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-finite element analysis. The concepts used in developing the
variational statement are somewhat different from those used by
most other investigators and appear to offer certain advantages
for inelasCtic formulations. Finally results obtained with the
finite element analysis are compared to known solutions with
good results.

For the convenience of the reader) the total report on the
project is presented in four parts. As noted above a description
of the consolidation theory and certain theoretical features of
the finite element analysis are described in the body of the
main report (CR 84.006). The second part (CR 84.007) describes
the numerical evaluation of the incremental form of the boundingsurface model. Finallyc"user's manuals"'*for the 2-D and 3-D
finite element programs are given in two additional reports
(CR 84.008 and CR 84.009).
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1. SCOPE OF PRO3ECT

The pal of the project is to develop wuo special purpose finite element
codes for the analysis of cohesive-soil, stress and deformation problems including

consolidation effects. Specifically the codes are to make use of the new

comprehensive, bounding surface plasticity constitutive model for cohesive soils

[1,2,31.

2. INTRODUCTION

The analysis is limited to small deformations and displacements, and

classical consolidation theory. In addition, it is restricted to two ideal conditions

of saturation. The first is when the soil is completely saturated and consideration

is given to the development and dissipation (due to water flow) of excess pore

water pressure; included in this case are ideal undrained conditions. The second

case assumes that the degree of saturation is sufficiently small (or ideal drained

conditions exist) that the pore water pressure is zero, and the presence of water

can be completely accounted for by the increased unit weight of the soil.

Consolidation theory for saturated soils is well established and can be

found in a number of references [e.g., 4-8]. The form of the theory used in

this work is taken from [81 with only slight modification and some changes in

notation; the theory is summarized in a later section.

A number of finite element analyses have been developed [6-121 for soil

consolidation problems; most have been limited to linear elastic material behavior

which is unrealistic for cohesive soils and none have used the newly developed

bounding surface plasticity theory. Be-ause the finite element concepts employed

In the programs are standard, the section describing the analysis will be brief

In nature.
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3. A BRIEF LITERATURE REVIEW OF THE THEORY AND FINITE ELEMENT

APPLICATIONS FOR CONSOLIDATION

This section reviews the theory of consolidation and examines several

representative Finite Element analyses for its evaluation. It is not an exhaustive

catalogue of research in consolidation theory and analysis, but instead attempts

to demonstrate some of the advanilges and the difficulties ptesent in Finite

Element models.

3.1 Consolidation Theory

The birth of Soil Mechanics as a modern engineering discipline occurred

in the 1920's, when the Austrian engineer Karl 4raghi proposed his theory of

the consolidation of saturated fine-grained soils under applied loads [131.

Terzaghi had been studying the phenomenon of the reduction in void space of

soils underlying foundations. He correctly perceived that the time-dependent

settlement from consolidation of these soils was due to the flow of water out

of the soil skeleton as the voids decreased in size. The permeability of the

soil dictates the rate at which these movements take place. The soil skeleton

thus acts like a large sponge in response to an appihed load.

Many of the most important featurc's )f con, )Iiatio- can be motivated

by considering a greatly simplified mechanical model, the 'spring analogy', Fig. 1.

Consider a cylinder which contains a piston, valve, and elastic spring,

Fig. la. This cylinder is filled with an incompressible fluid. If a force is

applied to the piston with the valve open, the force is initially carried by the

fluid, Fig. lb. With time, however, the f i , drains from the cylinder under

the applied force, and more of the force is carried by the spring, Fig. Ic.

Finally, a new equilibrium position is reacht-1, Fig. ld, where all of the force

is carried by the spring, and the excess fluid ptswE drops to zero.

2
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This simple analogy gives an accurate model of consolidation of saturated

soils. The spring represents the compressible soil skeleton, the fluid represents

the pore water that fills the soil voids, and the valve represents the permeability

of the soil. It is easily seen that the rate of deformation depends upon the

soil's permeability (ie. how much the 'valve' is opened). For coarse-grained

soils (sands, gravels) the permeability is so high that the deformation response

is essentially instantaneous. Thus, time-dependent consolidation effects are

generally observed only in fine-grained soils (silts, clays). The entire process

can be made precise by introducing the following stress concepts (here, in

contrast to later equations, compression is taken as positive):

T : the total stress due to the applied load

W': that portion of Tr carried by the soil skeleton

p : that portion of 'c carried by the pore water

At any time af ter the load is applied:

* .~ Terzaghi realized that the deformation of the soil depended directly upon

a'l and not r . He called a' the effective stress, and the excess pore pressure

p the neutral stress (since it does not directly affect the soil's deformation).

This concept of effective stress is central to the study of soil mechanics, whether

consolidation is present or not.

Terzaghi developed a simple model [141 for consolidation of soil layers,

subject to the following assumptions, see Fig. 2.

1. The consolidating layer is horizontal, of infinite extent (laterally) and

of constant thickness h.

4
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2. The permeability coefficient (k) and volume compressibility (mv ) are

constant throughout space and time. The volume compressibility mv

represents the ratio of volumetric strain to applied effective stress.

