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1. SCOPE OF PROJECT

The goal of the project is to develop two special purpose finite element
codes for the analysis of cohesive-0il, stress and deformation problems including
oonsolidation effects. Specifically the codes are to make use of the new
comprehensive, bounding surface plasticity constitutive model for cohesive soils

(1,2,3].

2, INTRODUCTION

The analysis is limited to small deformations and displacements, and
classical consolidation theory. In addition, it is restricted to two ideal conditions
of saturation. The first is when the soil is completely saturated and consideration
is given to the development and dissipation (due to water flow) of excess pore
water pressure; included in this case are ideal undrained conditions. The second
case assumes that the degree of saturation is sufficiently small (or ideal drained
conditions exist) that the pore water pressure is zero, and the presence of water
can be completely accounted for by the increased unit weight of the soil.

Consolidation theory for saturated soils is well established and can be
found in a number of references [e.g., 4-8]. The form of the theory used in
this work is taken from [8] with only slight modification and some changes in
notation; the theory is summarized in a later section.

A number of finite element analyses have been developed [6-12] for soil
consolidation problems; most have been limited to linear elastic material behavior
which is unrealistic for cohesive soils and none have used the newly developed
bounding surface plasticity theory. Be~ause the finite element concepts employed
in the programs are standard, the section describing the analysis will be brief

in nature,
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3. A BRIEF LITERATURE REVIEW OF THE THEORY AND FINITE ELEMENT
APPLICATIONS FOR CONSOLIDATION

This section reviews the theory of consolidation and examines several
representative Finite Element analyses for its evaluation. It is not an exhaustive
catalogue of research in consolidation theory and analysis, but instead attempts
to demonstrate some of the advaniages and the difficulties present in Finite

Element models.

3.1 Consolidation Theory

The birth of Soil Mechanics as a modern engineering discipline occurred
in the 1920's, when the Austrian engineer Karl ierzaghi proposed his theory of
the consolidation of saturated fine-grained soils under applied loads [13].
Terzaghi had been studying the phenomenon of the reduction in void space of
soils underlying foundations. He correctly perceived that the time-dependent
settlement from consolidation of these soils was due to the flow of water out
of the soil skeleton as the voids decreased in size. The permeability of the
soil dictates the rate at which these movements take place. The soil skeleton
thus acts like a large sponge in response to an appiied load.

Many of the most important featurcs of con<rlidation can be motivated
by considering a greatly simplified mechanical modei, the 'spring analogy', Fig. 1.

Consider a cylinder which contains a piston, valve, and elastic spring,
Fig. la. This cylinder is filled with an incompressible fluid. If a force is
applied to the piston with the vaive open, the force is initially carried by the
fluid, Fig. lb. With time, however, the flu drains from the cylinder under
the applied force, and more of the force is carried by the spring, Fig. lc.
Finally, a new equilibrium position is reached, Fig. ld, where all of the force

is carried by the spring, and the excess fluid piessui2 drops to zero.
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f M This simple analogy gives an accurate model of consolidation of saturated
‘L N soils. The spring represents the compressible soil skeleton, the fluid represents
fi
2 the pore water that fills the soil voids, and the valve represents the permeability
£ of the soil. It is easily seen that the rate of deformation depends upon the
Rt soil's permeability (i.e. how much the 'valve' is opened). For coarse-grained
%} . soils (sands, gravels) the permeability is so high that the deformation response
e
LR is essentially instantaneous. Thus, time-dependent consolidation effects are |
!
g generally observed only in fine-grained soils (silts, clays). The entire process é
294 i
154 |
g{ can be made precise by introducing the following stress concepts (here, in |
e contrast to later equations, compression is taken as positive): |
N T : the total stress due to the applied load
0=,
“ " o': that portion of T carried by the soil skeleton
A
W p : that portion of T carried by the pore water
N At any time after the load is applied:
e
5ay
£ L, T=0'+p (1)
.1 Terzaghi realized that the deformation of the soil depended directly upon
bl
b *
o o' and not T. He called o' the effective stress, and the excess pore pressure

p the neutral stress (since it does not directly affect the soil's deformation).

.-,f: This concept of effective stress is central to the study of soil mechanics, whether
)

-\.,jl . consolidation is present or not.

£

Terzaghi developed a simple model [14] for consolidation of soil layers,

) subject to the following assumptions, see Fig. 2.

e

1. The consolidating layer is horizontal, of infinite extent (laterally) and

.‘- iy

of constant thickness h.
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2

T 2. The permeability coefficient (k) and volume compressibility (mv) are
’ v constant throughout space and time. The volume compressibility m,,
:" represents the ratio of volumetric strain to applied effective stress.
Eiﬁ Since the consolidating layer is of infinite lateral extent, the vertical
P ' strain is the volumetric strain.

j :‘ 3. The pore water drains only in the vertical (z) direction.

;'. 4, The time rate of compression depends only upon low soil permeability:
o visco-elastic properties of the soil skeleton are not considered.

S 5. The fluid obeys Darcy's Law: flow is proportional to the gradient of

f? 2

pore water pressure.

