
ID-R137 661 REPORT ON THE DARPA INTERNET PROJECT M/R-COM LINKABIT i'i
EASTERN OPERATIONS(U) M/A-COM LINKABIT INC MCLEAN VR
D L MILLS ET AL. 30 JUN 83 MDA903-83-C-0024

UNCLASSIFIED F/G 9/2 NL

bmmmmmnnmmum
EEEEEIIIEEEEinmEE~h1h1hEE

1. t aim,

W~~~ L32
j

B""l W.~ ii11L6 ',
-ao rU

1.25I 1. Q-

~.L A
MCROC. REOUO EST *20
INnlt URWO SAM -n

Eu..% %

11111= II
* 1.25 1.4 1.

~~i

rl

'-4

L 0 SECOND QUARTERLY PROGRESS REPORT ON THE

DARPA INTERNET PROJECT

DTI

L FEB 9 U4

.'-U,

APPROVED FOR pUBLIC RUfEAS!,

DISTRIBUTION IS UNLIMITED (A)

-..i Ir 484 02 09

.- .T,* .,* 7% . * -. w . 70 74 -...A...

....

SECOND QUARTERLY PROGRESS REPORT ON THE

DARPA INTERNET PROJECT

I

30, June 1983

David L. Mills
Zorica Avramovic ' LECTE

&
Phillip G. Gross h"L 1 ,g84i4

Prepared for: f4

Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

APPROVED FOR PUBLIC RELEASE.

DISTRIBUTION IS UNLIMITED (A)

i , ,, 1 r Ir ,\ % % ;,: :, . ,- -_: .: , -. - ,.-. .. .,. .

-qT c -. .K7 ii. IL.

i
SEc0D QUARIERLY PROGRESS REPORT ON THE DARPA INTE&NET PROJECr

David L. Mills, Zorica Avramovic and Phillip G. Gross
M/A-CCM LINKABIT Eastern Operations

June 30, 1983

Contents Page
1.INTRODUCTION 2

2. A PLIWME S 32.1. ESP Efforts 3
2.2. Mail System Support 4
2.3. Operating System Support 5
2.4. Other Activities 0 . . 6
2.5. Experiments . 7

3. PLAS FO THE N=T QUARER 9

4. TCP FLCW AND CONGESION S . * 104.1. TCP System Model0. 10
4.2. Discussion of the Model 11
4.3. Estimators 12
4.4. Flow Management 0 . 13

5. EGP IMPLEMENTTION PLAN 15
5.1. Overview of DCNET Control Algorithms 15
5.2. Implemmntation Plan : 18

6. E I ISSJES 19
6.1. W system odu isiti. 20
6.2. Tpological Crnstraints 20

6.. * tinck .r .os . l 27A.3. mtripng n 30

6.4. Neigho rAcus iti 0 .i*t 22

7. FW P.................a.....00 00 06 .. 24

11, I112 A* DM T i M)MRTICb7S 0 0. 25
A.l. E =1Adresing 26
A .2. N16bick And Met Tables *....e............. * * 27
A.3. Roundtrip Delay Calculations 30
,A.4. Host Updates 31
A.S. Not Updates 33

List of Figures

wk Table EntryriuI A.2 ot Table fttry 00000a0002

Fire .3. H s29

..'.. :b] Ov a mI eI 1no

Page 2

I.\\ INTRODUCTION

V Thls second Quarterly Project Report describes Linkabit's

contribution to the DARPA Internet Program during the period of 1
April through 30 June 1983. Work was performed at the Eastern

* Operations facility in McLe n, Virginia. Contributing to the
effort were David L. Mill , Project Engineer and Manager, Zorica
Avramovic, Senior Engine , and Phillip Gross, Senior Engineer.
Robert Enger and Hal Roehr provided technical support and
assistance, wh reen Klein provided secretarial support.

LINKABIT's efforts in support of the Internet Program are
concentrated in the areas of protocol design, implementation,
testing and evaluation. In addition, the group is providing
integration and support services for certain computer systems to
be installed at DARPA sites in Washington, D.C., and Stuttgart,
West Germany.,

During the period covered by this report, the level of
effort was increased to three full-time equivalents with the
addition of Phillip Gross, a software specialist with background
in operating systems and communications. Staff responsibilities
were realigned as follows: Ms. Avramovic was assigned to the
mail system, including multimedia mail; and Mr. Gross to
operating-system enhancements, including facsimile support. Dr.
Mills remained responsible for EGP gateway design and
mplementation and general systems evaluation.

The level of staff involvement in computer systems and
e n work support remained fairly high which indicates that the
1 cal-network configuration has not yet stablized completely.

S implementation has progressed well, with test implementations
converging and protocol details being finalized. Performance
tests and evaluations continued with mixed results, especially
with respect to FTP. In addition, several operating system
enhancements were made, and bugs were fixed. Finally, LINKABIT
personnel attended the ICCB, SATNET, and RG 1 eetings at NTARE
(Oslo) in July 1983.

The remainder of this report consists of pour major
functional parts. Section 2 summarizes specific items of

_ progress, including the status of equipment integration, software
enhancements, and testing activities; while Section 3 summarizes
plans for the third quarter. Section 4 discusses of certain
issues involved with TCP congestion controls. Section 5 contains
the implementation plan conceived for the EGP gateway as part of
the DCI Fuzzball system, while Section 6 discusses certain
unresolved issues related to the EGP model itself. Finally, the
appendix describes DCN local-net architecture and implementation
details important for the EGP implementation, including packet

A

..... . -J . L - 2 . . - 4 . , . .; ' . ' . . -- ' i-'
- '

Page 3

formats and peer interactions.

2. ACCOMPLISHMENTS

Major activities during this quarter included the refinement
of the EGP model and the design of a test EGP implementation.
The implementation was begun and initial testing was performed
between LINKABIT hosts on the DCN. Additional tests were
accomplished with other implementations at BBN and MIT.

2.1. EGP Effort

The EGP effort was concentrated in three areas: (1) the
refinement of the EGP model itself, (2) the development of a plan
for the implementation of an EGP gateway as part of the DCN and
(3) the implementation of a test gateway according to this plan.
The refinement of the EGP model is discussed in detail in Section
6, while the DCN implementation plan is discussed in Section 5
and the appendix. A summary of the implementation progress
follows.

Although the EGP model is not considered completely stable
and is expected to be developed further, many details of the
protocol are not expected to change. Because of the urgency
attached to this effort, a test implementation was begun to test
and evaluate those aspects expected not to change. A test
implementation was constructed and tested on two LINKABIT
fuzzballs, one (DCN-GATERY) used as the ARPANET gateway, and one
(DCN6) used for network testing and program development. The
primary reason for choosing DCN-GATEKAY as one of the peers was
that ordinary GGP routing information was available and could be
*leaked" into the EGP interactions.

Initial testing between DCN-GATEDIY and DCN6 resulted in a
version that executed substantially the neighbor-acquisition and
neighbor-reachability protocols according to the RFC-827
specification, but with certain exceptions found useful during
testing. These exceptions included:

1. Use of a two-way instead of a three-way handshake for the
neighbor-acquisition protocol. The more complicated
three-way handshake was judged unnecessary in view of the
state information required.

2. Use of a single sequence number, rather than three as
proposed.

3. Restructuring of certain packet formats, in which the polling
intervals were moved to the neighbor-acquisition packets and
expressed in seconds instead of minutes. In addition, the

Page 4

network-reachability packet format was changed to conform
more closely to the GGP update packet format in the interest
of compactness.

- 4. Modification of the neighbor-acquisition protocol to support
~ the concept of active and passive neighbors, so that the

polling overheads could be reduced and resources conserved,
especially in the core gateways.

Following initial testing on DCN hosts, tests were conducted
with MIT and BBN hosts, but with no routing information being
exchanged. This resulted in a general convergence in protocols
and packet formats. Tests are continuing, and further work on
the support for interior neighbors and polling controls awaits
expected gateway memory upgrades.

2.2. Mail System Support

Work continued on the "answer" and "forward" features for
the nmail system, which were completed late in the previous* 9 quarter, but were tested only with other DCN hosts. During

. testing with various other Internet hosts, a number of
compatibility problems and bugs were found and corrected. Most

I problems were due to lack of RFC-822 compatibility on the part of
S ,various other implementations. These problems were mostly solved

by incorporating various degrees of tolerance into the parsing
mechanisms.

In order to create the most demanding environment possible,
a mailbox was created on the DCN5 fuzzball and incorporated into
t he sHeader-People" distribution list on the MIT-MC host. The
messages relayed by this host are known from experience to
originate at virtually every implementation reachable via
Internet paths and to work with various degrees of compliance
with RFC-822 hosts. As expected, the fuzzball mail system
quickly broke due to non-conforming messages. After intensive
effort, most of the incompatibilities were detected, and
permissive workarounds were installed. As implementations mature
in the RFC-822 comunmity, the need for these workarounds isU expected to diminish.

