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AN ITERATIVE GUIDANCE METHOD FOR THE
LARGE ROCKET LAUNCH VEHICLE

Han Zhuzhai

ABSTRACT

With the specific objective of solving the rapid
control problem for a rocket launch vehicle, this paper
introduces and applies an optimum control theory and
derives a path adaptive juidance method which satisfies
the space guidance requirements--the iterative guidance
method. This paper describes the basic concepts and -
basic conclusion of this method as well as providing a
set of approximate guidance formulae. An iterative
guidance method is introduced in conjunction with the
launching of Earth satellites. The operational proce-
dure of the iterative guidance method and the guidance
accuracy obtained from analogue model computation are
also presented in this paper. The results of this
paper show that the accuracy of the iterative guidance
method is much higher than that of the Delta minimum
guidance method. It can be concluded that this new
method can be widely used in guiding rocket launch
vehicles.

I. INTRODUCTION

Before the 1970's, the method for guiding a rocket launch
vehicle is based on the Delta minimum method which requires that
the interference trajectory of a rocket and the standard trajec-
tory of the rocket be basically on the same geometric trajectory.
With the rapid advancements in modern control theory and digital
computer technology, scientists have successively applied the path
adaptive guidance method in the 1970's for the launching of Earth
synchronized satellites and space missions such as the landing on
the moon.
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The iterative guidance method which is being introduced by
this paper here is the most widely used method among the path
adaptive methods. 1Its major characteristic is that the motion
of the rocket in the space does not have to follow the prescribed
standard trajectory. Based on information provided by the navi-
gational system of the rocket such as the state of the rocket
(position, velocity and acceleration) relative to the launch site
(or target site), the guidance computer will compute and deter-
mine a set of basic commands for the guidance system. 1In other
words, the computer will determine a set of optimum impulse
vector directions necessary for the flight mission, hence form-
ing an optimum instantaneous trajectory aiming at the target site.

The iterative guidance method uses two mechanisms to control
the rocket; one is to control the impulse direction of the pro-
peller and the other is to determine the time intervals for turn-
ing on and turning off the propeller.

This guidance method describes the motion of the rocket by
converting the equation of motion for the center of mass of the
rocket into the equation of state by introducing the state vector
into the equation. This method proposed a control problem for a
nonlinear time varying system; with the instantaneous state of
the rocket as the initial value, the state of the rocket site as
an ultimate constraint, a set of the state angles of the rocket
as the control vectors and the minimum flight time between the
instantaneous position of the rocket and the target site %‘ as a
property index. Through the application of the optimum control
theory, we can derive a set of necessary conditions for solving
the optimum control problem. This is to say that we can obtain
a set of maximum value conditions, state equations, accompanying
equations and interception conditions with ¢E (the pitch angle)
and wc (the off-course angle) as control variables. Here we can
call the control variables ¢€ and wc the control angles.
Theoretically, after the existence of the optimum control solu-
tion is confirmed, we can obtain the solution of the optimum




control problem by solving this set of equations. 1In other
words, we can obtain a set of equations representing the optimum
control angles ¢E and wc (we call them the guidance equations)
as well as the corresponding trajectory. In practical applica-
tions, however, the guidance computer in the rocket is not
capable of carrying out the complicated computations necessary
for accomplishing the above mentioned procedures. This is why
sbme of the parameters in the equations mentioned above will
have to be simplified with the prerequisite of not affecting

the desirable guidance accuracy and minimum flight time. We

can locally approximate the model of the Earth as a plane and
proceed with the estimation of the mass and the impulse power

of the rocket during future flight times,----. We can subse-
quently obtain a set of guidance equations suitable for the
guidance computer to solve. This paper emphasizes the basic
concept and basic conclusion of the iterative guidance method.
The derivation of the iterative equations and the detail appli-
cation of the iterative guidance egquations are only described in
very general terms.