L k
. V = = = . 2
5 Y, i (2
2 6. Strains are small compared to unity.
Lo, 7. The applied load T is constant for all time. Thus, since T is given,
':::j if the pore pressure p is known, so is the effective stress o', Eq. (1).
;: With t ese assumptions, Terzaghi derived a differential equation for this
.; one dimensional case:

X!
S
e S ___k =

- This equation is identical to the heat, or diffusion equation, and it can
AL
-;: be solved using separation of variables for various boundary conditions, Fig. 3.
Unfortunately, many of the assumptions made are unrealistic enough to warrant
a more general theory. In particular, material properties are not constant, and
.:.;f: consolidating layers are not of uniform width or of infinite lateral extent.
Ry
43
: However, Terzaghi's theory has been widely used in estimating foundation settle-
-.j. ments and consolidation rates.
1N
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& In 1941, Biot [4] extended Terzaghi's consolidation theory to the general
three-dimensional case, and considered loads that varied with time. If this
’I;‘ extended theory is restricted to fully saturated soils where the applied load is

constant over time, the generalized model is governed by the same equation as

the generalized heat (or diffusion) problem:

k

,\.\ . p = o Ps i (sum over i) (4)
2N As in the one-dimensional case, this equation can be solved using separation
:\ of variables for simple geometries and boundary conditions. In later papers
:-::-' (5,15,16,17], Biot extended his consolidation theory to include effects of
-__. anisotropy, inhomogeneity, and more general boundary conditions. (Unfortunately,
’ his choice of notation and physical constants underwent a number of changes.
‘ For simplicity and consistency in later comparisons with finite element solutions,
o Biot's results are paraphrased in the following development).

f The resulting system of differential equations for elastic consolidation of
::' an anisotropic soil mass can be summarized as follows:

\ u, : soil displacement vector

% €& ° strain tensor (tension positive)

" o'ij : effective stress tensor (tension positive)

> F, : body force vector (per unit mass)

,- . ij * permeability coefficient tensor

Eiikl : elasticity tensor in terms of effective stress

-‘ . sii : Kronecker delta

3 p; : pore water pressure (compression positive)

i v; & Darcy velocity

i 8

e

S e N e




Strain-Displacement Relations:

(o.. -5..p), +p =0 (6)

Effective Stress-Strain Relation:

o = Eijkl € (7)
Darcy's Law:
v sk p, ) - (8)
A
Equation of Continuity:
€. +v. . =0 | (9)

Biot solved these equations for such three dimensional cases as a
rectangular load distribution, Fig. 4, and a soil with an impervious top layer.
He also introduced analytic techniques for solution of a variety of consolidation
problems, modelling the consolidating layer as an elastic, semi-infinite half space.
Although the mathematical effort required to scive these equations is formidable,
the results are of limited prac.:...' i portnc . «.ce assuming infinite depth
for a soil layer can lead to serious overestimates of total and differential
settlements. The utility of Biot's wo.. > nxf o 'y Lnalytical solutions, but

in the development of a fairly general three dimensional theory of consolidation.

3.2 Some Finite Element Models for Consolidation

One of the main reasons for the widespread use of finite element models

in mechanics is that the method can be used orn ;oblem: with complex geometries,
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\i variahle boundary conditions, and non-homogeneous material properties. Since
A these difficulties prevent analytic solution of Biot's consolidation equations for
o
:,.: many useful problems, finite element procedures have becoine an important tool
;.5:1.
- in modelling soil consolidation behavior.
" Sandhu and Wilson [6] published one of the first finite element models
.__\.:
:?j for soil consolidation in 1969. This model combined two existing finite element
I
i models, one for the plane strain structural problem, and the second for the
- solution of the two-dimensional diffusion equation, see Eq. (4). A generalization
S
.\ of Biot's statement of Darcy's Law was used, which included the effect of body
28
: forces on the pore water:
s R, ¢ water density
.
:J;‘*- kij : permeability coefficient tensor
< Sandhu and Wilson used a variational approach for the derivation of
";;;j element equations, combining functionals corresponding to the two ocoupled
- problems:
LI
% ,
'_1 G(t) ’{{i"i; 'eii -ZP"ui,i +8' v, *P.i
"S -2, F *u;, +8' *p,; * %Fi}dv (11)
3 t
- where g' =1 and a% = [ a(t) b(t-s) ds
’.";‘. o
"’ In order to accomodate traction and flow boundary conditions (natural
boundary conditions for the two coupled problems), the following terms must be
P> added to the functional G(t) to obtain the desired functional F(t) for the problem:
P
~
\d
W)
)
o~ 1
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T. : components of prescribed traction vector

Sl : portion of boundary where traction is prescribed

o

prescribed normal flux on boundary

portion of boundary where flux s prescribed

N

direction cosines of outward normal

=

F(t)=G(t)-2fTi*uldsl-2j g *Q*pds, (12)
S

S 2

where T, = (o”. - <S”p)nj on 5, Q- +,n, ons,
»

Sandhu and Wilson evaluated the convolut. . integrals using a simple two
point forw ard difference formula t obtain a fully explicit time marching scheme.
A mixed interpolation model was used on the displacement and pore pressure
unknowns: displacements were interpolated using quadratic shape functions, and
linear shape functions were used to interpolate the pressure unknowns. Triangular
elements were used to define the mesh: theref re the elements incorporated
a six node linear strain triangle for the structural (displacement) problem and
a three node linear triangle for the fluid proolem (pore pressure). This gives
a total of fifteen degrees of freedomn for each element.

