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\. Robert Schreiber

, The focus of research was the application of systolic array architectures to con~utaions in numerical
linear algebra, and the applications of these architectures to digital signal processing (DSP) and elliptic partial

differential equations (PDE). Research was conducted on a number of topics, first I will discuss those for

which complete reports have been written.

M oby systoli array-
ier work by Jenuemen and r,,un was extended: many practical questions concerning

application to problems in DSP were discussed [1]. The literature on factorization of banded
matrices was unified and extended [6).

,. Sinlar value and eigenvalue computations;-
. -Anew arciitectui-fbr sligulrv-alu d-e'mposition (SVD) was developed [31. 1 also considered
7 ,the use of a proposed systolic architecture for eigenvalue and SVD when the matrix is too large for

the systolic array to accommodate 14,7).

wt-Elliptic PDEj -Js
Tme-,sig-or a highly parallel architecture for the multigrid method and an analysis of its
performance was given in joint work with T. Chan of Yale [2,81.

,. .o Updating Cholesky factorizations. .-

The problem is to recompute the Cholesky Factorization ( A = LLT ) of a symetric positive
definite matrix when it is changed by a matrix of low rank. This arises often in DSP and also in
quasi-Newton methods in optimization. I described several systolic architectures in joint work
with my student, W.P. Tang (5].

Several projects were begun, and work continues on these. During my stay at the Royal Institute of
*Technology in Stockholm I began work with Dainis Millars on construction of systolic arrays with custom

VLSI and off-the-shelf VLSI components. A report is forthcoming; a patent for the custom chip will be
* sought.

Work also began in Stockholm, with Erik Tiden and Bjorn Lisper, on the synthesis and verification of

systolic arrays.

With Lars Elden of Linkoping University, I developed a systolic architecture for linear, discrete ill-

* posed problems. The report will appear early in 1984.

Earlier work of mine on systolic methods for the eigenvalue problem raised the issue of pipelining
-iterations of the QR algorithm. The difficulty in doing so is in finding a suitable shift strategy. A student,

* W. Wilson, has begun some numerical experiments, his results, unfortunately, are not encouraging. A report

will appear in 1984.
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*Finally, work has begun on the implementation of several modern high resolution direction-finding

algorithms in DSP.
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* A Systolic Architecture
for Singular Value Decomposition

Une architecture systolique
pour la ddcomposition en valeurs singulires

R. Scbreiber
(Stanford, USA)

we discuss the implementation using VLSI chips of
these systolic eigenvalue and SVD arrays.

1 INTRODUCTION
The SVD is often used to regularize ill-condi-

Systolic arrays are highly parallel computing tioned problems. In these there are p < n large
. structures specific to particular computing tasks. singular values and n-p that are much smaller.

They are well-suited for reliable and inexpensive What is needed is the pseudoinverse of the rank p
implementation using many identical VLSI compon- matrix closest (with respect to the 2-norm) to A,
ents. The designs consist of one and two-dimen- T T
sional lattices of identical processing elements. A =u o vI + ... + u a vp
Communication of data occurs only between neigh- A p)
boring cells. Control signals propagate through We have recently developed a new algorithm to com-
the array like data. These characteristics make +

A that involves nothing but a sequence of mat-it feasible to construct very large arrays. )t

rix-matrix products, for which systolic arrays are
Several modern methods in digital signal pro- well-known (see, e.g., [9].) An alternate form of

cessing require real-time solution of some of the the algorithm can be used to compute the related
basic problema of linear algebra [13J. Fortunately orthogonal projection matrix
systolic arrays have been developed for many of
these problems [4,10,12). But several gaps remain. P = V vT + ... + v vT

Only partially satisfying results have been obtain- (P) 1P P
- ed for the eigenvalue and singular value decomposi-

tions, for example.
2 AN SVD ARCHITECTURE

Here we consider a systolic array for the sing-
ular value decomposition (SVD). An SVD of an m x n Let A be a given matrix. The singular values
(m > n) matrix A is a factorization of A will be obtained in two phases:

A - U I VT 1. A is reduced to an upper triangular
matrix B with bandwidth k+l,

"*' where L is m x n with orthonormal columns, =
. diag(u l, .2 ..., on) with a, > 02 a "' b = 0 if i - j or i " j-k,

2' n 2 nij
and V is orthogonal. There are many important
applications of the SVD 11,6,131. and B - QAP where Q and P are orthogonal.

There have been several earlier investigations 2. B is diagonalized by an iterative process

of parallel SVD algorithms and arrays. First, equivalent o o plicitly shifted QR

Finn, Luk, and Pottle describe a systolic structure
of n'/2 processors and two algorithma that use it. With k-l this is the standard method of Golub

* But the convergence of their algorithms has not and Reinsch [7]. The reason for allowing k>l is an
been proved and may be slow [3]. Heller and Ipsen increase in the parallelism. In phase 1, kn proc-

- [8] describe an array for computing the singular essors are employed; the time is O(mn/k). In
values of a banded matrix with bandwidth w. They phase 2, 2k2 processors are used; the time per it-

' use O(w) processors and O(wn2) time. Brent and eration is 6n+O(k).

Luk (2] describe an n/2 processor linear array
that implements a one-sided orthogonaiization
method and converges reliably in O(n log n) time. 2.1 Reduction to banded form

Unfortunately the processors in this array are The reduction step uses a k x n trapezoidal
quite complex, and it is not clear that matrices array that has been described in detail previously
with more than n columns can be efficiently (121. Let the m x n matrix X be partitioned as
accomodated.

" In this paper we discuss two topics. First, 1 1  1
we show how an architecture for computing the X
eigenvalues of a sysmetric matrix can be modified LX21 22J
to compute singular values and vectors. Second,

I.O.P. IULLITIN 01 LA 0114CTION 01 ITUOIS 1T RICHIRCMI11
1111M C - MATHIMATIOUIS #4PORMAIOUE f" I. 1U3. op. 143-146
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• where X is k x k. The array applies a sequence are orthogonal.
of Givens rotations to the rows of X to zero the
first k columns below the main diagonal. If Q is First we consider QR iteration on BT B without
the product of these rotations, then shifts. This can be realized by the procedure

1R11 Y2 
I. Find Q such that

.QX - 11 
uhta

QX Y2] L(i) . )
M 

Q)(i)

- where R is k x k upper triangular. Rill Y1 2, is lower triangular,

Y,2 and the parameters of the rotations that make F i
up Q all flow out from the array. The time requir- 2. Find p such that
ed is m. (Here and below we give "times" in units B(i+l) = P(i)L(i)
of the time required for an individual cell in the
array to carry out its computation.),". " "is upper triangular.

"" Now let
Both steps of this procedure can be carried out by
the Heller-Ipsen (HI) array [8]. This is a k x w

A = 11 12 rectangular array for QR factorization of w-diag-
onal matrices. In this array, plane rotations are

21A2 generated at the left edge and move to the right,

be the given matrix. Send A through the array to affecting a pair of matrix rows. Take w = k+l.

produce B(i) enters the matrix at the bottom, each diagonal
entering, one element at a time, into one of the

R C processors. The array annihilates the elements of

Q
A 

= 1112_ the upper triangle of B(i). This causes fill-in
Iof k diagonals in the lower triangle. The result-

T through to produce ing matrix L emerges from the top in the same
S12 . diagonal-per-processor format. It immediately

enters a second array. This array annihilates the
lower triangle of L() and the resulting upper tri-

T T T - T angular matrix B
( i+

1) emerges from the top (Fig. 1)
P1 [C 12- C22 - [LI2'A21 The time is 2n+4k per iteration: element a entersnn

(Although the input matrix has m columns, the array the bottom array at time 2n, leaves at the upper
can handle this factorization in time m by making left corner at time 2n+2k, and leaves the top array
m/n7 passes over the data [12]. Now continue this at time 2n+4k.
process using A2 2 in place of A. After iJrn/ki

Unshifted QR converges slowly. The rate ofsuch steps we have produced a k+l diagonal, upper converges slowly. in some sf
triangular matrix B, 2convergence of b to o is o2/ . In some situ-

ations this may 41 adequate and he simplicity of

R L the structure used is then a real advantage.
Ii 1,2 It is also easy to pipeline the iterations As

R L B(i+l) comes out of the second array it can be sent
2,2 2,3 directly into another pair of arrays to begin the

(i+l)th iterations, etc. As many as n/4k itera-B tions can be effectively pipelined; any more and

the pipe length exceeds n, so that the pipe

J-1, never gets full. . we choose k = 0(nll) and

R pipeline n/4k = O(n lI) iterations jhSn the number
J.j of processors in both arrays is O(n ") and the

total time, assuming O(n) iterations of QR are
such that A QBP where Q and P are orthogonal. required, is also O(n

3
/
2
). These considerations

The total time used is mJ T mn/k. also apply to the array implementation of the
implicitly shifted QR algorithm that is discussed

The transposition of data required can be done below, with one important proviso. When pipelin-
by a specialized switching device, a "systolic Ing the iterations, some strategy for choosing
shifter," described earlier [121. several shifts in advance must be used.

When singular vectors are to be computed, the 2.2.1 Implicitly shifted QR iteration
rotations generated by the array may be applied to
identity matrices of order m and n. This can be To obtain adequate convergence speed we need to

* done bv the array. These matrices accumulate the incorporate shifts. Following Stewart (14], sup-
product of the rotations used, that is the ortho- pose that o~e QR iteration with shift is per-
gonal matrices Q and P above, formed on B B, and the orthogonal matrix so gene-

° rated is Q. Then proceed as follows:
2.2 QR iteration

1. Let Qbe any matr ix whose first k columns
SNow we consider QR iteration to get the singu- are the same as those of Q,
values of B, hence those mJ)A. We shall gener-

ate a sequence of matrices (B ) having the same 2. Using the same technique as in Section 2.1.
structure as B and converging to a diagonal matrix, reduce BQ to upper triangular k+l diag-

B
(O )  

B and B 
( + l)  P B Q(I) where P") and onal form, yielding a matrix B'.

.4
° (+) ~~) hr i

'p. ."" . '''" - '" .-,. .."","'.". . . . . .. "
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It can be shown that B'TB ' is the matrix that would Rotations are generated at its right edge and move
result from one QR step with shift X applied to left, affecting pairs of matrix columns. Let P
B'BT and Q be the orthogonal matrices implicitly used

by the two HI arrays. The mattx emerging from the
To use the trapezoidal array as described above second array is

to carry out step 2 would Tbe inefficient. Rather
we proceed as follows. Q is composed of plane B =  BQoQ
rotations that zero the f~rst k columns of (BTB-A) 1  1 0Q1

[ below the main diagonal. Applying Q0 to B causes and it has the form
* fill-in in the k diagonals below the main diagonal,

confined to rows 2, 3. 2k. See Fig. 2 for the r Bll
case k=2. B1 = L B2]

where B is a k x n upper triangular, k+l diagonal
matrix, and B2 1 is an n-k x n-k matrix of the same
form as BQo. Fig. 3 illustrates this for k-2.

+ * time[ k x k+l I  pMt

"" ;a arri-,

11 8
+ + 

22 13 10
23

33 24 12-3k
+ + 43 34
k x). l53 44 35

QB54 45
HI array 21: 64 55 46

+ +56
66

Figure 1 2I~lHIarrai

Unshifted QR iteration with two Heller- 12
Ipsen arrays 22 13 6

23 14
33 24 15 8

34 25
44 35 26

45 36
55 46

x x x 56

x x x x 66
xx xx x
0 x x x x x k x 2k+l HI array P
OOOOxxx L~

0, I0 00

11 0

21 12

Figure 2 31 22 13 2

0 32 23
Structure of Q0 * k-2 42 33 24 4

44 35 6

45 46 8

Figure 3

Let the first 2k rows of B 0 be sent into a
- k x 2k+l HI array. By a sequence of plane rota- "Chasing the bulge" with two k x 2k+l
" tions applied to the rows, the array removes the Heller-Ipsen arrays

"bulge" in the lower triangle, adding a bulge of
the same shape in the first 3k columns of the upper
triangle. This data flows directly into another
k x 2k+l HI array that removes the elements to the Now we do exactly the same thing to B21, etc.
right of the kth superdiagonal and causes a new This yields matrices
bulge to appear in the lower triangle, in columns
k+l through 3k-I and extending to row 3k. (The B P B , Qj
second HI array is the mirror image of the first. 1-2.J

.............................................................................................................
•o-............... .- .°., ..-....... o - .... -. o, ... o .. ..--... O.. .. ,,o,. o.,- - .o ***
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with Furthermore, the elements to be zeroed are the real
elements resulting from previous rotations. The-r | rotations to do the zeroing can, for this reason,

Bj be taken to be c,a rotations.

Lo B ,J the Now we look at the second phase. Because of
thestructure of B, the main, kth super and kth sub-

and J - r(n-)/k. Finally B' - P3 ... P1BQO ."Q. diagonals of BTB are all real. The rotations that
is the matrix we require. comprise 0 can be taken to be c,o rotations since

they zero real elements. And by keeping track of
The time neede is 6n. It takes 2k steps for an the locations of real elements one can show that in

HI array to start producing output. Thus, the sec- BQO all elements of the outer diagonals are real.
ond array starts its output at time 4k. The first Again because the elements to be annihilated are
element of 8j+l,, which is the (k+l)st element real, c,o rotations can be used to eliminate the

of the main diagonal to come out of the second bulge. A matrix with the same structure as BQ

array, comes out at time 6k. By this time the results, and the proof therefore follows by inguc-

first arrays inputs have become idle, so this tion.

element can immediately reenter. Therefore one
step,)from B. to B,+,, takes time 6k. There are 2.4 An alternate scheme

Fn-)/kj such steps, hence about 6n time for the Gene Golub has pointed out that the eigenvalues
whole process. of the 2n x 2n matrix

2.3 Complex matricesB
C4T 0JIn signal processing applications, complex B

matrices often arise. Here we discuss the algor-
ithms to be used for QR iteration with complex are the singular values of A taken with positive and
matrices. Essentially we show that the plane rota- negative sign, and if (xT, yT) is an eigenvector of
tions used can be of a special form: C then x is a left singular vector of B and y is a

right singular vector of B (5]. Thus we may attempt
(1) x c*x + oy to find the eigendecomposition of C. After a sym-

y' - -ox + cy metric interchange of rows and columns corresponding
to the permutation (n+l, 2, n+2, 2, ..., 2n, n),

where x, y, and c are complex and a is real. This C is a symmetric 4k-1 diagonal matrix. A 2k-i x
saves 1/4 of the multiplications used by a fully 4k-I HI array can implement one step of the QR
complex plane rotation with complex a instead of method with shifts for this matrix in n + O(k)
" -- 12 are used instead of 16. We shall call time [10]. In the complex case, both C and the
these c,o rotations. permuted C have real outermost diagonals, so c,o

rotations can be used. Thus, although twice as much
It is possible to compute the SVD of a complex hardware is used, the time per iteration is 1/6 as

m x n matrix A 
= 
AR+iA I using real arithmetic. One great as for the previous scheme.

finds the SVD of the 2m x 2n real matrix

-A 1 
3 VLSI IMPLE4ENTATION

, Aj Now we consider how to build the cells of the

HI array. The fundamental unit we use in this con-
Among the 2n singular values each singular value of struction is a multiply-add cell, whose function is
A occurs twice, and the singular vectors are of the this:
form [x, xl] where x -xR + ix1 is a singular
vector of A. But the cost i much greater. In w
units where the cost of doing an m x n real SVD is
one, the cost for the real 2m x 2n SVD is 8 while x x
the complex m x n approach costs 3 (not 4, since y y
the use of the c,o rotations saves 1/4 of the work

W+xy
We now show that the c,o rotations suffice.

To start, we note that the banded matrix B produced Outputs leave the cell one clock after inputs enter.
by the reduction phase can always be chosen to have
positive real elements on its main and kth super- Although other primitive units (CORDIC blocks,
diagonals. Indeed the reduction B - QAP to k+l for example) might be used, we feel that the mult-
diagonal, upper triangular form is not unique: iply-add is a good basis for such an investigation.

-l -1 Currently. a floating point multiply-add is about
B - QD (DlAD2) D2 P what can be integrated on a single chip. It is

almost universally useful. Indeed, the multiply-
is also such a reduction for any unitary diagonal add pair is often the inner loop in numerical linear
matrices D' and D2. These can always be chosen to algebraic computations. Even when larger cells and
give B the stated property. In fact, the trap- pieces of arrays can be integrated into single
ezoidal array can do this automatically [12). When chips, designs based on the multiply-add primitive
it generates a rotation to zero some matrix ele- will be useful.
ment, the second element of the pair (x,y) for
instance, it chooses the paramenters so that the We shall discuss implementation of the HI array
result of the rotation is the pair cells for complex data. The real case was discussed

2 + 2 earlier (111 as were the cells of the trapezoidal
((lxi +. ]y!2)

1/2 , 0) array (121.
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The complex HI array triangularizes a banded A second primitive, for divide and square root, is
input matrix using c,a rotations of the form (1). needed to implement the boundary cell. We assume
The rotations are applied to a pair (x,y) of matrix that a chip for computing
elements by an internal cell 1/2(a,b) ....> a / b

I/

X'

t is available. A compound cell using one multiply-
' : x add and two of these square root chips can produce

c results at the rate required to keep up with the
a cc internal cell. A schedule is shown in Table 2.

