
D-Ri7 611 Fu PSIIONS FOR PERFECT GRAPHS U) CARNEGIE-MELLON UNIV i/
-"3 PITTSBURGH PR MANAGEMEN SCENCES RESEARCH GROUF

G CORNUEJOLS ET AL OC 83 F MSR49 NAA4-8- 9

U LASIFIED F 21 NEhhhEFI I ohhiiiEos

IL-U.

IL

MICROCOPY RESOLUTION TEST CHART "

;,WAI BREAU OF STAMDAVM-1963-A

4T% % %

COMPOSITIONS FOR PERFECT GRAPHS

by

G. Cornuejols

Carnegie-Me llon University

Vand

W. H. Cunningham
Carleton University

October 1983

d. Carnegie-Mellon University
PITSIUROH, NSVANIA 15213

GRADUATE SCHOOL OF INDUSTRIAL ADMINISTRATION
WILAM LARIMER MELLON, FOUNOER

8 DTIC
' , -. '. -CTE

,,, sd ,md ,w'ft.,.-- 1 84 01 26 043
I* ~ 1i..a U A~jmfIsd. 4w

/

Management Science Research Report No. MSRR 498

COMPOSITIONS FOR PERFECT GRAPHS

by

G. Cornuejols
Carnegie-Mellon University

and
**

W. H. Cunningham
Carleton University

October 1983

Supported in part by NSF grant ECS-8205425 and an Alexander Von Humbolt
Fellowship, while at l'e Institute fur Operations Research, Universitat
Bonn.

**
Support in part by SFB21(DFG), Institut fur Operations Research,
Universitat Bonn, and by NSERC of Canada

This report was prepared as part of the activities of the Management Sciences
Research Group, Carnegie-Mellon University, under Contract No. N00014-82-K-0329
NR 047-607 with the U. S. Office of Naval Research. Reproduction in whole or
in part is permitted for any purpose of the U.S. Government.

Management Sciences Research Group
Graduation School of Industrial Administration

Carnegie-Mellon University
Pittsburgh, PA 15213

This doc m b apPOPWs
1w pubft roe=@ cmd WWI b1
&@Nme= 1s umbet

!mom

iABSTRACT

It is not known whether perfect graphs can be recognized in

polynomial time. One attempt is to use some graph decomposition to

decompose a given graph into irreducible components, i.e., components

which cannot be decomposed. Perfect graphs can be recognized in

polynomial time if :ijai the composition (reverse operation of the

decomposition) preserves perfection* (.2A)-Ieducible graphs can be

decomposed in polynomial time into two smaller graphs one of which is

irreducible; and Z(O)irreducible perfect graphs can be recognized in

polynomial time. In this paper we introduce a new composition of graphs

for which and hold. This composition generalizes clique

identification, the join and the amalgar operations and, together with

complementation, it encompasses all the operations preserving perfection

known to us.

Aoesusion For

DTIC TAB
Unannounced

Distribut-ion/Availability Codes

-= va ad/or
Dist Specil

-: > -%

3hV-

2

1. Introduction

An operation which, given two graphs G1 and G2, constructs a third

graph G will be called a composition. We write G = G1 G2. Conversely,

a given graph G can be *-decomposed if there exist graphs G1 and G2 such

that G a G1 0 G2 and each of G1 and G2 has fewer nodes than G.

Perfect araphs were introduced by Berge [1] as those graphs for

which, in every node induced subgraph, the size of a largest clique is

equal to the chromatic number.

In a very nice paper Burlet and Fonlupt [3] defined a composition of

graphs, called amalgim, and showed how to use it to characterize in

polynomial time a class of perfect graphs known as Meyniel graphs [9J.

Their main results are

(1) The malgan of two Meyniel graphs is a eyniel graph.

(ii) Conversely any feyniel graph can be amalgam decomposed in
polynomial time into "basic" Meyniel graphs.

(iii)"Bastc" Meyniel graphs can be recognized in polynomial time.

It is natural to try a similar approach for the class of perfect

graphs since, at present, there is no polynomrial algorithm to recognize

perfect graphs.

Several compositions of graphs are known to preserve perfection:

union, clique identification, graph substitution [8], join ([2], 15],

(7]), amalgam [3]. In this paper we describe a new composition of graphs,

called the 2-amalgam, which generalizes and unifies all these

cuspositions. In fact this operation, together with complementation,

encompasses all the operations previously known to preserve perfection.