Sandhu and Wilson applied the finite elemuit model to two problems:
Terzaghi's one-dimensional soil column and Biot's rectangular strip load on an
elastic half-space. In both problems, ex:scllent agreement between the finite
element model and the analytic solutions was obrained, see Figs. 5 and 6. Some
discrepancy can be seen in the comparison »ith Bi:t's <trip load solution, but
these differences can be attributed tw tne {ait that the finite element mesh

(like the soil layers being modeli+J) 15 of i:nied extent, unlike Biot's elastic

half space.
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NN A later work by Ghaboussi and Wilson [8] will be discussed in a subsequent
. section.

2 In the discussion of Biot's generalization of Terzaghi's consolidation model,
it was noted that, under some circumstances, the heat or diffusion equation can

be used to model soil consolidation. Christian and Boehmer [7] developed a

&>

displacement-based finite element model for soil consolidation, and compared

A o
-

A results for the finite element analyses with a consolidation analysis based on
53 the diffusion equation. Recall that the diffusion form of the consolidation
i equation (appropriate when the applied load is constant over time) can be written: ‘
32 B e, Py (c, = 3 .}"‘\,) |
!r The volume compressibility m, however, is not a material constant. It |
*.' depends on the type of analysis. For instance, in the one-dimensional case, the
) volumetric strain is simply the vertical strain €, 0 M, is the reciprocal of |
‘ the constrained elastic modulus (¢, = € = 0). However, in three dimensions,
N the volumetric strain is €, =€ ¢+ ‘y + €y and the value of m, (and hence cv) |
' should be modified accordingly. Christian and Boehmer derived correct expres-
: sions for the consolidation coefficient c, and total stress T for an isotropic soil i
f mass for one, two, and three-dimensional cases (see Table .. With these
definitions for ¢ and T, Biot's consolidation theory can be summarized in the
,é general equation:
b4 CyPrjj =P - T (13)
3.:;: — (Note that if the applied load is constant over time, T = 0, and Eq. (13) becomes
;’." the diffusion equation).
g Christian and Boehmer formulated the consolidation problem so the only
~ unknowns were the displacements u. Because of this simplification, the near-
B! 15
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‘:f- Dimension T <,
204 () (2 )

N . x E(1 - v)
iy 3 z v )
& Yw(l+v)(l-2\))
A -

o, +0 x E
2N Two 2 Y, 201 + 91 - )

N 0, +0, +0, K E
Three Y, 3(1 - 29)
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incompressibility of the soil-water system causes near-infinite terms to occur
in the equation set (see Zienkewicz [10] for an explanation of this phenomenon). 1
In order to remove this problem, Christian and Boehmer re-introduce the 1
continuity condition in terms of pore pressures and volumetric strain into the
. equation set.
Christian and Boehmer compared their finite element model with experi-
mental data from consolidation tests in a triaxial load apparatus. Their results
agreed well with experimental and analog solutions. One surprising type of
behavior was discovered using the finite element model: pore pressures locally
increased with time for some of the triaxial tests. Although this effect was
short-lived, it was important because the approximate diffusion equation solution
cannot model this phenomenon. Apparently the average consolidation can increase

(a global effect) while -ome parts of the sample experience a decrease in

effective stress (a local increase in pore pressure).

The most useful results of this study by Christian and Boehmer were
twofold:  first, they showed that, except for early stages of consolidation,
diffusion solutions can be utilized when the problem is simple enough to make
such a solution meaningful. Second, they derived correct expressions for the
appropriate volume compressibility m,, depending upon the geometry of the
analysis. These values of m,, insure that, if a diffusion solution is used, it will
be one that is appropriate to the problem being analyzed.

However, the finite element model proposed by Christian and Boehmer,
because it did not directly model the pore pressure, required some manipulation
, in order to handle incompressibility of the water-soil system and certain types
of flow boundary conditions.

The finite element model proposed in 1971 by Yokoo [9], et al. is practially

identical with that proposed by Sandhu and Wilson [6] in 1969 (the latter paper

-------------------------
. -

-



Y W XWX A
' ";'/\;'."' )";’

!

. :.'q..t..\ v
LN

C

T,
2 an J

RN,

wWN,

was discussed earlier in this review). Yokoo's work was completely independent

of Sandhu and Wilson, and was more general than the earlier work. In addition,
the development of the finite element equations was presented in a more lucid
form by Yokoo, who carefully considered admissibility ind bouidary conditions
in the analysis. Another differance between the twc model: is that Yokoo
evaluated the convolution integrals that account for the time marching by using
a step-by-step method originally derived by Zienkiewicz and Parekh [19].

