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introducesAthe notion of a hypomatching in a graph G as a
collection of node disjoint edges and hypomatchable subgraphs of G where
the hypomatchable subgraphs belong to Some prespecified family. Examples
1In?clude matchings, fractional matchings and edge-and-triangle packings.
B4
He showAAthat many of the classical theorems about maximum cardinality

matchings can be extended to hypomatchings which cover the maximum number

of nodes in a graph.
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1. Introduction

A matching of the nodes of a graph is a set of edges no two of which
are adjacent. Some classical results about maximum cardinality matchings
include the theorems of Gallai-Edmonds [5], Tutte [11], Urhy [12], Balas
[1), Edmonds-Fulkerson [6], and Berge [2]). In this paper we extend the
notion of a matching and show that these theorems still hold.

A perfect matching M is a matching such that every node of the graph

is incident with one edge of M. A near-perfect matching is a matching

which matches all but one of the nodes. A graph H is hypomatchable if its

node set N has an odd cardinality and, for every jeN, there is a
near-perfect matching of H which leaves the node j ummatched. For
example, odd cycles are hypomatchable. In fact, any hypomatchable graph H
can be obtained as the graph Hp. P 2> 0, in a sequence of graphs Hog cee C_.'.
H’ = H such that H is a single node or an odd cycle; for 1 > 1, l-li"1 s Hi
u P1 where (1) l’1 is a path with both endnodes in Hi or a cycle with one
node in H', (11) no other node of P* belongs to H' and (1ii) P! has an odd
number of edges. The sequence H°, ..., W was introduced by Lovasz [8)

and is called an ear decomposition of H.

Given a grapn G and a subset S of its nodes, G(S) denotes the
subgraph of G induced by the node set S, We will say that the node set S
is hypomatchable if G(S) is hypomatchable.

Consider a graph G and a family F of subsets of nodes of G. An
F-packing of G is a disjoint subfamily JCF, i.e., every node of G belongs
to at most one member of J. In this paper we will identify an edge and

the set consisting of the two endnodes of that edge. let E(G) be the edge

set of G. When F2E(G), an E(G)-packing is simply a matching.
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When H denotes a family of hypomatchable node sets and F=£(G) U H,
F-packings will be called hypomatchings. Clearly, every matching of G is

a hypomatching. Given a hypomatching J, any node which belongs to one

member of J is said to be covered by J. A maximum hypomatching is one

vhich covers the maximum number of nodes of G, When H=0 the (maximum)
hypomatchings of G are precisely the (maximum) matchings of G. Apart from
the matching problem, several examples of maximum hypomatching problems
have appeared in the literature:

(1) Packing edges and triangles in a graph [4]): SeH if and only if
G(S) is a triangle (i.e., a complete graph on 3 nodes.)

(ii) Clique-packing (4], (7): H is a family of odd cliques (i.e.,
node sets all of whose members are pairwise adjacent.)

(1i1) Pk-matchings [(3): SeH if and only if it is the node set of an
odd cycle with more than k edges.

(iv) Dynamic matchings [10]: Weights are associated with the edges
of an auxiliary graph G and SeH if and only if S is the node set
of an odd cycle of G for which the sum of the edge weights is
zero.

(v) Fractional matchings [12], (1], (9] also known as 2-matchings:
SeH if and only if it is the node set of some odd cycle of G.

In (4], an algorithm was given for finding a maximum hypomatching in

a graph., Here we will show that much of matching theory generalizes to
hypomatchings. Our treatment does not assume the algorithm of [4];
’.{} instead it uses relationships between maximum matchings and maximum
% hypomatchings.

A perfect hypomatching of a subgraph G(S) is a hypomatching of G

which covers all the nodes of S but no other node. A useful concept for
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the theory of hypomatchings is that of a critical graph. The graph G(S)

is critical relative to F if it is hypomatchable and does not have a

per fect hypomatching. The following theorem is proved in (4].

