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OPTIMAL CONTROL AND FILTER GAINS FOR THE STATIONARY CONTINUOUS
OR DISCRETE TIME LQG PROBLEM - A FORTRAN PROGRAM

INTRODUCTION

In this report the solution to the continuous and discrete-time linear-

quadratic regulator (LQR) and Kalman filter (KF) is presented, and a FORTRAN

program is included. The L0R or KF design model for a stationary process is

described as a continuous or discrete vector-matrix equation. The output is

the control system or filter eigenstructure and the optimal steady state LOR

or KF gain matrices. The method used to compute the gains is the classical

eigenvalue-eigenvector approach.

The common requirement in the design of an optimal LOR control law or a

IF is the solution to the control or filter Riccati equation [1]. In the

general case, the solution is obtained by a backwards in time propagation from

a known teiminal boundary for the LQR, and by a forward in time propagation

for the IF.

In most practical design problems, it is assumed that the control or

filter design model is time-invariant. With this assertion, the Riccati

solution reaches a steady state value in a few sytem time constants. The

steady state solution to the Riccati equation is subsequently used to compute

the steady state LQR or KF gains, which are used to implement the candidate

LA or KF. In many cases, a KF is used to estimate the state vector in the

LQR control law. This latter strategy is referred to as a linear-quadratic-

gaussian (LQG) control design r2j.

I ipt approved October 11,1988.
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The soluton to the Riccati equation by integration requires the solution

of nx x (nx + 1)/2 coupled differential equations, where nx is the dimension

of the plant model. When only the steady-state solution is required, an

alternative is to solve the algebraic version of the Riccati equation, i.e.,

the derivative elements are set at zero. This results in a set of

simultaneous equations, which must be solved by computer for plant models of

greater than 2nd-order.

There are several possible methods of solving the algebraic Riccati

equation. The method used in this effort is the classical eigenvalue-

eigenvector approach, which was first described by MacFarlane [3] and Potter

[4]. The MacFarlane-Potter method, which originally was applied to

continuous-time plant models, was extended to discrete-time plant

representations by Vaughn [5]. This latter development enables us to use the

same basic approach to design a LOR or XF for a discrete or continuous-time

design model. Another advantage of this approach is that the eigenstructure

* of the closed loop LQR or KF is a by-product of the Riccati equation

solution. These results are an invaluable aid in evaluating the candidate

designs. This is particularly true in the scaler input cases, where the

position of closed loop eigenvalues are a direct indication of the control or

filter transient response.

The selected method requires the computation of the eigenvalues and

eigenvectors of the appropriate Hamiltonian matrix. This difficult

computation is facilitated with the use of a few subroutines from EISPACK

[6]. EISPACK is a software package which is the product of an intensive

effort to develop reliable methods of computing the eigenstructure of various

matrix types. The appropriate Hamiltonian matrix is easy to set up from a

common set of input matrices for all design model and problem options

2
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described.

Notation

The following notation is used throughout this report:

Underlined uncapitalized letters will denote column vectors, with the

dimension indicated by, for example, nx for the vector x. In the continuous

time case, vectors are an implied function of time. In the discrete time case

the notation (k), (k + 1), ... will denote the vector at discrete times tk,

tk+11 ... , where k - 0, 1, ... n. T denotes the constant time interval

tk+1 - tk. The superscript T denotes the transpose of a matrix or vector, and

- and ^ over a vector denotes the time derivative and estimate of,

respectively.

A standard set of matrix symbols, which are denoted by capital letters,

are used to define the plant models and design parameters for all options.

This is done to simplify the input data required. The subscripts c and f in

the equations indicates whether the particular matrix is associated with a LOR

or IF. A - over the matrix denotes the discrete-time equivalent of a matrix

in the continuous-time model, i.e., A.

The symbol E is the expectation operator, (i.e., the average value of),

and a is the Laplace transform operator.

PROBLEM DEFINITION AND SOLUTION

A. Continuous-Tim LQR Problem

The design model for the plant to be controlled is

x =A z+B u (la)

z -C x (lb)

where x, u, and s are the state, control input, and output vectors of

dimensions %, nu, and nz x 1, respectively. A, B, and C are constant real

plant, control input (distribution), and output matrices, respectively. The

3



control law to be used is of the linear state variable feedback (LSVF) form

u Gc X (Ic)

where Gc is a constant nu x nx matrix of control gains (to be selected). The

LQR design procedure, which results in a control law in the form of (Ic) is to

be used to select an optimal gain matrix in the linear quadratic (LO) sense.

We note that there are various other design procedures for selecting non-

optimal gains, i.e., pole-placement, classical frequency domain methods, etc.

In the LQR design procedure used here, a quadratic cost function of one

of the following forms is selected.

(a) state regulator cost

2 J1  (x T 0 x +u T Rc u)dt (1d)0; c x
(b) output regulator cost

2 J2 - f'(zTCT Q C z +uT R -u)dt (0e)0 - c - c

0c and Rc in (ld, le) are symmetric, real state and control input

weighting matrices, respectively, with Qc restricted to be positive semi-

definite (Q 0) and Rc restricted to be positive definite (> 0). The optimal

gain which minimizes Jl or J2 is

Gc -7 1 BT X  (if)

where K is a constant matrix (> 0) in the time invariant case. K is obtained

by solving the algebraic control Riccati equation
' -1 BT

ATK+KA+Q I-K R B K-0 (1g)
c c

where Qc Q c for the state regulator, and

Qc T Qc C for the output regulator

Remark an the constant LQ gain strategy:

An alternate method of computing K is to solve the differential control

Riccatl equation

k(t) - AT K(t) + K(t) A + 0c - K(t) B R-' BT K(t) (1h)

cc

4
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backwards in time from K(-) = 0. K(t) converges to K in a few system time

constants. The use of K to compute a constant optimal gain is referred to as

the infinite-time LQR in the literature, cf [7, Chap. 9]. If A, B, C, and 0c

and (or) Rc are not constant, the solution of K(t) is indicated. However, the

time histories of these matrices are rarely known a-prior. Hence the strategy

in the time-varying case is to select a set of stationary plant models

corresponding to expected operating points, i.e., various equilibrium

conditions. The corresponding set of LOR gains are computed and scheduled as

a function of some convenient measured variable, i.e., dynamic pressure in an

aircraft. An alternative is to select a constant gain matrix which satisfies

the set of plant models (i.e., by simulation studies). See [7, Chap. 9] for

an excellent discussion on the impracticalness of implementing Gc(t).

B. Algebraic Riccati Equation Solution

The Hamiltonian matrix associated with the LQR problem f3] is

[-A:T

where S B R- 1 BT

c

RC, which is a 2 nx x 2 nx matrix, has 2 nx eigenvalues. For each eigenvalue

A, which appear in conjugate pairs if complex, -X is also an eigenvalue.

Those eigenvalues with negative real parts are the closed loop eigenvalues of

the LQR, that is, they are poles of the system characteristic equation

Isi - (A + B Gc)l - 0 ( 11)

We note that the LQR design procedure guarantees a stable control law, with

certain gain and phase margins, if the plant is controllable [91 MIl.

5
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Define the block matrix of eigenvectors associated with Hc

W [ 72 (1k)

W1I
Where W21

contains the upper and lower half elements of the eigenvectors associated

with the eigenvalues of Hc with positive real parts. The eigenvectors can be

arranged in any order, except that those due to complex conjugate eigenvalues

are adjacent. The solution to the algebraic Riccati equation is [3, 41

K W1 I -V 2 1  (1

Instead of solving for K by computing the inverse of W11 , it is best to

manipulate (2d) into the linear system form

T T (i)
Wi1 K =-I (1m

K is computed with the use of any a linear system solver. In this effort we

use the method described in [111.