Yokoo considered two examples: the 'classic' one-dimensional problem
solvable using Terzaghi's theory, and a more practical axisymmetric problem,.
In the one-dimensional problem Fig. 7, excellent agreement between the finite
element model and Terzaghi's diffusion solution was obtained.

The axisymmetric probiem modelled by Yokoo was that of a uniform load
on a circular plate loading a uniform clay layer. The clay layer exhibits both
structural and hdraulic anisotropy. In addition, the applied load is not constant
over time. This problem is of interest because it is a useful approximation to
a common foundation problem and ininy of these characteristics (the lo: al
distribution of load, anisotropy, and tirne-cependent joading) violate the assump-
tions of Terzaghi's theory. Yokoo's paper also contains excellent graphical
interpretations of the evolution of pore w.iter pressure, and of the displacement
of the soil layer.

Perhaps the greatest adv:ntige that '« finite element method has over
classical (analytic) solutions for  nsoliiitiny s that irrcgular geometry causes
no serious difficulties in a finite element ana!vuis. This is particularly important
in Geotechnical Engineering, bccuuse soil deposits are generally irregular,
nonhomogeneous and anisotropic.

Desai and Saxena [10] take advan' e of this powerful feature of the

£

finite element method and mode! cunsolidati: n of a layered soil deposit underlving

» -f - -V H‘.'J'.'.h.',l ‘- :{“-".."-.. ..._ ""’-.,' ‘,~;_, .:" ...
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..«,x\"v a three building system. The actual geometry of the building site is shown in
Fig. 8.

) Desai and Saxena's analysis, like the others considered earlier, is based
A0Y on Biot's consolidation theory. Their model uses a mixed interpolation scheme,
h . with linear interpolation for pore pressure and quadratic approximations for
- displacement. A centered-difference (Crank-Nicolson) time stepping procedure
is used to numerically integrate the convolution integrals that account for the
temporal dependence of the variational terms. A useful feature of their model
is the ability to vary the length of the time step: since consolidation solutions
exhibit bohavior resembling exponential decay, the time steps can be lengthened
as the solution asymptotically approaches the steady-state solution. (The parti-
cular problem is modelled over a period of aimost twelve years, with time steps
ranging from one to forty days.)

Because soil deposits are heterogeneous, the determination in geotechnical
engineering of material parameters often becomes a statistical exercize. For
this reason, Desai and Saxena analyzed several models of the three-building
foundation problem, each with slightly different material properties and/or degree
of anisotropy. The results they obtain are very interesting, Fig. 9.

Five of the six finite element analyses can be se~n to closely approximate

the actual measured consolidation settlement (shown for building 2). The one
analysis that gives a poor result has an unlikely type of anisotropy, where the
vertical permeability exceeds the horizontal permeability by a factor of one
hundred (the horizontal permeability is generally larger). Desai and Saxena also
calculate an estimate for the probable ultimate settlement of this building, using
Terzaghi's one-dimensional consolidation theory. Although this theory clearly

does not apply here, it is extensively used in similar cases to obtain settlement

”*‘f*";f;gb-.':-f {-'1‘:‘;:'.;¢'..;;:q' o« .b( o - -'..J' \1‘..- .. .‘-- Wt
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> estimates: these estimates, in general, are very conservative. However, in this
>
e, case, actual settlements are 250% of those predicted by Terzaghi's theory!
. Desai and Saxena's work is characterized by a practical emphasis, both
o
.;:-; in terms of the useful problems solved, and the rules of thumb proposed for
AL
future analyses. With this work, the advantages of a finite element analysis
for consolidation are more fully realized.
zf:fj Three of the assuraptions inherent in Terzaghi's original consolidation
‘o theory are sufficiently unrealistic to warrant development of a better model:
P A. The soil skeleton is a linear elastic material (i.e. the volume compressi-
'J bility m_ is constant)
> B. Vertical Flow (one-dimensional behavior)

v C. Applied (total) stresses are constant over time.
:_ The various finite element models discussed, based on Biot's consolidation
- theory, have removed the restrictions due to the second and third assumptions.
W5 How ever, none of them have attempted to model the soil skeleton as an inelastic
-.l
:;:.' material. Thus the area of consolidation-related research of greatest current
T

On,

. interest involves the inclusion of inelastic soil effects. In addition to the work
reported in the next section, the reader is referred to [l1, 12, and 20].
3y
.~ 4. SUMMARY OF GOVERNING EQUATIONS USED IN THIS WORK

o

For the sake of completeness many of the concepts and equations given |

3 : : : , |
-$. in the previous section are repeated here. With only minor changes in notation,
':;f . sign convention and theory the following is taken from reference [8]; the
= significant difference is the use of bounding surface plasticity theory to model
E‘;ﬁ; soil behavior.

