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INTRODUCTION

During the past four years, extensive theoretical, experimental and
numerical work has been done at UCD on a bounding surface plasticity model
for cohesive soils, The work has been conducted in part under the sponsorship
of contracts and grants from the U.S. Army Waterways Experiment Station (Re:
Contract #DACA 139-79-M-0059), the Civil Engineering Laboratory, Naval
Construction Battalion Center (Re: Orders N62583-80-M-R 478, N62583-81-M-
R320, N62474-82-C-8276 and N62583-83-M-T062), and NSF (Re: Grants
NSF-CME-79-10835 and NSF-CEE-82-16995). To date this work has resulted in
the reports and papers listed in references [l + 14],

Although continued research will most certainly bring refinements and
new areas of application, the model has now reached a stage of development
where it can be used as a practical engineering tool. Such use requires that
it be incorporated into new and existing finite element codes for the analysis
of earth structures. In order to simply and inexpensively achieve such numerical
implementations, the model has been coded into a master subroutine CLAY and
several supporting subroutines [2,5].

Because of the evolutionary nature of the development of this code, with
time it has become increasingly inefficient and unwidely. Thus, to improve its
readability, to incorporate some recent minor revisions in the model and its
rnumerical implementation, and to take advantage of the structured nature of
FORTRAN 77, the subroutines have been recoded. In this process it was found
to be convenient to slightly modify the calling instructions for the subroutine

and thus there is a need to revise the instructions for its implementation as

given in {5].

It is the purpose of this report to discuss the recent minor changes in

the model, and its numerical implementation, and to give detailed instructions




for its incorporation into new and existing finite element codes. In addition,

the program (EVAL) [10] written to evaluate homogeneous test results for
cohesive soils is discussed. This report is for the most part a replacement for
Section 2 and Appendices I and 11 of [5]. Frequent reference will be made to
equations and figures from [5]; such references are expressed in the form (5-N),
etc.

1. Recent Modifications to the Bounding Surface Plasticity Model for Cohesive
Soils

This report is not intended to stand alone, but rather to be a replacement
for certain sections of [5]. Thus, for a comprehensive description of the
underlying theory, notation and the background for this report, the reader is
referred to [5].

In this section the modifications that have been made to the bounding
surface plasticity model for cohesive soils since the publication of [5] are
discussed.

Modification 1:

Following a recent paper by Nafalias [15], the "radial" mapping rule of

eq. (5-12) has been generalized to give an image stress state of

l=8(|-lc)+lc, sii=Bsii,5=BJ,a=a (1)

This generalization has introduced the possibility of using a projection center
(lc = Clo) in stress space different than the origin. This is illustrated in Fig.
1; note that the parameter "C" has no relation to point "C" of Figure 5-2.
For C = 0 one retrieves the previous formulation. This modification introduces

a kind of "hydrostatic back stress," lc, and allows for the prediction of immediate

negative pore pressure development for heavily overconsolidated samples under

undrained loading conditions. With the projection center at the stress origin,




Figwe 1. Schemslic Illusiration of e Radial Mapping Medel in Invariant Stress
Space: Showing he: Projection Conter and the Elastic Nuclews.




one would always have an initial positive porewater pressure built-up even for
large OCR values.
Modification 2:

The denominator of r - 8 in eq. (5-53) has been replaced by the quantity
<r - s8> with s being an elastic nucleus parameter and the symbol r being now
simply written as r. Thus, whenever § > r/s the brackets yield a zero value
and according to eq. (5-28) K'> = @, Observe that Kp + was §+rfs. A
geometric interpretation of this behavior is that s indirectly defines a stress
domain of purely elastic response within the bounding surface; it is not necessary
to interpret the boundary of this zone as a yield surface (no associated consistancy
condition, etc,). This domain is called the "elastic nucleus" and is shown in
Fig. 1. The quantity s which controls the size of the elastic nucleus can be a
function of the state including the accumulated deviatoric plastic strains, The
elastic nucleus controls the possible stabilization of cyclic undrained stress paths,
allowing for stabilization or failure depending upon the amplitude of the cyclic
deviatoric stress.

Modification 3:

Eq. (5-55) is replaced by

d1 <1 - 1,> + 1
o 0 L L
de" = ° A -x (2)

This expression predicts that for tensile stresses the soil looses all cohesion at
a maximum but finite void ratio. The original expression, eq. (5-55), implied a
plastic void ratio tending towards infinity as I, 0. (Recall that I, is the
internal variable controlling the size of the bounding surface and, in general, is
not the current value of 1).

Modification 4:

The quantity p, (atmospheric pressure) in eq. (5-34) has been replaced by
(1« eo)[<lo -I> + L1/ - k). The term 1, is now used (instead of pa) to
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non-dimensionalize h(a) and the term (I + eo)/(l - k) is introduced for reasons
of convenience since Rp depends on this factor as well. The use of I in this
expression renders all undrained stress paths at a given OCR similar when
normalized with respect to Io. If natural strains are used instead of engineering
strains, the inital void ratio (eo) is replaced by the current value (e).

Modification 3:

The term h(a) in eq. (5-84) has been replaced by

h(a,z) = zmhl(a) + (1 - 2N h,

where (see Fig. | and refer to eq. (5-58))

. 2y
hl(a) T 1 ey - {I-y) sin3a hc

u = ’—‘5- , With he’ hc being the values of h for triaxial compression and extension
© respectively,
1.3 R
3y NI N‘o
m = a constant which applies to both extension and compression and is thus
not a function of the Lode angle a.
h, = the shape hardening parameter for states on the l-axis (i.e. for z = 0).

This term assures continuity when crossing the l-axis; the modification was
incorporated to improve numerical behavior in this region, however, it has very
little affect on the model predictions,

Incorporating modifications 2, 4 and 5, eq. (5-84) becomes

{1 +e)
K =K + S

p - p T X -k <1, - 1>+ l‘][i“ hy+ (- z’“)hzl

(3)
s

(9F,_+ %— F,_II
1

3 <r - s&
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The mode] as described in [5] and subject to the above modifications gives

a comprehensive description of the three-dimensional stress-strain behavior of
cohesive s0ils. The practical use of the model depends upon its numerical
implementation in new and existing finite element codes for earth structures;

this topic will be discussed in the following section.

2. NUMERICAL IMPLEMENTATION*
2.1 Incrementalization of the Bounding Surface Plasticity Rate Eqguations

The bounding surface plasticity theory for cohesive soils is expressed in
terms of effective stress, whereas most il related problems involve the
application and calculation of total stress. The difference between the total
and effective stress is simply the pore water pressure u. This section deals
with the incremental relation between the strain and effective stress components;
the pore water pressure, and hence the total stress, is dealt with in a following
section.

Factoring the strain increment from eq. (5-30) gives:

where

3
+ g" F, S.. + _——'—"ﬁG F, (Sin snj - 3 S Sii - 2 Gii)]
3757 Feos 3¢ @ 32 2 3 3

3 cos 3a 32

3 8% 28
. "‘)] Zi (5)

J§ j

S, S
13
[3( F’T Sy +gj.p,_j St * _AG Frg (_'ﬂ_’.‘_ -

»
This section serves as a replacement for the corresponding section in [5].




where

;( 1 L>0 (1oading)
= (6)
0 L< 0 (unloading)
. S, S
L:é 3KF,_ekk+_‘F’ s +_EG F, ik ’kj
I B FJeos 3¢ @ 32
3 S%. . 2 €
—Lye 3‘<’<]} (7)
2 Y

2 2 2
N = Kp + 9K (F,_) +G (F,_) + = (F’a) (8)
I J ]

Eq. (4) relates the tensor components of (effective) stress and strain. For

finite element analysis purposes, it is more convenient to express this relationship

in matrix form, i.e.,
{o} = o1 {& (9)

where ([ IT is the matrix transpose)

{o}T = (o (10)

{e}T = (e

)
x* Oys z9 Tyys Typo Ty,)

x’ Ey’ €20 ny’ Yxz? sz)

The tensor components of shear strain ei]. are one-half of the engineering
components Yii' The [N] matrix is related to the components of the Dijkl
tensor as follows (because of the symmetry of the stress and strain tensors,

interchanging i and j or k and £ in eq. (5) results in the same quantity):




Dttt P22 P33 ™z Pz Dppos

D222 D2233 D212 Doz2iz  Daops

bl - D333 Dizjz D333 Paaps
Di212 Pr213 D23
(symm) D313 Diazs

L D323 J

In order to use eq. (9) in a finite element program, it must be expressed
in an incremental form. Consider the Nth step of an incremental analysis; i.e.,
the solution has been found at N-l, and it is now desired to calculate the
incremental change that will give the solution at N.

Numerous numerical methods have been developed for calculating
incremental sojutions to plasticity problems. A simple family of solutions which
can be viewed as approximations to Newton-Raphson's method will be discussed
here [12,16]; members of this family include the classical method of "successive
approximations” and the popular "tangent stiffness method" [16]. With little
additional effort the equations to be discussed can be adapted for use with a
number of other methods.

Because of the nonlinear nature of elastic-plastic behavior, iteration is
in general required to establish the incremental change. At the end of the K-l
iteration, the estimates of the stress and strain states at N are given by the
expressions:

lohg 1 = {olpy + {8ody iy (11)

{E}N,K-l = {ehyy + {Ae,[,,K_l (12)

The iteration process is continued until some specified convergence

criterion is satisfied, or until a specified maximum number of iterations have

o — e
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failed to yield convergence (an indication of possible failure and/or unstable
behavior).

Even though rate independent behavior is being considered, it is convenient
to think in terms of the time history of the quantities involved. 1f eq. (9) is

integrated from time tyoy t© UINT it yields:

t

N ty .
J fo} at - J 1 {e} a (13)
IN-1 IN-1
{80} by {€} (14)
or Aot,, = M1 {e} dt 14
" ‘r{l

A simple two point formula is used to approximate the above integral,

(0_<_91_<__l):

{0}y, =[(1 - 8)) Dl * 8 m]N] {acly, (15)

Values of Gl = 0, 1/2 and 1 give, respectively, forward, trapezoidal and backward
integration. Although trapezoidal integration is most accurate, in rare instance
it may be advantageous to use 91 = 0.0 in order to reduce iteration requirements
(at the expense of smaller step sizes).

Because [D]N and [D]N-l are functions of the stress and strain states
at N (see eqs. (5,6)), it is necessary to base their values on the stress and strain
estimates of the previous iteration (see egs. (11) and (12)). The fact that [D]N-l
is possibly a function of {AO}N and {Ae}N requires some explanation. The
dependence is a result of the discontinuous nature of plasticity behavior at the
initiation of an unloading process (see eq. (6)). For the simple one-dimensional
example shown in Figure 2, the stiffness DN-I will be D' or D" depending upon

whether the step is to N' or N". While in a one-dimensional problem this would
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Figure 2. lllustration of the Discemtimmity in Stiffmess
at the Initistion of Unleading.

10

A e



usually be known a-priori, for a finite element that is a part of a complicated,
highly statically indeterminate, two or three-dimensional structure it can only
be established by the iteration process. U this dependence of [D]N-l on the
iteration process is ignored and Ol is taken as zero, then iteration is not
necessary, however, very small time steps are required for accuracy; in general,
this procedure is not recommended. The predicted value for [D]N is denoted
by [DIN,K-I etc. The equation resulting from substituting these estimates into
eq. (15) is used to relate the estimates of {Ao}N and {Ae}N for iteration K,

i.e.,

{M}N’K = Bly k.1 {Ae}N,K (16)

where _
m]N,K_l = [(l - el)m]N-l,K-l + el [D)N,K"l] (17)
Eq. (16) is the desired incremental stress-strain relation for iteration K
of increment N, and in the Newton-Raphson method, is used for the calculation
of the residual vector [12). In addition the Newton-Raphson method requires
the Jacobian matrix. An approximation to the Jacobian can be written in the

form (12,14].

Values of 02 of 1/2 and 1 correspond respectively to the methods of successive
approximation and tangent stiffness [12,16]. The simple test evaluation program
EVAL discussed in {10] and a later section of this report uses 8, = 1/2, the
consolidation codes discussed in [14) permit 8, to be specified by the user; all
these applications use 6, = 1/2 in eq. (17).