+ The overall array timing is now that of the "ideal"
y HI array in which everything happens in a single

cycle (of length 3 chip clocks) . The cells are
after having been generated by a boundary cell used 1/2 of the time, but two independent problems

can be solved simultaneously, making full use of
' the hardware.
+

Table 2. Schedule for HI Boundary Cell
c time Chips I/O

+ mult-add sqrt #l sqrt #2 I

2 R 2
021 0 O ° X R

"by 22 +x2 (='2) x

2 1 R,2]-/2
r- '= n x!2

2  
R, 12-/2

'c = x / ' X " cC= / x' 5 0[0,2-1/2 (p'
2 

-1/2 R

- In the internal cell computation, 4 quantities 6 10
* are computed, each requiring 3 multiplies and 2

adds. Let zR and z denote the real and imaginary ACKNOWLEDGEMENT
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Abstract

We describe and analyse a family of highly parallel special purpose computing networks that

implement multi-grid algorithms for solving elliptic difference equations. The networkq have

many of the features and advantages of systolic arrays. We consider the speedup achieved by

these designs and how this is affected by the choice of algorithm parameters and the level ct

parallelism employed. We find, for example, that when there is one processor per grid-point. tLe

designs cannot avoid suffering a loss of efficiency as the grid-size tends to zero.

1. Introduction

We shall describe and analyse a family of highly parallel special-purpose computing networl:,

that implement multi-grid algorithms for solving elliptic difference equations. These nrtworks

have the same characteristics - regularity, local communciation, and repetitive use of a single.

simple processing element - that make systolic architectures attractive [9]. These architectural

advantages make it possible to build large computing networks of VLSI cells that would be

relatively cheap, reliable, and very powerful.
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Both a basic and a full multi-grid algorithm are considered. The basic method reduces the

error in a given initial approximation by a constant factor in one iteration. The full method

requires no initial guess and produces a solution with error proportional to the truncation error of

the discretization. These algorithms are representative of many variants of linear and nonlinear

multi-grid algorithms.

The analysis assumes that we are solving a linear system originating in a discretization of an

elliptic partial differential equation on a rectangle in Rd, using a regular nd point grid. The

network is a system of grids of processing elements. For each I < k < K, processor grid Pk has
(nk)'l elements, where y is an integer less than or equal to d, and nK - n. The machine

implements a clam of multi-grid algorithms using a corresponding system of nested point grids.

For each I _5 k :5 K, point grid Gk has (nk)d points. The key assumption, which is quite

realistic, is that it takes this machine O((nk) d'f) time to carry out the computation required by

one step of the multi-grid algorithm on point grid Gk using processor grid Pk"

We shall consider the efficiency of these parallel implementations, defining efficiency to be the

ratio of the speedup achieved to the number of processors employed [8]. We shall consider a

design to be efficient if this ratio remains bounded by a positive constant from below as n - 00.

The analysis will show that when -y < d some algorithms can be efficiently implemented. But

when "Y - d (this is the most parallelism one can reasonably attempt to use) no algorithm can be

efficiently implemented. There does exist, in this case, one group of algorithms for which the

efficiency falls off only as (log n)"'.

The analysis assumes that we implement the same algorithms used by uniprocessor systems.

Convergence results for these algorithms have been rather well-developed recently [1, 5, 71. We

make no attempt to develop algorithms that exhibit concurrent operation on several grids. Note.

however, that some encouraging experimental results with such an algorithm have been obtained

recently by Gannon and Van Rosendale (61.

In any discussion of the practical use of a specialized computing device, it must be

acknowledged that overspecialization can easily make a design useless. At least, the designed

device should be able to solve a range of size of problems of a particular structure, perhaps

solving large problems by making several passes over the data, solving a sequence of smaller

subproblems, or with some other techniques. We shall consider how a large grid, with (mn)d

points, can be handled by a system of processor grids with n elements each having O(mdnu d- )

-. . . . . -
. -. - - .- .;,. ' -. ,-' -'.- . ,.Y .. > -.. "-...'- : "-.;.'%'-';,'-,;.'.. . -. .'%'.' .'-' .-- .-'..'-'. --. --- '-.. -.'
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memory cells. Problems on nonrectangular domains can be handled by techniques requiring

repeated solutions on either rectangular subdomains or containing domains.

Brandt [31 has also considered parallel implementations of multi-grid methods. He discusses the

ue of various interconnection networks and appropriate smoothing iterations. One of our results,

a (log n) time bound for fully parallel, full multi-grid algorithms, is also stated in his paper.

2. Multi-Grid Algorithms

We shall consider multi-grid algorithms in a general setting. The continuous problem is

defined by the triple (H, a(u,v), (v)), where H is a Hilbert space with a norm 11.11, a(u,v) is a

continuous symmetric bilinear form on H x H, and f(v): H R is a continous linear functional.

The problem is:

Find u E H such that a(u,v) q t(v) for all v E H. (1)

It can be shown that if a(*,*) satisfies certain regularity conditions (for example, that a(v,v) >c o

11v112 for all v E H), then Problem (1) has a unique solution [4].

We consider finite dimensional approximations of Problem (1). Let M1, j 2! 1, be a sequence of

N -dimensional spaces, on which one can define a corresponding bilinear form a(uv) and a

corresponding continuous linear functional f (v), which are constructed to be approximations to

a(u,v) and f(v) respectively. Also, since the multi-grid algorithms involve transferring functions

between these spaces, we have to construct extension (interpolatory) operators E, : MNi. -- Mi .

We shall give two multi-grid algorithms, namely BASICMG and FULLMG, with FULLMG

calling BASICMG in its inner loop. The two algorithms differ in that BASICMG starts its

computation on the finest grid and works its way down to the coarser grids, whereas FULLMG

starts with the coarsest grid and works its way up to the finest grid. In the conventional single

processor case, BASICMG reduces the error on a certain grid by a conatant factor in optimal

time, whereas FULLMG reduces the error to truncation error leel in optimal time.

We give the basic multi-grid algorithm BASICMG in Table (2-1). This is a recursive

algorithm, although in practice it is usually implemented in an iterative fashion. The iterations

are controlled by the predetermined parameters (cj,m). In this sense it is a direct method, unlike

related adaptive algorithms which control the iterations by examining relative changes in the

residuals [2]. Figure (2-1) illustrates the iteration sequence in the case c - 2. The major

.. __ _ __ . __ . __'-':., -'-. - .. -' --- " : - , -.. . -." , , , , , , , , - , . , . . • . .:.', ... .--
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computational work is in the smoothing sweeps (subroutine SMOOTH), which usually consists of

some implementation of the successive-over-relaxation or Jacobi iteration or the conjugate

gradient method. The smoothing sweeps are used to annihilate the highly oscillatory (compared

to the grid spacing) components of the error in & efficiently. We require that a suitably

"parallel" method, Jacobi or odd-even SOR for example, be used as the smoother. In the next

section, we shall discuss new architectures for implementing these smoothing operations in more

efficient ways.

Table 2-1: BASICMG Algorithm

Algorithm BASICMG(k,s,cj,m,%kfk)

<Computes an approximation to u E Mk,
where ak(utv) - fk(V) for all v E k'k,

given an initial guess z E M .
Returns the approximate solution in z.
Reduces initial error in z by a constant factor.>

If k - I then
Solve the problem using a direct method. Return solution z.

elme
<Smoothing step (j sweeps):>

z o SMOOTH(j,z,ak,fk).

<Form coarse grid correction equation:>
a, k.(q,v) - bk.I for all v E Mk.I.

<Solve coarse grid problem approximately by c cycles of BASICMG:>
q o 0.
Repeat c times:

BASICMG(k-l,q,c,j,m.ak.l,bk.1)

<Correction step:>
z o z + Ekq.

<Smoothing step (m sweeps):>
z a- SMOOTH(m,z,ak,fk).

End V
End BASICMG

We give the full multi-grid algorithm FULLMG in Table (2-2). In the BASICMG algorithm.

the choice of initial guess for uk is not specified. In practice, good initial guesses are sometimes

available essentially free (for example, from solutions of a nearby problem, from solutions at a

previous time step, etc.). The FULLMG algorithm interpolates approximate solutions on coarser

................. j
..................................
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Figure 2-1: Iteration of BASICMG for k -3 and c - 2

.'. Level

Cos rse 1 ds ds

•2 j m*j m
2

Fine 3 j a

ds: Dire t Solves j.m number of smoothing sweeps.

grids as intial guesses for the BASICMG algorithm. It is also recursive and non-adaptive. Figure

(2-2) illustrates the iteration sequence in the case k - 3, c - 2 and r - 1.

Table 22.: FULLMG Algorithm

Algorithm FULLMG(k,sk,r,cj,m,a,fk)

<Computes a approximation s to uk E Mk
where N T(Uk,V) - r for all v e Mk,

using r iterations o BASICMG,
using initial guess from interpolating the approximate
solution obtained on the next coamer grid.
Solution obtained can be proven to have truncation error accuracy.>

I k - 1 then
Solve the problem using a direct method to get z.

else
<Obtain solution on next coarser grid:>

FULLMG(k-l,sk.,r,cj,m,ak ilfk.).

<Interpolate sk I:>
sk ' Ek Sk.I .

<Reduce the error by iterating BASICMG r times:>
Repeat r times:

BASICMG(k,:k,cj,m, ak ,fk).
End If

End FULLMG

We would like to summarize briefly the accuracy and convergence behaviour of the above two

multi-grid algorithms. Since the main emphasis of this paper is on the algorithmic aspects of

these multi-grid algorithms, we shall refer the reader to the literature for more details. The

framework presented here is based on the work of and Bank and Dupont (11 and Douglas [S1.

.

"'" "" "" .'". " % .. ' .',,',. ,- .. 'o% '.".'-'e '.
" . . ' . ' ' . a' ' . ' ' .

.'.' ". %,,...-.' .'...o'.'- % .' .'.. ''. '.': . - "



Figure 32t Iteration of FULLMG for k -3, c - 2 and r -

Level

Coarse I ds da ds ds

2 j a j u'j u

Fine 3 41

ds: Direct Solves j.: number of smoothing sweeps.

The accuracy and the convergence of the BASICMG algorithm obviously depend on the three

crucial steps of the algorithm: smoothing, coarse grid trander, and fine grid correction. The

basic requirements are that the smoothing sweeps annihilate the high frequency components of

the error efficiently, the coarse grid correction q be a good approximation to the fine grid error in

the low frequency components, and the interpolation operators (Eg's) be accurate enough. These

conditions can be formalized into mathematically precise hypotheses which can then be verified

for specific applications (S]. Asuming these hypotheses, one can show that Algorithm RASICMG

reduces the error on level k by a constant factor provided that enough smoothing sweeps are

performed. Moreover, it can be shown (see Section 4) that Algorithm BASICMG (for small

values of c) can achieve this in optimal time, i.e. O(Nk) arithmetic operations. Obviously, the

work needed depends on the accuracy of the initial uew and increases with the level of accuray

desired. Often, one is satisfied with truncation erPr accuracy, i.e. Ill - ulj - O(tluk - ull) ! C

.Nk* for some fixe and C which ae independent of k. For a general initial guess, the

straightforward application of Algorithm BASICMG to reduce the initial error to this level takes

O(Nklog(Nk)) time, which is not optimal. The FULLMG algorithm overcomes this problem by

using accurate intial gues obtained by interpolating solutions from coarser grids. The

convergence result for Algorithm BASICMG can be combined with the basic approximation

properties of the various finite dimensional approximations (M,, aj, f.) to show that Algorithm

FULLMG computes a solution sk that has truncation error accuracy in O(Nk) time.

......................... . . . -1
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3. The Computing Network

In this section we describe a simple parallel machine design for multi-grid iteration. We restrict

attention to linear elliptic problems in d dimensions over rectangular domains, to discretizations

based on grids of ad points, and to multi-grid methods based on a system of point-grids (Gk)Kl

where Gk has (nk)d gridpoints, with mesh lengths h,j, I < j _ d, the finest grid has nK - n,

and

nOk+l - a(nk+ 1)-, k -1, 2, ... ,K-1

for some integer a > 2.

The machine consists of a system of processor-grids {Pk)K lorresponding to the point-grids.

Each processor-grid is an (nk)7 lattice in which a processor is connected to its 2-y nearest

neighbors.

We shall employ a standard multi-index notation for gridpoints and processors. Let

s (0, 1, ...,

Let + (sut, the set of s-tuples of nonnegative integers less than n. We shall make use of a

projection operator o. S+ 8n defined forr r s by

By convention, if i. E u.  then L (i1, ..., i.). Also let 1 - (1, ... , 1). We shall also use the

norm JiJ - Jill + ... + Ii.I on s+.

We shall label the gridpoints in Gk with elements ofs+,d in such a way that the point with

label L has spacial coordinates (i lhk,, ihk*, ..., idhkd). Similarly, we label processors in Pk with

indices in +-

Thus, processon L and k are connected if IL- W - 1. In order to make the machine useful for

problems with periodic boundary conditions, we might also add "wrap-around" connections, so

that L and k ae connected if (I.- k) mod ni - 1. In Section 3.1, it is shown that periodic

problems can alo be handled without these connections.

Evidently, if each processor has O(n d ' ) memory cells, we can store the solution, forcing

function, and 0(1) temporary values belonging to the whole of grid Gk in the processors of Pk;

we store pidpoins Lin processor 101P for LE 5+Od"

With the given connectivity, smoothing sweeps of some types can be accomplished in 0(nd')

''"-"- ." .- ./- "._r''i' -. '.'.-. ',-. -."-. *-, * , -.--'- . '/ ' - -,--- -
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time. It is not necessary for the stencil of the difference scheme to correspond to the connectivity

of the processor grid. Jacobi or odd/even SOR smoothing can be so implemented, for example.

Let t be the time taken by a single processor to perform the operations at a single gridpoint that,

done over the whole grid, constitute a smoothing sweep. If S is the time to implement a

smoothing sweep over the whole of grid Gk on processor-grid Pk, then

S - t n (2)

Grid Pk is connected to grid Pk+t* Processor i E Pk is connected to processor a(+i-i) - I E

Pt+l" These connections allow the inter-grid operations (forming coarse grid forcing terms bk
and interpolation Ek) to also be computed in O(S) time. We refer to the system of processor-

grids {PI, ... PJ) as the machine Li for J - 1, 2, ..., K.

The execution of the BASICMG iteration by Lk proceeds as follows.

1. First, j smoothing steps on grid Gk are done by Pk. All other procesor-grids are

idle.

2. The coarse grid equation is formed by Pk and transferred to Pk~t"

3. The c cycles of BASICMG on grid k-i are performed by Lj. .

4. The solution q is transferred to P. and intcrpolation Ekq is performed by Pk"

5. The remaining m smoothing steps are done by P
-. ,

Let W(n) represent the time needed for steps 1, 2, 4 and S. Then

W(n) - (j + m + s) t n (3)

where s is the ratio of the time required to perform steps 2 and 4 to the time needed for one

smoothing sweep. Note that s is independent of n, d and -r.

The natural way to build such a machine is to embed the -1 -a I machine in two dimensions as

a system of communicating rows of processors, the "7 - 2 machine in three dimensions as a

system of communicating planes, etc. Of course, realisations in three-space a e possible for any
value of -y. Gannon and Van Rosendale [6] consider the implementation of the fully parallel

machine (,7 - d) on proposed VLSI and Multi-Microprocessor system architectures.

This design differs from systolic array designs in that there is no layout with all wire lengths

equal. But for reasonably large machines the differences in wire length should not be so great as

to cause real difficulties. Moreover, one need not continue to us ever coarser grids until a lxi



grid is reached. In practice, 3 or 4 levels of grids could be used and most of the multi-grid

efficiency retained; this would make the construction much simpler.

3.1. Solving Larger Problems

Suppose there are (mn)d gridpoints and only n" processors. Assume that each processor can

store all information associated with mdnd' I gridpoints. Now we map gridpoints to processors in

such a way that neighboring gridpoints reside in neighboring processors. To do this we define a
amapping o: s+  2+ such that, for all i, j E t Ifn(i)' fm(j)I 5 Ji - ii, as follows. Letmapig ran "M atn m+ i  mJJ < l J olw.Ltj-

qn + r where q and r are integers, 0< r_ n-5 . Now let

r if q is even

m n-l-r if q is odd.