Our activities in the multi-media mail area continued at a
relatively low level of effort, due to priority demands of other
activities. A medium-resolution color monitor was purchased and
-integrated with the Peritek bit-map display. The Peritek
software support was enhanced to provide a bit-map capabilityI conforming to the file formats produced by the prototype image
editor. Finally, the Dacom/Rapifax digital facsimile machine was
re-Integrated to the DCN3 fuzzball using the DEC DUPVllI interface.

I

Page 5

2.3. Operating System Support

A number of system enhancements were incorporated in the DCN
Fuzzball system during the quarter. Some of the enhancements
resulted from extended development processes, while others were
developed in response to problems observed in testing and
evaluation. Following is a list of these enhancements.

In early June, the 9600-bps access line to the Mitre IMP was
upgraded to 56 Kbps and installed. Tests to assess the
performance of the new line relative to the old line were begun.
The primary reason for installing this line was to improve the
precision of measurements made with other hosts on the ARPANET
and other nets. A secondary aim was to reduce the frequency of
blocking due to "pinging" by other hosts and gateways. "Pinging"
refers to a host or gateway's method of to determining
connectivity to a host by sending packets to that host that are
designed to be returned to the sender. As the number of hosts
and gateways on the ARPANET has grown, so has the pinging
traffic, and as a result the target hosts and IMPs have been
impacted seriously.

Name and time servers were installed on several DCN hosts
and clones elsewhere. These were tested in a mini-bakeoff with
other implementations at MIT, Purdue, SRI, and BBN. Once during
testing an observer at MIT discovered a discrepancy of exactly
ten years in one of the time servers. The discrepancy was caused
by the year being incorrectly entered on the DCN host equipped
with the NBS radio clock.

An unexplained discrepancy was found in the network time
distributed by the DCN master clock on one hand and the Ford DCN
clone master clock on the other. The DCN master clock was
derived from a Spectracom HVB radio receiver, while the Ford
master clock was derived from a TrueTime GOES satellite receiver.
hile both receivers are reported to be accurate to approximately

one millisecondc the two clocks were found to be off almost 50
milliseconds. Qualitative checks with other sources of time
information, including WW and Naval Observatory, indicate that
the problem is with the Ford clock, but definitive conclusions
have not yet been made.

Another fuzzball (DCN7) was configured for use in program
development. It was used for a short time with a US Design
10-megabyte Winchester disk. Unfortunately, this disk has had a
poor maintenance history, and it failed once again shortly after
Integration. The failure was traced to a defective disk motor,
which represents a relatively expensive repair. Considering the
maintenance history (about $3000 during the life of the disk), we
decided to retire it ard replace it with one from another
manufacturer.

- *%* . °

.7 7 17

Page 6

V,

* As laboratory space available to the project steadily
decreased, there was mounting pressure to economize on the space
taken for the fuzzball zoo, including backplanes, disks, and
terminals. A five-foot equipment rack was found, and two of the
fuzzballs, along with the NBS clock, were assembled in it. In
addition, the operator terminals for two of the machines were
moved to staff offices. Additional equipment repackaging is
expected in the future, at least until relocation of the staff
and laboratory space to another facility in December.

Code to support IP source routing was incorporated in the
j fuzzball system. It was tested first with other fuzzballs and

then with the Internet gateways and other hosts known to support
,, source routing, including ISI (TOPS-20) and CCN (IBM 3033) hosts.
, At this time, the new feature works with all of these

implementations, but does not support record-route and
return-route functions. In addition, the packet-allocation
algorithm was modified to slice large buffers into smaller ones
automatically upon allocation and recombine them when freed.
This variant of the "buddy algorithm" markedly improved the
utilization of buffers in the DCN-GATEWAY host, which experiences
traffic flows well in excess of ten thousand packets per hour.

* A particularly useful enhancement to the operating system
was the Introduction of virtual volumes. A virtual volume is a
file that can be made to appear to the system as a separate and
distinct physical volume. This feature is intended to support
multiple users sharing the same machine. Each user can be
assigned a separate virtual volume for private files, while using
a common volume for system programs, etc. Features were then
incorporated into the TELNET and FTP user and server programs to
make use of this feature.

A driver for the DEC DZVll asynchronous multiplexer was

completed and integrated into the software distribution in
anticipation of an expansion in the number of lines on the
Stuttgart fuzzball.

2.4. Other Activities

Planning continued for the installation of a fuzzball at
DARPA Headquarters in Arlington, Virginia. The hardware arrived
for this system, which is to be integrated with a Dacom/Rapifax

:digital facsimile machine already on the premises. The
integration job consists of assembling cables, mounting
connectors, and other similar tasks. Installation is planned fori early July.

I

Page 7

At various times during the quarter, LINKABIT personnel
assisted other organizations in integrating fuzzballs into other
DCN clones and nets. This activity consisted of copying various
parts of the software system on distribution media and sending
it, with DARPA permission, to other organizations, such as NTARE,
DFVLR, Purdue, University of Michigan. He also assisted
University of Maryland personnel in developing an Interlan
Ethernet driver, Ford Aerospace in developing a 3-COM Ethernet
driver, and Systems Development Corporation in developing an NSC
HYPERchannel driver. A condition for this assistance was that
the drivers be available for our use in support of DARPA
activities. Linkabit personnel also assisted University of
Maryland personnel in testing their IP/TCP, TELNET, and SMTP
implementations for the Univac 1100/80.

The ACC XQ/CP HDH communication interfaces for the Stuttgart
fuzzball arrived in June. They arrived with the wrong connectors
(RS-449), which will have to be changed. A software driver for
the DEC RSXll system arrived with the interfaces. This driver
was used as a model, for the design of a fuzzball driver, which
is now in implementation. It is scheduled for completion next
quarter.

2.5. Experiments

As an integral part of testing in the development of new
protocol modules and the measurement of their performance,
several experiments were conducted over the Internet system. The
experiments fell into three areas: experiments designed to test
the robustness and throughputs of bulk transfers between
mutually-syspect FTP peers; experiments involving congestion on
the 56-Kbps ARPANET access line; and stability experiments using
the DCN local-net routing mechanisms.

Last quarter's FTP experiments were continued through this
quarter. The effort to sustain this activity has been a small
but important part of network testing and evaluation for two
reasons: (1) The file-transfer type of service emphasizes high
throughput at the possible expense of delay, as compared to the
virtual-terminal type of service, which emphasizes low delay at
the possible expense of throughput. In addition, the
virtual-terminal service, which is mostly interactive, is readily
experienced by many users; therefore, degradation in service is
readily apparent. (2) As explained below, the file-transfer
service, which in principle includes mafl, is often performed by
daemons and hidden from view. For these reasons, the performance
of file-transfer services often is neglected, and as shown below,
can lead to ominous, unsuspected and wasteful traffic in the
system.

Rim 41T . . 7 1 7 -7 .. o. -. ..

Page 8

The FTP testing proceeded this quarter in two areas. The
first involved verifing teroperability between the DCN
implementation and several others, including the BBN TOPS-20 and
BBN VAX implementFtions, which represent the bulk of the hosts
now on the Internet. Serious difficulties that have been
experienced with TOPS-20 FTP servers in the connection-close
sequence, as reported last quarter, have not been fixed as yet.
Tests performed this quarter revealed that the TOPS-20
multiple-get/send facility did not work in stream mode with

:.i either the DCN or VAX implementations. This problem also has yet
to be fixed. Furthermore, the TOPS-20 initial retransmission
timeouts were so short that operation was not possible via the

S 9600-bps line early in the quarter. This was later fixed, with
the result that operation improved dramatically and was possible
over paths of speeds as low as 1200 bps.

At the January meeting of the Research Group, we reported
what appeared to be a bug in the BBN VAX FTP implementation that
subsequently was localized in the VAX TCP implementation. The
effort to isolate, identify, and fix this bug represents an
important lesson for the community.

' The bug appeared during a transfer of files from a BBN VAX
host to a fuzzball and a relatively slow disk. The transferI would proceed normally and then hang ostensibly forever. An
inspection of the packet trace at the fuzzball revealed that the
VAX was in a continuous retransmission loop, sending a one-octet
segment positioned in sequence space one octet to the right of
the right window edge (in other words, an unacceptable segment).
The fuzzball properly returned an ACK for its current left window
edge, which should have caused the sender to advance its leftU window edge and eventually, perhaps through retransmissions, to
advance to the point where the retransmissions took place. The
mender actually never should have transmitted the one-octet
segment in the first place.

The fix for this problem was trivial and eventually was made
during this quarter. However, the fix apparently did not
propagate to all hosts using the BBN VAX software, including some
at BBN and, in particular, a VAX at the University of Maryland.
An inspection of packet tallies revealed that this host had, in
fact, been hung up in this retransmission loop for three days
trying to send mail and generating many thousands of packets.
There is reason to believe the same thing may be happening
elsewhere in the Internet system even now.