Thus, for finite element implementation what is required is the caiculation
of the matrices [D’N-I,K-l and [D]N,K-l‘ The combining of these matrices

in eq. (17) and (18) (or their use in some other fashion for a different nonlinear

11




k solution algorithm) is left for the finite element program which calls the master

subroutine CLAY that has been written for their evaluation. The main goal of
this report is a description of the steps necessary for incorporating this subroutine
into new or existing finite element codes (Section 2.3). The calculation of

()] | and [D]N k] Proceeds directly from eq. (5) with only a few steps
K-

N-1,K-
needing elaboration.

The parameter 8 in eq. (5-50) is undefined for a zero value of the first
effective stress invariant . The numerical problems associated with a zero or
near zero value of I are avoided by arbitrarily replacing the value of |1]| by

lO'l‘Pa for such cases {where Pa is atmospheric pressure); the corresponding

expression in the equation of "Modification 5" {Section 1) is treated in a similar

fashion. In general, this arbitrary action does not significantly affect the
calculated properties.

As the soil state approaches the bounding surface, a stress state outside

~
of the surface may be predicted in a particular iteration. Because such a
prediction has no meaning, the state is assumed instead to fall on the surface; !
ie., B is restricted to be > 1.0 and —— is restricted to be > O, 7
At any instant, the size of the bounding surface is determined by the
value of 1 (see Figure 1). The differential change in I, is obtained from eq.
(2), i.e.,
l+eo 1
Al = g (<15 - 1> + 1)) (deyy - 3¢ d1) (19)
Two cases must now be considered in integrating (19): If I, > Iy, eq. (19
becomes:
'o 1
di = (lse,) 5—— (dey - 3¢ d1) (20)
L 4
12




Dividing by lo and integrating the resulting expression for increment N gives:

I 1
°N,K-l € N,K-1
dl (lee]) K-1 1 dl (21)
") o d -
J U / ik fi

L W1 'N-1

The first two integrals may be evaluated exactly, while the third is approximated

by the trapezoidal rule giving:

°NK 1) “*’ ) 1
n + ) Al (22)
Yo 1 e""NK 1§ Ky Kukor MKl
or
(l+e ) | ) (23)
1 =1 exp | —2-|a + Al 23
oK1 O T TR | M KNk-1 K-l
B1 <1, eq (19) becomes
- (lve) =% (de,y - L an) (24)
= o' “AK kk - XK
integrating the resulting expression for increment N gives:
1 1
ONK-1 (Lee,) -1
di, = 5> 1, f fg a1 (25)
I 1
N-1 kkN-l N-1

Evaluating the first two integrals exactly and approximating the third by the
trapezoidal rule gives:
(l+e°)

1,1 (26)
I =1 —_— I,la -z (— + —) A
NK-1 Oni K% ek“N,K.l 6 Ry KNK-

INK-1
Because the point of switching from eq. (20) to eq. (24) (controlied by the value

of l,') is somewhat arbitrary, consideration was not given to the possibility of




this changeover occurring in mid increment. Instead the value of 1 o is used
N-1

to make the decision for the whole increment.

Until convergence occurs, the estimates of { Ad} and { A¢} used

N,K-1 N,K-1

in the calculation of the incremental properties [ﬁ]N k.1 do not in fact satisfy
the incremental stress-strain relation, eq. (16). Because this inconsistency
disappears as global convergence occurs (i.e., as [mN,K-l = [ﬁ]N,K-Z)’ it is
not absolutely necessary to take any special steps to avoid it, however, numerical
experimentation has indicated computational advantages in doing so [12]. Thus,
local (i.e., within subroutine CLAY each time it is called) iteration is introduced
in the calculation of [P] to remove the inconsistency [17]. Using {A€}

N,K-1
and {AU}N’K_I, (ﬁlw(_l is calculated. The values of { Ae}N,K_l and [D]

N,K -1
are then used in conjunction with eq. (16) to calculate a new estimate of stress
{AO};I,K-I which is in turn used with {AE}N,K-I to calculate a new estimate
for the incremental properties [ﬁ].N,K-l' This process is continued until
convergence is achieved for {AO};I,K-I' Recause of the giobal iteration (the
basic iterative procedure of the calling finite element program) which also tends
to remove the inconsistency, it appears that the convergence limit on the local
iteration can be considerably less restrictive than the global requirement.+ The
stress estimate is iteratively modified (instead of the strain estimate) in order
to maintain a compatible global displacement field as required by the admissibility
conditions of the finite element procedure. The introduction of local iteration
(for all points in the finite element grid where the incremental stress-strain
properties are required) of course substantially increases, in a given global

iteration, the computational time for subroutine CLAY, however, there is a

corresponding reduction in the number of global iterations.

* In [18], ten times the global limit is used,

14




22 Calculation of Pore Water Pressure j
o Many finite element programs have special provisions for handling pore i

water pressure calculations [14]. For such situations, the soil properties

subroutine need only supply a relation between the increments of strain and
effective stress, i.e., egs. (16) and (18). For such cases the remainder of this
section has no significance.

There are three possibilities concerning the development of pore water
“ ' pressure in s0il: ideal drained conditions (where the pore water pressure is j

identically zero), ideal undrained conditions (where the soil is completely

saturated, and no flow of water occurs whatsoever), and the more realistic
situation where there is a global flow of water and/or the filling of voids. In
many analyses ideal drained or undrained conditions are assumed, even though
they may only be approximately true.

The total stress rate &:i is the sum of the effective stress rate and the

pore water pressure rate:

°t

Gii =0;; +u $ (27)

) ij
For drained conditions u=0 and aitj = oii’ and eqs. (16) and (18) are the
desired relations between the total stress increment and the strain increment.
For undrained conditions there are several possible ways of proceeding.
The traditional approach has been to neglect the (slight) compressibility of the
water and the soil particles, and thus assume incompressible material behavior.
However, the finite element analysis of incompressible materials requires a
special formulation (18,19,20].
In order to avoid having to deal with separate formulations for drained

and undrained conditions, it is often convenient to express them in a common

f form (the numerical consequences of this step are discussed below). This can

15




be accomplished if the slight compressibility of the soil particles and the pore
water is recognized [21)*. Thus, the pore water pressure u is written in terms
of the combined bulk modujus T of the soil particles and the pore water and
the resulting (very small) volume change € (note that as T + = the soil
becomes incompressible, and that drained conditions are obtained when T =0):

U=P€kk (28)

For undrained conditions the value of T is very large compared to the
terms in IBIN K-1* Thus, the s0il behaves as a "nearly incompressible solid"
[18,19], and, consequently, care must be exercised to avoid numerical round-off
and element "locking" problems. Two approaches are commonly used to achieve
this goal. One method is to use the special formulation given in references
[18,19] for incompressible and nearly incompressible solids, while the other is
to use "reduced" or “selective-reduced" integration [22,23] for the element
stiffness matrix (the importance of selecting a proper element type is discussed
in [20,22,24]), In the latter case, eq. (28) is used to eliminate u from eq. (27);
i.e.

o =0 * T ekksij (29)
Integration over increment N gives:

t
.. = A0, r .. 30
M”N 11N+ AckkNG” (30)

Using the above equation to eliminate Aoii from eq. (16) yields:

o'l = Bl Bely g (31)

An alternative interpretation of this method is to consider the undrained soil
as incompressible, and to incorporate the incompressibility condition by means
of a "penalty function” ([22]. The associated "penaity number" corresponds
to the bulk modulus T,

16




where (all components of {d] are zero, except d)=d)y=dq3=T):
—t -—
k-1 = Plyg g + 4] (32)

A similar procedure is followed for eq. (18). It should be noted that eq. (31)
is theoretically valid for all situations, including drained conditions (T =0).
However, for very large values of T (undrained conditions), problems may arise

f if special precautions are not used [20].

2.3  Finite Element Applications - Properties Subroutine (CLAY)

A properties subroutine (FORTRAN 77) CLAY (and associated subroutines)
has been prepared which evaluates the incremental stress-strain properties given
by the bounding surface plasticity model for cohesive soils, i.e. the matrices

[D]N-l,K-l and [D]N,K-l which appear in egs. (17) and (18). A listing of the

L subroutine is provided in Appendix Ill. The subroutine is intended for incorporation
A into new or existing finite element programs for earth structures; such
applications by the authors have proven to be straightforward and successful

{12,14],
For each iteration of each increment, and for all points (e.g., element
centers or quadrature points) in the body where the incremental properties are

required, the parent finite element program calls subroutine CLAY. The call

! is as follows:

CALL CLAY (IDIM, INC, ITNO, ERMAX, PROP, STOR, SIGB, EPB, NSIG, DEP,
D8, DE, UB, DLTA!J, GAM, KIND, LARGE, LOCIT, THI).
x The quantities IDIM, INC, ITNO, KIND, LARGE and LOCIT are integer #
variables, ERMAX, UB, DLTAU, GAM, and THI are floating point variables, and
PROP, STOR, SIGB, EPB, DSIG, DEP, NB and DE are floating point arrays of

- dimensions (19, (7), (6), (6), (6), (6), (6,6) and (6,6), respectively. With the
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exception of IDIM, which is discussed in a later paragraph, the arguments in

the call are described below:

INC:

1ITNO:

ERMAX:
PROP;

STOR:

Increment number (the first increment must be numbered 1)
Iteration number (the first iteration of each increment must be
numbered 1)

Convergence limit for the local iteration, suggested vajues are .1 + 01,
An array containing the values of the material parameters which
describe the bounding surface plasticity model for the soil at the
point in the structure for which the incremental properties are sougt.
The parent finite element program must read and store the values
of the soil parameters for each different type of soil in the earth
structure, and then, for each call to CLAY, present the appropriate
values for the element in question. The soil parameters are stored
in the array in the following order (the significance of the various
parameters are described in detail in [5,[3]*; they are summarized

in Appendix D: 2, x, Moo R AL T, Py, voor G, P, Ty m h, hy,

¢’
n, ¥, r, a, ¢, s). That is, PROP(1)=), PROP(2)x, etc. At the time
the properties are read into the main program, and before they are
stored, MC and P, must be multiplied by v3/9, and 3, respectively,
It is suggested that subroutines RPROP and TCHECK, listed with
EVAL in Appendix IV, be incorporated into the parent finite element
program for the purpose of reading, echo printing and scaling the
material parameters. The input formats for RPROP are those given
in "Il. Material Properties" of Appendix .

This array is used to store certain quantities which vary with the

current state of the soil (such as the current value of Io) and thus,

* See beginning of the report for a discussion of modifications to the model.
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SIGB:

EPB:

DSIG:

DEP:

DB & DE:

are for a given step in the analysis unique to the point in the earth
structure under consideration. The values in STOR must be stored
(after each call to CLAY) by the parent finite element program for
each point in the earth structure for which the incremental properties
are needed (e.g., element centers), Prior to each call to CLAY the
appropriate values for the point in question are retrieved from storage
(i.e.,, from a two-dimensional array or a disk file which stores the
values for each element in the system) and presented to the subroutine.
At the beginmning of the analysis the parent finite element program
must initialize, for each point in question, STOR(1) and STOR(7), with
the initial value of 3*P o and e, respectively. Po and e, are the
initial values of the preconsolidation pressure (I°=3"Po is the internal
variable controlling the size of the bounding surface, Figure 1, (2])
and void ratio. These values are not read by subroutine RPROP,
because in generai they will vary from point to point in the deposit
even though the s0il is homogeneous, i.e., of one material type.
[oly ;5 i the fotal stress at the beginning of the increment;
compressive stresses are taken to be positive.
[e]N_l; the strain at the beginning of the increment; compressive
strains are taken to be positive.
[AOIN,K-I; i.e., the estimate (supplied by the parent finite element
program) of the total stress increment.
[Ae]N’K_l; i.e., the estimate (supplied by the parent finite element
»

program) of the strain increment.

)] or (DY) (D) or [D']

N-1,K-1 N-1,k-1 and N,K-1 NK-1 (see
explanation for KIND); i.e., the estimates of the incremental stress-

»
A discussion of the solution of initial estimates for these quantities is given

in Appendix 0.

