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: FAST COLLISIONLESS TEARING IN AN ANISOTROPIC NEUTRAL SHEET
}, 1.  INTRODUCTION
The isotropic collisionless tearing mode (Furth, 1962; Pfirsch, 1962)
5 has been under extensive investigation for the past few decades (laval et
’Sg al., 1965; Schindler, 1966; Schindler and Soop, 1968; Dobrowolny, 1968;
. Biskamp and Schindler, 1971; Quest and Coroniti, 1981). In particular, it
; ' was suggested {(Coppi et al., 1966) as a possible mechanism for magnetic
: field line reconnection in the magnetosphere (Dungey, 1961). The tearing
mode may also be relevant to the dayside magnetopause (e.g., Greenly and
x Sonnerup, 1981; Quest and Coromiti, 1981).
:, The central importance of the tearing mode is that the growth rate of
the instability 1s believed to provide a measure of the time delay for the
.p‘:' onset of reconnection after the interplanetary magnetic field turns
”: southward. One difficulty in identifying the conventional isotropic
‘ collisionless tearing mode as a possible mechanism for reconnection is that
"'s the 1instability is a weak one. For example, wusing the results of
:."_ Dobrowolny (1968), the electron tearing growth time is estimated to be of
- the order of 1 hour for the tail region, which is too long to have any
: role. However, in a collisionless plasma, the motion of particles parallel
‘;‘f to the magnetic field 1is decoupled from the perpendicular motion and
o temperature (and pressure) anisotropy is 1likely to exist (Crooker and
g Siscoe, 1977; Couley, 1978).
‘?’: Laval and Pellat (1968) used an energy principle analysis to show that
:w ‘ collisionless tearing mode properties can be strongly modified by weak
:,:5 anisotropy. In this work, however, the eigenmode structure was not studied
;yi and quantitative estimates of the growth rate were not given. Recently,
Chen and Davidson (1981) carried out a Vliasov-fluid analysis for a field-
E{: reversed ion layer at marginal stability using approximate orbits. It is
; Manuscript approved October 19, 1983. 1
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found that slight anisotropy (Til/Ti“ > 1) can increase the range of
unstable wavenumbers of the tearing mode in an ion layer, indicating that
the magnetopause and magnetotail properties may be affected significantly
by anisotropy. Here the symbols L and ! refer respectively to the

directions perpendicular and parallel to the equilibrium magnetic field.

More recently, Basu and Coppi (1982) studied a fluid-like "field swelling”

instability in an anisotropic plasma. This analysis 1s local and is based
essentlally on the fluid equations so that it is difficult to assess its
applicability to the tearing mode which is due to the large orbits crossing
the neutral line.

Because the previous works have not been able to provide the
dispersion relation, the importance of the anisotropy effects has not been
appreciated. In this ‘paper, we calculate the anisotropic dispersion
relation and show that the tearing mode growth rate for a collisionless
neutral sheet can be strongly enhanced if the temperature distribution is
anisotropic (TL > Tn}. In light of the new results, we reconsider some
aspects of the reconnection processes in the open magnetosphere. However,
the detailed mathematical treatment of the plasma physics aspects is not

appropriate here and will be published elsewhere (Chen and Palmadesso,

1983). As a general remark, we note that the real magnetotail has a small
normal component of the magnetic field which may be stabllizing to
collisionless tearing mode because the electrons can be magnetized (Galeev

and Zelenyi, 1976; Lembege and Pellat, 1982). However, ions may still be

unmagnetized, giving rise to an "ion tearing mode"” (Schindler, 1974). In
addition, pitch angle scattering may tend to destabilize the wmode
(Coroniti, 1980) as well as isotropize electron anisotropy. In the present

work, we do not include the normal field or pitch angle scattering.
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Because the above effects tend to affect primarily the electrons, we will

take the electrons to be isotropic and include only anisotropic ions.

2.  ANISOTROPIC TEARING-MODE INSTABILITY

The perturbation considered has the form y(x,z,t) = ;(z)exp(ikx-iwt).
The wavevector k = kx is parallel to the equilibrium magnetic field B By(z) =
Bo(z)i’ which 1s generated self-consistently by the current density io =
Joz_. For the tearing mode, we have u <X Wag where W g is the ion cyclotron
frequency in the asymptotic field Bo = Bo(z + ®)., In addition, for the
parameters of interest, we also have p <X kvth where v, 1is the thermal
velocity of the particles. In this paper, we adopt for both ions and

electrons (j = i,e) Harris-type equilibrium distribution functions given by

( -
ij\H_Lj Vijj’ H“j)