Since the consolidating layer is of infinite lateral extent, the vertical

strain is the volumetric strain.

3. The pore water drains only in the vertical (z) direction.

4. The time rate of compression depends only upon low soil permeability:

visco-elastic properties of the soil skeleton are not considered.

5. The fluid obeys Darcy's Law: flow is proportional to the gradient of

pore water pressure.

v = p1i (2)
Yw

6. Strains are small compared to unity.

7. The applied load T is constant for all time. Thus, since is given,

if the pore pressure p is known, so is the effective stress a', Eq. (1).

With t ese assumptions, Terzaghi derived a differential equation for this

one dimensional case:

i=3 (3)

This equation is identical to the heat, or diffusion equation, and it can

be solved using separation of variables for various boundary conditions, Fig. 3.

Unfortunately, many of the assumptions made are unrealistic enough to warrant

a more general theory. In particular, material properties are not constant, and

consolidating layers are not of uniform width or of infinite lateral extent.

However, Terzaghi's theory has been widely used in estimating foundation settle-

ments and consolidation rates.

6
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In 1941, Biot [4] extended Terzaghi's consolidation theory to the general

three-dimensional case, and considered loads that varied with time. If this

extended theory is restricted to fully saturated soils where the applied load is

constant over time, the generalized model is governed by the same equation as

the generalized heat (or diffusion) problem:

k - vP'ii (sum over i) (4)

As in the one-dimensional case, this equation can be solved using separation
.1.

of variables for simple geometries and boundary conditions. In later papers

[5,15,16,17], Blot extended his consolidation theory to include effects of

anisotropy, inhomogeneity, and more general boundary conditions. (Unfortunately,

his choice of notation and physical constants underwent a number of changes.

For simplicity and consistency in later comparisons with finite element solutions,

Biot's results are paraphrased in the following development).

The resulting system of differential equations for elastic consolidation of

an anisotropic soil mass can be summarized as follows:
ui  : soil displacement vector

€.. : strain tensor (tension positive)

of'i : effective stress tensor (tension positive)

Fi  : body force vector (per unit mass)

kij permeability coefficient tensor

Eijkl : elasticity tensor in terms of effective stress

6. : Kronecker delta

pi : pore water pressure (compression positive)

v, Darcy velocity

8
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Strain-Displacement Relations:

S- 1 (ui + u. i) (5)ij=2 i~j

Equilibrium Equations:

,(o.. P) , Ps : 0 (6)
.-. Ij l '

Effective Stress-Strain Relation:

a ij =E ijk 'k9 (7)

Darcy's Law:

+ L (k i . p, ) - (8)
Yw J J

4' Equation of Continuity:

+v. =0 (9)

Biot solved these equations for such three dimensional cases as a

rectangular load distribution, Fig. 4, and a soil with an impervious top layer.

He also introduced analytic techniques for solution of a variety of consolidation

problems, modelling the consolidating layer as an elastic, semi-infinite half space.

Although the mathematical effort required to solve these equations is formidable,

the results are of limited prac, . '., ,e assuming infinite depth

* :.'- for a soil layer can lead to s5cr'iu& .ve:cs rimates of total and differential

settlements. The utility of Biot's ,w,. ,.: in ralytical solutions, but

in the development of a fairly general three dimensional theory of consolidatLon.

3.2 Some Finite Element Models for Consolidation

One of the main reasons for the widespr(.,d use of finite element models

in mechanics is that the method can be used on .,orern., with complex geometries,

9
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variable boundary conditions, and non-homogeneous material properties. Since

then difficulties prevent analytic solution of Blot's consolidation equations for

many useful problems, firdte element procedures have become an importamt tool

in modelling soll consolidation behavior.

Sandhu and Wilson [61 published one of the first finite element models

for soil consolidation in 1969. This model combined two existing finite element

models, one for the plane strain structural problem, and the second for the

solution of the two-dimensional diffusion equation, see Eq. (4). A generalization

of Blot's statement of Darcy's Law was used, which included the effect of body

:. forces on the pore water:

pw :water density

V k.j : permeability coefficient tensor

v + kI(p,j - VF1 ) 0 (10)

Sandhu and Wilson used a variational approach for the derivation of

element equations, combining functionals corresponding to the bwo coupled

problems:

G(t) f a *€, - 2p* u ,1 + g, * v|* p
= O~~~ilj u~ ~

- 2ps Fi * ui + g' * p, * wFj) dV (11)

t
where g' = I and aft= f alt) b(t-s) ds

0

In order to accomodate traction and flow boundary conditions (natural

boundary conditions for the two coupled problems), the foilowing terms must be

added to the functional G(t) to obtain the desired functional F(t) for the problem:
'.7

"4 11
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T. : components of prescribed traction vector

S1 : portion of boundary where traction is prescribed

Q : prescribed normal flux on boundary

S2 : portion of bound ry where flux is prescribed

n. : direction cosines of outward rormal
1

F(t) G(t) - 2 f T i * ui ds = 2 f g' * Q * p ds2  (12)
SI S2

where Ti = (ai. - 6i p)n. on S Q " nL on S2

Sandhu and Wilson evaluated the convolut. ntegrals using a simple two

point forward difference formula to obtain a fullo explicit time marching scheme.