-
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UB:

DLTAU:

GAM:

KIND:

strain properties for eqs. (17) and (18) calculated by the subroutine
and supplied to the parent finite element program.

Ug_pb i.e., the pore water pressure at the end of increment N-1 (see
N-

V
explanation for KIND).

A

uN,K-l; i.e., the estimate of the pore water pressure increment
(see explanation for KIND).

I; i.e., the combined bulk modulus for the soil particles and the pore
water (see explanation for KIND).

A flag assigned a value of zero or one, depending on how undrained
conditions are being modeled in the parent finite element program.
A value of zero is required when the special formulation for
incompressible and nearly-incompressible solids [18,20] is being used

(i.e., the pore water pressure is treated as a primarv dependent

variable at the global level). In such cases the parent finite element

analysis caliculates UN-I(UN and Au (DLTAI) at the global

NK -1
level and supplies them to the subroutine. The value of T(GAMW) is

required at the global level for the nearly-incompressible formulation,
and is supplied to the parent program by the subroutine. The DR

array is the [N] matrix of egs, (17) and (18), etc.

N-1,K-1

A value of one is used for KIND when the conventional
formulation for compressible solids is used for both drained and
undrained conditions, [211. (That is the only primary dependent

variables are displacements, the pore water pressure is treated as a

secondary dependent variable). In such cases the subroutine calculates

the values of uy ; (UB) and Au (PLTA!Y, and supplies them

NK -

to the main program for printing purposes; the NB array is the

(P

N-1.K.1 matrix of eq. (32), etc.
-1K-
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LARGE: A flag assigned a value of zero if engineering strains are used and
a value of one if logarithmic (natural) strains are used,

LOCIT: Maximum number of local iterations per call, recommended values
are 5-10,

THI: Value of 8 used in eq. (17).

Subroutine CLAY computes three<dimensional incremental properties, The
ordering of the stress and strain components in the {0} and Ie} vectors are
indicated in eq. (10).

The subroutine can also be used to supply properties for two-dimensiona.
finite element analyses. The procedure for its use in such cases and the value
of the parameter IDIM in the subroutine call are described in the following
paragraphs.

Axisymmetric_Analysis (IDIM=3): The ordering of the stress and strain components

are as follows (or,oe,cz,Tre, 0.0,0.0) and (er,ee,ez,yre,o.o,o.m. The indicated
Zero values must be supplied by the parent finite element program in the {U}N,
{E}N, {AO}N,K-I and {AS}N,K-I vectors. The incremental properties of interest
are in the upper-left 4 x 4 corners of the 6 x 6 NB and NE arrays returned bv
the subroutine.

Plane Stress (IDIM=3): The ordering of the stress and strain components are as

follows (ox,oy,0.0,Txy,0.0,0.0) and (ex,ey,ez,yxy,0.0,0.0). The subroutine can only
be used for supplying properties for plane stress finite element analyses that
calculate the thickness strain, €, at the global leve). This limitation should
not be of any consequence, because few earth structural problems are plane
stress in nature,

Plane Strain: The subroutine can be used to supply properties for plane strain
finite element analyses in two different ways. For plane strain programs which

calculate the stress (oz) normal to the plane of the body, IDIM is given the
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value of 3 and the ordering of the stress and strain vectors are

~ (0_,0.,0

%%y z,Txy,().O,O.O) and (ex,e

v’U‘O’va’O'O’O'O)’ respectivelv, For plane strain

analyses that do not calculate the value of 07, IPIM is given the value of 2

and the stress and strain vecCtors are (JX,GV,TXV,O.O,O.O,O.’)) and

(sx,cy,yxy,0.0,0.0,0.0), respectively., The coefficients n the DB and NE arravs

are appropriately arranged in each case.

2.4  Application to homogeneous tests

In the assessment of the characteristics of a material mode, and in the
fitting of it to experimental measurements, a means must be available for using
the mode! to predict the results of simple homoneneous tests. Program FVAL
has been written for this purpose [10,17]. EVAL can be used for predicting
the behavior of homogeneous soil samples subjected to arbitrary homogeneous
stress and strain histories for either drained or undrained conditions.

The solution history is broken into "history segments." Within each history
segment, a consistent combination of six stress and strain components are
, € or O ,.and Y _or T_ ), A

Y Y yZ yz

different combination may be prescribed in each history segment. For example.

prescribed (i.e., the histories of g, or o

a uniaxial test might involve two segments with a specified value of axial strain
achieved at the end of the first segment and with unloading to zero axial stress
specified in the second. Each history segment is broken into increments with
iteration conducted within each increment.

The analysis conducted by EVAL is essentially a one-element finite element

analysis of a homogeneous body. For illustrative purposes the user can choose

to perform either a conventional or "reformulated" analysis (see Section 2.3). '
When both analyses converge, they give identical results. For undrained and
near-failure conditions, the reformulated analysis will, in certain cases, converge

. ~ when the conventional analysis will not. (
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The reformulated analysis is a modification of the mixed finite element
procedure reported in [18]. The strain components are augmented by the pore
water pressure to form the "mixed" set of primary dependent variables. The
set of governing equations are made up of the incremental effective stress-strain
relations (eq. (16)) and the expression 0=T (Be  + Asy + Be)) - Au.

Because of the well behaved numerical characteristics of the mode! and
the simplicity of the analysis for homogeneous tests, the method of successive
approximation was found to be entirely adequate, i.e., 92=1/2. The analysis is
straightforward and well behaved with only two special features worth noting.

Because the analysis can be used for the extreme cases when either all
the stress or all the strain components are specified, both the stress and strain
vectors are checked for convergence. The convergence check on the stress
increment, however, must be done with some care. The problem is that the
relative measure of error, Ll(Ao -bg

NKTEINK -1

is meaningless when applied for near failure conditions (because Aci = 0,

)/LI(AGN,K)’ used for the check

LI(AON,K)=O)’ To avoid this difficulty, the denominator of the error measure
is limited to a minimum value of Ll(oN_l)/IO. The Ll norm is the sum of
absolute values.

The second feature involves the starting estimates for the strain increment;
the procedure outlined in Appendix I is used.

The "input" instructions for EVAL are given in Appendix I and a program

listing in Appendix IV,
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Appendix I: Input Instructions for EVAL

-
L Heading information
Line 1 (40A2)
Columns i
1 -80 ITITLE : Information that is to be printed as a title ‘
for the analysis ‘
. Initial State Parameters :
Line 1 (3E10.3)
Columns
1-10 Po ¢ Initial value of effective preconsolidation
i pressure ‘
11 - 20 e : Initial void ratio
21 - 30 O ¢ Initial hydrostatic confining pressure*
o
~
|
*
The strains produced by the application of o. are not calculated. It is
assumed that O is applied under drained condflions (regardiess of value of
I). U it is desifed to calculate the strains due to 0. and/or to apply O,
under undrained conditions, then O is set equal to Fero and the conﬁning
- pressure is applied in history segmert 1.
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M. Material Plrameters'

- Line 1 (8E10.3) '
Columns
¥ 1 -10 A : Slope of isotropic consolidation line for an
f e-&n p” plot
11 - 20 K : Slope of elastic rebound line for an e-in p”
plot
21 - 30 MC : Slope of critical state line in triaxial space
(compression)
1
31 - 40 Rc ’
Parameters describing shape of bounding
41 - 50 A : .
c surface (compression)
51 - 60 T
61 - 70 Py : Transitional value of confining pressure
separating linear rebound curves on e-%n p”
and e-p” plots. Suggested range of values =
3P+ 1.0P
a a
71 - 80 v or G : Poisson's ratio or shear modulus

Line 2 (8E10.3)

Columns

1-10 Pa :+ Atmospheric pressure

11 . 20 T : Combined bulk modulus fer soil particles and
pore water (I'=0 for drained conditions); if
no information is available, it is suggested
that a value of 20,000 Pa be used

21 - 30 m : Hardening parameter

31 - 40 hc : Shape hardening parameter for compression

41 - 50 h2 ¢ Shape hardening parameter on the I-axis

51 - 60 n:Me/Mc
61 - 70 u:he/hc : Ratio of extension to compression values

71 - 80 r=Re/Rc

* Note: The input in this group is read by subroutine RPROP, detailed definitions
of the several material parameters are given in [5,13 ],
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Line 3 (3E10.3)

Columns
1-10 a:Ae/Ac : Ratio of extension to compression values
11 -2 C : Projection center variable
21 - 30 s : Elastic zone variable (a value of 1.0 gives no
elastic zone)
IV. Iteration Information
Line 1 (15,2E10.2,315)
Columns
1- 5 ITMAX : Max. no. of iterations per increment (values
of 5-10 are suggested)
6 - 15 ERMAX : Maximum permitted relative difference
A /LK for the norms of the incremental
stress and strain vectors. Values of .0l to
.001 are suggested. If convergence does not
occur in ITMAX iterations, the program prints
a message and then continues to the next
- problem

16 - 25 CONFL : (0.0 < () < 1.0) Establishes upper and lower
limits of 1/CONFL and CONFL for the
calculated values of the Aitken's acceleration
factors (if it is desired not to use acceleration
factors set CONFL = 1,0),

0 Reformulated (for nearly-incompressible
conditions) analysis
26 - 30 KIND
1 Conventional analysis
0 Engineering stresses and strains used in
analysis
31 - 35 LARGE :
1 True stresses and strains used in analysis

36 - 40 LOCIT : Maximum number of iterations to be used
locally within subroutine CLAY (default=1)




V. Output Control Information

Line 1 (215)
Columns
0 print incremental stress and strain

values
1 -5 IPRNTI1

1 suppress printing of incremental
values

0 print computed incremental critical

6 10 state stresses and strains
- IPRNT2

| suppress printing of incremental
critical state values

V1. Printer Plot Control Information

Line 1 10(4X,11)

Columns
0 Do not generate printer plot type l*
51 IPLOT (1) = »
1 Generate printer plot type 1|
VII. Description of M history segments

For each of the M history segments, one line (6(11,E9.3), 15, E10.3) is

required:
*¥
Columns
—_—— 0-o0
Y
1 lCODl = is specified
1 - exM
oxM 0
2-10 Vl = value of for lCl =
exM 1

* For 1-1,6 — for an explanation of the contents of plot "I" see note following
"experimental data for plotting" (section IX).

E 2
o, is the value of o, at the end of segment M, etc. Thus, when l(‘,l =

0, Y change in 0 of (0, - o ) is applied in NINC increments during
the loading segment. oxM is Yhd value of o, calculated (I('?l =1) or
specified (IC,  =0) at théénd of segment M-1. M-1

-1
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11

A
12 - 20
21
22 - 30
31
32 - 40
A4
41
42 - 50
51
52 - 60
A4

2
V2
ICOD,
Vs
1COD,
\
ICOD;
Vs
1COD,
Vs

"

YMl s specitied

1 -¢
m
0
value of for lCz =
€ {
Y
0 - oz
M is specified
1 -¢
M
az 0
value of M{ for lC3 =
1
ezM
0. T
Y nm is specified
1. nyM
T 0
value of M| for 1, =
1
nyM
0 - sz
M} is specified
[ -y
X2
sz 0
vajue of M{ for lC5 =
1
szM
0-
YZul s specified
I-v
YZp
T 0
value of sz for IC6 =
{
YYZM
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6l - 65 NINC = number of increments into which segment
M is to be divided

66 - 75 SR = Increment ratio for specified quantities
(e.g., if I1C, = O then Ao /8o, =

SR; Ao, is the increment of o, aﬁﬁllled

during inyrement N of loading segment M,
etc.). A value of 1.0 gives equal
magnitude increments for the segment.

VIII. Termination of Loading History Input
Line 1 (11)
Column

1 : enter the integer 9 to signify the end of
loading history input

IX. Experimentaj data for plotting

For each of the "printer plots" requested on the “printer plot control line"
the following information must be specified.