The lesson drawn from this experience is that more care must
be taken in the distribution of system software and patches;
however, the experience also p9ints to the necessity for some
kind of host monitoring and reporting. In the case cited,

I.
F

Page 9

fail-safe timeouts at either the sender or receiver could have
aborted the transfer after a reasonable period.

: A set of experiments was conducted using the new 56-Kbps
access line to the ARPANET. Delays were measured between the
DCNI host (DCN-GATE&Y) via the line to several selected hosts
measured in a similar set of experiments performed about a year
ago. The delay distributions have not yet been assembled and
plotted; however, it is clear from the means that the overall
delays have increased approximately a hundred milliseconds even
considering that the earlier experiments were conducted with a
9600-bps access line, while the later ones were conducted with a
56-Kbps line. In addition a large increase in IMP blocking
events lasting a second or more were observed. Reports from BBN
and other observers confirm that these observations agree with
theirs. Subsequently, it was discovered that a large proportion
of the traffic visiting the DCN1 host was due to host and gateway
"pinging" as described previously.

Bugs found and fixed during the experiments included one
that resulted in internal routing loops in the DCN only in those
cases where delays via some link increased rapidly (several
hundred milliseconds during one HELLO interval - usually in the
10 - 30 second range). The cause was found to be a defect in the
algorithm that permitted paths to form from a sender via a
neighbor and loop back to the sender when the delay on a path to
another destination increased rapidly. The fix was trivial; it
involved forcing delays to "infinity" in a HELLO message for all
virtual hosts allegedly reachable via the intended receiver of
that message.

3. PLANS FOR THE NEXT QUARTER

Th- plans for the next quarter include continued development
of the EGP model and implementation. This will involve
development of a topological model from which the routing
constraints dictated by the specification will be clearly
apparent. In addition, the model should reveal how the
connectivity information exchanged between EGP peers should be
assembled, what constraints, if any, should apply to the
configuration of the EGP peers themselves; and whether a common
metric should be employed. These topics are further discussed in
Sections 5 and 6 of this document.

Also to be resolved in the next quarter are questions on the
performance of the Internet system. Some of the problems
revealed in testing FTP, for example, clearly indicate
inadequacies in certain implementations, including TOPS-20 and
VAX. Others of a more basic nature concern congestion in the
network and the method for improving the source-quench mechanism.

' ' ' : : : :.>, . , ;. :,W-v::": \:-: : . ¢X V: :: :-:-.-: j ."

'47 V_. 1.4 ;i% V

Page 10

Finally, work will continue in the development of an appropriate
process model for TCP, in which the role of parameter estimators
is defined clearly and their effectiveness assessed
experimentally.

4. TCP FLOW AND CONGESTION CONTROLS

The DCN implementation of TCP has been used many times as a
test vehicle to investigate various techniques for the control of
network congestion (for example, where packets can be lost due to
insufficient buffering in a gateway). Some of these control
techniques have been reported before 1 3, along with analytical

* models and experimental performance evaluations. Experience in
these activities has resulted in a new approach which is based on
modelling a system of TCP peers as a random process and
controlling its behavior using information derived from a set of
estimators maintained in real time as data transfer proceeds.

The following sections describe this approach, which is
..i still in the conceptual phase. In succeeding quarters, this
japproach will be refined, implemented, and tested. The approach

involves the conceptualization of a model believed generally
-. applicable in the space of TCP/IP host implementations, but was
Sdeveloped with the DCN "Fuzzball" implementation in mind. The
model is described along with a set of estimators for delays and
flows used to manage resource commitments in the host and the
network. Also presented are a procedure for calculating these
estimators and algorithms using their values to effect
per-connection flows.

1. 4.1. TCP System Model

*He are concerned with a single virtual circuit consisting of
a pair of TCP peers connected by an Internet path involving some
number of local nets and gateways. The most interesting cases
occur when 1) either host can generate flows well in excess of

4that which is acceptable to its local net, and 2) when at some
. point in the path, a flow mismatch of one or two orders of

magnitude exists across a gateway connecting two neighboring
Snets.

Of primary interest is the control of flows for bulk data
, transfer, such as would characterize an FTP data connection. In

such cases, the primary concern is for throughput, rather than
delay. Throughput is degraded by retransmissions due to lost

IA packets, which in turn is due to insufficient resources,
primarily packet buffers. While end-to-end flows are controlled
in TCP by a window mechanism responsive at the level of
individual octets, often insufficient resources at gateways along
the path cause packets to be lost anyway.

p6

Al

Page 11

The problem addressed here is to identify a set of
estimators that can be used to predict the resource demands
implied by a particular flow of data (octets or packets) from
moment to moment as transmission proceeds. The estimators can be
used to predict delays and flows at several points along the
path. The retransmission timeout (zero and non-zero window
cases) and flow strategies designed to minimize resource demands
throughout the system while sustaining high throughputs can be
derived from the estimators.

The host can support a number of simultaneous TCP
connections, each with its own set of state variables and
estimators (see below). An interval timer is assumed with
resolution in the order of a millisecond, and the host operating
system is assumed to have some sort of internal flow controls as

-e part of its internal resource management system. The controls
act to deny a request for a packet buffer if the quota assigned

:e.' that connection has been exhausted. Once a request has been
denied, another is not made until after a system-dependent
interval.

As each packet is filled, it is sent to the net using some
sort of IPC message. The packet may be multiplexed along with
others on a queue for transmission into the net. When the packet
has been transmitted, an IPC message is returned to the TCP
process and used to update the estimators for the particular
connection (see below).

The local nets may or may not have intrinsic mechanisms to
control flows between the hosts and gateways. In the case of the
present ARPANET, flows are controlled by RFNMs and blocking. For
present purposes, we can assume that control by RFNMs avoids

i blocking, and that the delays between a transmitted packet and
its RFNM can be used to update the estimators for each connection
accordingly. This information is conveyed to the TCP process via
the IPC message mentioned above.

The gateways typically allocate packet buffers on the basis
of input interface and output queue threshold. If a particular
output queue threshold is exceeded for a packet arriving at a
particular input interface, it is discarded. If some number of

" packets are discarded in this manner during a system-dependent
interval, the gateway returns a source-quench packet to the
originator. A host receiving such a packet sends an IPC message
to the TCP process, which then updates the estimators for that
particular connection.

4.2. Discussion of the Model

The source-quench mechanism generally is agreed to be

Page 12

inadequate on the basis of several shortcomings. First, the
information arrives too late to effect a useful modification in
behavior on the connection. Second, the mechanism is effectively
bang-bang in nature and can lead to undamped flow-rate
transients. Third, information is sent only after considerable

.* numbers of packets have been lost, and presumably, after long
delays for TCP retransmissions have occurred.

Several suggestions to improve the effectiveness of
source-quench have been made. One is for the gateway to keep an
LRU stack for each output queue to help isolate those hosts

. claiming excessive resources. Another is to send source-quench
% messages before packets have to be dropped and to include

additional information, such as could be derived fom the LRU
stack. A third is to send source-quench messages to the

.destination host as well as the source host, possibly for use in
* throttling ACKs. It is assumed that the host receiving a

source-quench message will use whatever information is available
to update the estimators for that connection.

4.3. Estimators

Each estimator contains a value that is computed from past
behavior and can be used to predict future behavior. Typically,I it is an average of past samples of a random variable, such as
roundtrip delay, with newer samples weighted more heavily than
older ones. In recursive-filter averaging, a new sample value

. weighted by w is added to the running average weighted by (l-w).
In matched-filter averaging, a new sample is entered in a shift
register containing n of the most recent samples and the average
computed as the sum of the n sample values divided by n. There

Pis reason to believe that the matched-filter method may work
better than the recursive-filter method for some estimators;
however, this issue will not be explored in this discussion.

The accuracy of an estimator depends on the number of
samples included in the average and the sample variance. An
estimator typically is updated for every received ACK packet or

• IPC message. Since bulk-data transfers typically use large
packet sizes, it is important to gain as much information as
possible in each sample. A typical problem occurs when the

Ssample value correlates strongly with the length of the packet,
which can occur if the degree of aggregation on the path is
small. Thus, differences in the lengths of the packets can show
up as a larger sample variance, which can lead to increased
retransmissions with some choices of TCP parameters. This is the
principle cause of performance degradation observed on so-called

4 "tiny-pipe" nets using relatively low-speed non-multiplexed
links.

Page 13

All estimators suggested below are constructed in the same
way. When some event happens, such as sending a packet, the time
of the event and the current sequence number are recorded in a
FIFO stack. When an ACK packet or IPC message arrives, the FIFO
stack is searched for the entry with sequence number less than or

,2 equal to the sequence number ACKed. The elapsed time is then
computed and adjusted by linear interpolation between the entry
found and the following entry.

The elapsed time computed in this way can be used to update
a delay estimator directly by using one of the averaging methods
above. In addition, the elapsed sequence numbers can be used to
update a related estimator. By simply dividing the second by the

* first, a flow-rate estimator can be derived and used directly to
control flows on the connection.