Remark on the Hamiltonian:

The Hamiltonian matrix is associated with the Euler-Lagrange system of

linear equations [7]

where j is the nx x 1 costate vector. The solution of the above set is a 2-

point boundary value problem with x(O) and p(-) known. The solution of the

state equation which minimize J1 or J2 is

where y =K(t) x.

6



C. Discrete-Time LOR Problem

In Lhe discrete-time case,the (normally continuous) plant design model is

described in the form

x (k+l) -Ax (k) + B u (k) (2a)

z (k) - C x (k) (2b)

where A and B are discrete-time equivalents of A and B in (1a), and u (k) is

assumed to be piecewise continuous in the constant time interval

T - tk+1 - tk, k - 0,1,...

A and B are given by

A - exp (AT) (2c)

B TA (T, t)B dt (2d)

Since (lb) and (2b) are algebraic, C does not change.

We have used various methods, which are not presently included in the

software described here, to compute A and B. The potential methods and

possible problems are an interesting subject, c.f. (8]. If T is selected to

be sufficiently small, in comparison with the plant time constants, the

following first order approximation are useful:

A -I +AT (2e)

B- T (2f)

The LQR design procedure [121 for the discrete plant is outlined below:

LQ Control Law:

u(k) a G x(k) (2g)

whret GC is a constant LQ gain matrix

(Qdratic Cost Functions:

state regulator

2j3 Q, (k) R_ u(k)] (2h)

7



output regulator

2 = . [zT(k) CTQ c C z(k) +uT(k) R u(k)] (21)
~ k-o C - C

where Qc and Rc are the discrete time equivalents of 0c and Rc .

LOR gain:

G - B TK A (2.J

where K is the solution to the discrete algebraic Riccati equation.

Discrete algerbraic Riccati equation:

AKA -A KB[B KB +R I BK A + - K- 0 (2k)

where Q C Qc (state regulator)

or CT Qcc  (output regulator)

Hamiltonian:

H - ] (21)

+0 A-I

where S - B B 

Hc has 2 nx elgenvalues with the following property: For each eigenvalue

A (assumed to be within the unit circle), A-I is also an eigenvalue (outside

the unit circle). Complex eigenvalues appear in conjugate Dairs. The

eigenvalues within the unit circle of the z-plane are the closed loop poles of

the discrete LOR characteristic equation.

Discrete Riccati equation solution:

The method follows that of Vaughn [5].

Let be a partitioned matrix of eigenvectors corresponding to

those eigenvectors outside the unit circle, i.e., the unstable poles. An

eigenvalue A is outside the unitcircle if A, or its vector sum, is > 1.0. The

organixation of the eigenvectors is as in the continuous time case. The

8
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solution to (2k) is

WI K k 21

Where K is solved as in the continuous-time case.

D. Kalman Filter Problem

Continuous Time Filter

In the KF problem the objective is to estimate the state of the linear

stochastic plant

x Ax +B u +w (3a)

z -C x + v (3b)

where x, u, z, A, B, and C are as previously defined, and w and v are

independent, zero-mean, gaussian white plant and output (measurement) noise

processes, respectively. The intensity matrices (spectral densities) of w and

v are Qf ( 0) and Rf (> 0).

The Kalman filter for this system (c.f. (11 is

x =Ax +B u + Gf [z - C x] (3c)

Where x is the optimal estimate of x and Gf is a nx x nz matrix of constant

Kalman gains. The state error covariance matrix P is defined as

TP =E (6x axT)

where 6x x - x

The Initial state error covariance P (t-O) - Po is assumed to be known.

The Kalman gain matrix is given by

Gf - P C T R-1  (3d)
f f

Where the symmetric matrix P, > 0, is obtained by solving the algebraic

covariance Riccati equation

AP + PAT + Qf - P CT RI C P . 0 (3e)

Note that the dimension of Gc and Gf are different.

The V can be viewed as a closed loop control sytem. The eigenvalues of

9



the KF are the roots of

IsI - A + Gf CI " 0

Covariance Riccati equation solution:

The Hamiltonian matrix for the KF is

FAT R'1
Hf - (3f)

Of A

Where Hf is 2 nx x 2 nx . Hf has the same properties as the control

Hamiltonian Hc, Vaughn [5]. Hence the steady state covarlance matrix is

obtained from

where the partitioned matrix

contains the eigenvectors of Hf associated with the positive eigenvalues.

Comment on the time varying Kalman gain:

The time varying state error covariance matrix P(t) is obtained by

integrating the differential Riccati equation

1(t) - A P (t) + P(t) A + f - P(t) CT Rf C P(t)

forward in time from Po. Hence it is feasible to compute Gf(t) in real

time. The only advantage to this approach in the case of a stationary olant

is that x will converge to x more quickly. In the case of a time-varylnv

plant, it is normal to implement the time varying Kalman filter.

Discrete time Kalman filter:

Since the continuous V0 equation (3c) contains the deterministic portion

of the plant model, it is quite complex to implement with analog circuitry.

This indicates the use of a digital computer, and the discrete version of the

KF. For this reason, (3c) is seldom used. The discrete version of the

continuous stochastic plant model is

10
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x(k+l) - A x(k) + B u(k) + w(k) (4a)

z(k) - C x(k) + v(k) (4b)

Where w(k), v(k) are discrete white noise sequences representing plant

and measurement noise, andQf and Rf are the covariances of w(k) and v(k),

respectively. There are two common forms of the KF in general use. These are

(i) the filter form, where

x(k+l) - E {x(k+l) I z(o), ..., z (k+l)}

and (ii) the one step ahead predictor form where

x(k+l) - E {x(k+l) I z (o) ,..., z (k)}

However both forms are referred to as a "filter" in the literature.

(i) Filter algorithm

The filtered x is normally computed in time and measurement update

stages, where x (k) and x (k) will denote the time and measurement updated

state estimates

Time update

x (k+l) - A x-(k) + B u(k) (4c)

Measurement update

x +(k+l) -x (k+1) + Gf [z (k+I) - C x -(k+1) (4d)

where Gf is a matrix of constant filter gains.

(ii) Predictor Algorithm

The one-step ahead predictor algorithm is

X(k+l) - A x(k) + B u(k) + G p[z(k) - C x(k)] (4e)

where G is a constant matrix of predictor gains.P

Remarks:

The notation (k+llk), (kjk-1), etc is often used to denote the one-step

ahead predicted estimate of x.

11
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Optimal Gains

The filter and predictor gains are given by

G - P CT  C CT + Rf (4f)

and G AGf (4 w)

Where P is the steady-state, discrete, state error covariance, and is obtained

by solving the discrete algebraic covariance Riccati equation

A f-APCT[C 1 - (4h)

Riccati Equation Solution

The Hamiltonian associated with the discrete KF is

--T -T --1
A A+RQfA R
I : I" fRf- T A-_T  --

Qf A - A + Q fA Rf

Where the 2 nx x 2 nx matrix Hf contains 2 nx eigenvalues with the same

properties as the discrete LQR Hamiltonian H c  The eigenvalues X of Hf which

are inside the unit circle are the closed loop poles of the discrete KF. P is

computed using the same method as in the discrete LOR equation (2k), and as

first described in (5].