Line L (15)
Columns
1 - 5 NE = Number of experimental points to be
printer plotted (symbol #). The calculated
points will likewise be printer plotted
(symbol *),

Lines 2-(N+]) (8E10.3), where N = NE/3

Columns
1 -10 xel
11 - 20 xez
21 - 30 xe3
31 - 40 Xe Lines 2 contains the abscissas of the first
4 eight experimental points, etc,
41 - 50 Xq
5
51 - 60 xe6
61 - 70 X
€7
71 - 80 xe8
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Line (N+2) - (2N+1) (8E10.3)

Columns l
1-10 Ye i
11 - 20 Ye
21 - 30 Yo
31 - 40 Ye Line (N+2) contains the ordinates of the
4 first eight experimental points, etc.

41 - 50 y

51 - 60 Yy

61 - 70 y

71 - 80 y

Note: Currently 6 plotting slots (the maximum number of plots can easily
be increased) are in use (the items being plotted in a given plot can
easily be changed), i.e.

i l=l:Q=(Oz-ox)vs.P=((ox+oy+oz)/3—u)
N 1 =2 st.ez

I =3 uvs. €,

1=4 AV/V, (volume change) vs. €,

I =5 Q/Po Vs, P/Po

1 = 6: O,PO vS. €z

The above input sequence (sections [-IX) is repeated for each subsequent analysis.
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Appendix II: Initial Estimates for the Stress and Strain Increments

The matrices [D] | and (D] are calculated using the K-l

N-1,K- N,K-1
est'mates of the stress and strain vectors, thus at the beginning of the iteration
process, initial estimates are required, For the first iteration of the f.rst
increment, they are usually taken to be zero. For the intial iterations of

succeeding increments, they also can be started at zero; however, it is usually

desirable to make use of information from the previous increment to obtain

better starting values. The simplest procedure is to use as the intial estimate
the final values found in the previous increment multiplied by the ratio of the
time increments involved. This practice is based on the assumption of relatively
uniform behavior from increment to increment. Difficuities can arise when the
histories of applied external loads or displacements acting on the structure cause
a switch from loading to unloading in an unstable material response regime.
had For example, consider the one-dimensional response shown in Figure 3. Consider
the case when the state of the soil is at point "A" at the end of increment
N-1. If during increment N, AON is specified, two final states B and B' are
possible. One corresponds to Ae (negative) and the other to Aeg' (positive).
Without any additional information, no choice can be made between B and B,
(It is easily seen that for specified stress increments in the stable region of
behavior and for specified strain increments anywhere, no such problems exists.)
The suggested solution to this impasse is to assume that the user wouid not

attempt a stress controlled specification for "loading" conditions (path A-B') in

an unstable region and, hence, if the stress increment is specified, unloading is [
the proper behavior (path A-B)+. For stress controlled conditions, the selection

of the unloading path can be assured if the starting estimate of strain is of

(
opposite sign to that calculated in the previous increment. Thus, the following '
}
|

t This argument requires that the arrival at A must have involved strain
controlled steps.
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strategy is recommended. When considering a series of increments for which
the rates of the externally applied loads and displacements do not change signﬁ,
{ae)y., and {Adly_ are used as starting estimates for increment N. However,
as one such solution history segment is ended and a new one begins, the
prerequisite conditions for the non-uniqueness problem may occur. Hence, for
the first increment of each such series, it is suggested that the starting strain
estimate be taken as some small negative multiple (e.g. -.01) of the value found
in the previous increment (the stress increment would be used unchanged). The
reduction in absolute magnitude is in deference to the greater stiffness
encountered in unloading. Such an initial estimate will force the solution to
select path A + B if the necessary conditions exist for the non-uniqueness to
occur. If non-uniqueness is not a problem, the only effect of this procedure is

to slightly slow the convergence process,

e is assumed that this condition is sufficient to prevent a general switch
from loading to unloading within the soil mass.
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SUBROUTINE CLAY (IDIM,INC,ITNO,ERMAX,PROP,STOR,SIGBM,EPNM,

s DSIGM,DEPM,DB,DE, UB,DLTAU,GAMMA ,KIND, LARGE,LOCIT, TH1)
SNNSNENNNSRENRNRUNREIOSRNRNINEIENICIRITNERENRENEUOUEOBNERERNS
L Subroutine to evaluate Yannis Dafalias' bounding L
b surface plasticity model for clay soils. .
b Fortran 77 version, Prepared by L.R. Herrmann and V.Kaliakin *®
b at the University of California, Davis Campus. s
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INTEGER I1,J,K,1T,IDIM,INC,ITNO,KIND,LARGE,LOCIT,II(6)

REAL PROP(19),STOR(7),SIGBM(6),EPM(6),DSIGM(6),DEPM(6),DB(6,6),
DB(6,6),S1GB(6),BPB(6),DSIG(6),DEP(6),DEPT(3,3),8B(3,3),
SE(3,3),DLTA(3,3),ERMAX, UB,DLTAU, GAMMA ,GAMMAT, SMALL,DIL,
DDIL,VOIDB,VOIDE,XIB,XIE,XJB,XJE,SCUBEB,SCUBEE,SIN3AB,
SIN3AE,COS3AB,COS3AE, BULKB,BULKE,GB,GE,X1I0B,XI0E,XIL,

TH1, TEMP1, TEMP2, TEMP3, TEMPA

DATA 1I1/11,22,33,12,13,23/, DLTA/1.0,3%0.0,1.0,3%0.0,1.0/
SMALL=0.0001®PROP(8)

DO 100 I=1,6
SIGB(I)=SIGBM(I)
DSIG({I)=DSIGM(I)
EPB(I)=EPM(I)
DEP(I)=DEPM(I)

100 CONTINUE

Initialize history if necessary

IF(INC .EQ. 1 .AND. ITNO .EQ. 1) THEN
STOR(2)=STOR(1)
STOR(3)=0.0
STOR(5)=0.5%(SIGB(1) + SIGB(2))
STOR(6)=0.01#PROP(8)

ELSE

Update history if necessary

IF(INC .GT. 1 .AND. ITNO .EQ. 1) THEN
STOR(1)=STOR(2)
STOR(3)=STOR(3) + STOR(%)
STOR(5)=STOR(5) + STOR(6)
END IF
END IF

Convert from plane strain to 3-dimensonal state if necessary

IF(IDIM .EQ. 2)
. CALL TWODIM (1,3I1GB,EPB,DSIG,DEP,DB,DE,STOR)

DIL=0.0
DDIL=0.0
DO 200 I=1,3
DIL =DIL + EPB(I)
DDIL=DDIL + DEP(I)
200 COMTINUE

Determine 3-dimensional incremental properties.
Iterate on the stress estimate.

DO 600 IT=1,LOCIT
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Compute values of the invariants

IF(IT .EQ. 1)
CALL INVAR (1,PROP,STOR,SIGB,DSIG,DEP,DEPT,VOIDB,KIND,
LARGE,SMALL,XI1B,XJB,DIL,DDIL,SB,SCUBEB,SIN3AB,COS3AB,
GAMMA, GAMMAT, UB,DLTAU, II,DLTA)
CALL INVAR (2,PROP,STOR,SI1GB,DSIG,DEP,DEPT,VOIDE,KIND,
LARGE,SMALL,XIE,XJE,DIL,DDIL,SE,SCUBEE,SIN3AE,COS3AE,
GAMMA ,GAMMAT,UB,DLTAU,1I,DLTA)

Calculate elastic incremental properties

IF(IT .EQ. 1)
CALL ELASTC (PROP,VOIDB,XIB,DB,BULKB,GB,GAMMAT,II,DLTA)
CALL ELASTC (PROP,VOIDE,XIE,DE,BULKE,GE,GAMMAT,II,DLTA)

Calculate the size of bounding surface

XIOB=STOR(1)
XIOE=STOR(2)
XIL=PROP(7)
TEMP1=1.0/(PROP(1) - PROP(2))
TEMP2=(XIE - XIB)/3.0
IF(XIOB .GE. XIL .AND. XIOE .GE. XIL) THEN
XIOE=XIOB®EXP(TEMP1#0,5%((VOIDB + VOIDE)®DDIL
- (VOIDB/BULKB + VOIDCE/BULKE)®TEMP2))
ELSE
TEMP3=XIOB
IF(XIOB .LT. XIL) TEMP3=XIL
TEMP4=XIOE
IF(XIOE .LT. XIL) TEMP4=XIL
XIOE=XIOB + TEMP1%0,5%(( TEMP4®*VOIDE+TEMP3*VOIDB)®DDIL
- (TEMP3#*VOIDB/BULKB + TEMP4®VOIDE/BULKE)®TEMP2)
END IF
STOR(2)=XIOE

IF(INC + ITNO + IT .GT. 3) THEN

Calculate the bounding surface parameters and parameters associated

with the plastic portion of the incremental properties,.

IF(IT .EQ. 1 .OR. (INC + ITNO + IT .EQ. 4))
CALL PLASTC (PROP,DEPT,VOIDB,XIB,XJB,X10B,DDIL,
SB, SCUBEB, SIN3AB, COS3AB, DB, BULKB,GB,II,DLTA)
CALL PLASTC (PROP,DEPT,VOIDE,XIE,XJE,XIOE,DDIL,SE,SCUBEE,
SIN3AE,COS3AE,DE,BULKE,GE,II,DLTA)

Calculate revised total stress estimates and error norms

IF(IDIM .EQ. 2)
CALL TWODIM (2,SIGB,EPB,DSIG,DEP,DB,DE,STOR)
TEMP2=0.0
TEMP3=0.0
TEMP4=0.0
DO 400 I=1,6
J=II(I)/10
K=MOD(1I(1),10)
TEMP1=DLTA(K,J)#DLTAU
DO 300 J=1,6
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TEMP1=TEMP1 + ((1.0 -~ TH1)®DB(1,J)
' + TH1%DE(I,J))®*DEP(J)
300 CONTINUE
TEMP2=TEMP2 + ABS(TEMP1 - DSIG(I))
TEMP3=TEMP3 + ABS(TEMP1)
TEMPA=TEMPA + ABS(SIGB(1))
DSIG(I)=TEMP1
400 CONTINUE
IF(TEMP3 .LT. TEMPA®(Q.01) TEMP3=0.01%TEMPAR
IF(TEMP3 .NKB. 0.0) THEN
IF(TEMP2/TEMP3 .LT. ERMAX) GOTO 700
END IF
END IP
600 CONTINUR
700 CONTINUE
c
C Convert 3-dimensional properties to plane strain if necessary
C
IF(IDIM .EQ. 2)
b CALL TWODIM (3,SIGB,EPB,DSIG,DEP,DB,DE,STOR)
RETURN
END
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SUBROUTINE INVAR (IK,PROP,STOR,SIG,DSIG,DEP,DEPT,VOID,KIND,
. LARGE, SMALL,XI,XJ,DIL,DDIL,S,SCUBE,SIN3A,COS3A,
b GAMMA,GAMMAT,UB,DLTAU,II,DLTA)
C
~ C Subroutine to compute values of invariants ’
C
INTEGER I1,J,K,N,IK,KIND,LARGE,II(6)
} REAL PROP(19),STOR(7),SIG(6),DSIG(6),DEP(6),DEPT(3,3),5(3,3), (
bd DLTA(3,3),V0ID,SMALL,XI,XJ,DIL,DDIL,SCUBE,SIN34,C0S3A,GAMMA,
) GAMMAT, UB,DLTAU, ARB,FACTOR, TEMP1
c
DATA ARB/1000.0/
FACTOR=0.0
IF(IK .GT. 1) FACTOR=1.0
XI =0.0
XJ =0.0
SCUBE=0.0
SIN3A=0.0 \
c :
C Calculate first stress invariant
c
DO 100 I=1,3
XI=XI + SIG(I) + FACTOR*DSIG(I) :
100 CONTINUE
c
VOID=1.0 + STOR(T)
IF(LARGE .NE. 0)
s VOID=VOID®*EXP(-DIL -~ FACTOR®DDIL)
[
- C Change tensor components to matrix components,
C calculate deviatoric stresses.
c
DO 200 N=1,6
I=II(N}/10
J=MOD(II(N),10)
S(1,J)=SIG(N) + FACTOR#DSIG(N) - XI®DLTA(I,J)/3.0
s(J,I)=s(I1,d)
DEPT(I,J)=DEP(N)®#(1.0 + DLTA(I,J))*0.5
DEPT(J,1)=DEPT(I,J)
200 CONTINUE
(o
c Convert total stresses to effective stresses
C
GAMMA=PROP(6) ?
GAMMAT=z0.0 :
IF(KIND .NE. O) THEN '
GAMMAT=GAMMA
UB=STOR(3)
DLTAU=GAMMA®DDIL j
END IF
XI=XI - 3.0%(UB + FACTOR®DLTAU)
STOR(Y4 )=DLTAU
o
C Avoid near zero value of the first stress invariant
(o
~ IF(ABS(XI) .LE. SMALL) THEN
TEMP1=X1
XI=SMALL
IF(TEMP1 .LT. 0.0) XI=~SMALL
END IF 41