;;:j Throughout the following sections the usual convention is used that free
s
;IT indices can vary over their ranges and repeated indi~es must he summed over
B . . ‘e
e their ranges; commas denote differentiation.
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§.1 Concept of Stress
The pore water pressure, total (phenomological) stress, and effective stress

are denoted respectively as h, T; and U'ij' Pore water pressure is taken to

i’
be positive in compression while the mechanics sign convention of tensile normal
stresses being positive is used for Tij and o'ii. For the purposes of the theoretical
development h is taken to be the total pore water pressure (i.e., including the
hydrostatic pressure). Later in the discussion of the finite element programs,
means for treating it either as total or "excess" pressure are discussed. the
effective stress c'ii is that portion of the total stress carried by the soil skeleton.
The relation between these three stress quantities is [8]:

Tij = o'“. - (thii (14)

Not all authors include the factor a in the above equation. It appears that its
presence permits consideration of the fact that the average stress contribution,
over a unit cell of soil, due to the pore pore water pressure may be less than
the actual pressure. For example, consider the idealized case illustrated in Fig.
10. However, for actual cohesive soils there is very little stress transfer through
particle contact, thus in practise a should be very nearly unity. In fact most
researchers [6,9,10] do not include the quantity and Ghaboussi, et al. [8] set
it equal to unity for all examples considered. Finally if a is included in this
expression and one wishes, for computational purposes, to express the governing
equations in variational form it must also be included in the conservation of
mass equation. Its physical significance in this second equation is not clear and
its inclusion would appear to be arhitrary. Thus equation (14) is rewritten with

a set equal to unity.
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T.. =0'.. - hé.. (15)

4.2 Conservation of Mass
Denote the total volume of water that has flowed out of a unit volume
of soil by Vw, the strain of the soil mass by ei]. (tensile strain positive) and the

total displacement of the soil by u;e For small strains
e..:-;-(u. .+ U, ) (16)

It is assumed that the soil particles and the pore water experience an elastic
decrease in volume due to an increase in pore water pressure; denoting the
corresponding bulk modulus by T, the resulting rate of volume change is h/T.
(Alternatively the parameter T can be thought of as a "penalty number" used
to approximately imp:se an incompressibility constraint on the water and soil
particles.) This expression embeds the assumption that the mean stress component
of the effective stress produces no significant volume change of the soil particles.

For a completely saturated system the rate of volume change of the soil
éii) most be balanced by the water flowing out and the rate of volume change

of the water and soil particles, i.e.

ii

(17)

4 S

= -V"z-
w

In [8] the factor a of equation (14) multiplies the éii term in eq. (17). The
presence of a in eq. (17) is necessary if it appears in eq. (14) and it is desired
to represent the problem by a variational statement; however, its physical

meaning in eq. (17) is unclear.
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4.3 Water Flow
An average displacement w, of the fiuid relative to the soil is defined
such that winidA is the total amount of fluid that crosses the area dA (outwa:d

normal ni). Thus the average (Durcy) velocity of the fluid is

Vi = wi (18)

Of course, the actual velocity i, the pores of tix soil is much higher. Denote

the effective permeability tensor of the «ot, '~ 7.1 density and component
of gravity in the i direction as k*lj. PRI v :ly. The term effective
permeability, as used here, is equal w© the rat. . -« perineability coefficient
commonly used in civil engineering literatic- . ided by the unit weight of
water, which in turn is equal to the geor~ it [ -rineability used in physics

divided by the viscosity of the water. In ictiris of this notation, Darcy's law

govemning the water flow is expressed as

v = = - LI .- IS
wi=vis -k l)(h,) LIS (19)
For this application it is assurnea that tiw ¢ii- v - permeability tensor is a

constant (i.e., its components are not straui depend-ntt and symmetric.

4.8  Equilibrium
Denoting the total mate:ia! densit 1,00 . soil) by p, the linear

equilibrium equations take on theu us..

T + pg. = 0 (20)

ijoi }

8.5 Strain - Bffective Stress Reiations
Soils are in general nonlinear, inelasi. : . ~ence, the stress strain

law will involve some type of hereditary r+iat - . The implementation of




such a relationship usually requires a step-by-step (incremental) solution. For
a given time step N, this relationship can be evpressed in the form (for

convenience the increment number N will not be displayed but merely implied).

. Ac'.. =D

ij i jke Aek!, + Aa'i. (21)

Jo

For actual use in a finite element analysis this equation would be wriften in
matrix form [2,21] however, for the purposes of equation development the tensor
notation is preferable. In general the tensor of incremental properties Dijk!. is
a function of the solution (i.e., Ao'i. and Aekz), and thus some nonlinear solution

)
scheme employing iteration is usually necessary. In many cases the term Ao'ij
o
is dependent only upon the past history (0 - tN-l) of the solution, however, in
general it may also depend upon Ao'ij and Be,. For the current bounding

surface appli~ation it is zero. Equation (20) is sufficiently general to accomodate

the model of interest in this study, the bounding surface model for cohesive
soil, as well as linear elasticity and most other standard and advanced models. v
For the actual functional form of Dijk!, for bounding surface theory the reader

is referred to ref. {2,22).

