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~ The focus of research was the application of systolic array architectures to cwions in numerical
linear algebra, and the applications of these architectures to digital signal processing (DSP) and elliptic partial
differential equations (PDE). Rescarch was conducted on a number of topicss first I will discuss those for

. which complete reports have been written. _‘"—/
— — e
«o Matrix triangularization by systohc arra;
rlier work by Gentlemen and was extended; many practical questions concerning

application to problems in DSP were dlSCUSSed {1). The literature on factorization of banded

\\ matrices was unified and extended [6].

~

- Singular value and eigenvalue computationsg
"A new architecture for singutar vatie d’e—cﬁnlﬁ)smon (SVD) was developed {3]. [ also considered

the use of a proposed systolic architecture for eigenvalue and SVD when the matrix is too large for

‘

3 . the systolic array to accommodate [4,7).
. ?0 Elliptic PDE; 7~
,~Thedesigmof a hlghly parallel architecture for the multigrid method and an analysis of its
N performance was given in joint work with T. Chan of Yale [2,8]).
. -
- 7 » Updating Cholesky factorizations. <. —————

. The problem is to recompute the Cholesky Factorization ( A = LLT ) of a symetric positive

definite matrix when it is changed by a matrix of low rank. This arises often in DSP and also in

. quasi-Newton methods in optimization. 1 described several systolic architectures in joint work
with my student, W.P. Tang [5].

Sevcral projects were begun, and work continues on these. During my stay at the Royal Institute of
’ ) Technology in Stockholm I began work with Dainis Millars on construction of systolic arrays with custom
y VLSI and off-the-shelf VLSI components. A report is forthcoming; a patent for the custom chip will be
) sought.

Work also began in Stockholm, with Erik Tiden and Bjorn Lisper, on the synthesis and verification of
systolic arrays.

With Lars Elden of Linkoping University, ] developed a systolic architecture for linear, discrete ill-
posed problems. The report will appear carly in 1984.

Earlier work of mine on systolic methods for the eigenvalue problem raised the issue of pipelining
- iterations of the QR algorithm. The difficulty in doing so is in finding a suitable shift strategy. A student,
" W. Wilson, has begun some numerical experiments; his results, unfortunatcely, are not cncouraging. A report
will appear in 1984,
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Finally, work has begun on the implementation of scveral modern high resolution direction-finding
algorithms in DSP.
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A Systolic Architecture
for Singular Value Decomposition

Une architecture systolique
pour la décomposition en valeurs singuliéres

R. Schreiber
(Stanford, USA)

1 INTRODUCTION

Systolic arrays are highly parallel computing
structures specific to particular computing tasks.
They are well-suited for reliable and inexpensive
implementation using many identical VLSI compon~
ents. The designs consist of one and two-dimen-
sional lattices of identical processing elements.
Communication of data occurs only between neigh-
boring cells. Control signals propagate through
the array like data. These characteristics make
it feasible to construct very large arrays.

Several modern methods in digital signal pro-
cessing require real-time solution of some of the
basic problems of linear algebra [13]. Fortunately
systolic arrays have been developed for many of
these problems [4,10,12). But several gaps remain.
Only partially satisfying results have been obtain-
ed for the eigenvalue and singular value decomposi-
tions, for example.

Here we consider a systolic array for the sing-
ular value decomposition (SVD). An SVD of anm x n
(m > n) matrix A is a factorization

a=vc vl

where U s m x n with orthonormal columns, I =

diag(cl, Jz, ces cn) with o1 > 02 > .2 T

and V is orthogonal. There are many important
applications of the SVD [1,6,13]).

There have been several earlier investigations
of parallel SVD algorithms and arrays. First,
Finn, Luk, and Pottle describe a systolic structure
of n“/2 processors and two algorithms that use it,
But the convergence of their algorithms has not
been proved and may be slow [3]. Heller and Ipsen
[8] describe an array for computing the singular
values of a banded matrix with bandwidth w. They
use O(w) processors and O(wn-) time. Brent and
Luk {2] describe an n/2 processor linear array
that implements a one-sided orthogonaiization
method and converges reliably f{n O(n log n) time.
Unfortunately the processors in this array are
quite complex, and it is not clear that matrices
with more than n columns can be efficiently
accomodated,

In this paper we discuss two topics. Flirst,
we show how an architecture for computing the
eigenvalues of a symmetric matrix can be modified

we discuss the implementation using VLSI chips of
these systolic eigenvalue and SVD arrays.

The SVD is often used to regularize ill-condi-
tioned problems. In these there are p < n large
singular values and n-p that are much smaller.
What is needed is the pseudoinverse of the rank p
matrix closest (with respect to the 2-norm) to A,

T T
+ +
(P) g, Vv up Up Vp

A 1% Y e
We have recently developed a new algorithm to com-

=u

+
A(p) that involves nothing but a sequence of mat-~
rix-matrix products, for which systolic arrays are
well~known (see, e.g., [9].) An alternate form of
the algorithm can be used to compute the related
orthogonal projection matrix

2 AN SVD ARCHITECTURL

Let A be a given matrix. The singular values
of A will be obtained in two phases:

1. A 1is reduced to an upper triangular
matrix B with bandwidth k+l1,

bij =0 {if i +J or i v j-k,

and B = QAP where Q and P are orthogonal.

2. B is diagonalized by an iterative process
equivalent to *mplicitly shifted QR
iteration on B B,

With k=1 this is the standard method of Golub
and Reinsch [?7]). The reason for allowing k>l is an
increase in the parallelism. In phase 1, kn proc-
egsors are employed; the time is O(mn/k). In
phase 2, 2k processors are used; the time per {t-
eration is é6n+0O(k).

2.1 Reduction to banded form

The reduction step uses a k x n trapezoidal
array that has been described in detail previously

[12]. Let the m x n matrix X be partitioned as
X, X,
X = 11 712
Xa1 %22

to compute singular values and vectors. Second,
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where X is k x k. The array applies a sequence
of Givens rotations to the rows of X to zero the
first k columns below the main diagonal. If Q is
the product of these rotations, then

X - 11 "12
0 Y22
where R is k x k upper triangular. Rll' le,

11
Y“Z' and the parameters of the rotations that make
up“Q all flow out from the array. The time requir-
ed is m. (Here and below we give "times" in units
of the time required for an individual cell in the
array to carry out its computation.)

Now let

Y
be the given matrix. Send A through the array to
produce

Next send [CT §°] through to produce
rs

12° ¢

T T T T
P €y Copl = [Ty, Al
(Although the input matrix has m columns, the array
can handle this factorization in time m by making
‘m/n’ passes over the data [12]. Now continue_ this
process using A22 in place of A. After Jsrh/kT

such steps we have produced a k+l1 diagonal, upper
triangular matrix B,

— -
Ri,1 B2
Ry2 Las
B=
Ly-1,3
L R,

such that A = QBP where Q and P are orthogonal.
The total time used is mJ > mn/k.

The transposition of data required can be done
bv a specialized switching device, a "systolic
shifter,” described earlier [12].

When singular vectors are to be computed, the
rotations generated by the array may be applied to
identity matrices of order m and n. This can be
done bv the array. These matrices accumulate the
product of the rotations used, that is the ortho-
gonal matrices Q and P above.

2.2 QR {teration

Now we consider QR iteration to get the singu-
lar values of B, hence those ? )A. We shall gener-
ate a sequence of matrices {B '} having the same
structure as B and converging to a diagonal matrix.

8" &5 and 8D o pMWpMWgM pere P ng

Q(i)

are orthogonal.

First we consider QR iteration on BTB without
shifts. This can be realized by the procedure

1. Find Q(i) such that
L(i) - 8(i)Q(i)
is lower triangular,
2. Find P(i) such that

gU*D) | p() (D)

is upper triangular.

Both steps of this procedure can be carried out by
the Heller~Ipsen (HI) array [8]. This is a k x w

rectangular array for QR factorization of w-diag-

onal matrices. In this array, plane rotations are
generated at the left edge and move to the right,

affecting a pair of matrix rows. Take w = k+l.

B(i) enters the matrix at the bottom, each diagonal
entering, one element at a time, into one of the
processors, The array aunihilates the elements of
the upper triangle of B 1) This causes fill-in
of k diagonals in the lower triangle. The result-

(1)

ing matrix L emerges from the top in the same
diagonal-per-processor format, It immediately
enters a second array, This array annihilates the
lower triangle of L(1) and the resulting upper tri-
angular matrix B i+l emerges from the top (Fig. 1)
The time is 2n+4k per iteration: element a . enters

the bottom array at time 2n, leaves at the upper
left corner at time 2n+2k, and leaves the top array
at time 2n+4k.

Unshifred QR converges slowly. The rate of
convergence of b 1 to o, is 05/02 . In some situ-
ations this may ée adequate and %he simplicity of
the structure used is then a real advantage.

It is also easy to pipeline the iterations. As
B{i*+1) comes out of the second array it can be sent
directly into another pair of arravs to begin the
(i+l)th iteratioms, etc. As many as n/ik itera-
tions can be effectively pipelined; any more and
the pipe length exceeds n, so that the pipe

never gets full. } we choose k = O(nl/z) and
pipeline n/4k = O0(n"'“) iterations ahgn the number
of processors in both arrays is O(n”’“) and the
total time, assuming Ojn) iterations of QR are
required, is also 0(n’/“). These considerations
also apply to the array implementation of the
implicitly shifted QR algorithm that is discussed
below, with one important proviso. When pipelin~
ing the iterations, some strategy for choosing
several shifts in advance must be used.

2.2.1 Implicitly shifted QR iteration

To obtain adequate convergence speed we need to
incorporate shifts. Following Stewart (14], sup-
pose that o¥e QR iteration with shift * is per-
formed on B'B, and the orthogonal matrix so gene-
rated is Q. Then proceed as follows:

1. Let Q, be anv matrix whose first k columns
are tge same as those of Q;

2, VUsing the same technique as in Section 2.1,
reduce BQ0 to upper triangular k+l diag-
onal form, vielding a matrix B'.

PRLIEYANE e A S A e
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It can be shown that B'TB' is the matrix that would
rfsult from one QR step with shift X applied to
B°B.

To use the trapezoidal array as described above
to carry out step 2 would_be inefficient. Rather
we proceed as follows, QT i3 composed of plane
rotations that zero the f?rst k columns of (BTB-))
below the main diagonal. Applying QO to B causes
fill~-in in the k diagonals below the main diagonal,
confined to rows 2, 3, 2k. See Fig. 2 for the
case k=2.

sy

4

k x k+l
HI[ arrav

+>

L P

k x k+l
HI array

+ +

Figure 1

1)

Unshifted QR iteration with two Heller-
Ipsen arrays

X X X
X X XX

X X X XX

0O x x X XX
0000 xxx
Figure 2

Structure of BQO , k=2

Let the first 2k rows of BQ, be sent into a
k x 2k+1 HI array. By a sequence of plane rota-
tions applied to the rows, the array removes the
"bulge” i{n the lower triangle, adding a bulge of
the same shape in the first Jk columns of the upper
triangle. This data flows directly into another
k x 2k+1 HI array that removes the elements to the
right of the kth superdiagonal and causes a new
bulge to appear in the lower triangle, in columns
k+1 through lk-1 and extending to row Jk. (The
second HI array is the mirror image of the first.

Rotations are generated at its right edge and move
left, affecting pairs of matrix columns. Let P

and Q, be the orthogonal matrices implicitly used
by thé two HI arrays. The matriix emerging from the
second array 1is

B, = P1BQY
and it has the form

B. = B11

1
0 Bz1

where B . is a k x n upper triangular, k+l diagonal

is an n-k x n~k matrix of the same
Fig. 3 illustrates this for k=2.

matrix, and B

form as BQO. 21

time
8
B,.:
11 10
12=3k
By’
Ql - k x 2k+1 HI array
11 [
12
22 13 6
23 14
33 24 15 8
34 25
44 35 26
45 36
55 46
56
66
k x 2k+]l HI array - Pl
11 0
21 12 )
. 31 22 13
B’ 32 23
42 33 24 4
43 34
44 35 6
45
46 8
Figure 3

“Chasing the bulge"” with two k x 2k+I
Heller-lIpsen arrays

Now we do exactly the same thing to BZI' etc,
This vields matrices

By 7 PRy Yy

22, 0000d
i i

B T T,
o7, 8t et Wt -

P L A LR AP

- e’ 8’ . " . .
e e 0 e % te 0
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with Furthermore, the elements to be zeroed are the real
elements resulting from previous rotations. The
B rotations to do the zeroing can, for this reason,
Bj = 1.3 be taken to be ¢,0 rotations.
o Bj*l.j Now we look at the second phase. Because of

and J = [(n-1)/k]. Finally B' = P

P.BQ, ...Q
is the matrix we require. 10 J

g o

The time neede is 6n. It takes 2k steps for an
HI array to start producing output. Thus, the sec-
ond array starts its output at time 4k. The first

element of Bj+1 3 which is the (k+1)5% element

of the main diagonal to come out of the second
array, comes out at time 6k. By this time the
first arrays inputs have become idle, so this
element can immediately reenter. Therefore one
step, from B te Bj+1‘ takes time 6k. There are

rkn-l)/kT such steps, hence about 6n time for the
whole process.

2.3 Complex matrices

In signal processing applications, complex
matrices often arise. Here we discuss the algor-
ichms to be used for QR iteration with complex
matrices. Essentially we show that the plane rota-
tions used can be of a special form:

(1) x' = c*x + oy
y' = -gx + cy

where x, y, and ¢ are complex and o is real. This
saves 1/4 of the multiplications used by a fully
complex plane rotation with complex s instead of

o == 12 are used instead of 16. We shall call
these c¢,g rotations.

It is possible to compute the SVD of a complex
m X n matrix A = Ap+iA; using real arithmetic. One
finds the SVD of the 2m x 2n real matrix

Among the 2n singular values each singular value of
A occurs twice, and the singular vectors are of the
form [xI, xT] where x = x, + ix. is a singular
vector of A. But the cost is much greater. In
units where the cost of doing an m x n real SVD is
one, the cost for the real 2m x 2n SVD is 8 while
the complex m x n approach costs 3 (not 4, since
the use of the ¢,0 rotations saves 1/4 of the work),

We now show that the c,¢ rotations suffice.
To start, we note that the banded matrix B produced
by the reduction phase can always be chosen to have
positive real elements on its main and kth super-~
diagonals. 1Indeed the reduction B = QAP to k+l
diagonal, upper triangular form is not unique:

-1,0-1
B QD1 (D1 AD2 ) DZP

is also such a reduction for any unitary diagonal
matrices D, and D,. These can always be chosen to
give B the stated " property. In fact, the trap-
ezoidal array can do this automatically [12]). When
it generates a rotation to zero some matrix ele-
ment, the second element of the pair (x,y) for
instance, it chooses the paramenters so that the
result of the rotation is the pair

the structure of B, the main, k™M super and kth sub-
diagonals of BTB are all real. The rotations that
comprise Q. can be taken to be ¢,0 rotations since
they zero real elements. And by keeping track of
the locations of real elements one can show that in
BQ, all elements of the outer diagonals are real.
Again because the elements to be annihilated are
real, c,0 rotations can be used to eliminate the
bulge. A matrix with the same structure as BQ
results, and the proof therefore follows by inguc-
tion.

2.4 An alternate scheme

Gene Golub has pointed out that the eigenvalues
of the 2n x 2n matrix

0 B
C =
BT 0

are the singular values of A _raken with positive and
negative sign, and if (xT, y') is an eigenvector of
C then x is a left singular vector of B and y is a
right singular vector of B [5]. Thus we may attempt
to find the eigendecomposition of C. After a sym-
metric interchange of rows and columns corresponding
to the permutation (n+l, 2, n+2, 2, ..., 2n, n),

C is a symmetric 4k-1 diagonal matrix. A 2k-1 x
4k-1 HI array can implement one step of the QR
method with shifts for this matrix in n + 0(k)

time {10). In the complex case, both C and the
permuted C have real outermost diagonals, so ¢,0
rotations can be used. Thus, although twice as much
hardware is used, the time per iteration is 1/6 as
great as for the previous scheme.

3 VLSI IMPLEMENTATION

Now we consider how to build the cells of the

HI array. The fundamental unit we use in this con-
struction is a multiply-add cell, whose function is
this:
w
‘
X - - x
y« Vv
+
wixy

Outputs leave the cell one clock after inputs enter.

Although other primitive units (CORDIC blocks,
for example) might be used, we feel that the mult-
iplv-add is a good basis for such an investigation.
Currently, a floating point multiplv-add is about
what can be integrated on a single chip. It is
almost universally useful., Indeed, the multiplv-~
add pair is often the inner loop in numerical linear
algebraic computations. Even when larger cells and
pieces of arrays can be integrated into single
chips, designs based on the multiplv-add primitive
will be useful.

