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5 L ABSTRACT

It is not known whether perfect graphs can be recognized in

:‘\ pelynomial time, One attempt is to use some graph decomposition to

° decampose a given graph 1into irreducible components, i.e., components
;& which cannot be decomposed, Perfect graphs can be recognized 1n
5% polynomial time if:ﬂ)(')the composition (reverse operation of the
. decomposition) preserves pert‘ection} Sﬂ)(g)reducible graphs can be
g; decomposed in polynomial time into two smaller graphs one of which is
‘!} irreducible; and ( 5)irreducib1e perfect graphs can be recognized in
xia polynomial time, In this paper we introduce a new composition of graphs

8 e & -

oy for which and hold. This composition generalizes clique
identification, the join and the amalgam operations and, together with
complementation, it encompasses all the operations preserving perfection

known to us,
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1. Introduction

An operation which, given two graphs G1 and 62, constructs a third

o

graph G will be called a composition. We write G = G, * GZ' Conversely,

L s
2wt

a given graph G can be ®-decomposed if there exist graphs G.1 and 62 such

that G = t‘i1 ® G_ and each of G1 and G, has fewer nodes than G,

2 2
Perfect graphs were introduced by Berge {1] as those graphs for

F1 A

N which, in every node induced subgraph, the size of a largest clique is

M

equal to the chromatic number,

In a very nice paper Burlet and Fonlupt [3] defined a composition of
graphs, called amalgam, and showed how to wuse it to characterize in
polynomial time a class of perfect graphs known as Meyniel garaphs (91].
Their main results are

(i) The amalgan of two Meyniel graphs is a Meyniel graph.

. (i1) Conversely any Meyniel graph can be amalgam decomposed in
3 polynomial time into "basic" Meyniel graphs,

’“5 ) (i111)"Basic" Meyniel graphs can be recognized in polynomial time,

It is natural to try a similar approach for the class of perfect
graphs since, at present, there is no polynomial algorithm to recognize
perfect graphs,

Several compositions of graphs are known to preserve perfection:
P union, clique identification, graph substitution (31, join ((2), (5],
{71), amalgam [3]. 1In this paper we describe a new composition of graphs,
cslled the 2-amalgam, which generalizes and unifies all these
. cmpositions, In fact this operation, together with complementation,
,,; encompasses all the operations previously known to preserve perfection,

‘ We also give a polynomial algorithm to 2-amalgam decompose a general
graph or show that no such decomposition exists3. For a graph with n nodes

and m edges the complexity of the algorithm is O(mzna). To find an
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ﬁéi smalgam decomposition, the complexity reduces to o(mna). Algorithms of

complexity 0(n3) have already appeared for finding a clique cutset or a

;&N__ -y -

join decomposition in a graph, see [10] and [6] respectively.

. “"R
Eil
. 2. A Graph Composition Which Preserves Perfection
oy

Given a node v in a graph, F(v) denotes the neighbor set of v, i.e,

the set of nodes ad jacent to v,

Given the graphs G1 and GZ' we define the composition ’ik as follows:

For j=1,2 let KJ be a clique of size X% in GJ and, if i>1, consider

another clique with i nodes vg,....vg in Gj disjoint from Kj such that

. K
K

5 .
X () ¥ v ek, vl urvd) v urvd) for all mev, .l
b J h h' -

< P(vg) for all h=1,...,i and

The camposed graph G = 61 & 62 is obtained by identifying the cliques

K1 and Kz, and for each h=1,...,i, by deleting v; and v: and joining every

¥y, node of r(v;) to every node of r(Vﬁ)-

LR

By ;
. 1

oo Figure I. An example of the 2-amalgam composition.
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%0 is the union of ('s1 and 02; ok is a clique identification; 10 is

the join of 61 and G is the amalgam. is called the 2-amalgam of

2 ik \F

) 61 and G, if the following condition is satisfied (see Figure 1)

2
(i vy a ey = kg ror g

The 2-join is the special case of the 2-amalgam where k=0.
We shall prove that the 2-amalgam preserves perfection., We need the
) following lemra.

For j=1,2, let \I‘j be the node set of the graph GJ and let U.j =

) \IJ\('I‘1j ’ Vg}. Let v be the size of the largest clique in G[UJ.] (the
LN
A
*g: graph induced by the node set Uj). Pj the size of the largest clique in
Ty ’

;ﬁf G[PJ] where l’J H r(v-,i)n(g\xj) and qJ the size of the largest clique in

G where i‘(vj) (BAK . ).