We also give a polynomial algorithmr to 2-amalgam decompose a general

graph or show that no such decomposition exists. For a graph with n nodes

and m edles the complexity of the algorithm is O(m2n2). To find an

• o , , • • -,.- .'-•",.,.,o.- ..% , % s.,s . % . ,q , . ,. .

3

malgm decomposition, the complexity reduces to 0(mn. Algorithms of

complexity 0(n3) have already appeared for finding a clique cutset or a

join decomposition In a graph, see [10] and E6] respectively.

2. A Graph COmpition Which Preserves Perfection

Given a node v in a graph, r(v) denotes the neighbor set of v, i.e.

the set of nodes adjacent to v.

Given the graphs G1 and G2, we define the composition *ik as follows:

For j1,2 let K be a clique of size k in G and, if i>1, consider

another clique with I nodes v(,..,vj in G disjoint from K such that

(I) K r(vi) for all hzl,...,i and

(ii) k V t Kit v h U r(v) C v J U r(v) for all hzl,...,i.

The composed graph G = G1 0 G2 is obtained by identifying the cliques

K1 and K2, and for each hzl,...,i, by deleting v1 and vh
2 and joining every

node of r(vh) to every node of r(v2).

Ki

f 2.

Figure 1. An example of the 2-amalgam composition.

• J NOV

$00 is the union of G1 and G2 ; *Ok is a clique identification; 10 is

the Join of G1 and G2; Olk is the amalgam. *2k is called the 2-amalgam of

0G and G2 if the following condition is satisfied (see Figure 1)

(ii) r(vl J)/ r(v 2 J) = K for j=l,2.

The l-join is the special case of the 2-amalgam where kO.

We shall prove that the 2-amalgam preserves perfection. We need the

following lemma.

For J=1,2, let V. be the node set of the graph G and let U

V i\v' , vJ). Let w. be the size of the largest clique in G(U.] (theJ 1' 2

graph induced by the node set U), p 3 the size of the largest clique in

GEP] where P M r(v K) and qj the size of the largest clique in

G(Q I where Q z r(v)J(%K)
j 2

Given a colouring of the nodes of a graph, C(S) denotes the set of

colours appearing on node set S.

Lemma 1 If G is a perfect graph, then there exists a colouring of G[U

such that !C(U = wJ, C(P : Pi and :C(Pj)# c(Qj)Imax (OIpj+qj+c-wk)

Note: A corollary of this lemma is that, when p + q + > j, then the

colouring C also satisfies ;C(Qi)l:qj. (Assume not. Then pj+k different

colours appear in P. U K. and more than qj-(p3 +q4+k-w) : sj-pj-k new ones

appear in Qj, a contradiction to the fact that only wj colours are used

altogether). Therefore when pj qj k > wj all the colours appear in Pj U

U KJO

.. t. ,, . -. ; .,,;, . .. €, .. ; : :,:: . : ,a.: ." .".,

Proof of Lemma 1: Duplicate w -(pj+k) times the node vi andJ1
pj) times the node v2j. (Duplicating zero times a node

means deleting that node.) Duplication preserves perfection so the new

graph, say H, is still perfect. Note that the size of its largest clique

is wj. Consider a minimum colouring of H. The conditions C(U)=w and

C(P)=pj are obviously satisfied.

If pj+qj~ke<wj the duplicates of v1 belong to two cliques of size

one with nodes from P and another with the duplicates of vi. This shows
1 2-

that the pj colours which appear in Pj must also appear on the duplicates

of v2. As a consequence Q can only be coloured with other colours,
proving IC(P)AC(Q) 12o.

If pj~qjk>wj, then the size of the clique formed by the duplicates
of vi and vi and K is 2w-(pj+qj+k) and therefore p +q +k-w colours of C

V1 V2 1 pJq-~ k pi J .-

do not appear in it. Thus these colours must appear both in P. and Q .

This completes the proof of the lema.

Theorer I The 2-amalgal preserves perfection.

Proof: Assume that G, and G2 are perfect and let G = G, * G2. The size

of the largest clique in G is max(w , w2, pl+p 2+k, q1+q2+k). We will

Construct a colouring of G with the same cardinality, using colourings of

G, and G2 which satisfy the conditions of Lemma 1. This will be

sufficient to prove that G is perfect since any node-induced subgraph of G

is obtained as the 2-ualgam of the corresponding node-induced subgraphs

of G1 and G2.