B 1 1 1
- xp{= =—— (H,, - V,P__)lexp(- B ., (L)
LT v IV B E LA TR

where H , = (m

1] 3 LR 3
Vj = constant 1is the mean velocity of the species j, and Ayo(z), is the

2)(v.2+v 2), P, =av, +(q./c)A 0 H, = (m,/2)v 2
12) (v 220 Py 373+ (a;/04,0(2), (m,/2)v 2,
vecter potential for the equilibrium magnetic field. The electrostatic
field is taken to be zero in the frame of the neutral sheet and charge

neutrality will be assumed. Then the self-consistent equilibrium

quantities are well-known and are given by n,(z) = nosechz(z/é)

1/2
0 = = =
and B_0(z) = B tanh(z/§), where B = (8n n oTy) T, =T, + T, and
c?2T
1,1/2 1
§ = [— . (2)
\21m ) e(vi_ve)
Q
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Using the method of characteristics, the linearized Vlasov

distribution function for each species can be written as

q.Bj

3 Lua g Lka, Ty
f, === f y=--=f == (1l - =) v (3)
R ST A 0iy T, Ty, o <
where
1 fF

Here, Bj z Vj/c, ¢ 1s the speed of light, and Y(x,z,t) = Aly(x,z,t) is the
perturbed vector potential. In equation (3), use has been made of

3/3t » -1w and 3/3x + ik. In obtaining equations (3) and (4), we have used
$ << (m/kvth](vylc)w which is a consequence of charge neutrality at low
perturbation frequencies (Dobrowolay, 1968). Here, ¢ is the perturbed

scalar potential. Using equation (3) in Ampere”s law, we obtain

dZ; ~ 4n 3
—_— - %2y = = D 4 £

where ;(z) 2 Y(x,z,t)exp(-ikxtut).

In the isotropic 1limit, TjL/Tju = 1, the last term of equation (3)
vanishes and the 1sotropic results are recovered. For the anisotropic
case, estimating v, by the typical thermal velocity v,,, we see that the
second term is smaller than the last term by approximately “/(kvth) K1
so that the anisotropy term is dominant unless the degree of anisotropy is
small. 1In order to evaluate Qy and flj quantitatively, we note that the

component v, is nearly constant for a typical particle in the inner regions

y
(lzl < d4y, 3 = 1, e) where the magnetic field is weak and that a typical
3
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particle is magnetized in the outer regions (lz| > dg). Here, we take
dy = /3;377 and d_ = /7;:3; where a; is the larmor radius of a thermal
particle of species j. These approximatiobns are intended to model the
various particle orbits as described by, for example, Sonnerup (1971). In
addition, &(z) is assumed to be nearly constant (constant-y approximation)
in the inner regions. In the outer regiomns |z| > dj, the particles execute
the usual VB drift motion.

Using the above approximations, after some algebra, we obtain for each

species in the respective inner regions (lz]| < dj)

é&:
;-'&:
Eyi
i~ in _ -1_ = _ -1 _
RE Qy ie vyy(z)(kvx w) “exp(ikx-iwt) (6)
35
!

e and in the respective outer regions (lz] > d;)

<

- out -1. 3 ¢ -1

=1ic 7V z) (kv - e ikx-int 7

2 Q b° ¥(2) (kv,_=w) " exp( wt) (7)
‘.:a
o
‘ﬂb The quantity VDj is the usual VB drift velocity in the y-direction. Using
.rf; equations (3), (5), (6) and (7), it is clear that equation (5) is an
)
) -
?& eigenvalue equation for ¢(z), subject to the conditions that its first
5 -
ey derivative (3y/3z) vanish asymptotically (l|z| + o) and that the logarithmic
g derivative be continuous at |z| = d, and |z| = d;. However, unlike the
N
}ﬁj conventional isotropic tearing-mode calculations in neutral sheets (see for
Zf“ example, Dobrowolny, 1968) in which the "inner"” solution for lz} < de is
- K]
&R matched to the “"outer” solution for |zl > d;, it 1is found that the
P
o dispersion relation for the anisotropic tearing-mode is critically affected
2 g
ﬁf‘ by the 1on orbits in the "intermediate” region de s Iz S di' Therefore,
g;= the eigenvalue equation (5) must be solved in the above three regions. For
4
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the inner region, an analytical solution can be obtained. In the
intermediate and outer regions, the equation is solved numerically. The
resulting dispersion relation, obtained by matching the logarithmic
derivative of ; at z = d, and z = d; (three-region approximation), is shown
in Figure 1 for several values of Til/Tiu

The first point to note is that y/mci and hence the associated values

with ai/s = 0.1.

