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Abstract

Introduces the notion of a hypomatching in a graph G as a

*collection of node disjoint edges and hypomatchable subgraphs of G where

the hypomatchable subgraphs belong to same prespecified family. Examples

include matchings, fractional matchings and edge-and-triangle packings.
"ix

Vs-' showhthat many of the classical theorems about maximum cardinality

matchings can be extended to hypomatchings vhich cover the maximum number

of nodes in a graph.
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1. Introduction

A matching of the nodes of a graph is a set of edges no two of Ahich

are adjacent. Some classical results about maximum cardinality matchings

include the theorems of Gallai-Edmonds [5), Tutte (11], Urhy [12), Balas

[1], Edmonds-Fulkerson [6), and Berge [2]. In this paper we extend the

notion of a matching and show that these theorems still hold.

A perfect matching M is a matching such that every node of the graph

is incident with one edge of M. A near-perfect matching is a matching

which matches all but one of the nodes. A graph H is hypomatchable if its

node set N has an odd cardinality and, for every jcN, there is a

near-perfect matching of H which leaves the node j unmatched. For

example, odd cycles are hypomatchable. In fact, any hypomatchable graph H

can be obtained as the graph Hp , p > 0, in a sequence of graphs H°C ... C

HP = H such that H is a single node or an odd cycle; for I > 1, H 1 = H

U P' where (i) pi is a path with both endnodes in Hi or a cycle with one

node in H1 , (ii) no other node of Pi belongs to Hi and (iii) PI has an odd

number of edges. The sequence H, ... , HP was introduced by Lovasz (8)

and is called an ear decomposition of H.

Given a graph G and a subset S of its nodes, G(S) denotes the

subgraph of G induced by the node set S. We will say that the node set S

is hypomatchable if G(S) is hypomatchable.

Consider a graph G and a family F of subsets of nodes of G. An

F-packing of G is a disjoint subfamily JCF, i.e., every node of G belongs

to at most one member of J. In this paper we will identify an edge and

the set consisting of the two endnodes of that edge. Let E(G) be the edge

set of G. When F*E(G), an E(G)-packing is simply a matching.

t' -S-
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When H denotes a family of hypomatchable node sets and F=E(G) U H,

F-packings will be called hypomatchinr. Clearly, every matching of G is

a hypomatching. Given a hypomatching J, any node which belongs to one

member of J is said to be covered by J. A maximum hypomatching is one

which covers the maximum number of nodes of G. When Hug the (maximum)

hypomatchings of G are precisely the (maximum) matchings of G. Apart from

the matching problem, several examples of maximum hypomatching problems

have appeared in the literature:

(i) Packing edges and triangles in a graph [4]: ScH if and only if

G(S) is a triangle (i.e., a complete graph on 3 nodes.)

(ii) Clique-packing [4), [71: H is a family of odd cliques (i.e.,

node sets all of whose members are pairwise adjacent.)

(Iii) Pk-matchings (3): ScH if and only if it is the node set of an

odd cycle with more then k edges.

(iv) Dynamic matchings [10): Weights are associated with the edges

of an auxiliary graph G and ScH if and only if S is the node set

of an odd cycle of G for which the sum of the edge weights is

zero.

(v) Fractional matchings [12], [1], [9) also known as 2-matchings:

ScH if and only if it is the node set of some odd cycle of G.

In [4), an algorithm Was given for finding a maximum hypomatching in

a graph. Here we will show that much of matching theory generalizes to

hypomatchings. Our treatment does not assume the algorithm of [4);
.1_.

instead it uses relationships between maximum matchings and maximum

hypomatchings.

A Perfect hypomatching of a subgraph G(S) is a hypomatching of G

• which covers all the nodes of S but no other node. A useful concept for
'I-
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the theory of hypomatchings is that of a critical graph. The graph G(S)

is critical relative to F if it is hypomatchable and does not have a

perfect hypematohing. The following theorem is proved in [4].