II. THE PROPOSITION OF THE OPTIMUM CONTROL PROBLEM

Generally speaking, rockets are launched from the ground,
they then fly through the atmospheric layer and fly into a vacuum
layer. 1In order to simplify the control methods, the flight of
a rocket within the atmospheric layer (altitude lower than 90 km)
is usually controlled by fixed procedures under normal circum-
stances. Guidance control is then added after the rocket enters
into the vacuum.

In a 0-Enf coordinate system, the equation of motion for a
rocket flying in the vacuum is:

£, [ cospreosy: i
[5]-5 .h,:a-n :H. a.] (1)
::
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;f3 The 0-(ni coordinate system is obtained by rotating (-Bc)

, around the oz axis of the gravitational inertial coordinate sys-

7ff tem 0-xyz at the launchsite.

?g: The 0-Xyz coordinate system is a gravitational inertial

_ coordinate system with origin 0 set at the center of the Earth.

,Ei‘ The oy axis is the vector radius from the center of the Earth to

gﬁ: : the launchsite, the ox axis is perpendicular to the oy axis and

3.3 it is pointing toward the target, the oz axis is decided by the
right handed system. The 0~-xyz coordinate system can be obtained

~;? through the platform in the platform-computer scheme; it can also

;;4 be obtained through a mathematical platform in the continuous

;fﬁ scheme.

‘iﬁ ¢£ is the angle between the projection of the longitudinal

3': axis of the rocket on the EOn plane and the £ axis. This is a

'ﬁij state angle related to the guidance of a rocket; it is called

;;, the pitch angle.

':’-.J-,;

éki w; is the angle between the longitudinal axis of the rocket

153 and the EOn plane. This is another state angle related to the

o guidance of the rocket and it is called the off-course angle.

X8

$.§ gE{ Iy and gc are the three components of the function g in

N2t the £, n and ¢ directions. The function g is a very complicated
function (gravitational acceleration vector) related to the posi-

fﬁ: tion of the rocket and the latitude. 1In order to make the solu-

éE tion of the optimum control problem we are going to propose

N next easier to solve, we have simplified these values in this

= paper. We will not discuss the equations representing these func-

2% tions in any detail here.

e |

. ': With the instantaneous state of the rocket (& ¢evéoslerle)

R as the initial value, the state of the target site c

'f:f Urs®eslenbertes £,) as the ultimate value, a state vector X can be

\TE introduced under these conditions. We will set
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The equation of motion of the rocket (1) can be expressed by
the state equation defined for the time interval (O,te) as:

id o
x| o]
§ o Bl + 7
< ®a | | (2)
%y I [ ',
X M

The instantaneous state of the rocket which served as the initial
value can be expressed as:

X ) &
,(’;o 1 ( &
_' Xae -‘ 8
4"'0.4 X ‘ g, : (3)
N 859 J ; c. -
‘*“.- . L - .

The state of the target site c which served as the ultimate con-
straint can be expressed as:

“

’u \ . t.
Xze ,' '
X 'u X '- " “ (4)

J:
s

In equation (2): 5;' prypy is an estimation of the accelera-
tion produced by the impuse power of the propeller at any instant
in time during the remainder of the flight trajectory of the rocket
(the flight track from the instantaneous position of the rocket
to the target site c within the time interval (0,t.)). t is the
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flight time within the remainder of the trajectory, with zero
second set for the rocket at any instant in time. ?is the
instantaneous mass depletion time of the rocket; its value is
determined by the ratio between the instantaneous mass of the
rocket and the per second fuel consumption rate of the propeller.
Vc is the speed of jet propulsion produced by the propeller; it
is also called the characteristic speed and its value is deter-
mined by the product between the impulse power of the propeller
and the weight mass conversion parameter.

xl, --=, X, are state variables

¢£, ¢; are control variables.