of Y/kvi and Y/kVe are all substantially less than unity, justifying the

low frequency approximations a posteriori. Another point to note is that

curve b for the isotropic case is nearly equal to the conventional two-
region result with the present threeQregion growth rates being slightly
smaller. This reduction in y can be traced to the 7B contributions. As

ag = '1.‘“_/'!1'| is increased, the growth rate and the range of unstable k

numbers both increase substantially. For example, the maximum growth rate

for @, = 1.5 is y = 2.2x10-3m compared with the isotropic maximum growth

i
rate y = l.9xld-4w

ci
e for the same parameters, an enchancement by a factor
of 10. The wavelength at maximum y is reduced to roughly 2.75 from 27¢&.

For ay <1, even a small deviation from isotropy strongly stabilizes the

mode as shown by curve a of Figure 1. This latter behavior is consistent

with the conclusion of Laval and Pellat (1968). Physically, the anisotropy

effects discussed are due to the Lorenz force which is similar to the
mirror forces (the third term of equation (3)). Note also that Hill (1975)

found that the magnetic merging is enhanced when pl > p".
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Fig. 1. Normalized growth rate (Y/mci) versus k§ with 31/5 = 0.1 and

isotropic electrons. The value of TiL/Tiw is (a) 0.9, (b)) 1.0,

(¢) 1.1, (d) 1.25 and (e) 1.5. The curves are not completed near

k8§ = 0 because a number of approximations break down for k » O.
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L 3. DISCUSSION
3N
S? Two regions where the preceding results may be relevant are the
o
{ neutral regions of the magnetotail and the dayside magnetopause. In this
U
j: regard, We note that the need to iaclude temperaturs anisotropv iz these
~._
}F regions has been pointed out (Crooker and Siscoe, 1977; Cowlev, 1978). We

will use some parameters suitable for the neutral region in the tail for 4
bn
;( illustration. For example, for lkeV ions, ai/S = 0.1, Tii/'i‘el = 2 and
Py -
JQ Bo = 20v, we obtaia W = ]..9sec-l and Figure 1 (curve b} vields <the
-

, -1 - . .

minimum e-folding time (Ymax) = 43 minutes for the isotropic case.
1
\ -1 _ - - -1, > .
. I = 1.2 3 = 12 tes. For = 1.5, w v =
}: f ay 5, then ({max) minu or a, 1.5, we have (Ymax) 3
v minutes, a reduction by more than one order of magnitude. This shows that,

.
PP

in the presence of even small to modest ion temperature anisotropy, the e-

2.2

folding time scale is a small fraction of the delay time of roughly 30

. .,.\“‘ A

minutes for the onset of reconnection. We, therefore, conclude that the

anisotropic collisionless tearing mode may indeed play an important role in

It

‘1
“Va

reconnection processes in the magnetosphere. It is iaportant to note that

no classical or anomalous resistivity is used in our calculation. Further

Ay By Iy

increase 1in a, vields even greater enhancement in the growth rate.

<

. However, the approximations used in the analysis begin to break dcwn
AS

2. for much larger a; so that we are not able to make quantitative statements
-

. for large degrees of anisotropy.

ﬁ So far, the anisotropic tearing mode rasults have been considered in
L)

o the context of the tail region. In the neutral region of the dayside
]

. magnetopause, ai/S may be nearly unitv, which 1is outside the regime of !
:{ validity of the present analysis. However, we expect qualitatively similar
¥

.- effects to occur. Note also that only the 1linear regime has been
9q investigated and we cannot draw definitive conclusions concerning the
N

,I

a

.
[0 2]




possible magnetic 1island formation. However, we speculate that the
saturation level in the presence of anisotropy is greater than in the

absence of anisotropy. Subsequent to the work of Chen and Palmadesso

(1982), numerical simulations have been performed using a one-component

plasma (hot ions and cold electrons) (Ambrosiano and Lee, 1983) and the

preliminary results indicate that the growth rate and the saturation

amplitudes both increase substantially as o, is increased from unity.

i

As discussed in Section 1, the magnetotail possesses a number of
features such as the weak normal component of the magnetic field and pitch
angle scattering that are not included in the present analysis. So far,
these modifications have been applied to the isotropic tearing mode in the
literature. In view of the fact that anisotropic tearing mode completely
dominates the isotropic case, we éuggest that tearing instability in the
presence of anisotropy is the more relevant perturbation to investigate and
that the above modifications should be considered for the anisotropic
case. Moreover, since the enhancement of the growth rate is primarily due

to the large ion orbits, we expect qualitatively similar effects to persist

even If the above refinements are included.
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