A mixed interpolation model was used on the displacement and pore pressure

unkno ns: displacements were interpolated uising quadratic shape functions, and

linear shape functions were used to interpolate the pressure unknowns. Triangular

elements were used to define the mesh: tneref re the elements incorporated

a six node linear strain triangle for the su,.ctural (displacement) problem and

a three node linear triangle for tke fluid proDlem (pore pressure). This gives

a total of fifteen degrees of freedom for each element.

Sandhu and Wilson applied the finite elenir;,t model to two problems:

Terzaghi's one-dimensional soil column and Biot's rectangular strip load on an

elastic half-space. In both problems, ex:cllent d ,recment between the finite

element model and the analytic \Jlutions '. as obrai:ie.1, see Figs. 5 and 6. Some

discrepancy can be seen in the compdirisori .ith 11 i ,'s trip load solution, but

these differences can be attributed to tne i, t ,it to-e finite element mesh

(like the soil layers being modefl-J) is of ilnmr:d extent, unlike Biot's elastic

half space.

is,2
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A later work by Ghaboussl and Wilson [8] will be discussed in a subsequent

section.

In the discussion of Blot's generalization of Terzaghl's consolidation model,

It was noted that, under some circumstances, the heat or diffusion equation can

be used to model soil consolidation. Christian and Boehmer [7J developed a

displacement-based finite element model for soil consolidation, and compared

results for the finite element analyses with a consolidation analysis based on

the diffusion equation. Recall that the diffusion form of the consolidation

equation (appropriate when the applied load is constant over time) can be written:

Cv Pijj (Cv  k

The volume compressibility m, however, is not a material constant. It

depends on the type of analysis. For instance, in the one-dimensional case, the

volumetric strain Is simply the vertical strain CzI so mv is the reciprocal of

the constrained elastic modulus (ex= y = 0). However, in three dimensions,

the volumetric strain is Cv C + y + cz, and the value of mv (and hence cv)

should be modified accordingly. Christian and Boehmer derived correct expres-

sions for the consolidation coefficient cv and total stress r for an isotropic soil

ma. for one, two, and three-dimensional cases (see Table 1). With these

definitions for c and r, Blot's consolidation theory can be summarized in the

general equation:

cv N J - (13)

(Note that If the applied load is constant over time,; = 0, and Eq. (13) becomes

the diffusion equation).

Christian and Boehmer formulated the consolidation problem so the only

unknowns were the displacements u. Because of this simplification, the near-

N ; - . : :..:.. - .b '/.. ',".:./.;,'.",",-"". .
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incompressibility of the soil-water system causes near-infinite terms to occur

in the equation set (see Zienkewicz [101 for an explanation of this phenomenon).

In order to remove this problem, Christian and Boehmer re-introduce the

continuity condition in terms of pore pressures and volumetric strain into the

equation set.

Christian and Boehmer compared their finite element model with experi-

mental data from consolidation tests in a triaxial load apparatus. Their results

agreed well with experimental and analog solutions. One surprising type of

behavior was discovered using the finite element model: pore pressures locally

increased with time for some of the triaxial tests. Although this effect was

sYirt-lived, it was important because the approximate diffusion equation solution

cannot model this phenomenon. Apparently the average consolidation can increase

(a global effect) while ome parts of the sample experience a decrease in

effective stress (a local increase in pore pressure).

'The most useful results of this study by Christian and Boehmer were

twofold: first, they showed that, except for early stages of consolidation,

K; diffusion solutions can be utilized when the problem is simple enough to make

such a solution meaningful. Second, they derived correct expressions for the

appropriate volume compressibility m v , depending upon the geometry of the

analysis. These values of m insure that, if a diffusion solution is used, it will

be one that is appropriate to the problem being analyzed.

However, the finite element model proposed by Christian and Boehmer,

because it did not directly model the pore pressure, required some manipulation

in order to handle incompressibility of the water-soil system and certain types

of flow boundary conditions.

The finite element model proposed in 1971 by Yokoo [91, et al. is practially

identical with that proposed by Sandhu and Wilson [61 in 1169 (the latter paper

.4 17
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• "was discussed earlier in this review). Yokoo's work was completely independent

of Sandhu and Wilson, and was more general than the earlier work. In addition,

the development of the finite element equations was presented in a more lucid

7 - iform by Yokoo, who carefully considered admissibility md bouidary conditions

in the analysis. Another diffeyence between the two model, is that Yokoo

evaluated the convolution integrals that account for the time marching by using

a step-by-step method originally derived by Zienkiewicz and Parekh [19].

Yokoo consilered 1wo examples: the 'classic' one-dimensional problem

solvable using Terzaghi's theory, and a more practical axisymmetric problem.

In the one-1imensional problem Fig, 7, excellciit agreement between the finite

element model and Terzaghi's diffusion solution was obtained.