Theorem 1 A graph G(S) is critical if and only if it does not have a
per fect hypamatching but, for every jeS, the graph G(S-{j}) has one.
Theorem 1 justifies the terminology "critical graph" but will not be

used explicitly in this paper.

2. A Relationship Between Maximum Matchings and Maximum Hypomatchings

Given a graph G, consider the following partition of its nodes into
three sets O, I, R. .
(1) a node of G belongs to O if and only if it is not matched in at
least one maximum matching;
(ii) I is the set of nodes of G which are matched in every maximum
matching and are adjacent to at least one node of 0;
(iii) R is the set of nodes of G which are matched in every maxixﬁun
matching but are not adjacent to any node of O.
The Gallai-Edmonds theorem states that
(a) every component of G(0O) is hypomatchable;
(b) a matching of G is a maximum matching if and only if
(1iv) the nodes of R are matched among themselves;
(v) 1in each component of G(0), all but one of the nodes are matched
among themselves;
(vi) each node of I is matched to a node in a distinct component of
GO .
The partition O, I, R can be obtained by applying Edmonds' matching
algorithm ([51]. Consider the alternating forest at termination of the

algorithm. The set of nodes which are either outer nodes of the forest or
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inside shrunk outer nodes is the set O. The set of inner nodes of the
forest forms the set I. The rest of the nodes of G is R. (The letters O,
I, and R stand for outer, inner, and remaining nodes respectively.)

Now we turn to maximum hypomatchings. Recall that F=E(G)UH where
every SeH is a hypomatchable subset of the nodes of G. Consider the
following partition of the nodes of G into three sets O(F), I(F), and R(F).

(i') a node of G belongs to O(F) if and only if it is not covered in

at least one maximum hypomatching;
(1i') I(F) is the set of nodes of G which are covered in every maximum
hypomatching and are adjacent to at least one node of 0(F);
(111') R(F) is the set of nodes of G which are covered in every maximum
hypomatching but are not adjacent to any node of O(F).
Given a hypomatching J of G=(V,E), a node of S& V is said to be

{internally covered in S if it is covered by a member T of J sueh that TES.

Theorem 2 The partition O(F), I(F), R(F) is such that
(a') every component of G(O(F)) is critical;
(b') a hypomatching of G is maximum if and only if
(iv') all the nodes of R(F) are internally covered in R(F);
(v') in each component of G(O(F)), all but one of the nodes are
internally covered in the component;
(vi') each node of I(F) is matched to a node in a distinct component
of G(O(F)).
In order to prove Theorem 2 we need the following lemma.
Lemma 3 Let S and T be two subsets of the nodes of G = (V,E) and assume
that T is hypomatchable. If S and T have p (>1) common nodes, then at
most p-=1 critical connected components of G(V-S) have a node set C such

that G(C=T) admits a perfect hypomatching.

-----
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_: Proof of Lemma 3: Llet M be a near perfect matching of G(T) leaving one
7 . node of S unmatched. Now let C be the node set of any critical connected
:'Eq: component of G(V-S) such that the nodes of Cn\T are matched among themselves
;2 by the matching M. If G(C-T) had a per fect hypomatching, then completing
) it with the edges of ;‘l in G(CNT) would produce a perfect hypomatching of
" G(C), a contradiction to the fact that G(C) is critical. So the ecritical
3’~ components of G(V-S) such that G(C-T) has a perfect matching must have at
least one of their nodes matched with a node of S in the matching ;4
:‘. There are at most p-1 such components since ;1 leaves one node of S
: unmatched.
- Now we prove the theorem.
::q:.: Proof of Theorem 2: Consider the sets 0, I and R defined by (i) - (iii).
3"?, Let & be the bipartite graph obtained from G(OUI) by shrinking each
connected component of G(0) to a single node and by removing all the edges
"§ of G(I). If a component of G(0) is critical, the corresponding node of G
will also be called critical. As a consequence of statement (vi) of the
. Gallai-Edmonds theorem, every maximum matching of G matches all the nodes
:3 of I. Llet M be such a maximum matching of G with the property that the
53 number of critical matched nodes is the largest possible among all maximum
N matchings of &.
‘.“ If every critical node of & is matched by M, set R(F) to be the node
‘ set of G and O(F) = I(F) = @, Otherwise, let the critical ummatched nodes
of G be defined as the roots of the trees of a forest A. These nodes will
"J also be called outer nodes of A, If some edge e joins an outer node of A
:, to a node icI not in A, let m=(i,j) be the edge of M incident with i.
31;; Grow the forest A by adding to A the edges e and m and call the nodes i
e and j inner and outer nodes of A respectively. | (Note that the node j must
A
X
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. be critical, otherwise by interchanging the edges in and out of M on the