We shall discuss implementation of the HI array
cells for complex data. The real case was discussed
earlier (11] as were the cells of the trapezoidal

((|Xl2 + |Y|2 1/2 y 0) array [12].
'. N '—..‘.‘ SN -.‘.-"..-‘..'~'.‘~ . el Y e ‘.- - ' ‘\ OO -
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The complex RI array triangularizes a banded A second primitive, for divide and square root, is
input matrix using c,0 rotations of the form (1). needed to implement the boundary cell. We assume
The rotations are applied to a pair (x,y) of matrix that a chip for computing

elements by an internal cell 12
(a,b) ====> a3 / b

x
+ is available. A compound cell using one multiply-
y' +«x add and two of these square root chips can produce
c +c results at the rate required to keep up with the
o »>a internal cell. A schedule is shown in Table 2.
+ The overall array timing is now that of the "ideal"

HI array in which everything happens in a single
cycle (of length 3 chip clocks) . The cells are
after having been generated by a boundary cell used 1/2 of the time, but two independent problems
can be solved simultaneously, making full use of

n' the hardware.
’
+ x Table 2. Schedule for HI Boundary Cell
O- ¢ time Chips L I/0
- T
’ ° mult-add sqrt #1 sqrt_#2
2 2 ¢
n 1 ; + xR o ,xR
a0t
by 2 i4xp (=0"%) *1
12,-1/2 .
2, ..2,1/2 3 xglo'] j—
x' = (n" + [xi") 2,-1/2 V2
_ ' 4 x.[p*7] fuo'-.c
c =x/x I ,2,-1/2 2.-1/2 R
YR 5 olo'?) 3 Ml
-t
In the internal cell computation, 4 gquantities 6 9, ©
are computed, each requiring 3 multiplies and 2
adds. Let zp and z_ denote the real and imaginary ACKNOWLEDGEMENT
parts of the complex quantity z. The computed
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Abstract

We describe and analyse a family of highly parallel special purpose computing networks that
implement multi-grid algorithms for solving elliptic differcace equations. The petworks have
many of the features and advantages of systolic arrays. We consider the spcedup achieved by
these designs and bow this is affccted by the choice of algorithm parameters and the level cf
parallelism employed. \We find, for example, that when there is one processor per grid-point. tle

designs cannot avoid suffering a loss of efficiency as the grid-size tends to zero.

1. Introduction

We shall describe and analyse a family of highly paralicl special-purpose computing networks
that implement multi-grid algorithms for solving elliptic difference equations. These nctworks
have the same characteristics - regularity, local communciation, and repetitive use of a single.
simple processing element - that make systolic architectures attractive [9]. These architectural
advantages make it possible to build large computing networks of VLSI cells that would be

relatively cheap, reliable, and very powerful.
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Both a basic and a full multi-grid algorithm are considered. The basic method reduces the
error in a given initial approximation by a coastant factor in one iteration. The full method
requires no initial guess and produces a solution with error proportional to the truncation error of
the discretization. These algorithms are representative of many variants of linear and nonlinear

multi-grid algorithms.

The analysis assumes that we are solving a linear system originating in a discretization of an

elliptic partial differential equation on a rectangle in RY, using a regular ad point grid. The

network is a system of grids of processing elements. For each 1 € k < K, processor grid P, has

(n,)7 elements, where ¥ is an integer less than or equal to d, and ny == n. The machine

E implements a class of multi-grid algorithms using a corresponding system of nested point grids.
E For each 1 < k < K, point grid G, has (nk)d points. The key assumption, which is quite
5

1

realistic, is that it takes this machine O((nk)d"’) time to carry out the computation required by
one step of the multi-grid algorithm on point grid G, using processor grid P,.

We shall counsider the efficiency of these parallel implementations, defining efficiency to be the
ratio of the speedup achieved to the number of processors employed [8]. We shall consider a
design to be efficient if this ratio remains bounded by a positive constant from below as n — oc.
The acalysis will show that when v < d some algorithms can be efficiently implemented. But
when v == d (this is the most parallelism one can reasonably attempt to use) no algorithm cap be
efficiently implemented. There does exist, in this case, one group of algorithms for which the

efficiency falls off only as (log o).

The analysis assumes that we implement the same algorithms used by uniprocessor systems.
Convergence resuits for these algorithms have been rather well-developed recently [1, 5, 7]. We
make no attempt to develop algorithms that exhibit concurrent operation on several grids. Note.
however, that some encouraging experimental results with such an algorithm have been obtained

recently by Gannon and Van Rosendale (6].

In any discussion of the practical use of a specialized computing device, it must be
acknowledged that overspecialization can easily make a design useless. At least, the desizned
device should be able to solve a range of size of problems of a particular structure, perbaps
solving large problems by making several passes over the data, solving a sequence of smaller
subproblems, or with some other techniques. We shall consider how a large grid, with (mn)?

points, can be handled by a system of processor grids with n7 elements each having O(m%n? ")
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memory cells. Problems on nonrectangular domains can be handled by techniques requiring

52
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repeated solutions on either rectangular subdomains or containing domains.

=P

Brandt [3] has also considered parallel implementations of multi-grid methods. He discusses the
use of various interconnection networks and appropriate smoothing iterations. One of our results,

a (log n)? time bound for fully parallel, full multi-grid algorithms, is also stated in his paper.

2. Multi-Grid Algorithms
We shall consider multi-grid algorithms in a general setting. The continuous problem is
defined by the triple {H, a(u,v), f{v)}, where H is a Hilbert space with a norm ||.||, a(u,v) is a
[ continuous symmetric bilinear form on H x H, and f(v) : H — R is 3 continous linear functional.

The problem is:
Find u € H such that a(u,v) = {{v) for all v € H. (1)

It can be shown that if a(*,*) satisfies certain regularity conditions (for example, that a(v,v) 2 ¢,
|Iv}|? for all v € H), then Problem (1) has a unique solution [4].

Y v %0
AR A

We consider finite dimensional approximations of Problem (1). Let Mj, J 2 1, be a sequence of
Nj-dimensional spaces, on which one can define a corresponding bilinear form aj(u,v) and a
corresponding continuous linear functional fj(v), which are constructed to be approximations to
a(u,v) and f{v) respectively. Also, since the multi-grid algorithms involve transferring functions

between these spaces, we have to construct extension (interpolatory) operators E:j : Mj-l - Mj'

We shall give two multi-grid algorithms, namely BASICMG and FULLMG, with FULLMG
calling BASICMG in its inner loop. The two algorithms differ in that BASICMG starts its
computation on the finest grid and works its way down to the coarser grids, whereas FULLMG
starts with the coarsest grid and works its way up to the finest grid. In the conventional single
processor case, BASICMG reduces the error on a certain grid by a conastant factor in optimal

"; time, whereas FULLMG reduces the error to truncation error level in optimal time.

We give the basic muiti-grid algorithm BASICMG in Table (2-1). This is a recursive
algorithm, although in practice it is usually implemented in an iterative fashion. The iterations
are controlled by the predetermined parameters (c,j,m). In this sense it is a direct method, unlike

related adaptive algorithms which control the iterations by examining relative changes in the

residuals (2]. Figure (2-1) illustrates the iteration sequence in the case ¢ == 2. The major




computational work is in the smoothing sweeps (subroutine SMOOTH), which usually consists of
some implementation of the successive-over-relaxation or Jacobi iteration or the conjugate
gradient method. The smoothing sweeps are used to annihilate the highly oscillatory (compared
to the grid spacing) components of the error in z efficiently. We require that a suitably
" parallel” method, Jacobi or odd-even SOR for example, be used as the smoother. In the pext
section, we shall discuss new architectures for implementing these smoothing operations in more
efficient ways.

Table 2-1: BASICMG Algorithm
Algorithm BASICMG(k,s,c,j,m,&k,fk)

<Computes an approximation to u, € M,
where ‘k(“k") - fk(v) forallv e v’

given an initial guess z € M, .

Returns the approximate sorution in z.

Reduces initial error in z by a constant factor.>

If k == 1 then
Solve the problem using a direct method. Return solution z.
else
< Smoothing step (j sweeps):>
z «= SMOOTH(j,z,3, .f, ).

< Form coarse grid correction equation:>
a qlqv)=b , forallveM, .

< Solve coarse grid problem approximately by ¢ cycles of BASICMG:>
qe=0.
Repeat ¢ times:
BAS’CMG(k’lyq,Cvjym'ak.l,bk_l)

< Correction step:>
1=z +Egq

<Smoothing step (m sweeps):>
3 = SMOOTH(m,z,a,.f,).
End If
End BASICMG
We give the full multi-grid algorithm FULLMG in Table (2-2). In the BASICMG algorithm.
the choice of initial guess for u, is not specified. In practice, good initial guesses are sometimes
available essentially free (for example, from solutions of a nearby problem, from solutions at a

previous time step, etc.). The FULLMG algorithm interpolates approximate solutions on coarser
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Figure 3-1: [Iteration of BASICMG for k == 3 and ¢ == 2

Level
Coarse 1 ds ds
/ N/ \
2 j o omej L]
/ \
Fine 3 j n

ds: Direct Solves j,m : number of smoothing sweeps.

grids as intial guesses for the BASICMG algorithm. [t is also recursive and non-adaptive. Figure

(2-2) illustrates the iteration sequence in the case k == 3, c == 2 and r == |.

Table 2-3: FULLMG Algorithm
Algorithm FULLMG(k,s,,r,c,j;m,a,f,)

<Computes an approximation g, to u, € M,
where a,(u,,v) = I, for all v € M,,
using r iterations o’ BASICMG,

using initial guess from interpolating the approximate

solution obtained on the next coaser grid.

Solution obtained can be proven to have truncation error accuracy.>

Ifk == 1 then
Solve the problem using a direct method to get z,.
else
< Obtain solution on next coarser grid: >
FULLMG(k-1,3, ,.r.c.im,a, .f, ).

<Interpolate z, ,:>
Hh=E 3 .

<Reduce the error by iterating BASICMG r times:>
Repeat r times:
BASICMG(k,z, ,c.j,m,a, .1, ).
End if R
End FULLMG

We would like to summarize briefly the accuracy and convergence behaviour of the above two
multi-grid algorithms. Since the main emphasis of this paper is on the algorithmic aspects of

these multi-grid algorithms, we shall refer the reader to the literature for more details. The
framework presented here is based on the work of and Bank and Dupont (1] and Douglas [S).
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Figure 3-3: iteration of FULLMG fork == 3, c == 2 andre= |

Lovel
Coarse 1 ds ds ds ds
\ /7N /' \ / N\
2 ) n j ne »
\/ \
Fine 3 § n

ds: Direct Soives j.,m : aumber of smoothing sveeps.

The accuracy and the convergence of the BASICMG algorithm obviously depend on the three
crucial steps of the algorithm: smoothing, coarse grid transfer, and fine grid correction. The
basic requirements are that the smoothing sweeps annihilate the high frequency components of
the error efficiently, the coarse grid correction q be a good approximation to the fine grid error in
the low frequency components, and the interpolation operators (Ei") be accurate enough. These
conditions can be formalized into mathematically precise hypotheses which can then be verified
for specific applications {5]. Assuming these hypotheses, one can show that Algorithm BASICMG
reduces the error on level k by a constant factor provided that enough smoothing sweeps are
performed. Moreover, it can be shown (see Section 4) that Algorithm BASICMG (for small
values of c) can achieve this in optimal time, i.e. O(N,) arithmetic operations. Obviously, the
work needed depends on the accuracy of the initial guess and increases with the level of accuracy
desired. Often, one is satisfied with truncation error accuracy, i.e. ||z - uf| = Offlu, - u|} £ C
N,/ for some fixed # and C which are independent of k.For a general initial guess, the
straightforward application of Algorithm BASICMG to reduce the initial error to this level takes
O(Nylog(N,)) time, which is not optimal. The FULLMG algorithm overcomes this problem by
using accurate intial guesses obtained by imterpolating solutions from coarser grids. The
coavergence result for Algorithm BASICMG can be combined with the basic approximation
properties of the various finite dimensional approximations {Mj. s, fi} to show that Algorithm
FULLMG computes a solution 3, that has truncation error accuracy in O(N,) time.

.......
.......




3. The Computing Network
In this section we describe a simple parallel machine design for multi-grid iteration. We restrict
attention to linear elliptic problems in d dimensions over rectangular domains, to discretizations
based on grids of n? points, and to multi-grid methods based on a system of point-grids (Gk}ff_l
where G, has (n,)® gridpoints, with mesh lengths by 1 < j < d, the finest grid bas oy = o,
and
Dy =a(n +1)-1, k=12 ..,K-1

for some integer 3 > 2.

The machine consists of a system of processor-grids {Pk}f_qorresponding to the point-grids.
Each processor-grid is an (nk)" lattice in which a processor is coanected to its 2+ nearest

neighbors.

We shall employ a standard multi-index notation for gridpoints and processors. Let
st=(0,1,..,01).
Let l;' = (37)", the set of s-tuples of nonnegative integers less than n. We shall make use of a
projection operator «3: st — s:'. defined forr > s by
Ay, -er i) = (i, ooy i)
By convention, if | € s:'., then i == (i}, ..., i,). Also let | = (1, ..., 1). We shall also use the
norm || = fi,| + ... + [i,| on l:".
We shall label the gridpoints in G, with elements of ':v‘ in such a way that the point with
label { has spacial coordinates (i'hm, ighy P idhk'd). Similarly, we label processors in P, with
indices in s:w.
Thus, processors i and k are connected if [{ - k| = 1. In order to make the machine useful fo:
problems with periodic boundary conditions, we might also add "wrap-around” connections, so
that { and k are connected if [(i - k) mod n] == 1. In Section 3.1, it is shown that periodic

problems caa also be handled without these connections.

Evidently, if each processor has O(n"") memory cells, we can store the solution. forcing i
function, and O(1) temporary values belonging to the whole of grid G, in the processors of P_;
we store gridpoint i in processor x}(i) for L € s ,.

With the given connectivity, smoothing sweeps of some types can be accomplished in O(n??)



time. It is not necessary for the stencil of the difference scheme to correspond to the connectivity
of the processor grid. Jacobi or odd/even SOR smoothing can be so implemented, for example.
Let ¢t be the time taken by a single processor to perform the operations at a single gridpoint that,
done over the whole grid, constitute a smoothing sweep. If S is the time to implement a

smoothing sweep over the whole of grid G, on processor-grid P, , then

Samt nkd"’ . (2)

Grid P, is connected to grid P, ;. Processor i € P, is connected to processor a(i+1) - L €
P,41- These connections allow the inter-grid operations (forming coarse grid forcing terms b,
and interpolation E,) to also be computed in O(S) time. We refer to the system of processor-
grids {P, ..., P} as the machine Lyfor J = 1, 2, .., K.

The execution of the BASICMG iteration by L, proceeds as follows.
1. First, j smoothing steps on grid G, are done by P,. All other processor-grids are
idle.
2. The coarse grid equation is formed by P, and transferred to Pesr
3. The c cycles of BASICMG on grid k-1 are performed by L, ,.
4. The solution q is transferred to P, and intcrpolation E,q is performed by P,.

5. The remaining m smoothing steps are done by P,.

Let W{n) represent the time needed for steps 1, 2, 4 and S. Then
W(o) = (j + m + s) ¢t a+7 (3)
where s is the ratio of the time required to perform steps 2 and 4 to the time needed for one
smoothing sweep. Note that s is independent of 0, d and 1.

The astural way to build such s machine is to embed the v = 1 machine in two dimensions as
a system of communicating rows of processors, the v == 2 machine in three dimensions as a
system of communicating planes, etc. Of course, realizations in three-space are possible for any
value of 4. Gannon and Vaa Rosendale [6] consider the implementation of the fully parallel
machine (v == d) on proposed VLSI and Multi-Microprocessor system architectures.

This design differs from systolic array designs in that there is no layout with all wire lengths
equal. But for reasonably large machines the differences in wire length should not be so great as
to cause real difficulties. Moreover, one need not continue to use ever coarser grids uatil a 1x1
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grid is reached. In practice, 3 or 4 levels of grids could be used and most of the multi-grid

efficiency retained; this would make the construction much simpler.

3.1. Solving Larger Problems

Suppose there are (mn)“l gridpoints and only n7 processors. Assume that each processor can
store all information associated with m%n®” gridpoints. Now we map gridpoints to processors in
such a way that neighboring gridpoints reside in neighboring processors. To do this we define a
mapping [_: 8} — s}, such that, for all i, j € st () - £ () < fi-jl, as follows. Let j =
qn + r where q and r are integers, 0 < r £ p-1. Now let
r if q is even

) € {

Now if m is even, then f _(0) == f_(mnp-1) == 0, so that periodic boundary conditions can be

p-l-r if qis odd.

handled without any "wrap-around” connections. This operation corresponds to folding a piece

of paper in a fan-like manner; for m == 10, for example, like this:
NANNAN

To map » multidimensional structure we fold it as above in each coordinate. Let the processor-
grid have 09 elements and the point-grid have m,n X m,0 X ... X myn points. Point i can be
stored in processor F(m,, ..., m,, n; {) where F (i) = (fm‘(il), vy fm‘(id)). If we have only n?
processors then we map i into F (i) where F](i) m F,’(r;’(i)).