There are three estimators that are suggested naturally by
the model: the net-input, TCP-ACK, and TCP-window estimators.
Each is described below:

Net-input. Two events update this estimator. The first is an
IPC message when a packet buffer has been sent to the net.
The second is an IPC message that results from a source
quench. Not much can be done with the current source-quench
mechanism, other than adjusting the estimator value in an
ad-hoc way (such as arbitrarily reducing it by half). The
flow-rate estimate indicates the rate the sender should use
for most efficient use of the Internet path to the receiver.

TCP-ACK. This is the classic "RSRE Algorithm" refined by the

FIFO stack and interpolation technique described above. This
technique reduces sample variance and probably should have
some correction for packet length. The delay estimate is
used in calculating the initial TCP retransmission delay.
The flow-rate estimate indicates the rate the sender should
use to fill the window.

TCP-window. This is computed in the same way as the TCP-ACK
estimator, but the sequence number used is the right-window
edge, as determined from the window field in the TCP ACK
packet. The flow-rate estimate indicates the rate data are
being delivered to the end user and thus the net rate of the
end-to-end circuit. The sender should try to send at a
somewhat higher rate and rely on the TCP window for fine
tuning.

4.4. Flow Management

Strategies that use the values of the delay and flow-rate
estimators described above are examined in this section. First,

~ . ~ . .

Page 14

in the case where the sender flow is small compared to the net
and end-user capabilities, the TCP-ACK and TCP-window rates
should be about the same. In the above mentioned case involving

.. fire hoses and tiny pipes, the net-input rate is likely to be
. much higher than either of the others. In the case where the end
user is much slower than the sender or net, the TCP-window rate
will decrease, possibly falling to zero.

The current DCN fuzzball implementation incorporates the
first two of these estimators along with a simple
recursive-filter averaging method. Flow control is based on the
net-input rate, which follows the local-net backpressure and
responds to source-quench messages. This is done by throttling
the actual flow rate into the net so as not to exceed the
net-input rate. The estimated net-input rate is decreased by
half for each source-quench message received and is allowed to
return to the measured rate in about eight samples. The effect
of this is to avoid tying up packet buffers unnecessarily and to
provide a control point for flow modulation.

In the fuzzball implementation, the TCP initial
retransmission delay is calculated in the classic way from theSTCP-ACK estimated delay, with subsequent delays adjusted for
backoff. Our experience shows that packet length should be
factored in this estimate; however, this would involve
estimating two quantities simultaneously--the absolute delay and

Sthe end--to-end flow rate. This actually is not especially
difficult and may be considered for future implementation.
Nevertheless, the performance is good with the present net

q configuration of up to five links (not themselves
.. flow-controlled) and from speeds of 100 Kbps or so down to 1200

bps.
Our experience indicates that considerable improvement can

be made by incorporating more highly developed estimation

methods, such as those suggested above, and by coupling the
flow-management algorithms more closely. These actions are
planned as the implementation is refined. Some of the possible
mechanisms are described below.

1. Use the TCP-ACK and TCP-window estimators to implement a
strategy designed to avoid extreme efforts to keep the window
closed, which lead to silly-window syndrome.

2. Couple the TCP-ACK and TCP-window estimators into the
packet-generation strategy mentioned in connection with the
net-input estimator. This would avoid pumping many packets
into the net well before the end user is ready for the data.

3. Develop a complementary set of estimators for use at the

IM

Page 15

receiver. They could be used to control the ACK strategy and
avoid buffer fragmentation, while minimizing traffic on the
reverse direction.

4. Investigate the feasibility of sending additional
flow-control information (for example, in the URGENT field of
packets when the URGENT condition is not in effect) to help
the sender and/or receiver improve its strategy.

5. EGP IMPLEMENTATION PLAN

The Distributed Computer Network (DCNET) is an experimental
distributed network architecture based on a set of local-network
control algorithms described in [13. The architecture includes
both point-to-point and common-bus configurations using
PDPll-compatible hosts (called Fuzzballs) connected by a variety
of interface devices. The control algorithms provide adaptive
routing, time synchronization, and gateway functions to subnets
and foreign nets.

The Gateway-Gateway Protocol (GGP) £23 has been in use for

about four years in the Internet system to provide network-level
routing functions for gateways between ARPANET, SATNET, and
several local-area nets. For several reasons, the GGP has been
found inadequate when large numbers of gateways and nets are
involved and where multiple implementations coexist.

The Exterior Gateway Protocol (EGP) £33 is an experimental
protocol designed to provide network-level routing between
systems of gateways organized as loosely-coupled, autonomous
systems. The protocol operates between designated gateways in

* adjacent systems and provides for the identification of
neighbors, verification of reachability, and routing of
intersystem traffic.

This design note suggests a strategy for implementing EGP in
the DCNET architecture. The design is based on a set of
distributed algorithms that interoperate with the existing DCNET
distributed control algorithms; it is believed to be a good test
of the EGP functionality in such environments.

5.1. Overview of DCNET Control Algorithms

The architectural model of a DCNET clone is a
self-organizing system including a set of hosts connected by an
essentially ad-hoc set of links. Typical DCNET clones include a
number of hosts permanantly connected by a high-speed local net,
together with a set of dial-up hosts that share a pool of ports.
The ports themselves are distributed among the fixed hosts, and
the dial-up hosts connect to then in an undisciplined way. The

Page 16

$ local net is connected to the Internet system via one or more
gatewayr ising either permanant or dial-up links.

A distributed adaptive routing algorithm, called the HELLO
algorithm, is used to bind the hosts of each DCNET clone
together. Although the agents participating in this algorithm
a re the physical hosts, the entities representing the nodes of

*' the topology are designated processes called virtual hosts and
each is assigned a unique internet address. A physical host can
contain one or more of these virtual hosts, which can migrate
about the network in arbitrary ways.

DCNET clones can be connected to subnets and foreign nets.
A subnet is a DCNET clone identified by the same net number as
the parent, but is assigned a distinct subnet number, depending
on the address format. Both subnets and foreign nets are
connected by gateways; however, the gateway functions are
implemented in a distributed fashion with each function possibly
associated with a different virtual host. In the present

Simplementation, all functions for each distinct gateway are
provided within a single physical host, and each host can support
a single gateway. The GGP protocol is used between these
gateways and the neighbor gateways in the Internet system.

Routing within a DCNET clone is entirely a function of theNIP header, since no local-net leader is used. Each physical host
contains a host table with an entry for each virtual host in the
net. Each entry, indexed by the host ID field of the Internet
address of that virtual host, contains the port ID for the

Snetwork-driver process on the minimum-delay path to that virtual
host, along with the roundtrip delay and logical-clock offset.
In addition, each physical host contains a net table with entries

~ defining each net number and the corresponding host ID. Thus,
routing to a foreign net consists of two steps: first searching
the net table for the host ID, and then using the host table to

Sobtain the port ID of the appropriate net-driver process.

The host tables are maintained by the HELLO algorithm, which
Suses periodic HELLO messages exchanged between neigboring

physical hosts. The net tables are maintained by the UPDATE
algorithm using information piggybacked on the HELLO messages.
Provision is made for congestion-control information to be
piggybacked as well. Routing is effective at each physical host
in a path between virtual hosts, including hosts that act like
gateways. Thus, neither gateway-acquisition procedures nor

Sredirects are necessary within the net.

The DCNET virtual-host architecture and control algorithmsI support a model where the gateway routing and leader-mapping
functions can be located at traffic forwarding points, while the

I
!

Page 17

information necessary to construct these tables is accumulated
elsewhere. In the intended model, the routing information is
accumulated in the following ways: -

1. At ports where a host belonging to the DCNET clone is
attached, routing information is exchanged by the HELLO
protocol.

2. At ports where a host belonging to a DCNET subnet or DCNET
foreign net is attached, the host provides its net (and
subnet) number as part of the HELLO protocol. This provides
routing information for adjacent nets (but not other nets
that may be connected to the adjacent net). The routing
information is then distributed throughout both adjacent nets
by means of the UPDATE protocol running separately in each
net.

3. At points where a host (in this case, more properly a
gateway) belonging to a non-DCNET net is attached, the
connecting interface or line is configured with the address
of the port on the adjacent network. A HELLO message
containing this address is sent periodically into the
adjacent net, with the response providing reachability
information for the adjacent net, which is then distributed
throughout the DCNET clone by means of the UPDATE protocol.

4. Reachability and routing information for non-adjacent
networks is provided either by GOP (presently) or by EGP
(proposed) agents implemented as virtual hosts. These agents
maintain the data bases required and interact with neighbor
gateways elsewhere in the internet system. Routing
information is then distributed throughout the DCNET clone by
means of the UPDATE algorithm. Note that the agents do not
have to be in physical hosts adjacent to the foreign nets.

The HELLO and UPDATE protocols thus provide adaptive routing
* for virtual hosts in a DCNET clone and between adjacent DCNET

clones. Local hosts can connect freely at any port. DCNET
subnets and foreign nets can also connect freely, with the
provision that that all traffic between hosts on the same net
must travel via paths in that net. In the case of foreign nets
not responding to these protocols, the configuration is
necessarily fixed; however, the HELLO and UPDATE protocols still
provide routing information throughout the DCNET clone.

