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This enhancement of the powth rat.e is due to the Lorentz force acting on the ions that cross
[ 'ithe neutral plane and that traverse beyond the conventional electron tearing layer.
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FAST COLLISIONLESS TEARING IN AN ANISOTROPIC NEUTRAL SHEET

1. INTRODUCTION

The isotropic collisionless tearing mode (Furth, 1962; Pfirsch, 1962)

has been under extensive investigation for the past few decades (Laval et

al., 1965; Schindler, 1966; Schindler and Soop, 1968; Dobrowolny, 1968;

Biskamp and Schindler, 1971; Quest and Coroniti, 1981). In particular, it

was suggested (Coppi et al., 1966) as a possible mechanism for magnetic

field line reconnection in the magnetosphere (Dangey, 1961). The tearing

mode may also be relevant to the dayside magnetopause (e.g., Greenly and

Sonnerup, 1981; Quest and Coroniti, 1981).

The central importance of the tearing mode is that the growth rate of

the instability is believed to provide a measure of the time delay for the

onset of reconnection after the interplanetary magnetic field turns

southward. One difficulty in identifying the conventional isotropic

collisionless tearing mode as a possible mechanism for reconnection is that

the instability is a weak one. For example, using the results of

Dobrowolny (1968), the electron tearing growth time is estimated to be of

the order of 1 hour for the tail region, which is too long to have any

role. However, in a collisionless plasma, the motion of particles parallel

to the magnetic field is decoupled from the perpendicular motion and

temperature (and pressure) anisotropy is likely to exist (Crooker and

Siscoe, 1977; Cowley, 1978).

Laval and Pellat (1968) used an energy principle analysis to show that

collisionless tearing mode properties can be strongly modified by weak

anisotropy. In this work, however, the eigenmode structure was not studied

and quantitative estimates of the growth rate were not given. Recently,

Chen and Davidson (1981) carried out a Vlasov-fluid analysis for a field-

reversed ion layer at marginal stability using approximate orbits. It is

Manuscipt approved October 19, 1983.
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found that slight anisotropy (Ti /Ti1 > 1) can increase the range of

unstable wavenumbers of the tearing mode in an ion layer, indicating that

the magnetopause and magnetotail properties may be affected significantly

by anisotropy. Here the symbols I and !I refer respectively to the

directions perpendicular and parallel to the equilibrium magnetic field.

More recently, Basu and Coppi (1982) studied a fluid-like "field swelling"

k4 instability in an anisotropic plasma. This analysis is local and is based

essentially on the fluid equations so that it is difficult to assess itsN' applicability to the tearing mode which is due to the large orbits crossing
the neutral line.

Because the previous works have not been able to provide the

dispersion relation, the importance of the anisotropy effects has not been

appreciated. In this -paper, we calculate the anisotropic dispersion

relation and show that the tearing mode growth rate for a collisionless

neutral sheet can be strongly enhanced if the temperature distribution is

anisotropic (T1 > T1). In light of the new results, we reconsider some

aspects of the reconnection processes in the open magnetosphere. However,

the detailed mathematical treatment of the plasma physics aspects is not

appropriate here and will be published elsewhere (Chen and Palmadesso,

1983). As a general remark, we note that the real magnetotail has a small

Vnormal component of the magnetic field which may be stabilizing to

collisionless tearing mode because the electrons can be magnetized (Galeev

and Zelenyi, 1976; Lembege and Pellat, 1982). However, ions may still be

unmagnetized, giving rise to an "ion tearing mode" (Schindler, 1974). In

addition, pitch angle scattering may tend to destabilize the mode

(Coroniti, 1980) as well as isotropize electron anisotropy. In the present

work, we do not include the normal field or pitch angle scattering.

2
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Because the above effects tend to affect primarily the electrons, we will
take the electrons to be isotropic and include only anisotropic ions.

2. ANISOTROPIC TEARING-MODE INSTABILITY

The perturbation considered has the form w(x,z,t) - *(z)exp(ikx-iwt).