4. Complexity

In this section, we are going to analyse the time complexity of the two multi-grid algorithms,
BASICMG and FULLMG, as implemented by the different architectures just discussed. [t turns
out that the complexity of the two algorithms is very similar. Since the BASICMG algorithm is
simpler and is called by FULLMG, we shall discuss and analyse it first. After that, we shall
indicate how to derive the resuits for FULLMG.

4.1. Complexity of BASICMG

To simplify the analysis, we shall assume that the computational domain is a rectangular
parallelopiped and is discretized by a hierarchy of cartesian grids (corresponding to the Mj's) each
with b, mesh points on each side (denoted the nj-grid). Further, we assume that the nj‘s satisfly

-
D
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D, =3 (nj.l+l) - 1 where a is an integer bigger than one. Generally , we denote by T(n) the
time complexity of the BASICMG Algorithm on an o-grid. By inspecting the description of

Algorithm BASICMG, it is not difficult to see that T(n) satisfies the following recurrence:

T(an) = ¢ T(n) + W(an), (4)
where W(an) denotes the work needed to preprocess aud postprocess the (an)-grid iterate before
and after transfer to the coarser n-grid. We have the following general result concerning the
solution of (4), the proof of which is elementary.

Lemma 1: Let Tp be a particular solution of (4), i.e.
Tp(an) - Tp(n) + W(an), (5)
then the general solution of (4) is:
T(n) = a 0°&° + T,(n), where a is an arbitrary constant. (6)
The term W(an) includes the smoothing sweeps, the computation of the coarse grid correction
equation (i.e. the right-hand-side b, ;) and the interpolation back to the fine grid (E_q). The
actual time needed depends on the architecture used to implement these operstions (specifically
the dimensionality of the domain and the number of processors available on an n-grid). [n
general, as derived in Section 3, W{n) is given by

W(n) = (j+m+s) t g(n) =  g(n), (7

where g(n) = P with p == d-v.
In Table (4-1), we give the form of the function g(n) as a function of the architecture and the
dimensionality of the domain. We also give a bound on the total number of processors (P)
needed to implement the architecture and note that it is always the same order as the number of

processors on the finest grid. For a d-dimensional problem with n7 processors on the n-grid, we

1 if y=0,
P(q) = {
(a7/(a%-1)) a7 ity >0.

We have the following general result for this class of functions g(n).

have

Lemma 3: If W(n) == g oP, then we can take the following as particular solution of
(4):

B (aP/(aP-c)) 0P if p 9% log.c,
T,(n) = { (8)
A of log,n it p = log,c.

0 '.
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‘.l
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Table 4-1: Table of g(n)

| Architecture | 1-D | 2-D | 3-D | Tota! # of processors |
| | | | | on all grids, P |
* * ) - drmccaccavcncccccccccccas -
| 1 processor | n | L Y L 1 ]
¢emccnacancncan - * Prmccrcedorrccocecccrcccanrcancnasaas *
| nprocessors | 1 | n | a2 | (3/(s-1)) n |
. . * * tecccnccecrnacnccnccneeaa *
| n2 processorsl - | 1 | o | (a%/(a%-1)) a2 [
o= - . B S T Ty Y ——nee
| n® processorsl - | - | 1 |  (%(s31)) o® |
B * * * Prcccccecrnccccccacraccna *

Note: Architecture column gives number of processors on the n-grid.

Combining the results of the last two lemmas, we arrive at our main resuit:
Theorem 3: The solution of (4) for W{n) = 3 nP satisfies:

B (3?/(aP-c)) P + O(ao&s)  if e < aP,
T(n) -{ B oP log,n + OfnP) if c == 9P, (9)

O(nk&:°) ife >l
Note that in the last case, a 3£ 0 (in Equation (6)) because Tp(n) does not satisly the boundary

conditions.

For the first two cases (¢ < aP), we can determine the highest order term of T(n) explicitly.
However, for the case ¢ > aP, the constant in the highest order term depends onm the initial
condition of the recurrence (4) (i.e. the time taken by the direct solve on the coarsest grid), which
is more difficult o measure in the same units as that of the smoothing and interpolation
operations. Fortunately, the complexity for this case is non-optimal and thus not recommended
for use in practice and therefore, for our purpose, it is not necessary to determine this constant.

Based on the results in Theorem 3 and the specific forms of the function g(a) in Table 4-1, we
can compute the time complexity of Algorithm BASICMG for various combinations of ¢, a and p,
some of which are summarized in Table 4-2, where we tabulated the highest order terms of

T(n)/A.

The classical one processor (v == 0) optimal time complexity results (1, 5| are contained in
these tables. For example, in two dimensions (d = 2) g(n) == 8 and Table 4-2 shows that, for
the refinement parameter a = 2, ¢ < 4 gives an optimal algorithm (O(0?)) whereas ¢ > 4 is non-
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Table 4-3: Time Complexity T(n)/3 of Algorithm BASICMG

* e cmaae
I p=d-~1~ |
Pecmtrmcnccce- Poccnvacme e ccccae tecvcncane *
el 3 1 2 ( 1 t e |
L et foccsccnce P et Srccccasnss *
11870 14/302 | 20 * log,n |
dovcdeccnncaca S R P PR R -
222 | 2 18/6n° u/zn L A,
Premtemcnccancdecrnrcrcacrccrcccrclecacnaene
| 318/5n8 | 402 s O(n'°"13) IO(n'°‘23) |
T e T I e .
[ 41 8/4n% » nzlogzn [ 0 | 00? |
Prmmpua - * * ooy
boccas L
{ p=d=~-1 |
domapua * * drccccccas +*
lel 3 | 2 | 1 | 0 |
¢ecasecccccanan - . B TR LY LY
I 1127/26 a3 | 9/8 n? 1 3/2n o logyn |

trenpeccancnaaad

wfraccccaccnd

+

1=3 |2|2ms n3|9/7 " | 3a =0(n'82?) |
Pecctenscsccnccatcmnacanes (122312211 DR *
|31 27/24 3 l 9/6 0% « nlogyn | OCn) |
L TTE T T * Srecccnas scepneccan=aa *
| 4 127/28 n3 | 9/5 a2 ¢ 0(n'°%%) |0(n'o%*) |
rrmnd * Geo= - -y
L bttt L D DL Dl e b D L D e e DL DL L DL L -*
| p=d-q |
Pmmwe Prmvccccce trccccncaa tncccccvan -
el 3 1 2 | 1 t o i
¢ * * Peccccacee recaccacs *
| 11 64/68 oS 116/15 02 | 4/3 0 = logn |
tomae *e- cfeccncccse *
224 [ 2| 64/62 nd m/u 2 4/2n * 0(n'%%2) |
tosanpes ccajacccsvoccs fecccccans -
| 31 64/61 n® m/xs 1 4« 0(n'83) |
= * SERESPREP PP cmncace *
| & 1 64/80 o 118/12 02 » nfogyn | 0Cn) |
trccdmccaccvcns Srmccnccaa frccccnven deccnccccs *

s : mesh refinement ratio
¢ : number of correction cycles in BASICMG
v : a7 processors on the n-grid
d : dimengion of the domain
seses  Agymptotic Efficiency Boundary (See Theorem 8)

R R i - -, e e T, o . WY, N e - B . - ‘ MR Ja)
.n‘:..f...-- _.\)‘.~.\ ------- ;..\.\: \.. SO R S __-.1_ RPN Lo .. T e e S
I P B I ). R AN —aa *A_'J YRR PPN IR YO e e .. e e ',L:n-.!'J.‘_f

J— - a
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4. For example, the

optimal. More generally, we have an optimal scheme if and only ifc < a
larger a is or the larger d is, the larger the value ¢ can take for the algorithm to remain optimal.
However, with a larger value of a, more relaxation sweeps are needed and a larger value of ¢ has
to be taken in order to achieve the same accuracy. We note that the constant in the highest
order term of T(n) does not vary a great deal with either ¢ or a (they are all about one, especially
for the larger values of a). This suggests that the best balance between speed and accuracy can
be achieved by choosing the largest value of ¢ (or close to it) such that the algorithm remains

optimal. When d-y == 2 and a = 2, this means taking c to be 2 or 3.

4.2. Efficiency, Speedup, Accuracy, and Optimal Design

Next, we are going to look at the effects of the new architectures on the performance of the
BASICMG algorithm. There are four parameters in this study: ¢, a, v and d. We shall call a
particular combination of these four parameter a dessgn. We shall use the notation T(c,a,v,d) to
denote the corresponding complexity of the design. One of the main issues that we would like to
address is the efficiency E and speedup S of a particular design, which are defined as [8]:

Definition 4:
$(c,a,7,d) = T(c,a,0,d) / T(e,a,7,d),

E(c,a,7,d) = T(ec,a,04d) / ( P(¥) T(c,a,7d) ).

The speedup S measures the gain in speed over the one processor architecture while the efficiency

E reflects the tradeoff between processors and time and measures the efficiency with which the

architecture exploits the extra processors to achieve the speedup. The optimal efficiency is unity.
in which case a P-fold increase in the number of processors reduces the time complexity P-fold.
In general, the efficiency E and the speedup S are functions of n. We shall call a design
asymptotically efficient if E tends to a constant as n tends to infinity and asymptotscally

inefficient if it tends to zero. We shall primarily be concerned with analysing the efficiency E of
a design in this section. The speedup S can be easily read from Table 4-2.

For determining the asymptotic efficiency of a design, it suffices to determine the highest order
term of E. The efficiency E can be derived from the explicit expressions for T and P in a
straightforward maaner. Since the efficiency for v == 0 is unity by definition, we shall only be

interested in v > 0. We summarize the results in the following theorem.
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load »;, in. for & = 3.4.....0. At ume 4, this special function is. required at cell
(2.2) again: - .

This rotation follows the earlier one down the row, removing elements u,, and
loading zeros. In general cell (k.k) performs the special function k times, at
£ =2k -1,..03k -2 Then k 1dentity rotations flow down row k, pushing out rows
kk-1,..10f U, and finally loading the zero that precedes the next matrix.

To make the array output uniform, we would add some cells at the lower left
to make the array a rectangie:

e

T
0
7

The only purpase of these diamond-shaped cells is to delay final output of ele-
ments of U, whick now leave the array in the same forma: as’elemezsts of A -~
elernent 1.5 leaves at relative timem -4 + 4.

3. The Backsolve Array

To solve the triangular system UTY = B ( Y and B are mxn) we can use the tri
angular erray shown in Figure 8. The details of this arrey are straightforward
and are omitted. We note that it consists of a triangular array of cells sach con-
taining a single element of U exactly as does the CK array, so that it might in
some applications be useful to build a common realization of both these arrays.

In the present context, n is often large. We intend to sclve two systems,

UTY = B, then UX = Y; we are not otherwise interested in elements of Y. )t X-is
stored we can store Y in its place. Suppose, however, that X will not be stored.
We may want to minimize temporary storage for Y. This can be reduced to O
(m®) locations in two ways. We could use a second array to solve UX = Y and
stream the first array's output into this second array. An i1aterface of am(m -
i) 72 delay cclls is needed, as Figure 7 shows. There is another possibuity.

. One array can solve both systemns at the sames timae. Figure 8 shows two succes-
sive cycles of such a device. At a given instant, every second diagonal (s working

- e e g—. & mo= - - . . ——— . camsw oo




so the two matrices are-separated by a line of zeros. The scheme will, in eBect,
push out U as it is created and fill each cell with a zero just before a B - element

reaches it. It therefors “looks” to the pew matrix 5 as if the array inutially con-
taned only zeros.

Yhen a B - element first arrives at a boundary cell it meets a zero {we shall
later show this). The boundary cell's normal function (see Figure 2) is to store
this elernent's absolute value in its memory and output the identity rotatien, if
the element was non-nsgative, or -1 times the identity rotation otherwse. As
this rotation moves to the right it meets cells containing zeros in thewr
mermnories and pushes these zeros out, loading instead elementis (possibly
negated) of row n of B. Thus the zeros continue to lead the columns of 5 down
through the array.

We now show how elements of U are unloaded. Let time ¢ = O be the time

a,, enters cell (1. 1). Then cell (i.7) accepts its last 4 - elemeat. and computes

its U - element, thereby flrushung 1ts work, at ime t =1 + 3 -2. By our assumed

sequence of inputs (4) the datum zero appears at the input to cell (1.5) at tume

§. immediately after it has computed 1, ,. To make the scheme work, we want

_ an identity rotation to get there at the sarne time, knocking out the computed

element u,, and loading the zero. This will be made to happen by a special
boundary cell function. C

Let cell (1,!) do this at timme 1:
0

— c=1

s=0
Ui

The rotation so gensrated will reach cell (1) at tums j, as required. Now, at
timne 3, et oell (2.2) do Lha same thung:

U2

Uas

(The datum u, s has been forced out of the first row, as described above). This
rotation will move to the right and knock elements ug, out of cells (2.k) and
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1) 72, of the array. What is the best shape possible? Two conflicting facters
{nfluence the decision. The 1/0 bandwidth to support the array is least for a
“well-rounded” array (p™g) since only the cells at the array edge communucate
with the surrounding systems. But the number of passes needed to solve the
iven problem will usually not be minimized by taking p = ¢. In typical cases
guy m =100, pg -p(p -1) /2 = 31 ) the minimizing shape may be quite parrow
P =2, ¢ = 16in this example).

23 Unloading the Cell Memories

The QU trapezoid implements the matrix factorization (3). But how can we
remove the elements of U;, and U,;. which are stored in the cells of the array?
Here we shall develop a scheme with these properties:

1) The outward flow of data is entirely unitorm.

2) Control signals are appled only at the boundary cells.

3) No specially controlled functions are required of the internal cells.

4) The array can finish the factorization of a matrix. unload its cell memories,
and begin the factorization of another matrix with no.delay whatever.

The key to the unloading scheme is the way an internal! cell behaves when
. ‘given the "idenlity” rotatton (¢ = 1,5 = 0). It acts as a unit-delay:

v

Y == X
v
b4

To begw, suppose a new matrix B follows the input matrix 4. The data will
be presented to the array in this format,

(4)

a
12




stored in the bank above the cell it enters first. A column (of Ltemporary results)
that emerges from the bottom is sent to the bank above the cell it will next
enter. When the passes are sequenced as in Figure 4, this destination is for
some columns uniquely determined, and for others is cne of two possibilities.
Thus, the extra-array interconnections are very sumple.

Control of the memories is also simple, since the pattern of access to the

data, (Rzure 7) is so regular. Memory addresses could be generated once and
passed from one bank to the next. -

22 1. An alternate scheme

There is another possibility. We could also work with tiles of these shapes,

«——a-1—> | . e—g-1l——>
A A
VL = 0
€St —> <3 T—
<2> A
III p-1 ¢
\%

€ 2 (p - 1)—>

The array implements tile 11 by using all internal cells actively, tile ] 1n the
same way, but with columns brought in reverse order, and tile II] by shutting off
certain internal cells. Tie lll can be realized only U it fits into the array -~ o
2p-1) < g -p.

Compering the two possibilities we see that the first has an average tile nize

o! p(7 -p) white the second bas 2p(g - 1) /3 (the tiles are used to cover rec.sar-
gles like this:)

H
-
;I"
H
-
<

Thus, the first scheme is more efficient if p(g -p) > 2p(g -1) /3. te. if g > 3p -

2 . Since the second scheme reguires that g be at least 3p -2, it can never be
rnore eflicient than the first.

2.2.2. Chooging the Array Shape

" We suppose that some constrant, cost for examgle, limits the size. pg -p(p -




compute the factorization

. Ull sz
RB=| p p,

where O denotes the zero matrix order (n~p)xp, U, is pxp’ upbér triangular,
and U;e and 5, are full (g~p) - column matrices. 5; emerges from the bot-
tom of the array; U;, and U,z are stered init.

Can we obtain a complete QU factorization with the trapezoid? If g is not
le:zs than m, the number of columns of A, we can: we would zerc A in groups of p
columns, from left to right. using Im /p1 passes through the array. The detaiis
are obvious. But if m > ¢ we cannot. For suppose we zero the first p columns of
A below the diagonal by passing columns 1.2, . . ., g through the array. We want
next to zerocolumnsp + 1, ....2p, by passingp + 1, -..,p. +q through But
unti] we have applied the rotations from the first pass to columns
g+l ....9 ~p. wemay not apply those of the second pass.

To allow factorization of matrices with more than q columns, the array must
provide a second function: the abuity to apply previously cornputed (and stored)
rotations to & set o input columns. We can give the array this ability by turning
of tne cells in the leftrmost pxp triangular part, keeping a px(g -p) rectang.e
active. We aiso allow rotation parameters to come in via the left edge. A set of
g -p columns can enter the active rectangle at the top. The result - the ioput
rotations appled to the inpul columns ~ emerges from the boltom, except for
the first p rows, which are stored in the cells of the aclive rectangle.