The EGP protocol is to replace the GGP protocol between a
DCNET gateway and a foreign autonomous system; however, the GGP
protocol (modified somewhat) may still be used within a cluster
of DCNET clones acting as an autonomous system. Either protocol
provides information to update the routing data base for

. ~~~~~ ,, ,..'..'.'..' .' f....'.'.'.-.*.'.-.' '.. j, *., *. . . p..' .' ..

Page 18

"" non-adjacent networks. This information is necessarily
bandwidth-limited and less reliable than the that provided by the
local protocols. However, as should be evident from the
architecture described here, the layered structure of the
protocols (EGP and GGP depending on UPDATE; UPDATE depending on

1: HELLO) is intended to provide the highest reliability and speed
of response for paths between local hosts, the next highest for
paths between hosts on adjacent nets, and the lowest for hosts on
non-adjacent nets.

An important restriction with GGP in the DCNET environment
has been removed with EGP. With GGP, the "address" of the DCNET
agent that participates in the protocol must be an address on the
adjacent network, in this case the ARPANET. As long as the agent
virtual host is physically resident in the host terminating the

. link to the adjacent network, this is handled by simply
multi-homing the virtual host; however, this does not work if
the agent is in a different physical host. The switch to EGP

F removes this limitation and allows interesting experiments where
the EGP functions themselves are distributed within the DCNET
clone.

5.2. Implementation Plan

The implementation plan is designed to reduce the impact on
I the existing protocols as much as possible while providing the

full functionality of EGP. In particular, the HELLO and UPDATE
algorithms remain substantially unchanged. However, certain
changes will be necessary, simply because the abundance of
networks threatens to drown the system regardless of the
protocols.

The most significant change is to reduce the amount of
network routing information distributed by the UPDATE algorithm.

* Presently, the entire net table containing the local (gateway)
host ID, status, and number of hops is distributed throughout the
local net. In typical configurations, usually one path to
non-adjacent nets is available for a DCNET clone and only one EGP
agent will be necessary. The number of non-adjacent nets usually
will be much larger than the number of adjacent ones. The EGP
agent can then group a number of nets reachable via the same

Slocal (gateway) host ID and assign them a special group ID. For
the moment, only a single such group ID will be allowed. This
will be distributed as part of the UPDATE algorithm to all hosts

! in the net.

When a host attempts to find a host (gateway) ID for a given
net number, it searches its copy of the net table. If no
explicit match is found, it selects the group ID assigned by the
EDP agent. This will work for all those nets known to the EGP

I
I

Page 19

agent, but will work improperly for unknown nets. The problem
can be handled two ways: 1) The group ID distributed by the EGP
agent points to itself. Thus, all traffic to these nets will
transit the EGP agent, which can then forward the traffic or
return an ICMP net-unreachable message accordingly. 2) If
traffic for all non-adjacent nets can be routed via one gateway,
the group ID points to that gateway. When a datagram arrives at

" the gateway, the leader-mapping function (see below) will detect
instances of unknown nets, so that ICMP net-unreachable messages
can be generated accordingly.

5.-:. The EGP agent itself will be implemented as a virtual host.
It will contain the data base describing the full complement of
nets provided by its neighbors and by the UPDATE algorithm in the
local net. It will provide the UPDATE algorithm with information
about these nets as appropriate in view of the considerations
above. The operation of the EGP agent is complicated by the
requirement to distribute local-leader information to those
gateway processes connected to adjacent nets that require local
leaders, such as the ARPANET. This will require a new protocol,
possibly a modification to the UPDATE protocol, in a form that
will be decided later.

The initial prototype implementation will include an EGP
protocol module operating in parallel with GGP (i.e., on the same
routing data base). The effect will be to assign one set of
neighbors to GGP and another (possibly overlapping) set to EGP.
The DCN-GATEWAY host, connected between ARPANET, DCNET, FORDNET
and UMDNET, would contain both protocol modules and would run GGP
with ARPANET neighbors and EGP with another test gateway on
DCNET, probably DCN6. The existing GGP protocol module and
virtual-host process has already been changed to support multiple
gateway protocols.

Once the neighbor acquisition, reachability and update
message formats, and basic protocol functions have been tested,
testing with another implementation, presumably MIT, is
recommended. Testing our implementation with either the FORDNET
or UMDNET DCNET clones also can occur without danger of
disrupting outside traffic. Later, we would like to explore the
issues raised by distributing the EGP functionality as discussed
above.

6. EGP ARCHITECTURE ISSUES

The following discussion explores certain issues unresolved
in the current EGP specification (RFC-827), which arose while
designing the test implementation of an EGP gateway for the DCN
Fuzzball system. At this time, many of these issues need to be
discussed and resolved among the participants in thespecial-interest group charged with EGP specification.

6.1. EGP System model

There is some confusion about the definition of an
autonomous system and its connectivity constraints. A precise
statement of what is believed to be the intended model follows.

An autonomous system (henceforth simply system) is a set of
gateways. Every gateway belongs to exactly one system. Two
gateways are connected with respect to system s if they both
belong to s and share a net in common. The gateway-connected

J relation for each system is reflexive, symmetric, and transitive,
.' and thus an order relation. Its transitive closure must be an

identity, so that the set of nets included is not partitioned.
Two systems are connected if there is a pair of gateways, one in
each system, that share a net in common or are connected directly
by a point-to-point link that is not considered part of any net.
The system-connected relation is an order relation, and its
closure must also be an identity. Thus, every net is reachable
from all gateways in all systems.

IGateways belonging to a particular system communicate
routing information using an interior gateway protocol (IGP), an
example of which is the Gateway-Gateway Protocol (GGP). One or
more designated gateways in each system communicate routing
information to designated gateways in other systems using the
Exterior Gateway Protocol (EGP).

UEGP is spoken between a pair of peer gateways, each
belonging to a different system and connected in the sense above.
These are called direct neighbors and, presumably, each
participates in its own IGP to exchange routing information with
other gateways in its system. The routing information exchanged
between these systems may include information derived from other
systems via E3P. In particular, the routing information may
indicate that traffic for some nets should be directed to
gateways other than those particular EGP peers, including those
belonging to other systems. These other gateways are called
indirect neighbors.

S6.2. Topological Constraints

The topology of the systems has been specified to be
tree-structured, with the "core" system at the root of the tree,
in order to avoid potential routing loops. There is, however, no
implied restriction on the net topology within each system.

A net is internal to a system if all gateways sharing that
net are in that system and external otherwise. The set of all

I

Page 21

4 internal nets, together with their gateways, can be considered as
constituting a single net whose internal structure is invisible
outside the system.

The tree-structure restriction was designed to avoid
potential routing loops between systems. Thus, each system can
share, at most, one external net with any other system and there
are no cycles involving external nets. Strictly interpreted, the
restriction would forbid more than one set of EGP peers
connecting two systems sharing the same net.

There is some evidence that this is not a workable or even
tenable restriction. Systems very likely will grow appendages
that may form loops. The alternative can only be a registered
topology, which does not seem feasible for the research
community. In addition, not only must the topology be
tree-structured, but the topology can be changed only after all
old routing information has been purged from all routing tables.
Past experience indicates that there is no way to assure this,
other than administrative control of all gateways.

The assumption is that the systems can (but not necessarily
will) determine routing via their neighbor systems using a
universal metric. In such a case, loops are broken by "counting
to infinity," which takes time when polling rates are low.
However, loops can be avoided in the first place by employing a
hold-down, which would operate to inhibit inclusion of a net in
an EGP net-reachability message for a specified period following
the time the path to that net was determined to be down. The
hold-down interval may have to be relatively long, since it must
be at least as long as the time to propagate routing changes to
the far corners of the Internet.

He have thus exchanged the tree-structure restriction for a
set of specified parameters that must be taken as characteristic
of the Internet. One of these parameters is the maximum diameter
of the Internet (which places some restrictions on the topology);
a value of about eight might be right. A second parameter is the
maximum hold-down interval--two to ten minutes may be necessary.
Finally, every system that might be part of a loop would be
expected to propagate routing changes in a timely manner and to
comply with the hold-down requirement.

6.3. Routing

There should be a universal metric understood by all
gateways. This does not necessarily mean that each IGP must use
this metric, but it does mean that the metric is understood in
all EGP communications. The metric must in fact be a metric;
that is, it must be reflexive and symmetric, and must obey the
triangle inequality. Simple hop-count is suggested.

While some systems may elect to constrain internal routing
1.: procedures, a consistent set of neighbor gateways and distances
, v should be presented to neighboring systems. No attempt should be
* made to bias the routing decisions of the neighboring systems.

The easiest way to do this in the present implementation is to
extend the GGP metric everywhere, so that EGP routing decisions
can be made in the same way as GGP. This does not imply that a
gateway must believe the EGP routing information. In fact, it

. [may elect to use (and report to other gateways) interior paths
" *~rather than allegedly shorter exterior paths.