Now if m is even, then fm(O) - f(man-1) 0 0, so that periodic boundary conditions can be

handled without any "wrap-around' connections. This operation corresponds to folding a piece

of paper in a tan-like manner, for m - 10, for example, like this:

"" To map a multidimensional structure we fold it as above in each coordinate. Let the processor-

grid have nd elements and the point-grid have mln x m2n x ... x mdn points. Point i can be

stored in processor Fd(m I, ..., md, a; i) where Fd(j = (fo (id), ..., fm(id)). If we have only n

processors then we map i into F.I() where FQ(i) - F4rd7()).

4. Complexity

In this section, we are going to analyse the time complexity of the two multi-grid algorithms,

BASICMG and FULLMG, as implemented by the different architectures just discussed. It turns

out that the complexity d the two algorithms is very similar. Since the BASICMG algorithm is

simpler and is called by FULLMG, we shall discuss and analyse it first. After that, we shall

indicate how to derive the results for FULLMG.

4.1. Complexity of BASICMG

To simplify the analysis, we shall assume that the computational domain is a rectangular

parallelopiped and is discretized by a hierarchy of cartsian grids (corresponding to the Mi's) each

with a, mesh points on each side (denoted the a-grid). Further, we assume that the n's satisfy

J J

;'""P-L Jdl'-N n - -- ' edn , 0m" , ' .. "" " "" "' . . .. . ..
" ' " " "

" """"""b"%J ..q - . * "".., , - ,



i - a (n,+l) -I where a is an integer bigger than one. Generally , we denote by T(n) the

time complexity of the BASICMG Algorithm on an n-grid. By inspecting the description of

Algorithm BASICMG, it is not difficult to see that T(n) satisfies the following recurrence:

T(an) - c T(n) + W(an), (4)

where W(an) denotes the work needed to preprocess and postproces the (an)-grid iterate before

and after transfer to the coarser n-grid. We have the following general result concerning the

solution of (4), the proof of which is elementary.

Lemma 1: Let T be a particular solution of (4), i.e.

TP(an) - c TP(n) + W(an), (5)

then the general solution of (4) is:

T(n) - a nt0 6c + TP(n), where a is an arbitrary constant. (6)

The term W(an) includes the smoothing sweeps, the computation of the coarse grid correction

equation (i.e. the right-hand-side bk.I) and the interpolation back to the fine grid (Ekq). The

actual time needed depends on the architecture used to implement these operations (specifically

the dimensionality of the domain and the number of processors available on an n-grid). In

general, as derived in Section 3, W(n) is given by

W(n) - (j+m+s) t g(n) - 0 g(n), (7)

where (n)- nP with p m d--y.

In Table (4-1), we give the form of the function g(n) as a function of the architecture and the

dimensionality of the domain. We also give a bound on the total number of processors (P)

needed to implement the architecture and note that it is always the same order as the number of

processors on the finest grid. For a d-dimensional problem with n" processors on the n-grid, we

have
P( ) 1 { aif - 0,

a))U if > 0.
We have the following general result for this clam of functions g(n).

Lemma 21 If W(n) - P nP, then we can take the following as particular solution of

(4):

T.(n) - (:aP/(A&P0) np it p 7A logic,

P np logn if p - logc.
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Table 4-1: Table of O~n)

I Architecture 11-0 1 2-D I 3-D I Total 0 of processors
I I I I on sll grids. P

----------------- 4--- ------- -----------------------------------------

Iprocessor n n 2 I 3 I1
--------------------------------- 4-------------- ------------------------

In processors nl s n 2  I C/(-) I
-------------- ----------------------------------------

I n2 processorsl - I 1 I n I (82/(g2-1)) n2

----------------- 4------------------- --------------------------------

InR3 processorsl - I - I 1 1 (83/(s3_1)) n3
------------------- 4---------------------------------------------------

Note: Architecture column gives number of processors on the n-grid.

Combining the results of the last two lemma., we arrive at our mai result:

Theorem 3s The solution of (4) for Win) -5nP satisfies:

9 (ap/(sP-c)) up + O(U3 04e) if c< ,

T(S){ 0 nP log~n +O(nP) if c ap, )

O(nh6,) it c > ap.

Note that in the last case, a 74 0 (in Equation (6)) because T,(a) does not satisfy the boundary

conditions.

For the frst two canes (c :5 aP), we can determine the highest order term of T(n) explicitly.

However, for the can c > aP, the constant in the highest order term depends on the initial

condition of the recurrence (4) (i.e. the time taken by the direct solve on the coarsest grid), which

is more difficult to mneasure in the se units as that of the smoothing and interpolation

operations. Fortunatey, the complexity for this cane is non-optimal and thus not recommended

for we in practice and therefore, for our purpose, it is not necessary to determine this constant.

Based on the results in Theorem 3 and the specific form of the function g(a) in Table 4-I., we

can compute the time complexity of Algorithm BASICMG for various combinations of c, a and p.
some of which are summarized in Table 4-2, where we tabulated the highest order terms of

TWO)/.

The cisamcal one processor (~-1 0) optimal time complexity results (1, 51 are contained in

these tables. For example, in two dimensions (d - 2) g(z) m &2 and Table 4.2 shows that, for

the refinement parameter, a -2, c < 4 gives an optimal algorithm (0(02)) whereas c >4 is non-
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Table 4-2: Time Complexity T(n)/$ of Algorithm BASICMG

------------------------------
pd= d I

-------- -------------------

I 1 3 I 2 I 1 I 0
+ ----------- 4-----------------------

I1 I8/7 n3  1 4/3 2 I 2 n * Io 2n
-4------------***lt*****--------

e : 2 I 2 I 8/6 n3  I 4/2 n2 * nlog2n I (n) I

I 3 I 8/5 n I 4 n2 * 0(na 3) IO(nog23) I
*- ---------*i***** n--------------------

I 4 1 8/4 n3  * n2log2n I 0(n2) I 0(n2)
--------- --- --------------

*-------------------------------------------

4--------------- ------ 4------------------------

Id 3 I 2 I 1 I 0
------------- ------------------

I 1 27/26 n3 I 9/8 n2  13/2 n , logen
+---. -------------------------------- *-------

23 1 2 27/25 n I 9/7 R2 1 3 n i(n'3)
--------------- + ------- ----------

13 127/24 n3 1 9/6 n2  * nlogsn I (n)

I 4 1 27/28 n I 9/5 n2 * O(nt 9 4) 10 ( 10° 4) 1

---------------------------------------
p.p

------------------------------------- ----------

Ic 3 I 2 I 1 I 0
--- ----#--------#--------- ---------

I I 64/63 n3 116/15 n2 I 4/3 n * 1o 4n I
# -- ------- -------------------

* 24 1 21 64/62 n 116/14 n2 1 4/2 n . (nIog°2)
-4---- + --------- -------------------

I 3 1 64/61 n3 116/13 n2 1 n Onlno.3)
------- ---- --------- ---------

14 164/60 n3 116/12 n2 0 nlog 4n I O(n)
----- ---- +--------0-----------------

I mesh refinement ratio
c number of correction cycles in BASICIG
.f 0 processors on the n-grid
d dimension of the domein

*.o.. Asymptotic Efficiency Boundary (See Theorem 5)

;- ',' ;.,-. ,, ' ' - -. , ,,. .**r*- -, ._. . ...... , .,
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optimal. More generally, vie have an optimal scheme if and only if c < ad . For example, the

larger a is or the larger d is, the larger the value c can take for the algorithm to remain optimal.

However, with a larger value of a, more relaxation sweeps are needed and a larger value of c has

to be taken in order to achieve the same accuracy. We note that the constant in the highest

order term of T(n) does not vary a great deal with either c or a (they are all about one, especially

for the larger values of a). This suggests that the best balance between speed and accuracy can

be achieved by choosing the largest value of c (or close to it) such that the algorithm remains

optimal. When d--t - 2 and a - 2, this means taking c to be 2 or 3.

4.2. EfficIency, Speedup, Accuracy, and Optimal Design

Next, we are going to look at the effects of the new architectures on the performance of the

BASICMG algorithm. There are four parameters in this study: c, a, -y and d. We shall call a

particular combination of these four parameter a design. We shall use the notation T(ca,,d) to

denote the corresponding complexity of the design. One of the main issues that we would like to

address is the efficiency E and speedup S of a particular design, which are defined as [8):

Definition 4:

S(c,a,-y,d) - T(c,a,O,d) IT(c,a,-y,d),

E(c,am,d) - T(c,a,0,d) ( P(-y) T(c,a,-I,d) ).

The speedup S measures the gain in speed over the one processor architecture while the efficiency

E reflects the tradeoff between processors and time and measures the efficiency with which the

architecture exploits the extra processors to achieve the speedup. The optimal efficiency is unity.

in which case a P-fold increase in the number of processors reduces the time complexity P-fold.

*' In general, the efficiency E and the speedup S are functions of n. We shall call a design

asymptotically efficient if E tends to a constant as n tends to infinity and asymptotically

inefficient if it tends to zero. We shall primarily be concerned with analysing the efficiency E of

a design in this section. The speedup S can be easily read from Table 4-2.

For determining the asymptotic efficiency of a design, it suffices to determine the highest order

term of E. The efficiency E can be derived from the explicit expressions for T and P in a

straightforward manner. Since the efficiency for - - 0 is unity by definition, we shall only be

interested in -f > 0. We summarize the results in the following theorem.

:'.0

...... .. .. .. .... ... .-.- - . ,:-. " " " " " " " " ' " ' " . _ . ' . ' . ,' . """" .



load k in- for i t 3.4.....q AL time 4, this special function is. m.quired at cell
(2.2) asazm

0

0-

U1 2

This rotation follows the earlier one down the row. removing elements ult and
..loading zeros. In general. cell (k.k) performs the special function k times, at
"- 2t = 2k - ,.3k - 2. Then k identity rotations flow down row k, pushing out rows
-. k ,k - 1. of U. and finally loading the zero that precedes the next matrix.

To make the array output uniform, we would add some cells at the lower left
to make the array a rectangle:

'.o.

The only purpose of these diamond-shaped cells is to deliy faW output of ale-
rtenos o,' V, which now leave the array in the s&me forma- aselemeats of A -
element ,j leaves at relative time vn - - j.

1'he Backascve Array

To solve the triangular system UrY = B (Y and B are rnxn) we can use the tri-
angular array shown in Figure 6. The details of this array are stralghtforward
and are omttted. We note that It consists of a triangular array of cells each con-
tawang a single element of U exactly as does the GK array, so that It might In
some applications be useful to build a common realization of both these arrays.

In the present context, ni is often Large. We intend to solve two systems,
UTY a B. then UX a Y; we are not otherwise interested in elements of Y. It Xi.s
stored we can store Y in its place. Suppose. however, that X will not be stored.
We may want to minimize temporary storage for Y. TIis can be reduced to 0
(-nL) locations in two ways. We could use a second array to so!ve UX = Y and
stream the first array's output into this second array. Am interface of 3m(vn -
:) /2 delay cells is needed, as Figure 7 shows. There is another possibility.

. One array can solve both systems at the same time. Figure 8 shows two succes-
uiva cycles of such a device. At a given nstant, every second diagonal Is working

°

-o
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so the two matrices areseparated by a line of zeros. The scheme will. In efrect.
push out U as it is created and all each cel with a zero just before a B - element
reaches it. It therefore "looks" to the new matrix B as if the array initially con-
tamed only zeros.

When a B - element frst arrives at a boundary cell it meets a zero (we shall
later show thls). The boundary cell's normal function (see Filure-2) is to store
this element's absolute value in its memory and output the identity rotation. if
the element was non-negative, or - times the identity rotation othem e. As
this rotation moves to the right it meets cells containing zeros in their
memories and pushes these zeros out, loadin, instead elements (possibly
negated) of row n of B. Thus the zeros continue to lead the columns of B down
through the array.

We now show how elements of V are unloaded. Let time t = 0 be the time
a,, enters cell (1. 1). Then cell (ij) accepts its last A - element. and computes
its V - element, thereby flnshlng its work, at time t a i + I - 2. By our assumed
sequence of inputs (4) the datum zero appears at the input to cell (1J) at tume
j. immediately after it has computed s,. To make the scheme work, we want
An identity rotation to get there at the same time, knocking out the computed
element utj and load=ng the zero. Th7s w be made to happen by a special
boundary cell function.

Let cell (1.1) do this at Ltne 1:

0

C=

U'1

-he rotation so generated will reach call (1J) at tins 1. as required. Now, at
LUZ 3, IOL 0e11 2,P) ds Li.i same LnrD:

U1 2

s-1

U2 2

*-" (The datum us, has been forced out of the first row, as described above). This
rotation will move to the right and knock elemente u ia out of cells (2,k) and

t "
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1) /2., of the array. What is the best shape possible? Two conilicting factors
Lnauence the decision. The 1/0 bandwidth to support the array is leut for a
"well-rounded" array (pbfq) since only the cells at the array edge communicate
with the surrounding systems. But the number of passes needed to solve the

iven problem will usualy not be minimized by taking p = q. In typical cases
say in = 100, pq -p(p -1) /2 31 ) the minimizing shape may be quite narrow

(p 2. q a 16 in thia example).

Z3. Unloading the CeU Memaries

The QU trapezoid implements the matrix factorization (3). But how -can we
remove the elements of U11 and U12. which are stored m the cells of the array?.
Here we shall develop a scheme with these properties:

1 The outward flow of data is entirely unzform.
Control signals are applied only at the boundary cells.

3 No specially controlled functions are required of the internal cells.
4 The array can ftaish the factorization of a matrix. unload its cell memories,
and begin the factorization of another matrix with no. delay whatever.

The key to the unloading scheme Is the way ean internal cell behaves when
given the "identty" rotation (c = 1. s = 0). It acts as a uut-delay:

X

To begLt. suppose a new matrix B follows the input matrix A. The data will
be presented to the array In this format,

b

0

"b r 0 4

0 1

a11  a2 2  a__

. . ... .. .
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stored in the bank above the cell it enters flrst. A column (of temporary results)
that emerges from the bottom is sent to the bank above the cell it will next
enter. When the passes are sequenced as in Figure 4. this dest.inaUion is for
some columns uzniquely determined, and for others is one of two possibilities.
Thus, the extra-array interconnections are very simple.

Control of the memories is also simple. since the pattern of access to the
data, (Figu~re 7) is so regular. Memory addresses could be generated once and
passed from one bank to the next.

2.2.1. An alternAte scheme

There is another possibility. We could also work with tiles of these shapes,

The array implements tile I by usinig all internal cells actively, tile I in the
same way, but wi h columns brought in reverse order, and tile III by shuttin of!
certain internal cells. Tile Ill can be realized only Lf it Aits into the array - if
2 (p - ) ! q -P

Compa.ring the two possibilities we see that the frst has an average tile size
o! p (q -p) whize the second has 2p(q - 1) /3 (the Iles are used to cover recta'.r-
gle. "ak thls:)

2 (q - 1) - '

I II p

Thus, the first scheme is more efficient ifp(9 -p) > 2p(q - 1) /3. i.e. It 9 > 3p -
2. Since the second scheme rersu-us that 9 be at least 3p - 2, It can never be
more efMcient thAn the rst.

2.2.2. Choosing the Array Sape

We suppose that some constraint, cost for example, limits the size, pg -p(p -

a ..o 
. .* 1
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compute the factorization

QB foU121 (3)

where 0 denotes the zero matrix order (n -p)xp. V, I is p xp upper triangular.
and UL, and B& are full (q-p) - column matrices. B2 emerges from the bot-
tom of the array; U, and U12 are stored in it.

Can we obtain a complete QU factorization with the trapezoid? If g is not
le:.s than mn, the number of columns of A we can; we would zero A in groups of p
columns. from left to right, using rm /pl passes through the array. The details
are obvious. But if n > q we cannot. For suppose we zero the first p columns of
A below the diagonaI by passing columns 1.2..... 9 through the array. We want
next to zero columnzs p + ..... 2p. by passm& p + 1. .... v q through. But
until we have applied the rotations from the first pass to coluns
q + 1. q - p. we may not apply those of the second pass.

To allow factorization of matrices with more than q columns, the array must
proide a second function. the abdlity to apply previously computed (and stored)
rotations to a set o! input columni. We can give the array this ability by turning
off tne cells in the left.rnost pxp triangular part. keeping a px(q -p) recta .rg.e
active. 'e a-so a-low rotation parameters to come in via, the left edge. A set of
q -p columns can enter the active rectangle at the top. The result - the input
rotations appLed to the input colum-ns - emerges fror the bottom, except for
the f&rst p rows, which are stored in the cells of the active rectangle.

2.a MmuaLing The Pull Array

Here we show how the pxq trapezoidal array, supported by an appropriate
memory system for partial results, can generate a QU factorization wheni-in > q. Imnagie that the set of work to be done is represented by an m~xin tri-
angular array of pairs,

where the pair (i.Q) represents the task of applying to column j the rotations
used to zero elements of col'nn t. The array can be used to perform "Son-
eat e" passes. where colum.,r are actually eroed, and "apply" passes where
stored rotations are applied. A generate pass performs a px q trapezoidal piece
of the met of task pairs; an apply pass performs a px(q -p) rectangular piece.
Sequencing the passes to perform the entire Job is analogous to coverinW a trian-
gle by trapezoidal and rectangular "tiles" following these rules:

RI) Trapezoidal tiles must be placed at the triangle's diagonal edge,
No tile may be placed unless the diagonal edge to its left has been tiled;

R3) No tile may be placed if any space directly below it is untiled.