The wavevector k - kx is parallel to the equilibrium magnetic field Bo(z) -

. Bo(z)x, which is generated self-consistently by the current density . =

Jov. For the tearing mode, we have w << wci where wc is the ion cyclotron

frequency in the asymptotic field Bo - B (z +). In addition, for the
00

parameters of interest, we also have w << kvth where Vth is the thermal

velocity of the particles. In this paper, we adopt for both ions and

electrons Qi - ie) Harris-type equilibrium distribution functions given by

foj(H1 j - VjPyj, H1 )

0 1 eXpr- T Hzj - v.py 1.)te'p- (1)

2T ij/J 12iT /m1 "Tj

w (M/2)(vy2  vz2), mjvj + (q./c)AyO(z), H j . (m /2)vx,

Vi - constant is the mean velocity of the species J, and A0(z), is the

vecter potential for the equilibrium magnetic field. The electrostatic

field is taken to be zero in the frame of the neutral sheet and charge

neutrality will be assumed. Then the self-consistent equilibrium

quantities are well-known and are given by no (z) = nsech (z/A)

1I/2
and BxO(z) Botanh(z/8), where Bo =_ (Swn )/ T1 - T + T and

x oo 0 T~ ii. el

(c2TJ)1/2 1 
(2)

2r n e( Vi-Ve)
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Using the method of characteristics, the linearized Vlasov

distribution function for each species can be written as

I: kq flj -foj* - - oj + -  ' T ojx (3)qj~j iwq i ikq j T

ij T il 0j Tl Tjl- f" y -,TJo

where

t

Qy - c dt'vy' . (4)

Here, sj = V /c, c is the speed of light, and O(x,z,t) = Aly(xzt) is the

perturbed vector potential. In equation (3), use has been made of

a/at -iw and 3/3x + ik. In obtaining equations (3) and (4), we have used

* << (w/kvth)(Vy/c)* which is a consequence of charge neutrality at low

perturbation frequencies (Dobrowolny, 1968). Here, 0 is the perturbed

scalar potential. Using equation (3) in Ampere's law, we obtain

d ' - --- k2 qj v f (5)
dz2  c~ i M l

where ;(z) =_ *(xzt)exp(-ikx+wt).

In the isotropic limit, T l/T j- 1, the last term of equation (3)

vanishes and the isotropic results are recovered. For the anisotropic

case, estimating vx by the typical thermal velocity Vth, we see that the

second term is smaller than the last term by approximately w/(kv th) << 1

so that the anisotropy term is dominant unless the degree of anisotropy is

small. In order to evaluate Qy and flj quantitatively, we note that the

component Vy is nearly constant for a typical particle in the inner regions

(Izi < dj, j - i, e) where the magnetic field is weak and that a typical

4



particle is magnetized in the outer regions (Jzl > dj). Here, we take

di lai6TT and de - 12a , where aj is the Larmor radius of a thermal

particle of species J. These approximatiobns are intended to model the

various particle orbits as described by, for example, Sonnerup (1971). In

addition, $(z) is assumed to be nearly constant (constant-* approximation)

in the inner regions. In the outer regions Izi > dj, the particles execute

the usual 7B drift motion.

Using the above approximations, after some algebra, we obtain for each

species in the respective inner regions (IzJ < dj)

0 in i c- v y(z)(kv X-)-1exp(ikx-iwt) (6)

and in the respective outer regions (IzJ > dj)

o°ut . i c- VDi *(z)(kv-w)-lex(ikx-iwt) (7)

The quantity VDJ is the usual 7 B drift velocity in the y-direction. Using

equations (3), (5), (6) and (7), it is clear that equation (5) is an

eigenvalue equation for q;(z), subject to the conditions that its first

derivative (3*/3z) vanish asymptotically (izi + m) and that the logarithmic

derivative be continuous at Izi - de and IzI = di. However, unlike the

conventional isotropic tearing-mode calculations in neutral sheets (see for

example, Dobrowolny, 1968) in which the "inner" solution for Izi < de is

matched to the "outer" solution for Izi > di, it is found that the

dispersion relation for the anisotropic tearing-mode is critically affected

by the ion orbits in the "intermediate" region de < IzI < di. Therefore,

the eigenvalue equation (5) must be solved in the above three regions. For

5



the inner region, an analytical solution can be obtained. In the

* intermediate and outer regions, the equation is solved numerically. The

resulting dispersion relation, obtained by matching the logarithmic

derivative of 1; at z - de and z - di (three-region approximation), is shown

in Figure 1 for several values of Til/Ti with ai/6 - 0.1.