“ [Qj] Qj 5 >N Ij j

Given a colouring of the nodes of a graph, C(S) denotes the set of
4 colours appearing on node set S,

)
Lemma 1 If GJ is a perfect graph, then there exists a colouring of G[UJ]
3

i such that iC(U)} = wy, 1C(Py)i = Py and 1C(P)C(Q;)izmax (0,py+q rk=w,) .

Note: A corollary of this lemma is that, when pJ + qJ + K2 "j' then the

..;f
172 colouring C also satisfies %C(Qj)l--qj. (Assure not, Then pj¢k different
iy
B4
;s‘,;i‘;;; colours appear in Pj U l(j and more than qJ-(pJ¢qj¢k-wj) = wJ-pJ-k new ones
i appesr in QJ. a contradiction to the fact that only wJ colours are used
e
; altogether). Therefore when pJ¢qJ+k 2 W; all the colours appear in E"j U

Qj u Kj‘
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5
Proof of Lemma 1: Duplicate uj-(pj+k) times the node v‘1j and
N nin(uj-(qjdc). pj) times the node vg. (Duplicating zero times a node
;Jf mneans deleting that node.) Duplication preserves perfection 50 the new
;,;ﬁ graph, say H, is still perfect. Note that the size of its largest clique
f is "j‘ Consider a minimum colouring of H. The conditions C(Uj)ﬂj and

_!: C(PJ)=PJ are obviously satisfied,
J

}; If pj’qj’ks-"j the duplicates of i belong to two cliques of size wj,

- one with nodes from PJ and another with the duplicates of vg. This shows 1
3 that the p.j colours which appear in PJ must also appear on the duplicates

1::‘ of vg. As a consequence Qj can only be coloured with other colours,

‘ proving 1C(P )C(Q,)is0,

::E If pjoqjokz_wj, then the size of the clique formed by the duplicates

!{5 of vJ and vJ and K, is 2w -(Pjﬂlj*k) and therefore pj+qj+k-wJ colours of C

1 2 J J
do not appear in it. Thus these colours must appear both in Pj and Qj.

This completes the proof of the lemma.

Theorer 1 The 2-amalgam preserves perfection.
Proof: Assume that G, and G2 are perfect and let G = G1 * GZ. The size
"y of the largest clique in G is max(w1. W, p1+p2+k. q1+q2+k). We will

construct a colouring of G with the same cardinality, using colourings of

o G, and G, which satisfy the conditions of Lemma 1. This will be
‘.‘;i'df sufficient to prove that G is perfect since any node-induced subgraph of G

is obtained as the 2-amalgam of the corresponding node-induced subgraphs
AN of 61 and 62.

First identify the colours of C(K,) with the colours of C(Kz). Let

DJSC(PJ) U C(QJ) and djsibj% for j=1,2. Assume without loss of generality

that p1¢p2_>_q1¢q2. Then either ;:.'-<112_<12-<‘12 or pz-d2_>_q1-d1. Assume without

SRR WA Y |



e
P T et
VS s

[ )

B R |

g

loss of generality that p1-d12_q2-d2. Identify the colours of (:(Qz)\D2 with

4

colours of C(P,}\Dr Furthermore use the remaining colours of C(P'>\D1 to

colour the nodes of Qz which are presently coloured with colours of D2.

(This is the only step of our colouring algorithm where we actually

* perform a colour change, In all the other steps we perform colour
identification between colours of G, and colours of Gz).

Note that when p1-d1_>_q2, then all the nodes of Q2 are coloured with

colours of C(P,’\Dr Now identify the colours of C(Q.')\D1 with colours of

C(P2)\02 and those colours of Dz which do not appear anymore in 02. Note

Y
;{ that when p1-d1_>_q2 then q,--d1_<_p.2 (as a consequence of the assumption
p1#p22_q1+q2) and therefore all the colours of C(Q.')\D1 can be identified.