Compute the square root of the second deviatoric stress invariant
as well as the third deviatoric stress invariant i

QOO0

DO 300 I=1,3

DO 300 J=1,3
XJ=XJ + S(I,J)%s(1,J)
DO 300 K=1,3
SCUBE=SCUBE + S(1,J)%s(J,K)®s(K,I)
300 CONTINUER
SCUBE=SCUBE/3.0
c
c Arbitrary check to avoid excessively small values of J
c
XJ=SQRT(0.5%XJ)
IF(XJ®ARB .LT. XI) XJ=0.0
c
c Compute the sine and cosine of three times the "Lode" angle
¢ _
IF(XJ .GT. SMALL) SIN3A=1.5®SQRT(3.0)®SCUBE/XJ##3 ?
IF(SIN3A .GT. 1.0) SIN3A= 1.0
IF(SIN3A .LT. -1.0) SIN3A=-1.0
COS3A=SQRT(1.0 - SIN3A®#2)
c
RETURN
END
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SUBROUTINE ELASTC (PROP,VOID,XI,D,BULK,G,GAMMAT,II,DLTA)

INTEGER I,J,K,L,M,N,II(6)

REAL PROP(19),D(6,6),DLTA(3,3),V0ID,XI,BULK,G,GAMMAT, TEMP1,

L TEMP2, TEMP3
Calculate the bulk and shear moduli

TEMP1=z1.5%(1.0 - 2.0®PROP(5))/(1.0 + PROP(5))
TEMP2=VOID/3.0/PROP(2)
TEMP3=XI
IF(TEMP3 .LT. PROP(7)) TEMP3=PROP(7)
BULK=TEMP2%TEMP3
IF(PROP(5) .LE. 0.5) THEN
G=TEMP1 ® BULK
ELSE
G=PROP(S)
END IF

Calculate elastic incremental properties

DO 100 M=1,6
I=II(M)/10
J=MOD(II(M),10)
DO 100 N=M,6
K=II(N)/10
L=MOD(II(N),10)
TEMP1=DLTA(K,I)®*DLTA(L,J) + DLTA(K,J)®*DLTA(I,L)
D(M,N)=TEMP1%G + (BULK + GAMMAT
. - 2.0%G/3.0)®DLTA(I,J)®DLTA(K,L)
D(N,M)=D(M,N)

100 CONTINUE

RETURN
END
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SUBROUTINE PLASTC (PROP,DEPT,VOID,XI,XJ,X10,DDIL,S,SCUBE,

SIN3A,COS3A,D,BULK,G,II,DLTA)

INTEGER I,J,K,L,M,N,LL,LFLAG,II(6)

REAL PROP(19),DEPT(3,3),S(3,3),D(6,6),DLTA(3,3),V0ID,X,XI,
XJ,XI0,DDIL,SCUBE,SIN3A,COS3A,BULK,G,XKP,XKPB, BETA,
DBETA,DFI,DFJ,DFAL,DFJJ, TEMP, TEMP1, TEMP2, TEMP3, TEMPY,
TEMPS , TEMP6

Calculate bounding surface parameters

CALL BOUND (PROP,VOID,X,XI,XJ,XIO,SIN3A,XKPB,BETA,

DFI,DFJ,DFAL,DFJJ)

DBETA=BETA - 1.0
IF(DBETA .LT. 0.0) DBETA=0.0

LFLAG=0

Check for elastic zone

TEMP1=BETA - DBETA®#PROP(15)
IF(TEMP1 .GT. 0.0) THEN

END IF

Calculate the plastic modulus and loading function

CALL LODFUN (PROP,DEPT,VOID,X,XJ,XIO,DDIL,S,SCUBE,SIN3A,
COS3A, BULK, G, XXP, XXPB, DBETA, TEMP1,DFI,DFJ, DFAL,DFJJ, LFLAG)

Calculate plastic portion of the incremental properties

IF(LFLAG .NE. 0) THEN
DO 200 M=1,6
I=II(M)/10
J=MOD(II(M),10)
DO 200 N=M,6

K=II(N)/10
L=MOD(II(N),10)

TEMP=0.0
TEMP1=0.0
TEMP2:0.0
TEMP3=3.0%BULK®DFI
TEMP4 =G#*DFJJ
TEMPS=SQRT(3.0)*G®DFAL
TEMP6=XKP + 9.0%BULK®DFI®DFI + G®DFJ®DFJ
+ G®(DFAL®COS3A)® (DFAL®#COS3A)
IF(XJ®*®8 ,NE. 0.0) THEN
DO 100 LL=1,3
TEMP1=TEMP1 + S(I,LL)®S(LL,J)
TEMP2=TEMP2 + S(K,LL)®S(LL,L)
CONTINUE
TEMP1=TEMPS® (TEMP1/XJ9%2 - 1,58SCUBE®S(I,J)/XJ%%4
~2,0%DLTA(I,J)/3.0)
TEMP2=TEMP5® (TEMP2/XJ8%2 - 1,58SCUBE®S(K,L)/XJ#%4
~2.0%DLTA(K,L)/3.0)
END IF
TEMP= (TEMP3®DLTA(T,J) + TEMP4®S(I,J) « TEMP1)
®(TEMP3®DLTA(K,L) + TEMP4®S(K,L) + TEMP2)/TEMP6
D(M,N)=D(M,N) - TEMP




D(N,M)=D(M,N)

200 CONTINUE
END IF
RETURN
END
h
>
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SUBROUTINE LODFUN (PROP,DEPT,VOID,X,XJ,X10,DDIL,S,SCUBE,SIN3A,
. COS3A,BULK,G,XKP,XKPB,DBETA,DDEN, DFI,DFJ,DFAL,DFJJ,LF)

Subroutine to calculate the plastic modulus and loading function

QOO0

INTEGER I,J,K,LF

REAL ALFUN,CV,RT,SINV

REAL PROP(19),DEPT(3,3),5(3,3),v01D,X,XJ,X10,DDIL,SCUBE,SIN3A,
C0S34A,BULX,G,XKP,XKPB,DBETA,DDEN,DFI,DFJ,DFAL,DFJJ, XN, R,
Z,XIL,XM,B1,82,H,8UM,XLF, TEMP1, TEMP2, TEMP3, TEMP4 , TEMP5

ALFUN(CV,RT,SINV)=2.0%RT®CV/(1.0 + RT - (1.0 - RT)®SINV)

XN=ALFUN(PROP(3), PROP(4), SIN3A)

R =zALFUN(PROP(9), PROP(12),SIN3A)

H1=ALFUN(PROP(16),PROP(18),SIN3A)

Z=XJ*R/(XN®XI10)

XIL=PROP(7)

XM=PROP(17)

H2=PROP(19)

Calculate the plastic modulus
(using modified formulation for continuity across the I-axis)

aoaoaa

TEMP1=1.0/(PROP(1) - PROP(2))

TEMP2=Z7%%XM

TEMP3=9.0®DFI*DFI + DFJ®#DFJ/3.0

TEMP4=XI10

IF(XIO .LT. XIL) TEMPA4=XIL

H=H1®TEMP2 + H2#(1.0 - TEMP2)

XKP=XKPB + H®DBETA/DDEN®TEMP1#VOID*TEMP3I®TEMPY

Calculate the loading function

OO0

SUM=0.0
TEMP1=0.0
TEMP2=3.0®BULK®DFI
TEMP3=G¥DFJJ
TEMP4=SQRT(3.0)®G#*DFAL
TEMPS=XKP + §.0®BULK®*DFI®#DFI + G®DFJ®*DFJ
b + G®(DFAL®COS3A)*(DFAL®CO0S3A)
IF(XJ%®2 _NE. 0.0) THEN
DO 200 I=1,3
DO 200 J=1,3
TEMP2=0.0
DO 100 K=1,3
TEMP2=TEMP2 + S(I,K)#S(K,J)
100 CONTINUE
TEMP1=TEMP1 + (TEMP2 - 1,5%SCUBE#S(I,J)/(XJ%XJ))
. ®DEPT(I,J)/(XJ%*XJ)
SUM=SUM + S(I,J)®DEPT(I,J)
200 CONTINUE
TEMP1=TEMP1 ~ 2.0%DDIL/3.0
END IF
XLF=(TEMP2*DDIL + TEMP3®SUM + TEMP4STEMP1)/TEMPS

C Check for unloading

IF(XLF .LE. 0.0) LF=0
RETURN

END 46
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SUBRQUTINE TWODIM (IX,SI1GB,EPB,DSIG,DEP,DB,DE,STOR)

Subroutine to perform manipulation of storage locations
for the case of plane strain.

INTEGER I,IK
REAL SIGB(6),EPB(6),DS1G(6),DEP(6),DB(6,6),DE(6,6),STOR(7),TEMP1

IF(IK .EQ. 1) THEN
SIGB(4)=SIGB(3)
SIGB(3)=STOR(5)
DSIG(4)=DSIG(3)
DSIG(3)=STOR(6)
EPB(4)=EPB(3)
EPB(3)=0.0
DEP(4 )=DEP(3)
DEP(3)=0.0
DO 100 I=5,6

SIGB(I)=
DSIG(I)
EPB(I)
DEP(I)
100 CONTINUE
ELSE IF(IK .EQ. 2) THEN

(ol ool

0.
0.
0.
0.

Compute and store the stress increment in the Z-direction

TEMP1=0.0
DO 200 I=1,4
TEMP1=TEMP1 + 0.5%(DB(3,1) + DE(3,I))®DEP(I)
200 CONTINUE
STOR(6 )=TEMP1
ELSE

Convert the 3-dimensional state to one of plane strain

DO 300 I=1,4
DB(3,I)=DB(4,I)
DB(4,I)=0.0
DE(3,I)=DE(4,1)
DE(4,1)=0.0
300 CONTINUE
DO 400 I=1,3
DB{(I,3)=DB(I,4)
DB(I,4)=0.0
DE(I,3)=DE(I,U4)
DE(I,4)=0.0
400 CONTINUE
END IF
RETURN
END
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SUBRODTINE BOUND (PROP,VOID,X,XI,XJ,XI0,SIN3A,XKPB,BETA,
. DF1,DFJ,DFAL,DFJJ)

Subroutine to evaluate relationship of current stress state
to the bounding surface

INTEGER IZONE

REAL ALFUN,CV,RT,SINV

REAL DFUN,FUN,FUNC

REAL PROP(19),VO1D,X,XI,XJ,XI0,SIN3A,XKPB,BETA,DF1,DFJ,DFJJ,DFAL,

. XN,DNAL,R,DRAL,A,DAAL,Y,C, ARB,BIG,SMALL, T,Q,QC,Q0,FOP,XJO,
. BT,RHO,XIBAR, THETA,PSI,GAM,DYSAL,DFOPAL,DJOAL,DBTAL,DRHOAL,
. TEMP,TEMP1,TEMP2, TEMP3, TEMP4 , TEMPS , TEMP6 , TEMPT , TEMPS

DATA ARB/0.001/, BIG/1.0E+20/, SMALL/1.0E-20/
ALFUN(CV,RT,SINV)=2,0®RT#CV/(1.0 + RT - (1.0 - RT)®SINV)
DFUN(FUN,RT,FUNC)=FUN#828(1.0 -~ RT)/(2.0%RT®FUNC)

XN=ALFUN(PROP(3),PROP(4),SIN3A)
DNAL=DFUN(XN, PROP(4), PROP(3))
R=ALFUN(PROP(9),PROP(12),SIN3A)
DRAL=DFUN(R,PROP(12),PROP(9))
A=ALFUON(PROP(10),PROP(13),SIN3A)
DAAL=DFUN(A, PROP(13),PROP(10))
Y=R®A/XN