path of A from j to the root, one more critical node could be matched,

:‘js contradicting the assumption about W,) Keep growing the forest A as
-': described above until every edge incident with an outer node of A is also
}t incident with an inner node of A.

-}; Then let I(F) be the set of inner nodes of A, O(F) the set of nodes
ﬁ: of G(0) contained in outer nodes of A, and R(F) the remaining nodes of G.
- So I(AMECI, O(F)S 0 and R(F)2R. MNote also that, by construction of A4,
1‘ every component of G(O(F)) is critical and no edge of G joins O(F) ¢to
\% R(F). We will show that the partition O(F), I(F), R(F) just constructed
- is in fact the unique partition defined by (i') - (iii").

S; Before doing this, we exhibit a hypomatching J of G which leaves s
\3‘ uncovered nodes, where s is defined to be the number of components of

. G(0O(F)) minus the cardinality of I(F), We define J separately on G(R), G

f;j’ and G(0). In G(R), take J to be any perfect matching (this tiliossible by
) statement (iii) of the Gallai-Edmonds theorem). In G, take Jpidentical to
) . Finally, in G(0), take J to be a hypomatching which internally covers
\j all the nodes of the noncritical components incident with no edge of M,
_; and all but one of the nodes of the remaining components of G(0). (When
) such a component contains a node u incident with M, u is the only node of
"\ the component which is not internally covered). Since M matches every
z node of I(F) with a node of O(F), so does J, leaving only s uncovered
nodes in O(F), Every node of R(F) is covered by J, so we have the
{'E announced hypomatching.

;5 In fact, the hypomatching J just constructed is maximum:

’ A consequence of Lemma 3 with S = I(F) is that any hypomatching of G
EE which does not cover all the nodes of I(F) or which contains a
¥
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hypomatchable set TeH with at least one node in I(F), must leave more than
s uncovered nodes in O(F). By matching all the nodes of I(F) to nodes of
O(F) at least s nodes of O(F) must remain uncovered, and in fact it is
possible to leave exactly s uncovered nodes in G, as shown by the
hypomatching J constructed earlier. This shows that J is a maximum
hypomatching.

This also proves that every maximum hypomatching of G satisfies
(iv'), (v') and (vi'). Conversely any hypomatching which satisfies (iv'),
(v') and (vi') leaves only s uncovered nodes and therefore is maximum,

The fact that maximum hypomatchings satisfy (iv') and (vi') implies
(ii') and (1ii'). So only statement (i') remains to be proved. Consider
the forest A in G. Any critical outer node j of A can be left umatched
by some matching ﬁ which has the same cardinality as M and leaves
ummatched the same noncritical nodes as N, Specifically, if j is a
critical node of A matched by M, then construct M from fl by interchanging
the edges in and out of M on the path of A from j to a root of A. MNow the
matching M can be used instead of M to construct a maximum hypomatching J
as done earlier. Furthermore, in the critical component of G(O(F)) left
unmatched by i, any node can be left uncovered. This proves statement
(i') and completes the proof of Theorem 2,

This structural theorem has many consequences, as we shall see in the
next fowr theorems,

Theorem 4 Consider a graph G and two families l-'1=l'3(G)UH1 and l-‘2=l-:(<.'v)\.)H2
such that the node sets in H, and H, are hypomatchable. If H S Ho

then the partitions O(Fi), I(Fi). R(Fi)' i=1,2, satisfy O(F?_)QO(F1).