A gateway (or host) can obtain a list of nets and first-hop
. gateways from a consenting EGP gateway on its net. There could

be several neighboring systems sharing the net, each of which has
such a gateway. The lists obtained from each gateway should
contain equivalent information; however, different first-hop
gateways may be suggested for a particular net. The
understanding in such cases is that each of these first-hop
gateways is associated with the same distance to that net.

6.4. Neighbor Acquisition

I EGP neighbors evidently must share a common net, because
otherwise they could not establish a way to determine a route
between themselves. In general, there must be one or more EGP
representatives for each system sharing a common net.
Presumably, each representative would be an IGP participantrn containing an EGP protocol module capable of sustaining
simultaneous EGP operations with representatives in other
systems.

As yet, no architecture has been developed for finding
either IGP or EGP neighbors on a particular net. In current GGP
all neighbors are direct neighbors, and the protocol is sungI between each pair of peers separately. Thus, it is sufficient
for only one member of each pair to know the address of its
neighbor apriori. However, this can lead to situations where a
gateway may not discover all its neighbors on a particular net,
resulting in suboptimal routing. The problem could be remedied
through redirects, but at present this is not done.

Sufficient information is conveyed in EGP to allow each peer
to discover at least those direct and indirect neighbors along
the minimum-hop path to every other net known to the IGP ofI either system. These neighbors must not be considered potential
EGP neigbors, even if they belong to another system. Thus,
suboptimal routing can occur in EGP as well.

I

I

!

Page 23

In order to minimize overheads, it is desirable to structure
the host-gateway interaction so that no state information need be
maintained at the gateway. This can be done by simply sending an
NR-poll message to the selected EGP gateway, upon which the
gateway will return an NR-update message. Further polls should
not be necessary, unless it is determined that one of the
gateways has become unreachable as reported by local-net or
high-level protocols. It is not necessary to send NA-requests or
HELLO messages unless the host is connected to another net (i.e.,
it is, in fact, a gateway). A gateway should not incorporate

.- routing information received from another gateway into its
routing data base unless it has satisfied the reachability
criteria.

Redirects should be sent to gateways as well as hosts. It
Ne. may happen that a gateway in one system may redirect a gateway or

host to a gateway on another system. The redirect mechanism can
be expected to operate much faster than the routing-update
mechanism in either EGP or (existing) GGP. The effect of
interactions between this kind of routing information and that
conveyed by EGP may be an interesting topic for further study.

It is particularly important to refine the model for
NR-updates. An initial approach is to simply extend the GGP
metric and neighbor selection into EGP, which would certainly
simplify the gateway design. The intent is for the EGP neighbor
to receive all the information necessary to construct a routing

4 matrix as if it were direct GGP neighbors of each indirect
neighbor. This could be done by simply sending suitably edited
copies of the routing matrix; however, that leads to a
considerable amount of redundant and probably useless
information.

Another approach is to send a copy of the routing vector,
together with the associated first-hop gateway, to each net.

, This is much more compact, but does not have the correct
distance, because the distances are relative to the sending
gateway and would be incorrect from the neighbor's point of view.

We conclude that the right thing to do is to send a modified
routing vector (re-sorted by gateway address, of course) together
with the first-hop gateways. The modification amounts to
subtracting one from the distance value for every net associated
with a first-hop gateway other than the sender. In effect, the
sender has done all the route computing for the receiver; the
receiver must only store the vector and use it. If other EGP
peers are sending these data to the receiver as well, the
receiver need only pick the one with the smallest distance,
exactly as if an ordinary GGP update were being sent.

I.,

V"

"?i'?

-C... I' eC-

- .

l [Page 24

These issues will be discussed during the next quarter with
the intent of reaching closure soon. The test EGP implementation
is now in service; however, the above issues are not yet
resolved. It is expected that as these issues are resolved, the

- test implementation will evolve correspondingly.-"

7. REFERENCES

S1. Mills, D.L. Final Report on the COMSAT Internet Program.
COMSAT Laboratories, January 1983.

2. Hinden, R., and A. Sheltzer. The DARPA Internet Gateway.
. DARPA Network Working Group Report RFC-823, Bolt Beranek and

Newman, September 1982.

3. Rosen, E.C. Exterior Gateway Protocol (EGP). DARPA Network
Working Group Report RFC-827, Bolt Beranek and Newman,
October 1982.

A

,42

i

..I.'. *,---. ***~%*

.- 94

Page 25

.0 Appendix A. DCNET NETWORK OPERATIONS

The following sections describe the data structures and
protocols used by the DCNET to facilitate automatic routing, time
synchronization, and fault detection and to maintain connectivity
with the other hosts and nets of the catenet. This is a revision

7</ and expansion of the material in Section 4 of Reference 13 (see
Section 7 above). Of particular importance to the discussion in
Sections 5 and 6 above are Sections A.4 (Host Updates) and
Section A.5 (Net Updates). Sections A.1 through A.3 serve as an
introduction to these sections.

A brief description of the process and addressing structure
used in the DCNET follows. A DCNET physical host is a
PDPll-compatible processor that supports a number of cooperating
sequential processes, each of which is given a unique 8-bit
identifier called its port ID. Every DCNET physical host
contains one or more internet processes, each of which supports a
virtual host given a unique 8-bit identifier called its host ID.
Of the four octets in the internet address, only the third
(class-A/B addresses) or fourth (class C addresses) is
significant for DCNET host addressing and indicates the host ID
of a virtual host. Each DCNET physical host is identified by a
unique host number only for the purpose of detecting loops in
routing updates, which establish the minimum-delay paths between
the virtual hosts. By convention, the physical host number is
assigned as the host ID of one of its virtual hosts.

Each virtual host can support multiple internet protocols,

connections, and in addition, a virtual clock. Each physical
host contains a physical clock that can operate at an arbitrary
rate and, in addition, a 32-bit logical clock that operates at
1000 Hz and is assumed to be reset each day at 0000 hours UT.
Not all physical hosts implement the full 32-bit precision;
however, in such cases the resolution of the logical clock may be
somewhat less. The date representation is in RT-11 format and is
incremented when the logical-clock is reset.

A link to a foreign net is associated with a pseudo-host,
sometimes called a gateway, which is assigned a unique host ID.The physical link associated with a gateway is identified with

this host ID as part of the configuration procedure. In all
other cases, the links connecting the various DCNET hosts can be
distributed in arbitrary ways, as long as the net remains fully
connected. If full connectivity is lost due to a link or host
fault, the virtual hosts in each of the surviving segments can
continue to operate with each other and, once connectivity is
restored, with all of the segments.

Page 26

Routing of datagrams from a physical host to each of the
virtual hosts in the net is determined by its Host Table. This

- table contains estimates of roundtrip delay and logical-clock
. offset for all virtual hosts in the net. For the purpose of

computing these estimates, the delay and offset of each virtual
host relative to the physical host in which it resides is assumed
zero. In addition to the delay and offset information the Host
Table contains timestamp, leader, and routing information as
described below.

-.. The delay and offset estimates are updated by HELLO messages'
exchanged on the links connecting physical-host neighbors. The
HELLO messages are exchanged frequently, but not so often as to
materially degrade the throughput of the link for ordinary data
messages. A HELLO message contains a copy of the delay and
offset information from the Host Table of the sender, as well as
information to compute the roundtrip delay and logical-clock
offset of the receiver relative to the sender. In some cases the

. HELLO message contains information to update the Net Table of the
receiver as well.

The Host Table is updated by HELLO messages from each
.neighboring physical host and in certain other cases. The
updating algorithm is similar to that used in the ARPANET and in
other places, in that the roundtrip delay calculated to a
n eighbor is added to each of the delay estimates given in its
HELLO message and compared with the corresponding delay estimates
in the Host Table. If a delay computed in this way is less than

. the delay already in the Host Table, the routing to the
corresponding virtual host is changed accordingly. The detailed
operation of this algorithm, which includes provisions for host
up-down logic and loop suppression, is summarized in a later
section.

The portable virtual-host structure used in the DCNET
encourages a rather loose interpretation of addressing. In order
to minimize confusion in the following discussion, the term "host
ID" will be applied only to virtual hosts, while "host number"
will be applied to the physical host, called generically the
DCNET host.

A.l. DCNET Addressing

The DCNET uses a three-level addressing structure including
nets, subnets, and hosts. In class-A, class-B and class-C
addresses, the net structure is defined by the Internet
addressing specifications and consists of one, two, and three
octets respectively. In class-A and class-B addresses, the
second octet is interpreted as a DCNET subnet number and the
third octet as the host ID. In class-C addresses, the fourth
octet is interpreted as the host ID. In class-A and class-B

!21,

- -.

Page 27

addresses, the fourth octet presently is not significant for
routing within a DCNET subnet. DCNET subnets can be
interconnected freely with each other and with other nets
conforming to the Internet specifications. However, automatic
routing is effective only at the subnet level, since HELLO
messages are exchanged only between hosts on the same subnet.
Some DCNET services, such as time and date synchronization, are
effective across the boundary connecting two DCNET subnets.