The axisymmetric problem modelled by Yokoo was that of a uniform load

on a circular plate loading a uniform clay layer. The clay layer exhibits both

structural and h"draulic anisotropy. In additiori, the applied load is not constant

over time. This problem is of interest because it is a useful approximation to

a common foundation problem and in ny of these characteristics (the lot al

distribution of load, anisotropy, and tiine-aependent loading) violate the assump-

tions of Terzaghi's theory. Yokoo's paper also contains excellent graphical

interpretations of the evolution of pore ,v.,ter pressure, and of the displacement

of the soil layer.

Perhaps the greatest ad'.t;o ge that jh- finite element method has over
a.

classical (analytic) solutions foi , nsoiiitli;i, s that irregular geometry causes

no serious difficulties in a finite e-lernmcit an:,!vs, This 0, particularl important

in Geotechnical Engineering, b,:,,vise sod deposits are generally irregular,

nonhomogeneous and anisotropic.

Desai and Saxena [10] taKOe advall' !'e. of this powerful feature of the

finite element method and model c,,olidati. n l a layered soil deposit underlying

18
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a three building system. The actual geometry of the building site is shown in

Fig. 8.

L-.. Desai and Saxena's analysis, like the others considered earlier, is based

on Biot's consolidation theory. Their model uses a mixed interpolation scheme,

with linear interpolation for pore pressure and quadratic approximations for

displacement. A centered-difference (Crank-Nicolson) time stepping procedure

*is used to numerically integrate the convolution integrals that account for the

temporal dependence of the variational terms. A useful feature of their model

is the ability to vary the length of the time step: since consolidation solutions

exhibit be7havior resembling exponential decay, the time steps can be lengthened

as the solution asymptotically approaches the steady-state solution. (The parti-

cular problem is modelled over a period of almost twelve years, with time steps

ranging from one to forty days.)

Because soil deposits are heterogeneous, the determination in geotechnical

engineering of material parameters often becomes a statistical exercize. For

this reason, Desai and Saxena analyzed several models of the three-building

* foundation problem, each with slightly different material properties and/or degree

of anisotropy. The results they obtain are very interesting, Fig. 9.

Five of the six finite element analyses can be se-n to closely approximate

the actual measured consolidation settlement (shown for building 2). The one

analysis that gives a poor result has an unlikely type of anisotropy, where the

vertical permeability exceeds the horizontal permeability by a factor of one

hundred (the horizontal permeability is generally larger). Desai and Saxena also

calculate an estimate for the probable ultimate settlement of this building, using

Terzaghi's one-dimensional consolidation theory. Although this theory clearly

does not apply here, it is extensively used in similar cases to obtain settlement

20
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estimates: these estimates, in general, are very conservative. However, in this

case, actual settlements are 250% of those predicted by Terzaghi's theory!

Desai and Saxena's work is characterized by a practical emphasis, both

in terms of the useful problems solved, and the rules of thumb proposed for

future analyses. With this work, the advantages of a finite element analysis

for consolidation are more fully realized.

Three of the assunmptions inherent in Terzaghis original consolidation

theory are sufficiently unrealistic to warrant development of a better model:

A. The soil skeleton is a linear elastic material (i.e. the volume compressi-

bility m v is constant)

B. Vertical Flow (one-dimensional behavior)

C. Applied (total) stresses are constant over time.

The various finite element models discussed, based on Biot's consolidation

theory, have removed the restrictions due to the second and third assumptions.

However, none of them have attempted to model the soil skeleton as an inelastic

material. Thus the area of consolidation-related research of greatest current

interest involves the inclusion of inelastic soil effects. In addition to the work

reported in the next section, the reader is referred to [11, 12, and 20].

4. SUMMARY OF GOVERNING EQUATIONS USED IN THIS WORK

For the sake of completeness many of the concepts and equations given

in the previous section are repeated here. With only minor changes in notation,

sign convention and theory the following is taken from reference [81; the

significant difference is the use of bounding surface plasticity theory to model

soil behavior.

Throughout the following sections the usual convention is used that free

indices can vary over their ranges and repeated indi-es must he summed over

their ranges; commas denote differentiation.

-C.:
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4.1 Concept of Stress

The pore water pressure, total (phenomological) stress, and effective stress

are denoted respectively as h, Tij, and a' ij. Pore water pressure is taken to

be positive in compression while the mechanics sign convention of tensile normal

stresses being positive is used for Tij and a'ij. For the purposes of the theoretical

development h is taken to be the total pore water pressure (i.e., including the

hydrostatic pressure). Later in the discussion of the finite element programs,

means for treating it either as total or "excess" pressure are discussed. the

effective stress a'ij is that portion of the total stress carried by the soil skeleton.

N% The relation between these three stress quantities is [S:

Tij i'.j - ah6ij (14)

Not all authors include the factor a in the above equation. It appears that its

presence permits consideration of the fact that the average stress contribution,

over a unit cell of soil, due to the pore pore water pressure may be less than

the actual pressure. For example, consider the idealized case illustrated in Fig.