C=PROP(14)

Shift projection point

TEMP1=XI ~ XIO%C
IF(ABS(TEMP1) .LT. ARB) TEMP1=ARB
TEMP2=C - 1.0/R
TEMP3=TEMP1#TEMP2
TEMP4=C®#(C - 2.0/R)
Q =XJ/TEMP1
QC=XN/(1.0 ~ R®C)
Q0=BIG
IF(C .NE. 0.0) QO=XN®#(SQRT(1.0 + Y®#Y) ~ (1.0 + Y))/R/C
IF(XJ .EQ. 0.0) THEN
IF(TEMP1 .GT. 0.0) THEN
IZONE=1
ELSE
IZONE=3
END IF
ELSE IF(C .GE. 1.0/R) THEN
IF(Q .GE. 0.0 .OR. Q .LE. QC) THEN
IZONE=1
ELSE IF(Q .GE. Q0) THEN
IZONE=3
ELSE
IZONE=2
END IF
ELSE
IF(Q .GE. QC) THEN
IZONE=2
ELSE IF(Q .GE. 0.0) THEN
IZONE=1
ELSE IF(Q .LE. QO0) THEN
IZONE=2
ELSE 48




IZONE=3
END IF
END IF
IF(IZONE .EQ. 1) THEN

(@]

Projection on elliipse )

TEMPS5=TEMP1#TEMP1 + ((I - 1.0)®XJ/XL #80
BETA=XI1O#*(~TEMP3+SQRT(TEMP3I®#TEMP3I-TEME S * { TEMP4+(2.C~R}/R)))
. /TEMPS

ELSE 1F(IZONE .EQ. 2) THEN

Projection on hypérpo.a

e N oNe]

TEMPS5=TEMPL - 2.0%: H/ XN
TEMP6=XJ®*{1.0/R + A/XN}/XN
TEMPT=TEMP3 + TEMPG
TEMPB-TEMP1®TEMP1 - (XJ/XN)#*(XJd AN
BETA=~0.5%XIO#TEMPS,/ TEMEPT
IF(TEMP8 .NE. 5.0
& BETA=XIO®(~TEMP7 + SORT{TEMPT#TIMPT -~ TEMPE¥TEMP5))/TEMPE

C Projecten on ellilpse 7

T=PROP(11)

TEMP5=SQRT(1.0 + Y#Y)

FOP=XN/TEMP5S

XJO=A%(1.0 + Y - TEMPS /Y

BT=T#(XJO ~ T#*FOP ., XJO - 2.0# . *L0[0

~ RHO=(BT - T}/FOP/X.0

TEMP6=T - BT + ¢

TEMP7=TEMP1#[EMPE

TEMP8=TEMP I ®#TEMP1 « HHO#Xi®YS

BETA=zXIO®{ -TEMr/s o0 LTk TR TEMY
» ~TEMPBR(TEMOERT N o RTes T ey
END IF

Compute derivatives o “he scuncding =icface w.r.t. 1nvariants
and the vajue of Lo Tohoundu noduius for the

e
GpPTe
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XIBAR=BETA®(XI - XIO®(CK@ « X . t0C

IF(XIBAR .EQ. G.0) X rai=Smi .l
THETA=BETA®XJ/X1bAn

X=THETA/XN

TEMP5:XI0

IF(XIO .LT. PROP{7)} TEMPL=ru"pP. "
TEMP=12.G8VOID/ (PRUP 1 . PROFI ) *: (85X 17 %77MpP5

IF(IZONE .EQ. 1) TUHEN

Normal conso!iiolion vwrre o i.rse

a0

P31=Y/({(R - 1.0)%(H - 1.0))
TEMPS=R®*(1.0 + X#{ + R#({ . - o #x*y>

~ GAM=(1.0 + /R - 1.7 ®SCKT{1.0 +» R®(R - . .0)®%X®X))/TEMPS
DFI=2.0®X. -/GAM - .G it
DFJJ=2.0%X 0®CAM®. (iy — * D) XN &% *p5 838 TA/XIBAR
DFJ=zDFJJ¥XJ
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XKPB=TEMP#(GAM -~ 1.0/R)®(GAM + R - 2.0)®PSI®PSI/R
DFAL=PSI®6.0%#(R-1.0)®THETA®GAM®XIO®(((R-1.0)/(R*R®

(2.0/R~GAM-1.0)) + 1.0)®DRAL - (R-1.0)®DNAL/XN)/(XN®XN)
RETURN

ELSE IF(IZONE .EQ. 2) THEN

Overconsolidated zone (hyperbola)

TEMP5=1.0 ~ X®#{(1.0 + Y)

GAM=~(TEMP5+SQRT((X-Y-1.0)%%2 , (X®X-1.0)%Y®Y))/(R®(X®#X~1.0))

DFI=2.0%XI0®(GAM - 1.0/R)

DFJ=2.0%XI0%((1.0 + Y)/R - X®GAM)/XN

DFJJ=DFJ/XJ

XKPB=TEMP#(GAM - 1.0/R)®(TEMPS®GAM + 2.0%A/IN)/R

DFAL=6.0®XIO®(DNAL® (THETA®GAM/XN-1.0/R+A/ (R®THETA®GAMN)
~2.0®A/XN)/(XN®XN)+DRAL®(1.0/THETA-1.0/XN+A/(XN®THETA®GAM))
/(R®R) + DAAL®(1.0/XN - 1.0/(THETA®GAM®R))/XN)

RETURN

ELSE

END
END

Tension zone (ellipse 2)

PSI=1.0/(R*(BT - T))

GAM=(-T+BT-SQRT(BT®#BT~-RHO®THETA®THETA®*T#(T-2.0%BT)))
/(1.0 + RHO®THETA®#THETA)

DFI=2.0%PSI®XIO%(GAM + T - BT)

DFJJ=2.0%PSI®XIO®GAM®RHO®BETA/XIBAR

DFJ=DFJJ*XJ

XXPB=TEMP®PSI®PSI®(GAM+T-BT)®(GAM*(BT-T) + T#(2,0%BT-T))

DYSAL=Y#(DRAL/R + DAAL/A - DNAL/XN)

DFOPAL=FOP®(DNAL/XN - Y®DYSAL/(1.0 + Y®Y))

DJOAL=XJO®(DAAL/A ~ DYSAL/Y) + A®(1.0/Y - FOP/XN)®DYSAL

DBTAL=({(T-BT)SDJOAL - (T-2.0®BT)*T®DFOPAL)/(XJO-2.0®#T#FOP)

DRHOAL=DBTAL/FOP/XJO - RHO®(DFOPAL/FOP + DJOAL/XJO)

DFAL=3.0%PSI#XIO#THETA®GAM® (DRHOAL + 2.0®RHO#DBTAL
/(T+GAM=-2.0%BT))

RETURN

1F
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SUBROUTINE JPLOT (NP,PINC,IX,IY,XT,YT)

Printer plotting subroutine written by J. S. De Natale.
Modified by V. Kaliakin, 1983,

CHARACTER®1 XT(8),YT(8),BUF(128) .
INTEGER ICPX(150),I1CPY(150),ICEX(20),ICEY(20),1,J,1X,1IY,IK, |

. JK, NP, NEXP
REAL PINC(150,8),XEXP(20),YEXP(20),XLAB(11),YLAB(11},XMIN,XMAX,
b YMIN, YMAX,XDIST,YDIST,XINC,YINC, TEMP

Read values for the experimenta} data points

READ(5,902) NEXP
IF(NEXP .NE. 0) THEN
READ(5,904) (XEXP(1),I=1,NEXP)
READ(5,504) (YEXP(I),I=1,NEXP)
END IF

Establish minimum and maximum axes values

XMIN=PINC(1,IX)
XMAX=PINC(1,IX)
YMIN=PINC(1,IY)
YMAX=PINC(1,IY)
DO 100 I=2,NP
IF(XMIN .GT. PINC(I,IX)) XMINsPINC(I,IX)
IF(XMAX .LT. PINC(I,IX)) XMAX=PINC(I,IX)
IF(YMIN .GT. PINC(I,IY)) YMIN=PINC(I,IY)
IF(YMAX .LT. PINC(I,IY)) YMAX=PINC(I,IY)
CONTINUE
IF(NEXP .NE. 0) THEN
DO 200 I=1,NEXP
IF(XMIN .GT. XEXP(I)) XMIN=XEXP(I)
IF(XMAX .LT. XEXP(I)) XMAX=XEXP(I)
IF(YMIN .GT. YEXP(I)) YMIN=YEXP(I)
IF(YMAX .LT. YEXP(I)) YMAX=YEXP(I)
CONTINUE
END IF

Establish adjusted maximum and minirum axes values

CALL SHIFT (XMIN,XMAX)
CALL SHIFT (YMIN,YMAX)

Establish axes labels

XDIST=XMAX-XMIN |
YDIST=YMAX~YMIN ‘
XINC=XDIST/10.0

YINC=YDIST/10.0

XLAB( 1)=XMIN

XLAB(11)=XMAX

YLAB{ *)=YMIN

YLAB(11)=YMAX

DO 300 I=2,10
TEMP=FLOAT(I-1)
XLAB(I)=XMIN + XINC#TEMP
YLAB(I)=YMIN + YINCSTEMP
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300 CONTINUE
c
C Establish data point coordinates
c

DO 400 I=1,NP ! For computed data points
TEMP=(PINC(I,IX) - XMIN)/XDIST®#100.0
CALL SETCRD (I,TEMP,ICPX)
TEMP=ABS(PINC(I,IY) - YMAX)/YDIST® 50.0
CALL SETCRD (I,TEMP,ICPY)
800 CONTINUB
IF(NEXP .NE. O) THEN ! For experimental data points
DO 500 I=1,NEXP
TEMP=(XEXP(I) ~ XMIN)/XDIST®#100.0
CALL SETCRD (I,TEMP,ICEX)
TEMP=ABS(YEXP(I) - YMAX)/YDIST#50.0
CALL SEYCRD (I,TEMP,ICEY)
500 CONTINUE
END IF

Printer plot the data points

e XeNel

JK=0

WRITE(6,900)

DO 800 IK=0,50 ! Loop through each of the print lines
CALL BZERO (BUF,128)

DO 600 J=1,NP ! Print computed data points
IF(ICPY(J) .EQ. IK) THEN
BUF(ICPX(J) + 25)=1#!
END IF
' 600 CONTINUE
IF(NRXP .NE. 0) THEN ! Print experimental data points
DO 700 J=1,NEXP
IF(ICEY(J) .EQ. IK) THEN
BUF(ICEX(J) + 25)="#"'
END IF
700 CONTINUE
END IF
CALL BORDER (JK,IK,XLAB,YLAB,XT,YT,BUF)
800 CONTINUE
C
900 FORMAT(1H1,/)
902 FORMAT(I5)
904 FORMAT(8E10.3)
RETURN
END
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SUBROUTINE SHIFT (PMIN,PMAX)

Subroutine to compute adjusted maximum amd minimum axes values.
Written by J. S. De Natale.