There are mazy legal tilings; Figure 4 shows one.

In generating the QU factorization by mult:ple passes, tempora,'y results
are produced. These must be stored and reentered into the array later. Figure
5 shows a sutable memory design. The important features are these. There is a
separate. independent memory bank for each array column. A matrix colun is

,

,.'..-.T .%,:-,.. _,_..'.. ..................................................- "........,".....', ......'" .."..".."..".." ..",",,. ", " " .,"
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directions: complex matrices. unloading the result. U. from the array. control
and synchronization. fabrication of the cells, and simulation of a large array by a
physically smaller array through decomposition of the problem.

QU factorization of A is performed by finding an orthogonal matrix. Q.
such that Q*A = U is upper-triangular. Q" can be a product of simple orthogo-
nal matrices (Givens rotations) each chosen to zero one element. of A below the
diagonal. To zero cj . the ith and (i - 1)" rows of A are replaced by

1 1 C fI I. ' 1 .2..... in

where (c.s) are chosen so that .hj becomes zero and the matrix shown is
orthogonal:

C=

The elements can be zeroed column by column from the bottom up; elements t
are zeroed in the sequence

(n , . (n -- ) . .(2 , 1); (n .2) . . (3. 2); .. (n .n ) . . (m + , 1. )

Note that the rotation zeroing aj needs to be applied only to colu.m.s
-,j+..n since, at the time it is applied, the elements a.*a and a* for
k < j are already zero.

The Gentlemrn-Kung (GKC) array, an mvxvn triangular array of two cell types
that computes the QU tactorization (2) of an nxmv Input matrix A, is shown in
nigure 1. We oll the circles "boun.dary" calls. Figure 2 shows the cell's func-
tions. We shall now explain the GK array's operation. FirsL, note that. the cello
each have a sinle memory. Thee initia.lly are rtar. Th e .iagonal boundary
celia compute roLaton parameters (e.s). Caoll (J.) compute@ the rotations trial
Sarc elements of Golumn $ of A. Theme rotatins then move risht. alorn the rows
of the array. The square "internal" calls apply these rotauona to the other
columns.

The matrix A enters the array at the top in the pattern shown in FRgure 1.
To the upper left of each cell Is the time that the first element of A arrives. Sup-
pose a.., enters cell (1,1) at time t = 1. The first element of U. ul., ,.Ls corn-
puted in cell (1,1) at time t a n. By time f = n + 2(m - 1) the last element.
%_ _t . .has been computed. U now resides in the array. The rotattozn defting
Q will have emerged from the right edge.

2.1. The Trapezoidal Subarray

We would like to solve beamforrming problems of various sizes using one physicalarray, so we must consider how to simulate a Mul In. xmn array using a smaller
piece. Suppose we have a p xy trapezoid. as shown In Figure . Let B be a
matrix havmng n rows and q columns. If B is presented at the array top, we

. . . . . . . .
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where . is the desired signal vector, and R. is the covariance matrix of the Mg-
nal at frequency i :

Rmw.) = Ez=(c')J
In practice. for every interesting frequency. an rnxm matrix of samples of the
signal

would be obtained, and R estimated by

R ra XX ° "

* (Here. * denotes conjugate transpose). Possibly, different weights would be
given to the rows of X (u).

The following a goritbm gives the solution.

1. Factor

x",: (.)
where Q is an nxn unitary matrix, and Ef is the nxm matrix

2. For each bearing-angle "$,

(a) forward solve:
• .. u'( , = .c(i ) (2a)

(b) back solve:
UM ,(0) A (0) (A "L) - (2b)

(Here . a (U')-. so a = a V-'(U)-c = 'R&.c)
For the remainder of this paper we shall concentrate on the design of an

adaptive weight-selection processor that performs the two major steps of the
algorithm. Two systolic arrays will be used. One, a variant of the design of Gen-
" emen and Kung for QU factorizations [2J. performs step 1. The second does
the tra.-igular solves of step 2 and is new.

2. The QU - factorization Processor

ThIs section is an extension of previous results of Gentlemen and Kung in several

*•-°:>.T
.. . . . . . . . . .
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. ,1..Introduction

Several recent contributions to 'the literature in signal processing. computer
erchitecture, and VLSI design showed that systolic arrays are extremely usetul
for designing special purpose high-performance devices to solve problems M
nuerical hne.r algebra f 1.2.3.4.5). But no attention has been paid to Lhe prob-
lems of integratinig these designs into any computing or signal processing
envri-onment. The purpose of this paper is to examine systolic arrays in a
specLfc contert. We have chosen an adaptive beamfornn-g problem as that con-
text.

The adaptive beamforming problem chosen is simple, yet typical of those
encountered in sonar si arl processing applications. The signals of a large array
of m identical sensors are sampled. stored and Fourier transformed in time.
The result is a set z (w.i) of complex values depending on frequency (w) and sen-
sor (i) . Then, for each resulting frequency w an array output function g (wid)
depending on a bearing-Lngle t, is produced, by

Here overbar denotes complex conjugate. The vecLor = deterrnes tbe charac-
tartsUe of the bamlormer. For the mLrnurnuru-variL=o* .1tortione.s resonise
•be.rTO1rmer, in ohaser% to MLniso the output power, the u@3poted vlua af
Io * ,subject to a sitgn&!-protiction constraint

Here c ((., ) is the output of sensor . at frequency gi given no signal other than
that coming from a source at bearing-angleO

The solution is to choose the weight vector

*Perm-a.m addrem: Depurumt of Computer Science, Suno.-d Uuve ty..St.aeord. CA 04M
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unity for the values of a and p that occur. The r past of the constant applies equally to all

entries of Table 4-2 and reflects the number of times BASICMG is called by FULLMG. We point

out that the choice of r that results in truncation error level accuracy depends on how efficiently

BASICMG reduces its initial error but can be chosen indepedtat of n [5). Thus, the extra

multiplicative factor does not affect the asymptotic efficiency of a particular entry in Table 4-2.

The complexity of F(n) in the last case is actually increased by a factor of login over that of

T(n). However, the corresponding entries in Table 4-2 are already asymptotically inefficient and

thus this extra factor again does not affect the asymptotic efficiency of the design. It follows

that the discussions concerning the efficiency, speedup and optimal design for the BASICMG

algorithm in Section 4.1 ae also valid for the FULLMG algorithm, with the exception that h

fully parallel logarithmically asymtotically efficient design is slower by the factor login.

5. Conclusion

We have proposed an architecture based on a system of processor-grids for parallel execution of

multi-grid methods based on a system of point-grids. We have analyzed its efficiency and shown

that a combination of algorithm and machine is asymptotically eficient if and only if c < ad7

where

* c is the number of coarse grid iterations per fine grid iterations,

* a is the mesh refinement factor,
* d is the dimension of the point-grids,

-y "' is the dimension of the processor-prids.

We find therefore that fully parallel designs - with 7 - d -- cannot be asymptotically

efficient. There is, however, only a logarithmic fall-off in efficiency when c - ad' , and for fully

parallel designs this occurs for c - 1.

. . ..-.
.....

. . . . . . . . . . . . . . . . .



* 4.3. Complexity of FULLLMG
in this section, we shall derive the complexity of the FULLMG Algorithm. Since FULLMG

* calls BASICMG, the reults hene depend crucially on the complexity of Algorithm BASICMG.

Let F(n) denote the time taken by one call to FULLMG. By inspecting the algorithm in Table

* 2-2, it can easily be verified that F(n) satisfies the following recurrence:

F(an) - F(n) + r T(an) , (10)

where we have absorbed the cost of the interpolation step in FULLMG into the interpolation

costs of BASICMG (i.e. the term s in Equation (7)). Note that this is just a special case of the

recurrence (4), with c - 1 and W(an) - r T(an). By inspecting the entries in Table 4-2, we see

that the forcing function W~u) in this case takes the form of either aP or n~log~n. We hare the

following result for particular solutions of (10) for this clan of forcing functions, which can be
* verified by direct substitution.

Lemmas:

(1) If T(n) - anP then a particular solution of (10) is:

FP(n) - (0P/(&P-1)) ronP

(2) If T(n) - anlog~n, with p > 0, then a particular solution of (10) is:

F (in) - (aP/(aP-1)) renplogan _ (ap/(aP_192) ronP

(3) If T(n) - alog~n then a particular solution of (10) is:

FP(n) - (rar/2) ( log2.n + log~u)

Since the homogeneous solution of (10) is a constant, the general solution is dominated by the

* particular solutions. We give the highest order terms of F(n) in terms of T(n) in the following

theorem.

Theorem 7:

(1) If 11n) - anP then F(n) - (aP/(aP.1)) rT(n) + 0(1).

(2) If T(n) m *nPlogan, with p > 0, then F(n) - (aP/(aP-1)) rT(n) + 0(UP).

(3) If T(n) - alogan then F(n) - (r/2) log~n T(n) + 0(log,n).

In the firt two case, the complexity of F(n) is the same as that of T(n), except for the

constlat multiplicative factor (aP/(aP.1))r. The (aP/(aP.1)) pant of this constant is Very close to
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Next we shall fix a and -Y and vary c (columns in Table 4-2). That is, we fix the architecture

and vary the multi-grid algorithm. This time the speedup factor S decreases slightly as we

increase c which is not surWising as we are doing more work on coare grids, and this keeps

many processors idle. Apa, the efficiency E decreases as we increase c, and after a certain

entry, the algorithm becomes asymptotically inefficient. For example, take the two dimensional

cue with a processors on the n-grid (d - 2, -y - 1) and a - 3. Going down the appropriate

column, we have E(1,3,1,2) - - 1/2, E(2,3,1,2) - 2/7 and E(3,3,1,2) - I/log3n. Recall that

the larger c is, the more accurate is the computed solution and the more robust is the overall

algorithm. Thus, the c - 2 design is the most accurate efficient design. In general, for fixed
a and "1, the design juet above the efficiency boundary j the moe accurate effiient design. If

accuracy is no problem, then c can be chosen smaller to speed up the algorithm.

Finally, we fix c and - and vary a. Generally, a larger value of a means fewer processors are

needed to implement the architecture. It also means that less work has to be done on the coarse

grids because they have fewer points. To see the effect of varying a, note that the efficiency

boundary moves towards the lower right hand corner of the tables in Table 4-2 as a is increased.

This implies that, for a Mx architecture (-r) and algorithm (c), using a larger value of a will

generally exploit the available processors more efficiently. However, one cannot indiscrimatorily

use large values for a because this leads to lager interpolation errors and less accurate solutions.

For example, take the two dimensional case with n-processors on the n-grid and c - 2. With a

- , the algorithm is asymptotically inefficient (E(2,2,1,2) - 1/logn) whereas with a - 3 and a

- 4, it is asymptotically efficient (E(2,3,1,2) - 2/7, E(2,4,1,2) - 3/7). Thus, the a - 3 design

is the most accurate efficient design. In general, for fixed c and y, the smallest value of a that

yields an efficient design is the meat accurate efficient design. If accuracy ie no problem, then

a can be chosen larger to speed up the algorithm.

One can carry out similar parametric studies, for example, by fixing one parameter and varying

the other two. For instance, if we are free to choose both the architecture (,y) and the algorithm

(c), then by inspecting the form of the efficiency constraint c < a it can be seen that smaller

values of c allow more processors to be used (larger y) to produce a faster efficient design. For

example, in the a - 2 case, if c -- 2 then the p - 2 entry gives the fastest efficient design

whereas if c m 1, it becomes the p - 1 entry, with the latter being faster. Similarly, for a fixed

c, a larger value of a allows more processors to be used to achieve a faster efficient design.
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Table 4-3: Influence of Design Parameters on Optimality Conditions

Design Parameters
-------------------- ------------------------
I c I a 1 I

----------------------------------------------
Optimality I Mox Accuracy I large I small I indep I
Conditions ---------------------------------------

I Min T(n) I small I large large I
------------------------------- +---------------

Constraint I Efficiency E I small I large I small I
----------------------- +-----------------------+

In Table 4-3, we indicate the influence of each of the three design parameters (c,a,-) on the

optimality conditions and the constraint. For example, the accuracy of the solution is

independent of -y and to achieve maximum accuracy, one should take c large and a small. The

appropriate choice of optimality condition depends on the requirements of the given problem.

Moreover, the general optimal design problem may not have a unique or bounded solution in the

three parameter space (c,a,7t). In practice, however, we usually do not have the freedom to

choose all three parameters. If the number of free parameters are restricted, then the optimal

design problem may have a unique solution.

We shall illustrate this by fixing two of the three parameters in turn and study E as a function

of the free parameter. First, let us fix c and a and consider the effect of varying -y. In other

words, we consider the case where the multi-grid algorithm and the refinement of the domain are

fixed and we are free to choose the architecture. Varying - corresponds to moving across a

particular row of Table 42. It is easy to see that one achieves a speedup as we use more

processors (i.e. as one moves from left to right in one of these rows). However, the efficiency E

generally goes down as one uses more processors, and after a certain entry the design starts to be

asymptotically inefficient. For example, take the three dimensional case (d - 3), with a - 2

and c - 2. With n processors on the n-grid, the efficiency is E(2,2,1,3) - 1/3. With n2

processors on n-grid, we have E(2,2,2.3) - Iflog2 n, and with n3 processors E(2,2.3,3) - 0(1/n).

Both the last two designs are asymptotically inefficient and thus the y - I design is the fastest

efficient design. In general, for flaed c and a, the design juet to the left of the efficiency

boundary is the feetest efficient design.

• ' ' ' ,e ,,: , ,,e =€,• : .. - .'.... - .,,. ' .. - .. - -. , - - .. . .. -. - . .- .. . - . . . . .Z." , . . . .. .-
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Theorem 5: Assume -t > 0.

(1) If c < ad'7 then E(c,a,-I,d) - (a*lXad'eC)/(adc).

*.-q:.:" (2) If c - ad'  then E(c,a,-y,d) m (al)ad' / ((ad-€)log u).

(3) If c > ad'7 then

( 1/(nl°sjed -i) if C < ad,

E(ca,y,d) - (logen / n ') if c . ad,
Id

0(1/n') if c > a.

Based on the above theorem, we can immediately make the following observations:

1. A design is asymptotically efficient if and only if c < ad7. This inequality

defines an efficiency boundary in the four parameter space of (c,a,-y,d), the

projections of which are shown by "' in Table 4-2.

2. The fully parallel design (-y - d) is always asymptotically inefficient. This follows

because to have an efficient design in this case requires c < 1 which is meaningless

for the multi-grid algorithm.

3. Define a logarithmically asympototicaly efficient design to be one with E -

O(l/logsn) as n tends to infinity. A fully parallel design is logarithmically

asymptotically efficient if and only if c - 1. This is case (2) in Theorem S.

4. If we *tart with a nen-optimal design in the one processor case, then adding more

processors will not make the design asymptoticaily efficient. This corresponds to

the last two cases in Came (3) of Theorem S. The reason is that too many coarse

grid correction cycles are performed so that even if more processors are added to

speed up the setup time for transferring to the coser grids, too much time is spent

on the comer grids.

Asymptotically efficient designs are theoretically appealing. They indicate that the extra

processors are utilized efficiently to achieve the speedup. For this reason, it is interesting to

consider the following problem:

Optimal Design Problem:
For a given problem (i.e. given d), find the design that

minimizes T(n) and/or maximizes the accuracy of the computed solution
subject to the constraint that it is asymptotically efficient.



on one problem. the other diagonals on the second problem. An array of (3ml -

2wM) / 4 delay cells is needed: about half as many as in the 2 - array design.

8.1. Computing The Scala Fmto'

The computation (2b) requires the scale factor .&.(IR)A(13), that Ls the dot pro-
duct of the solution of the system (2a) with itself. Since the siolution vectors £
are produced one element per cycle by successive array columns, we can accu-
mulate these dot products by attaching a row of cells at the bottom of the array:
see Figure 6, for example.

4. Complex QU Factorijation

For signal processing applications, we must deal with complex matrices A. Of
course, one can solve a complex vixm least squares problem by means of a real
QU factorization of the 2n x2im matrix

where A = AR + L4A is the decomposition of A into its real and im agz nary parts.
But when Givens rotations are used. this factorization requires 8 /3 times as
many real multiplications as a direct complex QU factorization of A. We shall
now discuss how this can be done.

The QU factorization is unique only up to scaling of the rows of U by factors
of unit modulus: A = (QD) (D-1 U) is also a QU facto0Ization for any unitary diag-
onal matrix D. Thus, we may require that the diagonal elements of U be positive
real. This is the (unique) factorization computed by our array.

