO TO 9999
READ DIMENSIONS OF AM, BM. CM
READ(S. 702) INX, INU. INZ
FORMAT (S12)
(~ TEST FOR NEW A-MTRX
READ(S. 901) IRAF
IF(IRAF .EG. O )CO TO 25 -
CALL READMCINXHMX, INX, INX, AM)
TEST FOR NEW B-MTRX
29 READ(S, 901) IRBF
IF(IRBF .EG. 0 ) GO TO 39
CALL " READMCINXMX., INX, INU, BM)
c TES1 FOR C-MTRX
39 READ(S, 701) IRCF
IF(IRCF .EG. O ) QO TO 435
CALL READM(INZMX. INZ, INX, CM)
TEST FOR NEW Q-MTRX
43 READ(S, 701} IRGF
IF(IRGF .£0. O ) GO TO 53
CALL READMCINXMX, INX, INX, GM)
TEST FOR NEW R-MTRX
INR IS DIMENSION OF R-MTRX TO BE READ IN
SEY INR = INU FOR LGR CASE, THEN TEST FOR KAL FILT
99 INR = IMU
IFC JIYPE _NE. O ) INR = INZ
READ(S3, 701) IRRF
IF(IRRF .EO. O ) QO TO &5
CALL READMCINUMX, INR, INR. RM)
DATA IS READ IN
&3 ICASE - ICASE + 1

NOW PRINT INPUT DATA(OR DEFAULT DATA)
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WRITE(S5, 715) ICASE
919 FORMAT( 1, 10X, ‘INPUT DATA FOR CASE NO. ‘. 14)
WRITE (&, 717) (TITLE(I), I=1,13)
917 FORMAT( ‘0, 5X, 19A4)
WRITE(S, 7'0)
Y] 920 FORMAT( ‘0’, SX. ‘FLAQGS(1=YES, 0=NO) ’}
5 WRITE(S, 925) IRAF, IRBF, IRCF, IRGF, IRRF

R 925 FORMAT(’ NEW A=’, 12, 3X. ‘NEW B=‘, IQ, SX. 'NEW C=’, 12, X, 'NEW QG=', 12,
e 1 9%, 'NEMW Rs 4, I2)
i WRITE(6:, 930) IOREQF, IDISF, IPRTF, ITYPE
930 FORMAT(’ OUTPUT REC FLO=’, 12, 3X. ‘DISCRETE REQ FLO=‘, 12,
X /.’ OPTIONAL PRINT FLO =, I2, SX, ‘KALMAN FILTER FLO =’, I2)
IF( IRAF. £G. O ) Q0 10 &7
= WRITE(S, 733) INX, INX
_— 933 FORMAT(’'0’, X, ‘A-MTRX *, 12, ' BY ’, IQ)
M CALL PRIMAT CINXMX, INX, INX, AM)
67 IFC IRBF .EG. O ) OO TO &%
WRITE(SH, 995) INX, INU
939 FORMAT( 0, S5X, ‘B-MTRX “,12,* BY *, ID)
- CALL PRTYMAT CINXMX, INX. ING, BM) R
&% IFC IRCF .EG. O ) Q0 70 71
WRITE(S: 730) INZ. INX
938 PORMAT(’0’, 5X, 'C~MTRX ‘, 12, ’ BY ’, 1I2)
CALL PRIMAT (INZMX. INZ, INX, CM)
71 IF( IRGF .£0. O ) GO TO 73
WRITE(H, 740) INX. INX
940 FORNMAT( ‘0, 5%, ‘G-MTRX *, 12, BY ‘., 12)
CALL PRTMAT CINXMX, INX, INX, GM)
73 IF( IRR: . $G. O ) QO TO 78
WRITECS, 942) INU, INU

| 22
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942 FORMAT('Q’,SX, ‘R-MTRX ‘,I2,* BY ‘, 1)
CALL PRIMAT CINUMX, INR, INR, RM)
WRITE(&, 745)