FORTRAN PROGRAM DESCRIPTION

This section describes a FORTRAN progrm which computes the steady state

LQR or IF gains, as given in the previous section. A program listing is given

in Appendix A. Several separate programs, which have been used by this author

over a period of several years, were combined to produce the version

described. Hence the result is not as optimal, from a viewpoint of work

vectors and matrices, execution time, and modularity, as the program could be

if we had started from scratch. Subroutines were used only to eliminate

obvious duplications. In some cases, we use a loop instead of an available

subroutine, if only 2 or 3 statements are required.

12



All real FORTRAN variables or constants are in double precision, as

defined in the IMPLICIT statement. This allows for easy change from double to

single precision computations (with appropriate subroutine changes). In

general, matrix and vector names end in M and V, respectively. The exceptions

are the real vectors TV1, TV2, and integer vectors IlV, IV2. All integer

variables and constants begin with I and loop counters begin with I or J.

The maximum dimension of the state vector is set to 15 in the listed

version. This limit can be expanded by changing the integer INXMX to the

desired value, and by expanding the matrix and vector dimensions

accordingly. All subroutines use variables dimensions.

Data Input

The FORTRAN input file (FT5FO01) for each run consists of the following

types of data cards:

(a) Control/title card (No. 1)

The integers In the first five columns are used to set the status of

the five internal option control flags shown in Table 1. The characters in

columns 6 through 65 are used for run identification. The format of this card

is (511, 15A4). Note that the flag IDATAF is used to terminate the run (- 0),

i.e., a blank card.

(b) Plant dimension card (No. 2)

The dimensions of x, u, and z are input in columns 1-2, 3-4, and

5-6, respectively (FORMAT - 312). These integers determine the dimensions of

the matrices to follow.

(c)Hatrix data cards

Each matrix to be read in is preceded by a card containing a read

(1)/no-read (0) matrix flag in column 1. We use columns 6 on to identify the

matrix; however, this is not printed out. The coefficients of the matrix to

13



Table I -Control/Title Card Option Flags

Flag Card Column Option

IDATAF 1 1 - run, 0 - stop

IOREGF .2 0 - state regulator, 1 - output
regulator (LOR option only)

IDISCF 3 0 - continuous plant
I - discrete plant model

IPRTF 4 0 - normal print
I - extended print option

ITYPE 5 0 - LOR option
I - Kalman filter option

14



be input are read in by rows on cards following the read/no-read flag card.

The matrix coefficient card format is 6D12.8. The order and dimensions of the

matrices are:

A (nx x nx), B (nx x nu), C (nZ x nx), 0 (nx x nx), and R, which is

nu x nu for the LOR option, and nz x nz for the Kalman filter option. Prior

to the first run, A, B, and C are cleared, and Q and R are set to identify

matrices. If a matrix is not input, its previous setting does not change.

Note that a read/no-read card must be provided for each matrix.

Output Data

The print flag (IPRTF) setting is used to select the normal or extended

print-out options. A brief description of the print out data follows:

(i) Normal output (IPRTF - 0)

1. Title field characters and control flag settings (Input card No. 1)

2. Input Data (A, B, C, 0, and R matrices)

3. Eigenvalues of A

4. Q' (= CT 0 C) if IOREGF - I (output regulator)

5. Eigenvalues of the Hamiltonian (closed loop eigenvalues)

6. LQR or IG gains

(ii) Extended Output (IPRTF - 1)

Items 1-6 in normal output

7. Hamiltonian matrix

8. Packed eigenvectors of H-matrix from EISPACK subroutine HOR2

9. Normalized eigenvectors

10. Positive eigenvector matrices WT, T

11. Riccati equation solution

15



Computational Details

The A-matrix eigenvalues are computed by calling the EISPACK subroutine

BALANC, EIUHES, ELTRAXi, and HOR2. The latter subroutine also computes the

eigenvectors, which are not needed. HOR, which computes the eigenvalues only,

can be used in place of HQR2 (with the call to ELTRAN deleted).

All eigenvalues and eigenvectors of the Hamiltonian (HAM) are computed by

calling the EISPACK subroutines BALANCE, ELMHES, ELTRAN HOR2 and BALANC.

However, only the positive (or negative) eigenvalues and eigenvectors of HAM

need actually to be computed. An alternate strategy could be used, for

example, to reduce storage requirements or execution time (see [61 for

details). Note that the subroutine HOR2 will fail for repeated eigenvalues.

The elgenvectors of HAM are normalized for print-out only. This step is

not actually required.

The FORTRAN name 10 is used to denote the control (K) or filter (P)

Riccati equation variable. The linear system to be solved is

W1IM x KM - W21M

where W1lM - Wa,, W21M V T

10 is computed by using the method and subroutines described in [1i1. The

subroutines used are DECOMP and SOLVE, which were supplied by Dr. L. R.

Anderson of Virginia Polytechnic Institute.

These subroutines are variable dimension, double-precision versions of

the subroutines DECOP and SOLVE given in [11, Chap. 17]. Note that the

subroutine SING, which is called by DECOMP, is also required (see

reference). Note also that one could use the appropriate subroutines from

LINPACK [131 to replace DECG1P and SOLVE.

16
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Additional Subroutines Called

The following matrix handling subroutines are used throughout the vrogram

and are included in the listing.

PRTMAT - prints out a matrix by rows

REAI4 - reads in a matrix by rows

MULMAT - multiplies two matrices M1 x M2 and stores the result in M3

MATINV - inverts matrix M1 and stores the result in M2. MATINV calls

DECOMP and SOLVE

Limitations

If the LQR or KF has repeated eigenvalues, HQR2 will fail. This

limitation can be removed by using the method described by Laub [141. This

method, which uses the Schur vector approach, is dependent on the subroutines

ORTHES and ORTRAN, which are in EISPACK, and HQR3, which is not (see reference

for details).

In the set up of the H-matrix, we assumed that R was diagonal. This

assumption is generally true, because it is difficult to determine what the

off-diagonal elements of R should be in the LQR option. In the XF option the

output noise elements are assumed to be uncorrelated. When the inverse of R

is called for, it is computed by inverting the diagonal elements of R. This

limitation can be easily removed by using the subroutine MATINV to invert R.

There are no checks for proper dimensions, plant model controllability

and observability (required for Riccati equation solution to exist) or for

proper matrix characteristics.

CONCLUDING REMARKS

We have described the methods and software for solving the LQR and Kalman

filter problems for a stationary continuous or discrete-time process. The

methods described have been used for aircraft and submersible control system

17
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design. We use a separate, undocumented FORTRAN program to compute the plant

dynamics (A) and control input (B) matrices from the vehcle stability

derivatives and, mass and geometric properties. The candidate control or

filter design is tested with a linear system simulator, or a 6 degree-of-

freedom simulator. The latter programs are also undocumented. However,

equivalent programs are commonly used.