Theorem I A graph G(S) is critical if and only if it does not have a

perfect hypomatching but, for every JeS, the graph G(S-(j}) has one.

Theorem 1 justifies the terminology "critical graph" but will not be

used explicitly n this paper.

2. A Relationship Between Maximum Matchings and Maximum Hypomatchings

Given a graph G, consider the following partition of its nodes into

three sets 0, I, R.

(i) a node of G belongs to 0 if and only if it is not matched in at

least one maximum matching;

(ii) I is the set of nodes of G which are matched in every maximum

matching and are adjacent to at least one node of 0;

(iii) R is the set of nodes of G which are matched in every maximum

matching but are not adjacent to any node of 0.

The Gallai-Edmonds theorem states that

(a) every component of G(O) is hypomatchable;

(b) a matching of G is a maximum matching if and only if

(iv) the nodes of R are matched among themselves;

(v) in each component of G(O), all but one of the nodes are matched

.mong themselves;

- (vi) each node of I is matched to a node in a distinct component of

G(O).

The partition 0, I, R can be obtained by applying Edmonds' matching

algorithm [5]. Consider the alternating forest at termination of the

algorithm. The set of nodes Which are either outer nodes of the forest or

='J. 

.
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inside shrunk outer nodes is the set 0. The set of inner nodes of the

forest foms the set I. The rest of the nodes of G is R. (The letters 0,

I, and R stand for outer, inner, and remaining nodes respectively.)

Now we turn to maximum hypomatchings. Recall that F=E(G)UH where

every ScH is a hypomatchable subset of the nodes of G. Consider the

following partition of the nodes of G into three sets O(F), I(F), and R(F).

(I') a node of G belongs to O(F) if and only if it is not covered in

at least one maximum hypomatching;

(iI') I(F) is the set of nodes of G which are covered in every maximum

hypomatching and are adjacent to at least one node of O(F);

(Iii') R(F) is the set of nodes of G which are covered in every maximum

hypomatching but are not adjacent to any node of O(F).

Given a hypomatching J of G=(V,E), a node of SCV is said to be

internally covered in S if it is covered by a member T of J such that TSS.

Theorem 2 The partition O(F), I(F), R(F) is such that

°a; (a') every component of G(O(F)) is critical;

(b') a hypomatching of G is maximum if and only if

(iv') all the nodes of R(F) are internally covered in R(F);

(v') in each component of G(O(F)), all but one of the nodes are

internally covered in the component;

(vi') each node of I(F) is matched to a node in a distinct component

of G(O(F)).

In order to prove heorem 2 we need the following lemma.

Lemma 3 Let S and T be two subsets of the nodes of G = (V,E) and assume

that T is hypomatchable. If S and T have p (>1) common nodes, then at

most p-1 critical connected components of G(V-.S) have a node set C such

that G(C-T) admits a perfect hypomatching.
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Proof of Lemia 3: Let M be a near perfect matching of G(T) leaving one

node of S unmatched. Now let C be the node set of any critical connected

component of G(V-S) such that the nodes of CnT are matched among themselves

by the matching 4. If G(C-T) had a perfect hypomatching, then completing

It with the edges of M in G(C(T) would produce a perfect hypomatching of

G(C), a contradiction to the fact that G(C) is critical. So the critical

components of G(V-S) such that G(C-T) has a perfect matching must have at

least one of their nodes matched with a node of S in the matching M.

There are at most p-1 such components since M leaves one node of S

unmatched.

Now we prove the theorem.

Proof of Theorem 2: Consider the sets 0, I and R defined by (i) - (iii).

Let a be the bipartite graph obtained from G(OUI) by shrinking each

connected component of G(O) to a single node and by remoruing all the edges

of G(M). If a component of G(O) is critical, the corresponding node of G

will also be called critical. As a consequence of statement (vi) of the

Gallai-Edmonds theorem, every maximum matching of G matches all the nodes

of I. Let 1 be such a maximum matching of 5 with the property that the

number of critical matched nodes is the largest possible among all maximum

matchings of .