The gravitational acceleration vector for points along the
remainder of the flight trajectory of the rocket is a very com-
plicated function of the unknown position vector. 1In order to
simplify the computation, we have assumed that the Earth model
can be locally approximated as a plane for the remainder of the
trajectory. At this time, the gravitational acceleration vector
within the trajectory can be approximated by the mean value between
the instantaneous gravitational acceleration vector at a point and
the gravitational acceleration vector at the target site c. This

is to say that we have

o 1 e Ote

[ﬂn}'%[’u ;L:%frﬂo.] 5)
[/ 3 8¢~ L ge.

In this equation: . -

O1:09t are the three components of the gravitational acceler-
ation vector for each point along the remainder of the trajectory
in the 0-En% coordinate system.

Ose~On+gts are the three components of the gravitational accelera-
tion vector for the rocket at an instantaneous point in the 0-&ng
coordinate system.

Rengeerbte are the three components of the gravitational accelera-
tion vector for the target site c in the 0-£nf coordinate system.
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;*3 The authenticity of the gravitational acceleration represented
n by the mean gravity increases as the rocket approaches the target.
§§% It can be shown from numerical computations that this kind of
ﬁ%g treatment will not affect the desirable guidance accuracy.
Py
. The problem of achieving our desirable goal of guiding the
i; rocket to the targe in minimum time is equivalent to the
§%; problem of rapid control which requires minimum fuel consumption
ﬁb and maximum effective load for the trajectory since the present
) rocket propellers are all constant value impulse systems. We can
ﬁz express the property index function as:
Sg ’-\r.. dt (6)
T -8
e Now, equations (2), (3), (4) and (6) form an optimum control
:ﬁ problem for the motion of the rocket which is defined in the time
fsﬁ interval (0,t.).
N
gy Solving this optimum control problem is the same as solving
f; for a set of control angles (¢E,wc) which permits a corresponding
. rocket flight track that directs the rocket from its initial
: state xo to the state of the target site X|,. (the solution of
i the state equation) within a minimum flight t¥me t,. This is
A:C the optimum instantaneous trajectory of the rocket from any
'és instantaneous point to the target point c.
: This optimum control problem is actually a conditional max-
) imum value problem in functional analysis. 1In order to simplify
.33 _ the solution of this problem, we will temporarily consider the
o case where there is no end point constraint. This is to say that
80 the final value of the state variable in equation (4) is not fixed.
2 .
}§ In order to solve the problem mentioned above, we will intro-
:E' duce the Hamilton function:
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ffz Through mathematical methods, we can obtain a property index J

‘ which is equivalent to equation (6). According to the fact that
:§$ the derivative of the equivalent function J has to be zero when
e a maximum or a minimum value is reached, we can obtain a set of
i?q differential equations and algebraic equations which can be used

to solve for the state vectors (xl,---xe), the control vectors

»iﬁ (¢£,wc) and the Lagrange multiplication factor A(Al,---ls).
:;: These equations are: :
B

The state equation and the initial value:

::: r o %y , $00000 (. %, o0, coS@pcosdi i LGy -
\.::::. | % 100000 1 x| 1 O, ¢ 0 }
b A
V::: Tm| %o || 000000 } x, +F cospgcos e || Gv
’ %, 001000 | «x, o . I'te : (2)
. = | | 000000 | x —snge || gl
- A ¢ 000010 7 x, Lo S o
i ':\" . ' .
e
: and N
e - ‘.
y - L P A
\i: X e.
":;: x._ %30 |um L S
. X Moo
8% *u | | bo (3)
I Koo " e
Ll
7
:Sﬁ Maximum or minimum value condition:
35 oM 4
-12: ] ”‘ =0 »
= em |
) \. — ), '
o = 9%
i this is to say that '
F AN A ’ ' .'
S i Adagiconfe—dompramie. ]-o (7)
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The accompanying equation and the interception are:

1-—%’} N A3X|,.=0

This is to say that

ll "‘:
/
.' ds 0 (8)
4 a || -
Y 0
i & =2
S de 0 i
i
and
‘163|
Az,
A0x,
1.0:.
Adx,