At present the output from one program is manually manipulated into the

input for the next program in the design stage. With the recent acquistion of

time-shared operating system based computers, we intend to modify and combine

the separate FORTRAN programs above in order to provide an integrated

interactive aircraft or submersible control system design package.
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APPENDIX A

FORTRAN Program Listing

C LINE-AR QUADRATIC GAUSSIAN CONTROLLER DESIGN PROGRAM
C VIE3 * 13, 9/21/32
c CUI An SOME PRINT IN "A" VERS
C THIS VERB IS A COMBINATION OF SEVERAL SEPARATE VERSIONS
C AND 1HEREOOR IS A SIT LENGTHY & MESSY, IE. ,COULD BE MODULARIZED
C WIIH SOME ADD'L EFFORTi NO EFFORT WAS M4ADE TO OPTIMIZE FORT CODE
C ADDED FILTER & PREDICTOR GAINS FOR DISCRETE KF ON 6/30
C
C DISCRETE AND CONTINUOUS LOR & KAL FILT COMBINED
C CHET OZIMINA, D8,.320,767-2171
C COMPUlES: STEADY STATE GAIN FOR A LINEAR QUADRATIC
C REGULATOR OR KALMAN FILTER
C
C4441** ITYP* w 0 C LINEAR QUADRATIC REGULATOR ) e..,.
C

C 4 CON1 INUOUS SYSTEM .... 4*
C PLANT DYNAMICS XD - A * X + U * U
C OUlPUT PROCESS Z - C * X
C COSI FUNCTION J - .5 * INTEGRAL OF (X(T) * Q * X

--c U(T) * R * U ) DT )
C Q MLUST BE PO SEMII-DEF, SYMMETRIC
C R MUST BE P03 DEF,DIACONAL(IN THIS PROG)
C STATE OR OUTPUT REGULATOR OPTIONS AVAILABLE
C IORE-F a 0/1 ( STATE/OUTPUT REGULATOR
C SE1 AIIiANS I FAL. CHAP 9 FOR DETAILS
C NOlA ION GENERALLY FOLLOWS THAT OF ATHANS
C MAIRICES IN FORT CODE GENERALLY END IN M, 1E. A - AM. ErC.
C VECIOMS GEN END IN V
C S SOL TO THE RICCATI EON IS OBTAINED VIA MACFARLANE-
C POl1SR METHOD
C 9I1PACK 18 USED TO COMPUTE THE REQ'D E-VECTORS
C THIS VERO USES DP EIRPACK
C 6ECOMP & IBSOLVE ARE USED TO SOLVE LINEAR SYST IN PLACE
C OF MATRIX INVERSION
C NOILF: 1I1SPACK OR HQR2 FAILS FOR REPEATED E-VALUES
C . DISCRETE VERSION C IDISF - I ) 444**
C PLANI DYNAMICS X(K.I) - A e X(K) + I * U(K)
C OUIPUI PROCESS Z(K) - C . X(K)
C COS FUNCT J *.S (X(K)(TRANS) * 0 * X(K)
C U(K)(TRAN) * R * UK) ), K 0 TO N
C STATE OR OUTPUT REG OPTION C KOREOF - 0/1 )
C NOlE: A.,,GR ARE DISCRETE EQUIVALENTS OF CONT PLANT
C REP: PAMP BY DORATO & LEVIS. IEEE TRANS ON AUTO CNTRL#
C PP 613-620t DEC. 1971
Co.o**" ITYPE * I ( STEADY STAT. KALMAN FILTER ) 444444

C
c PLANT & OSRV MODELS:
C XD a A * X + Wi Z - C * X + V, WHERE WV ARE
C INDIPENW4T GAUSIAN WHITE NOIPROCESSES
C WITH INTENSITY MATRICES OF 0 a) OR > 0
C S KM 9AtN 0 - K * C(T) * R(INV), WHERE
C K & 88 SO. TO THE FILTkR RICCATI EGN
C DISCRETE FILTER CASE:
C X(KI)11 a A , X(K) * W(K)a Z(K) - C * X(K) + V(K)
C WNFR A. 3, C, 0, ARE DISCR EGUIVALFNTS OF CONY PROCESS
C SO FILlER GAIN IS: GF(S)w K(U)*C(T)CCOK(SS)4C(T)4*R3(NV)
C SO KIA PREDICTOR GAIN IS 4P(86) , A * 7(W38)
C WHERE K(SIU) IS THE S SOL TO THE DI8CR RICCATI EON
C NOlE: Ilit DUALITY THEORIM I USED TO SOLVE THE FILTER
C PROSI VIA THE SAME METHOD AS THE L PROBLEM
C RWFNS: ASTRDM, K. J, "NTROOUCTION TO STOCHASTIC CONTROL
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C TH*CIRV". OR K'ALMAN'S OR10 PAPERS, OR THE EXCELLENT
C TUIORIAi. BY 1. B. RHODES IN IEEE TRANS ON AUTO CONTR,

~'~C DEC 1971, PP. 688-706.
C
C********. IPRIF - 1, ADD'L PRINT OUT FOR DEBUGGING .*
C

IMPLICIT RFAleS8 (A-H, K-Z)
DIMENSIONA(1I).(1,5C(1,5MC51)Rq5IS
DIMENSION HAM(30.30),I'M(5,15)GPMCIS,15),SM(15,IS),Th(1S,15)
DIMENSION AIM(15.15),WlIM(15.15,oW2rqc1.15),WM(30,30),ZM(3o,30)
DIMENSION WRV(30),WIVC3O),TV(30),TVI(15),TY2(15)
INTEGER IVI(30h 1V2(30)
INTEGER INK. INU. INZ, INN, INXMX. INUMX. INZMX. INHMX

REAL*4 IIILE(15)
C
C
C CLEAR SOEVARIlABLES
C

ICASE 0
* *IDATAF - 0

IRAP - 0
IRBP -
IRCF - 0
IrNOF - o
IRF - 0
IOREOP * 0
IPRTP 0
IDISF 0
ITYPE v 0

C
INX - 0
INU - 0
INZ -0

IN & 0
C
C SET MAX DIMENSIONS3
C

INXMX a lb
INUMX a NM
INZMX -INxMX

INM w NXMX * 2
C
C CLr-AR SOEARRAYS
C SKI 0M. AM TO UNITY MATR ICES
C

DO 10 Jal.INXMX
DoI 5 Irl.INxMX

ANI.J) & .a
DM(I#J) a 0.01D0
CM(I.JI a 0.000
GM(I.J$ 0.000
GPM(7.J) * .000
RM(IJ) a 0.000

5 CONTINUT
Gl(J#J) a 1.000

RM WtJ 1.000O
10 CONTINUL

C
C READ ALL INPUT DATA HERE
C
C ZDAIAF aREAD DATA FL.A(I/01
C IDRSOP OUTPUT REGULATOR FLAG. NID C-MTRX IF ONC 1)
C I01SF a DISCRETE REGULATOR FLAG
C IP~tIP w OPTIONAL PRINT FLAG. PROVIDES MORE DATA FOR
C onueol
C ITYPF a KAMtAN PILTkR PLO. COMPUTE US KALMAN GAIN IF

C IRAF a READ A-MTRX, IRBF - READ 3-MTRX, ETC.
C NOIS: 2 87 2 INPUT CARDS ARE MANDATORY FOR EVERY CASE
C COMWWNS ON CARD *1 BEGINNING AT COL 6 ON ARE PRINTED
C INPUN 4 OF ELEMNTS IN Xs U.Z ON CARD 02

CCARD CONTAINING INPUTINO INPUT FLAC MUST PRECEDE EACH MATRIX.
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C WHElliER OR NOT THE MATRIX IS INPUT; ORDER OF MATRIX INPUTS IS:
C A,llC*9tRl ANY COMMENTS ON MATRIX INPUT/NO INPUT FLAG CARD
C FROM CCII. 6 ON ARE NOT READ IN
cc MAIRTYK READ FORMAT IS 6EMD12.StDEtl ON VERS, IE..SINOLE OR DP
C NEW CARD FOR EACH ROW
C