I(FZ)QI(F1) and th- _fore R(Fz),?R(F1)].
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Proof: The property 0(F2)§0(F1) follows from (i') and the fact that

every hypomatching relative to F2 is also a hypomatching relative to F.I.
The property I(FZ)QI(F1) follows from O(FZ)GO(F1) and the fact that

I(Fi) is exactly the set of nodes of G adjacent to O(Fi), i=1,2 (see (ii')

and (iii')).

The next result generalizes a theorem of Tutte [11].

Theorem 5 A graph G=(V,E) has a perfect hypomatching if and only if, for
every ScV, the graph G(V-3) contains at most S| eritical connected
components .,

Proof: If G does not have a perfect hypomatching, then O(F) # @ in

Theorem 2. Let S = I(F). By Theorem 2, the number of critical components

in G(O(F)) is larger than |S| (since a maximum hypomatching matches each

node of S with a node in a different comporent of G(0(F)) and still leaves
at least one componenﬁ of G(O(F)) unmatched). By (iii') the critical

components in G(O(F)) remain critical in G(O(F)UR(F)) = G(V-S).
Conversely, assume that G has a perfect hypomatching J. Consider any

scv, If no hypomatchable set TedJ contains a node of S, then every

critical component of G(V-S) has to be matched to some node of S by an
edge of J, proving the theorem. Otherwise, ((TNS)i = p > 1 for some Ted.
Then by Llemma 3, the number of critical components of G(V-S) having a

node set C such that G(C-T) admits a perfect hypomatching is at most p-1.

The theorem follows by induction on the number of hypomatchable sets of J

which intersect S.

3. Maximum Hypomatchings with a Minimum Number of Hypomatchable Sets

The next result generalizes a theorem of Urhy relating maximum
matchings and fractional matchings (12]. Llet G = (V,E) be a graph and let

F = EUH where H is a family of hypomatchable sets.
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Theorem 6 Let J CF be a maximum hypomatching containing a minimum number

of hypomatchable sets. Then the matching obtained by taking the

edges of J and near perfectly matching the hypomatchable sets of J,

is a maximum matching.

Qur proof of Theorem 6 uses the following lemma.
Lemma 7 A noncritical hypomatchable subgraph K of G has a perfect
hypomatching using only one of the hypomatchable sets in H.

A proof of this lemma can be found in [4]; it is based on a simple
alternating path argument to reduce the number of hypomatchable sets in
any perfect hypomatching of K containing more than one such set.

Proof of Theorem 6: let O, I, R be the node sets defined in the Gallai-

Py

AN Edmonds theorem and O(F), I(F), R(F) those defined in Theorem 2. Set
SN

A, I-I(F) = L and 0-Q(F) = Q.

Consider J as defined in Theorem 6. By Theorem 2 every node of I(F)
is matched by an edge of J to a node of O(F) and in every connected
component of G(O(F)) all but one of the nodes are internally covered.
Only edges are needed in these near perfect hypomatchings since the
components of G(O(F)) are hypomatchable. So the nodes of O(F) U I(F) are
only matched by edges of J.

The nodes of R(F) = RURUL are internally covered. Since the nodes
of % are only joined to L in G(R(F)), the number of hypomatchable
subgraphs needed to internally cover the nodes of R(F) is at least equal
to the number of components of 2 minus the cardinality of L. In fact, the
matching M defined in the proof of Theorem 2 shows that no more are needed
since (1) the nodes of R are perfectly matched among themselves, (2) every
node of L is matched to a component of @ and (3) in each component of Q

which is not matched to L, all the nodes can be internally covered usinrg
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only one hypomatchable set by Lemma 7. This completes the proof of

Theorem 6.