943 FORMAT(‘ CAUTION!!! R-MTRX MUST BE DIACONAL DUE TO METHOD OF’,
1 INVERIING!!!’)

c

Canannenn COMPUIE E-VAL 'S OF A-MTRX ##4#8444448

c SE1 1M = AM TO PRESERVE A-MTRX

[ USH EISPACK TO COMPUTE E-VAL‘S OF ™

c fi01E: WE ARE USING HGR2 INSTEAD OF HGR FOR CONVENIENCE

7% DO 85 I=1, INX
DO 85 Jr1, INX
8% TM(I. J) = AM(I.J)
CALL HALANC(INXMX, INX, TM, ILOW: IHI, TV}
CALL ELMHCS(INXMX, INX, ILOW, IHI, TM, IV1)
CALL ELTRAN(CINXMX, INX. ILOW, IHI. TM, IV1, SM)
CALL HORS (INXMX, INX, ILCW. IHI. TM, WRV: WIV. SM. IERR)
IFC IERR _EG. 0 ) @O TO 90
WRITE (&, 748) 1ERR
948 FORMAT(’0Q’, SX, ‘EICENVALUE COMPUTATION FAILURE, IERR =/, I2)
€0 TO 100
90 WRITE(S. 74%) .
949 FORMAT( ‘0’, SX. ‘'THE EIGENVALUES OF THE A~-MTRX ARE: ‘)
DO 100 I=1, INX
WRTIE (5, 960) WRV(I), WIV(I)
100 CONTINUE

c
Connnsnan BEGIN COMPUTATIONS TO SET UP HAMILTONIAN ssssssesss

COMPUTE GPMi STATE REG: GPM = G
OQUTPUT REG: GPM = C(T) » @ » C
KAL FILTER: GPM = G

TEST FOR KAL FILT
IFC TTIYPE .NE. O ) GO TO 130
TES1 IOREGF
IF(IORECF .NE. O ) GO 7O 150
SET OPM = GM FOR KAL FILT OR STATE REGULATOR
130 DO 140 J: 1. INX
DO 140 1=1, INX
aPM(L. J) = GM(I. J)
140 CONTINUE
Q0 TO 100
150 CONTINUE
¢ COMPUIE GPM = CM(T) » GM » CM
DO 140 I+1, INX
DO 160 J= 1. INX
WM(I. J) = 0.0D0
DO 160 IK ¢ 1, INX
WML, J) = WMCI,J) ¢ GMCTI, IK) # CM(OIK. J)
160 CONTINW:
c NOW COMPUTE GPM = CM(T) » WM
DO 170 I=1. INX
DO 170 Js 1, INX
aPM(I.J) = 0.000
DO 170 IK=1, INX
QPM(L. J) = GPM(I.J) + CM(IK, I) # WM(IK., V)
170 CONTINUE