By classifying the final values of the state variables pres-
cribed in equation (4) and adding them into the discussion, we can
obtain an approximate solution from equations (2), (3), (7), (8)

and (9); the control angles ¢6 and wc can be represented by the
equation: -

Pr=Pathat =k,

pe=Petet—a (10)
In this equation:

#i1.¥¢ are the control angles which satisfy the velocity
vector at the target point; kl' kz, e, and e, are the additional
control angular parameters produced by the system so that the
positional vector of the target point can be reached.

Since it is realatively difficult to solve for the approximate
solution using the equations mentioned above, we will proceed with
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a rough introduction of this problem in the "solution of the

a optimum control problem" section of this paper.

5,
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III. SOLUTION OF THE OPTIMUM CONTROL PROBLEM

We have already defined the 0-Enf coordinate system as a
) system obtained from rotating the instantaneous gravitational

E? inertial coordinate system at the launch site of the rocket 0-xyz

;i o around the 0z axis by (-8.). The transformation relationship
between the two coordinate systems is thus:

gx ¢ cosfl, =gaf, 0 x )

;;: [']‘[ 6nf, —omp, -0 Iy] (11)

g{ 4 0 0 1223

_ In this eguation:

js Bc is the projection of the total navigational angle between

%2 the launch site of the rocket and the target point ¢ on the xoy

EN plane. It is a combination of two separate parts. The first
part is a projection of the navigational angle between the launch

Ei site of the rocket and an instantaneous point on the xoy plane Bc,

'jﬁ the second part is a projection of the navigational angle for the

fi remainder of the trajectory between the instantaneous point and

s the target point c on the xoy plane Bt'

2!

:ﬁ Bc can be computed by using the instantaneous rocket position

o X,y provided b y the navigational computation. Bt can be

) obtained approximately by using the local horizontal component of

j; the projection of the instantaneous rocket velocity vector on the

j} xoy plane as the initial speed and the local horizontal component

éi of the projection of the acceleration vector produced by the

| impulse power of the propeller on the xoy plane as the accelera-

-ﬁ tion. Note that the acceleration is estimated locally at the

j& target point c¢. The authenticity of the flight path represented

.5 by this approximation increases as the rocket approaches the tar-

get point.
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-“d The equations representing the specific estimation of Bc

are:
£
i B.=8.+8,
1;.:: . 3 - -‘n-l % .
. €d H
b2 * a,-"L{w:.m 95+ V ,cos ¢
* .
N
.::"" ' x[("'_‘l‘)l " TP —'.+‘0 J}
et < Ty
V.-(*I_'_'l)l/a
>, ' - Ve
N N Y D
v PR

N : - | xg— y2|
N SO

Y Bl

T cufyc is a given constant; it represents the cosine of the
§5 inclination angle of the trajectory at the target point.
N W.W, W, are the three components of the apparent accelera-
ones tion of the rocket W measured by sensitive instruments in the 0-
& xyz coordinate presystem.
s
'\.-'
)
25
7
7
s
v
AN
s
A JFigure 1. Coordinate system for the iterative guidance
Lo method.
e l--launch point; 2--trajectory; 3--projection of the impulse vector;
T:ﬁ 4--Earth; 5--center of the Earth
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¢,V are the pitch angle and the off-course angle of the
rocket in the 0-xyz coordinate system, respectively. It is
obvious that the pitch angle ¢E and the off-course angle wc are
related to ¢ and Yy as follows:

"-’+3p' .
 J3d 4

From equation (7), which specifies the maximum value condi-
tions, we can obtain the equations representing the control
variables ¢E and w; The equations are:

J =t (1) (12)
Pes *I"‘("-?«* ) '

By integrating the accompanying equation (8), we can obtain
‘I-JI;:.-"M?
Amdy—dug
In this equation, the Aio are fntegration constants with i = 1,--~
6 L ]

It is obvious that the representative equations of the con-
trol angles ¢£ and wc depend on the determination of the integra-
tion constants Aio‘ We will now classify the final values of the
state variables (the state of the target point c¢) prescribed by
equation (4) and add them into our discussion. .We expect to
obtain a set of specific representative equations for the control
angles ¢£ and wc.