10. However, for actual cohesive soils there is very little stress transfer through

particle contact, thus in practise a should be very nearly unity. In fact most

researchers [6,9,101 do not include the quantity and Ghaboussi, et al. [81 set

it equal to unity for all examples considered. Finally if a is included in this

expression and one wishes, for computational purposes, to express the governing

equations in variational form it must also be included in the conservation of

mass equation. Its physical significance in this second equation is not clear and

its inclusion would appear to be arbitrary. Thus equation (14) is rewritten with

a set equal to unity.

24

. . . ..' . .



be

S,

I...i '

-9 Figure 1O. COiiposite Material For Which 6<1

9!

S,.

.5,

Np



T .ij = O'ij - h ij (15)

4.2 Conservation of Mass

Denote the total volume of water that has flowed out of a unit volume

of soil by VW , the strain of the soil mass by cij (tensile strain positive) and the

total displacement of the soil by ui. For small strains

SIC (Ui, + uj,) (16)¢ij =  2 i j j,i

It is assumed that the soil particles and the pore water experience an elastic

decrease in volume due to an increase in pore water pressure; denoting the

corresponding bulk modulus by ', the resulting rate of volume change is 1/1r.

(Alternatively the parameter r can be thought of as a "penalty number" used

to approximately imp.,se an incompressibility constraint on the water and soil

particles.) This expression embeds the assumption that the mean stress component

of the effective stress produces no significant volume change of the soil particles.

For a completely saturated system the rate of volume change of the soil

b.i) most be balanced by the water flowing out and the rate of volume change

of the water and soil particles, i.e.

i - (17)

In [8] the factor a of equation (14) multiplies the ii term in eq. (17). The

presence of a in eq. (17) is necessary if it appears in eq. (14) and it is desired

to represent the problem by a variational statement; however, its physical

meaning in eq. (17) is unclear.
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4.3 Water Flow

An average displacement wi of the fluid relative to the soil is defined

such that winidA is the total amount of fluid that crosses the area dA (outwa d

normal n.). Thus the average (Lfcy) velocity o4 the fluid is

vq •

vi =(18)

Of course, the actual velocity i;. cie pore,, o t ,)d is much higher. Denote

the effective permeability tensor of J, , density and component
of gravity in the i direction as k*.. ,.y. The term effective

permeability, as used here, is equal to the rj', perineability coefficient

commonly used in civil engineering hte~at j- id by the unit weight of

water, which in turn is equal to the geor r- : i - eability used in physics

divided by the viscosity of the water. In t!i r; nf this notation, Darcy's law

governing the water flov is expressed as

v". V.= - k * .(h, - P (19)

_I j f n

For this application it is assurneci that t. - , xrmeability tensor is a

constant (i.e., its components are not stra, depc d, it lind symmetric.

4.4 Equilibrium

',* Denoting the total mate, ia: dit" - soil) by p, the linear

* equilibrium equations take on th,.i us-:

-ij , +pg1 j = 0 (20)

4.5 Strain - Effective Stress R,"iatioa'.

Soils are in general nonlin'a, ., 'ence, the stress strain

law will involve some type of hereditary ri L The implementation of

L'-'..,,..• ...' ", ., t,".: " ...',,,",,V,..,,.'v "." .'. ._- " "-'- ., ,- ' ". '..- .,- .- .'.+.'.t- , ", ,,' r',,',.,..,.'j.' , ,".'- ..' -,,,- " 2" .
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such a relationship usually requires a step-by-step (incremental) solution. For

a given time step N, this relationship can be evpressed in the form (for

convenience the increment number N will not be displayed but merely implied).

o'.. = D 1 j + Aa'O (21)

h:'2 For actual use in a finite element analysis this equation would be written in

matrix form [2,211 however, for the purposes of equation development the tensor

notation is preferable. In general the tensor of incremental properties DijkL is

a function of the solution (i.e., I&.j and Ac,), and thus some nonlinear solutioni' kt

scheme employing iteration is usually necessary. In many cases the term Aa'..

is dependent only upon the past history (0 - tN- 1) of the solution, however, in
general it may also depend upon Aa'. and Ackt. For the current bounding

surface appli-ation it is zero. Equation (20) is sufficiently general to accomodate

the model of interest in this study, the bounding surface model for cohesive
.1

soil, as well as linear elasticity and most other standard and advanced models.

For the actual functional form of DijkZ for bounding surface theory the reader

is referred to ref. [2,22].

C." 4.6 Boundary Conditions

For the sake of brevity only simple boundary condition are considered at

this time (i.e. spring and convection type conditions are excluded). At every

point on the boundary of the soil mass the rates of either the traction or

displacement components will be given, i.e.

f n or u. given (22)
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The components of the unit normal to the surface are n.. In addition the rate

of the pore water pressure "h" or the total flow of water (Q = wini) will be

known, i.e.