First identify the colours of C(K1) with the colours of C(K2). Let

D uC(P) U C(Q) and d iD 1 for j-1,2. Assume without loss of generality

that p,+pe -q1 q2 . Then either p,-dlq 2-d2 or p2-d 2 _qj-dj. Assume without

.- - * -,- -4 .t** *

6

loss of generality that pl-dllq2-d2. Identify the colours of C(Q)2 with

colours of C(P?%D1 . Furthermore use the remaining colours of C(P to

colour the nodes of Q2 which are presently coloured with colours of D2 .

(This is the only step of our colouring algorithm where we actually

perform a colour change. In all the other steps we perform colour

identification between colours of G1 and colours of G2).

Note that when pl-d 1!q2, then all the nodes of Q2 are coloured with

colours of C(P1)'D1. Now identify the colours of C(Q,1%D1 with colours of

C(PPD2 and those. colours of D2 which do not appear anymore in Q2 " Note

that when pl-d 1>q2 then q1-dl5p 2 (as a consequence of the assumption

pl+p2,>ql+q 2) and therefore all the colours of C(Q1)%D1 can be identified.

Continue identifying (i) the colours of C(P1) U CCQi) which are not

yet identified with colours of R2 -C(U2[C(P2) U C(Q2) U C(K2)] until one

of these colour sets is exhausted, (ii) the colours of C(P2) U C(Q2) not

yet identified with colours of R1 -C(U1)'[C(P1) U C(Q1) U C(K1)J until one

set Is exhausted, and (iii) colours of R1 not yet identified with colours

of R2 not yet identified until one set is exhausted.

Note that we end up with a proper colouring. This colouring has been

constructed so that either Q2 is coloured only with colours of C(P1)D 1 or

Q1 is coloured only with colours of D1 and C(P 2) which do not appear in

Q2. Four cases may occur.

Case 1: R1 and R2 are exhausted first in (i) and (li). Then only colours

of C(P 1) U C(P2) U C(K1) are used to colour G. Namely there is a

colouring of size pl+P2+k.

Case 2: R2 is exhausted first in (i) and CP 2) U C(42) is exhausted first

in (i). Then only w1 colours are used to colour G.

Case 3: C(P1) U C(Q1) is exhausted first in (i) and R, is exhausted first

l I t
' "

I '" "+:.% . -+''' P "'*P !" . ;'+ 1:'," .' ' ,." *A+'; .'*. t%' +.

7

in (ii). If the colouring in Q2 was not modified then only w2 colours are

used to colour G. Now assume that the colouring in 02 was modified. This

means that d2>O. Therefore, as it was noted after the statement of Lemma

1, all the colours of C(U2) appear in the set P2 U Q2 U K2. Thus only
colours of C(P l) U C(P2) U C(K 2) are used to colour G, namely pI+p2 + k

colours.

Case 4 C(P1) U C(Q1) is exhausted first in (i) and C(P2) U C(Q2) is

exhausted first in (ii). Then depending on whether R2 or R1 runs out

first in (iii) we are back in case 2 or case 3.

So in all cases the maximum clique of G has a cardinality equal to

the colouring number of G. This completes the proof.

Note that Theorem 1 does not generalize to i-amalgams for i>3. For

example Figure 2 shows that the 3-join of two perfect graphs can contain a

7-hole.

4 4

Figure 2. The 3-join composition does not preserve perfection

4.

~8

3. Decomposition Algorithms

Burlet and Fonlupt E3] presented an efficient algorithm either to

show that a given graph G is an amalgam of smaller graphs or to show that

G is not a Neyniel graph. Here we describe the first efficient algorithm

to determine whether an arbitrary graph is an amalgam of smaller graphs.

We also show how similar ideas can be applied to the recognition of

i-amalgams, D.2.

First, we mention previous work on algorithms for some of the more

special compositions. A number of algorithms have been proposed for

recognizing substitution-decomposability; the first polynomial-time one

seems to be in [4]. Finding a "clique cutset", if one exists, is

equivalent to determining whether a graph arises from smaller graphs by

clique identification. There is an elegant and efficient algorithm for

this problem [10]. Finally, a polynomial-time algorithm for recognizing

join-decomposability (which includes by a simple construction recognition

of substitution-decomposability) was given in E61.

In this section we let V, E denote the vertex-set and edge-set of G,

and we put n= :Vs, m= :ES. We assume for convenience that G is connected.

Given a partition (A1, C, A2) of V into three sets, let B1 denote tu - A,:

uv t E for some v e A2), and similarly for B2 .