1 READ(5.901) IDATAF, IOREGF. IDISF. IPRTF, ITYPE. (TITLE(I). 1-1. 15)
901 FORMAT(5I11#15A4)

C TESI FOR NEW CASE
IF(IDAIAF .EQ. 0 ) GO TO 9999

C READ DIMENSIONS OF AM, 3M.CM
.4 READ(S.902) INX,INUtINZ

902 FORMAMTST
C TEll FOR NEW A-MTRX

READ(5.901) IRAF
IF(IRAF .ED. 0 )GO TO 25
CALL READI(INXMXINXINX,AlI)

C TESI FORt NEW B-MTRX
25 READ(5.901) IRBF

IF(IRBF EV0. 0 ) G0 TO 35
CALL*RCADN(INXMK. INK. INU), M)

C TEST FOR C-MTRX
35 READ(5,701) IRCF

IF(IRCF .E0. 0 ) 9O TO 45
CALL READI(INZMXINZ.INXoCM)

'C;C TESI FOIR NEW G-MTRX
45 READ(S. 901) IRWF

IF(IRGF . E0. 0 )00 TO 55
CALL RE-ADN( INXMX. INK, INX. GM)

C TESI PFOR NEW R-MTRX
C INR IS DIMENSION OF R-MTRX TO BE READ IN
C SEI INR - INU FOR LOR CASE, THEN TEST FOR IKAL FILT

55 114wt - It
IF( f7YPE .NE. 0 ) INR - INZ

READ(So?01) IRRF
IF(IRRF ED. 0 ) GO TO 65
CALL RECADMC(INUMX. INR. INR. RM)

C DATA IS READ IN
65 ICASE w ICASE + 1

C
C NOW PT4IN1 INPUT DATAOR DEFAULT DATA)
C

WRITE(b. 915) ICASE
915 FORMAT('1'IOK. 'INPUT DATA FOR CASE NO. 'o14)

WRITE (6.917) (TITLE(11413)
917 FORMAT( '0'. 5K. 15A4)

WRITE(be f9'0)
920 FRMAT( '0'. 5K. 'FLAS(I-YES, 0-NO))

WRITZ(be 925) IRAF, IRBFo IRCFo IROF, KR
"S5 FORMAT( ' NEW A-'. 12, 5X. 'NEW 3-'1. 12. 5X. 'NEW C-' 12. 5X. 'NEW Q0', 12,

1 5X. 'NEW Ro 's 12)
URITE(4. 930) IOREOF. 101SF. IPRTF. ITYPE

930 FORMAT(' OtnPUT REG PLO-'. 12.5K.'DISCRETE REG FLO-'. 12.
X /.' OPTIONAL PRINT FLO *'. 12.5X. 'KALMAN FILTER FLO -n'.12)

IF( IRA?. 16. 0 ) GO 10 67
NRITEC6. 93) INK.INK

9=3 FORMAT('0't He 'A-MTRX 's.12,' BY 's.12)
CALL PkimAm(NKX. XINK. INK. AM)

&7 IF( IR9F .E,. 0 ) 00 TO 49
WRITEC4. 935) INN. INIJ

935 FORAT('0'.5K., '3-TRX 'o.12a.' BY '.12)
.CALL PRIMAl (INXIIK.INK. INUB31)

49 INI IRCF .60. 0 ) 00 TO 71
WRITEV& 930) INZ. INX

9W6 FORMAT(O' S0'XK 'C-'TRX '. 12,.' BY 't.12)
CALL PRIMAINZMK. INZ, INK. CM)

71 IF( hROP .10. 0 ) 00 TO 73
WRITZ(b. 940) INK. INK

940 PaRMAt''p.iK,'G-KTRK '.12.' BY 's 12)
CALL PRIMAl (ININK. INK. INK, m)

73 ir( IRRf- . GO. 0 ) 00 TO 75
WRI?(4.942) INU. 114
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942 FORMAT( '0'. SE.'R-MTRX 1,12,' BY ',12)
CALL PRI MAl( INJMX, INR* INR, RN)

* WR ITE (6t 94 5)
945 FORMAT(' CAUTION!!' R-NTRX MUST BE DIACONAL DUE TO METHOD OF',

1 ' INVERIING!!!')
C
C...**** CONPUl E E-VAL 'S OF A-14TRX
C SEI IM a AM TO PRESERVE A-MTRX
C US- EISPACK TO COMPUTE E-VAL'S OF TN
C WI~E: WE ARE USING HGR2 INSTEAD OF NOR FOR CONVENIENCE

73 DO 85 IrlINX
DOS85 Jr,INX

85 TM(IJ) AM(IJ)
CALL I4ALANC(INXNX. INE.TM. ILOW. 1141TV)
CALL ELNUICS(INXNX. INXIlLOW. 1141.TN.IV1)
CALL ELIRAN(INXMX. INX. [LOW.IHI. TN. lVI.SM)
CALL '40R'(INXNX. INX, [LOW INI. TM. WRV, WIVSNMIERR)
IF( H-HR .EQ. 0 ) 0O TO 90
WRITE,(6,748) IERR

948 FORNAT( '0'.SX. 'EKOENVALUE COMPUTATION FAILURE. IERN -'.12)
GO TO 100

90 WR ITE (6, 941f)
949 FORMAT( ''.SX.'THE EIGENVALUES OF THE A-NTRX ARE: ')

DO 100 la1, INX
WRIE(6,960) WRV(I),WIV(I)

100 CONTINUEv
C
C*****. BEGIN COMPUTATIONS TO SET UP HAMILTONIAN **444

C
C COMPUIE GP~z STATE REG: GPN 0
C OUTPUT REG: GPM -C(T) * 0 0C

C KAL FILTER: QPN 0
C
C TEST FOR KAL FILT

C TEST IOREOGF

C SET GPM a QM FOR KAL FILT OR STATE REGULATOR

13 DOI.K 14 CMCIK.J)

DO 170 1Km 1.INX
GPM(I.J) - GPNIJ) CMI.)*W IKJ

170 CONTINUE

150 CNT INE0

C COMPUlI GPM - 3M(T QH CMIV * 1T
DO 175 1 1, INX
DO 175 Jw1.INX

T(.J) a MJ) / M(II) *CCK
175 CONTINUE

C NEXW COMPUTE GPM C M( * WM

DO17o TO 135

DO 170Jsl#23

O*M.**.* a 0.000. *

DO 17 *N - * * . .* . .. %I% ** *%'. .-.