A set of nodes S is separable if and only if there exists a maximum
matching which does not use any edge with exactly one end in S. The next
result generalizes a theorem of Balas [11].

Theorem 8 Given G = (V,E) and F = EU H, a maximum matching is also a
max imum hypomatching of G if and only if none of the hypomatchable
sets in H is separable.

Proof: Te necessity follows from the observation that, if some

hypomatchable set SeH were separable, then a maximum matching M using no

edge in the boundary of S would leave one node of S unmatched, but a

hypomatching identical to M on G(V-S) and using S would cover one more

node of G.

Conversely, suppose G does not have a maximum hypomatching using just
edges. Consider one which uses a minimum number of hypomatchable sets of
H. By Theorem 6, these sets are separable. This completes the proof.

4., Hypomatching Matroid

Let G = (V,E) and F = E{H where H is a family of hypomatchable sets.
A node set S C V is said to be independent if there exists a hypomatching
JSF, such that S is a subset of the nodes covered by J. Let M be the
family of all independent sets. The system (V,M) is an independence
system, i.e., SeM and TS S = TeM. When a hypomatching covers all the
nodes of a set S, we say that it covers S.
Theorem 9 The independence system (V,M) is a matroid.

Proof = Consider G(O(F)\U I(F)). In this graph, we say that a node set

XeM' if and only if X can be covered by a matching of G(O(F)U I(F)). It
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is known (Edmonds Fulkerson [6]) that the independence system (O0(F)U I(F),
M') so defined is a matroid, the so called matching matroid.

Note the following relationship between M and M', SeM if and only if
S = XUY where XeM' and YE R(F), as a consequence of Theorem 2, Since
(V,M) is the direct sum of a matching matroid, namely (0(F)UI(F), M') and
a complete matroid, namely (R(F), ZR(F)). it is itself a matroid.

Let w:V+R* be a vector of nonnegative weights defined on the node set
of G. Te weight of a hypomatching J is defined as w(J) = Z{w; : node i
is covered by J}. Consider the problem of finding a maximum weight
hypomatching in G, Since (V,M) is a matroid, a maximum weight

hypomatching can be found by the following greedy algorithm.

Order the nodes by nonincreasing weights w, 2> ... > w . Start with

° =9 and J° = 9. Then n iterations are per formed, say iterations i =

Ty eeaslts At the beginning of iteration i, the set Si-1 is a maximum

S

weight independent subset of {1,...,i=1} and Ji'1 is a hypomatching

covering 51'1. Iteration i consists of either proving that Si-1 Ui} is

not independent, or setting S' = s (i} and modifying ' (irf
necessary) into a hypomatching Ji which covers the set Si. The algorithm
terminates when i = n, The hypomatching J" is a maximum weight

hypomatching in G. .Its weight is

n
w(J') = 1:5" w .

Next, we show how iteration i of this greedy algorithm can be
performed by a variation of the Edmonds matching algorithm. More
generally, let S be an independent set in (V,M) and J a hypomatching
covering S. The next algorithm will check whether S U{i} is independent,

vhere icV-S is given, and if so, modify J so that it covers S U{i}.
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First, if i is covered by J we can stop immediately and conclude that
S y{1i} is independent. Otherwise, we will construct a tree A with root i
in an associated graph 8. Initially § = G and the root i is the unique
node of A and it is said to be an even node. Then A is grown according to
the following procedure until either S U{i} is found to be independent or
A cannot be grown any longer in which case we will show that SU{i} is not
independent.
Step 1 If every edge of G which is incident with an even node of A is
also incident with an odd node of A, stop: The set S {U {il is not
independent (this claim will be proved later). Otherwise, let j be an
edge which joins an even node of A, say u, to a node v which is not an odd
node of A, If v is an even node of A, go to Step 2. If v is not in A but
is covered by an edge k = (vw) of J such that weS, then go to Step 3.
Finally, in the other cases vhere v i{s not in A, go to Step 4,
Step 2 Let T = {u,...,v} be the set of nodes in the unique path of the
tree A joining nodes u and v, and let C be the set of nodes of G
associated with the node set €. ¢ is nypomatchable.