O 0O 000000

(~
c SE1 DIMENSION OF HAMILTONIAN
c
180 INH = INX » 2
(-
c TEST FOR KALMAN FIL TER
IF( TTYPE .NE. O ) @0 TO 110
(- COMPUTIE 8M = BM # RM(INV) # BM(T)
c FIRST, COMPUTE TM = RM(INV) & BM(T), SAVE FOR USE LATER
DO 179 7= 1,INU
DO 179 J= 1, INX
TH(I.J} = BM(J, L) /7 RMCL. D)
175 CONTINUE
¢ NEX1 COMPUTE 8M = BM » TM
CALL MUL MATCINXMX, INX, INU, BM: INXMX, INX, TM, INXMX, 8M)
60 TO 13%
23
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:
("3; c SM = CM(T) # RM # CM FOR KALMAN FILTER
oo c
f{--.‘: 110 DO 120 Is1, INZ
DO 120 J=1, INX
TM(J. T) = CM(I,J) / RMCI, D)
LI 120 CONTINUE
1o COMPUIE SM = TM # CM
o CALL MULMAT(INXMX, INX. INZ, TM, INXMX, INX, CM, INXMX, SM)
Kl
PR c TEST1 FOR KALMAN FILTER
i 135 IFC ITYPE .NE. O ) GO 10 440
Al Coanonnuns REGULATCR PROBLEM ####aasts
c TEST FOR CONTINUOUS/DISCRETE LGR
. c
< IF( IDISF .NE. O ) GO 10 400
A c
Y] [ 22222223 CONT INUQUS PLANT LGR ##esnee
A 3 c FORM TH: CONTINUQUS PLANT HAMILTONIAN
. ¢
‘.
) c HAM = -AM , SM
c GPM . AM(T)
py ¢ WHERE SM = BM # RM(INV) # BM(T)
RN g GPM = GM OR CM(T) #» GM » CM, DEPENDING ON I[OREGF
c X c MOVE -AM INTO UPPER LFFT BLOCK OF HAM,
X N c @PM INTO LOWER LEFT BLOCK,
Rt c SM INTO UPPER RT BLOCK
) c AM(T) INTO LOWER RIGHT BLOCK
c
o DO 190 1-1, INX
SO I1=] > INX
A DO 190 J- 1. INX
A ) J1 = J » INX
Lo HAMCL, J) = —AMCI, J)
N HAMCL, J1) = 8MCI, J)
- HAM(I1, J) = GPM(L, J)
HAMCIL, J1) = AM(J, I)
190 CONTINU:-
00 TO 4%0
c
Consnsne FORM DISCREIE PLANT HAMILTONIAN #8usasess
c
c HAM = AMCINV) AMCINV) » 8M
c OPM » ACINV) A(T) + GPM # AMCINV) « 8M
c
- c WUERE BM = BM # RMCINV) & BM(T)
400 GONTINUL
X0 c COMPUTE AM(INV) BY LU DECOMPOSITION
":::; c SEF FURTHER DOWN IN LISTING FOR REF & DETAILS
EREA c
ot CALL MAYINV(INXMX, INXMX. INXMX, INXMX, INX. AM, KM, W11M,
RS X W2iM, V1, 1v1)

i c AMCINV) = KM
c COMPUTE AMCINV) » SM = Wi1iM
CALL MULMATCINXMX, INX. INX, KM, INXMX, INX, 8M, INXMX, Wi1M)
c COMPUTE GPH # AM(INV) # 8M = W21M
CALL MUL MAT ¢ INXMX, INX. INX, GPM, INXMX, INX, W11M, INXMX, W21M)
c COMPUTE AM(T) + GPM # AMCINV) » 8M,
c STORE I1 IN LOWER RT BLOCK OF HAM
DO 420 I: 1, INX
It ¢ INX + 1
DQ 420 Js 1, INX ¢
Ji s INX ¢+ J

HAM(I,J) = RM(E, )
HAMCT, J1) = W11M(L.J)
HAMCIL, J1) = AMCJY, ) + WRIM(I. J)
420 CONTINUE
c COMPUTEF GPM & AMCINV)
CALL MUL MAT CINXMX, INX, INX, GPM, INXMX, INX, KM, INXMX, W21M)

c STORE IN LOWER LEFT BLK OF HAM
DO 400 Iv1, INX
I1 =« INX ¢+ 1
24
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DO 430 <=1, INX
HAM(11,J) = W2I1M(I, J)
430 CONTINUE
- PRIN1 OUT GPM IF IOREGF IS SET
430 IFC(IORCCF .EQ. 0 ) GO 7O S00
IFCIRQF. AND. IRRF. EG. 0) GO TO 500
WRITE(S, 746) INX, INX

946 FORMAT(’0‘, 5%, ‘C(T) # G #» C MATRIX ‘,12,‘ BY
CALL PRIMAT (INXMX, INX, INX., GPM)
¢0 TO 00

Cannne KALMAN FILTER HAMILTONIAN ##ssssse
c
c TESY FOR DISCRETE KAL FILT

440 IF( IDISF .NE. O ) QO 10 480
f2a2 22 222 CONTINUOUS PLANT KAL FILT wwadsne
FORM THE CONTINUOUS PLANT HAMILTONIAN

HAM = -AM(T), SM
aPM , aAM
WHERE SM = CM(T) # RM(INV) » CM

MOVE -AM(T) INTO UPPER LEFT BLOCK OF HAM,
OPM INTO LOWER LEFT BLOCK,
SM INTO UPPER RT BLOCK
AM INTO LOWER RIGHT BLOCK

OO0 OOO00

DO 470 I:1,INX
Il= » [INX

DO 470 Jr 1, INX
Ji1 = J » INX
HAMCE, J) = -AM(U, )
HAMCT, J1) = SM(I.J)
HAM(IL, J) = GPM(L, J)
HAMCIL1, J1) = AM(IL, J)