Gateways are used between nets and subnets and between
subnets and subnets. However, DCNET gateways are not necessarily
hosts in themselves, but virtual hosts that share resources with
other virtual hosts in the same physical host. The present
implementation supports automatic routing at the gateway-gateway
level and is compatible with the standard Internet gateway
implementation, but it does not support the transmission of
reports to the internet monitoring system.

The DCNET addressing structure is compatible with all three
classes of Internet-address formats. When operated as a class-A
net, a collection of DCNET subnets appears as a collection of
hosts, notwithstanding the subnet structure itself, which is
invisible outside the net. When operated as a class-B net, each
DCNET subnet appears as a separate net. When operated as a
class-C net, each DCNET host appears as a separate net and is
itself responsible for subaddressing.

A.2. Network and Host Tables

There are two tables in every DCNET host that control
routing of Internet Protocol (IP) datagrams: the Network Table
and the Host Table. The Network Table is used to determine the
pseudo-host (gateway) on the route to a foreign net, while the
Host Table is used to determine the link, with respect to the
DCNET host, on the route to a virtual host. These tables are
maintained dynamically using updates generated by periodic HELLO
messages. In addition, entries in either table can be changed by
operator commands.

The Network Table format is shown in Figure A.l.

1 05432109876543210
5-4-+-+-+-0-9-8--+-+5+4+-+-+-+0

I Net(2) I Net(l) I

I Index I Net(3) I

I Hops I Gateway ID I

[Gateway Leader I

Figure A.l. Network Table Entry

~ ~ V~.rY . C~Z~ 1-~-Y.N~.*-*

I % The "Net" fields define the class A/B/C net numbers. The
"Index" field is used by the distributed updating algorithm (see

* later sections). The "Gateway ID" field contains the host ID of
the first gateway to the net and the "Hops" field the number of
gateways to it, as determined by the distributed updating
algorithm. The "Gateway Leader" field contains the

.~(byte-swapped) local-net leader for the gateway on an adjacent
net. This field presently is used only for ARPANET gateways and
contains the host and IMP address of the neighbor gateway to the
net. Network Table contains an indefinite number of entries and
is terminated by a zero word immediately following the last
entry.

The Host Table format is shown in Figure A.2.

1 0" 5432109876543210

Name

I TTL I Port ID

I- ",Delay

I Offset

I Local Leader

. + Update Timestamp +

Figure A.2. Host Table Entry

The ordinal position of each Host TablG entry corresponds to
its host ID. The "Name" field contains a short (RAD50) name for
convenient reference. The "Port ID" field contains the port ID

P of the link output process on the shortest path to this virtual
host, and the "Delay" field contains the measured roundtrip delay
to it. The "Offset" field contains the difference between the
logical clock of this host and the logical clock of the local
host. The "Local Leader" field contains information used to
construct the local leader of the outgoing packet, for those nets
that require it. The "Update Timestamp" field contains the

7.4

• - O

Page 29

logical clock value when the entry was updated last, and the
"TTL" field contains the time (in seconds) remaining until the
virtual host is declared down.

All fields except the "Name" field are filled in as part of
the routing update process, which is initiated upon arrival of a
HELLO message from a neighboring DCNET host. This message takes
the form of an IP datagram carrying the reserved protocol number
63 and a data field, as shown in Figure A.3.

1 05432109876543210 -
5-4-3-2-+-+-+-+--+-+5+4+3+2+-+-

Fixed I Checksum
Area

I .Date

+ Time +

Timestamp

Synch I Hosts (n)

Host Delay Host 0
Area

Offset Host 0

I Delay Host n-i I

I Offset Host n-l I

NetII
Area ... Net Table Updates

Figure A.3. HELLO Message Format

There are three HELLO message formats, which are used
according to the length of the message. One format, sent by a
DCN physical host to a neighboring host that does not support
the DCNET local-net protocols, includes only the fixed area shown
above. A second format, used when Net Table information is
changing, includes the fixed anid host areas and, in addition, the
net area. The third format, used in all other cases, includes
only the fixed and host areas.

~1

-:' ; . - . w -... -•

Page 30

The net update information consists of 16-bit sequence
number, followed by a number of variable-length entries in the
form of a one-to-three octet net number, followed by the "Gateway
ID" and "Hops" Net Table entries of the sender. The net area is
delimited by the length of the datagram, as determined from the
IP header.

Note that all word fields shown are byte-swapped with
respect to the ordinary PDPll representation. The "Checksum"
field contains a checksum covering the fields indicated. The
"Date" and "Time" fields are filled in with the local date and
time of origination. The "Timestamp" field is used in the
computation of the roundtrip delay (see below). The "Synch"
field presently is unused. The "Delay Host n" and "Offset Host
n" fields represent a copy of the corresponding entries of the
Host Table as they exist at the time of origination. The "Hosts
(n)" field contains the number of entries in this table.

A.3. Roundtrip Delay Calculations

*Periodically, each DCNET physical host sends a HELLO message
to its neighbor on each of the communication links common to both

tZ of them. For each of these links the sender keeps a set of state
C variables, including a copy of the source-address field of the

last HELLO message received. When constructing a HELLO message
W the sender sets the destination-address field to this state

variable and the source-address field to its own address. It
then fills in the "Date" and "Time" fields from its logical clock
and the "Timestamp" field from another state variable. It
finally copies the "Delay" and "Offset" values from its Host
Table into the message and constructs the "Net Table Updates"
information as required.

A host receiving a HELLO message discards it if the checksum
fails. It then checks whether the source-address field matches
the state variable containing the last address stored. If not,

,. the link has been switched to a new host, so the state variables
are flushed and the link forced into a recovery state. The host

r_ then checks whether the destination-address field matches its own
-.address. If so, the message has been looped, roundtrip delay

information is corrected, and the host and net areas are ignored.
If not,. the host and net areas of the message are processed to
update the Host and Net Tables.

Roundtrip delay calculations are performed as follows. The
' link input/output processes assigned each link maintain an

internal state variable, which is updated as each HELLO message
is received and transmitted. When a HELLO message is received,Ithis variable takes the value of the "Time" field plus the
current time-of-day. When the next HELLO message it transmitted,

U

Page 31

the value assigned the "Timestamp" field is computed as the
low-order 16-bits of this variable minus the current time-of-day.
Following transmission, the state variable is reset to zero.

When a HELLO message with a nonzero "Timestamp" field is
received, the roundtrip delay is computed as the low-order
16-bits of the current time-of-day minus the value of this field.
If this field is zero, then either the neighbor host has never
received a HELLO message from the local host, or the neighbor
host has not received a HELLO message during the interval between
two successive HELLO message transmissions. In order to assure
the highest accuracy, the calculation is performed only if the
length of the last transmitted HELLO message (in octets) matches
the length of the received HELLO message.

The above technique renders the calculation independent of
the clock offsets and intervals between HELLO messages at either
host, protects against errors that might occur due to lost HELLO
messages, and works even when a neighbor host simply forwards the
HELLO message back to the originator without modifying it. The i
latter behavior, typical of non-DCNET gateways, requires a
loop-detection mechanism so that correct calculations can be
made, and so that spurious host updates can be avoided.

A.4. Host Updates

When a HELLO message that results in a valid roundtrip delay
calculation arrives, a host update process is performed. This
consists of adding the roundtrip delay to each of the "Delay Host
n" entries in the HELLO message in turn and comparing each of
these calculated delays to the "Host Delay" field of the
corresponding Host Table entry. Each entry is then updated
according to the following rules:

1. If the link connects to another DCNET host on the same net
and the port ID (PID) of the link output process matches the

* "Port ID" field of the entry, then update the entry.

2. If the link connects to another DCNET host on the same net,
the PID of the link output process does not match the "Port
ID" field, and the calculated delay is less than the "Host
Delay" field by at least a specified switching threshold
(currently 100 milliseconds), then update the entry.

3. If the link connects to a foreign net and is assigned a
pseudo-host ID corresponding to the entry, then update the
entry. In this case only, use as the calculated delay the
roundtrip delay.

4. If none of the above conditions are met, or if the virtual

Zt V . . T -. 7 N

Page 32

host has been declared down and the "TTL" field contains a
nonzero value, then no update is performed.

The update process consists of replacing the "Delay" field
. with the calculated delay, the "Port ID" field with the PID of

the link output process, the "Update Timestamp" field with the
current time of day, and the "TTL" field by a specified value
(currently 120) in seconds. If the calculated delay exceeds a
specified maximum interval (currently 30 seconds), the virtual
host is declared down by setting the corresponding "Delay" field
to the maximum and the remaining fields as before. For the
purposes of delay calculations, values less than a specified
minimum (currently 100 milliseconds) are rounded up to that

i minimum.