INTEGER II,JJ,NN
REAL PMIN,PMAX,DX,XL,XU,D0,D1,C1,DU,DL

DX=(PMAX-PMIN)/10.0
XL=PMIN-DX
XU=PMAX+DX
DO=ABS(PMIN)
D1=ABS(PMAX)
IF(DY .LT. DO) D1=DO
NN=21
DO 100 JJ=1,40
NN=NN-1
C1=10.0%#NN
IF(D1 .GE. C1) GOTO 200
CONTINUE
CONTINUE
D1=PMAX/C1
I1=IFIX(D1)
DU=FLOAT(II)®C1
IF(DU .LT. PMAX) II=II+1
DU=FLOAT(II)#*C1
IF(DU .GT. XU) THEN
€1=C1/10.0
GOTO 200
END IF

D1=PMIN/C1
II=IFIX(D1)
DL=FLOAT(II)®*C1
IF(DL .GT. PMIN) II=II-1
DL=FLOAT(II)®C1
IF(DL .LT. XL) THEN
C1=C1/10.0
GOTO 200
END IF
PMIN=DL
PMAX=DU

RETURN
END
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SUBROUTINE BORDER (JK,IK,XLAB,YLAB,XT,YT,BUF)

Subroutine to provide dborders for printer plotting

CHARACTER®1 XT(8),YT(8),BUF(128),TEMP(10)
INTEGER I,J,JK,1K,ITEMP, NUMLAB
REAL XLAB(11),YLAB(11)

PARAMETER (no=0)
PARAMETER (yes=1)
NUMLAB=no

IF(IK .BQ. O .OR. MOD(IX,5) .EQ. O) THEN
NUMLAB=yes 1 Numeric label required
JK=JK + 1

END IF

IF(IK .EQ. 0 .OR., IK .EQ. 50) THEN 1 Top or bottom border
ENCODE (10,900,TEMP) YLAB(12-JK)
DO 100 I=1,10
BUF(I+12)=TEMP(I)
CONTINUE
DO 300 I=2,11
DO 200 J=6,14
ITEMP=I®"10 + J
IF(BUF(ITEMP) .EQ. ' ') BUF(ITEMP)='-!'
CONTINUE
ITEMP=I%10 + 5
IF(BUF(ITEMP) .EQ. ' ') BUF(ITEMP)='I'
CONTINUE
NUMLAB=no
ELSE
IF(IK .EQ. 25) THEN ! Title for vertical axis
DO 300 I=1,8
BUF(I+2)=YT(I)
CONTINUE
END IF
END IF

IF(NUMLAB .EQ. yes) THEN ! Numeric labels and
ENCODE (10,900,TEMP) YLAB(12-JK) ] associated symbols, but
DO 500 I=1,10 1 not for top & bot. borders

BUF(I+12)=TEMP(I)

CONTINUE
IF(BUF(25) .EQ.
IF(BUF(26) .EQ.
IF(BUF(124) .EQ.
IF(BUF(125) .EQ.

ELSE
IF(BUF(25) .BQ. ' ') BUF(25) ='I'
IF(BUF(125) .BQ. ' ') BUF(125)='1'

END IF

WRITE(6,908) (BUF(I),1=1,125) ! Print contents of buffer

') BUF(25) ='+'
BUF(26) ='~"'
') BUF(124)='-'
') BUF(125)='+!

- @ - -
-
~—

IF(IK .EQ. 50) THEN
CALL BZERO (BUF,128) { Get labels for bottoa border
DO 600 I=1,11
ENCODE (9,902,TEMP) XLAB(I)
DO 600 J=1,9
ITEMP=I®10 + 9 + J
54




600

700

900
902
904
906

BUF (ITEMP )=TEMP(J) ;

CONTINUE
WRITE(6,904) (BUF(I),I=1,128)

WRITE(6,906) ! Print a blank line

CALL BZERO (BUF,128)
DO 700 I=1,8
BUF (I+71)=XT(I)
CONTINUE
WRITE(6,904) (BUF(1),I=1,79)

END IF

1 Title for bottom border H

FORMAT(F10.4)
FORMAT (F9.4)
FORMAT(128A1)
FORMAT(/) :
RETURN |
END 7
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SUBROUTINE SETCRD (IK,TEMP1,ICXY)

Subroutine to compute rounded (integer) data point coordinates

s NeNel

INTEGER IK,ICXY(1)
REAL TEMP1,TEMP2

IF(TEMP1 .LT. 0.0) TEMP120.0 {
TEMP2=AINT(TEMP1)

IF(TEMP1 - TEMP2 .GT. 0.5) TEMP2=TEMP2 + 1.0

ICYY(IK)=IFIX(TEMP2)

RETURN
END

MRS
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SUBROUTINE BZERO (B,N)

Subroutine to initialize a character array

CHARACTER®1 B(N)
INTEGER I,N

DO 100 I=1,N
B(I)=' '
100 CONTINUE
RETURN
END
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SEERR LYA| Reses

Program to predict homogeneous test results for material models.
Prepared by L.R. Herrmann at the Uuniversity of California,
Davis campus. Fortran 77 version, revised 1983.

OO0

INTEGER 1,J,K,NJ,K7,I1TNO,NUM,INC,NINC,IPRNT1,IPRNT2,ITMAX,KIND,
. LARGE,LOCIT,JUNK, IFLAG,IPRINT,ITITLE(40),ICOD(7),IPLOT(10)
REAL PROP(19),STOR(7),SIGB(6),DSIG(6),EPB(6),DEP(6),V(6),DV(6),
. RP(6),R(7),DB(6,6),DE(6,6),5(7,7),PINC(150,8;,CONFIN,
# ERMAX, CONFL,SNORM1,SNORMZ, ENORM1, ENORM2,DLTAU, U, D, GAM,

* TEMP, TEMP1, TEMP1T

PARAMETER (yes=1)

PARAMETER (no=0)

1 CONTINUE
READ(5,800,END=999) (ITITLE(I),I=1,40} |
WRITE(6,900) (ITITLE(I,,I=1,40)
READ(5,802) STOR{1),3STOR{7),CONFIN

O

Read material properties

(@]

CALL KFPROP (PROP)

Read iteratcn and analysis information

e X!

READ(5,801) ITMAX,ERMAX,CONFL,KIND,LARGE,LOCIT
IF(ITMAX .GT. 20) ITMAX=20
[F(CONFL .LE. 0,0) CONFL=0.3

~ IF(LOCIT .EQ. 0) LOCIT=1

READ(5,804) IPRNT1,IPRNTZ ! Read flags for cutput control
READ{5,804) (IPLOT{1),I=1,10) ! Read plotting iastructions

O

WRITE(6,902) STOR(7).CONFIN,STOR(1)
STOR(1)=8STOR(1)#3.0

IF(KIND .EQ. O) WRITE(6,906)
IF(KIND .EQ. 1) WRITE(6,907)
IF(LARGE .EQ. 9) WRITE(6,908)
IF(LARGE .EQ. 1) WRITE(6,909)
WRITE(6,501) ITMAX,LOCIT,ERMAX,CONFL

: C initialization

NUM=0

IFLAG=no

IPRINT=no

ICOD{7)=0 ! Fictitious increment type specification
TEMP1T=0.0

SNORM1=0.0

ENORM1=0.0

DLTAU=0.0

U=0.0

100 CONTINUE 59
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DO 150 I=1,3
SIGB(I)=CONFIN
150 CONTINUE

C Loading segment loop

IF(IPRNT1 .EQ. 0) WRITE(6,903)
200 CORTINUE
READ(5,803) (1COD(I),Vv(I),I=1,6),NINC,D
IF(ICOD(1) .GT. 1) GOTO 750
IF(D .EQ. 0.0) D=1.0

C Determine first increments

TEMP1=1.0/(FLOAT(NINC))
IF(D .NE. 1.0) TEMP1=(1.0 - D)/(1.0 - D®®NINC)
DO 250 I=1,6
TEMP=V(I) - SIGB(I)
IF(ICOD(I) .BQ. 1) TEMP=V(I) - EPB(I)
DV(I)=TEMP®*TEMP1
250 CONTINUE

Change sign of strain estimate at beginning of new segment
in case of unstable behavior at the end of the previous one.

anooaon

DLTAU=DLTAG#0.01
DO 300 I=1,6
DSIG(I)=DSIG(I)*.01
DEP(I)=DEP(I)®~.01
300 CONTINUE

c Increment loop
DO 700 INC=1,NINC

Iteration loop (successive approximation)

aQO0

DO 600 ITNO=1,ITMAX

Get incremental properties

OO0

NJ=NUM + 1

K7=1TNO

CALL CLAY (3,NJ,KT7,ERMAX,PROP,STOR,SIGB,EPB,DSIG,DEP,
. DB,DE,U,DLTAU,GAM,KIND,LARGE,LOCIT,0.5)

Form and modify stiffness

aan

DO 350 1=1,3
S(7|I)=G‘H
S(7,1+3)=0.0 i
s(1,7)=1.0
S(I#317)=0.0
350 CONTINUE
8(7'7)3-1-0
R(7)=0.0
DO 450 I=1,6
DO 300 J=1,6
S(I,J)=0.5%(DB(I,J) + DE(I,J))
400 CONTINUE
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R(I)=DV(1)
IF(ICOD(I) .EQ. 1) THEN
DO 420 K=1,7
IF(ICOD(K) .EQ. O)
. R(K)=R(K) - S(K,I)*DV(I)
S(1,K)=0.0
S(K,1)=0.0
420 CONTINUE
S(I,1)=1.0
END IF
450 CONTINUE

Solve for strain increment
CALL SOLVE (KIND,ICOD,S,R)
Calculate total stress increments

b0 550 I=1,6

TEMP=0.0

IF(I .LT. 4) TEMP=R(7)

DO 500 J=1,6

TEMP=0.5%(DB(I,J) + DE(I,J))®R(J) + TEMP

500 CONTINUE

RP(I)=TEMP
550 CONTINUE

Compute error norms

CALL ERNORM (IFLAG,IPRINT,ITNO,NUM,KIND,ERMAX,CONFL,
* SNORM1,SNORM2 ,ENORM1,ENORM2, TEMP1T,RP,
. DSIG,R,DEP,DLTAU)
IF(IFLAG .EQ. yes) GOTO 640
600 CONTINUE
IPRINT=yes
CALL ERNORM (IFLAG,IPRINT,ITNOC,NUM,KIND,ERMAX,CONFL,SNORM1,
b SNORM2,ENORM1,ENORM2, TEMP1T, RP,DSIG,R,DEP,DLTAU)

Upon failure to converge, eat up remaining input data

620 READ(5,803) JUNK
IF(JUNK .GT. 1) G010 750
GOTO 620

Update total values

640 NUM=NUM + 1
TEMP1T=0.0
DO 660 I=1,6
DV(I)=DV(1)®D
DSIG(I)=RP(I)
DEP(1) =R(I)
SIGB(I)=SIGB(I) + DSIG(I)
EPB(I) =EPB{I) + DEP(I)
TEMP1T =TEMPIT + ABS(SIGB(I))%0.1
660 CONTINUE
IF(KIND .EQ. 0) DLTAU=R(7)
U=U + DLTAU

Store incremental values for future plotting
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PINC(NUM, 1)=(SIGB(3) - SIGB(1))

PINC(NUM, 2)=(SIGB(1) + SIGB(2) + SIGB(3))/3.0 - U
PINC(NUM, 3)= U

PINC(NUM, 3)=(EPB(1) « EPB(2) + EPB(3))*100.0

~ PINC(NUM, 5)=(EPB(3) - EPB(1))/(1.50)#100.0
PINC(NUM, 6)= EPB(3)%100.0
PINC(NUM, T)=(SIGB(3) ~ SIGB(1))/(STOR(1)/3.0)
PINC(NUM, 8)=(SIGB(.1) + SIGB(2) + SIGB(3) - 3.0%U)/STOR(1)
c
C Print incremental values of stresses and strains if desired
o
IF(IPRNT1 .EQ. 0)
U] WRITE(6,904) NUM, (EPB(I),I=1,6),(SIGB(I),I=1,6),0,ITNO
700 CONTINUE
WRITE(6,905)
GOTO 200
750 CONTINUE
c
c Print computed incremental parameters if desired
c
IF(IPRNT2 .EQ. O) THEN
WRITE(6,910)
DO 780 I=1,NUM
WRITE(6,911) I,PINC(I,6),(PINC(I,J),J=1,5)
780 CONTINUE
END IF
IF(IPLOT( 1) .EQ. yes)
b CALL JPLOT(NUM,PINC,2,1,' P ! Q ")
~ IF(IPLOT( 2) .EQ. yes)
b CALL JPLOT(NUM,PINC,6,1,' EPS-1 ',' Q ')
IF(IPLOT( 3) .EQ. yes)
b CALL JPLOT(NUM,PINC,6,3,' EPS-1',! U ')
IF(IPLOT( 4) .EQ. yes)
. CALL JPLOT{NUM,PINC,6,%,' EPS-1 ',' E-VOL ')
IF(IPLOT( S5) .EQ. yes)
b CALL JPLOT(NUM,PINC,8,7," p/P0 ¢, Q/P0 ')
IF(IPLOT( 6) .EQ. yes)
hd CALL JPLOT(NUM,PINC,6,7,' EPS-1 ',! Q/P0 ')
GOTO 1
999 CALL EXIT
(o
C Format statements
c
800 FORMAT(40A2)
801 FORHAT(IS,ZE10.3,3I§)
802 FORMAT(3E10.3)
803 FORMAT(6(I1,B9.1),15,E10.3)
804 FORMAT(10IS)
900 FORMAT(1H1,/,8X,40A2,4(/))
901 FORMAT(/,10X,'ITERATION AND CONVERGENCE PARAMETERS:',/,
1 28X, 'ITMAX=',13,/,24X,'L0CIT=",13,/,
2 28X, 'ERMAX=' ,P6.3,/,24X,'CONFL="',F6.3,/)
902 FORMAT(/,29X,'INITIAL VOID RATIO =',FT7.4,/,
1 21X, 'INITIAL CONFINING PRESSURE =',1PEt12.3,/,
haed 2 10X, *INITIAL PRECONSOLIDATION PRESSURE, PO =',1PE12.3,//)
903 PORMAT(1H1,3X,'N',AX, 'EPS~X',4X, 'EPS-Y"' 4X, 'EPS-Z',3X, 'GAM-XY",
1 3X, 'GAM-X2', 3X, 'GAM-Y2',5X, 'SIG-X*,5X, 'S1G-Y"',5X, 'S1G-Z"',
2 NX, *TAU-XY',4X, 'TAU-XZ' ,8X, ' TAU-YZ',6X,'U",3X, ' IT #',/)
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904 FORMAT(1X,I3,1P6E9.1,7E10.2,1X,I3)
905 FORMAT(/)
906 FORMAT(SX,'®#%### REFORMULATED NEARLY-INCOMPRESSIBLE !,