We say that (A1 , C, A2) is an (amalgam) split of G if:

(i) IAI > 2 < 1 2

(ii) uv E E whenever u,v t C, u o v;

(iii)uv k E whenever u t C, v c B1 u B2 ;

(iv) uv t E whenever u t B1 , v s B 2"

It is easy to see that G is amalgam decomposable if and only if it

adits a split (A1, C, A2) as above. If (A 1 , C, A2) has the property

that one (and thus both) of B , B2 is empty, then C is a clique cutset.

We may suppose that the O(nm) algorithm E10] for finding clique cutsets

has already been applied, so we restrict attention here to the existence

of splits (A1, C, A2) for which BI and B2 are non-empty.

The algorithm for finding a split of G, or determining that there is

none, uses ideas introduced in E61 for the case CzG. We give an 0(n2)

* algorithm to determine for a fixed edge xy E E, whether there is a split

(A1 , C, A2) for which x e A1 , y *- A2. Such an algorithm can be used to

provide and 0(n2m) algorithm to decide whether G has a split. (In the

case C.Othe resulting algorithm is O(n 3), because it is enough to run the

basic algorithm for each edge xy of some spanning tree of G.)

Henceforth, we assume that 'V '.>4, and we deal with a fixed edge xy of

G. A preliminary step is to find a vertex zix, y such that no split (Al,

C, A2) with xtA ye- A2 satisfies z * C. There is a simple procedure

to find such a vertex, if G is not complete. (Of course, if G is

complete, then (A1, *, A2) is a split whenever 'A1 >2A 2 .) Choose two

non-adjacent vertices u, v. If either is not a common neighbour of x and

y, then it is certainly an acceptable choice for z. In the alternative

case, either of u, v may be chosen to be z. (If not, we would have u, v E

C or u E B1 U B2 and v . C, or u s C and v e B1 U B2 ; each of these

implies that uv e E.) Now any split (A1, C, A2) for which x E A1 and y

.9 A2 satisfies z E A1 or z o A2, so it will be enough to give an 3(r,2)

algorithm to solve the following problem. (It will be necessary to use

that algorithr twice, once with the roles of x and y interchanged.)

(1) Problem. Find a split (A1, C, A2) satisfying z, x E A1 , y . A2 , or

determine that there is none.

Ita

10

,

Consider a partition (S, K, T) of V having the following property:

(2) x, z r S, y c T, and xv, yv E E for all V E K; moreover, for any

split (A1 , C, A2) with x, z c A1 and y c A2 , we have S C A1 and A2 C

T.

Initially, putting S:{x,z} and K: determines a partition satisfying

(2). On the other hand, if (S, K, T) satisfies (2) with T:ty}, then we

know that there is no positive solution to (1). The algorithm maintains

(S, K, T) satisfying (2) and, at each step, either recognizes that (S, K,

T) is the desired split or finds an element which can be iroved from T to

S, from. T to K, or from K to S. The rules for moving elements of V are

simple, and we describe and justify them now. Henceforth, (5, K, T)
-2

always denotes a partition of V, so specifying two of these sets

determines the third. Throughout, it is assumed that (S, K, T), (A1, C,

A2) are as in (2).

Rule 1. If u , S, v c T, uy c E, xv , E, uv j E then v can be added to S.

Justification. Since uy c E, u c S we have u F B1 . If v E C, then uv L

E, a contradiction. If v E A2 then, since xv c E, v c B2 and so uv c

E, a contradiction. Hence v c A,, as required.

Rule 2. If u c S, v . T, uv c. E, xv t E, then v can be added to S.

Justification. Clearly x ,. B1 and, if v 6 A2, then v c B2. Thus v c C or

v E A2 would imply xv 6 E, a contradiction, so v c Al.

Rule 3. If u E S, V t T, uv E E, uy J E, then v can be added to K if xv,

yv e E, and otherwise v can be added to S.

1 5ai%" ; .2" " . ."v" €. " "*""."". """ """ .''' '' . . ,. .

" ' 11

Justification. Since uy $ E, u c S, we must have u c AI\B1. Therefore,

since uv c E, we must have v e A1 U C. However, v c C implies vx, vy

c E, so if one of these fails v can be added to S, and otherwise v

can be added to K.

Rule 4. If u c S, v F K, uy c E, uv & E, then v can be added to S.

Justification. Since uy E E, u c S, we must have u P B1, so v c C would

imply uv c E.

Rule 5. If u c K, v e T, xv c E, uv 4 E, then v can be added to S.

Justification. Since u c K, we have ux c E, so u E BI U C. Since xv c K,

v e A1 U C U B2 , but v E C ar v B2 would imply uv F E, a

contradiction.