Continue identifying (i) the colours of C(P,) U C(Q1) which are not

yet identified with colours of RZEC(UZ)\[C(Pz) U C(Q2) U C(Kz)] until one

of these colour sets is exhausted, (ii) the colours of C(PZ) U C(Qz) not

1a yet identified with colours of R, =C(UMC(P,) U €(Qy) U C(K,)] until one

fz&. C

<
Pt

set is exhausted, and (iii) colours of R1 not yet identified with colours

of R2 not yet identified until one set is exhausted.

j,:i Mote that we end up with a proper colouring. This colouring has been
v_ constructed so that either Q2 is coloured only with colours of C(P,N)1 or
-_m Q1 is coloured only with colours of D1 and C(PZ) which do not appear in
l_’ Q,. Four cases may occur.

:,,;% Case 1: R, and R, are exhausted first in (i) and (ii). Then only colours
'( of C(P1) U C(Pz) u C(K,) are used to colour G, Namely there is a
v colouring of size Py+Po+K.

wk Case 2: R, is exhausted first in (1) and C(P,) U C(Q,) 15 exhausted first
in (11). Then only w, colours are used to colour G.

§ Case 3: C(P,) U C(Q,) is exhausted first in (i) and R, is exhausted first

. TRES . et AT e e e
N DR IR DR 0 A SO CHEIR X, RGP, &
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o in (i1). If the colouring in Q, was not modified then only w, colours are
_ used to colour G, Now assume that the colouring in 02 was modified. This

JQ means that d2>o. Therefore, as it was noted after the statement of Lemma

Spad

*{‘ 1, all the colours of C(Uz) appear in the set l’2 u 02 ] K2. Thus only

colours of C(P1') U C(Pz) ) C(KZ) are used to colour G, namely p1¢p2+k

colours.
v Case 4 C(P)) U C(Q,) is exhausted first in (i) and C(P,) U C(,) is
“ exhausted first in (ii). Then depending on whether R2 or R1 runs out
ki! first in (iii) we are back in case 2 or case 3.
3‘ So in all cases the maximum clique of G has a cardinality equal to
. the colouring number of G. This completes the proof.
Note that Theorem 1 does not generalize to i-amalgams for i>3. For
\;} example Figure 2 shows that the 3-join of two perfect graphs can contain a
v T-hole.
‘_;s
2 1
;‘ "’:31 3

Figure 2, The 3-join composition does not preserve perfection
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3. Decomposition Algorithms
Burlet and Fonlupt [3] presented an efficient algorithm either to

show that a given graph G is an amalgam of smaller graphs or to show that
G is not a Meyniel graph. Here we describe the first efficient algorithm
to determine whether an arbitrary graph is an amalgam of smaller graphs,
We also show how similar ideas can be applied to the recognition of
i-amalgams, 1>2.

First, we mention previous work on algorithms for some of the more
special compositions. A number of algorithms have been proposed for
recognizing substitution~decomposability; the first polynomial-time one
seems to be in [4], Finding a "clique cutset", if one exists, is
equivalent to determining whether a graph arises from smaller graphs by
clique identification. There is an elegant and efficient algorithm for
this problem [10]. Finally, a polynomial-time algorithm for recognizing
join-decamposability (which includes by a simple construction recognition
of substitution-decomposability) was given in [61],

In this section we let V, E denote the vertex-set and edge-set of G,
and we put n=i{Vi, m=iEi. We assume for convenience that G is connected.
Given a partition (A1, c, AZ) of V into three sets, let B1 denote {u ¢ A1:
uv € E for some v ¢ A2}. and similarly for B,.

We say that (A,, C, A,) is an (amalgam) split of G if:

(1 =A1% 22 ¢ %AZH
(11) uv ¢ E whenever u,v ¢ C, u ¢ v;
(1iid)uv &« E whenever u ¢ C, v ¢ By u By
(iv) uv ¢ E whenever u ¢ 81. veB 2
It is easy to see that G i3 amalgam decomposable if and only if at

admits a split (A.'. c, AZ) as above, If (A1. c, Az) has the property

e, O - ~ ‘e e Lt CRR . ’
TN GO I P M N NN IR P T TN S T A AN Y, u
a nd o o B » - E3 - . L P

[




L4

FOTTYS: Rrirs | ghed

»50%%

:'|.~ ." DB

».