If every critical node of U is matched by 1, set R(F) to be the node

set of G and O(F) = 1(F) = 0. Otherwise, let the critical unmatched nodes

of 9 be defined as the roots of the trees of a forest A. These nodes will

also be called outer nodes of A. If some edge e joins an outer node of A

to a node icI not in A, let m=(i,j) be the edge of 4 incident with i.

Grow the forest A by adding to A the edges e and m and call the nodes i

and j Inner md outer nodes of A respectively. (Note that the node j must
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be critical, otherwise by interchanging the edges in and out of R on the

path of A from j to the root, one more critical node could be matched,

.' contradicting the assumption about IT.) Keep growing the forest A as

described above until every edge incident with an outer node of A is also

incident with an inner node of A.

Then let I(F) be the set of inner nodes of A, O(F) the set of nodes

of G(M) contained in outer nodes of A, and R(F) the remaining nodes of G.

So I(F) I, O(F) 0 and R(F)M2R. Note also that, by construction of A,

every component of G(O(F)) is critical and no edge of G joins O(F) to

R(F). We will show that the partition O(F), I(F), R(F) just constructed

is in fact the unique partition defined by (i') - (iii').

Before doing this, we exhibit a hypomatching J of G which leaves s

uncovered nodes, where s is defined to be the number of components of

G(O(F)) minus the cardinality of I(F). We define J separately on G(R), G

and G(0). In G(R), take J to be any perfect matching (this is possible by

statement (iii) of the Callai-Edmonds theorem). In 6, take Jgidentical to

Ir. Finally, in G(M), take J to be a hypomatching which internally covers

all the nodes of the noncritical components incident with no edge of M,

and all but one of the nodes of the remaining components of G(M). (When

such a component contains a node u incident with M, u is the only node of

the component which is not internally covered). Since R matches every

node of I(F) with a node of O(F), so does J, leaving only s uncovered

nodes in 0(F). Every node of R(F) is covered by J, so we have the

. announced hypomatching.

In fact, the hypomatching J just constructed is maximum:

A consequence of Lemma 3 with S = (F) is that any hypomatching of G

which does not cover all the nodes of I(F) or which contains a
e

..
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hypcmatchable set TcH with at least one node in I F), must leave more than

s uncovered nodes in O(F). By matching all the nodes of I(F) to nodes of

O(F) at least s nodes of O(F) must remain uncovered, and in fact it is

possible to leave exactly s uncovered nodes in G, as shown by the

hypomatching J constructed earlier. This shows that J is a maximum

Shypomatching.

" his also proves that every maximum hypomatching of G satisfies

(iv'), (v') and (vi'). Conversely any hypomatching which satisfies (iv'),

(v') and (vi') leaves only s uncovered nodes and therefore is maximum.

'._ The fact that maximum hypomatchings satisfy (iv') and (vi') implies

(ii') and (III'). So only statement (i') remains to be proved. Consider

*. the forest A in G. Any critical outer node j of A can be left unmatched

by some matching M vhich has the same cardinality as R and leaves

unmatched the same noncritical nodes as IT. Specifically, if j is a

critical node of A matched by , then construct M from R by interchanging

the edges in and out of F on the path of A from j to a root of A. Nw the

matching M can be used instead of 9 to construct a maximum hypomatching J

as done earlier. Furthermore, in the critical component of G(O(F)) left.
unmatched by M, any node can be left uncovered. This proves statement

(i') and completes the proof of Theorem 2.

This structural theorem has many consequences, as we shall see in the

next four theorems.