4.6 Boundary Conditions

For the sake of brevity only simple boundary condition are considered at
this time (i.e. spring and convection type conditions are excluded). At every
point on the boundary of the soil mass the rates of either the traction or

displacement components will be given, i.e.

t -,

, . n. or Gj given (22)

j i
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The components of the unit normal to the surface are n. In addition the rate
of the pore water pressure "h" or the total {low of water (Q = wini) will be

known, i.e,

h or o) Loven (23)

4.7 Incremental Equations

Because of the time dependent nature of the problem a step-by-step

solution scheme is required. Thuas the variables 5 1 »xpressed in an incremental

form, i.e. for time N LN F Uiy A”i' to. - i viously noted the subscripts
N-

N on the incrementai values 1ir¢ 1.3t e+ - njgyed. It is now necessary

to express equations (15) - (23) in incic ot

Consider first eq. (17). Recall thao . G0 iew the total volume of water

that has flowed out of a unit volumie of soil; v :urc of this quantity is simply

related to the average fluid velocity, lL.e.

Vo= Vi =Y, (24)

Substituting this expression into eq. {17/ p:ves

. . }lw
wi,l z - Ell - r (25)
Integrating the above equat. o i ¢ P o yields (if T is not a
{
constant then some form of « » <. - : 'd be required for the
last term): ‘
N (26)
(If one prefers the above step can be -.=v. -+ ating a weighted residual

of eq. (25) to zero.)
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Integrating eq. (19) over the time interval gives:

t
N
. =- [ k* . (h,, - pe8;) dt (27)
t t) ) )
N-1
It is assumed that k*"ii is a constant (permitting it to be state dependent, hence

implicitly time dependent, would only slightly complicate the analysis), i.e.

N N
. = - k‘ij tf h,j dt «+ tI pfgjdt (28)
N-1 N-1
In order to accomodate possible centrifuge applications the gravity term is
considered to be time dependent. The two integrals on the right are now
approximated using numerical integration. Trapezoidal integration is used on

the second term, while the more general rule
N
tf F(t)dt = [(1-0) F , + OFJAt = [F | + 68F]At (29)
N-1

. . . 1
is used for the first term. Thus, eq. (28) yields (pfgi =3 [(pfgj)N-l + (pfgj)N] )

Values of 8 of 0, 1 and 1/2 give forward integration, backwards integration and
the trapezoidal rule respectively; alternatively if one prefers to discretize time
by approximating the time derivative in eq. (19) using a finite difference operator
the cited values of 8 correspond to using a forward difference (Euler's method),
a backward difference and a central difference (Crank-Nicolson or mid-point
method); finally if one prefers the weighted residual interpretation [18] these
values of § correspond to a delta function weight at the backward point, a delta

function weight at the forward point and a uniform weight respectively. Values
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of 8 < 1/2 give schemes which are only consiticnally stable and should be
avoided. Theoretically 8 = 1/2 should jead t» the greatest accuracy, but
practically may lead to oscillativi: problems. 7i.. vetically, a value of 6 = |
eliminates all oscillatic  but © o “oeve e narzcteristics.  Cienkiewicz
[18] suggests a compi. e . - of oobadb alls "Galerkin's" method as
it bears a resemblance t» Ga:erkin's .. ghted res. - 4, method for boundary value
problems. The unlimited possio: ities offercd by . wer-order integration formulas
(e.g., improved trapezoidal etc.). are ~ot oxplire fere,

The incremental forms of egns. (i3, =) ans (20) are found imply by

writing the equations at ty, | and 1, no s . .3. Equations (22) and (23)
are converted to incremental fcrm t, . - . . r the interval. The results
along with eqs. (21) (26) and (30) ure sum:i .- . . low (egs. (15) and (21) are
combined):

Field equations:

Atii =Dy Byt (31)
T L. T PR (32)
B, = %(Aui’j oo ) (33)
Atij,i + A(pgj) 20 (34)
vy i ovobe, , (35)

boundary conditions:

A‘rj = Ax” npoor L (36)

and
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X or Ah given (37)

)
This set of equations can be reduced in number by expressing them in

terms of primary dependent variables Au, and Ah. Equation (33) is substituted
into eq. (31) and the results into eq. (34), and egs. (32) and (33) are substituted

into eq. (35) to yield:

(D Au ) . - Ah,. §.. + Ao +A(pgj).-.0 (38)

ijke ~k,27,i i ij l]o,i

and

{k*ij[hN_l, + 8Ah,. - p'fgi]},i At - Au, . - 0 (39)

j- ) 1,1

The corresponding boundary conditions are found by substituting egs. (31), (32)

and (33) into eqs. (36) and (37):

= (D,

J i ke Au

K, Ah 6” + Ao'ijo)ni or Auj given (40)

and
= - k*”[hN_l + GAh - r.)fgi]ni At or Ah given (41)

Thus egs. (38) and (39) are the final form of the governing incrementai
equations (for time step N), subject to the boundary conditions of eqs. (40) and

(41).