Let us change the cell definztions of Figure 1 to those of Figure 9. (We %hall
now employ this convention: lower case Roman letters are complex. Greek are
real, and, for example,

a a a + ja ' X Z ( + (

where: %/7. These cells are, of course, more dL±cult to implement thai the
real Givens cells.

With this there is little else that changes. Now, when a leading element of
an input matrix hits a boundary cell the eflect Is this

a

S. ;

* :

....................................
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Thus. instead of the identity produced in the real case. a unitary diagonal rota-
tion that simply rescales a row is produced.

5. VLSI Implementatian

In this section we shall discuss how the internal ceUs of the real and complex QU
arrays and the complex backsolve array might be fabricated uaing a Systolic
Internal Chip (SIC) that is being developed at EL. It is particularly noteworthy
that these different cells can be obtained using a common VIM building block.
without the use of additional chips. Moreover, we have used the SIC to design
other compound cells (for real and complex LU factorizatiou of dense and band
matrices and for band QU factorization). We expect that systolic arrays for
most of the standard algorithms of numerical linearialgebra can be generated
usug this chip and one other that we will also mention.'

First we shall give a ro4h description of the SICt It is. being designed in a
TRW 2/. CMOS Lechnology. Its 1._iction is thsr,

LIt U.
o'i= in

U. ~U Ycrt W inIn
V V. w: w U.V

. Wout Win s Uin Vin

where(®! ) *. , . * - denotes the sign used in the addition. This can be
or can e2tern e between the two Operatds are foatin point. Subs:a-n-

tia l effort has Son.s Into providl=o switching functions and internal registers to
Lnreass the SIC's flexibl ity.

Compound cells for complex arithmetic can be built. Here are two of

Kung'a designs: a complex a + ub ce l using 2 SICs.

o'~ a ( Y + Y'
S a +ja',

+ b - j '.

. .:.L

.,:,. .L-..,.L.. ....... . :. ;, €,,., , .,, .. .......... ......., - , , • ,,



and another. using 4 chips. in which one operand is statLonery.

YY

This is the interoal ceU for the complex backsolve array.
Figure 10 gives a layout for a complex Givens cell that uses 6 S]Cs. There

are two two-chip complex multiply-add celis, one for c z and another for cy
and two one-chip cells for real 0 complex multiply-add. one for a= and another
for oy . The complex quantities are represen.ed using one of the formats dis-
cussed above. New operands can enter the ceUL every second clock. There is a
three clock delay on the z-z path. but only a I clock delay on the c.-cw and
as, - o.,d paths.

We lack the space to fully discuss the boundary cell's implementation.
A other chip is necessary. A chip using either faster gates or more internal
paraUelism couJd provide divide, square root., and reciprocal square root opera-
tions at a rate of one operaUon per SIC cycle. This second chip could, wilh the
SIC, be used to design a pipellned bou.ndary cell for QU, backsolve, or LU opera-
tions with enough throughput to keep pace with the array. The boundary cells
Wll usually have more latency than the Lrternr. celi.

For a trapezoidal QU array this extra bourndery cell latency throws the
array out of synchronization uniess we provide appropriate Lntercell delays.
Fortunately these delays are needed only In the lef-hand triangular part of the
array. Figure 11 gives an example. Here the boundeay cell's latency is 5 and
the internal cell's is 4. although its left-right latency Is just 1. The time an
operand first arrives Is shown In each cell. The diamonds are delays: thek delay
the data 4 cycles. Their effect is to equalize the latency of alternate paths
through the array. Apxq array requires p(p -z) /2 delay cells. These delays
have an effect on the latency of the array and on the pattern of input and output
(it is not a parallelogram any more). But there is no reduction in throu hput.

I!

I .

,"' "": '" "'",,, .. -.".',.".. " ".'..-.." "'-. "', ... • . - .".-.- + . ' . ... .'..."...-.-'... ,.. ...- ".... .•. ......- ,. .,". .• .'
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1. Summa ry

Every symmetric positive definite nxn matrix A admits both the Cholesky

factorization

. -) A R T R

where R is upper triangular and the related "square-root-free" factorization

(1.2) A - LDLT

where L is unit-lower triangular and D is diagonal with positive elements.

In a number of situations, it is necessary to factor the modified matrix
- T

(1.3) A = A+zz

Gill, Golub, Murray,and Saunders (hereafter GGMS) give several algorithms

for modifying the factors of A [2].The algorithms all require Cn2 + O(n)

operations for some constant C; direct Cholesky factorization requires

(1/6)n 3 +r0(n2) operations, where an operation is one multiplication and

one addition. The purpose of this paper is to describe the implementation

of some of these algorithms by systolic array.

The principle application for systolic computation of updated Cholesky

factors comes from digital signal processing. There, A is an estimate of

the covariance matrix of a random signal vector. Periodically it is

updated according to (1.3); in these applications a is ordinarily positive.

In this context one may also have to consider rank k modifications

T T
(1.4) A + A+lzlzl + ... +

We discuss an appropriate systolic method for this situation in Section 3.

1.1 Notation. The elements of a matrix A and a vector x shall be denoted
by ai and x.. The symbols R, L and D shall be used for upper triangular,

unit lower tTiangular and diagonal matrices, respectively.

D - diag(di, ... ,d n). We write ei for the i th column of the identity matrix.

We shall use the notation Pj foraplane rotation matrix that differs

from the identity matrix only in that

ri Pii Pjj ' c

Pij Pji , s

where c = cose, s - sine. Given i, j and x there exists 8 such that



x k i,j

im

W +x!) k -j

~.Methods using the Cholesky factorization of D +appT

Let us determine the factors

A LD

By (1.2),

A A+cizz T=L(D +cpp T)LT

where Lp= z. First, find p by back-substitution. If we find the factorization

T -- z'T.
(U.1) D +cpp =L DL

Then the modified factorization of

A =LL:D L L

is given by

(2.2) L -LL, D D.

We consider two algorithms of GGMS for computing (2.1) -(2.2). The first

is readily implemented by systolic array. It may fail, how~ever, when a <0

and A is ill-conditioned. The second is infallible, but not easily

implemented.

GMS show that, in (2.1),

(2.3) 9. p r s < 1s <r <n.

Thus, to get the factorization (2.1), we need only find 8. d., 1 <j <n.
j$ -~ .-

The special structure of L also allows fast computation of L alL. Define

the vectors

(j) r j-1 9 r~~rjl..n

These values are generated in the course of back-substitution to find p.

When computing I they are used again. By (2.2), (2.3)

r

ri. i

r

ij ri ij

r

ri r ri1

. . . . .

. . . . . . . . . . . .. . . . . . . . . . ..+ - . . .
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"" Te f inal recurrence for computing U and V is this:

. Algorithm 2.1

". 1. L e t a ,I a a:; w • Z .

=..2 . fo r j =1 ,2 , . .. . n , c om pu te

2 '( 2 .4 ) p j = w ( j )

(2.5) d. = d. +aj p.

(2.6) 5. = pjaj/d.

(2.7) Qj+ I  = d a .d.

(2.8) wr Wr - j
r r jr r = j+1, .. n.

(2 .9 ) = + 8 w 
(j +1 )

rj ri i r

We now consider systolic array methods. First, there is an obvious method,

shown in Figure 1, in which there is a processor for each stage 1 <j <n

in the algorithm. The cell used is this

first clock (r = j):

.. C -, pj -- I- j"
d..

(see (24 -(27))

rr

.1~

w(j) r
J J

(see (2-4) -(2.7));

subsequent clocks (r > j):

• 1 .p. P. -

.. w(j) ,r

(see (2.8), (2.9)).

.' .
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231 £32 j 3

r- -- r 1-7 r 1 -

A A

((1) a 3

w d

1 31 2(2)
21 L. 2 2

()(2) (3)
w3 z31 w3 432 w3 d3

(1) (2) (n )
n n I W n n2 n

Figure 1. An array for Cholesky update

The principle disadvantage of this design is that the cells are relatively

complicated. All must divide. All have memory.

There is a second array, shown in Figure 2, without these disadvangages.

The cells are defined as follows

~Q) Qj-1)
p- "- r r
pjr r .
,t ~ - _ . .. -- P

(j +1)
wrr r J

(see (2.8));

d.
J

( CjpI ) I d.

(see (2.4), (2.5), (2.7));

' -.................... ,-,'"v "'.: "- ..' .,.'''''-'....''-,,','-..'-'.... '-..'.''.''.,.,' ''-' ... .:.. '..'''''



• 
j

d.

(see (2.6));

w(j+
I) .

r ,ri

rj

(see (2.9)).

ds

£5 4

d4 £53

. Z43 5,s
"d d3 142 I5

-w (2) v~

P2 P
I( (3) (2)

- w 3 E32 W 4  Lu1
A - -tA - - - A - - A-

i2 Ii
FuV 2 T

r* Figure 2. The second array lor algorithm I

b.!



Algorithm 2.1 may fail. GUMS point out that when a <0 and A is nearly

singular, rounding error can cause one of the computed values d. to be

nonpositive, so that an indefinite factorization is obtained.

GGMS have proposed a modified algorithm, algorithm 2.2 below, that

is guaranteed to provide a positive definite factorization.

Algorithm 2.2

I. Solve LP -z

2. Define

CLi = ci

n
s1-I pi/d.

o =al1+/(1 + s)].

3. for j 1,2, ... ,n, compute

(a) qj = p'/d.

(b) e. = 1 +ojq.

(c) sj 1 = s.j-qj

(d) , = q+o2 q,

(e) p d.

(f) a. = aip/d.
.1j ii .

(g)cz =a al

j +J .1 1 1

(i) for r-j+l, j+2, ... n,

w Q+1) w Q)
r r Pj rj

(2.16) - = . .(j 1)

rj rJ j r

This algorithm does not permit realization using one pass of L through

an array, as does Algorithm 2.1. The reason is that sl is needed before

step 3 can begin, and the full backsolve in step I must be completed

in order to compute sl. There is a relatively obvious two-pass method,

in whiLh p, w, q, and sl are computed from L and z in the first pass

through the array, and all other quantities in the second pass. The

boundary cell computation for the second pass is quite complex, as

it encompasses steps 3(b) -3(h). In practice, it will be rather

difficult to match the speed of such a boundary cell to that of the

rest of the array, which would consist of a linear array, each cell



7V -I

performing the computation (2.10) for a fixed value of r-j, exactly

as in the lower half of the array in Figure 2.

3. Methods based on plane rotations

GCMS give several algorithms using plane rotations for modifying

Cholesky factorizations. We have found two of the more efficient of

these to be easily implementable as systolic arrays. The first is

simple, efficiert, requires only one pass of the data through the

array, but works only when a >0. The second works in general, but

requires two passes. Both can be extended to handle rank-k updates

": (1.4).

3.1 Positive rank-1 changes

We compute the modified factorization

-T- = RT RazzT. >0,

byreucn te rR izaz T

by reducing the matrix [c z " R to lower triangular form,

( z ! = RT 0)]

where P = P2
1 P3

2  P n+1 It follows that

Rti R [j T T ri jzT T

zc -R - " TR +azz,

so that R is the updated Cholesky factor.

The method can be readily extended to handle rank-k updating efficiently.

In this case

(3.1) A - A+ZAZ

where

Z [Z,1 z2' ... zk

is an nxk matrix and

A -diag(cx 1, a2

When a. >0, 1 <j <k then we can form the matrix

R

and reduce it to upper triangular form by premultiplication by a suitable

sequence

.. . . . . . . . ~. . . . . . . . . . . . . . . . . . . . . . .

. . . .. . . . . . . . . . . . . . . . . . . . . . .



p. p(n) p(n-) ... p(1)

P(j) P. i p j+1 Pk~j-l
j+1 j+2 k~j

of plane rotations.

The advantage of considering k updates together instead of as a

sequence of k rank-1 updates is that the modification of R can be

carried out by one pass of the data through a systolic array of O(kn)

processors. Thus, while the number of arithmetic operations is the

same, the total time and the number of I/0 operations (including

memory references) is less by the factor k.

We postpone consideration of the array until the next section.

3.2 Negative rank-1 changes

GGMS have given a modification of the previous method for the case

a <0. We shall now generalize their approach to the case of a rank-k

change. Let

T T T
(3.2) A = A - ZAZ - R R - ZAZ

where Z is nxk and A>O is diagonal. For convenience we take A -I,

without loss of generality. Now let P be the nxk solution to

T
(3.3) Rp Z.

It is easy to show that A remains positive definite if and only if I-P TP

is positive definite. Now form the matrix

ID Jo
n .

(D is a lower triangular matrix to be specified below) and premultiply
n(1) () (k)

by an orthogonal matrix Q of the form Q P( p) ... P where
(j) n

, P ... Pn zeros column j of P and leaves R in upper-triangular

form, until

IP " R 1 o

(3.4) 1: TL Dn  1i D S

From (3.4) we conclude that

. .. ..



(3.5) P T P D T D -D TD

(3.6) RTR .iTR, SST

(3.7) RT P - SD0 .

From (3.3) and (3.7) we have that

(3.7') Z - SDO.

We now choose D . Take D to be the Cholesky Factor
n T

(3.8) DD I-

Thus, by (3.5), we have that D 0 1. Hence, by (3.7') and (3.6)

RTR - RT RzZ
T

3.3 Arrays for updating with plane rotations

We first consider the method of section 3.1 for positive updates.

The array presented is a generalization of an array of Heller and

Ipsen for QR factorization of a banded matrix [3]. A similar notion

also appears in Schreiber's work on systolic arrays for the eigenvalues

of a nonsymmetric matrix [5].

The array is shown in Figure 3. It is k x (n+k), rectangularly

connected. Not all of the k(n+k) cells actually do anything, as is

shown in the figure. If the first elements of R and Z enter at time 1,

then the first element of R, ri, emerges at time 2k+1, and the last,

rnn at time 2(n+k) -1.

Again, for convenience, we assume a mI. The cells of this array

operate as follows.

boundary cell:

xt

-x o

y

where c cos 0, s sin 0, and

•.( x,) .- (..: a x

.....
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internal cell:

-X1

where Y

(xY:). (_C S:) (X)
delay cell:

bx

x Y

'- K2

ril1

; 12 -

r22 -. r13
. r 2 3

r33

J

~~L rJ~- r L-

Z11

Z21 . Z12

Z31 Z22

"1 . Z32

r 1 2  . Z33

r22 r13 .

* r23 r14

r33 * .. , zn

-n3n

* r1 n

r2n

Figure 3. The Reller-Ipsen array for a > 0, k - 3

" -. ... _ o .. . ".. _... ".*.',.*,, . .*",' , . ' * . . . " ,
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It would be quite possible to eliminate the delay cells and provide

input data directly at the right-hand edge ot tie remaining k xn array.

The pattern of access to the data is slightly more complex when this

is done.

The second algorithm, for a<0, requires two passes over the

matrix R. First, the systems (3.3) are solved using a kxn array,

an obvious generalization of Kung and Leiserson's array for k = 1 and

banded R [4]. Next, we compute D off-line. We assume that k is quite
n

small, so that it is easy to do this. The matrix I-P pTp, of which D
n

is the Cholesky factor, can be accumulated by another, rather obvious,

array of k(k+l)/2 cells.

Now we consider the reduction (3.4). This is done by the array

shown in Figure 4.

The matrices Dn, P, and R enter in the format shown, with D=[dij].

The last element, r 1,1' enters 2n+k-1 clocks after the first, and

leaves from the top k clocks later. The matrices Do = I and S reside in

the array. The cells used are these:

boundary cell:

if empty:

Sc =0
smi

d

otherwise

d d'S

p

where c =cos O, s = sin e, and

(d ) = ( c s) (d)
[there is really nothing special about the "empty" case]

" ... .., . . . ... . . .,,.... ... ... "...... ... ... .. ... ...... .. ..... ... .... ..... .-... . . . ,. . . , , ... . . . . " , , . .. .'. .-.. . . . . "



" IN- I -

internal cell:
XI

x

cS- X - y C S

A

y

where -,S)( _:(X)

r
-nun
r

1n-,n
rn-2,n n-1,n-I

-7 " . L. ..

-. r --1 rF -
-',!' - - . I L.

:: -  - ,L .J L -,

- I- I

. . M ..- ' -

d 33 d22 d 11
Pn,3 d32 d21 0
n-1,3 n,2 31

"-."Pn-1,2 Pn,I 0

n-1,1 nn
-- rn-1 ,n

rn-I,n-I

P1,3
P! ,

r 0 0

r r ,*

" " rl,n-I r3.3

0 0

r ) .I

r' 1. 0.

Figure 4. Updating with plane rotations when a<0

'r'- ~~~~..__.--. . . . ... .' .n., ,,n,, , " -,i
.

... . .... li
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Initially all cells contain zero and all rotations are c -0, s -1.

In many respects this array is like a k xn section of the Gentleman-

Kung array for QR factorization (1], which was described more fully by

Schreiber and Kuekes (6].