(i) Assuming that the velocity vector (é.,%,¢.) at the target

point is a fixed value, while the position vector (&s%s8.) is not
fixed.

Since (M) is not fixed, the final value of the corres-
ponding state variables Xy1X4s X are also not fixed. This is

12
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the same as sayingdsl.%*0 (i=2,4,8), . We can then obtain the
following equation from the interception condition equation (9):
lu"n".-'

We should consider that equation (13) becomes:

=2,
A=2,
At this time equation (12) becomes:
{ S
. (12+*)
"= tl"'(-j‘f:-w'm) . )

Equation (12*) indicates the instantaneous control angles should
be a set of instantaneous constants if the rocket is required to
reach the pre-selected velocity vector at the target point c. We
might as well indicate them as:

{ 4,=2,

{ -m.-h (14)
=%

Since we can decompose the spatial motion of the rocket into
a combination of horizontal motion and lateral motion, we can
rewrite the equation of motion of the rocket (1) by incorporating
the decomposition with the characteristics of inertial guidance
and obtain another equation as:

|' l Yy 7 (‘lli)h ".'" &

.’.7' -“(_':-).c.'il'ﬂ; +| o o

In this equation:

(Fhemmr ==y
13
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:&, We now substitute equation (14) into equation (1*) within

the time interval (o,tc) and seek the solutions by integrating
the equations and setting the initial value
Gl bl o= (birbesbesmsles £*) and the final value
&:9.8)1=(¢.,9,,8) . We can obtain

o=y

o &s= Oute (15)

KAAFAEL,
I L

e
By

In this equation:

2 B=piato
;; The remaining flight time t. is a time estimate for the rocket to
complete the remainder of its trajectory, with te equals zero

25 second at the particular instant in time when this estimation is
ié carried out.
N7
- The computation of t. is based on the control requirement.
g% . We can obtain the equations necessary for solving tc by establish-
3 ing the concept that the expected velocity increment between the
%35 instantaneous position of the rocket and the target point ¢ must
§4 be equal to the residual velocity increment computed by integrat-
if ing the equation of motion (1) on the time interval (O,tc). These
) egquations are: '

: ;_;, ,v - '\1-,--.,--. AT NI S SN
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These equations can be used by the guidance computer; te values
which satisfy our occuracy requirements can be obtained through

iterative computations.

% (1i) Assuming that the velocity vector (&.,#.,L) and two
V{ position components q% and ;c are determined at the target point
; c, € is not fixed.

o4 It can be shown from the principles of rocket guidénce that

;.": the control angles $;.$¢, necessary to insure that the rocket reaches
» its preselected velocity vector at the target point ¢ are the major
constituent parts of the control angles ¢‘ and rq while the

f” additional control angles necessary for the formation of the position
A vector are the minor constituent parts. We might as well assume

p that:

8,

{ Ps=Ps+ kit —h,

V= +eit—e, (16)

r c'}_
Fa¥ A}

4

%
j% By treating (Mt—k).(est—e,) as small quantities, expanding
cos @y, sin ¢y cos ¢ approximately and keeping only the first order terms
& and'substituting these terms into equation (1%*) at time interval
?: 0, tc we carry out integral solution according to initial
‘:} value (&,£,9,7,8,0)1¢=(bsbss8esM,¢ee8) and terminal value (& 9,n,4,01,=
- = (&9, ¢.,L.) and we can obtain the computational equations for
iﬁ L3 Y SN . We will present the computations of these
;} representative equations in "Guidance equations and
34 explanation of their applications".
g;' (111) The velocity vector (&,,4.,0.)and two position components
;c and ;c are determined at the target point c; 7], is not fixed.
L We can obtain a set of equations for the computation of kl’
%i kg: €) and e, by going through procedures similar to those in (ii).
M
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The optimum control angle obtained for such an optimum control

problem, however, will guide the rocket to fly towards the crust
of the Earth in an attempt to guide the rocket to reach the
target within a minimum time. This does not satisfy the permiss-
able rocket flight track under practical conditions so we will
no longer discuss this result in this paper.