470 CONTINUE
€0 To 500
Coenanas FORM DISCREIE PLANT HAMILTONIAN #sassse0e

HAM = AM(INV-T) AMCINV-T) » SM

WHERE SM = BM » RM(INV) » A3M(T)

OOOOOND

INVERT AM BY LU DECOMPOSITION

oPM » ACINV-T) A + GPM » AMCINV-T)

480 CALL MAYINVOINXMX, INXMX, INXMX, INXMX, INX. AN, AIM. W11M,

Y W21iM VL. VL)
AMUINV) = AIM
FIRST, TRANSPOSE AIM
DO 405 I+2, INX
LT -1
DO 405 S 1,11
DUM = AIM(I,J)
AIMCI, J) = AIMCD D)
485 AIM(J. 1) = DUM
COMPUIE OPFt1 & AM(INV-T)

an

COMPUIE AM(INV-T) » 8M
COMPUIE OPMt & AMCINV-T) # 8M = W21M

COMPUIE AM + GPM » AM(INV~T) » GM,
STURE [T IN LOWER RT BLOCK OF HAM

o006 6 O O

DO 490 I-1.,I1INX

I1 + INX + 1

DO 470 U 1, INX
Ji s INX + J
HAM(L, J) = AIM(LI. J)
HAMCI, J1) o WILIM(T, J)
HAM(11,J) & KM(I. O
HAMCTIL,J1) = AMCL. J) + WRIM(I. J)

490 CONTINUE
c OPYIONAL PRINT OUT OF HAMILTONIAN MATRIX

25
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CALL MUL MAT C INXMX, INX, INX, GPM, INXMX, INX. ATM. INXMX, KN)
CALL MULMATCINXMX. INX, INX. AIM, INXMX, INX. SM, INXMX. N11)
CALL MUL MATCINXMX. INX, INX, GPM, INXMX, INX, W11M, INXMX, W21M)

STORF REMAINING ELEMENTS IN HAM IN SAME LOOP
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SO, X -

}*ﬁ‘ SO0 IF(IPRIF .£Q. O ) GO 10 19%

o WRITE(&, 947) INH, INH
N 947 FORMAT( ‘0, 5X. ‘HAMILTONIAN MATRIX ,12,’ BY ‘,12)
NN CALL PRIMAT C INHMX, INH, INH, HAM)

<. e 195 CONTINUE

’ C NOW CUMPUTE THE E-VALUES AND E-VECTORS OF HAM
- c VIA ETSPACK SUBROUTINES

SR c

o CALL BAL ANC CINHMX, INH. HAM, ILOW, IKI, TV)

R CALL ELMNHES(INHMX, INH, ILOW, IHI, HAM, IV1)

2 CALL EL TRANCINMX., INH, ILCW, IHI., HAM, IV1, IM)

o CALL HORS CINHMX, INH, ILOW, IHI. HAM, WRV, WIV, ZIM, IERR)
LN IF(IERR .EG. O ) GO TO 200

WRITE(S, 9500 IERR
930 FORMAT(‘Q‘. 55X, ‘EICENVALUE COMPUTATION FAILURE, IERR = ‘, I2)

ks 60 TO 1 .
LOsx 200 CALL BALBAKCINHMX, INH, ILOW, IMI, TV, INH, ZM)

ASY c

xrﬁ c PRINT E -VALUES

th WRITE(S: 755) *
3~ 933 FORMAT(‘0‘, 5X, ‘THE EIGENVALUES OF THE HAMILTONIAN ARE: ‘)