W oci” ok
iy

PaipIas

Ml al i

f:.&.‘u“ PO AL

[P

| IREANAS

ST

that one (and thus both) of B,, B, is empty, then C is a clique cutset.
We may suppose that the 0(mm) algorithe [10] for finding clique cutsets
has already been applied, so we restrict attention here to the existence
of splits (A1, c, Az) for which B, and B2 are non-empty,

The algorithm for finding a split of G, or determining that there is
none, uses ideas introduced in [6] for the case C=J, We give an O(nz)
algorithm to determine for a fixed edge xy ¢ E, whether there is a split
(A1, c, Az) for which x ¢ A1, Yy ¢ AZ. Such an algorithm can be used to
provide and O(nzm) algorithm to decide whether G has a split., (In the

3), because it is enough to run the

case C#0,the resulting algorithm is O(n
basic algorithm for each edge xy of some spanning tree of G.)

Henceforth, we assume that (Vi>4, and we deal with a fixed edge xy of
G. A preliminary step is to find a verté:&zix. y such that no split (A1,
c, A2) with x ¢ A1. y ¢ A2 satisfies z ¢ C. There is a simple procedure

to find such a vertex, if G is not complete, (Of course, if G

-
17

complete, then (A1. $, A2) is a split whenever :A1: 2<iA,1.) Choose two

= 2'
non-adjacent vertices u, v. If either is not a common neighbour of x and
Yy, then it is certainly an acceptable choice for 2, In the alternative
case, either of u, v may be chosen to be 2. (If not, we would have u, v ¢
Coru ¢ B1 U 32 and v ¢ C, Or u ¢ C and v ¢ B1 U Bz; each of these
implies that uv ¢ E.) Now any split (A,. c, A2) for which x ¢ A, and y ¢
Az satisfies z ¢ A, or z « Az, s0 it will be enough to give an O(ne)
algorithm to solve the following problem, (It will be necessary to use

that algorithr twice, once with the roles of x and y interchanged.)

y ¢ A2. or

(1) Problem. Find a split (A,, C, A2) satisfying z, x ¢ A1,

determine that there is none,




N 10
z Consider a partition (S, K, T) of V having the following property:

(2) x, 2z ¢S, yeT, and xv, yv ¢ E for all v ¢ X; moreover, for any

split (A1, c, Az) with x, 2 ¢ A, and y ¢ AZ' we have S C A, and A, c
. )
‘,‘l T.
5}
j} Initially, putting S={x,z} and K=¢ determines a partition satisfying
(2
o (2). On the other hand, if (S, K, T) satisfies (2) with T={y}, then we
i know that there is no positive solution to (1). The algorithm maintains
)
l' (s, K, T) satisfying (2) and, at each step, either recognizes that (S, K,
“ T) is the desired split or finds an element which can be moved from T to
S, from T to K, or from K to S, The rules for moving elements of V are
.
’:l simple, and we describe and Jjustify them now. Henceforth, (S, X, T)
.l
J always denotes a partition of V, so0 specifying two of these sets
determines the third, Throughout, it is assumed that (S, K, T), (A1, c,
:.: Ay) are as in (2).
3
b R
Ky
' Rule 1. If u,¢ S, v ¥ uy ¢ E, xv ¢ E, uw ¢ E then v can be added to 3.
S
; Justification. Since uy ¢ E, u ¢ S we have u ¢ B1. If v ¢ C, then uv ¢
]
: E, a contradiction, If v ¢ A.2 then, since xv ¢ E, v ¢ 82 and 30 uv ¢
) E, a contradiction, Hence v ¢ A1. as required,
2
’!
}f; Rule 2. If ue S, Vv e¢T, uv ¢ E, xv ¢ E, then v can be added to S.
T Justification. Clearly x ¢ B1 and, if v ¢ A2, then v ¢ 82. Thus v ¢ C or
%8
: vV e A2 would imply xv ¢ E, a contradiction, 5O v ¢ Al'
I\
)
:_ Rule 3, If u e S, v « T, uv ¢ E, uy ¢ E, then v can be added to K if «xv,
12 yv ¢ E, and otherwise v can be added to S,
A]
A
:
1