22 Smulating The Full Array

(3)

Here we show how the pxg trapezoidal array, supported by an appropriate
memory system for partial results, can generate a QU factorization when
m > ¢. Imagine that the set of work to be done is represented by an mxm tri-
angular array of pairs,

(ig) :1sisjsm

where the pair (i,j) represents the task of applying to column § the rotations
used to zero elements of coluwmnn ¢. The array can be used to perform 'gen-
erate’ passes, whers columns are actually gerced, and "apply” pasves where
stored rotations are appled.' A generate pass performs a pxg trapezsidal ptecs
of the set of task peirs; an apply pass performs a px(q =p) rectangular piecs.
Sequencing the passes to perform the entire job 15 analogous to covering a trian-
gle by trapezoidal and rectangular "tiles” following these rules:

ng Trapezoidal tiles must be placed at the triangle’'s diagonal edge:
R2) No tile may be placed unless the diagonal edge to its left has been tiled;
R3) No tile may be placed if any space directly below it 15 untiled. o

There are many legal tilings: Figure 4 shows one.

In generating the QU factorization by multiple passes, temporary results

are produced. These must be stored and reentered into the array later. Figure

, . Sshows a swtable memory design. The unportant features are these. There 15 a
separate, independent memory bank for each erray column. A matrix column s
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directions: complex matrices, unloading the result, U, from the array, control
and synchronization, fabrication of the cells, and simulation of a largs array by a
physically smaller array through decomposition of the problem.

QU factorization of A is performed by finding an orthogonal matrix. Q°,
such that @°A = U is upper-triangular. @° can be a product of simple orthogo-
nal matrices (Givens rotations) each chosen to zero one element of A below the
diagonal. To zero a,4 . the i** and (i - 1)** rows of 4 are replaced by '

f)-le ) emrem

where (c,s) are chosen so that a,; becomes zero and the matrix shown is
orthogonal: .

R VI
Vﬂs'!-u + Qg

The elements can be zeroed column by column from the bottom up: elements
ere zeroed in the sequence '

(n.1).(n=-2,2).....(R2)"n.2).....2;, - :(n,m),....(m+1,m)

Note that the rotaticn zeroing a,; needs to be applied only te columns
J. i+ ..., m since, at the time it is applied, the elements a,_,, and a,, for
k < j are already 2ero.

The Gentleman-Kung (GK) array, an mxm triangular array of two cell types
that computes the QU tactorization (1) of an nxm input metrix A, ia shown In

Figure i. Wo oall the circles "boundary’ cells. Figure 2 shows tha cell's funce

tions. We shall now explain the GK arruy's operation. First, note thai the cells
sach have a single mermory. Thase initlally ars gers. The diagonal boundary
cela compute rotation parameters (c.8). Coll (J.7) computes the rotations tha
saro slamsnts of aolumn J of A. Thase rotations then move right, along tha rows

of the array. The equars “internal” cells apply these rotations to the other
columns. ’

The matrix A enters the array at the top in the pattern shown in Figure 1.
To the upper left of each cell is the time that the first element of 4 arrives. Sup-
pose a, , enters cell (1,1) at time £ = 1. The first element of U, u,, ..i18 com-
puted in cell (1,1) at time t =n. By time £ = n + 2(m - 1) the last element,
Unp.m . has been computed. U now resides in the array. The rotations defining
@ will have emerged from the right edge.

21. The Trapezoidal Subarray

We would like to solve beamforming problems of various sizes using one physical
array, so we must consider how to simulate a full mxm array using a smaller
piece. Suppose we have a pxg trapezoid, as shown in Figure 3. Let 8 be a
matrix having n rows and ¢ columns. If B is presented at the array top, we

'y
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where 2 is the desired signal vector, and Ry is the covariance matrix of the sig-
nal at frequency o :

Ra(w) = Eiz(w)z’(0)) .
In practice, for every interesting frequency. an nxm matrix of samples of the

signal
12 (w
’-‘&'u y
X'(v)= '
z°(w)
would be obtained, and R estimated by
*Rm XX

(Here, * denotes conjugate transpose). Possibly, different weights would be
given to the rows of X (‘:S.

The following algorithm gives the solution.

oy

1. Factor
X' =QU (1)
where Q is an nxn unitary matrix, and U is the nxm matrix

v=[g

2. For each bearing-angle ¥,

(a) forward solve:
via(® = o(v) (2a)

(b) back solve:
Usw(d) = a(s) (a ‘2) ! (2b)

(Here 2 = (U’)"'2, s0a a2 = 2° U™} (U°)" 2 = 2°R3le)

For the remainder of this paper we shall concentrate on the design of an
adaplive weight-selection processor that performs the two major steps of the
algorithm. Two systolic arrays will be used. One, a variant of the design of Gen-

tlemen and Kung for QU factorizations [2]. performs step 1. The second does
the trangular solves of step 2 and is new.

2. The QU -factorization Processor

This section is an extension of previous results of Gentlernen and Kung in several
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Systolic Linear Algebra Machines -
In Digital Signal Processing - -~ .

Robert Schreiber ®

Philip J. Kuekes
ESL. Incorporated
Sunnyvale, CA 94086

1. Intreduction

Several recent contributions to 'the literature in signal processing, camputer
erchitecture, and VLS] design showed that systolic arrays are extremely usetul
for designing special purpose high-performance devices to solve problems in
pumerical Lnear algebra 1,2,3,4.5]. But no attention has been paid to the prob-
lems of integrating these designs into any computing or signal processing
ennironment. The purpose of thus paper i1s to examine systolic arrays un a

specific context. We bave chosen an adaptive bearmnformung problem as that con-
text.

The adaptive beamforming problem chosen is sumple, yet typical of those
encountered in sonar signal processing applications. The signals of a large array
of m identical sensors are sampled. stored and Fourier transformed in time.
The result is a set z(w,i) of complex values depending on frequency () and sen-
sor (i) . Then, for each resulting frequency w an array output tunction g (w.9) .
depending on a bearing-angle ¥, 1s produced, by

sd) = ST e
(a}

Here overbar denotes complex conjugate. The vector wu determines the charac-
taristics of the beamformer. Feor the minimum-varianss distorticnless responss
bui-nfarmor, & is chosen to minimise the outputl powar, tha sexpected valua of
g |® . subject to a signs!-protection constraint

‘E‘C(i.v.d)w(i.u.ﬂ) =1

Here c (i,0,9) is the output of sensor 1 at frequency w given no signal other than
that coming from a source at bearing-angle ¥ .

Tha solution is to choose the weight vector
w(wd) s (w(ley). ..., wmu))T

* Permanent address: Departmant of Computer Science, Stanford University, Stanford, CA 954308
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unity for the values of a and p that occur. The r part of the constant applies equally to all
entries of Table 4-2 and reflects the number of times BASICMG is called by FULLMG. We point
out that the choice of r that results in truncation error level accuracy depends on how efficiently
BASICMG reduces its initial error but can be chosen independent of n [S]. Thus, the extra
multiplicative factor does not affect the asymptotic efficiency of a particular entry in Table 4-2.
The complexity of F(n) in the last case is actually increased by a factor of log,n over that of
T(n). However, the corresponding entries in Table 4-2 are already asymptotically inefficient and
thus this extra factor again does not affect the asymptotic efficiency of the design. It follows
that the discussions concerning the efficiency, speedup and optimal design for the BASICMG
algorithm in Section 4.1 are also valid for the FULLMG algorithm, with the exception that &
fully parallel logarithmically asymtotically efficient design is slower by the factor log,n.

8. Conclusion
We have proposed an architecture based on a system of processor-grids for parallel execution of

multi-grid methods based on a system of point-grids. We have analyzed its efficiency and shown
that a combination of algorithm and machine is asymptotically efficient if and only if ¢ < a7,
where

o ¢ is the number of coarse grid iterations per fine grid iterations,

e a is the mesh refinement factor,

o d is the dimension of the point-grids,

e v is the dimension of the processor-grids.

We find therefore that fully parallel designs — with v == d -— cannot be asymptotically
efficient. There is, however, only a logarithmic fall-off in efficiency when ¢ = a%7, and for fully
parallel designs this occurs for ¢ = 1.
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4.3. Complexity of FULLMG
n this section, we shall derive the complexity of the FULLMG Algorithm. Since FULLMG
calls BASICMG, the results here depend crucially on the complexity of Algorithm BASICMG.

Let F(n) denote the time taken by one call to FULLMG. By inspecting the algorithm in Table
2-2, it can easily be verified that F(n) satisfies the following recurrence:

F(an) = F(n) + r T(an), (10)
where we have absorbed the cost of the interpolation step in FULLMG into the interpolation
costs of BASICMG (i.e. the term s in Equation (7)). Note that this is just a special case of the
recurrence (4), with ¢ == 1 and W(an) = r T(an). By inspecting the entries in Table 4-2, we see
that the forcing function W{n) in this case takes the form of either 2P or nPlog,a. We have the

following result for particular solutions of (10) for this class of forcing functions, which can be
verified by direct substitution.
Lemma 06:

(1) If T(n) = anP then a particular solution of (10) is:
F (n) = (aP/(aP-1)) ran® .
(2) I T(n) = anPlog,n, with p > 0, then a particular solution of (10) is:
F (n) = (a?/(aP-1)) ranPlog,n - (aP/(aP-1)%) ranP .
(3) If T(n) = alog,n thea a particular solution of (10) is:
F (8) = (ra/2) ( log2n + log,a ) .
Since the homogeneous solution of (10) is a constant, the general solution is dominated by the
particular solutions. We give the highest order terms of F(n) in terms of T(n) in the following

theorem.

Theorem 7:
(1) If T(n) = aa® then F(n) == (aP/(aP-1)) rT(a) + O(1).
(2) If T(n) == anPlog,n, with p > 0, then F(n) == (aP/(aP-1)) rT(n) + O(nP).
(3) If T(n) == alog,n then F(n) = (r/2) log,n T(n) + O(log,n).

In the first two cases, the complexity of F(n) is the same as that of T(n), except for the
constant multiplicative factor (aP/(aP-1))r. The (aP/(aP-1)) part of this constant is very close to
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Next we sl.nll.fix a and 7 and vary ¢ (columns in Table 4-2). That is, we fix the architecture
and vary the multi-grid algorithm. This time the speedup factor S decreases slightly as we
increase ¢ which is not surprising as we are doing more work on coarse grids, and this keeps
maay processors idle. Again, the efficiency E decreases as we increase ¢, and after a certain
entry, the algorithm becomes asymptotically inefficient. For example, take the two dimensional

case with n processors on the n-grid (d == 2, v == 1) and 3 = 3. Going down the appropriate
column, we have E{1,3,1,2) = = 1/2, E(2,3,1,2) = 2/7 and E(3,3,1,2) = 1/loggn. Recall that
the larger ¢ is, the more accurate is the computed solution and the more robust is the overall
algorithm. Thus, the ¢ == 2 design is the most accurate efficient design. In general, for fized
@ and v, the deaign just above the efficiency boundary is the moat accurate efficient design. If
accuracy is no problem, then c can be chosen smaller to speed up the algorithm.

Finally, we fix ¢ and v and vary a. Generally, a larger value of a means fewer processors are
needed to impiement the architecture. It also means that less work has to be done on the coarse
grids because they have fewer points. To see the effect of varying a, note that the efficiency
boundary moves towards the lower right hand corner of the tables in Table 4-2 as a is increased.
This implies that, for a fix architecture (v) and algorithm (c), using a larger value of a will
generally exploit the available processors more efficiently. However, one cannot indiscrimatorily
use large values for a because this leads to larger interpolation errors and less accurate solutions.
For example, take the two dimensional case with n-processors on the n-grid and ¢ == 2. With a
== 2, the algorithm is asymptotically inefficient (E(2,2,1,2) == 1/log,n) whereas with a == 3 and a
== 4, it is asymptotically efficient (E(2,3,1,2) = 2/7, E(2,4,1,2) == 3/7). Thus, the a == 3 design
is the most accurate efficient design. In general, for fized ¢ and ~, the smallest value of a that
yiclds an cfficient design is the moet accurate efficient design. If accuracy is no problem, then
a can be chosen larger to epeed up the algorithm.

One caa carry out similar parametric studies, for example, by fixing one parameter and varying
the other two. For instance, if we are free to choose both the architecture (4) and the algorithm
(¢), then by inspecting the form of the efficiency constraint ¢ < a7, it can be seen that smaller
values of ¢ allow more processors to be used (larger 7) to produce a faster efficient design. For
example, in the a == 2 case, if ¢ == 2 then the p == 2 entry gives the fastest efficient design
whereas if ¢ == 1, it becomes the p == | entry, with the latter being faster. Similarly, for a fixed
¢, a larger value of a allows more processors to be used to achieve a faster efficient design.
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Table 4-3: Influence of Design Pﬁameters on Optimality Conditions

Design Parameters

e L trmcmmae *
e 1 o 1 v |

P e T L torcccna S s mmm—n *

Optimality | Max Accurscy | large | small | indep |
Conditions  +~-- vom=-e B duiiniide tommm——- .
| Min T(n) | small | targe | large |

R T e anne trcmccme trcnvoma *

Constraint | Efficiency € | small | large | smail |
T O tecccnae P -

In Table 43, we indicate the influence of each of the three design parameters {c,a,v} on the
optimality conditions and the constraint. For example, the accuracy of the solution is
independent of v and to achieve maximum accuracy, one should take ¢ large and a small. The
appropriate choice of optimality condition depends on the requirements of the given problem.
Moreover, the general optimal design problem may not have a unique or bounded solution in the
three parameter space {c,a,7}. In practice, however, we usually do not have the freedom to
choose all three parameters. If the number of free parameters are restricted, then the optimal

design problem may have a unique solution.

We shall illustrate this by fixing two of the three parameters in turn and study E as a function
of the free parameter. First, let us fix ¢ and a and consider the effect of varying +. In other
words, we consider the case where the multi-grid algorithm and the refinement of the domain are
fixed and we are free to choose the architecture. Varying v corresponds to moving across a
particular row of Table 4-2. It is easy to see that one achieves a speedup as we use more
processors (i.e. as one moves from left to right in one of these rows). However, the efficiency E
generally goes down as one uses more processors, and after a certain entry the design starts to be
asymptotically inefficient. For example, take the three dimensional case (d = 3), with a == 2
and ¢ = 2. With n processors on the n-grid, the efficiency is E(2.2,1,3) = 1/3. With n°
processors on n-grid, we bave E(2,2,2,3) = 1/log,n, and with 03 processors E(2,2.3,3) = O(1 /).
Both the last two designs are asymptotically inefficient and thus the v == 1 design is the fastest
efficient design. In general, for fized ¢ and o, the design just to the left of the efficiency
boundary is the fastest cfficient design.




Theorem 5: Assume 7> 0.
(1) If ¢ < a%7 then E(c,3,7,d) = (a%-1)a%%¢)/(a%c).
(2) If ¢ == 2%7 then E(c,a,7,d) = (a%1)a%7/ ((ad-c)lo;‘n).

(3) If ¢ > a%7 then

O(1/('&9+7)) ife < ad,
E(ca,7,d) =) Oflog,n /07)  ifc=al,
O(1/n") if ¢ > ad.

Based on the above theorem, we can immediately make the following observations:
1. A design is asymptotically efficient if and only if ¢ < ad?. This inequality
defines an efficiency boundary in the four parameter space of {c,a,y,d}, the

projections of which are showa by *'s in Table 4-2.

2. The fully parallel design (v = d) is alwaye asymptotically inefficient. This follows
because to have an efficient design in this case requires ¢ < 1 which is meaningless

for the multi-grid algorithm.

3. Define a logarithmically asympototically efficient design to be one with E ==
O(1/log,n) as n tends to infinity. A fully parallel design s logarithmically
asymptotically ¢ fficient i f and only i f ¢ == 1. This is case (2) in Theorem 5.

4. If we start with a non-optimal design in the one processor case, then adding more
processors will not make the deesign asymptotically efficient. This corresponds to
the last two cases in Case (3) of Theorem 5. The reason is that too many coarse
grid correction cycles are performed so that even if more processors are added to
speed up the setup time for transferring to the coaser grids, too much time is spent

on the coaser grids.

Asymptotically efficient designs are theoretically appealing. They indicate that the extra
processors are utilized efficiently to achieve the speedup. For this reason, it is interesting to

consider the following problem:

Optimal Design Problem:

For a given problem (i.e. given d), find the design that
minimizes T(n) and/or maximizes the accuracy of the computed solution
subject to the constraint that it is asymptotically efficieat.
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on cne probiem, the other diagonals on the second problem. An array of (3m? -
2m) / 4 delay cells is needed; about balf as many as in the 2 - array design

S.1. Computing The Scale Factors

The computation (2b) requires the scale factor a°(¢)a(s), that ts-the dot pro-
duct of the solution of the system (2a) with itself. Since the solution vectors a
are produced one eslement per cycle by successive array columns, we can accu-

mulate these dot products by attaching a row of cells at the bottom of the array:
sse Figure 6, for example.

4. Complex QU Factarization

For signal processing applications, we must deal with complex matrices A. Of
course, one can solve a complex nxm least squares problem by means of a real
QU tactorization of the 2nx2m matrix

R —Al
A Ap
where A = Ag + 14; 1s the decomposition of A into its real and imaginary parts.