DO 210 I=1, INH

- ¢ PRINT NEC E-VAL‘S ONLY

o IF( WRV(T) .GT. 0.0 ) GO TO 210

oy WRITE (6, 960)WRV(I), WIV(I)
g 960 FORMAT(‘ , 1PD15. 7, 10X, 1PD1S. 7)

> 210 CONTINUE
wﬁg. c OPYIONAL PRINT OF PACKED E~VECTORS FROM EISPACK
B3 IF(IPRIF .£6. O ) GO TO 212

¢ PRINY 14 PACKED E-VECTORS OF HAM

oo WRITE (&, 962)

e 962 FORMAT(‘0*, SX, ‘THE E-VECTORS OF HAM ARE: /)

A v CALL PRTMAT ( INHMX, INH, INH, ZM)

X 212 CONTINUL

N c

3 c NORMAL 17E THE E-VECTORS
¢ ¢

IK = O
214 Ik = IK » 1

IF( WIVC(IK) .NE. 0.000 ) GO TO 220

8UM = 0. 6DO

DO 213 1¢1,INH

SUM = SUM » ZM(I, IK) & ZIM(I, IK)
213 CONTINUE

SUM = SORT( SUM )

DO 218 1-1, INH

T ZMCI, IK) = 2MCIL IK) /7 SUM

S 218 CONTINUE

Q?Q Q0 TO 230

iy c

«133 220 3UM = 0. ODO

" DO 229 1:1, INH

A SUM = SUM » ZM(I, IK) # ZMCI, IK) + ZM(I, IK+1) & ZM(I, IK+1)
225 CONTINUE

UM = [IGRITC Su )

DO Q26 1:1.INH

IMCT, IK) = ML, IK) 7 SUM
ML, IKPL) s ZMCI, IK+1) /7 8UM

228 CONTINUE
IK=IK + 1
. 230 IFC IK LY. INH ) GO TO 214 .
c OPITONAL PRINT OF NORMALIZED E-VECTORS FROM EISPACK .

IFCIPRIF (0. O ) GO TO 239
WRITE(S, 961)
_ 961 FORMAT(’0*, SX, ‘THE NORMALIZED E-VECTORS OF HAM ARE: ‘)
Lo CALL PRTMAT CINHMX, INH, INH, ZM)
N 239 CONTINUE
o RE -ARRANGE THE E-VECTORS
TEST POR CONTINUOUS/DISCRETE CASE
IFC IDISF .NE. O ) 60 TO 280

SELECYT THE E-VECTORS ASSOCIATED WITH POS E~VALUES
AND PUYT THEM INTO THE PARTITIONED MATRICES WiiM, W21M
TRANSPOSE W1iM, W12M

o000 OO0
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Js=0
DO 230 IK=1, INH

IF(WRV(IK) .LT. 0.0D0 ) GO TO 2%0

NO POS E -VALUE

IF E -VALUE IS COMPLEX. THEN TWO E-VECTOR
2 COL ‘S ARE REG‘D, HGR2 COMPUTES POS PART ONLY
SINCE NEQ PART IS CONJUGATE,WE WIL!I PICK UP 2ND
COL ON NEXT PASS

JeJel
DO 240 1:1, INX

I1 = | » INX

WiiM(J, 1) = ZMUT, IK)

W2IM(J 1) = ZM(IL, IK)

240 CONTINUF
290 CONTINUI

€0 TO 280
RE -ARRANGE E-VECTORS DIFFERENTLY FOR DISCRETE CASE
REF: VAUGHN, IEEE TRANS ON AUTO CONT..QOCT 1970

20 V= 0O

270

972
290

c
310

DQ 270 IK = 1, INH
COMPUTE MAC OF E-VAL
SUM = WRV(IK) # WRV(IK) + WIV(IK) # WIV(IK)
§UM = DSQRT( SUM )
TEST FOR E-VAL OUTSICE OF UNIT CIRCLE