------
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§\* Justification. Since uy ¢ E, u ¢ S, we must have u ¢ A,\B,. Therefore,
TN
J since uv € E, we must have v ¢ A1 U C. However, v € C implies vx, vy
353
2 € E, 80 if one of these fails v can be added to S, and otherwise v
;‘.t
;\., can be added to K.
0 X Ruled4, If ueS, v eK, uy ¢ E, uv ¢ E, then v can be added to S.
t ’
\3 Justification. Since uy ¢ E, u ¢ S, we must have u ¢ By, 50 v ¢ C would
R 4
imply uv ¢ E.
A(L
:E] Rule 5., If ue kK, v eT, xv ¢« E, uw t E, then v can be added to S.
%
-~ Justification. Since u ¢ K, we have ux ¢ E, s0o u ¢ B1 U C. Since xv ¢ K,
z' v:A,UCUBz.butv:CorVeBzwouldimplyuv:E.a
t— contradiction.
A
5%
. Rule 6. If u, v ¢ K, ufv and uv ¢ E, then u and v can be added to S.
&i
2 Justification., Since u, v ¢ K, we have uy, vy ¢ E, sou, v ¢ B1 U C. But
- if one or both of u, v are in C, then uv ¢ E, a contradiction,
(‘
R
N
3y
st
Proposition. Suppose, beginning with S={x,z} and K=¢, Rules 1 through 6
h s
::' are used repeatedly until no further application is possible. If iTi>2,
1]
¢
<3 then (S, K, T) is the split required in (1), and otherwise no such split
. exists.
:.:, Proof. The second part of the claim, that {Ti<2 implies that no such
f. split exists, is immediate from the facts that the initial choice of (S,
-: K, T) satisfies (2) and that Rules 1-6 preserve (2), Now suppose that
}
N ITI22. We must show that A =S, C:K, A,=T satisfies (1)-(iv). Of course,
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(1) is satisfied, and (ii) follows from the fact that Rule 6 cannot be

Since u can enter K

applied., Now suppose that u ¢ C and v ¢ 81 U 82.

only by Rule 3, we have ux, uy ¢ E. Now if v ¢ B1, then since Rule 4
cannot be applied, we have uv ¢ E. Similarly, if v ¢ 82. then since Rule
5 cannot be applied we have uv ¢ E, Therefore, (iii) is satisfied.
Finally, suppose that u ¢ B,. vV € 82. By the definition of 81. 82 there
exist p ¢ A1. q € A2 with uq, pv ¢ E. Since Rule 2 cannot be applied, we
have xv ¢ E and, since Rule 3 cannot be applied, we have uy ¢ E. Then,
since Rule 1 cannot be applied, we have uv ¢ E, Thus (iii) is proved, so
(S, K, T) is a split.

It is now clear that our suggested algorithm is correct and that it
will run in polynomial time, However, we claim that it can be implemented
to run in time O(ne) for each choice of x, y. The preliminary step which
finds z is clearly O(nz). All of Rules 1 to 5 are s3tated in terms of
(some or all of) vertices u, v, x, y. Given the adjacency lists for each
of these vertices in characteristic vector form and (S, K, T) represented
by a (0, 1, =1)=vector, we can decide whether one of Rules 1 to 5 can be
applied, and make any necessary change to (S, K, T) in constant time, To
enable the algorithm to perform correctly with only O(nz) such operations,
we process the vertices in a special order. Suppose that u ¢ S, and we
want to check for applications of Rules 1 to 4., Any v ¢ S which cannot be
added to S as a result of such an application, cannot later be added to S,
using the current u. That is, we can check for all such applications, for
a fixed u, at one time,

We maintain a list L1 of elements of S to be scanned, and a list L2
of elements of K to be scanned, 1Iritially, L1={x.z}, and L2=o. Each time

an element is added to S it is added to Ly» and each time an element is

q i . » -.._\. -~® o, - - Vet 4V AW - - - O .
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:3' added to K it is added to Lz. When an element is scanned it is deleted
3 from its list. Scanning an element of L.1 means asking it to play the role
::":f'.

.‘.’“f of u in Rules 1 to 4, Scanning an element of K means asking it to play
Yy

e
VY4

the role of u in Rules 5 and 6. The algorithm terminates when l.1 and L2

are empty, Clearly, every vertex is scanned at most twice, and each

: scanning operation requires 0{(n) time, so we obtain the desired O(na)

:‘3 bound, Since we must run this algorithm for every choice of x, y, we have

\ , an O(nzm) algorithm to find an amalgam split,

;e’ Now we consider the recognition of 2-amalgam decomposability. In

,t this case we require that the partition (A,, C, A,) satisfy (ii), (iii),

:Y and (i'), (iv') below, ‘

iw?: (i) A 123<0A5105

(iv') There exists a partition {B,,, Bie} of B, i=1 and 2, such

. that if u ¢ B1J, vV e sz then uv ¢ E if and only if j=k.