I or v ; 'en (23)

4.7 Incremental Equations

Because of the time dependent nature of the problem a step-by-step

solution scheme is required. rhis the \i r ibi l1s c' Xpressed in an incremental
form, i.e. for time N u N = u + ., ,v,- ,,.ously noted the subscripts

N on the incremental values ir i,',t P. . :.yed. It is now necessary

to express equations (15) - (23) in mc,

Consider first eq. (17). kc,311 tr-1 'e totai volume of water

that has flowed out of a unit voni,-ne of soil; v-1 ",uc of this quantity is simply

related to the average fluid velocity, i.e.

V. (24)

Substituting this expression into eq. (1, . '

i - i - I (25)

Integrating the above equat,,-, ,,'ields (if r is not a

constant then some form of I be required for the

last term):

.'i A i (26)

(If one prefers the above step c.n te i. tng a weighted residudl.5

*5Y of eq. (25) to zero.)
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Integrating eq. (19) over the time interval gives:

tN
,I . AV - f k*.. (h,. - pfg )  dt (27)

tN- I

It is assumed that k*ij is a constant (permitting it to be state dependent, hence

implicitly time dependent, would only slightly complicate the analysis), i.e.

k*1  ft f h,j dt + t" Pfgjdt (28)
tN-1  tN_1

In order to accomodate possible centrifuge applications the gravity term is

considered to be time dependent. The two integrals on the right are now

approximated using numerical integration. Trapezoidal integration is used on

the second term, while the more general rule

tN
f f F(t)dt = [(1-) F + WF At = IF + BAF]At (29)

At N 1N -1 I N IJ "N -I

is used for the first term. Thus, eq. (28) yields Ipfg1  1 [(p fgj)N- + (Pfg 1)N):

V., w - k 1  [l + O~h " p giAt (30)1- 9-)i lPg)- +(fjN

A'.twi k* i j [hN- I,+ 1 , j j g m(0

Values of 8 of 0, 1 and 1/2 give forward integration, backwards integration and

% the trapezoidal rule respectively; alternatively if one prefers to discretize time

by approximating the time derivative in eq. (19) using a finite difference operator

the cited values of 8 correspond to using a forward difference (Euler's method),

a backward difference and a central difference (Crank-Nicolson or mid-point'.4%

method); finally if one prefers the weighted residual interpretation [18] these

values of 6 correspond to a delta function weight at the backward point, a delta

function weight at the forward point and a uniform weight respectively. Values

30
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of 9 < 1/2 give schemes whic:h are only con-4itirnilly stable and should be

avoided. Theoretically e = 1/? should lead ro ihe greatest accuracy, but

practically may lead to oscillatio., pioblems. i . .etially, a value of 6 1

eliminates all oscillat, bu' I- OKr ct>.ristics. ier,Kiewicz

[18] suggests a comp i ,,;e ' f 4, :ill- "Galerkin's" method as

it bears a resemblance t' Ga.erkJn's ,. ghted - i..i method for boundary value

r problems. The unlimited possiot ities offered 4wi ,er-order integration formulas

(e.g., improved trapezoidal etc.). are lot -xpl .,r e '.ore.

The incremental forms -f eqns. 'I ,. ,' 20) are found -imply by
writing the equations at tNl ad tNT. ,- .g. Equations (22) and (23)

are converted to incremental for m., r the interval. The results

along with eqs. (21) (26) and (30) ire sun;,i i ow (eqs. (15) and (21) are

combined):

Field equations:

Ar. Di A ,, (31)

- k * [hN , . 17_ (32)
-N-1

AC (Au.. + At) (33)

ATij,i + A(Pg j) 0 (34)

bi + 6 E , (35)

boundary conditions:

AT. &I n or , . (36)

and

4
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T Q or Ah given (37)

This set of equations can be reduced in number by expressing them in

terms of primary dependent variables Aui and Ah. Equation (33) is substituted

into eq. (31) and the results into eq. (34), and eqs. (32) -ind (33) are substituted

into eq. (35) to yield:

(D ijk Uk,9.) - Ah,i 6ij + &'.. + A(pgj) = 0 (38)

and

k*1 [ + [h, -efh1],i At - Aui i - =
k ij [N ,j. 

r(

The corresponding boundary conditions are found by substituting eqs. (31), (32)

and (33) into eqs. (36) and (37):

AT. = (Dijl Auk,, - Ah 6.. + Ao'.. )ni or Auj given (40)

and

AQ= - k*. [hN1 + OAh, - pJ]n At or Ah given (41)

Thus eqs. (38) and (39) are the final form of the governing incremental

equations (for time step N), subject to the boundary conditions of eqs. (40) and

(41).

4.3 Variational Statement of the Problem

The solution of the boundary value problem given by eqs. (38) - (41) will,

except in the simplest cases, require numerical analysis. A finite element

solution of these equations can be formulated directly by applying Galerkin's
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weighted residual rnetnod or . T -. ively by s...ir' a stationary point for an

appropriate variational statemat of the pr.-?ier" u e lattr'r m-thod is used.