But when Givens rotations are used. this factorization requires 8 /3 times as

many real multiplications as a direct complex QU factorization of A. We shall
now discuss bow this can be done.

The QU factorization is unigue only up to scaling of the rows of U by factors
of unit modulus: 4 = (QD) (D-'U) is also a QU factorizetion for any umitary diag-
onal matrix D. Thus, we may require that the diagonal elements of U be positive
real. This 1s the (unique) factorization computed by our array.

Let us change the cell defirutions of Figure 1 to those of Figure 9. (We shall

now employ this convention: lower case Roman letters are complex, Greek are
reel, and, for example,

'y

t g =a+ ja z =¢+ 3¢

! where j = V=1. These cells are, of course, more difficult to implement than the
real Givens calls.

With this there is little else that changes. Now, when a leading element o!
f : an input matrix hits a boundary csll the eflect ia this

Cvgm e e
L]

................
.................

........
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Thus. instead of the identity produced in the real case, a unitary diagonal rota-
tion that simply rescales a row is produced.

§. V1SI Implementation

In this section we shall discuss how the internal cells of the real and complex QU
arrays and the complex backsolve array might be fabricated using a Systolic
Internal Chip (SIC) that is being developed at ESL. It is particularly noteworthy
that these different cells can be obtained using a common VLS] building block,
without the use of additional chips. Moreover, we have used the SIC to desgn
other compound cells (for real and complex LU factorization of dense and band
matrices and for band QU factorization). We expect that systolic arrays for
most of the standard algorithms of numerical linear/algebra can be generated
using this chip and one other that we will also mention.’

- First we sha!l give a rough description of the SIC. It is being designed in a
TRW 24 CKOS technology. Its {.=ction ts thus

Win
\L Uo:zt = Uin
Y V.
Uin 3 ] > Uout out = 1n ¢
Ve Vi "out = ¥in @ %in Vin
ocus <__... ﬁ—-
wcut

where(®€ {+ .- . =, + -| denotes the sign used in the addition This can be
+ , -, Or can elternate between the two. Operands are floating peint. Subsian-

tial afforl has gons into providing swilohing functions and tnternal registers to
tncroase the SiC's flexibiity.

Compound cells for complex arithmetic can be built. Here are two of
Kung's designs: a complex ¢ + ab csll using 2 SiCs,

¢

-g' a —> (czy+3vy',
aza+3ja’,
] B —
+ bsg<+jeg'.)
y
a a .

"




and another, using 4 chipi. in which one operand is statiopary,”

Y'
Y .
o B b &
+ +

T

This is the internal cell for the complex backsolve array.

Figure 10 gives a layout for a complex Givens cell that uses 6 SICs. There
ere two two-chup complex multiply-add cells, one for ¢’z and another for cy .
and two one-chip cells for real ® complex multiply-add, one for oz and ancther
for oy . The complex quantiies are represenied usiung one of the formats dis-
cussed above. New operands can enter the cell every second clock. There is a
three clock delay on the z —z path, but only a 1 clock delay on the €y =Cey and
Om - Oow PALNS.

We lack the space to fully discuss the boundary cell's implementaticn.
Another chip is necessary. A chip using either faster gates or more internal

parallelism could provide divide, square root, and reciprocal square root opera- -

tions at a rate of one operstion per SIC cycle. This seccnd cmf could, with. the
SIC. be used to design a pipelined boundary cell for QU. backsoive, or LU opera-

tions with enough throughput to kesp pace with the array. The boundary cells
wil uaually bave more latency than the (nternal cells.

For a trapezoidal QU array this extra boundary cell latency throws the
erray out of synchronization uniess we provide appropriate intercell delays.
Fortunately these delays ars needed cnly in the lefi-hand trianguiar part of the
erray. Figure 11 gives an example. Here the boundary cell's latency is 5 and
the internal cell's is 4, although its left-right latency is just 1. The time an
operand first arrives is shown {n each cell. The diamonds are delays: they delay
the data 4 cycles. Their eflect is to equalize the latency of alternate paths
through the array. A pxq array requires p(p - 1) /2 delay cells. These delays
have an eflect on the latency of the array and on the pattern of input and output
(1t {s not a paralielogram any more). But there is no reduction in throughput.

Y
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Every symmetric positive definite nxn matrix A admits both the Cholesky

factorization

(1.1) A= RTR

where R is upper triangular and the related "square-root-free' factorization

(1.2) a=ut
where L is unit-lower triangular and D is diagonal with positive elements.

In a number of situations, it is necessary to factor the modified matrix

(1.3) A=A +azzT.

Gill, Golub, Murray,and Saunders (hereafter GGMS) give several algorithms
for modifying the factors of A [2].The algorithms all require Cn’ + O(n)
operations for some constant C; direct Cholesky factorization requires
(1/6)n® + Xn?) operations, where an operation is one multiplication and
one addition. The purpose of this paper is to describe the implementation

of some of these algorithms by systolic array.

The principle application for systolic computation of updated Cholesky
factors comes from digital signal processing. There, A is an estimate of
the covariance matrix of a random signal vector. Periodically it is

updated according to (1.3); in these applications a is ordinarily positive.
In this context one may also have to consider rank k modifications
- T T
(1.4) A= A+a1z1z; +... taz iz .

We discuss an appropriate systolic method for this situation in Section 3.

1.1 Notation. The elements of a matrix A and a vector x shall be denoted
by aij and X, The symbols R, L and D shall be used for upper triangular,
unit lower triangular and diagonal matrices, respectively.

D = diag(dy, ""dn)' We write e, for the i*" colum of the identity matrix.

We shall use the notation PiJ for aplane rotation matrix that differs

from the identity matrix only in that

Pii P37 ¢
pij.-pji.s

where ¢ = cos6, s = sinf. Given i, j and x there exists 8 such that

Ce e L e e T e et
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¢. Methods using the Cholesky factorization of D+ap_LT

Let us determine the factors
A=ipi”
By (1.2),
3= A+azz' =L(D+uppT)LT
where Lp=2z. First, {ind p by back-substitution. If we find the factorization
(2.1 D*appT-fstT.

Then the modified factorization of

is given by

¢

rYyYYyYy

(2.2) L=1T, D=0D.

We consider two algorithms of GGMS for computing (2.1) -(2.2). The first
is readily implemented by systolic array. It may fail, however, when a <0

and A is ill-conditioned. The second is infallible, but not easily

wew
o

implemented.

GGMS show that, in (2.1),

I 'y =
(2.3) lrs prBs, 1<s<r<n.
Thus, to get the factorization (2.1), we need only find Bj, 'Ej

The special structure of L also allows fast computation of L=LT . Define

» 1<j<n,

the vectors
r j=1

B .E.Qripi = L - 2 1ripi.' e KP AAFIRERLE
1=j i=1

(j)

w

These values are generated in the course of back-substitution to find p.

e “V"r——'. e e
v . AR o MM
. . et oa e, aa

When computing L they are used again. By (2.2), (2.3)

- r ~
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i=]
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rj =41 ri®i "
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The final recurrence for computing L and D is this:

Algorithm 2.1
)

1. Let ay = a; W =z,

2. for j=1,2,...,n, compute

(2.4) Py = wij)

(2.5) &J = dj +aj p;

(2.6) Sj = pjaj/aj

(2.7) Aipy = djuj/aj

R

(2.9) 7=, +pudt T o= j+l, ... 0.

rj ri jr

We now consider systolic array methods. First, there is an obvious method,
shown in Figure 1, in which there is a processor for each stage 1<j<n

in the algorithm. The cell used is this

first clock (r=3j):

d.
J
A
r - ] ! v
j
CI.J__. ——— pj —_—— GJ¢1
[ * - M 4 . 4
w(‘l) d,
J
(see (2-4) -(2.7));
subsequent clocks (r> j):
[
r)
L]
| ' 5
Bj 8
P = !
j Pj -
[ 3 L .
A K L W(J*l)
: r
w(J) .
r rj

(see (2.8), (2.9)).

BT E S T e
AL AL

S, - . .,
PRI IR SISO




> —_——
Lm$ *_J

o U(n) d
n n

Figure 1. An array for Cholesky update

The principle disadvantage of this design is that the cells are relatively

complicated. All must divide. All have memory.

There is a second array, shown in Figure 2, without these disadvangages.

The cells are defined as follows

L .
i ,
- ' (i) (j+1) ‘
p, —> < - Y - er -~
J L _ - ———ead™ ® P \
! \J !
w(J*‘) L .
r rj
(see (2.8));
d.
J
(3
- W, —_— .
j *P3

(see (2.4), (2.5), (2.7));




- - d T AT, L™ e W W ~ Padiaaliad AN AL A S e S AN A e e e ek e 5 |
-~ - .
.5_
|
- |
a,.p. d
JPJ ]
1
/ S
;
d.
]
(see (2.6));
w(j+1) . .
T 9]
r'-; L= r -
Bj — 4 == a '-"Bj
L - L f l
A
L .
r)
(see (2.9)).
ds
Ly
ds Ls3
EMS g.sz
qa Ly L5
W43 r | S 3 w(2) . v o _— -
. 3 - e - - - 2g
3 ’ - > -~ ™ - »
. T, P2 . , . ' - | P1 - ¢ -
! } o
lap] (3] Wy, W e
roreY - oY AT A
8 SR a - = a4 - -- A = =y
32 Bl
oo, ‘ — -, '
Y ¥ ¥ ¥ '
: a2 Egl
a 221
i d,
r.
’. Figure 2. The second array for algorithm
.l
v,
b,
v,
}:
»
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Algorithm 2.1 may fail. CUMS point out that when a <0 and A is nearly
singular, rounding error can cause one of the computed values Ej to be
nonpositive, so that an indefinite factorization is obtained.

GGMS have pfoposed a modified algorithm, algorithm 2.2 below, that

is guaranteed to provide a positive definite factorization.

Algorithm .2
1. Solve LP =2

N

2. Define

Q) FQ

T
= ./d,
sy jgl pJ/ ;
i].

oy =a/[1+(1+asy)
3. for j=1,2, ... ,n, compute

= 2
(a) q, pj/dj

]
(b) ej =1 +ojqj
(c) Sie1 T S5 9
(d) u; = 83 +o§ a4 S5,
(e) d; = o; d;
(f) Bj = ajpj/dj
(g) I uj/“3
(h)

%y cj(l *oj)/[oj(ej *uj)]

(i) for r=j+1, j+2, ...,n,
U:jn) - w:j) -pjlrj

(2.16) Erj -t +ajwij”)

This algoriéhm does not permit realization using one pass of L through ; ﬂ

an array, as does Algorithm 2.1, The reason is that s, is needed before

step ) can begin, and the full backsolve in step ! must be completed

in order to compute sj. There is a relativcely obvious two-pass method,

in which p, w, q, and s; are computed from L and z in the first pass

through the array, and all other quantities in the second pass. The

boundary cell computation for the second pass is quite complex, as

it encompasses steps 3(b) -3(h). In practice, it will be rather

difficult to match the speed of such a boundary cell to that of the

rest of the array, which would consist of a linear array, each cell
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performing the computation (2.10) for & fixed value of r~j, exactly

as in the lower half of the array in Figure 2.

3. Methods based on plane rotations

GCMS give several algorithms using plane rotations for modifying

Cholesky factorizations. We have found two of the more efficient of
these to be easily implementable as systolic arrays. The first is
simple, efficient, requires only one pass of the data through the
array, but works only when a> 0. The second works in general, but

requires two passes. Both can be extended to handle rank -k updates

(1.4).

3.1 Positive rank - 1 changes

We compute the modified factorization

Tl.( = RTR+azzT. a>0,

4

R

by reducing the matrix [a‘z i RT] to lower triangutar form,

lafz t RT}p = (&7 ¢ o)

where P = P,! sz .o Pn+?. It follows that

T 4T
RIR = [asz : RT] pol [a z } « RIR +az zT,
R

so that R is the updated Cholesky factor.
The method can be readily extended to handle rank -k updating efficiently.
In this case
(3.1) A=A+242
where
zZ = [z', z,, ...,zk]

is an nxk matrix and

A= diag(u‘, Qyy vne s ak).

When uj >0, 1<j<k then we can form the matrix

and reduce it to upper triangular form by premultiplication by a suitable

sequence
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(n) P(n-!) P

Pe=P

(G) L p g, i kej=1
Pj*l Pj+2 e Pk*j

of plane rotations.

The advantage of considering k updates together instead of as a
sequence of k rank-1 updates is that the modification of R can be
carried out by one pass of the data through a systolic array of O(kn)
processors. Thus, while the number of arithmetic operations is the
same, the total time and the number of I/0 operations (including

memory references) is less by the factor k.

We postpone consideration of the array until the next section.

3.2 Negative rank-1 changes

GGMS have given a modification of the previous method for the case
a<0. We shall now generalize their approach to the case of a rank-k

change. Let

T T T

(3.2) A=A-24Z = R R=-212

where Z is nxk and 4> 0 is diagonal. For convenience we take 4=1,
without loss of generality. Now let P be the nxk solution to

(3.3) RTp = z.

It is easy to show that A remains positive definite if and only if I -PTP

is positive definite. Now form the matrix

(Dn is a lower triangular matrix to be specified below) and premultiply
(1) (2) (k)
P . P where

(i 1 n . . .
P = Pn+j ces Pn#j zeros column j of P and leaves R in upper-triangular

form, until

by an orthogonal matrix Q of the form Q = P

[P R 0 R
(3.“) Q“.-.:...\ -‘coo:o-{:
(o 91 [pg:st

From (3.4) we conclude that

T e ’ . . - -t - - - . -
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T, T T
(3.5) P'P+D D = DD,
(3.6) RTR = RTR + 55T
3.7 RTP = SD;.

From (3.3) and (3.7) we have that

' =
(3.7") Z = SD,.

We now choose Dn' Take Dn to be the Cholesky Factor

T T
(3.8) DnDn I-PP.

Thus, by (3.5), we have that DO'I. Hence, by (3.7') and (3.6)

RTR = RTR -22T .

3.3 Arrays for updating with plane rotations

We first consider the method of section 3.1 for positive updates.

The array presented is a generalization of an array of Heller and

Ipsen for QR factorization of a banded matrix [3). A similar notion
also appears in Schreiber's work on systolic arrays for the eigenvalues

of a nonsymmetric matrix [5].

The array is shown in Figure 3. It is k x (n+k), rectangularly
connected. Not all of the k(n+k) cells actually do anything, as is
shown in the figure. If the first elements of R and Z enter at time 1,
then the first element of l.l, ;11. emerges at time 2k+1, and the last,

Ton 8t time 2(n+k) - 1.

Again, for convenience, we assume a s !, The cells of this array

operate as follows.

boundary cell:

- X

y
where ¢ »cos 0, s =gin 8, and

(xo') i (-i :) (;) ‘




internal cetl:

.o
C,8 —» - X
T p—
where y

delay cell:

P

T

v
ril
- T
rz2 _. r1s
o ra23 .
ri3 . .
e
- ?J

z2,
231 .
ri . 232
. r12. .
r22 r1s
. ra23
ri3 N
rnn

212

X1
Iy
Ly
— y'=- > C,8
[, —
cs (x) .
-s ¢/ \y/ "’
x
A

-

{;:
4

} )
t
PO T
_(J u1
| ) i
. . I
z,
z3n
r1n

Figure 3, The Heller-Ipsen array for a>0, k=3
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lt would be quite possible to eliminate the delay cells and provide
input data directly at the right-hand edge ot the remaining k xn array.
The pattern of access to the data is slightly more complex when this

is done.

The second algorithm, for a <0, requires two passes over the
matrix R. First, the systems (3.3) are solved using a k xn array,
an obvious generalization of Kung and Leiserson's array for k =1 and
banded R [4]. Next, we compute D off-line. We assume that k is quite
small, so that it is easy to do this. The matrix I -PTP, of which Dn
is the Cholesky factor, can be accumulated by another, rather obvious,

array of k(k+1)/2 cells.

Now we consider the reduction (3.4). This is done by the array

’

shown in Figure 4.

The matrices Dn’ P, and R enter in the format shown, with D==[dij].
The last element, r, ,» enters 2n+k -1 clocks after the first, and
’
leaves fromthe top k clocks later. The matrices Do =1 and S reside in

the array. The cells used are these:

boundary cell:

if empty:
== ___bC'
s =1
d
otherwise
== >C,S
P

where c =cos 8, s=sin6, and

EANINE

[there is really nothing special about the "empty" case]




Clinde s sheds aafi dibgs Mt T Ty T Ty T W

Ty Ty
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internal cell:

c,s —™ x Sliad y --»>c,8

where

T U A A A

n-1,1 n,n
r
n=-1,n

rn-1,n-l

Figure 4. Updating with plane rotations when a<0

R T B . Y . . NI I )
PR I P N N R T W T R i RPN
S N T e TS - T N S S
LW PR TN 2 ol A B a

e et NN
X . PR A 4
. P e e s - YRS i SR Yt - N

LA G R AP UAT AT G A AP § ‘asatataldy - 0 L b = AP T LTS Y.,

-
ot

NS . et B
A PR T D, ~




Initially all cells contain zero and all rotations are c=0, s=1.