4. Related problems

The problem of updating Cholesky factors frequently arises in contexts

in which
A B BTB

for a rectangular matrix B of n columns. In the orthogonal factorization

B QR

T.
the matrix R is the Cholesky factor of A. If a row z is appended to B

this causes a rank-cne change to A. To update R, any of the methods

discussed here can be used. The first method of Section 3 is particularly

appropriate since it uses orthogonal operations to update R. If Q is to

be updated, too, one computes

Q 0 B . Q R

L zr  ZT

so that

Q :0'I
0 1

The array used can be enlarged to allow this computation to be performed

also.
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SYSTOLIC ARRAYS: HIGH PERFOIMANCE PARALLEL
MACHINES FOR MATRIX COMPUTATION

Robert SchreiberI

I. INTRODUCTION

In this paper we shall summarize the recent development

of systolic array methods for some of the important standard

problems in numerical linear algebra. We shall discuss LU and

*QR factorizations, eigenvalue problems, and the singular value

- decomposition. All the work we shall describe has been done

since 1981. Our aim is to introduce the reader to this

rapidly developing branch of numerical computation.

Systolic arrays were introduced and named by Kung and

Leiserson [12]. Although their ideas had antecedents (see

[ 8 for example), they first fully realized and proclaimed

that these designs--highly parallel computing networks with

regular data flows, two-dimensional lattice form, simple iden-

tical cells, regular input and output patterns, and heavy re-

* use of data--were an ideal way to use the emerging VLSI

tuchnology to obtain very high performance for suitable

computations.

After these first promising designs, which implemented a

few relatively simple matrix computations, two important ques-

tions were open. Could systolic arrays be found for a broader

class of matrix problems, including the more important and

difficult matrix decompositions? And could they be integrated

into zeal computing systems without introducing incapacitating

losses of efficiency?

1Department of Computer Science, Stanford University,
Stanford, California 94305
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The first of these questions has now been answered and

tLe answer is a definite "yes." This research has done more

thun answer the question of the applicability of the systolic
airay idea. It is, rather, the beginning of an intriguing new

approach to numerical computation. In this new approach the

flow of data in both time and space is important, whereas tra-

ditiorally only the sequence of computations in time was con-

sidcred. An interesting facet is that the standard algorithms

have not always proven suitable for systolic array realization.

For instance, for symmetric eigenvalue problems, Brent and Luk

15] have found that Jacobi's method is better than QR. Their

m:thtdd uses a permutation of the off-diagonal elements that

s;utrns to be better than the usual cyclic-by-rows permutation
[5].

The second question is being answered now. Several pro-

cots for building VLSI based systolic hardware are currently

in progress or complete ([1], (19]). An effort at ESL, Inc.,

should produce a systolic machine with performance in the 100-

1000 megaflop range in the next few years.

It appears at the moment that digital signal and image

processing [151, rather than standard scientific computing and

elliptic equation solving in particular, offers the sort of
problem best suited for systolic array solution. Nevertheless

*thuse ideas can be usefully applied to elliptic equations. In

" Section VI we shall discuss an implementation of multigrid

muthods by highly parallel computing networks.

I1. LU AND QR FACTORIZATIONS

The first such array was an m xm hexagonally connected

array for LU factorization of n x n banded matrices with band-

width m in time 0(3n) [12]. Unfortunately, there was no pro-

vision for pivoting to enhance stability. Next, an array for

"j R or LU factorization of a dense square matrix, in linear

time, was given by Bojanczyk, Brent, and Kung [2]. A differ-

ent array, better in that it could handle rectangular m x n

matrices in time O(m), was given by Gentleman and Kung [101.

'iThe unit of time we use is the cycle time of a cell of the

(4iven array. In this time, every array accepts one set of

................................
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inputs and produces one set of outputs. Finally, Heller and

ipscii developed a rectangular array for band matrix LU and QR

factorization [11]. (See Figures 1 and 2.) Many practical

details concerning the implementation of the Gentleman-Kung

array were discussed by Schreiber and Kuekes; they also give

an array for triangular systems with many right-hand sides
* '5].

i .-

Figure 1. Figure 2.

The Gentleman-Kung Array The Hteller-Ipsen Array

The QR factorization arrays employ Givens rather than

Householder transformations. The LU arrays employ a stable

variant of Gaussian elimination that uses "neighbor pivoting."

When the matrix element aii is eliminated, the elimination is

done by subtracting from row i a multiple of row i-l. These

rows are first exchanged, if necessary, to make the multiply-

*. ing factor smaller in modulus than one. Partial pivoting does

-. not lend iteself to systolic implementation.

III. EIGENVALUE COMPUTATION

The obvious first approach was to attempt to implement

the standard algorithm for the symmetric problem: reduction

to tridiagonal form by orthogonal similarity transformation
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followed by a method, QR iteration for example, for the tri-

diagonal matrix. A linear array that requires O(n 2 ) t-me is

easy to find, but more parallelism has so far proved elusive.

Schreiber showed, however, that reduction to a matrix with 2k+l

non-zero diagonals could be done in n 2/k cycle times using a

k x n sub-array of the Gentleman-Kung array. The eigenvalues

of the banded matrix can be found using QR iteration which was

shown to be implementable by the Heller-Ipsen array in only a

little more time than is needed for QR factorization [13]. If

further speed is desired, then up to n/k QR iterations can be

performed simultaneously by a pipeline of Heller-Ipsen arrays.

Choosing k = nI/ 2 yields a method using O(n3"2) processors and
* 3/2o(n ) time. (There is some difficulty concerning the choice

ut shifts in the QR iteration when iterations are pipelined.)

- These techniques are also applicable to nonsymmetric matrices

114).

The pursuit of a linear-time solution led Brent and Luk

to consider Jacobi methods. They have found an implementation

using an n/2 xn/2 array, which implements a cyclic Jacobi

sweep in n-i cycle times [5). Their experiments have shown

that 0(log n) sweeps are required for convergence. In prac-

* tice, for n < 1000, no more than 10 sweeps would be required
1.

* IV. SINGULAR VALUE DECOMPOSITION (SVD)

To both the approaches of Schreiber and Brent-Luk there

are analogous approaches to the SVD. Schreiber's takes mn/k

*. cycle times to reduce an m x n matrix to an upper triangular

matrix with k+l nonzero diagonals. QR iteration can then be

carried out using Heller-Ipsen arrays [16]. Brent and Luk

employ a linear array, and their method requires O(mn log n)

* time [4]. Brent, Luk, and Van Loan have just reported an im-

proved method requiring almost linear time [6].

One of the uses of SVD is in solving ill-conditioned

*least-squares problems. An alternative method is to construct

*i the generalized inverse of a rank-deficient matrix closest to

the given matrix by an iterative method. An algorithm of Ben-

Israel, improved by Schreiber, can be used. The generalized



inivurse is obtained in O(m logcond(A)) time using n2 proces-
ors 1lS8.

V. DECOMPOSING ARRAYS

A most important question from the practical point of

view is this: can a physical array of fixed size (number of

culls) be used to solve problems of arbitrary size? The ques-

tion is important because, obviously, problems of widely dif-

fering sizes may be confronted in some applications. Not so

obviously, in some applications the problems may have only one

size, but they may occur infrequently enough that a full-sized

array would not be kept busy for more than a fraction of the

time. In these cases it would be more efficient to build a

sinillur array and have it simulate a full-sized array of the

same kind. The question is whether this hardware/time trade-

off is possible.

For some arrays it is easy to see how to do this. Con-

sidcr the Gentleman-Kung array (Figure 1). Suppose a sub-

array of the size shown within the dashed outlines is available.
The sub-array could be used to perform the work done by the

outlined part of the whole array because all the data flowing

into that part of the array is known at the outset. Data flow-

ing out of the subarray has to be stored. The sub-array can

* next be moved to cover another part of the large array for

which all inputs are now known. This continues until the

whole array has been covered.

For some arrays, the only sub-array for which all inputs
* [ are known is the entire array. The Kung-Leisserson LU factor-

ization array is an example. Such an array is not "decomposa-

ble" by this technique. We consider that this is a serious

drawback.

The Hleller-Ipsen array (Figure 2) is partially decomposa-

* ble. If we cut it by a horizontal line (the dashed line in

Figure 2) then, since all data flows through the cut from

bottom to top, we can "run" the bottom part of the array, save

the output, then run the top part using this saved data as in-

put. But if a vertical cut is made, data flows across the cut

*in both directions. Moreover, these data cannot be known
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unless the computations performed by both the left and right

halves of the array are done.

The Brent-Luk SVD array at first appears to be indecom-

posable. Despite this we have recently found a way to use

this array to solve larger problems. The key is to use a p-

processor Brent-Luk array as the basic "cell" in a q-processor
"super-array" that works on matrices with 2pq columns. Colunns

move between these cells in groups of p. The idea also applies

to the Brent-Luk eigenvalue array. We shall give the details

in a later paper [19].

VI. MULTIGRID METHODS

To illustrate the applicability of systolic-array-like

devices for elliptic problems, we consider implementation of

multigrid algorithms. Full details are given by Chan and

Schreiber [7]. Related work is reported by Brandt [33 and

Gannon and Van Rosendale [9]. Consider a standard multigrid

algorithm with nd gridpoints on the finest grid and a coarse-

to-fine mesh-length ratio of a, in which c coarse grid intera-

tions are done for every fine grid iteration. Suppose we

build a processor grid with np processors for every point grid

' n1ith nd gridpoints, so that all computation on the fine grid

take O(n d- p ) time. Then we can show that the time for an

iteration T(n), satisfies

(n -  if c < adp
T(n) O(n d - p log n) if c = ad-p

O~dlog d
0(nla c) if c > adp

Thus, we get a speedup proportional to the number of process-

ors employed only in the first case. The loss of efficiency

is not too bad (O(1/log n)) in the second case, as for in-

stance when there is one processor for every gridpoint (p = d)

and we take c = 1.
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ABSTRACT

Systolic architectures due to Brent, Luk, and Van Loan are today the most
promising method for computing the symmetric eigenvalue and singular value
decompositions in real time. These systolic arrays, however, are only able to solve
problems of a given, fixed size. Here we present two modified algorithms and a
modified array that do not have thiF disadvantage. The results of a numerical
experiment show that one combination of new algorithm and array is just as
efficient as the Brent-Luk-Van Loan method

i. INTRODUCTION

Systolic arrays are of significant and growing importance in numerical computing
11, especially in matrix computation and its applications in digital signal

processing ; 121. There is now considerable interest in systolic computation of the
singular value decomposition j 2, 4,6, 101 and the symmetric eigenvalue problem
[1],9;.

To date, the most powerful systolic array for the eigenvalues of a symmetric
n X r. matrix is a square n/2 X n/2 array due to Brent and Luk. ThiL array
impiements a certain cyclic Jacobi method. It takes 0(n) time to perform a sweep
of the method, and 0(log n) sweeps for the method to converge 1 1.

Brent and Luk have also invented a closely related (n/2)-processor linear
array for computing the singular value decomposition (SVD) of an m X n matrix
A. SVD of A is a factorization A = UEVT where V is orthogonal, E is
nonnegative and diagonal, and U is m x n with orthonormal columns. This
array implements a cyclic Hestenes algorithm that, in real arithmetic, is an exact
analogue of their Jacobi method applied to the eigenproblem for ATA. The array
requires 0(rnn) time for a sweep, and 0(log n) sweeps for convergence (2 1.

A new array, very like the eigenvalue array, is reported by Brent, Luk, and
Van Loan to be capable of finding the SVD in time Oirm + n logn' 31.

The purpose of this paper is to consider an important indeed an essential
problem concerning the practical use of these arrays. How, with an array of a
given fixed size, can we solve problems of arbitrarily large size'

2. THE JACOBI AND HESTENES METHODS AND THE BRENT-LUK ARRAYS

We shall concentrate on Hestenes' method for the SVD. Starting with the given

matrix A, we build an orthogonal matrix V such that AV has orthogonal columns.
Thus

AV = UE

where U has orthonormal columns and E is nonnegative and diagonal. An SV'D
is given by A =UEV r

r'o1

* *r O**~* .. .
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To construct V, we take

A =O A,

and iterate

A(# ' ) -
A ( ' ) Q ,  = 0,1,...

with Q(') orthogonal until some matrix A ( '1 has orthogonal columns. Q(,) is
chosen to be a product of n(n - 1)/2 plane rotations

QM n(vn - 1)/2.I ~Q(')= II Q,°t)}

Every possible pair (r, a), 1 < r < s _< n, is associated with one of the rotations
-Q!) (the association is independent of i) in this way: the rotation Q ') is chosen

to make columns r and s of

orthogonal. The process of going from AO to A(' + ') is called a "sweep". Every
permutation of the set of pairs corresponds to a different cyclic Hestenes method.

The correspondence with the Jacobi method is this. The sequence A( )

converges to the diagonal matrix E 2 of eigenvalues of ATA. Moreover

A('+ IA('+') =_ (')7(A( }'A(sl)W)(

where Q(I) is the product of n(n - 1)/2 of Jacobi rotations that zero, in some

cyclic order, each off-diagonal element of A(') A" )

The permutation chosen by Brent and Luk allows the rotations to be applied
in parallel in groups of n/2. Their permutation consists of n - 1 groups of n/2
pairs such that, in each group, every column occurs once. Thus, the n/2 rotations
corresponding to a pair-group commute. They can be applied in any order or, in
fact, in parallel.

The SVD array is shown in Figure 1. There are n/2 processors. Each
processor holds two matrix columns. Initially processor i holds column 21 - 1 in
its "left memory" and column 2i in its "right memory" .

In each cycle, each processor computes and applies to its two columns a
plane rotation that makes them orthogonal. Next, using the connections shown
in Figure 1, columns move to neighboring processors. This generates a new se"
of n/2 column-pairs.

After n - 1 cycles, n(n - 1)/2 pairs of columns have been generated and
made orthogonal. It can be shown (by a parity agument) that no pair occurs
twice during this time. Thus, every pair is generated exactly once.

., ,. . °".. ",,' .. ° , ,' ° ,. ,o.,° % . .• . . . % . % ' '. . - . • . . • - . % -° . " . . . .. , ,. • . . " . .. ° % - , .
. . . . . . . . . . .



_ _ '

3 6 E7

Figure 1 The Brerit-Luk SVD array, n

A diagram (given in j 2 1 originally) showing the movement of columns through
the array, very important in the considerations to follow, is given in Figure
2.
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3. SOLVING LARGER PROBLEMS

We now consider the problem of finding an SVD when A has n columns, the array
has p processors, and n > 2p.

The usual approach to this problem is to imagine that a "virtual" array, large
enough to solve the problem (having ""] or more processors,) is to be simulated
by the given, small, physical array. Moreover, the simulation must be efficient.
The array should not spend a large amount of time loading and unloading data

For some arrays, this simulation is trivial. One finds a subarray of the virtual
array. of the same size as the physical array, for which all the input streams are
known. Clearly the action of such a subarray can be carried out and its outputs
stored. These outputs then become the inputs to other subarrays. This process
continues until, subarray by subarray, the computation of the entire virtual
array has been performed. If this technique is possible we say that the array is
"decomposable". The various matrix multiply arrays 7 , the Gentleman-Kung
array j5,, and the Schreiber-Kuekes backsolve array 8] are good examples of
decomposable arrays.

Some arrays are indecomposable: the Kung-Leiserson band-matrix LU fac-
torization array, for example 17 1.

The Brent-Luk arrays are indecomposable. Ccnsider Figure 2. Suppose
a two-processor array is available. Can it simulate the four-processor array? It
cannot, not efficiently anyway, since there does not exist a two-processor segment
of Figure 2 for which only known data enters. If this diagram is cut by a vertical
line, data flows across the line, in both directions, every cycle. The data cannot

be known if only the computations on one side of the line have been performed.
Here, we shall present a solution to this problem. The idea is to have a

given p-processor array simulate a pq-processor "superarray' which is not of the
Brent-Luk type. Moreover, the superarray is decomposable. In its space-time
dataflow graph the processors occur in groups of p. For long periods, of either p
or 2p - 1 cycles, there is no data flow between groups. Thus, the physical array
can efficiently carry out the computation of the superarray, groupbygroup.

We give two such superarrays. The first implements a Hestenes method in
which a "sweep" corresponds to a permutation of a multiset of offdiagona' pairs.
There is some redundancy, some pairs are generated and orthogonalized several
times. The second implements a cyclic Hestenes method with a permutation
different from Brent and Luk's. For this method, a minor change must be made
to the array.

We have compared these new sweeps to the Brent-Luk sweep These experi-
ments indicate that the first superarray is about 20 - 60% less efficient than the
Brent-Luk array, while the second superarray is virtually equal to the Brent-Luk
array in efficiency.

4
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3.1 METHOD A

The method is easiest to explain in terms of an example. Suppose we have a 4
processor array. Suppose there are 16 columns in A. We proceed as follows.