IF( SuM .LT. 1.0D0 ) GO TO 270
E-vAL IS QUTSIDE OF UNIT CIRCLE, GET & STORE E-VECT
IF & -VAL IS COMPLEX, WE WILL PICK UP OTHER PART OF
E-VECT AUTOMATICALLY ON NEXT PASS

J=J |

DO 270 I = 1, INX
I1 « 1 » INX
WiiM(J, 1) = ZM(I, IK)
W2IM(J, 1) = IM(I1, IK})

CONTINUE

OPTIONAL PRINT OF POS E-vAL EIG VECTORS

IF(IPRIF .EG. O ) GO TO 290

PRINY W1iM, W21M
WRITE(S, 270)
FORMAT( 0", SX, ‘H11(T) IS)
CALL PRIMAY (INXMX, INX, INX, W11M)
WRITE(S, 272)
FORMAT( 'Q7’, 5X, ‘W21(T) 1S‘)
CALL PRIMAT CINXMX, INX, INX. W21M®
CONT INUE

LOR SS GAIN © = -RUINV) # B(T) » K

CONY KAl FILT S5 GAIN = K # C(T) # R(INV)

WHERE X = 8S SOL TO ALGC RICCATI EGN
VIA POTIER ‘S METHOD
Wi11(1) #» K = W21(T)

SOLVE FOR COLS OF K By LU DECOMP METHOD
REF: FORSYTHE & MOLER “COMPUTER SOLUTION OF LINEAR
ALGEBRAIC SYSTEMS"

FIRST DO LU DECOMPOSITION
CALL DECOMPCINX, W11M, INXMX, ZM, INHMX, [V1, TV1)
NOW COMPUTE COL.'S OF KM

DO 300 J: 1, INX
CALL 8SSOLVE (INX, ZM, INHMX, W21M(1, J), KM(1, J), IVD)
CONT INUE
TEST FOR KAL FILT
IFC ITYPE .NE. 0 ) QO TO 310
TES1 FOR ADD’L PRINT OUT
IF( IPRIF .EQ. 0 ) €O TQ 318
PRINT OUT RUINV) & B(T)
WRITE(6, 975) INU, INX
FORMAT( ‘0", 95X, 'R( INV ) » B( TRANS ) MATRIX’,12,’ BY ‘.12)
CALL PRIMAT (INXMX, INU, INX, TM)
€0 TO J1%
TEST FOR ADD’L PRINT OUT
IFC IPRIF .EQ. O ) GO TO 318
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PRINYT OUT C(T) # R(INV) MATRX IN TM
WRITE(S6: 976) INX, INZ
97& FORMAT( ‘0, 5X, 'C(T) # R(INV) MATRIX‘, 12, BY ', I2)
CALL PRIMAT(INXMX, INX, INZ, TM)
NOW PRINY OUT SS K-MTRX
319 WRITE(S, 780)
980 FORMAT( ‘0, 59X, ‘SS K-MTRX(RICCATI EGN SOLUTION IS‘)
CALL PRIMAT (INXMX, INX, INX, KM)
318 WRITE(S, 985)
985 FORMAT(‘0‘, 9X. ‘'THE S8 CAIN MTRX G IS : )
TES1 FOR KAL FILT
IF¢ TIYPFE .NE. 0 ) GO TO 320
COMPUTE S5 LGR GAIN: R(INV) # B(T) IS IN TM
CALL MUL MAT CINXMX, INU, INX, TM, INXMX, INX, KM, INHMX, WHM)
CALL PRIMAT (INIMX, INU, INX. WM)
¢Q TO 1
320 IFC IDISF _NE. O ) GU TO 329
COMPUTE SS KAL FILT GAIN: C(T) # R(INV) IN TM
CALL MUL MAY (INXMX, INX, INX, KM, INXMX, INZ, TM, INHMX, WM)
PRINT S8 GAIN MTRX
WRITE (S, 780)
988 FORMAT(’ ‘,GX, ‘G(SS) = K(SS) # C(T) » R(INV) FOR CONT KF‘)
CALL PRIMAT (INHMX., INX, INZ, WM)
G0 TO 1