Rule 6. If u, v * K, uiv and uv t E, then u and v can be added to S.

Justification. Since u, v t K, we have uy, vy r E, so u, v c B1 U C. But

if one or both of u, v are in C, then uv c E, a contradiction.

Proposition. Suppose, beginning with S:tx,z) and K:*, Rules 1 through 6

are used repeatedly until no further application i possible. If 'T'>2,

then (S, K, T) is the split required in (1), and otherwise no such split

exists.

.4 Proof. The second part of the claim, that 'TR<2 implies that no such

split exists, is immediate from the facts that the initial choice of (S,

K, T) satisfies (2) and that Rules 1-6 preserve (2). Now suppose that

IT>12. We must show that A :S, C:K, A2 :T satisfies (i)-(iv). Of course,

12

(i) is satisfied, and (ii) follows from the fact that Rule 6 cannot be

applied. Now suppose that u c C and v - B 1 U B2. Since u can enter K

only by Rule 3, we have ux, uy c E. Now if v E B1, then since Rule 4

cannot be applied, we have uv c E. Similarly, if v E B2, then since Rule

5 cannot be applied we have uv c E. Therefore, (iii) is satisfied.

Finally, suppose that u c B1, V C B2. By the definition of 81, B2 there

exist p E A1 , q E A2 with uq, pv E E. Since Rule 2 cannot be applied, we

have xv E E and, since Rule 3 cannot be applied, we have uy *; E. Then,

since Rule 1 cannot be applied, we have uv c E. Thus (iii) is proved, so

(S, K, T) is a split.

It is now clear that our suggested algorithm is correct and that it

'- will run in polynomial time. However, we claim that it can be implemented

to run in time O(n2) for each choice of x, y. The preliminary step which

finds z is clearly O(n 2). All of Rules 1 to 6 are stated in terms of

(some or all of) vertices u, v, x, y. Given the adjacency lists for each

of these vertices in characteristic vector form and (S, K, T) represented

by a (0, 1, -1)-vector, we can decide whether one of Rules 1 to 6 can be

applied, and make any necessary change to (S, K, T) in constant time. To

enable the algorithm to perform correctly with only O(n2) such operations,

we process the vertices in a special order. Suppose that u L S, and we

want to check for applications of Rules 1 to 4. Any v 4 S which cannot be

added to S as a result of such an application, cannot later be added to S,

using the current u. That is, we can check for all such applications, for

J a fixed u, at one time.

We maintain a list L, of elements of S to be scanned, and a list L2

of elements of K to be scanned. Initially, L1:{x,z), and L2 z. Each time

an element is added to S it is added to L1 , and each time an element is

" ' : " "-: 'i, ,.* r-:. V ' .7,., . ,. ' V- . , ',%r.

7 . ., -

13

added to K it is added to L2 When an element is scanned it is deleted

from its list. Scanning an element of L means asking it to play the role

of u in Rules 1 to 4. Scanning an element of K means asking it to play

the role of u in Rules 5 and 6. The algorithm terminates when L1 and L2

are empty. Clearly, every vertex is scanned at most twice, and each

scanning operation requires O(n) time, so we obtain the desired O(n 2)

bound. Since we must run this algorithm for every choice of x, y, we have

an 0(n 2m) algorithm to find an amalgam split.

Now we consider the recognition of 2-amalgam decomposability. In

this case we require that the partition (A,, C, A2) satisfy (ii), (iii),

and (i'), (iv') below.

(i') A 1 ' 2

(iv') There exists a partition [Bei, Bi2) of Bi, izi and 2, such
that if u t BIj, v c B2 i then uv c E if and only if jzk.

The method for finding, if possible, such a partition is a natural

extension of that used for the amalgam. (As usual, we assume first that G

is not decomposable with respect to any of the simpler decompositions.)

Where xlyl, x2y2 F E and xly 2 , x2 y1 t E, we try to find (AI,C, A2) as

above for which xj C B1 j, Yj ,- B23 , j=l and 2. (Necessarily, x1, yl' x2 '

Y2 must be distinct.) Again, it is necessary to find a vertex z i x 1 , Y1 9

x2 ' Y2 such that z k C for any such partition. Any vertex which is not a

common neighbour of x1, yl. x2, Y2 will do, as will any vertex which is

not adjacent to some common neighbour. If no such z exists, G has at most

5 vertices, because otherwise [x 1 , yl' x2, y2
} and its complement yield a

Join decomposition, :3nd so G is not 2-amalgam decomposable. .Any partition

(A1 , C, A2) of the kind required must satisfy either z s A1 or z %_ A2 , so

it will be enough to describe an algorithm to find (A1 , C, A2) such that

x1 , x2 , z £ A1 and yl, y2 A 2.