*P(IJ a . --(IJ + CMIKI WMCI*- ,.t* K*J *4*
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C
C SM sCM(T) *RM .CM FOR KALMAN FILTER

C110 DO 120 lalINZ

TMCJ-1) - CMCI.J) / RM(I,I)
120 CONTINUE~

C COMPUE SM -TM *CM
CALL MULMATCINXMX, INK. INZ. TM. INXMX, INK, CM.INXMX. SM)

C TEST FOR~ KALMAN FILTER
135 IF( ITYPE .NE. 0 ) GO 10 460

C*.******* REGULA1CR PROBLEM *********
C TES~T FOR CONTINUOUS/DISCRETE LOR
C

IF( IDrSF .NF. 0 ) GO 10 400
C
C *O.** CONT INUOUS PLANT LGR *.*
C FORM THE- CONTINUOUS PLANT HAMILTONIAN
C
C HAMS aAM , SM
C GPM # AIICTS
C WHERE SM B M * RM(INV) B M(T)
C OPM4 - M OR CM(T) * GM * CM. DEPENDING ON IOREGF

C MOVE -AM INTO UPPER LFFT BLOCK OF HAM,
C GPM INTO LOWER LEFT BLOCK.
C SM INTO UPPER RT BLOCK
C AM(T) INTO LOWER RIGHT BLOCK
C

DO 190 I'i. INX
11-1 ). INK

DO 190 J- 1 1 INX
Ju - J I, INX
HAM(I.J) w -AM(I.J)
HAM(I.JI) - SM(I.J)
HAM(1.j) - OPM(I.J)
HAM(I.J1) - AM(JI~l

190 CONTINUI-
00 TO 450O

C
C....... FO3RM DISCREIE PLANT H4AMILTONIAN .*4.
C
C HAM v AM(INV) AM(INV) *SM
C OPM * A(INV) A(T) + GPM * AM(INV) *SM
C
C FIERE SM a BM * RM(INV) * 3M(T)
400 CONTINUE

C COMPUTE AM(INV) BY LUI DECOMPOSITION
C UEV FURTHER DOWN IN LISTING FOR REP & DETAILS
C

CALL MAtINMV( INXMX. INXMK. INXMK.INXMK.INK, AM. KM. WllM.
K W21MIVI*.1)

C AII(INV) - KM
C COMPUTE AM(INVS * SM - W11M

CALL MULMAT( INXMK. INK.INK.KM. INXMK. INK. UM.INXMK.WIIM)
C COMPUTE GPM * AM(INV) * SM - W21M

CAUL. MULMAT( INKMX,INK. INK.9PM, INXMK. INK WlIM. INXMX W21M)
C COMPUll AM(T) + GPM 0 AM(INV) * SM.
C STOIRE 11 IN LOWER RT BLOCK OF HAM

DO 420 It 1, INK
I1 v INX + I

DO 420 %inIINX
11 a INK + .J
HAM(I.ofl a KM(I,J)
HAM(I.JI) a WIIM( I.J)f
HAM(1..Jl - AM(J.I) + W21M(I#J)

420 CONTINUE
C COMPUtE 5PM * AM(INVI

CALL MIAMAY( INXMK, INK, INK, 9PM. INKMK. INK. KM. INKMK. W21M)
C STCRE IN LOWER LEFT NLK OF HAM

110 40D 11 1. INK
It IL INK + 1
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DO 430 ;-rlINX
HAM(I11J) - W21M(IJ)

430 CONTINUE
C PRINI OUT QPM IF IOREOF IS SET

450 II?(IORE-CF FEG. 0 )O T0O 500
IF(IRGI-.AND.IRRF.EG. 0) GO TO 500
WRITE(6. 946) INK. INX

946 FORMATC',5X. 'C(T) * 0 * C MATRIX ,r2,' DY 1,12)
CALL PR1MA1 (INXMX. INX. INX. OIPM)

G0 TO LP00
C***** KALMAN r-ILTER HAMILIONIAN
C
C TESI FOR DISCRETE KAL FILT

460 IF( lDISf mNE. 0 ) 00 10 480
* C *...*C CONI INUOUS PLANT KAL FILT *.4

**C FORM 1HEC CONTINUOUS PLANT HAMILTONIAN
C

*C HAM - -AM(T), SM
C GPM a AM
C WHERE SM - CM(T) 0 RM(INV) * CM
C
C MOVE -AM(T) INTO UPPER LEFT BLOCK OF HAM.
C GPM INTO LOWER LEFT BLOCK,
C SM INTO UPPER RT BLOCK
C AlM IN7O LOWER RIGHT BLOCK
C

DO 470 1.1.IlNX
1l-I $- INK

DO 470 Jrl. INX
J1 - j P. INK
HAM(IJ) a -AM(J. I)
HAM(I#JI) Is SM(I.J)
HAM(IIJ) - PM(I.Jl
HAM(ri.Ji) wAM(I.J)

470 CONTINUE
00 TO 5~00

C.*...** FORM DISCREIE PLANT H4AMILTONIAN *.4*
C
C HAM is ANCINV-T) AM(INV-T) *SM
C GPM * A(INV-T) A. +6PM * AM(INV-T) *SM
C
C WlIERE SM - bM * RM(INV) * BM(T)
C
C INVERT AM BY LU DECOMPOSITION

4190 CALL MAT INYCINXMX. INKYIX.INXMX. INXMK. INK, AM. AIM. WIIM.
Y W2IM.TIVL. IVI)

C AM(INV) a AIM
C FIRS?. IRANSPOSE AIM

DO 40b 1&2. INX

DO 405 winlt.11
Dill a AIMCI.J)

AIN(t.J) a AIM(JoI)
495 AIN(J. I * o DUM

C COMPUTE apM * AM(ZNV-T)
CALL PMLMAT(INXMX. INK, INK. PM. INXMX, INK. AIM. INXMXKM)

C COMPUTE AM(INV-T) * SM
~0CAL L MPANAT(INXMX. INX, INK. AIM, INKX.~ INK. SM, INXMX Wl 1M)

C COMPUlE OPM * AM(INV-T) * SM - W21M
CAL'- WRAMAT(INXMX. INK. INK. PM, INXMK, INX.WI1M. INXMX.W2IM)

C COMPUTE AM + GPM * AM(INV-T) * SM.
C STEORF 17 IN LOWERRT3BLOCK OF HAM
C STEORF REMAINING ELEMENTS IN HAM IN SAME LOOP

DO 490I 1Is INX
It 9 iNK + I

DO 4 10 %041 ,INX
JI a INX * J
HAM(I#J) *AIM(I..J)
HAN(IJI) aWIIMCIj)
WqM(I I#J) *KH(IfJ$
HAN(IIJI) -AMCI.J) + W21M(I.J)

490 CONTIMJI
C CPI IOWA. PRINT OUY OF HAMILTONIAN MATRIX
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500 IF(IPRIF EQ. 0 ) G0 10 195
WRITE(6s,947) INH. [NH

947 FORMAT('0',.X.'HAMILTONIAN MATRIX ',12#' BY ',12)
CALL PRIMAl (INHMX, INN [NH. HAM)

195 CONTINUE
C NOW COMPUTE THE E-VALVES AND E-VECTORS OF HAM
C VIA FISPACK SUBROUTINES
C

CALL DAL ANC( INHMX. [NH, HAM, [LOW, 1HZ. TV)
CALL ELM~lES(INHMX, [NH. [LOU, IHI. HAM, IVI)
CALL ELIRAN(IN;*IX. [NH. [LOW. [HI. HAM, [Vi, ZN)
CALL NHftV(INHMX. [NH [LOW. [HI. HAM, WRV, WIV, ZN, [ERR)
IF(IERR EQ. 0 ) GO TO 200
WRITE(6.950) [ERR

950 FORMAT( '0'.SX. 'EIGENVALUE COMPUTATION FAILURE. [ERR - '.12)
GO TO 1

200 CALL BALOAK([NHMX, [NH.[LOW. [HI. TV. [NH. ZM)

C PRINT E-VALUES
WRITE(6,755~)

955 FORMAT('',5X. 'THE EIGENVALUES OF THE HAMILTONIAN ARE:')
DO 210 Il, [NH

C PRINT NEC E-VAL'S ONLY
IF( WRVr) GT. 0.0 )0G TO 210
WRITE(6. 94)WRV(I). WIV(I)

* 960 FORMAT(' ',iPD15. 7. lOX. PD15. 7)
210 CONTINUE

C OPIIONAL PRINT OF PACKED E-VECTORS FROM EISPACK
IF(IPRIF .EQ. 0 ) G0 TO 212

C PRINi 1141 PACKED E-VECTORS OF HAM
WRITEC6, 942)