1. Load columns 1-8 and perform a Brent-Luk sweep on them;

2. Load columns 9-16 and perform a Brent-Luk sweep;

3. Load columns 1-4, 13-16; perform a Brent-Luk sweep,

4. Load columns 5-8, 9-12; perform a Brent-Luk sweep;

5 Load columns 1-4, 9-12; perform a Brent-Luk sweep;

6. Load columns 13-16, 5-8; perform a Brent-Luk sweep.
Steps 1-6 together consistute an A - supersweep or ASsweep. During an

ASsweep, every column pair is generated. Some are generated more than once.
To describe the general case, suppose there is a p processor array, and n -

2pq (pad A with zero columns, if necessary, so that 2p divides n). Imagine that
the matrix A consists of q supercolumns or Scolumns: supercolumn A, consists
of columns

q(i - 1) + 1,-., qi.

Now consider a q-superprocessor or Sprocessor virtual superarray or Sarray.
Each Sprocessor holds two Scolumns (one in each of its left and right memories).
In one supercycle (Scycle) the Sprocessors each perform a single Brent-Luk sweep
over the 2p columns in their memory.

(Obviously we can simulate an Scycle of an Sprocessor using one p-processor
Brent-Luk array and 2p- 1 cycles of time. Moreover, we can be loading the data
for the next Scycle and unloading the data from the preceding Scycle at the same
time as we process the data for the current Scycle.)

Initially, Scolumni A, and A 2 are in S processor 1, A3 and A4 in Sprocessor
2, etc.

Between Scycles, the Scolumns move to neighboring Sprocessors. The
scheme for moving Scolumns is precisely the same as the scheme for moving

ordinary columns in a q-processor Brent-Luk array.
After 2q- 1 Scycles, we have generated every pair of Scolumns exactly once.

Together these 2q- 1 Scycles constitute an ASsweep. During an ASsweep, every
pair of columns of A is orthogonalised. If two columns are in different Scolumns
then they are orthogonalized once, during the Scycle in which their containing
Scolumns occupy the same Sprocessor. If they are in the same Scolumn, then
they are orthogonalized 2q - 1 times.

In units of cycles, the time for an ASsweep, TAS, is

- cycles
TAS = (2q - 1)Scycles * (2p - 1) cycle

.. Scycle

= (2q - 1)(2p - 1)
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(Of course, the simulation by a p-processor array takes q times this time.) The

time for a Brent-Luk sweep over n columns, TEL,, is

TRL = - 1 = 2pq - 1.

Thus, the ASsweep takes longer; the ratio of times satisfies

9 TAs
- < < 2.
7 - TBL

(The lower bound arises in the simplest nontrivial case p = q = 2.)
There is little theoretical basis for comparing the effectiveness of ASsweeps

and Brent-Luk sweeps in reducing the nonorthogonality of the columns of A.
We have, therefore performed an experiment. A set of square matrices A whose
elements were random and uniformly distributed in I -1, 11 were generated. Both
ASsweeps and Brent-Luk sweeps were used until the sum-of-squares of the off-
diagonal elements of ATA was reduced to 10-12 times its initial value. We show
the results in Table 1. The number of test matrices, the average number of
sweeps, the largest number for any test matrix, and the relative time

" = TAs average-sweeps (AS)

TBL * average-sweeps (BL)

are shown.
Evidently one ASsweep is more effective in reducing nonorthogonality than

one Brent-Luk sweep. This is not surprising, since more orthogonalisations are

performed. Their cost--effectiveness, however, is roughly 20 - 60% less.

Averages Maxima
p q n trials AS BL AS BL p
2 2 8 320 3.98 4.33 5 5 1.18
2 4 16 160 5.10 5.38 6 7 1.33
2 8 32 80 6.18 6.29 7 7 1.43
4 2 16 160 4.80 5.40 5 6 1.24
4 4 32 80 5.99 6.31 7 7 1.50
4 8 64 20 7.05 7.55 8 8 1.57
8 2 32 80 5.25 6.28 6 7 1.21
8 4 64 10 6.60 7.60 7 8 1 45

16 2 64 20 6.00 7.30 6 8 1.21

Table 1. Comparison of Break-Luk sweeps and ASsweeps

A7 6



In order to gange the reliability of the statistics generated by this experiment,
we also measured the standard deviations of the sampled data. In all cases, the
standard deviations were less than 0.5. For the samples of size 80 or more, the
standard errors of the means are no more than 0.06, so these statistics are quite
reliable. For the samples of size 20 and 10, these data may be in error by as much
as 10%.

3:2 METHOD B

Method A suffers some loss of speed because, in an ASsweep, &ome column-pairs
are generated many times. By making a small modification to the Brent-Luk
array and using the new array as our basic tool, we can simulate a new superiweep,
called an ABSsweep, during which every column-pair is generated exactly once.

Figure 3 shows the modified array. The connection from processor 1 to
processor p is new. Note that a ring connected set of processors can easily simulate
this structure. This array is still able to perform Brent-Luk sweeps over sets of
2p columns. But it can also perform a second type of sweep, which we call an
"A.B-sweep" that we now describe.

Figure 3. The mo&fied SVD array; n=8

In an A.B-sweep, a pair (A, B) of Scolumns, each consisting of p columns.
is loaded into the array. During the sweep, all pairs (a, b), a E A, b E B are
generated exactly once. But no pairs from A X A or B x B are generated.

To implement an AB-sweep, place the columns of A in the p left memories
and the columns of B in the p right memories of the processors. (The set of left
(resp. right) processor memories is the Sprocessor's left (resp. right) memory,
rather than the memories of the leftmost (reap. rightmost) p/2 processors).
Processors do precisely what they did before: orthogonalize their two columns.
Between cycles, A remains stationary, while B rotates one position, using the
connections shown as solid lines in in Figure 3.

An A.BSsweep is this. Again we work with 2q Scolumns of p columns each
The initial configuration is as for an ASsweep. During the first Scycle, which
takes 2p - 1 cycles, every Sprocessor performs a Brent-Luk sweep on the 2p
columns in its memory. On subsequent Scycles, all Sprocessors perform AB-
sweeps, where the sets A and B are the two S columns in its memory. Between
Scycles, Scolumns move as before.

7...................
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It is easy to see that in an ABSsweep every column pair is generated once.
Thus this scheme implements a true cyclic Hestenes method. The permutation
differs, nevertheless, from the Brent-Luk permutation.

Again, we have compared the new scheme to the Brent-Luk scheme by an
experiment. The experimental set up was precisely the same as for the previous
experiment. The results are shown in Table 2.

Averages Maxima
p q n trials ABS BL ABS BL
2 2 8 320 4.32 4.33 5 5
2 4 16 160 5.35 5.38 6 7
2 8 32 80 6.36 6.29 7 7
4 2 16 160 5.36 5.40 6 6
4 4 32 80 6.18 6.31 7 7
4 8 64 20 Y.50 7.55 8 8
8 2 32 80 6.13 6.28 7 7
8 4 64 10 7.10 7.60 8 8

16 2 64 20 7.00 7.30 7 8

Table 2. Comparison of Brent-Luk sweeps and ABSsweeps

Evidently, ABSsweeps are as effective as Brent-Luk sweeps. The standard devia-
tions of the number of A.BSsweeps needed were also all less than 0.5.

4. THE EIGENVALUE ARRAY

Decomposition of the eigenvalue array presents the same difficulty, and is amenable
to the same solution, as the SVD array. We need not present the details here.
Note, however, that in simulating a pq X pq eigenvalue array, a p X p array must be
used to simulate both diagonal subarrays where its diagonal processors generate
rotations, and off-diagonal subarrays, where all its cells only apply rotations. The
array of Brent, Luk, and Van Loan for the SVD can also be treated in this
way.
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1. INTRODUCTION

In this paper we present a new systolic array for band matrix QR

factorization. We then point out the relationships between this

array and three other systolic arrays: the hexagonally connected

LU factorization array of Kung and Leiserson [4], the Heller-Ipsen

array for QR factorization [3), and an LU variant of the Heller-

Ipsen array that has not actually appeared anywhere in the literature.

Next, we show how to compute the QR factorization of a banded

rectangular matrix on a systolic array. Matrices of this kind arise

in least-squares collocation methods for elliptic differential

equations and some integral equations.

The results presented here are also applicable to the solution

of ill-posed problems by regularization methods. The details of

this application shall appear in :,nuthr paper [2]. In fact, the

application was investigated firsL, by Eld~n.

1.1 Preliminary concepts

Let B be any matrix. We say B is a (p,q) handed matrix if

b.. = 0 for all i>j+p and all j >i+q.
i-I

We let w al +p +q, the number of nonzero diagonals of B. When necessary,

we write p(B) (q(B),w(B)) to distinguish the matrix in question.

We are concerned with the computation of factorizations

(1.1) B = QR

where Q is orthogonal and R upper triangular and also factorizations

(1.2) PB = LR

where P is a permutation matrix, L is lower triangular with diagonal

elements one, and R is upper triangular. The factors L and R are also

banded, with

q(U) < min(n-1, p(B) +q(B))

p(L) = p(B)

th
We let b. denote the 1 row of B, 1 i < n.

..
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We shall consider the implementation by systolic arrays of two

algorithms for the factorizations (1.1) and (1.2). The algorithms

are alike in that they zero every element below the main diagonal

of B, in predetermined sequence. '[le QF iIeorithms use plane

rotations to do so; the LR algorithms use elementary row operations.

What distinguishes the two QR algorithms is the pair of rows rotated

in zeroing an element; say b... In one of them, rows i-I and i are

used; in the other rows j and i are used. For the LR algorithms the

distinction is the same: to zero bij one subtracts a multiple of

either row i-I or row j from row i. ro be specific, we use either

Algorithm 1 (C~ntral strategy):

for j := 1 to n-1

for i :=j+1 to min(n,j+p)

process (bi,b j i)

or

Algorithm 2 (Neighbor strategy)

for j := I to n-i

for i :=min(n,j+p) to j+1 step -1

process (b i,bi_ 1,j)

In the case of a QR factorization, process (x,,,j) zeros the jth

element of x by applying a plane rotation to x and y. In the case of
." .th

an LR factorization, process (x,y,j) zeros the J element of x by

subtracting a multiple of y from x, after first exchanging x and y,

if necessary, to keep the absolute value of the multiplier less than

or equal to 1.

For some matrices, the LR factorization exists and can be accurately

computed by the central strategy without row interchanges. This is

the algorithm implemented by Kung and Leiserson [ ]

In discussing parallel processor arrays we use terms and conventions

that have become standard; one can consult the rcview pa,-ar of Brent,

Kung, and Luk [I] for background. In particular, we use the turnm

.- '.. '>',. to dnote the fraction of processor cycles that a typical

processor is actively cinploVed in an array.

..........................

...........................
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2. A NEW ARRAY FOR BAND MATRIX QR FACTORIZATION

We present here an array implementing Algorithm 1 for QR factorization.

The array, and the manner in which imput data enters, is shown in

Figure 1; the format of the output in Figure 2; the definitions of the

cells in Figure 3.

The efficiency of this array is 1/3.

Three identically structured matrices could be interleaved and

factored simultaneously. In that tzise the efficiency would be 1.

The array uses (p+l)(q +p/ 2 1) cells of which q+1 are simply

delay cells (diamonds in Figure 1), p generate rotations (circles

in Figure 1), and the rest apply rotations (squares in Figure 1).

If b11 enters the array at time 1, then b enters at time I +3(n-1);

the last output element, rn, leaves the array at time 3n +2p-1.

In its interconnection structure this array is the same as the

Kung-Leiserson array [4], but it has more cells, of different types.

By making obvious changes to the circle and square cells, we can

create an LR factorization array. Both these arrays use the central

strategy of Algorithm 1.

An array for QR factorization using the neighbor strategy of

Algorithm 2 was given by Heller and [psen [3]. With a similar change

to the cell definitions their array beLomes an LR factorization

arriy, too. The Heller-Ipsen array contains pw active cells and is

1/2-efficient. It has no delay cells. [he last output element emerges

at time 2n +2p-1, so it is faster than the present array.

The principle advantage of the present array is its applicability

to generalizations of the problem for which it was devised. We

illustrate one such application in the next sections, and another

in the Paper mentioned earlier [2].

4-

4.
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carries plane rot.tions;

carry matrix .-[emt-nts.

A A AAAA

32rq- -- l- -14-
42421 11

.. 11 2

.)32 24

* B .3 25

-. 42 .i

43 35

44 36

53 49

Figure 1. The array for QR and LR factorization by Lhc. rcntral stratex



46 38

45 .37

44 3f

35

34 26

33 . 25

* 24 16

23 15
221

13

12

11

-.. Figure 2. Output troin the arrayv
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delay cell:

x x

boundary cell:

V X

where c =cos , s=sin , = (c s X)

internal cell:

c"' . .- K. ..

y x'

wheere ( 3) .=(.rth R(ra

Figure 3. Cc1s fuor the QR array



3. RELATED ARRAYS

In this section we present two arrays similar to the band QR array.

The first computes QR factorizations of lower triangular, banded,

rectangular matrices. The second, which has a rather unusual structure

in which two triangular arrays are interleaved, computes QR factor-

izations of block 2 x I matrices

[A]
[B]

in which both A and B are lower triangular, banded, rectangular

matrices. In the next section, this array is used to generate QR

factorizationsof banded rectangular matrices of a kind arising from

integral and differential equations. With the obvious changes to the

cell definitions, all the results apply to LR factorization, too

75
74

64
55 63

v 53
52

"-'43

33 41

*32
* . 31

* 21

- 11

O- carrius plane rotacions

o I ~~arr: '.trix vrS2-0
Cf

A
Figure 4. QM fiitorization of a BLTE (1,2) mnitrix with 5 columns
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3.1 Factorization of lower triangular, banded elongated matrices

Definition. A matrix L is banded (p), lower triangular, elongate (s)

(BLTE (p,s)) if

I . L is n+s xn,

V2. . = 0 if i < j or j < i-p.

By 2, for any row i >n +p, every element 9... = C; thus we may assume

that 0 < s <p. For example, if L is BLTF (3,2) then

Jx 0
• .. L = x
SX x

In Figure 4, we illustrate a systolic array for QR factorization of a

BLTE (p,s) matrix where p = 3 and s =2. In general the array is (p+l)x(p+l)

and triangular with horizontal, vertical, and diagonal connections.

In fact, it is the array of Section 2, specialized to the case q =0.

Note that the input format is the same as for a square banded

matrix, although its extent in time-space is different. Efficiency is

1/3. The output, an nxn square, upper triangular (o,p) banded matrix,

emerges from the top cells in the format shown in Figure 2.

3.2 Factorization of block 2xi matrices with BLTE blocks

Here we consider factorization of matrices

" [Al

"B]

where A is BLTE (pAsA), B is BLTE (pBS ), and

pB=A or pA"'. PB = A o A

Before presenting the array, we sketch the algorithm. Let us take a

specific case, pA=PB =2, sA = 1, for illustration. We must factor

a matrix whose form is

. . .
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[x
X

00
x0 x x

The strategy is this. We eliminate elements of A in the lower triangle

by a central strategy. There are two such elements in a typical column.

Let them be eliminated at times 2 and 4. There are three elements to be

eliminated in the corresponding column, say column j, of B. Let these

be eliminated, by rotations involving row j of A, at times 1, 3, and 5.

This strategy causes no unnecessary nonzero elements to be created

in either A or B. When eliminating b j+r, j (0 <r <s B ) row j+r of B has

nonzeros in columns j, j+1, ... ,j+r. At the same time, row j of A has

precisely the same structure. So there is no "fill-in", no new nonzero

is created. When ajr,j (1 <r <sA ) goes, row j gets a nonzero element

in column j+r. These are the only fill-ins.

The array is shown in Figure 5. It consists of two interleaved

triangular arrays. One of these, the A array, is just the array of

Section 3.1. It includes those cells in odd-numbered columns of the

array. They operate only on elements of A, reducing it to an upper

triangular (0, pA) banded matrix. In the other array, which occupies

the even-numbered columns, plane rotations are applied to pairs of

rows, a row from A and a row from B, to zero all the elements of B.

In Figure 5 elements of A are shown by their indices, elements of B

are shown as b'... S (R. ) represents the rotation that has zeroed

b.. (a.j). The case pA=PB= 3 is shown. If PB were 2, we would eliminate
i ij A-B

the top row of the B-array. If p8 < - 1 (or PB > A we must include

zero diagonals in the band of B (or A) to bring pB up to PA1 (or

PA up to pB ) , otherwise the array will not work correctly.

The efficiency is 1/4. Cells active at the time shown are emphasized.

The circled indices in Figure 5 represent elements of the upper triangle

of A. When leaving the array at the top, they are the elements of R.

**. -7
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4. FACTORIZATION OF BANDED RECTANGULAR MATRICES

In least squares collocation method for ordinary and elliptic boundary

value problems or certain integral equations, for example

, k(x,y)u(y)dy =g(x)
-. 0

where k(x,y) =0 if x-y <d< 1, we may encounter rectangular banded

matrices. Thus we consider QR factorization of mxn matrices A where,

for some integer o >1,

(4.1) m = 1 +c(n-1).