COMPUTE DISCR KF SS GAIN G=KaC(T)#CCo#K#C(T)+RI(INV)
FING1 COMPUTE & SAVE ¥#C(T)
323 DO 330 I=1, INX
DO 330 J=1. INZ
WiiM(l, J) = 0. ODO
DO 330 IKs 1, INX
330 WitM(I, J) = WI1LIM(L. J) + KM(I, IK) # CM(J, IK)
CALL MULMATCINXMX, INZ, INX. CM, INXMX, INZ, W11, INXMX, W21M)
DO 335 I=1. INZ
33% WIM(L. I) » W2IM(L, I) + RM(I., 1)
INVERY W21M
CALL MAT INVCOINXMX, INXMX, INAMX, INHMX, INX. W21M, AIM, WM. ZM,
X Tvi, Ivh)
COMPUTE GF(88) = W1ll1 # AIM
CALL MUL MAT (INXMX, INX, INZ, W11M, INXMX, INZ, AIM, INXMX, W21M)
WRITE (&, 790}
990 FORMAT( ‘0. 5X, 'S8 FILTER G+(SS) IS: )
CALL PRIMATCINXMX, INX: INZ, W21M)
COMPUIE KF PREDICTOR S€S GAIN GP(SS) = A # QF(8S)
CALL MUL MAT(INXMX, INX, INX, AM, INXMX, INZ, W21M, INXMX. W11M)
WRITE (&, 792)
992 FORMAT(‘0’, 35X, ‘S8 PREDICTOR GCAIN IS: ‘)
CALL PRIAAT(INXMX, INX, INZ, W11M)
Q0 TO 1

9999 CONTINUE

000

o000

END
SUBROUT INE PRTMAT(IRMAX, IR, IC. MAT)

PRINIS OUT A MATRIX BY ROWS

IMPLICIT REAL#B (A-H,K-2}
DIMENSION MAT(IRMAX. 1)
DO 10 124, IR
WRITE (6. 70) (MAT(I.J). J=1, IC)
10 CONTINUE
90 FORMAT(’0’, 1P3D1S. 7/¢(’ ¢, 1P3D1S. 7))
RETURN ‘
END
SUBROUTINE READM( IRMAX, IR, IC, MAT)

READS IN A MATRIX BY ROWS
IMPLICIT REAL®@ (A-H, K-2)
DIMENBICN MATCIRMAX, 1)

DO 10 I:1.IR

READ(Y, 70) (MAT(I,J),J=1, IC)
10 CONTINUI
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] 90 FORMAT(5D12.8)

A RETURN

J END

‘ SUBROUTINE MULMAT( IRAMX. IRA, ICA, A, IRBMX, ICB, B, IRCMX, C)
¢ C: A®» B, MULTIPLIES 2 MATRICES

IMPLICIV REAL®#8 (A-H, K~2)
DIMENSION ACIRAMX, 1), BCIRBMX, 1), CCIRCMX, 1}
DO 10 I=1, IRA
. DO 10 J* 1, ICB
y C(1.J4) = 0.0D0
o DO 10 IKs1, ICA
: 10 C(I,J) = C(I.J) + ACI, IK) # B(IK, J)
RETURN
END
. SUBROUT INE MATINV(INAMX, INBMX, INCMX. INDMX, INA, A, B, C. D, TV, IV)

INVERIS THE MATRIX A BY SOLVING THE SET: A # B = C FOR B.
WHIItE C = A UNIT MATRIX:i B = A(INV)

MEVIHOD: LU DECOMPOSITION: REF: FORSYTHE & MOLER.
‘COMPUTER SOLUTIONS CF LINEAR ALGESRAIC SYSTEMS'

SUBROUT INES: DECOMP % SOLVE ., SUPPLIED BY DR. L

ANDERGON OF VPI

Cameale
BOOOOOOOO0

IMPLICIT REAL#8 (A-H, K-2)