In many respects this array is like a k xn section of the Centleman-
Kung array for QR factorization [1]), which was described more fully by

Schreiber and Kuekes [6].

4. Related problems

The problem of updating Cholesky factors frequently arises in contexts
in which

A = BTB

for a rectangular matrix B of n columns. In the orthogonal factorization
B =QR

the matrix R is the Cholesky factor of A. If a row zT is appended to B
this causes a rank-cne change to A. To update R, any of the methods
discussed here can be used. The first method of Section 3 is particularly
appropriate since it uses orthogonal operations to update R. If Q is to

be updated, too, one computes

- 7 r 17 =
quer . q R R
[ 0000000 . e o & Il‘—
LO ‘|A—zl’1 ;ZTJ‘L(’;
so that
“Q 0]
Q « QI ...E...
01y

The array used can be enlarged to allow this computation to be performed

also.
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SYSTOLIC ARRAYS: HIGH PERFORMANCE PARALLEL
MACHINES FOR MATRIX COMPUTATION

Robert Schreiberl

I. INTRODUCTION

In this paper we shall summarize the recent development
of systolic array methods for some of the important standard
problems in numerical linear algebra. We shall discuss LU and
QR factorizations, eigenvalue problems, and the singular value
decomposition. All the work we shall describe has been done
since 198l1. Our aim is to introduce the reader to this
rapidly developing branch of numerical computation.

Systolic arrays were introduced and named by Kung and
Leiserson [12). Although their ideas had antecedents (see
(8} for example), they first fully realized and proclaimed

that these designs-~-highly parallel computing networks with
regular data flows, two-dimensional lattice form, simple iden-
tical cells, regular input and output patterns, and heavy re-
use of data--were an ideal way to use the emerging VLSI
technology to obtain very high performance for suitable

computations.

After these first promising designs, which implemented a
tew relatively simple matrix computations, two important ques- N
tions were open. Could systolic arrays be found for a broader to .1
class of matrix problems, including the more important and
difficult matrix decompositions? And could they be integrated
1into real computing systems without introducing incapacitating
lusses of efficiency?
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The first of these questions has now been answered and
thhe answer is a definite "yes." This research has done more
than answer the question of the applicability of the systolic
array idea. It is, rather, the beginning of an intriguing new
approach to numerical computation. 1In this new approach the
flow of data in both time and space is important, whereas tra-
ditionally only the sequence of computations in time was con-
sidered. An interesting facet is that the standard algorithms
have not always proven suitable for systolic array realization.
For instance, for symmetric eigenvalue problems, Brent and Luk
{5) have found that Jacobi's method is better than QR. Their
method uses a permutation of the off-diagonal elements that
seems to be better than the usual cyclic-by-rows permutation

15).

The second question is being answered now. Several pro-
jects for building VLSI based systolic hardware are currently
11 progress or complete ([{1], (19]). An effort at ESL, Inc.,
should produce a systolic machine with performance in the 100-

1000 megaflop range in the next few years.

It appears at the moment that digital signal and image
j.rocessing [15], rather than standard scientific computing and
elliptic equation solving in particular, offers the sort of
problem best suited for systolic array solution. Nevertheless
these 1deas can be usefully applied to elliptic equations. 1In
Section VI we shall discuss an implementation of multigrid

methods by highly parallel computing networks.

11. LU AND QR FACTORIZATIONS

The first such array was an m xm hexagonally connected
array for LU factorization of n xn banded matrices with band-
width m in time 0(3n) (12]. Unfortunately, there was no pro-
vision for pivoting to enhance stability. Next, an array for
2R or LU factorization of a densc squarc matrix, in linear
time, was given by Bojanczyk, Brent, and Kung [2]. A differ-
ent array, better in that it could handle rectangular mxn
matrices in time O(m), was given by Gentleman and Kung (10].
‘the unit of timec we use is the cycle time of a cell of the

glven array. In this time, every array accepts one sct of

A . . e . e e et .
L it . PRRPPON SV vl OIS Y
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inputs and produces one set of outputs. Finally, Heller and
lpseii developed a rectangular array for band matrix LU and QR
factorization [l1l}. (See Figures 1 and 2.) Many practical
details concerning the implementation of the Gentleman-Kung
array were discussed by Schreiber and Kuekes; they also give

an array for triangular systems with many right-hand sides

1'35]-
1
R T }
( %—{ }—- ' >
B - _T A_‘ . — r——-’[‘——’,__._
(/J\ I .
T 1 ) =
<;/ r I e IR e
Figure 1. Figure 2.
The Gentleman-Kung Array The Heller-Ipsen Array

The QR factorization arrays employ Givens rather than
Householder transformations. The LU arrays employ a stable
variant of Gaussian elimination that uses "neighbor pivoting."
when the matrix element aij is eliminated, the elimination is
done by subtracting from row i a multiple of row i-l. These
rows are first exchanged, if necessary, to make the multiply-
ing factor smaller in modulus than one. Partial pivoting does

not lend iteself to systolic implementation,

I11. EIGENVALUE COMPUTATION

The obvious first approach was to attempt to implement
the standard algorithm for the symmetric problem: reduction

to tridiagonal form by orthogonal similarity transformation
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followed by a method, QR iteration for example, for the tri-
diagonal matrix. A linear array that requires O(nz) time is
casy to find, but more parallelism has so far proved elusive.
sSchreiber showed, however, that reduction to a matrix with 2k+l
non-zero diagonals could be done in n2/k cycle times using a

k xn sub-array of the Gentleman-Kung array. The eigenvalues
of the banded matrix can be found using QR iteration which was
shown to be implementable by the Heller-Ipsen array in only a
little more time than is needed for QR factorization [13]. If
further speed is desired, then up to n/k QR iterations can be ;1%;ﬁ'_<
performed simultaneously by a pipeline of Heller-Ipsen arrays. ‘

1/2 3/2

Choosing k = n ) processors and

3/2)

yields a method using O(n
ofn time. (There is some difficulty concerning the choice
ot shifts in the QR iteration when iterations are pipelined.)
These techniques are also applicable to nonsymmetric matrices

[141.

The pursuit of a linear-time solution led Brent and Luk
to consider Jacobi methods. They have found an implementation
using an n/2 xn/2 array, which implements a cyclic Jacobi
sweep in n-1 cycle times [5]). Their experiments have shown
that O(log n) sweeps are required for convergence. In prac-
tice, for n < 1000, no more than 10 sweeps would be required

{51.

1Vv. SINGULAR VALUE DECOMPOSITION (SVD)

To both the approaches of Schreiber and Brent-Luk there
are analogous approaches to the SVvD. Schreiber's takes mn/k
cycle times to reduce an m xn matrix to an upper triangular
matrix with k+l nonzero diagonals. QR iterat.on can then be _
carried out using Heller-Ipsen arrays [16]. Brent and Luk . "-ﬁf?
c¢mploy a linear array, and their method requires O(mn logn) . h
time {4]). Brent, Luk, and Van Loan have just reported an im- ' )

proved method requiring almost linear time [6].

One of the uses of SVD is in solving ill-conditioned
least-squares problems. An alternative method is to construct
the generalized inverse of a rank-deficient matrix closest to
the given matrix by an iterative method. An algorithm of Ben-

lsrael, imprcved by Schreiber, can be used. The generalized

N ..' .
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inverse is obtained in O(m log cond(A)) time using n2 proces-
surs 1[18).

V. DECOMPOSING ARRAYS

A most important question from the practical point of
view is this: can a physical array of fixed size (number of
ccells) be used to solve problems of arbitrary size? The ques-
tion is important because, obviously, problems of widely dif-
fering sizes may be confronted in some applications. Not so
obviously, in some applications the problems may have only one
size, but they may occur infrequently enough that a full-sized
array would not be kept busy for more than a fraction of the
time. In these cases it would be more efficient to build a
smauller array and have it simulate a full-sized array of the
same kind. The question is whether this hardware/time trade-

off is possible.

For some arrays it is easy to see how to do this. Con-
sider the Gentleman-Kung array (Figure 1). Suppose a sub-
array of the size shown within the dashed outlines is available.
The sub-array could be used to perform the work done by the
outlined part of the whole array because all the data flowing
into that part of the array is known at the outset. Data flow
ing out of the subarray has to be stored. The sub-array can
next be moved to cover another part of the large array for
which all inputs are now known. This continues until the

whole array has been covered.

For some arrays, the only sub-array for which all inputs
are known is the entire array. The Kung-Leisserson LU factor-
ization array is an example. Such an array is not "decomposa-
ble" by this technique. We consider that this is a serious

drawback.

The Heller-Ipsen array (Figure 2) is partially decomposa-
ble. I1f we cut it by a horizontal line (the dashed line in
Figure 2) then, since all data flows through the cut from
Lottom to top, we can "run" the bottom part of the array, save
the output, then run the top part using this saved data as in-
put. But if a vertical cut is made, data flows across the cut

in both directions. Moreover, these data cannot be known
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unless the computations performed by both the left and right

halves of the array are done.

The Brent-Luk SVD array at first appears to be indecom-
posable. Despite this we have recently found a way to use

A Dl W S Rl RN

this array to solve larger problems. The key is to use a p-
processor Brent-Luk array as the basic "cell" in a g-processor
"super-array" that works on matrices with 2pg columns. Colums
move between these cells in groups of p. The idea also applies
to the Brent~Luk eigenvalue array. We shall give the details
in a later paper {19].

VI. MULTIGRID METHODS

To illustrate the applicability of systolic-array-like
devices for elliptic problems, we consider implementation of
multigrid algorithms. Full details are given by Chan and
Schreiber [(7]. Related work is reported by Brandt [3] and
Gannon and Van Rosendale [9]. Consider a standard multigrid
algorithm with nd gridpoints on the finest grid and a coarse- RPNty
to-fine mesh~-length ratio of a, in which ¢ coarse grid intera- T 1
tions are done for every fine grid iteration. Suppose we
build a processor grid with nP processors for every point grid
7ith nd gridpoints, so that all computation on the fine grid
take 0(n®P) time. Then we can show that the time for an

iteration T(n), satisfies

avs
vess S

0(n%"P) if ¢ < a%P
T(n) = 0 (n9°P log n) if c = adP
3 O(nloga c) if ¢ > ad P

y Thus, we get a speedup proportional to the number of process-

ors employed only in the first case. The loss of efficiency
is not too bad (0(l/leg n)) in the second case, as for in- - i
stance when there is one processor for every gridpoint (p = d)

and we take ¢ = 1,
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ABSTRACT

Systolic architectures due to Brent, Luk, and Van Loan are today the most
promising method for computing the symmetric eigenvalue and singular value
decompositions in real time. These systolic arrays, however, are only able to solve
problems of a given, fixed size. Here we present two modified algorithms and a
modified array that do not have this disadvantage. The results of a numerical
experiment show that one combination of new algorithm and array is just as
efficient as the Brent-Luk-Van Loan method.

1. INTRODUCTION

Systolic arrays are of significant and growing importance 1n numerical computing
{11}, especially in matrix computation and its applications in digital signal
processing ; 12]. There is now considerable interest in systolic computation of the
singular value decomposition {2, 4,6,10] and the symmetric eigenvalue problem
(1,91

To date, the most powerful systolic array for the eigenvalues of a symmetric
n X rn matrix is a square n;2 X n/2 array due to Brent and Luk. This array
impiements a certain cyclic Jacobi method. It takes O(n) time to perform a sweep
of the method, and O(logn) sweeps fcr the method to converge [ 1].

Brent and Luk have also invented a closely related (n/2)-processor linear
array for computing the singular value decomposition (SVD) of an m X n matrix
A. SVD of A is a factorization A = UEVT, where V is orthogonal, L is
nonnegative and diagonal, and U is m X n with orthonormal columns. This
array implements a cyclic Hestenes algorithm that, in real arithmetic, is an exact
analogue of their Jacobi method applied to the eigenproblem for ATA. The array
requires O(mn) time for a sweep, and O(logn) sweeps for convergence [2].

A new array, very like the eigenvalue array, is reported by Brent, Luk, and
Van Loan to be capable of finding the SV D in time Oim + nlogn) | 3].

The purpose of this paper is to consider an :mportant. indeed an essential
problem concerning the practical use of these arrays. How, with an array of a
given fixed size, can we solve problems of arbitrarily large size?

2. THE JACOBIAND HESTENES METHODS AND THE BRENT-LUK ARRAYS

We shall concentrate on Hestenes’ method for the SVD. Starting with the given
matrix A, we build an orthogonal matrix V such that AV has orthogonal columns.
Thus

AV = UL

where U has orthonormal columns and £ is nonnegative and diagonal. An SVD
is given by A = ULVT.

...........




To construct V, we take

A€ = a4,

and iterate
AT = 40—y,

with @) orthogonal until some matrix A"} has orthogonal columns. Q) is
chosen to be a product of n(n — 1)/2 plane rotations

Every possible pair (r,s),1 < r < s < n, is associated with one of the rotations
QE‘) (the association is independent of 1) in this way: the rotation Qg') is chosen
to make columns r and s of
J
A(‘) H QS)

k==1

orthogonal. The process of going from A to A“* ) s called a "sweep”. Every

permutation of the set of pairs corresponds to a different cyclic Hestenes method.
The correspondence with the Jacobi method is this. The sequence Al*)

converges to the diagonal matrix £? of eigenvalues of AT A. Moreover

AGHDT 4G+1) Q(i)T(A(-‘)TA(-})Q(")

where Q") is the product of n{n — 1)/2 of Jacobi rotations that zero, in some

cyclic order, each off-diagonal element of A(*)” A1)

The permutation chosen by Brent and L uk allows the rotations to be applied
in parallel in groups of n/2. Their permutation consists of n — 1 groups of n/2
pairs such that, in each group, every column occurs once. Thus, the n/2 rotations
corresponding to a pair-group commute. They can be applied in any order or, in
fact, in parallel.

The SVD array is shown in Figure 1. There are n/2 processors. Each
processor holds two matrix columns. Initially processor ¢ holds column 21 — 1 in
its “left memory” and column 21 in its “right memory”™.

In each cycle, each processor computes and applies to its two columns a
plane rotation that makes them orthogonal. Next, using the connections shown
in Figure 1, columns move to neighboring processors. This generates a new se:
of n/2 column-pairs.

After n — 1 cycles, n(n — 1)/2 pairs of columns have been generated and
made orthogonal. It can be shown (by a parity argument) that no pair occurs
twice during this time. Thus, every pair is generated exactly once.

........
...........................
...................................................................
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Figure ! The Brent-Luk SVD array, n = §

A diagram (givenin | 2| originally) showing the movement of columns through
the array, very important in the considerations to follow, i1s given in Figure
2.
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3. SOLVING LARGER PROBLEMS

We now consider the problem of finding an SVD when A has n columns, the array
has p processors, and n > 2p.

The usual approach to this problem is to imagine that a “virtual” array, large
enough to solve the problem (having [ 3] or more processors,) is to be simulated
by the given, small, physical array. Moreover, the simulation must be efficient.

' The array should not spend a large amount of time loading and unloading data

E; For some arrays, this simulation is trivial. One finds a subarray of the virtual
i‘_ array. of the same size as the physical array, for which all the input streams are
& known. Clearly the action of such a subarray can be carried out and its outputs
3 stored. These outputs then become the inputs to other subarrays. This process
# continues untii, subarray by subarray, the computation of the entire virtual

array has been performed. If this technique is possible we say that the array 1s
“decomposable”. The various matrix multiply arrays [ 7], the Gentleman-Kung

- array i 5], and the Schreiber-Kuekes backsolve array | 8] are good examples of
. decomposable arrays.
" Some arrays are indecomposable: the Kung-Leiserson band-matrix LU fac-

torization array, for example [7 ..

The Brent-Luk arrays are indecomposable. Ccnsider Figure 2. Suppose
a two-processor array is available. Can it simulate the four~processor array? It
cannot, not efficiently anyway, since there does not exist a two—processor segment
of Figure 2 for which only known data enters. If this diagram is cut by a vertical
line, data flows across the line, in both directions, every cycle. The data cannot
be known if only the computations on one tide of the line have been performed.

Here, we shall present a solution to this problem. The idea is to have a
given p—processor array simulate a pg-processor “superarray” which is not of the
Brent-Luk type. Moreover, the superarray is decomposable. In its space-time
dataflow graph the processors occur in groups of p. For long periods, of either p
or 2p — 1 cycles, there is no data flow between groups. Thus, the physical array
can efficiently carry out the computation of the superarray, groupbygroup.

We give two such superarrays. The first impiements a Hestenes method in
which a “sweep” corresponds to a permutation of a multiset of offdiagonal pairs.
There is some redundancy, some pairs are generated and orthogonalized several
times. The second implements a cyclic Hestenes method with a permutation
different from Brent and Luk’s. For this method, a minor change must be made
to the array.