' The method for finding, if possible, such a partition is a natural
extension of that used for the amalgam. (As usual, we assume first that G

z? is not decomposable with respect to any of the simpler decompositions.)

f: Where X Y0 Xo¥, € E and X\¥or X5¥4 ¢ E, we try to find (A1,C, A2) as

:’E, above for which x‘j ¢ B1j’ y‘j € sz. js1 and 2. (Necessarily, Xqv Yy X5

e Yo must be distinet.,) Again, it is necessary to find a vertex z « X9r Yo

a X5s ¥, Such that z | C for any such partition. Any vertex which is not a

2 common neighbour of X0 Yo %50 ¥, will do, as will any vertex which is

_l not ad jacent to some common neighbour. If no such z exists, G has at most .
;‘ 5 vertices, because otherwise [x,. Yir X9 yz} and its complement yield a }
"j Join decomposition, and s0 G is not 2-amalgam decomposable, .Any partition ‘
J; (A,, C, Az) of the kind required must satisfy either z ¢« A, or z ¢ A5, 50 |
‘;. it will be enough to describe an algorithm to find (A1. C, Az) such that

“i 11, "2' A l\1 and y,. y2 € Az.

i
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fs We begin with S=(x1. Yys 2z} and C=¢, and apply a set of rules similar
to those for the amalgam. Each of Rules 1 to 6 have analogues for the
%: present situation. As examples, we give two of these analogues,

.

- ‘ Rule 1*, IfuesS, v eT, uv ¢ E and for some i, uy, E, v e E, then v
Pa: can be added to S.

;:‘» Rule5', If ue K, v ¢T, uv ¢ £E and, for some i, X4V e E, then v can be

added to S,

{”\z-.'-’; We also need two new rules, both based on the requirement that B11
x B,,=¢ for iz1 and 2.

o

!A" Rule7'. If v ¢ T and x,v, x,v ¢ E, then v can be added to K if vy,, vy,
? ¢ E, and otherwise v can be added to S.

::‘; — Rule 8', If u ¢ S and UY¥ys UYy e E, then stop; there can be no 2-amalgam
' split (A,. c, AZ) with S C A,I, Yoo ¥y e A2'

i

T So the algorithm can terminate by using Rule 3' as well as by
; encountering T={y1. y2}. Similar implementation techniques to the ones
described before, can be used to> obtain an o(nz) time bound for this

algorithm, Since there are O(mz) possible choices for Xeo Yyo Xo0 Yo we
' obtain an O(nzmz) algorithes for the recognition of 2-amalgam
" decamposability. Similarly, there is an O(nalr-i) algorithm for i-amalgam
,‘3 ’ decomposability.

1?" It is 1interesting to remark that the algorithms presented in this
" paper-—-as well as those in [10)], [6] for clique cutsets and join
;:-: decomposability--either prove that no decomposition exists or find a

&
“é
Pt
i

LN )

[N R OO T I
SR LB S RCITOIA LY



TR

e A A A
R P -

AR,

SN TS et

<

o

g

15

decomposition into two smaller grpahs one of which is irreducible,
Therefore, at most n applications of these algorithms are needed to
decompose a graph G into irreducible factors.

Finally, we mention that we may want to require that the two graphs
being camposed be isomorphic to induced subgraphs of the composition
graph. (Then the perfection of the composition would imply, as well as be
implied by, the perfection of the smaller graphs.) This requirement is
automatically satisfied by clique-identification, the join and the amalgam
compositions. For the 2-amalgam (and the 2-join) it is satisfied provided
that there is at least one edge joining some vertex of Bi1 to some vertex

of B for i=1 and 2. The question arises “whether 2-amalgam

i2
decomposability with this additional requirement can be recognized
efficiently, 1In fact, it can, and with the same efficiency as for the
ordinary 2-amalgam, Namely, we can restrict the choice of X0 Yy x2. Y,

to the case where XiXoe Yq¥p € E.
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