DIMENGION ACINAMX. 1), BCINBMX, 1), CCINCMX, 1), DCINDMX, 1), TV(1)
INTEGER IV(1)
DECOMPOGE A INTO LU FACTORS
CALL DECOMP (INA, A: INAMX, D INDMX. IV, TV)
SOLVE THE LINEAR SE1 A # B(1,J) = I FOR J=], INA
SEY C 10 IDENTITY MTRX
DO 10 J=1, INA
DO S I=1, INA
9 C(1.J) = 0.0D0
C(J, ¥} = 1,000
10 CALL S8SOt VE (INA, D, INDMX, C(1,J), B(1, W), IV)
c NO1E: € IS A MATRIX FOR CONVENIENCE
RETURN
END

TR T
(4]

-SRI
o0

s

N SUBROUTINE DECOMP (N, A, NA, UL, NU, IPS, SCALES)
N REAL#8 A(NA. 1), UL(NU, 1), 8CALES(1)
& REAL#8 ROWNRM. SIZE,BIG. PIVOT.EM
INTEQER IP3(1)
c INITIALIZE IPS. UL, AND SCALES

DO S I~1,N
IPS(I) = I
ROKWNRM = 0. ODO
DO 2 JysI. N
WL, J) = AL J)
IF (ROWNRM-DABS(UL(I,J)))1, 2.2
ROWNRM = DABS(UL(I. J))
CONT INUE
IF (ROWNRM) 3. 4. 3
SCALES(I) = 1. /ROWNRM
¢0 70 &
CALL 8ING(1)
SCALES(I) = 0.0D0
CONT INUE
p C  OQAUSSIAN ELIMINATION WITH PARTIAL PIVOTING
? Nl = N-1

DO 17 K=31,NML

816 = 0. 010

DO 11 I:K.N

IP = IPS(T)

SI2€ = DABS(UL(IP, K))#BCALEB(IP)

IF(SIZE -pICI11.,11,10

10 BIC = 8128
IDXPIV: 1
11 CONTINUE
IF(BIQ)13, 12, 13

et )
¢ & W N
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13
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CALL SING(2)

0 TO 17

IF(IDXPIV -K)14,15, 14

JrIPS(K)

IPS(K) = 1PS(IDXPIV)

IPS(IDXPIVY = J

KP = IPS(K)

PIVAOT s UL (KP. K)

KP1 = K » 1

DO 16 I:KPI.N

IP = IPS(T)

EM = -UL (IP,K)/PIVAT

UW(IP,K) = -EM

DO 16 J=KPI1. N

ULCIP, J) = UL(IP, J) + EMBUL(KP, J)

CONTINUE

CONT INUE

KP = IPG(N)

IFC(UL(KP. N))19. 18, 19

CALL SING(Z)

RETURN

END

SUBROUTINF SSOLVE(N. UL, NU, B, X. IPS)

REAL#8 UL (NU. 1).B(1),. X(1).5UM

INTEGER 1PS(1)

NP1 = N » |

IP = IPS(1)

X(1) = B(1P)

DO 2 I=N

IP = IPR(I)

IMl =) -1}

SUM = 0. 0O

DOt vs1.1IM1

SUM = SUM » UL(IP, J)#X(W)

X(1) = B(IP) - SUM

IP = IPS(N)

X(N) = XIN)/ZU.(IP, N)

DO 4 IPACK = 2,N

1 = NP1 - TBACK

IP = IPS3(I)

IP = ] » 1

SUM = 0. ODO

DO 3 v IPL.N

UM = SUM » UL (IP, J)#X(J)

X(1) = (XC(I)-8UM)/UL(IP, L)

RETURN

END

SUBROUTINE SING(IWHY)

DATA NOWN /767

00 TO(1.2,3), IWHY

WRITE(NOUT, 11)

RETURN

WRITE(NODUT, 12)

RETURN

WRITEC(NOUT, 13)

RETURN

FORMAT(’ MATRIX WITH ZERO ROW IN DECOMPOGE. ‘)

FORMAT(’ SINQGULAR MATRIX IN DECOMPOSE. ZERO DIVIDED IN SOLVE. ‘)
FORMAT(* NO CONV IN IMPROVE. MATRIX 18 NEARLY SINGULAR‘)
END
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