The "Offset" field also is replaced during the update
process. When the HELLO message arrives, the value of the

A current logical clock is subtracted from the "Time" field, and

the difference is added to one-half the roundtrip delay. The
resulting sum, which represents the offset of the local clock to
the clock of the sender, is added to the corresponding "Offset"
field of the Hello message, and the sum replaces the "Offset"
field of the Host Table. Thus, the "Offset" field in the Host
T able for a particular virtual host is replaced only if that host
is up and is on the minimum-delay path to the DCNET host.

The purpose of the switching threshold in (2) above and the
minimum delay specification in the update process is to avoid
unnecessary switching between links and transient loops, which
can occur due to normal variations in propagation delays. The
p urpose of the e'TTL" field test in (4) above is to ensure
consistency by purging all paths to a virtual host when that
virtual host goes down.

In addition to the updates performed as HELLO messages
arrive, each virtual host in a DCNET host also performs a
periodic update of its own Host Table entry. The update
procedure is identical to the above, except that the calculated
delay and offset are taken as zero. At least one of the virtual
hosts in a DCNET host must have the same host ID as the host
number assigned the DCNET host itself, and all must be assigned
the same net number. There are no other restrictions on the
number or addresses of Internet processes resident in a single

r DCNET host. It should be appreciated that virtual hosts are
truly portable and can migrate about the net, should such a
requirement arise. The host update protocols described here

I ensure that net routing procedures always converge to the
minimum-delay paths via operational links and DCNET hosts.

I
I

Page 33

A.5. Net Updates

-: The Net Tables in the various physical hosts provide
information to route datagrams to the appropriate gateway for
forwarding into a neighbor net. The UPDATE distributed-update
algorithm, described in this section, is designed to adjust the
entries in these tables to contain consistent information. It
uses the net area of the HELLO messages to do this, but only if
the entries are inconsistent. In the steady-state case when the
entries are consistent, this area is not used and, therefore is
not transmitted.

The Net Tables are intended'to be close copies of one
another, and to be updated as new information is received from
the external gateway system as the result of a routing change.
Ordinarily this happens when a link to a neighbor net changes
state or when a GGP routing update is received from a foreign -
neighbor gateway and processed by the GGP protocol module in one
of the local-net virtual hosts. The new information then is
incorporated by a host that "owns" a particular entry (i.e., net)
into its Net Table and then propagated to all other copies by the
UPDATE algorithm described here.

The UPDATE algorithm operates in conjunction with the HELLO
algorithm, which determines the connectivity and routing of the
local network. The HELLO algorithm operates using periodic HELLO
messages transmitted periodically by a host to each of its
neighbors. Information used by the UPDATE algorithm is
piggybacked on these messages; however, the two algorithms are
otherwise independent.

The UPDATE algorithm operates on a distributed data .
structure in which each host maintains a separate copy of the
routing table, identified by a sequence number S. In addition,
each host keeps the last sequence number R(i) received from
neighbor i, together with a control bit b(i). When a HELLO
message is to be sent to neighbor i, the host computes the
difference R(i) - S. If this difference is nonzero, the sequence
number S is included in the message and followed by a copy of the
routing table. This is called a routing update. If the
difference is zero and b(i) is nonzero, only S is included and
the routing table is not. This is called a routing
acknowledgment. If the difference is zero and b(i) is zero, no
routing information is included in the HELLO message. In all
cases, .b(i) is set to zero as the HELLO message is sent.

A host receiving a HELLO message from neighbor i first

processes the local-network routing information. If from this
information it is determined that the neighbor or the link
connecting it is down, no further processing is done. If this is
not the case, and routing information is included in the message,
the host computes the difference R(M) - S. Subsequent processing

Page 34

,

depends on this difference and the presence of a routing table in
the update.

Case 1: Routing update. Neighbor i believes its routing table
to be more recent. The host proceeds as follows:

R(i) - S (0. Do nothing. Neighbor i's routing table is, in
fact, less recent and will be updated when the next HELLO
message is sent to it.

R(i) - S)= 0. Set b(i) to one and perform a table-update
operation (see below). If no discrepancies are found, set
S = R(). Otherwise, set S = R(i) + 1. Neighbor i's routing
table is at least as recent and thus updates the host.

Case 2: Routing acknowledgment. Neighbor i believes its routing
table to be current and is simply acknowledging the last

-. update sent by the host. The host proceeds as follows:

., R(i) - S (0. Do nothing. In this case the host has
received a more recent update from another neighbor since the
last update transmitted to neighbor i. Neighbor i's routing
table is thus less recent and will be updated when the next
HELLO message is sent to it.

S R(M) - S - 0. Do nothing. Neighbor I's routing table agrees
with the host.

R(i) - S) 0. Set b(i) to one. This case can happen only if
the host has crashed and recovered with an invalid (old)
sequence number. Recovery will be initiated when the next
HELLO message is sent to neighbor i.

The table-update procedure incorporates a vector of updates
-~U received from a neighbor into the host routing table T as

' follows. The entries u~i) of U and t(i) of T correspond
one-to-one. In addition, each entry t(i) includes a lock bit

>' p(i), which is set to one if the host owns that entry. During
the table-update procedure, each entry u(j) is compared to its
corresponding t(i). If unequal, a discrepancy is said to exist.

,, In addition, the value of u(j) replaces the value of t(i), but
h only If p(i) is zero.

It is expected that every entry of the routing table (copies
4 of which are maintained and coordinated by the UPDATE algorithm)
Swill be owned by exactly one host. The operation of the
algorithm is designed so that a host owning an entry can change
Its value at any time in its own copy, with these changes
propagating automatically to all other copies. Thus, a host
making such a change is required only to increment its sequence['i

Page 35
-4

.-.

number S each time a change is made. When a number of such
changes are made in a relatively short time, there will be a
period during which some hosts will have the new information and
some the old, and even cases where the old temporarily replaces
the new. However, these transients will be attenuated with time,
with the result that all copies eventually will be consistent and
will contain the new information.

Upon first coming up a host needs to get an initial copy of
the routing table from one of its neighbors. It does this by
setting its sequence numbers S to zero and R(i) (for all i) to

. any nonzero value. In addition, if a host updates (wraps around)
its own S, to zero, S is incremented again to one. An S value of
zero, treated as a special case, is less than any other value;
thus, the first update from a host coming up always appears as
old and causes the receiving host to transmit a current copy of
its routing table.

It is not difficult to construct an informal proof that, if
the algorithm converges (i.e., S = R(i) (for all i) for all hosts
in the net), all routing tables contain identical information.
It is more difficult to show that the algorithm always converges
in a finite number of steps for any initial configuration of
table values. In typical DCNET configurations of up to a dozen
hosts with network diameters up to four, the algorithm always has
converged within a few HELLO intervals.

A.6. Timeouts

The "TTL" field in every Host Table entry is decremented
once a second in normal operation. Thus, if following a host
update another update is not received within an interval
corresponding to the value initialized in that field, it
decrements to zero, at which point the virtual host is declared
down and the Host Table entry set as described above. The
120-second interval used currently provides for at least four
HELLO messages to be generated by every neighbor on every link
during that interval, since the maximum delay between HELLO
messages is 30 seconds on the lowest-speed link (1200 bps).
Thus, if no HELLO messages are lost, the maximum number of links
between any virtual host and any other is four.

The "TTL" field is initialized at 120 seconds when an update
occurs and when the virtual host is declared down. During the
interval this field decrements to zero immediately after being
declared down, updates are ignored. This provides a decent
interval for the bad news to propagate throughout the net and for
the Host Tables in all DCNET hosts to reflect the fact. Thus,
the formation of routing loops is prevented.

4. *~~- *. 4 ~p** .~; *.*~ V- .

Page 36

4., •The IP datagram forwarding procedures require decrementing
the "time-to-live" field in the IP header once per second, or at

* each point where it is forwarded, whichever comes first. The
value used currently for this purpose is 30; therefore, an IP
datagram can live in the net no longer than that number of

* : seconds. Thus, this is the maximum delay allowed on any path
between two virtual hosts. If this maximum delay is exceeded in
calculating the roundtrip delay for a Host Table entry, the
corresponding virtual host will be declared down.

The interval between HELLO messages on any link depends on
the data rate supported by the link. As a general rule, this
interval is set at 16 times the expected roundtrip time for the
longest packet to be sent on that link. For 1200-bps
asynchronous transmission and packet lengths to 256 octets, this
corresponds to a maximum HELLO message interval of about 30

-seconds.

Although the roundtrip delay calculation, on which the
routing process depends, is relatively insensitive to net traffic
and congestion, stochastic variations in the calculated values
ordinarily occur due to coding (bit or character stuffing) and

A medium perturbations. In order to suppress loops and needless
path changes, a minimum switching threshold is incorporated into
the routing mechanism (see above). The interval used for this

. threshold, as well as for the minimum delay on any path, is 100
milliseconds.

I
U

I I** -,, ' '.4-- ,--'--- 4%- --.--- --- -- ->: -- -. >

4w

I1A

*1 A

SI M . I

* .. . *.--~