4.8 Variational Statement of the Problem
The solution of the boundary value problem given by egs. (38) - (41) will,
except in the simplest cases, require numerical analysis. A finite element

solution of these equations can be formulated directly by applying Galerkin's

32
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weighted residual metnod or .irerncnively by coolung a stationary point for an
appropriate variational statemec... of the probiem: e latter method s used.
Using variational calculus ~oncepts it is a < i.ple matter to construci a

variational statement that is equivaient to these equations; it has the following

form:
6F = 0 (42)
where
sz{,“‘é Be i Doy B8 - 700 L"I‘LAD)_Z
N N
- At K*"(hl\‘-l,i oY Si) Aui}dV
- AT Buds - [oag o (43)
Sl 82

The volume of ine soil muss 15 dervte. by v ind the surface areas over

which ATi and AQ are specified, by 51 and 3 ““oa aiternative course of action

-
4
L

is to bypass the incremental differential eq. ..o ¢ (o obtain eq. (43) directly

from a variational statement of the type w.ovvr o og. (12) and a numerical

approximation to the convolution iaegrals; thr. e~ ' would, however, require
a somewhat different numeric.. 1t oo o ¢ nding surface plasticity
model.)

3. FINITE ELEMENT ANALY

For the two- and three-d:u- . . -~ analyses developed as

part of this project, standard i L “irametric elements are
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used. This selection was based on a consideration of the ease of data preparation

and to a lesser extent on the results of an informal report by Professor Segerlind
of Michigan State which indicates that for time dependent problems the low
order elements experience fewer oscillation problems than the higher-order ones.
Because the steps required to proceed from eq. (42) to the finite element
equations are well documented (e.g., see [18]) only a few special considerations
are discussed here.

For a linear elastic material Dijk % is constant and the analysis proceeds
simply in a step-by-step fashion. However, for a cohesive soil characterized by
the bounding surface plasticity model, this tensor is highly dependent upon the
solution and hence each incremental analysis is decidedly nonlinear. The
approximate Newton-Raphson method used to solve the nonlinear problem is
throughly discussed in [23]. The two programs are written so that a user
specified value of B between 0 and .5 is used to select an approximate
Newton-Raphson method on the spectrum from "tangent stiffness" to "successive
approximations" [23,24,25].

The one characteristic of the problem that requires some care is the
handling of the near-incompressibility of the soil when it is in a saturated
condition. The most general procedure for avoiding the accuracy and round-off
error problems associated with the finite element analysis of nearly incompressible
materials is the use of a "mixed formulation" analysis [19,26]. Its use is natural
for soil consolidation problems because the additional mean pressure variable,
needed in the mixed formulation, is already included in order to describe the
flow problem, i.e., eq. (42) is a natural "mixed" statement of the problem.

The use of the mixed formulation for isoparametric elements must,
however, be done with considerable care. The problem is, if the near-

incompressibility condition is applied point-wise, the elements "lock-up", i.e.,

N
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334 become rigid and will not deform (18]. To avoid this problem, i near-

' incompressibility condition must not be satisfied point-wise but onlv in sonie

h average sense. For a first order element only the average voluine ~hange for
o

::; the element can be made zero. This is accomplished if the term in eq. (47
'}' which measures the volume change, measures only average volume change (over
. the element) and not point-wise change; the term in question is Ah Ar.“. In )
' order to measure only average volume change, the element approximation for
. Ah in this term must be a constant. However, the admissibility condition for
D Ah which arises out of the presence of the term Ah,j Ah,, requires that 1ts
:\‘.‘ approximation, for this second term, be continuous between elements. This
:\ incongruency can be easily dealt with by using a two lield approxunation for
Ah. The first (used in the term Ah Ag;) is constant for each element and
i:: thus not continuous across element boundaries, the second is continuous and is
:: used for all other terms in eq. (43). The two fields are related to a common

:, set of nodal unknowns. The continuous field is defined by the node point vaiues
o

:'-j and first order, isoparametric shape functions. The constant element value for
.-‘: the discontinuous field is defined to be the average of the values for the nodes
’ describing the element, thus

L:': ah(|) = <5 M, L (4%)
- Bhizy = 8 N (45
' Where ND is the number of nodes defining the element (4 or %), Ni are the
. first order isoparametric shape functions, AH, are the node point values of Ah
\ for the nodes defining the element and I, = 1. When Hne prefers 1o use b
-

continuous approximation for Ah in all terms then li is replacad by .\'j, Po
.

‘ the programs written to evaluate the analysis, the user can choose betwe:n
L

‘j' these two alternatives by means of a simple input code.

)
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’ The isoparametric-Laplacian grid generation scheme given in [27] has
been modified in order to replace the iterative solution by a direct solution;
1?::" the reduction in computational cost for this step in the analysis is dramatic.
‘:*' For the three-dimensional code, this grid generation scheme has been generalized
.- to produce meshes consisting of 8-node brick elements.
“ For unsaturated or "ideal drained" conditions the h variable is dropped to
': » reduce the number of unknown's per node by one. However, for "ideal undrained”
\ conditions and a saturated soil, the h variable is retained to facilitate modeling
*': the resulting near-incompressibility (by means of the mixed formulation as
5 5 explained above).
 ‘ The implementation of the bounding surface model followed directly the
E:j instructions given in [22]. Reference [22] is a revision of a portion of reference
u
.-Ef [2] to reflect a complete recoding of subroutine CLAY and its affiliated
._ subroutines. CLAY was recoded for the sake of clarity, to incorporate some
.‘ recent minor changes in the model, to improve numerical efficiency and to take
f advantage of the structured programming concepts of "Fortran 77." For the
' y sake of illustrating the implementation procedure (according to the well-
Ez.;’ dqcumented instructions in [22]) of the bounding surface model in finite element
,\ codes, no changes whatsoever were made in CLAY and its subroutines for this
o _. application. As a result one unused subroutine is retained and there is duplicate
- -
-'Igjfl input for the quantity I'. In order to simulate the modification of existing
i programs, the two finite element programs developed for this project were first
\ written as relatively general incremental-iterative nonlinear programs and then
223 the CLAY subroutine was included (by means of two simple call statements per
.‘_ program) as a modular unit.
,' The notation used in the following discussion of this implementation is
’: the same as used in [22]). Subroutine RPROP is called from subroutine PROPTY
%
ot