1 'ANALYSIS ®8snsr/)
907 FORMAT(5X,'#&&&s NON-REFORMULATED NEARLY-INCOMPRESSIBLE ',
~ 1 'ANALYSIS ®easss/)
908 FORMAT(5X,'®e88% ENGINEERING STRESSES AND STRAINS °,
1 '"ASSUMED ®de&&d: /)
909 FORMAT(5X,'##88%8 TRUE STRESSES AND NATURAL STRAINS ',
1 'ASSUMED Ssa#s&sr/)
910 FORMAT(1H1,//,9X,'N',5X,'EPS-1',9X,'Q',9X,'P',9X,'U",
1 5X, 'E-VOL',5X, 'E-DEV'/9X, '~*,5X, femcww ) SRS '
2 5X,' _____ v’sx’l _____ |'5x’| _____ l'sx’l _____ |/)
911 FORMAT(5X,15,6F10.2)
END
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c
c
C

500 CONTINUE
RETURN
END

SUBROUTINE SOLVE (KIND,ICOD,S,R)
Subroutine to solve the 7 x 7 stiffness matrix for EVAL

INTEGER I,I1I,IL,J,K,N,KIND,ICOD(7)
REAL TEM®,R(7),S(7,7)

Reduction of stiffness matrix and r.h.s. vector

=7=-KIND
DO 300 I=1,N
IF(ICOD(I) .EQ. 0) THEN 1 Avoid work for trivial rows
TEMP=1,0/S(1,1I)
R(I)=R(1)®TEMP
DO 100 J=I,N
S(1,d)=S(1,J)%TEMP
CONTINUE
IF(I .NE. N) THEN )
II=I+1
DO 300 J=II,N
IF(ICOD(I) .EQ. 0) THEN
TEMP=~S(J,I1)
DO 200 K=I,N
S(J,K)=S(J,K) + TEMP#S(I,K)
CONTINUE
R(J)=R(J) + TEMP®*R(I)
END IF
CONTINUE
END IF
END IF
CONTINUE

Back substitution

I=N

DO 500 II1=2,N
I=I-1
IL=I+1

DO 500 J=IL,N
R(I)=R(I) - S(I,J)®*R(J)




SUBROUTINE ERNORM (IFLAG,IPRINT,ITNO,NUM,KIND,ERMAX,CONFL,SNORM1,

# SNORM2,ENORM1,ENORM2, TEMP1T, RP,DSIG, R, DEP,DLTAU)
C
C Subroutine to check for convergence of the incremental solution
~ C
INTEGER I,IFLAG,IPRINT,ITNO,NUM,KIND
REAL ERSIG,EREPS,ERMAX,RP(6),DSIG(6),R(7),DEP(6),DLTAU,TEMP1,
. TEMP2, TEMP1T,CONFS, CONFE, CONFL , SNORM1, SNORM2, ENORM1, ENORM2
PARAMETER (yes=1)
PARAMETER (no=0)
c
ERSIG=0.0 ! Compute error norms
EREPS=0.0
TEMP1=0.0
TEMP2=0.0
DO 100 I=1,6

ERSIG=ERSIG + ABS(RP(I)-DSIG(I))
EREPS=EREPS + ABS(R{I)-DEP(I))
TEMP1=TEMP1 + ABS(RP(I))
TEMP2=TEMP2 + ABS(R(I))
100 CONTINUE

IF(TEMP1 .LT. TEMP1T) THEN
ERSIG=ERSIG/TEMP1T

ELSE
ERSIG=ERSIG/TEMP1

END IF

EREPS=EREPS/TEMP2

C Upon failure to converge, print pertinent information about errors
IF(IPRINT .EQ. yes) THEN
WRITE(6,900) NUM+1,ERSIG,EREPS,ERMAX
RETURN
END IF

Check norms against error tolerance to determine convergence

e RoNe]

IF(ERSIG .GE. ERMAX .OR. EREPS .GE. ERMAX) THEN

CONFS=1.0 ! Apply Aitken's convergence acceleration
CONFE=1.0
IF(ITNO .NE. 1 L(AND. (-1)®%ITNO .LT. 0) THEN
CALL ACCEL (SNORM2,SNORM1,TEMP1,CONFS,CONFL)
CALL ACCEL (ENORM2,ENORM1,TEMP2,CONFE,CONFL)
END IF
TEMP1=0.0
TEMP2=0.0
DO 200 1=1,6
DSIG(I)=RP(I)®CONFS + (1.0-CONFS)*DSIG(I)
DEP(I) =R(I)®CONFE + (1.0-CONFE)*DEP(I)
TEMP1=TEMP1 + ABS(DSIG(I))
TEMP2=TEMP2 + ABS(DEP(I))
200 CONTINUE
IF(KIND .EQ. 0) DLTAU=zR(7)®CONFS + (1.0-CONFS)®#DLTAU
SNORM2=SNORM1
~ ENORM2=ENORM1
SNORM1=TEMP1
ENORM1=TEMP2
IFLAG=no
ELSE 65




IFLAG=yes
END IF

900 FORMAT(///,3X,'%8#88 CONVERGENCE DID NOT OCCUR FOR INCREMENT ',I3,
1 t sasser / 10X, 'ERSIG=',1PE10.3,3X, 'EREPS=',1PE10.3,
2 5X, 'RRMAX=z',1PE10.3,///)
RETURN
END
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SUBROUTINE ACCEL (X2,X1,X,C,XL)

c
c This subroutine calculates the Aitken's convergence factor
c

~ REAL X,X1,X2,XL,C,TEMP

C=1.0

TEMP=z-X2 + 2.0%X1 - X

IF(TEMP .NE. 0.0) THEN
C=(X1 - X2)/TEMP

IF(C .LT. XL) C=XL
IF(C .GT. 1.0/XL) C=1.0/XL
END IF
RETURN

END
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SUBROUTINE RPROP (PROP)

This subroutine reads in and modifies the parameters required
by the bounding surface plasticity model for cohesive soils.

REAL PROP(19)

READ(5,800) (PROP(I),I=1,3),{PROP(I),I=9,11),PROP(7),PROP(5),
1 PROP(8),PROP(6), PROP(17), PROP(16), PROP(19),

2 PROP(4),PROP(18), (PROP(I),I=12,15)

WRITE(6,900) PROP(1), PROP(3), PROP(2), PROP(4)

IF(PROP(5) .LT. 0.5) WRITE(6,901) PROP(5),PROP(7T)

IF(PROP(5) .GE. 0.5) WRITE(6,902) PROP(5),PROP(T)
WRITE(6,903) PROP(17),PROP(19),PROP(16),PROP(18)

WRITE(6,904) PROP(9), PROP(12),PROP(10),PROP(13),PROP(11)

Check the magnitude of the shape parameter "T®

CALL TCHECK (PROP)

WRITE(6,905) PROP(15),PROP(14),PROP(8)
IF(PROP(6) .EQ. 0.0) WRITE(6,906)
IF(PROP(6) .NE. 0.0) WRITE(6,907) PROP(6)

Convert parameters from triaxial to invariant stress space

PROP(3) =PROP(3)/SQRT(27.0)
PROP(7) =PROP(T7)%3.0
RETURN

Format statements for RPROP

800 FORMAT(8E10.3)
900 FORMAT(10X, 'CLASSICAL CLAY MATERIAL CONSTANTS:',/,
1 15X, 'LAMBDA =',PT.4,17X,'MC =',F7.4,/,
2 15X, 'KAPPA =',F7.4,14X, 'ME/MC =',FT.4,/)
901 FORMAT(15X, 'POISSON®S RATIO =',FT7.4,8X,'PL =',1PE10.3,//)
902 FORMAT(15X, 'SHEAR MODULUS =',1PE10.3,7X,'PL =',1PE10.3,//)
903 FORMAT(10X,'HARDENING PARAMETERS:',/,
1 15X,'SM =',FT.4,21X,'H2 =',F7.4,/,
2 15X, 'HC =',F7.4,18X,'HE/HC =',FT.4,//)
904 FORMAT(10X, 'PARAMETERS DESCRIBING SHAPE OF BOUNDING SURFACE:',/,
1 15X,'RC =',F7.4,18X,'RE/RC =',FPT.4,/,
2 15X, 'AC =',F7.4,18X,'AE/AC =',FT7.4,/,
3 16X,'T =',FT.4,//)
905 FORMAT( 17X, 'ELASTIC NUCLEUS PARAMETER, S =',FT.4,/,
1 15X, 'PROJECTION CENTER PARAMETER, C =',F7.4,//,
2 25X, *ATMOSPHERIC PRESSURE =',1PE10.3,/)
906 FORMAT(//,25X,'®###%8 DRAINED CONDITIONS %eass: /)
907 FORMAT(//,5X,‘'#&#s%& UNDRAINED CONDITIONS - THE COMBINED ',
1 *SKELETON AND WATER BULK MODULUS =',1PE10.3,' tesas: /)
END
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SUBROUTINB TCHECK (PROP)

This subroutine checks the value of the bounding surface shape
parameter "T" and adjusts this value if it exceeds the theoretical max.
Original version written by J.S. De Natale.

s EeNsrNeNe]

REAL TEMP1,TEMP2,TEMPR,PROP(19)
YFUN(TT)=(1.0 + TT)®SQRT(1.0 + TT®#TT) - (1.0 + TT#TT)

Check against theoretical limit in compression

aaoan

TEMP1=PROP(11)
TEMP2=PROP(9 ) #PROP( 10)®SQRT(27.0)/PROP(3)
TEMP2=YFUN(TEMP2)

TEMP2=TEMP2/2.0/PROP(9)

IF(PROP(11) .GT. TEMP2) PROP(11)=TEMP2

Check against theoretical limit in extension i

e NeNe]

TEMPR=PROP(9)#PROP(12)
TEMP2=TEMPR®#PROP(10)®PROP(13)#SQRT(27.0)/PROP(3)/PROP(4)
TEMP2=YFUN(TEMP2)
TEMP2=TEMP2/2.0/TEMPR
IF(PROP(11) .GT. TEMP2) PROP(11)=TEMP2
IF(PROP(11) .NE. TEMP!) WRITE(6,100) PROP(11)

100 FORMAT(5X,r####8 THE USER-SPECIFIED VALUE OF T EXCEEDS THE MAX',
1 ' PERMISSIBLE VALUE #8888 / 5y 15888 T HAS THUS',
2 ' BEEN AUTOMATICALLY RESET TO T =',F7.4,8X,' ®#sddr //)

J

1

c B

~ RETURN
END
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