If we wanted to obtain a feasible conclusion, we have to
consider adding a constraint on the vector radius r=(&'+n'+fY)vz
during the flight of the rocket. By solving for the rapid control
problem of this kind of a system, we can realize the optimum con-
trol for this type of final constraint. '

(iv) Both the velocity vector and the position vector are
fixed at the target point c.

For this type of requirement, the rocket will have to simul-
taneously satisfy the final constraint of three velocity components
and three position components. Intuitively, this requirement for
optimum control cannot be realized by rockets which can only be
adjusted to change the direction of the impulse power generated
by the propeller, not the magnitude of the impulse power generated
by the propeller. Theoretically, this involves the research into
whether or not this type of a system can be controlled. The
numerical computation shows, however, that satisfactory guidance
accuracy can be achieved by guiding the rocket using the guiding
equations described in (ii). It can be shown that those equations
will not produce an excessively large deviation in the position
component (Ec).

Depending on the special requirements of certain rocket
launch vehicles, we can also interchange the kl' k2' e, and e,
values obtained separately from conditions (ii) and (iii) so that
the required target ranged can be reached. It should be noted
that whenever the rocket is being guided by (iii), the requirement

16




.
- that the rocket flight vector radius r=(£+n'+{')* be greater than
the minimum constraining radius fe must be satisfied so that we
sl
i can insure that the rocket will not collide with the crust of
SN
‘f} the Earth. If this requirement cannot be fulfilled, we should
TN guide the rocket according to (ii).
":'} IV. THE GUIDING EQUATIONS AND EXPLANATION FOR THEIR
108 APPLICATION -
-'.:.
N

In order to facilitate the computation of the guidance com-
N puter, we have summed up the computational parameters and the

fél guiding equations and arranged in the following format:
3,
' (i) The parameters used for the guidance computations in
:::' each level: VesD8es0%90t09008 Oncobes®eslesbeslese, Aty 8,1
YA
‘gé (for application in the first order guidance computations in each
?ﬁ level).
:{; (ii) The instantaneous measured values and the values
yﬁ obtained from navigational computations which are used at each
.:; time point throughout the guidance computations:
Wo Wy, W 2,0,8,%,Y02000970 000
‘.,‘- J
l,:t
:5 (iii) The computational guiding equations:
£
(1) To obtain the control angle ¢:
iy Po=(ate )
h"' - -y L
}::: (a) Be= da (r‘
N . V.-(‘l+')l[l
Y I‘t- z‘l
N ki
sj: Wom(WiqWe)n
-., : J w-(w=+W}+w=)llt
- ®)) jute
A W
; e
3#
o]
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(9)

@i|d}=

tte—1,
Al-An'ut—Vc‘c
A-Agtc-‘l

A= Ary—- }V.t’.

J A=y a0 .
(e)

-

p.-,,—"(m.m O+ Aicseluc) |,

@ { 8.=8.+5,

Q|- ‘.ﬂo “’0
Led Lo ¢ 1
r‘ . [“po - ﬁp. ’.