Theorem 4 Consider a graph G and two families F1 :E(G)UH 1 and F2 EC(G)UH 2

such that the node sets in H1 and H2 are hypomatchable. If HI11 H2 0

then the partitions OfFi), ICFi), R(Fi), i=I,2, satisfy O(F 2 )f 0(F ),

I(F 2 )'_I(F1 ) and th- fore R(F 2 )2R(F 1 )1.
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Proof: The property O(F2 ) O(F 1) follows from (i') and the fact that

every hypomatching relative to F2 is also a hypomatching relative to F1 .

The property I(F 2 )GI(F 1 ) follows from O(F2) S O(F 1 ) and the fact that

I(F i ) is exactly the set of nodes of G adjacent to 0(Fi), i=1,2 (see (ii')

and ( fra)).

The next result generalizes a theorem of Tutte 11].

Theorem 5 A graph G=(V,E) has a perfect hypomatching if and only if, for

every SCV, the graph G(V-S) contains at most IS' critical connected

components.

Proof: If G does not have a perfect hypomatching, then O(F) i ( in

Theorem 2. Let S = I(F). By Theorem 2, the number of critical components

in G(O(F)) is larger than 'S: (since a maximum hypomatching matches each

node of S with a node in a different component of G(O(F)) and still leaves

at least one component of G(O(F)) unmatched). By (iii') the critical

components in G(O(F)) remain critical in G(OCF)UR(F)) = G(V-S).

Conversely, assume that G has a perfect hypomatching J. Consider any

S 4 V. If no hypomatchable set TcJ contains a node of S, then every

-o. critical component of G(V-.S) has to be matched to some node of S by an

edge of J, proving the theorem. Otherwise, 1(T(CS), = p > 1 for some TEJ.

Then by Lemma 3, the number of critical components of G(V-S) having a

node set C such that G(C-T) admits a perfect hypomatching is at most p-1.

The theorem follows by induction on the number of hypomatchable sets of J

which intersect S.

' 3. Maximum Hypomatchin9s with a Minimum Number of Hypomatchable Sets

The next result generalizes a theorem of Urhy relating maximum

matchings and fractional matchings [12]. Let G = (V,E) be a graph and let

F EUH where H is a family of hypomatchable sets.

V ,.."-.,



Theorem 6 Let J C F be a maximum hypomatching containing a minimum number

of hypomatchable sets. Then the matching obtained by taking the

edges of J and near perfectly matching the hypomatchable sets of J,

is a maximum matching.

Our proof of Theorem 6 uses the following lemma.

Lemma 7 A noncritical hypomatchable subgraph K of G has a perfect

- -:hypomatching using only one of the hypomatchable sets in H.

A proof of this lema can be found in [4]; it is based on a simple

alternating path argument to reduce the number of hypomatchable sets in

any perfect hypomatching of K containing more than one such set.

Proof of Theorem 6: Let 0, I, R be the node sets defined in the Gallai-

Edmonds theorem and O(F), I(F), R(F) those defined in Theorem 2. Set

" ' I-I(F) = L and 0-0(F)

Consider J as defined in Theorcm 6. By Theorem 2 every node of I(F)

is matched by an edge of J to a node of O(F) and in every connected

component of G(O(F)) all but one of the nodes are internally covered.

Only edges are needed in these near perfect hypoatchings since the

components of G(O(F)) are hypomatchable. So the nodes of O(F) U I(F) are

only matched by edges of J.

The nodes of R(F) = R UfU L are internally covered. Since the nodes

of n are only joined to L in G(R(F)) , the number of hypomatchable

subgraphs needed to internally cover the nodes of R(F) is at least equal

to the number of components of a minus the cardinality of L. In fact, the

matching M defined in the proof of Theorem 2 shows that no more are needed

since (1) the nodes of R are perfectly matched among themselves, (2) every

node of L is matched to a component of SI and (3) in each component of

which is not matched to L, all the nodes can be internally covered using

.:<-%
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only one hypomatchable set by Lemma 7. This completes the proof of

Theorem 6.