If CSS and G(C) is critical, modify A (and G) by shrinking C to a
single node. This shrunk node becomes an even node of A, Go to Step 1.

Otherwise, modify J by alternating the edges in and out of J on the
path of A from 1 to the closest point in €, If necessary, modify the near
perfect matchings inside the shrunk even nodes on this path so that every
node of G is in at most one member of J. (This is always possible since
the shrunk nodes of A are hypomatchable.) In addition, if there exists
weC=S, J is modified in G(C) so as to contain near perfect matching of
G(C) leaving w uncovered; on the other hand, if C& S, then G(C) is not

critical and J is modified in G(C) s0o as to internally cover the nodes of
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G(C). Tnis produces a hypomatching J' which covers S U{il. Stop.

Step 3 Grow the tree A by adding the edges j and k and the nodes v and w
to A, Node v is called an odd node of A and w an even node. Go to Step 1.
Step 4 The node v is not in A and is either (i) not covered by J, or (ii)
covered by an edge (vw) of J such that weS, or (iii) covered by a hypo-
matchable set of J, let J' be obtained from J by interchanging in and out
of J the edges on the path of A joining i to v. If necessary, modify the
near-per fect matchings inside the shrunk even nodes on this path,. In
addition, in case (ii), remove the edge (vw); in case (iii) replace the
hypomatchable set T of J which covers v by a near-perfect matching of T
leaving only v uncovered. Now, in all 3 cases, J' is a hypomatching which
covers SU{i}l. So SU{i} is independent. Stop.

Proof of the Validity of the Algorithm: It is clear that this algorithm

terminates since every time it goes back to Step 1 a new edge of G is
considered. When the algorithm terminates in Steps 2 or 4, the
hypomatching J' proves that S U{i} is independent. So in order to prove
the validity of the algorithm it suffices to show that, when the algorithm
terminates in Step 1, the set S U{i} is not independent. By construction
of A, the even nodes of A which are shrunk only contain nodes of S (Step
2) and the other even nodes of A belong to S(Step 3). Also by
construction the tree A contains one more even node than odd. Finally,

when the algorithm terminates every edge incident with an even node of A

"has an odd node of A as its other endpoint. As a consequence of Lemma 3,

no hypomatching of G can cover all the nodes inside critical components of

G(V=I) where I is the set of odd nodes of A, since there are (I|+1 such

eritical components, Thus, no hypomatching covers all the nodes of SU

{1}, proving that this set is not independent.
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We conclude with a generalization of a theorem of Berge [21]. An

alternating path relative to a hypomatching J is a path whose edges are

alternately in and out of J. An augmenting path is an alternating path
§ne of whose endpoints is not covered by J and whose other endpoint u is
either
(a) not covered by J, or
(b) 1in a hypomatchable set of J, or
(c) in a noncritical hypomatchable graph G(C) such that the nodes of
C-{u} are matched among themselves by J. In addition , the length of
the alternating path must be even,
Note that in cases (a) and (b) the length of the alternating path
will always be odd.
Theorem 10 A hypomatching is maximum if and only if there exists no
augnenting path.
Proof: If (a), (b), or (c) occurs, the hypomatching J is not maximum.
Cc'»‘versely assume that J is not maximum. Let S be the set of nodes covered
by J and let i be a node such that S U {i} can be covered. By the
algortihm we will find an augmentation. It occurs either in Step 2,
providing an augmenting path as stated in (¢), or in Step 4, providing

augmenting paths (a) or (b). (Note that Step 4 case (ii) does not occur

with owr choice of S.)
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