F" [mﬂ. —diaf, :

LI 5

. ~N

t,=- t(l—c'#)

{. s L - -'0'0]
PeAcud,

(Q=Aicas®y ,
Ren~v—w— 1oui—4,ua9,
M-‘uq-“

AR
=2k

"Ps=Gat hoAr— b,
=94,

(2) To obtain the control angle ¥:
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%
N B‘-V. =1,
", By=Bs~V,.,
B,=B,t -B,
"N 1
N B=B,;c~ ?V.".
. $¢= da™ [-‘-_%_!L'..]
3 E=B,cond;

' G-‘..“
3 Het~t~¢t~ Jacti+B, dad .
A A=B.E-B.G )

PP e 6= BZ'H;

' . _BH |

\ Gy ™ e, \

Y A_i Ae CoL

’ P=t=§;4+0,A0—0,

b3

N The specific computational procedure of the guidance
k> computer is to first take the pre-estimated residual flight

) time of the rocket tc(°) as the initial value during the first

: computation of the guiding equation at all levels. After several
> iterations of AV and to, we will take the tc(n) value which

X satisfies |#"-£"" <o (if necessary, we can also go through

several cycles from eéuations (c) to (£f)), and continue the com-
putation with the right sequence. Eventually, we will feed the
computational results ¢ and ¥ into the state control loop, control
the propeller to deflect the iinpulse power to the optimum direction
and complete the guidance procedure at the first time point.
During the entire flight time, the latter time point always uses
the computational result t, of a' prior time point minus the time
interval At as its initial value t. (o) (same as t -At). By repeat-
? ing the computational procedures mentioned above, the rocket will
g ultimately be guided to the end point and all pre-selected states
R of the target point will be satisfied.

'J@-‘J 7
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Based on the guidance principles, the optimum control is
generally added to the system after the rocket has flown through
the atmospheric layer. This procedure will insure the stability
and the reliability of the aviation system of the rocket. 1In
addition to this, the time in which the guidance mechanism is
initiated or terminated cannot be the same as the time when the
propeller is turned on or off. In other words, the optimum guid-
ance is introduced after the propeller has been started, and the
optimum guidance is terminated before the propeller is turned off.

On the other hand, the R-n.—rl—ﬂ.é%é.t’.fd.a.h represents a
deviation value between the estimated position along the n
direction and the pre-selected position of the target point c.
The estimation of the position is based on a continuous flight
track towards the target point under the action of the instant-
aneous velocity vector of the rocket and the acceleration vector
produced by the impulse power of the propeller. This deviation
value consists of two parts. One part is the position difference
quantity (nc-n), and the other part is a position quantity produced
by the instantaneous velocity, the impulse acceleration of the
propeller and the component of the gravitational acceleration.
This second part is produced in an attempt to compensate for the
position difference quantity. The results of numerical computa-
tions indicate that when the rocket approaches the target, the
numerical value of the position difference is far less than the
numerical value of the other terms combined in the expression for
R. At this time, the kl_and k2 produced by B will generate an
excessive additional part (szt-kl) in the control angle ¢.
Similarly, the H in the equation will also generate an excessive
additional part (ezAt-el) in the control angle y.

In order to avoid destroying the stability of the aviation
system of the rocket while still maintaining a sufficiently high
degree of accuracy, we have applied the method of setting kl' k2,
e, and e, to be zero under separate conditions in advance. For
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the numerical computation of a certain multistage rocket which
sent a satellite into the Earth's orbit, the specific method is:

:g. t.(T.-O(-)' . e, =¢,=(
< C.(T.-CO' ‘l-*x"d .
- 1, <T,=20" ¥ =9(20") } . -
._\'.' 't‘r =107 o= » until the pmller is
<l €=e(0 7 umed off - .
,J\-.. . BN y
2
= V. GUIDANCE METHOD AND ITS FLOW CHART
ot
£S§ The guidance scheme for the accomplishment of a space flight
i mission of a rocket (such as the launching of an Earth satellite)
o is generally consisted of navigation, guidance and the control of
Y the on-off of the propeller.
'.;',\ .
- Y
N The mission of the navigational system is to use sensitive
il ) -

instruments to measure the apparent velocity and the apparent
acceleration of the rocket itself and subsequently obtain a set