Using variational calculus -on(epts it is a ,.ple matter to contrLuci a

variational statement t.at is equvaleu to these equations; it has the fellowin

form:

6F = 0 (42)

where

F =°fffi A Dh
I', V

- k*. Ati,.

At k* (h , Q Au. dV€"i j N-1 1-,3

S AT. I A( i F (43

The volume of tie soil mas is Ls -,., .. njcI the surface areas over

which AT. and AQ are specified, by _S ,,! S- ., ternative course of action

is to bypass the incremental differentiai eq,:,. .. ,' t, obtain eq. (43) directly

from a variational statenent of the tyc - + 'q. (12) and a numerical

approximation to the convolutn tegralI.; iL .2n would, however, require

a somewhat different numeric-. it , iding surface plasticity

,, model.)

5. FINITE ELEMENT ANAL'y

. .. For the two- and three-< :i .... .rnalyses developed as

part of this project, standard . 'i:netric elements are

,=.vq"-

., .k .-. .-.-.- . .,. . -".-.-. ... . ,.. . -.. , , . .-, , , .- . . .'. , .,.. . - . - . . - . . . . - . -.-. . .
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used. This selection was based on a consideration of the ease of data preparation

and to a lesser extent on the results of an informal report by Professor Segerlind

of Michigan State which indicates that for time dependent problems the low

order elements experience fewer oscillation problems than the higher-order ones.

Because the steps required to proceed from eq. (42) to the finite element

equations are well documented (e.g., see [18]) only a few special considerations

are discussed here.

For a linear elastic material Dijk t is constant and the analysis proceeds

simply in a step-by-step fashion. However, for a cohesive soil characterized by

the bounding surface plasticity model, this tensor is highly dependent upon the

solution and hence each incremental analysis is decidedly nonlinear. The

approximate Newton-Raphson method used to solve the nonlinear problem is

throughly discussed in (231. The two programs are written so that a user

specified value of B between 0 and .5 is used to select an approximate

Newton-Raphson method on the spectrum from "tangent stiffness" to "successive

approximations" [23,24,25].

The one characteristic of the problem that requires some care is the

handling of the near-incompressibility of the soil when it is in a saturated

condition. The most general procedure for avoiding the accuracy and round-off

error problems associated with the finite element analysis of nearly incompressible

materials is the use of a "mixed formulation" analysis (19,261. Its use is natural

for soil consolidation problems because the additional mean pressure variable,

needed in the mixed formulation, is already included in order to describe the

flow problem, i.e., eq. (42) is a natural "mixed" statement of the problem.

The use of the mixed formulation for isoparametric elements must,

howe~ver, be done with considerable care. The problem is, if the near-

incompressibility condition is applied point-wise, the elements "lock-up", i.e.,
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become rigid and will not deform [181. To avoid this problem, ..-

incompressibility condition must not be satisfied point-wise but onl n s'

average sense. For a first order element only the average volume r ,arig for

the element can be made zero. This is accomplished if the term in eq. (4i

which measures the volume change, measures only average volume chanige (over

the element) and not point-wise change; the term in qtuestion is Ah Ar.. In

order to measure only average volume change, the element approximation for

Ah in this term must be a constant. However, the admissibility condition for

Ah which arises out of the presence of the term Ah,. Ah, i requires that it-

approximation, for this second term, be continuous between elements. This

incongruency can be easily dealt with by using a two field approxirnation for

Ah. The first (used in the term Ah AE.i) is constant for eaich ele'ent aid

thus not continuous across element boundaries, the second is continuous and is

used for all other terms in eq. (43). The two fields are related to a common

set of nodal 'anknowns. The continuous field is defined by the node point val'ues

and first order, isoparametric shape functions. The constant element value for

the discontinuous field is defined to be the average of tte values for the node.s

describing the element, thus

'-"~ h ) : ND Z-i I.

Ah N (45)

(lN

Ah( 2 ) = AHi Ni  ('$5

Where ND is the number of nodes defining the element (4 or S), N. ire tric,

first order isoparametric shape functions, AH. are the node point values of A h

for the nodes defining the element and 1. 1. When mne prcf-,r. to ,;: ,
,-.!

continuous approximation for Ah in all terms then Ii is rcplacW, i by .

the programs written to evaluate the analysis, the user can choose bet%%(-:)

these two alternatives by means of a simple inpuit code.
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The isoparametric-Laplacian grid generation scheme given in [27] has

been modified in order to replace the iterative solution by a direct solution;

the reduction in computational cost for this step in the analysis is dramatic.

For the three-dimensional code, this grid generation scheme has been generalized

to produce meshes consisting of 8-node brick elements.

For unsaturated or "ideal drained" conditions the h variable is dropped to

reduce the number of unknown's per node by one. However, for "ideal undrained"

conditions and a saturated soil, the h variable is retained to facilitate modeling

the resulting near -incompressibility (by means of the mixed formulation as

explained above).