To generalize the notion of a diagonal, we define, for I j <_n

r(j) - I +p(j-I)

and consider the elements a to be the main diagonal. Then we letr(j) ,j

c(i) a- r-i(i) I+[(i-l)IQ].

We say that A is (p,q) banded if

(4.2) a.. =0 unless c(i) -p<j <c(i) +q.
iJ

For example, when P =3, p=q =1, and n=4, A has the form

1 2 3 4

x x

2 x x

3 x x

4 X X X

S xx

6 x x

7 Xx xx

8 x x

9 xx

L x x

The first step in the systolic factorization reorders the rows of A,

so that after reording,

S*
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A AO

A 
[ A

A P1

LAp-1J
and each A. is banded. A0 consists of rows 1, 1 +, 1 2 ...,m

(rows 1, 4, 7, and 10 in the example sbown) and is (p,q) banded.

For I (i< , A. contains rows i+ 1, i + 1 i ... i +o(n-2); it- 3-

is (p-1,q) banded, and it is n-i xn.

Next, we perform P -I QR factorizatins; first

('-3) [Ao0] IR
[A,J = Q1R

where R, is nxn, then, for 2< i <

(4.4) 
QiR  •

R is the desired factor of A; the rotations that constitute Q are

the rotations that consitute Qi <i < j. (We shall denote elements of

R. by rk W.

To compute the factorizations (4.3) and (4.4) we use the array of

Section 3.2. It is first necessary to put the matrices into the form

required: block 2x1 in which both blocks are BLTE. To do so, we add

zero rows. For (4.3), we add

q zero rows to Ao and

q zero rows to Al, so that

Ac becomes BLTE (p+q,q) and

A1 becomes BLTE (p+q-l,q-1). Thus th, tactorization can be donv bv

a (p+q+1) x (p+q+l) triangular A array with an embedded B array ot

size (p+q) x (p+q).
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S. ... 64 . b63

bss . 63
5 5 • • 3
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For (4.4), we note that Ri is (0, p+q) banded. So we include

p+q-zero rows on top to make it BLTE (p+q,p+q). Ai is treated like

AtV The same array can handle the work.

Because elements of the matrices enter every 4 clocks, it takes

4n+3(p+q) +0(1) clocks to complete any of the factorizations (4.3)

and (4.4); 3(p+q) is the length of the longest path through the array.

The overall factorization need not take p-I times as long, since the

factorizations (4.4) can be performed in a pipelined manner. In fact,

if we say that a factorization (4.4) begins when r enters the

array (it is the first element of Ri_1 to do so) then we can begin the

next such factorization 1 +p +q clocks later, as this is when r (2)

leaves. Thus, if enough hardware is available, the entire factorization

can be obtained in 4n+(p+2)(p+q) +0(1) clocks.

To achieve this throughout, we need hardware to work on roughly

min(G, 4n/(p+q))

factorizations at a time, the second term being the ratio of the time

for a factorization to the interval at which factorizations can begin.

A single array can work on 4 (interleaved) factorizations at once.

Thus, min(P/4, n/(p+q)) arrays of (p+q)' cells can be used. These

designs are fully efficient when 4 or more factorizations are simul-

tanously performed.

ACKNOWLEDGEMENT.

I thank Lars Eldin for suggesting this research and for his helpful

coments.

REFERENCES

(1] R.P. Brent, H.T. Kung, and F.T. Luk, Some linear-time algorit. s
for systolic arrays, Cornell University Department of Computer
Science, Technical Report TR 83-541 (1982). Also, 9th World
Computer Congress, Paris, September 1983.

(2] Lars Eldeon and Robert Schreiber, A, - i'.'n if syst;. ..

" .:' , . ,.. Tvchnical Report
Link5ping University, Dcpt et Mathematics. In preparatiun.

-[] Don £. Heller and Ilse C.F. Ipsen, Sys olic networks for orrhogna.
dcoompositions, SIAM Jour. Scient. and Stat. Couput. 4,
pp. 261-269 (1983).

(41 H.T. Kung and C.E. Leiserson, Jystcle arrays (for VLSI).
In C.A. Mead and L.A. Conway, Introduction to VLSI System ,
Addison-Wesley, 1980.



;7. '77 *-w -W. V, ,

4 3 1-

On the systolic arrays of Brent, Luk, and Van Loan

Robert Schreiber

" Computer Science Department, Stanford University, Stanford, California 94305

Abstract

Systolic architectures due to Brent, Luk, and Van Loan are today the most promising idea
for computing the symmetric sigenvalue and sinqular value decompositions in real time.
These systolic arrays, however, are only able to solve problems of a given, fixed size.
Here we present two modified algorithmis and a modified array that do not have this disadvan-
tage. The results of a numerical experiment show that a combination of one of the new
algorithms and the new array is just as efficient as the Brent-Luk-Van Loan method.

Introduction

Systolic arrays are of significant and growing imIortance in numerical computing, espe-
cially in matrix computation and its applications to digital signal processina 1i,2 There is
now considerable interest in systolic computation of the singular value decomposition3,6,s$,
and the synmmetric eigenvalue problem.", These decompositions are needed to implement some
recently advocated methods in signal processing.,,i0

To date, the most powerful systolic array for the eigenvalues of a symetric n x n
matrix is a square n/2 x n/2 array due to Brent and Luk. This array implements a certain
cyclic Jacobi method. It take O(n) time to perform a sweep of the method and O(log n)
sweeps for the method to converge.? A very similar array is used by Brent, Luk, and Van
Loan to comute the singular value decomposition (SVD) of an m x n matrix in time m
O(n log n). I Brent and Luk had previously described an n/2-processor linear array that
requires O(mn log n) time for the vD.3

This paper deals with the important practical issue of how, with an array of a given

fixed size, we can solve problems of arbitrary size.

The Jacobi and Hestenes methods and the Brent-Luk arrays

* We shall concentrate on Hestenes' aethod for the SVD. Let A be a given m x n matrix.
An SVD of A is a factorization A - UEVt where V is orthogonal, E is nonnagative and diag-
onal, and U has orthonormel columns. The method starts with the given matrix A and builds
an orthogonal matrix V such that AV has orthogonal columns. An SVD is obtained by normal-
izing the columns of AV.

The orthogonal transformation V consists of a sequence of plane rotations. Each rotation
orthogonalizes a pair of columns of A. Column pairs are orthogonalized one at a time until
all pairs have been orthogonalized. This constitutes one sweep of the method. The order
in which pairs are orthogonalized is fixed. The method is equivalent, in real aritbmetic,
to a cyclic Jacobi method for the eigenvalues of AtA.

The order chosen by Brent and Luk allows the rotations to be applied, in parallel, in
groups of n/2. The linear array that does this is shown in Figure 1. There are n/2 pro-
censors. Each processor holds two matrix columns. Initially processor i holds column 2i-1
in its "left" memory and column 21 in its "right" memory. In every cycle, every processor
applies a plane rotation to the columns in its two memories. The processors choose these
plane rotations to make the resulting columns orthgonal. Then, columns move to adjacent
processors using the connections shown in Figure 1. This generates a new set of n/2 pairs
of columns.

After n-I cycles, nn-l)/2 pairs of columns have been generated and made orthogonal. It
can be shown that no pair occurs twice. Thus every pair is generated exactly once.

1 2 4 ?,I

Figure 1. The Brent-Luk SVD array; n-8.
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Figure 2 gives a diagram showing the movement of columns through the array.

stop 4 85 .

Figure 2. Flow of data in the SVD array; n 8 8

Solving larger problems

we now consider the problem of finding the SVD of A when A has n columns, the array has
p processors, and n >2p. The usual approach to this problem is to imagine that a *virtual"
array large enough to solve the problem (which means, in this case, that the array has at
least n/2 processors) is to be simulated by the smaller array which is actually available.
moreover, the simulation must be efficient. The array should not spend a lot of time load-
ing and unloading data.

For some arrays this simulation is trivial. One finds a subarray of the virtual array
that is the same size as the physical array and for which all the input streams are known.
The computation of such a subarray can be carried out and its outputs stored. These out-
puts then become the inputs to other subarrays. This process continues until, subarray
by subarray, the computation of the entire virtual array has been performed. If this tech-
nique is possible, we say that the array is "decomposable*. The various matrix multiplica-
tion arrays, ' the Gentleman-Kung array, and the Schreiber-Kuekes backsolve array are
good examples of decomposable arrays. Some arrays are indecomposable: the Kung-Leiserson
band matrix LU factorization array," for example.

The Brent-Lu) arrays are indecomposable. Consider Figure 2. Suppose a two-processor
array is available. Can it simulate a four-processor array? It cannot, not efficiently,
anyway, since there does not exist a two-processor segment of Figure 2 for which only known
data enters. If this diagram is cut by a vertical line, data flows across the line, in
both directions, every cycle. The entering data cannot be supplied if only the computation
on one side of the line is performed.

We shall present a solution to this problem. The idea is to have the p-processor array
simulate a pq-proceseor Osuperarray" which is not of the Brent-Luk type. The superarray is
decomposable into p-processor arrays. If one were to make a diagram like that of Figure 2,
showing the flow of data in space and time in this superarray, the processors would occur
in groups of p, and for rather long periods there would be no data flowing between the
groups. Thus the physical array can efficiently carray out the computation of the super-
array, group by group.

We give two such superarrays. The first implements a method in which, during a sweep,
some pairs of columns are orthogonalized more than once. The second implements a cyclic
Hestenes method, but the order in which pairs are orthogonalized is different from the
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order used by Brent and Luk. In order to implement this method, a slight modification of
the Brent-Luk array is required.

We have compared these new sweep orders to the one used by Brent and Luk. These exper-
iments indicate that the first superarray is less efficient, by between 201 and 60%, than
the Brent-Luk array, while the second is as efficient as the Brent-Luk array.

Method A

The method is easiest to explain by giving an example. Suppose we have a 4-processor
array. Suppose there are 16 columns in A. We proceed as follows:

I. Load columns 1-8 and perform a Brent Luk sweep;
2. Load columns 9-16 and perform a Brent-Luk sweep:
3. Load columns 1-4, 13-16; perform a Brent-Luk sweep;
4. Load columns 5-8, 9-12; perform a Brent-Luk sweep,
5. Load columns 1-4, 9-12; perform a Brent-Luk sweep;
6. Load columns 13-16, 5-8; perform a Brent-Luk sweep.

Steps 1-6 together constitute an A-supersweep or ASsweep. During an ASsweep every
column pair is generated. Some are generated more than once.

To describe the general case, suppose there is a p processor array and that n - 2pq.
(Pad A with zero columns, if necessary, so that 2p divides n.) Imagine that the matrix A
consists of q supercolumns or Scolumns. Scolumn A1 consists of columns q(i-l)+l, . . ., qi

of A. Now consider a q-superprocessor (or Sprocessor) virtual superarray (or Sarray).
Each Sprocessor holds two Scolumns, one in its left and one in its right memory. In one
supercycle (or Scycle) each Sprocessor performs a single Drent-Luk sweep over the 2p
columns in its memories. Obviously a p-processor Brent-Luk array can implement an Scycle
of an Sprocessor during 2p-1 of its own cycles. Moreover, it can load data for the next
Scycle and unload data from the preceding Scycle at the same time.

Initially Scolumns A, and A2 are in Sprocessor 1, A, and A% in Sprocessor 2, etc. Be-
tween Scycles, the Scolumns move to neighboring Sprocessors. The scheme for moving Scol-
umna is precisely the same as the scheme for moving ordinary columns in a q-processor
Brent-Luk array.

After 2q-1 Scycles, every pair of Scolumns has been generated exactly once. Together
these 2q-1 Scycles constitute an ASsweep. During an ASsweep, every pair of columns of A is
orthogonalized. If two columns are in different Scolumns, then they are orthoqonalized
once, during the Scycle in which their contain ing Scolumns occupy the same Sprocessor. If
they are in the same Scoluan, then they are orthogonalized 2q-1 times.

In units of ordinary processor cycles, the time for an ASsweep, TAS, is

TAS - (2q-l)(2p-l) cycles.

The time for a Brent-Luk sweep over n columns, TBL, is

TBL = n-l - 2pq-1.

Thus, the ASsweep takes longer; the ration of times satisfies

9 AS
-- <-2.

* BL

(The lower bound arises in the simplest nontrivial case, p - q - 2.)

There is little theoretical basis for comparing the effectiveness of ASsweeps and Brent-
Luk sweeps in reducing the nonorthoqonality of columns of A. We have, therefore, performed
an experiment. A set of square matrices A whose elements were random and uniformly distri-
buted in (-1,11 were generated. Both ASsweeps and Irent-Luk sweeps were used until the sum
of the squares of the off-diagonal elements of AtA was reduced to 10- 12 times its original
value. We show the results in Table 1. The number of test matrices, the average number of
sweeps, the largest number for any test matrix, and the relative time

TAS * average-sweeps (AS)

TBL * average-sweeps (DL)

are shown.



Table 1. Comparison of rent-Luk sweeps and ASsweeps
Averages Maxima

n • trials AS BL AS BL
8 320 3.98 4.33 5 5 1.18

2 4 16 160 5.10 5.38 6 7 1.33
2 8 32 80 6.18 6.29 7 7 1.43
4 2 16 160 4.80 5.40 5 6 1.24
4 4 32 80 5.99 6.31 7 7 1.50
4 8 64 20 7.05 7.55 8 8 1.57
8 2 32 80 5.25 6.28 6 7 1.21
8 4 64 10 6.60 7.60 7 8 1.45

16 2 64 20 6.00 7.30 6 8 1.21

Evidently one ASsweep is more effective in reducing nonorthogonality than one Brent-Luk
sweep. This is not surprising, since more orthogonalizations are performed. They are,
however, roughly 20-60% less cost-effective.

In order to gauge the reliablility of the statistics generated by this experiment, the
standard deviations of the sampled data were measured. In all cases, the standard devia-
tion was less than 0.5. For the samples of size 80 or more, the standard error of the mean
is therefore no more than 0.06, so these statistics are quite reliable. For the samples of
size 20 and 10, the data are unlikely to be in error by more than 10%

Method B

• . Method A suffers some loss of speed because, in an ASsweeo, some column pairs are gene-
rated more than once. By making a small modification to the Brent-Luk array, we can simu-
late a new supersweep, called an ABSsweep, during which every column pair is generated
exactly once.

* Figure 3 shows the modified array. The connection from processor 1 to processor p is
new. A ring-connected set of processors can easily simulate this structure. The array is
still able to perform a Brent-Luk sweep over a set of 2p columns. But it can also perform
a second type of sweep, called an ABsweep, that we now describe.

1 k2 314 516 7

Figure 3. The modified SVD array; n = 8

In an ABsweep, a pair (A,B) of Scolumns (each having p columns) is loaded into the array.
During the sweep, all pairs (ab), a e A and b c 9 are generated exactly once. But no
pairs from AxA or BxS are generated.

To implement an ABsweep, place the columns of A in the p left memories and the columns
of B in the p right memories of the individual processors. (The set of left (rasp. right)
processor memories is the Sprocessor's left (reasp, right) memory.) Processors do just what
they did before: orthoqonalize their two columns. Between cycles, A remains stationary,
while B rotates one position using the connections shown as solid lines in Figure 3.

An ABSsweep is this. There are 2q Scolumns of p columns each. The initial configura-
tion is as for an ASsweep. During the first Scycle, every Sprocessor performs a Brent-Luk
swep on the 2p columns in its memory. On subsequent Scycles, All Sprocessors perform
Absweeps. Between Scycles, Scolumns move as before.

It is easy to see that in an ABSsweep every column pair is generated exactly once. Thus
6 this scheme implements a true cyclic Hestenes method. The permutation differs, neverthe-
. less from that used by a Brent-Luk array.

Again we have compared the new scheme to the rent-Luk scheme by an experiment. The
experimental set up was the same as for the previous experiment. The results are shown in

" Table 2. Evidently AfSsweeps are as effective as Brent-Luk sweeps. The standard deviation
of the number of ABSsweeps needed was, in all cases, less than 0.5.
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Table 2. Comparison of Drent-Luk sweeps and AsSsweeps
Averages Maxima

n trials ABS BL ABS SL
a 320 4.32 4.33 5 5

2 4 16 160 5.35 5.38 6 7
2 8 32 80 6.36 6.29 7 7

* 4 2 16 160 5.36 5.40 6 6
4 4 32 80 6.18 6.31 7 7
4 8 64 20 7.50 7.55 8 8
8 2 32 80 6.13 6.2S 7 7
8 4 64 10 7.10 7.60 8 8

16 2 64 20 7.00 7.30 7 a

The eigenvalue array

Decomposition of the Brent-Luk eigenvalue array presents the same difficulty, and is
amenable to the same solution, as the SVD array. The array of Brent, Luk, and Van Loan
for the SVD can also be treated in this way, but there is as yet no experimental evidence
to suggest how effective this technique would be.
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