R of instantaneous position, velocity and gravitational acceleration
of the rocket after the measured information has been transmitted
A to and processed by the guidance computer. The function of the

,; guidance system is to take the information obtained by the navi-
<\ gational system, the results of the computations and certain

fﬁ related quantities which have already been entered into the system
and subsequently compute the guiding equations through the guid-
ance computer. The guidance system then predicts the optimum-

P

'té impulse direction of the propeller at any instant in time so that
;é? the rocket can reach the target accurately. When the actual fly-
ing velocity of the rocketV(V'=#'ip'+.4n  equals the prescribed
Y velocity V(V,=&+¥.+¢") (or use t_ = 0), the guidance will issue
355 a command to shut off the propeller, hence completing its control
Qf* concerning the turning off of the propeller.

= The operational procedures of the iterative guidance scheme
§§ are shown in Figure 2.
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. Figure 2. The computational procedure of the iterative
guidance scheme.
l--navigational computation; 2--shutting off the propeller;
3--computation; 4--transformation of coordinate system;
5--computation; 6--iterative computation; 7--to obtain ¥ value;
8--computation; 9--compute ¢; l0--state control loop

VI. CONCLUSION

Based on the instantaneous state of the rocket and the state
of the preQBelected target point, the iterative guidance method
predicts the future motion principles of the rocket, forms mobile
aerial flight commands for the rocket and directs the rocket
towards the target. Since a minimum flight time is the basis of
the iterative guidance method, the impulse direction of the rocket
propeller determined by this method has the effect of fuel saving
and the effective load of the trajectory is also increased.

The numerical computation of the iterative guidance scheme ‘
for launching a certain Earth satellite shows that as far as the
guidance accuracy of the point in which the satellite entered the
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A= | Art= | AR | Aet™ Arpd® | Art® | AIR | AR
0.100 | 0.010 | e.0004s) 32114 | 0.013 4.541 | 0.00458 | 0.0014
&, ddngerR 4.516 | 3.6537 | 0.045 | 76.894 | 3.650 | 155.416 | 0.04848 | 0.072219

A:represents deviation
V:velocity of the rocket
r:vector radius of the rocket

GH:inclination angle of the rocket at the end
~ point of the trajectory

a:major axis of the satellite orbit
r_:vector radius of the satellite orbit at a
point closest to Earth
r_:vector radius of the satellite orbit at a
point farthest away from Earth
I:inclination angle of the satellite
Q: focus of the satellite orbit

l--deviation guantity; 2--method; 3--iterative guidance scheme;
4--delta guidance method; 5--category; 6--A9H degree; 7--AI1 degree;
8--AQ) degree

orbit is concerned, the accuracy of the iterative guidance method
is generally 10 times higher than that of the delta method. The

following table lists the various maximum deviations in the orbit
entry point associated with the iterative guidance method and the
guidance method.

When the delta guidance method is applied to a rocket generat-
ing system with multiple propellers, the failure of one single
propeller will cause the failure of the entire flight operation.
When the iterative guidance system is used, however, the mission
will be fulfilled even if this kind of a situation occurred.

In addition, the iterative guidance method does not require
repeated adjustment of the parameters in the guiding operations
and the massive computation of the interference trajectories
since the iterative guidance method does not require that the

interference trajectory and the standard trajectory be basically
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overlapped. Only a small number of interference trajectories
are computed for the observation of the guidance accuracy, hence
drastically reduce the ground design and computational work
load. For different types and different launch missions, all
the iterétive guidance method requires is the transmission of
the fixed variables of the rocket and the state of the target
into the guidance computer and the proper selection of the time
quantities Tl,---,T4. A concrete guidance scheme can then be
obtained based on this information. This is why the iterative
guidance methods also possess certain advantages such as
design, flexibility, short design time and ease of verforming

nobile launching missions.
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