and reads the parameters which describe the bounding surface model. .or
convenience the combined bulk modulus of the soil particles and pore water T
(not really a parameter of the plasticity model) is read and stored separately
by PROPTY; the read for I in RPROP is a duplication and is not necessary.
The values of void ratio e, and preconsolidation pressure Py in array STOR are
initialized for each element in Subroutine GEOM. The STOR array for cach
element is included in the "BLK6" records stored on unit 2.

The analysis is a mixed formulation (see Section 5) and thus in the CALL
to CLAY (from PROPTY) KIND = 0. The finite element program supplies h,, .
and Ahy to CLAY through the "CALL". Because in this application it was
found convient to store T in the main program, the quantity GAM in the CALL
is not used. The combining of the arrays {D] N-1,K-1 and [D] N,K-1 (accordine
to egs. (17) and (18) of [22]) is done in PROPTY immediately after the CALL
to CLAY. The reversing of the sign convention for the normal stresses and
strains (and for the 2-D program, the expanding of the two-dimensional stress
and strain vectors to three-dimensional form) is done just prior to the CALL
to CLAY. For this small deformation analysis LARGE = 0. LOCIT is set cqual
to ITMAX used for the global iteration and ERMAX is set equal to 10 times
the value used in the global iteration. THI has the value of .5 as used in the
main program. In all cases IDIM = 3 (this is true for plane strain conditions
as the finite element analysis calculates oz). Information concerning use of the

programs is to be found in [28] and [29].

Two-dimensional element matrices:

For plane strain conditions to exist, the only off diagonal term in the

k*ij tensor that can be non-zero is k*x (k*rz); this coefficient is denoted as

y

k*) 2
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Expressing the displacement approximations in terms of their node point
values and the shape functions, using eqs. (44) and (45) in the appropriate terms
and differentiating with respect to the node point unknowns yields the element
inatrices. The terms arising because of the presence of the Ah variable are
explicitly given below:

I

3F i
360 /I\f{[ JAU; « [ D8V, e [ gt (Fp e oNDTAH, + [ T]RdA

tH

1.
[0 180+ 0 1V s - gL GaH + [ 1}RdA
A i j i°7

i

o - [f{1- i} (F. + pN.)]AU, + [- iG.]AV.
7\ A AR i TR S

1
+ {- T Ni Nj -0 At[k“"ll FiFj + k*IZ(FiGj + FjGi) + k*22

GiGj]}AHi

- At“k*u(HN-xk Fie - pg8)) + k*IZ(HN-lk G - 048))IF,
+ [k*lz(HN_lk Fi - 048)) + k*zz(m_lk G, - 048,)1G;} RdA

The terms not shown are identical to those for conventional stress analysis. For

plane strain conditions R = I, p = 0, while for axisymmetry R =r and p = rl
The x(r) and y(z) derivatives of the shape functions (Ni) are denoted respectively

by Fi and Gi’

Three-dimensional element matrices:

The terms in the element matrices arising from the presence of the Ah
variable are given below: (Note that AWi is the change in displacement in the
z-direction, not the average fluid displacement Wi‘ Also, the derivatives of the

shape functions with respect to the global coordinate directions x, y and z arc
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The empty brackets indicate terms which are identical to those found in a

conventional stress analysis.

6. EXAMPLES

During the check-out phase of the code development numerous example
problems were analyzed. Results from two of these analyses are given in
Figures 11 and 12,

The first example is a generalization, to include the compressibility of
the soil particles and pore water (I'<= in eq. (17)), of the one-dimensional
Terzaghi problem. In Figure 11 the finite element predictions for the deflection
at the surface are compared to the exact results taken from [8]. It should be
noted that the interpretation of the results given in [8] must be done with
care. The contents of Figure | give the impression that the solution only
depends on the parameter M/Cv’ whereas it is easy to show that it depends
instead on the quantity CM—k;‘- (the terms are defined in {8]). The results given
in Figure 1 of (8] appearvto have been run for the case of k/n = 1.0 and thus
the ambiguity caused no problem.

The second example considered the uniform loading of a soil layer that
is free to drain both at the surface and into a central sand drain. The finite
element mesh used in the analysis is illustrated in [28]. Figure 12 compares
the predictions for the surface displacement, at a radius 20 times that of the

drain, to the results given in [8].
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