A set of nodes S is separable if and only if there exists a maximun

matching which does not use any edge with exactly one end in S. The next

result generalizes a theorem of Balas [11.

Theorem 8 Given G = (V,E) and F = E U H, a maximum matching is also a

"." maximum hypomatching of G if and only if none of the hypomatchable

sets in H is separable.

Proof: The necessity follows from the observation that, if some

hypomatchable set SEH were separable, then a maximum matching M using no

edge in the boundary of S would leave one node of S unmatched, but a

hypomatching identical to M on G(V-S) and using S would cover one more

node of G.

Conversely, suppose G does not have a maximum hypomatching using just

edges. Consider one which uses a minimum number of hypomatchable sets of

H. By Theorem 6, these sets are separable. This completes the proof.

4. Hypomatching Matroid

Let G = (V,E) and F = EUH where H is a family of hypomatchable sets.

- A node set S C V is said to be independent if there exists a hypomatching

JSF, such that S is a subset of the nodes covered by J. Let M be the

family of all independent sets. The system (V,M) is an independence

system, i.e., ScM and TSS TeM. When a hypomatching covers all the

nodes of a set S, we say that it covers S.

Theorem 9 The independence system (V,M) is a matroid.
"1-

Proof = Consider G(O(F) U I(F)). In this graph, we say that a node set

XaM' if and only if X can be covered by a matching of G(O(F)%JI(F)). It

- V



l 11

is known (Edmonds Fulkerson [6)) that the independence system (O(F)UI(F),

M') so defined is a matroid, the so called matching matroid.

Note the following relationship between M and M'. ScM if and only if

S = XUY where XM' and Y¥ R(F), as a consequence of Theorem 2. Since

(V,M) is the direct sum of a matching matroid, namely (O(F)UI(F), M') and

a complete matroid, namely (R(F), 2R(F)), it is itself a matroid.

Let w:V*R+ be a vector of nonnegative weights defined on the node set

of G. 1he weight of a hypomatching J is defined as w(J) = 11w : node i

is covered by J}. Consider the problem of finding a maximum weight

hypomatching in G. Since (V,M) is a matroid, a maximum weight

hypomatching can be found by the following greedy algorithm.

Order the nodes by nonincreasing weights w1 > ... > Wn Start with

0= and J0  0. Then n iterations are performed, say iterations i =

1,...,n. At the beginning of iteration i, the set Si -  is a maximum

weight independent subset of {1,...,i-1} and Ji- 1 is a hypomatching

i-i i-i
. covering Si -  Iteration i consists of either proving that S U i) is

not independent, or setting Si : S i -I U{i} and modifying Ji-1 (if

necessary) into a hypomatching Ji which covers the set Si. The algorithm

terminates when I = n. The hypomatching Jn is a maximum weight

hypomatching in G. -Its weight is

W(Jn) z z

,& Wie

Next, we show how iteration i of this greedy algorithm can be

performed by a variation of the Edmonds matching algorithm. More

generally, let S be an independent set in (VM) and J a hypomatching

covering S. The next algorithm will check whether S U }i) is independent,

"- dere iCV-S is given, and if so, modify J so that it covers SUt).
.

5'
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First, if i is covered by J we can stop immediately and conclude that

S UM is independent. Otherwise, we will construct a tree A with root i

in an associated graph . Initially = G and the root i is the unique

node of A and it is said to be an even node. Then A is grown according to

the following procedure until either S Ufi) is found to be independent or

A cannot be grown any longer in which case we will show that S Uti) is not

independent.

Step 1 If every edge of G which is incident with an even node of A is

also incident with an odd node of A, stop: The set S U i} is not

independent (this claim will be proved later). Otherwise, let j be an

edge which joins an even node of A, say u, to a node v which is not an odd

node of A. If v is an even node of A, go to Step 2. If v is not in A but

is covered by an edge k = (vw) of J such that weS, then go to Step 3.