- . V - ~ '.'q . . ~y~m ~ ~'01

14

We begin with S={xl, Y1 . z) and COe, and apply a set of rules similar

to those for the malgam. Each of Rules 1 to 6 have analogues for the

present situation. As examples, we give two of these analogues.

Rule 1'. If u c 3, v c T, uv 4 E and for some i, uy i E E, xiv t E, then v

can be added to S.

Rule 51. If u e K, v w T, uv 4 E and, for some i, xiv c E, then v can be

added to S.

We also need two new rules, both based on the requirement that B1 1

Bi 2 =# for i1s and 2.

Rule 7' If v r- T and x1V, x2v F E, then v can be added to K if vyl, vy 2

E, and otherwise v can be added to S.

Rule 3'. If u F S and uy1 , uy2 E E, then stop; there can be no 2-amalgam

split (A1 , C, A2) with S C A1 , yl, y2 t A2.

So the algorithm can terminate by using Rule 3' as well as by

encountering T={y 1, y2 }. Similar implementation techniques to the ones

described before, can be used to obtain an O(n) time bound for this

algorithm. Since there are O(m2) possible choices for xI, Y1, x2 . y2. we

obtain an O(n 2r 2) algorithm for the recognition of 2-amalgam

decomposability. Similarly, there is an O(n 2 i) algorithm for i-amalgam

decomposability.

It is interesting to remark that the algorithms presented in this

paper-as well as those in [10], [6] for clique cutsets and join

decomposability-ether prove that no decomposition exists or find a

I~

7 .7

15

decomposition into two smaller grpahs one of which is irreducible.

lherefore, at most n applications of these algorithms are needed to

decompose a graph G into irreducible factors.

Finally, we mention that we may want to require that the two graphs

being composed be isomorphic to induced subgraphs of the composition

graph. (Then the perfection of the composition would imply, as well as be

implied by, the perfection of the smaller graphs.) This requirement is

automatically satisfied by clique-identification, the join and the amalgam

compositions. For the 2-amalgam (and the 2-join) it is satisfied provided

that there is at least one edge joining some vertex of Bil to some vertex

of Bi2 for i:1 and 2. The question ariseswhether 2-amalgam

decomposability with this additional requirement can be recognized

efficiently. In fact, it can, and with the same efficiency as for the

ordinary 2-amalgam. Namely, we can restrict the choice of xl, yl, x2, y2

to the case where xlx 2 , yly 2 c E.

r.-,qN 1 1

-2--~~~ ~ ~ ~ ~ 47 V-;.- z- - 717-i- 0

16

References

1. C. Berge, Firbuno von Graphen, deren sbtliche bzw. deren ungerade
Kreise stan sind, Wissenschafthiche Zeitung, Martin Luther Univ.
Halle Wittenberg (19615, 114.

2. R.E. Bixby, A Composition for Perfect Graphs, technical report,
Northwestern University (1982) to appear in Annals of Discrete
Mathematics.

3. M. Burlet and J. Fonlupt, Polynomial Algorithm to Recognize a Meyniel
Graph, Research Report 303, IMAG, University of Grenoble (1982),
to appear in Annals of Discrete Mathematics.

4. D.D. Cowan, L.O. James and R.G. Stanton, Graph Decomposition for
Undirected Graphs, Proceedings of the Third Southeastern
Conference in Combinations, Utilitas Mathematica, Winnipeg,
Canada (1972).

S. W.H. Cunningham, A Combinatorial Decomposition Theory, Thesis,
University of Waterloo (1973).

6. W.H. Cunningham, Decomposition of Directed Graphs, SIAM Journal on
Algebraic and Discrete Methods 3 (1982), 214-228.

T. W.H. Cunningham and J. Edmonds, A Combinatorial Decomposition Theory,
Canadian Journal of Mathematics 32 (19a0), 734-765.

8. L. Lovasz, Normal Hypergraphs and the Perfect Graph Conjecture,
Discrete Mathematics 2 (1972), 253-267.

9. H. Meyniel, On the Perfect Graph Conjecture, Discrete Mathematics, 16
(1976), 339-342.

10. S. Whitesides, An Algorithm for Finding Clique Cut-Sets, Information
Processing Letters 12 (1981), 31-32.

- ' rAliJt

4b