The implementation of the bounding surface model followed directly the

instructions given in [22]. Reference [22] is a revision of a portion of reference

[2] to reflect a complete recoding of subroutine CLAY and its affiliated

subroutines. CLAY was recoded for the sake of clarity, to incorporate some

recent minor changes in the model, to improve numerical efficiency and to take

advantage of the structured programming concepts of "Fortran 77."1 For the

sake of illustrating the implementation procedure (according to the well-

documented instructions in [22]) of the bounding surface model in finite element

codes, no changes whatsoever were made in CLAY and its subroutines for this

application. As a result one unused subroutine is retained and there is duplicate

input for the quantity r. In order to simulate the modification of existing

programs, the two finite element programs developed for this project were first

* written as relatively general incremental-iterative nonlinear programs and then

the CLAY subroutine was included (by means of two simple call statements per

.4 program) as a modular unit.

The notation used in the following discussion of this implementation is

the same as used in [22]. Subroutine RPROP is called from subroutine PROPTY
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and reads the parameters which describe the bounding surface model. o'r

convenience the combined bulk modulus of the soil particles and pore water 1'

V.. (not really a parameter of the plasticity model) is read and stored separately

by PROPTY; the read for r in RPROP is a duplication and is not necessary.

The values of void ratio e and preconsolidation pressure p0 in array STOR arf

initialized for each element in Subroutine GEOM. The STOR array for t 1 ch

element is included in the "BLK6" records stored on unit 2.

The analysis is a mixed formulation (see Section 5) and thus in the CALL

to CLAY (from PROPTY) KIND = 0. The finite element program supplies h N

and AhN to CLAY through the "CALL". Because in this application it was

found convient to store r in the main program, the quantity GAM in the CALL

is not used. The combining of the arrays [D]N-I,KI and [DIN,K_ 1 (accordiri' ,

to eqs. (17) and (18) of [221) is done in PROPTY immediately after the CALL

to CLAY. The reversing of the sign convention for the normal stresses and

strains (and for the 2-D program, the expanding of the two-dimensional stress

and strain vectors to three-dimensional form) is done just prior to the CA!'

*to CLAY. For this small deformation analysis LARGE = 0. LOCIT is set equal

to ITMAX used for the global iteration and ERMAX is set equal to 10 tirnts
*i .,

the value used in the global iteration. THI has the value of .5 as used in the

main program. In all cases IDIM = 3 (this is true for plane strain conditions

as the finite element analysis calculates a z). Information concerning use of the

programs is to be found in [28] and [29].

Two-dimetWonal element matrices:

For plane strain conditions to exist, the only off diagonal term in tile
k*ij tensor that can be non-zero is k* (k* this coefficient is denoted .-s

kxy1r"
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Expressing the displacement approximations in terms of their node point

values and the shape functions, using eqs. (44) and (45) in the appropriate terms

and differentiating with respect to the node point unknowns yields the element

matrices. The terms arising because of the presence of the Ah variable are

explicitly given below:

4.IF AU

a, ff{ [  ]AU. + [ IAV. + - G (F i + pN i lH j + [ }RdA

i A -

IF mf{ A A

,F f- - (Fj + pNj)]AUj [- G]AV

.'+- . N - 0 At[k*1 l Fi + k*12 (FiG j + FiG i) + GiGl }AH.

- At{[k*11 (IN~1  Fk -F fg1 ) + k*12(lNl Gk - pfg2 )IF i
1 N-k k -Pg 2N1kGk-P9

+ fk* 12 (INtlk Fk - pfgl) + k*22 (HN_lk Gk - Pfg 2 )]Gi} RdA

V..

The terms not shown are identical to those for conventional stress analysis. For

plane strain conditions R = 1, p = 0, while for axisymmetry R = r and p --

The x(r) and y(z) derivatives of the shape functions (N.) are denoted respectively

by F. and G..

Three-dimensional element matrices:

.- . The terms in the element matrices arising from the presence of the Ah

*-..- variable are given below: (Note that AW. is the change in displacement in the

z-direction, not the average fluid displacement W i. Also, the derivatives of the

shape functions with respect to the global coordinate directions x, y and z are
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The empty brackets indicate terms which are identical to those found in a

conventional stress analysis.

6. EXAMPLES

During the check-out phase of the code development nu~merous example

problems were analyzed. Results from two of these analyses are given in

Figures I1I and 12.

The first example is a generalization, to include the compressibility of

the soil particles and pore water (r<- in eq. (17)), of the one-dimensional

Terzaghi problem. In Figure 11 the finite element predictions for the deflection

at the surface are compared to the exact results taken from [81. It should be

noted that the interpretation of the results given in [8] must be done with

care. The contents of Figure I give the impression that the solution only

depends on the parameter M/C v', whereas it is easy to show that it depends
Mk

instad o thequanity .Tj (the terms are defined in [81). The results given
v

in Figure 1 of [81 appear to have been run for the case of k/n = 1.0 and thus

the ambiguity caused no problem.

The second example considered the uniform loading of a soil layer that

is free to drain both at the surface and into a central sand drain. The finite

element mesh used in the analysis is illustrated in [28]. Figure 12 compares

the predictions for the surface displacement, at a radius 20 times that of the

:.. : ~drain, to the results given in [81.
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