We have compared these new sweeps to the Brent-Luk sweep These experi-
ments indicate that the first superarray is about 20 — 60% less efficient than the
Brent-Luk array, while the second superarray is virtually equal to the Brent-Luk
array in efficiency.
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3.1 METHOD A

The method is easiest to explain in terms of an example. Suppose we have a 4
processor array. Suppose there are 16 columns in A. We proceed as follows.

1. Load columns 1-8 and perform a Brent-Luk sweep on them,;
Load columns 9-16 and perform a Brent-Luk sweep;
. Load columns 14, 13-16; perform a Brent-Luk sweep;
. Load columns 5-§, 9-12; perform a Brent-Luk sweep,;
Load columns 14, 9-12; perform a Brent-1L. uk sweep;
Load columns 13-16, 5-8; perform a Brent-Luk sweep.
Steps 1-6 together consistute an A — supersweep or ASsweep. During an
ASsweep, every column pair is generated. Some are generated more than once.

To describe the general case, suppose there is a p processor array, and n =
2pq (pad A with zero columns, if necessary, so that 2p divides n). Imagine that
the matrix A consists of ¢ supercolumns or Scolumns: supercolumn A; consists
of columns

o e W

Now consider a g-superprocessor or Sprocessor virtual superarray or Sarray.
Each Sprocessor holds two Scolumns (one in each of its left and right memories).
In one supercycle (Scycle) the Sprocessors each perform a single Brent-Luk sweep
over the 2p columns in their memory.

(Obviously we can simulate an Scycle of an Sprocessor using one p—processor
Brent-Luk array and 2p— 1 cycles of time. Moreover, we can be loading the data
for the next Scycle and unloading the data from the preceding Scycle at the same
time as we process the data for the current Scycle.)

Initially, Scolumns A; and A3 are in S processor 1, A, and A4 in Sprocessor
2, etc.

Between Scycles, the Scolumns move to neighboring Sprocessors. The
scheme for moving Scolumns is precisely the same as the scheme for moving
ordinary columns in a g—processor Brent-Luk array.

After 2g—1 Scycles, we have generated every pair of Scolumns exactly once.
Together these 2¢g — 1 Scycles constitute an ASsweep. During an ASsweep, every
pair of columns of A is orthogonalised. If two columns are in different Scolumns
then they are orthogonalized once, during the Scycle in which their containing
Scolumns occupy the same Sprocessor. If they are in the same Scolumn, then
they are orthogonalized 2¢ — 1 times.

In units of cycles, the time for an ASsweep, Tas, is

cycles
Scycle

Tas = (29 — 1)Scycles = (2p — 1)
=(2¢—1)(2p —1)
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(Of course, the simulation by a p—processor array takes g times this time.) The
time for a Brent-Luk sweep over n columns, Ty, is

Tgy =n—1=2pg— 1

Thus, the ASsweep takes longer; the ratio of times satisfies

P LI
(The lower bound arises in the simplest nontrivial case p = ¢ = 2.)

A There is little theoretical basis for comparing the effectiveness of ASsweeps
= and Brent-Luk sweeps in reducing the nonorthogonality of the columns of A.
E. We have, therefore performed an experiment. A set of square matrices A whose

: elements were random and uniformly distributed in | —1, 1| were generated. Both

ASsweeps and Brent-Luk sweeps were used until the sum-of-squares of the off-
diagonal elements of AT A was reduced to 10~ times its initial value. We show
the results in Table 1. The number of test matrices, the average number of
sweeps, the largest number for any test matrix, and the relative time

Tas = average-sweeps (AS)
TpL * average-sweeps (BL)

p

are shown.

Evidently one ASsweep is more effective in reducing nonorthogonality than
one Brent-Luk sweep. This is not surprising, since more orthogonalisations are
performed. Their cost—effectiveness, however, is roughly 20 — 60% less.

Averages Mazxima
‘ p q n trials AS BL AS BL P
2 2 8 320 3.98 4.33 5 5 118
2 4 16 160 510 538 6 7 1.33
2 8 32 80 618 629 T 7 1.43
4 2 16 160 480 540 5 6 1.24
4 4 32 8 599 631 7 7 1.50
4 8 64 20 705 755 8 8 1.57
8 2 32 80 5.25 6.28 6 7 1.21
8 4 64 10 660 760 7 8 145
16 2 64 200 600 730 6 8 1.21

Table 1. Comparison of Break-Luk sweeps and ASsweeps
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In order to gange the reliability of the statistics generated by this experiment,
we also measured the standard deviations of the sampled data. In all cases, the
standard deviations were less than 0.5. For the samples of size 80 or more, the
standard errors of the means are no more than 0.06, so these statistics are quite
reliable. For the samples of size 20 and 10, these data may be in error by as much
as 10%.

3:2 METHOD B

Method A suffers some loss of speed because, in an ASsweep, some column-pairs
are generated many times. By making a small modification to the Brent-Luk
array and using the new array as our basic tool, we can simulate a new supersweep,
called an ABSsweep, during which every column-pair is generated exactly once.

Figure 3 shows the modified array. The connection from processor 1 to
processor p is new. Note that a ring connected set of processors can easily simulate
this structure. This array is still able to perform Brent-Luk sweeps over sets of
2p columns. But it can also perform a second type of sweep, which we call an
“AB-sweep” that we now describe.

=,

Figure 3. The modified SVD array, n=8

In an AB-sweep, a pair (A, B) of Scolumns, each consisting of p columns.
is loaded into the array. During the sweep, all pairs (a,b),a € A,b € B are
generated exactly once. But no pairs from A X A or B X B are generated.

To implement an AB-sweep, place the columns of A in the p left memories
and the columns of B in the p right memories of the processors. (The set of left
(resp. right) processor memories is the Sprocessor’'s left (resp. right) memory,
rather than the memories of the leftmost (resp. rightmost) p/2 processors).
Processors do precisely what they did before: orthogonalize their two columns.
Between cycles, A remains stationary, while B rotates one position, using the
connections shown as solid lines in in Figure 3.

An ABSsweep is this. Again we work with 2¢ Scolumns of p columns each
The initial configuration is as for an ASsweep. During the first Scycle, which
takes 2p — 1 cycles, every Sprocessor performs a Brent-Luk sweep on the 2p
columns in its memory. On subsequent Scycles, all Sprocessors perform AB-
sweeps, where the sets A and B are the two S columns in its memory. Between
Scycles, Scolumns move as before.
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dendadad o d o o 8 b o 8 - o 2




DN
l’n'l._..‘

--------

..............................................

It is easy to see that in an AB Ssweep every column pair is generated once.
Thus this scheme implements a true cyclic Hestenes method. The permutation
differs, nevertheless, from the Brent-Luk permutation.

Again, we have compared the new scheme to the Brent-Luk scheme by an
experiment. The experimental set up was precisely the same as for the previous
experiment. The results are shown in Table 2.

Averages Maxima
P q n trnials ABS BL ABS BL
2 2 8 320 4.32 4.33 5 5
2 4 16 160 5.35 5.38 6 7
2 8 32 80 6.36 6.29 T 7
4 2 16 160 536 540 6 6
4 4 32 80 6.18 6.31 7 7
4 8 64 20 750 7.5 8 8
8 2 32 80 6.13 6.28 7 7
8 4 64 10 7.10 7.60 8 8
16 2 64 20 T7.00 17.30 7 8

Table 2. Comparsson of Brent-Luk sweeps and ABSsweeps

Evidently, ABSsweeps are as effective as Brent-L uk sweeps. The standard devia-
tions of the number of ABSsweeps needed were also all less than 0.5.

4. THE EIGENVALUE ARRAY

Decomposition of the eigenvalue array presents the same difficulty, and is amenable
to the same solution, as the SV D array. We need not present the details here.
Note, however, that in simulating a pg X pq eigenvalue array, a p X p array must be
used to simulate both diagonal subarrays where its diagonal processors generate
rotations, and off-diagonal subarrays, where all its cells only apply rotations. The
array of Brent, Luk, and Van Loan for the SV D can also be treated in this
way.
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1. INTRODUCTION

In this paper we present a new systolic array for band matrix QR
factorization. We then point out the relationships between this
array and three other systolic arrays: the hexagonally connected
LU factorization array of Kung and Leiserson [4], the Heller-Ipsen
array for QR factorization [3], and an LU variant of the Heller-

Ipsen array that has not actually appeared anywhere in the literature.

Next, we show how to compute the QR factorization of a banded
rectangular matrix on a systolic array. Matrices of this kind arise
in least-squares collocation methods for elliptic differential

equations and some integral equations.

The results presented here are also applicable to the solution
of ill-posed problems by regularization methods. The details of
this application shall appear in another paper {2]. In fact, the

application was investigated first, by Eldén.

1.1 Preliminary concepts
Let B be any matrix. We say B is a (p,q) banded matrix if

bij =0 forall i>j+p and all j>1i+q.

We let wa1+p+q, the number of nonzero diagonals of B. When necessarv,

we write p(B) (q(B),w(B)) to distinguish the matrix in question.
We are concerned with the computation of factorizations
(1.1) B = QR
where Q is orthogonal and R upper triangular and also factorizations
(1.2) PB = LR

where P is a permutation matrix, L is lower triangular with diagonal
elements one, and R is upper triangular. The factors L and R are also

banded, with

q(U) < min(n-1, p(B) +q(B))
p(L) = p(B)

.t .
We let Qi denote the 1 h row of B, 1<1i<n.
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We shall consider the implementation by systolic arrays of two
algorithms for the factorizations (1.1) and (1.2). The algorithms
are ‘alike in that they zero every element below the main diagonal
of B, in predetermined sequence. The QR algorithms usc plane
rotations to do so; the LR algorithms use elementary row operations.
what distinguishes the two QR algorithms is the pair of rows rotated
in zeroing an element; say bij' In one of them, rows i~1 and i are
used; in the other rows j and i are used. For the LR algorithms the
distinction is the same: to zero bij one subtracts a multiple of

either row i-1 or row ] from row i. To be specific, we use either

Algorithm 1 (Cuntral strategy):

(as)

|

or j:=1 to n~1
)

r i:=j+1 to min(n,j+p)

process (gi,gj,j)

or

Algorithm 2 (Neighbor strategy)

lar}

or :=1 to n~1

|

]
for i :=min(n,j*+p) to j+1 step -1
process (b.,b: _,,j)

. . . . .th
In the case of a QR factorization, process (x,y,j) zeros the ]

element of x bv applving a plane rotation to x and y. In the case of
an LR factorization, process (x,y,]j) zeros the jth element of X by
subtracting a multiple of y from x, after first exchanging x and y,
if necessary, to keep the absolute value of the multiplier less than

or equal to 1,

For some matrices, the LR factorization exists and can be accurately
computed by the central strategy without row interchanges. This is

the algorithm implemented bv Kung .und Leiserson [4].

In discussing parallel processor arrays we use terms and conventions
that have become standard; one can consult the ruview pa;2r of Brent,
Kung, and Luk [1] for background. In particular, we use the turm

cele oo to denote the fraction of processor cycles that a tvpical

processor is actively cmploved in an array.
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- 2. A NEW ARRAY FOR BAND MATRIX QR FACTORIZATION
5 We present here an array implementing Algorithm 1 for QR factorization.

The array, and the manner in which imput data enters, is shown in
Figure 1; the format of the output in Figure 2; the definitions of the

- cells in Figure 3.
The efficiency of this array is 1/3,

Three identically structured matrices could be interleaved and

factored simuitaneously. In that (ase the efficiency would be 1.

The array uses (p+1)(q +p/2+ 1) cells of which g+1 are simply
delay cells (diamonds in Figure 1), p generate rotations (circles

in Figure 1), and the rest apply rotations (squares in Figure 1).

If b,; enters the array at time 1, then bnn enters at time 1 + 3(n-1);

the last output element, rnn’ leaves the array at time 3n +2p - 1.

In its interconnection structure this array is the same as the

Kung-Leiserson array [4], but it has more cells, of different types.

By making obvious changes to the circle and square cells, we can
create an LR factorization array. Both these arrays use the central

strategy of Algorithm 1.

An array for QR factorization using the neighbor strategy of
Algorithm 2 was given by Heller and Ipsen ([3]. With a similar change
- to the cell definitions their array becomes an LR factorization
arriy, too. The Heller-Ipsen array contains pw active cells and is
1/2-efficient. It has no delay cells. The last output element emerges

at time 2n+2p-1, so it is faster than the present array.

The principle advantage of the present array is its applicability
to generalizations of the problem for which it was devised. We

illustrate one such application in the next sections, and another

in the paper mentioned earlier [.].
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Figure 3. Cclls for the QR array
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. 3. RELATED ARRAYS

: In this section we present two arrays similar to the band QR array.
The first computes QR factorizations of lower triangular, banded,
rectangular matrices. The second, which has a rather unusual structure
in which two triangular arrays are intcrleaved, computes QR factor-

-

izations of block 2 x 1 matrices

fa]

[8]

. in which both A and B are lower triangular, banded, rectangular
matrices. In the next section, this arrayv is used to generate QR
factorizationsof banded rectangular matrices of a kind arising from
integral and differential equations. With the obvious changes to the

& cell definitions, all the results cpply to LR factorization, too

N 75
o 74
- 3 . .
2 . 64
55 . 63
. 54 . .
> . 53 .
x 44 . . 52
R 43 .
- . 52 .
33 . . 4
32 . .
- 31
: . 2
ik .
” - ’ .

o - - carrics plane rotacions

: - 1
S : |
. - P ; CArry Totrix cieTents
r__L.,
-

Figure 4. QR factorization of a BLTE (3,2) mitrix with 5 columns




." »'-. -»'-_f. . ElddC iy R Al PR T @ NS Ww’ "';T'Y_VUV‘N . e L et S AEis Sl S hul gl A - . il it d T L = T T v—§ - v— =
-8~

3.1 Factorization of lower triangular, banded elongated matrices

Definition. A matrix L is banded (p), lower triangular, elongate (s)

(BLTE (p,s)) if

t. L is n+sxn,

R v =0 Do C e
2. i ) if 1<) or j<i-p,

By 2, for any row 1>n+p, every element Qij = (; thus we may assume

that 0<s<p. For example, if L is BLTE (3,2) then

\ 0

~

e

X
X
X

QKXXK

<

In Figure 4, we illustrate a systolic array for QR factorization of a
BLTE (p,s) matrix where p=3 and s =2, In general the array is (p+t)x(p+1)
and triangular with horizontal, vertical, and diagonal connections.

In fact, it is the array of Section 2, specialized to the case q=0.

Note that the input format is the same as for a square banded
matrix, although its extent in time-space is different. Efficiency is
1/3. The output, an nxn square, upper triangular (o,p) banded matrix,

emerges from the top cells in the format shown in Figure 2.

3.2 Factorization of block Zx1 matrices with BLTE blocks

Here we consider factorization of matrices

Al
B
where A is BLTE (pA,sA), B is BLTE (pB'SB)’ and

Pg =Py OF Py~

Before presenting the array, we sketch the algorithm. Let us take a

specific case, PA = Pg =2, s =1, for illustration. We must factor

A %B
a matrix whose form is

- . - - - - - . - e " - -
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X
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0 X x
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X
X
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The strategy is this. We eliminate elements of A in the lower triangle
by a central strategy. There are two such elements in a typical column.
Let them be eliminated at times 2 and 4. There are three elements to be
eliminated in the corresponding column, say column j, of B. Let these

be eliminated, by rotations involving row j of A, at times Y, 3, and 5.

This strategy causes no unnecessary nonzero elements to be created

in either A or B. When eliminating b, .
1*1,)

nonzeros in columns j, j+1, ... ,j+r. At the same time, row j of A has

(OgrgsB) row j+r of B has

L o
[}

precisely the same structure. So there is no "fill-in", no new nonzero

-

J*r,)

»; is created. When a, . (1 Sr'gsA) goes, row j gets a nounzero element
in column j+r. These are the only fill-ins.

ff The array is shown in Figure 5. It consists of two interleaved
‘ triangular arrays. One of these, the A array, is just the array of
Section 3.1. It includes those cells in odd-numbered colummns of the
array. They operate only on elements of A, reducing it to an upper

triangular (0 ) banded matrix. In the other array, which occupies

» P
A
the even-numbered columns, plane rotations are applied to pairs of

rows, a row from A and a row from B, to zero all the elements of B.

In Figure 5 elements of A are shown by their indices, elements of B
are shown as bij' Sij (Rij) represents the rotation that has zeroed

bij (aij)' The case Py = Pp =3 is shown. If pg were 2, we would eliminate
the top row of the B-array. If Pg <Py = ! (or Pg >pA) we must include
zero diagonals in the band of B (or A) to bring Pg UP to pA-1 (or

Py UP to pB), otherwise the array will not work correctly.