The first point to note is that y/w and hence the associated valuespointto noe 7/ci

of y/kvi and y/kve are all substantially less than unity, justifying the

low frequency approximations a posteriori. Another point to note is that

curve b for the isotropic case is nearly equal to the conventional two-

region result with the present three-region growth rates being slightly

smaller. This reduction in y can be traced to the 73 contributions. As

a, = T il/Ti! is increased, the growth rate and the range of unstable k

. numbers both increase substantially. For example, the maximum growth rate

forfor W 1.5 is y - 2.2xl1 'ci compared with the isotropic maximum growth

rate y - l.9xl0 4wci for the same parameters, an enchancement by a factor

of 10. The wavelength at maximum y is reduced to roughly 2.73 from 276.

For a ! < 1, even a small deviation from isotropy strongly stabilizes the

mode as shown by curve a of Figure 1. This latter behavior is consistent

with the conclusion of Laval and Pellat (1968). Physically, the anisotropy

9effects discussed are due to the Lorenz force which is similar to the

.9 mirror forces (the third term of equation (3)). Note also that Hill (1975)

found that the magnetic merging is enhanced when pl > P11.

6V 
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Fig. 1. Normalized growth rate (y/w ) versus kS with ai/, 0.1 and

isotropic electrons. The value of T iiTi!I is (a) 0.9, (b) 1.0,

(c) 1.1, (d) 1.25 and (e) 1.5. The curves are not completed near

ka - 0 because a number of approximations break down for k - 0.
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3. DISCUSSION

Two regions where the preceding results may be relevant are the

neutral regions of the magnetotail and the dayside magnetopause. Yn this

regard, we note that the need to include temperature anisotropy in these

regions has been pointed out (Crooker and Siscoe, 1977; Cowley, 1978). Nie

will use some parameters suitable for the neutral region in the tail for

illustration. For example, for lkeV ions, a./3 = 0.1, T i/T 2 and

B 0- 20Y, we obtain , . l.9sec - I and Figure I (curve b) yields the

minimum e-folding time "Max 45 minutes for the isotropic case.

-I - -1 -
If a, = 1.25, then (y max) = 12 minutes. For a 1.5, we have (y max) = 4

minutes, a reduction by more than one order of magnitude. This shows that,

in the presence of even small to modest ion temperature anisotropy, the e-

folding time scale is a small fraction of the delay time of roughly 30

minutes for the onset of reconnection. We, therefore, conclude that the

anisotropic collisionless tearing mode may indeed play an important role in

reconnection processes in the magnetosphere. It is important to note that

no classical or anomalous resistivity is used in our calculation. Further

increase in a . yields even greater enhancement in the growth rate.

However, the approximations used in the analysis begin to break down

for much larger ai so that we are not able to make quantitative statements

for large degrees of anisotropy.

So far, the anisotropic tearing mode results have been considered in

the context of the tail region. In the neutral region of the dayside

magnetopause, ai/3 may be nearly unity, which is outside the regime of

validity of the present analysis. However, we expect qualitatively similar

effects to occur. Note also that only the linear regime has been

investigated and we cannot draw definitive conclusions concerning the

0.
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possible magnetic island formation. However, we speculate that the

saturation level in the presence of anisotropy is greater than in the

absence of anisotropy. Subsequent to the work of Chen and Palmadesso

(1982), numerical simulations have been performed using a one-component
..

plasma (hot ions and cold electrons) (Ambrosiano and Lee, 1983) and the

preliminary results indicate that the growth rate and the saturation

amplitudes both increase substantially as ai is increased from unity.

.As discussed in Section 1, the magnetotail possesses a number of

features such as the weak normal component of the magnetic field and pitch

angle scattering that are not included in the present analysis. So far,

these modifications have been applied to the isotropic tearing mode in the

literature. In view of the fact that anisotropic tearing mode completely
V.

dominates the isotropic case, we suggest that tearing instability in the

presence of anisotropy is the more relevant perturbation to investigate and

that the above modifications should be considered for the anisotropic

case. Moreover, since the enhancement of the growth rate is primarily due

to the large ion orbits, we expect qualitatively similar effects to persist

even if the above refinements are included.
(:4
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