Finally, in the other cases Where v is not in A, go to Step 4.

Step 2 Let = {u,...,v) be the set of nodes in the unique path of the

tree A joining nodes u and v, and let C be the set of nodes of G

associated with the node set C. C is hypomatchable.

If CQS and G(C) is critical, modify A (and G) by shrinking C to a

single node. This shrunk node becomes an even node of A. Go to Step 1.

Otherwise, modify J by alternating the edges in and out of J on the

path of A from i to the closest point in C. If necessary, modify the near

perfect matchings inside the shrunk even nodes on this path so that every

node of G is in at most one member of J. (This is always possible since

the shrunk nodes of A are hypomatchable.) In addition, if there exists

wcC-S, J is modified in G(C) so as to contain a near perfect matching of

G(C) leaving w uncovered; on the other hand, if C Q S, then G(C) is not

critical and J is modified in G(C) so as to internally cover the nodes of

-- I
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G(C). This produces a hypomatching J' which covers S Ui}. Stop.

Step 3 Grow the tree A by adding the edges j md k and the nodes v and w

to A. Node v is called an odd node of A and w an even node. Go to Step 1.

Step 4 The node v is not in A and is either (i) not covered by J, or (ii)

covered by an edge (vw) of J such that wcS, or (iii) covered by a hypo-

matchable set of J. Let J' be obtained from J by interchanging in and out

of J the edges on the path of A joining i to v. If necessary, modify the

near-perfect matchings inside the shrunk even nodes on this path. In

addition, in case (ii), remove the edge (vw); in case (iii) replace the
4

hypomatchable set T of J which covers v by a near-perfect matching of T

leaving only v uncovered. Now, in all 3 cases, J' is a hypomatching which

covers SUfi). So SUMi} is independent. Stop.

Proof of the Validity of the Algorithm: It is clear that this algorithm

terminates since every time it goes back to Step 1 a new edge of G is

considered. When the algorithm terminates in Steps 2 or 4, the

hypomatching J' proves that S U[i) is independent. So in order to prove

the validity of the algorithm it suffices to show that, when the algorithm

,. terminates in Step 1, the set S V(i} is not independent. By construction

*l of A, the even nodes of A which are shrunk only contain nodes of S (Step

2) and the other even nodes of A belong to S(Step 3). Also by

construction the tree A contains one more even node than odd. Finally,

when the algorithm terminates every edge incident with an even node of A

has an odd node of A as its other endpoint. As a consequence of Lemia 3,

no hypomatching of G can cover all the nodes inside critical components of

G(V-I) where I is the set of odd nodes of A, since there are 1 1+1 such

critical components. Thus, no hypomatching covers all the nodes of S)

{t), proving that this set is not independent.

i.S
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We conclude with a generalization of a theorem of Berge [2]. An

alternatina path relative to a hypomatching J is a path whose edges are

alternately in and out of J. An augmenting path is an alternating path

one of whose endpoints is not covered by J and whose other endpoint u is

either

(a) not covered by J, or

(b) in a hypcmatchable set of J, or

(c) in a noncritical hypomatchable graph G(C) such that the nodes of

C-{u) are matched among themselves by J. In addition , the length of

the alternating path must be even.

Note that in cases (a) and (b) the length of the alternating path

will always be odd.

Theorem 10 A hypomatching is maximum if and only if there exists no

augmenting path.

Proof: If (a), (b), or (c) occurs, the hypomatching J is not maxinum.

Coversely assume that J is not maxmnum. Let S be the set of nodes covered

by J and let i be a node such that S U){(} can be covered. By the

algortihm we will find an augmentation. It occurs either in Step 2,

providing an augmenting path as stated in (c), or in Step 4, providing

augmenting paths (a) or (b). (Note that Step 4 case (ii) does not occur

with our choice of S.)

* ,.. * * C **%.
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