The efficiency is 1/4., Cells active at the time shown arc emphasized.
The circled indices in Figure 5 represent elements of the upper triangle

of A. When leaving the array at the top, they are the c¢lements of R.
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4. FACTORIZATION OF BANDED RECTANGULAR MATRICES

In least squares collocation method for ordinary and elliptic boundary
value problems or certain integral equations, for example

1
J k(x,y)u(y)dy =g(x)
0

where k(x,y) =0 if x-y <d<1, we may encounter rectangular banded
matrices. Thus we consider QR factorization of mxn matrices A where,

for some integer o> 1,

(4.1) m=1+pc(n=-1).
To generalize the notion of a diagonal, we define, for 1<j<n
r(j) = 1+p(j-1)

and consider the elements a to be the main diagonal. Then we let

32,3
c(i) = r7H({i) = 1+ {(i-1/p].
We say that A is (p,q) banded if

(4.2) ay; =0 unless (i) -p<j<c(i) +q.

For example, when p =3, p=q=1, and n=4, A has the form

1 2 3 4
! (x x 1
2 X X ;
3 X X ‘
4 X X X |
5 X X ‘
6 X X !
7 X X xi
8 ‘ XX |
9 ! X X
10 L X xJ

The first step in the systolic factorization reorders the rows of A,

so that after reording,

LR P G ST Y GG S P O




S T W o oWy " Caadk sl B Al Ang ol S Jonll Aadr Ml Sall St Jiegt Jucth Saadt Jen g

%
a=lth
. i
s

A

L p-1]

and each Ai 1s banded. Ay consists of rows 1, 1+, 1 +2p, ..., m
(rows 1, 4, 7, and 10 in the example shown) and is (p,q) banded.
For 1<i<y, Ai contains rows L +1, i+1+5, ..., 1+1+0(n=-2); it

is (p-1,q) banded, and it is n=-t xn.

Next, we perform p -1 QR factorizations; first

[Ao]

(4.3) l_A1J QiR;

where Ry is nxn, then, for 2<i<:

IR,
(4.4) L ‘"'1 = QR .
A

1

Ro-1 is the desired factor of A; the rotations that constitute Q are

the rotations that consitute Qi’ 1<i<vo. (We shall denote elements of
(1) )
ke’

To compute the factorizations (4.3) ind (4.4) we use the arrav of

Ri by ¢

Section 3.2. It is first necessary to put the matrices into the form
required: block 2x1 in which both blocks are BLTE. To do so, we add
zero rows. For (4.3), we add

q zero rows to Ao and

q zero rows to Ay, so that

A¢ becomes BLTE (p+q,q) and

A becomes BLTE (p+q-1,q-1). Thus th. tactorization can be donu by

a (p+q+1) x (p+q+1) triangular A arrav with an embedded B arrav ot

size (p+q) x (p+q).

-
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For (4.4), we note that R, 4 is (0, p+q) banded. So we include
p+q zerc rows on top to make it BLTE (p+q,p+q). A is treated like

A,. The same array can handle the work.

Because elements of the matrices enter every 4 clocks, it takes
4n + 3(p+q) +0(1) clocks to complete any of the factorizations (4.3)
and (4.4); 3(p+q) is the length of the longest path through the array.
The overall factorization need not take p-1 times as long, since the

factorizations (4.4) can be performed in a pipelined manner. In fact,
if we say that a factorization (4.4) begins when rgt-') enters the

to do so) then we can begin the
(2)
1"

leaves. Thus, if enough hardware is available, the entire factorization

array (it is the first element of Ri-l

next such factorization | +p +q clocks later, as this is when r

can be obtained in 4n + (p+2)(p+q) +0(1) clocks.

To achieve this throughout, we need hardware to work on roughly

min(p, 4n/(p+q))

factorizations at a time, the second term being the ratio of the time
for a factorization to the interval at which factorizations can begin.
A single array can work on 4 (interleaved) factorizations at once.
Thus, min(p/4, n/(p+q)) arrays of (p+q)‘ cells can be used. These
designs are fully efficient when 4 or more factorizations are simul-

tanously performed.
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On the systolic arrays of Brent, Luk, and Van Loan
Robert Schreiber

Computer Science Department, Stanford University, Stanford, California 9430S

Abstract

Systolic architectures due to Brent, Luk, and Van Loan are today the most promising idea
for computing the symmetric eigenvalue and singular value decompositions in real time.
These systolic arrays, however, are only able to solve problems of a given, fixed size.
Here we present two modified algorithms and a modified array that do not have this disadvan-~
tage. The results of a numerical experiment show that a combination of one of the new
algorithms and the new array is just as efficient as the Brent-Luk~Van Loan method.

Introduction

Systolic arrays are of significant and growing importance in numerical computing, espe-
cially in matrix computation and its applications to digital signal processing '+? There is
o now considerable interest in systolic computation of the singular value decomposition?rerSs6
= and the symmetric eigenvalue problem.’’! These decompositions are needed to implement some
3 recently advocated methods in signal processing.?.19

To date, the most powerful systolic array for the eigenvalues of a symmetric nx n
matrix is a square n/2 x n/2 array due to Brent and Luk. This array implements a certain
cyclic Jacobi method. It take O(n) time to perform a sweep of the method and O(log n)
sweeps for the method to converge.’ A very similar array is used by Brent, Luk, and Van
- Loan to com utc the singular value decomposition (SVD) of an m x n matrix in time m +
- O(n log n). Brent and Luk had prcvtously described an n/2-processor linear array that
- requires O(mn log n) time for the SVD,

This paper deals with the important practical issue of how, with an array of a given
fixed size, we can solve problems of arbitrary size,

The Jacobi and Hestenes methods and the Brent-Luk arrays

We shall concentrate on Hestenes' mgehod for the SVD. Let A be a given m x n matrix,
An SVD of A is a factorization A = UIV"® where V is orthogonal, I is nonnegative and diag-
- onal, and U has orthonormal columns. The method starts with the given matrix A and builds
an orthogonal matrix V such that AV has orthogonal columns. An SVD is obtained by normal-
izing the columns of AV,

. The orthogonal transformation V consists of a sequence of plane rotations. Each rotation

.- orthogonalizes a pair of columns of A. Column pairs are orthogonalized one at a time until

; all pairs have been orthogonalized. This constitutes one sweep of the method. The order
in which pairs are orthogonalized is fixed, The mcthod is equivalent, in real arithmetic,
to a cyclic Jacobi method for the eigenvalues of AtA,

-, The order chosen by Brent and Luk allows the rotations to be applied, in parallel, in
’ groups of n/2. The linear array that does this is shown in Figqure 1, There are n/2 pro-
. cessors. Each processor holds two matrix columns. Initially processor i holds column 2i-l

in its "left" memory and column 2i in its "right” memory. In every cycle, every processor
applies a plane rotation to the columns in its two memories. The processors choose these
plane rotations to make the resulting columns orthgonal, Then, columns move to adjacent
. p:oco:sors using the connections shown in Figure 1. This generates a new set of n/2 pairs
. of columns.

After n~1 cvcles, n(n-1l)/2 pairs of columns have been generated and made orthogonal., It
can be shown that no pair occurs twice, Thus every pair is generated exactly once.

| \b 1
- 1,2 30 4 s 16
. ) TA

T
!
1
N

Figure 1. The Brent-Luk SVD array: nw8,
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Figure 2 gives a diagram showing the movement of columns through the array.

step 1 1 4

r 4

/

step 2 1 6

step 3 1 8

7 7
/
/

P
step ¢ 1 Ye,.s “46 3 44
N\ ~ N \‘
step § 1 s Y7_3 Yo_of”  fe 4
N ~ ~ )
step 6 13 A s 2 ¥ Yo 6

Pigure 2. PFlow of data in the SVD array; n = 8

Solvi larger problems I

We now consider the problem of finding the SVD of A when A has n columns, the array has
P processors, and n> 2p. The usual approach to this problem is to imagine that a "virtual"®
array large enough to solve the problem (which means, in this case, that the array has at
least n/2 processors) is to be simulated by the smaller array which is actually available.
Moreover, the simulation must be efficient. The array should not spend a lot of time load~
ing and unloading data.

For some arrays this simulation is trivial. One finds a subarray of the virtual array
that is the same size as the physical array and for which all the input streams are known.
The computation of such a subarray can be carried out and its outputs stored. These out-
puts then become the inputs to other subarrays. This process continues until, subarray
by subarray, the computation of the entire virtual array has been performed. If this tech-
nique is possiblc. we say that the array is "decomposable”, The various matrix multiplica~
tion arrays,'? the Gentleman-Kung array,!’ and the Schreiber-Kuekes backsolve array'"® are
good examples of decomposable arrays. Some arrays are indecomposable: the Kung-Leiserson
band matrix LU factorization array,'®’ for example.

The Brent-Lul arrays are indecomposable. Consider Figure 2. Suppose a two-processor
array is available. Can it simulate a four-processor array? It cannot, not efficiently,
anyway, since there does not exist a two-processor segment of Figure 2 for which only known
data enters. If this diagram is cut by a vertical line, data flows across the line, in
both directions, every cycle. The entering data cannot be supplied if only the computation
on one side of the line is performed.

We shall present a solution to this problem. The idea is to have the p-processor array
simulate a pg-processor "superarray” which is not of the Brent-Luk type. The superarray is
decomposable into p-processor arrays. If one were to make a diagram like that of Figure 2,
showing the flow of data in space and time in this superarray, the processors would occur
in groups of p, and for rather long periocds there would be no data flowing between the
groups. Thus the physical array can efficiently carray out the computation of the super-
array, group by group.

We give two such superarrays. The first implements a method in which, during a sweep,
some pairs of columns are orthogonalized more than once. The second implements a cyclic
Hestenes method, but the order in which pairs are orthogonalized is different from the

T R L N T N j
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order used by Brent and Luk. In order to implement this method, a slight modification of
the Brent-Luk array is required.

We have compared these new sweep orders to the one used by Brent and Luk. These exper-
iments indicate that the first superarray is less efficient, by between 20% and 60%, than
the Brent-Luk array, while the second is as efficient as the Brent-Luk array.

Method A

The method is easiest to explain by giving an example. Suppose we have a 4{-processor
array. Suppose there are 16 columns in A. We proceed as follows:

1. Load columns 1-8 and perform a Brent Luk sweep:
2. Load columns 9~16 and perform a Brent-Luk sweep:;
3. Load columns l-4, 13-16; perform a Brent-Luk sweep;
4. Load columns 5-8, 9-12; perform a Brent-Luk sweep;
S. Load columns l-4, 9-12; perform a Brent-Luk sweep:;
6. Load columns 13-16, 5-8; perform a Brent-Luk sweep.

Steps 1-6 together constitute an A-supirswcep or ASsweep. During an ASsweep every
column pair is generated. Some are generated more than once.

To describe the general case, suppose there is a p processor array and that n = 2pq.
(Pad A with zero columns, if necessary, so that 2p divides n.) Imagine that the matrix A
consists of q supercolumns or Scolumns. Scolumn Ay consists of columns q(i-l)+l, . . ., qi

of A. Now consider a g-superprocessor (or Sprocessor) virtual superarray (or Sarray).
Each Sprocessor holds two Scolumns, one in its left and one in its right memory. In one
supercycle (or Scycle) each Sprocessor performs a single Brent-Luk sweep over the 2p
columns in its memories. Obviously a p-processor Brent-Luk array can implement an Scycle
of an Sprocessor during 2p-1 of its own cycles. Moreover, it can load data for the next
Scycle and unload data from the preceding Scycle at the same time.

Initially Scolumns A; and A, are in Sprocessor 1, A, and A, in Sprocessor 2, etc, Be-
tween Scycles, the Scolumns move to neighboring Sprocessors. The scheme for moving Scol-
umns is precisely the same as the scheme for moving ordinary columns in a g-processor
Brent-Luk array.

After 2q-l Scycles, every pair of Scolumns has been generated exactly once. Together
these 2q~1 Scycles constitute an ASsweep. During an ASsweep, every pair of columns of A is
orthogonalized. If two columns are in different Scolumns, then they are orthogonalized
once, during the Scycle in which their containing Scolumns occupy the same Sprocessor. If
they are in the same Scolumn, then they are orthogonalized 2g-l times.

In units of ordinary processor cycles, the time for an ASsweep, TAS' is

TAS s (2g-1) (2p-1) cycles.

The time for a Brent-Luk sweep over n columns, TBL' is
Tar = n-l = 2pg-l.
Thus, the ASsweep takes longer; the ration of times satisfies
T
e,
BL

(The lower bound arises in the simplest nontrivial case, p = g = 2,)

There is little theoretical basis for comparing the effectiveness of ASsweeps and Brent-
Luk sweeps in reducing the nonorthogonality of columns of A. We have, therefore, performed
an experiment. A set of square matrices A whose elements were random and uniformly distri-
buted in (-1,1] were generated. Both ASsweeps and Brent-Luk sweeps were used until the sum
of the squares of the off-diagonal elements of AtA was reduced to 10-!? times its original
value. We show the results in Table 1. The number of test matrices, the average number of
sweeps, the largest number for any test matrix, and the relative time

TAS * average-sweeps (AS)
° = Y.L © average-sweeps (BL)

N are shown.
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Table 1. Comparison of Brent-Luk sweeps and ASsweeps
verages Max
g g n - trials AS BL AS BL p
320 3.98 3.33 9 S 1.138
2 4 16 160 5.10 5.38 6 7 1.33
2 8 32 80 6.18 6.29 7 7 1.43
4 2 16 160 4,80 5.40 S 6 1.24
4 4 32 80 5.99 6.31 7 7 1.50
4 8 64 20 7.0S8 7.58 8 8 1.57
8 2 32 80 $.25 6.28 6 7 1.21
8 4 64 10 6.60 7.60 7 8 1.45
16 2 64 20 6,00 7.30 6 8 1.21

Evidently one ASaweep is more effective in reducing nonorthogonality than one Brent-Luk
sweep. This is not surprising, since more orthogonalizations are performed. They are,
however, roughly 20-60% less cost-effective.

In order to gauge the reliablility of the statistics generated by this experiment, the
standard deviations of the sampled data were measured. In all cases, the standard devia-
tion was less than 0.5. For the samples of size 30 or more, the standard error of the mean
is therefore no more than 0.06, so these statistics are quite reliable. For the samples of
size 20 and 10, the data are unlikely to be in error by more than 10%

Method B

Method A suffers some loss of speed because, in an ASsweep, some column pairs are gene-
rated more than once. By making a small modification to the Brent-Luk array, we can simu-
late a new supersweep, called an ABSsweep, during which every column pair is generated
exactly once.

Figure 3 shows the modified array. The connection from processor 1 to processor p is
new. A ring-connected set of processors can easily simulate this structure. The array is
still able to perform a Brent-Luk sweep over a set of 2p columns., But it can also perform
a second type of sweep, called an ABsweep, that we now describe.

e cecmp gy m - —m- mm_y =" = ————-a

e A et

Figure 3. The modified SVD array; n = 8

In an ABsweep, a pair (A,B) of Scolumns (each having p columns) is loaded into the array.
During the sweep, all pairs (a,b), a ¢ A and b ¢ B are generated exactly oncs. But no
pairs from AxA or BxB are generated.

To implement an ABsweep, place the columns of A in the p left memories and the columns
of B in the p right memories of the individual processors. (The set of left (resp. right)
processor memories is the Sprocessor's left (resp. right) memory.) Processors do just what
they did before: orthogonalize their two columns, Between cycles, A remains stationary,
while B rotates one position using the connections shown as solid lines in Figure 3,

An ABSsweep is this. There are 2q Scolumns of p columns each. The initial configura-
tion is as for an ASsweep. During the first Scycle, every Sprocessor performs a Brent-Luk
sweep on the 2p columns in its memory. On subsequent Scycles, All Sprocessors perform
ABsweeps. Between Scycles, Scolumns move as before.

It is easy to see that in an ABSsweep every column pair is generated exactly once. Thus
this scheme implements a true cyclic Hestenes method. The permutation differs, neverthe-
less from that used by a Brent-Luk array.

Again we have compared the new scheme to the Brent-Luk scheme by an experiment. The
experimental set up was the same as for the previous experiment. The results are shown in
Table 2. Evidently ABSsweeps are as effective as Brent-Luk sweeps. The standard deviation
of the number of ABSsweeps needed was, in all cases, less than 0,5.
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Table 2. Comparison of Brent-Luk sweeps and ABSsweeps
Averages Egizma

n trials ABS BL ABS BL
E ; 3 380 .32 4.33 -1 9
2 4 16 160 5.3% 5.38 6 7
2 8 32 80 6.36 6.29 7 7
4 2 16 160 5.36 S.40 6 6
4 4 32 80 6.18 6.31 7 7
4 8 64 20 ?7.50 7.55 8 8
8 2 32 80 6.13 6.28 7 7
8 4 64 10 7.10 7.60 8 8
16 2 64 20 7.00 7.30 7 8

The eigenvalue array

Decomposition of the Brent-~Luk eigenvalue array presents the same difficulty, and is
amenable to the same solution, as the SVD array. The array of Brent, Luk, and Van Loan
for the SVD can also be treated in this way, but there is as yet no experimental evidence
to suggest how effective this technique would be.
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