942 FORMAT(0',5X. 'THE E-VECTORS OF HAM ARE:')
CALL-PRIMA1 (INHMXIX[NH, [NH. ZM)

212 CONTINUE
C
C NORMAL 17E THE E-VECTORS
C

[K - 0
214 [K - 1K - I

IF( WIV(IK) .NE. 0.ODO ) G0 TO 220
SUM - 0. ODO
DO 215 Ie 1,JNH
SUM - SUM I- ZMCI. [K) .ZM(I. [K)

215 CONTINUE
SUM - SORT(C SUM
DO 21B 1.1. [NH
ZM([.IK) a 211(1.1K) ISUM

218 CONTINUEL
00 To P30O

C
220 SUM - 0. ODO

DO 225 1: 1. NH
SUM - SUM I- ZM(I. IK) *ZM(I. IK) *ZM(I. IK+1) *ZM(I.IK+1)

225 CONTINUE
SUm - SoR I( SUM
DO 226 1 Lt.INH
Zt(I, [K) 8 211(1.1K) f' SUM
ZN(IIKo1) a ZM(I,IK.1) / SUM

228 CONTINUE
[K - [K o I

C OP [K .L INT0OF TORM214 ED -VECTORS FROM ERSPACK
IP(IPRlP .10. 0 )00 TO 235
WRITE(4, 941)

941 FORMAT( '0'. SX.'THE NORMALIZED E-VECTORS OF HAM ARE:')
CALL PRI MAT (INHMX# [NH, [NH. Z")

225 CONTINUE
C RE *ARRANOE THE E-VEC TORI
C TEST FOR CONTINUOUS/0ISCRETE CASE

IF( IDISF .NF. 0 )00 TO 240
c
C UELEC IIN HEK-VECTORS ASSOCIATED WITH POS E-VALUES
C AND PUT THEN INTO THE PARTITIONED MATRICES WI1M.W21M
C TRANSPW W1IMW12M
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DO 250 IK,1. INH
IF(WRV(IK) .LT. 0.000 00 TO 250

C NO POS E-VALUE CMLX HNTOEVCO
C IF E -VALUE ISCMLX.TE WOEVCO
C 2 CO'S ARE REQkD.HQR2 COMPUTES P05 PART ONLY
C SINCE 1410 PART IS CONJUGATIE.WE WILl PICK UP 2ND
C COL ON NEXT PASS

DO 240 1l1. INX
I1 - I Jo INK
W11I(J*1) *Z"(IIK)

W21M(J. I) -ZM(Il. 1K)
240 CONTINUF
250 CONT 1141K

g0 TO I'0
C RE-ARRANGE E-VECTORS DIFFERENTLY FOR DISCRETE CASE
C REF: VAUG44N. IEEE TRANS ON AUTO CONT..*OCT 1970
C

DO 270IK -. ,INN
C COMPUlE MAG OF E-VAL

SUM aWRV(IK) * WRV(IK) + WIV(IK) * WIV(IK)
SUM xDSGRT( SUM)

C TESI FOR E-VAL OUTSIDE OF UNIT CIRCLE
IF( SUM .LT. 1.000 GO TO 270

C E-VAL IS OUTSIDE OF UNIT CIRCLE. GET & STORE E-VECT
'1C IF E -VAL IS COMPLEX, WE WILL PICK UP OTHER PART OF

C E-VEC1 AUTOMATICALLY ON NEXT PASS

DO 270 1I, 1N14
It v I INK
WILMJ. 1) -ZMCI. 1K)
W21M.J. ) - ZM(I1.1K)

C270 CONTINUE

C oplioNAL PRINT OF P08 E-VAL EZO VECTORS

290 IF(IPRIF EG0. 0 ) GO TO 290
C PRINI WtIMW21M

WRITE(6. 970)
970 FORMATe'O'*,.'1411(T) IS')

CALL PRIMI(INXMK. INK. INX#W1IM)
WRITE(6, 97?)

972 FORMAT('O'.5X.'W21(T) IS,)
CALL PRIMA1(INKMK INK. INK. W21M.

290 CONTINUE
C
C LOR SGAIN 9 --R(INV) * OT) K
C CONl KAL FILT SS GAIN - K * C(T) *R(INV)
C WHERE K US0 SOL TO ALG RICCATI EGN
C VIA P071ERt'S METHOD
C 110$ * K - 1421(T)
C SOLVE FOR COLS OF K BY LU DECOMP METHOD
C REF: FORSYTHE & MOLER "COMPUTER SOLUTION OF LINEAR
C ALGE BRA IC SYSTEMS"
C FIRSI DO LU DECOMPOSITION

CALL DECOMP(INX.WlIM INKMX, ZM, INHMK. lVI.TVI)
C NOW COMPUTE COL'S OF KM
C

DO 300 Jr' 1, INK
CALL SSOLVE(INX.ZMINHMK.1421M(1.J).KM(1.J).IVl)

300 CONTINUE
C TESI FOR KAL FILT

IF( hlYPE NPE. 0 ) GO TO 310
C TESI FOR ADD'L PRINT OUT

IF( IPRIF .1O. 0 ) GO TO 318
C PRINI OUT R(INV) OC3T)

WITE(b.975) INUP INK
975 FDRMAT(''5X,'R( INV B ( TRANS I MATRI'.2' BY '.12)

CALL PRiMAl CINXMK. INU. INK, IP)
00 TO 31D

C T1-51 FOR ADD'L PRINT OUT
310 IN IPfiP' .90. 0 GO0 TO 313
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C PRINI OUT C(T) * R(INV) MATRX IN TM
WRITE(8. 974) INX. INZ

974 FORMAT('0'.SX, 'C(T) *R(INV) MATRIX'. 12.' BY ',12)
CALL PRIMAT(INXMX. INX. INZTI

C NOW T'RINI OUT SS K-MTRX
315 WRITE(6#9S0)
990 FORMAT('0'.5X. '55 K-MTRX(RrCCATI EQN SOLUTION IS')

39CALL IPRI MAI (INXMX, INX, INX. KM)
38WRITE(6. 985)

995 FORMAT( '0'. SX, 'THE SS GAIN MTRX G IS :1
C TESI FOft KAL FILT

IF( TIYPF .NE. 0 ) 00 TO 320
C COMPUIE SS LOR GAIN: R(INV) * B(T) IS IN TM

CALL MULMAT(INXMX. INU, INX. TM. INXMX. INX. KM. INI4MX Wi)
CALL PriiMAI imx. iNu. INX. WM)

00 TO I
320 IF( IP1SF .NE. 0 ) CCI TO 325

C COMPUIE SS KAL FILT GAIN: C(T) * R(INV) IN TM
CALL MULMAl (INXMX, INX. INX, KM. INXMX, INZ. TM. INHMX. WM)

C PRINI SS GAIN MTRX
WR ITE (6, '180)

96 FORMAT(' '.SX.'Q5SS - K(SS * C(T) R(INV) FOR CONT KF')
CALL PR'tMAI(INHMX. INX. INZ.WM)
G0 TO 1

C COMPUIE DISCR KF SS GAIN G-K*C(T)*CK*C(T)+R3(INV)
C FIRSI COMPUTE & SAVE K*C(T)
325 DO 330 1.2 INX

DO =10 J* 1. INZ
w1Im(I.j) a 0.000

DO 330 1K'1. INX
330 WIIM(I#J) -W11M(IJ) + KM(IPIK) * CM(JIK)

CALL MUlAMAT( INXMX. INZ, INX, CM,. INXMX, INZ. WI IM. INXMX, W21M)
Do 335 rw1. INZ

335 11211(1. 1) - W211(I, I) + RMCI. I)
C INVEIfi W21M

CALL MAIJNVCINXMX. INXMX. IN)4MX. INHMX. INK. W21M. AIM. WM. ZN.
X TVI,1V3)

C COMPUlf 07(99) - W11114 * AIM
CALL MULMAT(INXMX. INK. INZ.WIIM.INXMX. INZ, AIM. INXMX.W2IN)
WRI T& (6.990 P

990 FORMAT('0'.SK. '99 FILTER Of-(SS) IS:'1)
CALL PRIMAT(INXMK. INK, INZ#W21N)

C COMPUIE KP PREDICTOR SS GAIN GP(98) - A * 07(99)
CALL MULMAT(INKMX. INX, INK.AM. INKMX.INZ*W21N.INXMX. WI 11)
WRITE (be 9W)

992 PORMAT(0'SK.X '99 PREDICTOR GAIN IS: 1)
CALL PR1IlAT(INXMX, INK. INZ, WiIN)

00 TO 1
999CONTINUE

SUDROUT INE PRTMAT( IRMAX. IR.IC. MAT)
C
C PRINTS OUT A MATRIX BY ROWS
C

IMPLICIT RVAL*9 (A-H. K-Z)
DIMENSION MAT( IRMAX. 1)
DO 10 toI I

WRITE(6#90) (MAT(IJ).4-1e IC)
10 CONTINUE
90 PORMAT( 0"#IPSOS. 7/(1 '.iP5DI5. 7))

RFTURN
END)
8WROUTIN11 READM(IRMAX. Ift. IC, MAT)

C READS IN A MATRIX BY ROWS
C

IMPLICIT RFtAL4U (A-H.K-Z)
DIMEI4SICIN MAT(CIRMAX# 1)
DO 10 Ia11rk
READ(3,90) CMA7(I#J),Jml.IC)

10 CONTINUrI
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90 FORMAT(6D1'.8)
RETURN

J END)
SUDROUl [NS MULMAT(IRAIX.IRA. [CA, A, IRBMX.[CB, B.IRCMX. C)

C C -A * St MULTIPLIES 2 MATRICES
C

IMPLICIT RFAI.*S (A-H.K-Z)
DIMEN$ilON A(IRAMX,1).D(IRBMX.1).C(IRCMX,1)
DO 10 Ixi.IRA
DO 10 JvIICB
C(IJ) a .ODO

DO 10 [KvI1. CA
10 C(I.J) CCIJ) + A(. [K) * D(IIK.J)

RETURN
END
SUBROjUI [NE MATINV(INAMX. INBMX. INCMX, INDMX. [NA. A.B.C.0.TV. IV)

C
C INVERIS THE MATRIX A BY SOLVING THE SET: A * B - C FOR B.
C WNI.ldE[ C w A UNIT MATRIXi B - A(INV)
C ME1 1401: LU DECOMPOSITION; REF: FORSYTHE & MOLER.
C 'CEIMPUIER SOLUTIONS CF LINEAR ALGEBRAIC SYSTEMS'
C SUPROU71NES: DECOMP & SOLVE , SUPPLIED BY DR. L
C AND, RSON OF VP I

IMPLICIT REAL*S (A-H.K-Z)

DIMENSIOIN A(INAMX,1),B(INBMtI).C(INCMX.1).D(INDX,1),TV(1)
INTE(*R IVC1)

C DECOMPOSE A INTO LU FACTORS
CALL DECOI[NA. A. INAMXD0.INDMX. IV, TV)

C SOLVE IHE LINEAR SEI A * U(1.J) - I FOR J1. [NA
C SEI C 10 IDENTITY MTRX

DO 10 Jul. [NA
DO 5 lal,INA

3 C(I.J) 0 .000
C(J.J) a 1.000

10 CALL SSOt VECINA..INDMX, Cdl.J). DCI.J). IV)
C NOIE: C IS A MATRIX FOR CONVENIENCE

RET URN
END)

SUBROUTINE DECOMP(NANA.UL.NU. [PS, SCALES)
REAL*S A(NA. 1).UL(NU, 1),SCALES(1)
REAL*@ ftONNRM,.SIZE, DIG, PIVOT. EM
INTEGER IPS(l)

C INITIALIZE [PS. UL,. AND SCALES
DO 3 Iw1.N
[P9(I) &
ROWNRM a o 000
DO 2 Jsl,N

IP(ROWdNRI-DAS(UL(IJ)))1,2,2
1 ROWNRM a DAS(LIJ))
2 CONTINUE

IF (ROWNRM)3# 4# 3
3 SCALESCI) a I./ROWNRI

g0 To 5i
v4 CALL SINGMi

SCALESMI a 0.ODO
5 CONTINUE

C GAUSSIAN EL IMINATION WITH PARTIAL PIVOTING
MtI - N-1

DO 17 KwIPH1
219 - 0.010
DO 11 IsKN
[P - [mp()
SIZE - DA3S(UL(IP.IK)).SCALES(IP)
IF(Size S01I.11. 10

10 BIG - SIZE
IDXPIY' I

11 CONTINUF
27(310)13, 12.13
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12 CALL SING(2)
GO TO' 17

13 IF(IDXPJV-K)14.15*14
14 J-IPSCK)

IPS(K) L PS(IDXPIV)
IPS(IDxpIVt * j

15 KP - IPS(K)
PIVOT a UL(KPK)
API -K S.I
o 1& rmKPI.N
IP - IPS(J)
EM - -UL(IP,K)/PIVOT
ULC(IPK) z -EMj
DO 16 JvKPI.N
UL(XPJ) a UL(IP.J) *EM*UL(KP.J)

16 CON4TINUE-
17 CONTINUE

KP- IPS'(N)
IF(UL(KP.N))19.l819419 CALL SING(P)

19 REIURN
END)
SUBROUTINE~ SSOLVE(N.ULNU,U. X. IIS)
REAL*S UL(NU.0.B(l).X(l)*SUM
INTEGER IPS(1)
NPZ N i- I

X~l) - "(1p)
DO 2 Ia.",N
IP - IPS'(r)
1111 I - I
SUM 0.0110

I SUM -SUM lo UL(IP.J)*X(J)
A.2 XCI) Rn(IP) - SUM

IP - IPSCN)
X(N) - X(N)/UL.(IP.N)
DO 4 INACK - 2,N

I-Wi - IPACK
IP - ZPS(R)
IPI - I I. I
SUM - 0. O
DO 3 JtlPI.N

3 SUM - SLIM * UL (IPs J)*X (J)
4 X(I) - (XCI)-S13I)/UL(IP. I)

RETURN
END
SUBUmau1NE SING C ZHY)
DATA PEIUl /6
00 T0C1.tVe3) sINHY

I WRITEtNOU* 11)
REIlURN

2 WRITE(HOUI. 12)
EIlURN

3 WHITE(NDU.13)
EIlURN

11 FORMAT(' MAIRIX WITH ZERO ROW IN DECOMPOSE. ')
12 FORMAT(' SINGULAR MATRIX IN DECOMPOSE. ZERO DIVIDED IN SOLVE. ')

13 FORMAl C' NO CONY IN IMPROVE@ MATRIX I8 NEARLY SINGULAR')
END
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