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AN ITERATIVE GUIDANCE METHOD FOR THE
LARGE ROCKET LAUNCH VEHICLE

Ban Zhuzhai

ABSTRACT

With the specific objective of solving the rapid

control problem for a rocket launch vehicle, this paper

introduces and applies an optimum control theory and

derives a path adaptive guidance method which satisfies

the space guidance requirements--the iterative guidance

method. This paper describes the basic concepts and

basic conclusion of this method as well as providing a

set of approximate guidance formulae. An iterative

guidance method is introduced in conjunction with the

launching of Earth satellites. The operational proce-

dure of the iterative guidance method and the guidance

accuracy obtained from analogue model computation are

also presented in this paper. The results of this

paper show that the accuracy of the iterative guidance

method is much higher than that of the Delta minimum

guidance method. It can be concluded that this new

method can be widely used in guiding rocket launch

vehicles.

I. INTRODUCTION

Before the 1970 1s, the method for guiding a rocket launch

vehicle is based on the Delta minimum method which requires that

the interference trajectory of a rocket and the standard trajec-

tory of the rocket be basically on the same geometric trajectory.

With the rapid advancements in modern control theory and digital

computer technology, scientists have successively applied the path

adaptive guidance method in the 1970's for the launching of Earth

synchronized satellites and space missions such as the landing on

the moon.
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The iterative guidance method which is being introduced by

this paper here is the most widely used method among the path

adaptive methods. Its major characteristic is that the motion

of the rocket in the space does not have to follow the prescribed

* standard trajectory. Based on information provided by the navi-

gational system of the rocket such as the state of the rocket

(position, velocity and acceleration) relative to the launch site

(or target site), the guidance computer will compute and deter-

mine a set of basic commands for the guidance system. In other

words, the computer will determine a set of optimum impulse

vector directions necessary for the flight mission, hence form-

ing an optimum instantaneous trajectory aiming at the target site.

The iterative guidance method uses two mechanisms to control

the rocket; one is to control the impulse direction of the pro-

peller and the other is to determine the time intervals for turn-

ing on and turning off the propeller.

This guidance method describes the motion of the rocket by

converting the equation of motion for the center of mass of the

rocket into the equation of state by introducing the state vector

into the equation. This method proposed a control problem for a

nonlinear time varying system; with the instantaneous state of

the rocket as the initial value, the state of the rocket site as

an ultimate constraint, a set of the state angles of the rocket

as the control vectors and the minimum flight time between the

instantaneous position of the rocket and the target site as a

property index. Through the application of the optimum control

theory, we can derive a set of necessary conditions for solving

the optimum control problem. This is to say that we can obtain

a set of maximum value conditions, state equations, accompanying

equations and interception conditions with (the pitch angle)

and * (the off-course angle) as control variables. Here we can

call the control variables and * the control angles.

Theoretically, after the existence of the optimum control solu-

tion is confirmed, we can obtain the solution of the optimum

2



control problem by solving this set of equations. In other

words, we can obtain a set of equations representing the optimum

control angles 0 and 4 (we call them the guidance equations)

as well as the corresponding trajectory. In practical applica-

tions, however, the guidance computer'in the rocket is not

capable of carrying out the complicated computations necessary

for accomplishing the above mentioned procedures. This is why

sbme of the parameters in the equations mentioned above will

-. have to be simplified with the prerequisite of not affecting

the desirable guidance accuracy and minimum flight time. We

can locally approximate the model of the Earth as a plane and

proceed with the estimation of the mass and the impulse power

of the rocket during future flight times,----,. We can subse-
quently obtain a set of guidance equations suitable for the

guidance computer to solve. This paper emphasizes the basic
concept and basic conclusion of the iterative guidance method.

The derivation of the iterative equations and the detail appli-

cation of the iterative guidance equations are only described in

very general terms.

II. THE PROPOSITION OF THE OPTIMUM CONTROL PROBLEM

Generally speaking, rockets are launched from the ground;
they then fly through the atmospheric layer and fly into a vacuum

layer. In order to simplify the control methods, the flight of

a rocket within the atmospheric layer (altitude lower than 90 km)

is usually controlled by fixed procedures under normal circum-

stances. Guidance control is then added after the rocket enters

into the vacuum.

a In a 0-EnC coordinate system, the equation of motion for a
'* arocket flying in the vacuum is:

3% %,



The O-ax cordinate system is obtained by rotating (-ac )

around the oz axis of the gravitational inertial coordinate sys-
tem 0-xyz at the launchsite.

The O-xyz coordinate system is a gravitational inertial

coordinate system with origin 0 set at the center of the Earth.
The oy axis is the vector radius from the center of the Earth to

the launchsite, the ox axis is perpendicular to the oy axis and

it is pointing toward the target, the oz axis is decided by the

right handed system. The O-xyz coordinate system can be obtained

through the platform in the platform-computer scheme; it can also

be obtained through a mathematical platform in the continuous

scheme.

0 9 is the angle between the projection of the longitudinal

axis of the rocket on the 0n plane and the E axis. This is a

state angle related to the guidance of a rocket; it is called

the pitch angle.

* is the angle between the longitudinal axis of the rocket

and the 0rn plane. This is another state angle related to the

guidance of the rocket and it is called the off-course angle.

gE, gn and gC are the three components of the function g in

the E, n and C directions. The function g is a very complicated

function (gravitational acceleration vector) related to the posi-

tion of the rocket and the latitude. In order to make the solu-

tion of the optimum control problem we are going to propose

next easier to solve, we have simplified these values in this

paper. We will not discuss the equations representing these func-

tions in any detail here.

With the instantaneous state of the rocket ,

as the initial value, the state of the target site c

C.) as the ultimate value, a state vector X can be

introduced under these conditions. We will set

-4
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The equation of motion of the rocket (1) can be expressed by

the state equation defined for the time interval (Ote) as:

. M000O "X 0

The instantaneous state of the rocket which served as the initial

value can be expressed as: •6

X ,M V (3)'f lo4 tnu o

The state of the target site c which served as the ultimate con-

straint can be expressed as:

x* .9( . , ,.(4

N(4)

F. .. .

S.

In equation (2): F- - is an estimation of the accelera-

tion produced by the impuse power of the propeller at any instant

in time during the remainder of the flight trajectory of the rocket

(the flight track from the instantaneous position of the rocket

to the target site c within the time interval (O,tc)). t is the

5



flight time within the remainder of the trajectory, with zero

second set for the rocket at any instant in time. Vis the

instantaneous mass depletion time of the rocket; its value is

determined by the ratio between the instantaneous mass of the

rocket and the per second fuel consumption rate of the propeller.

V c is the speed of jet propulsion produced by the propeller; it

is also called the characteristic speed and its value is deter-

mined by the product between the impulse power of the propeller

and the weight mass conversion parameter.

X, 1---, X6 are state variables

*-%, i, are control variables.

The gravitational acceleration vector for points along the

remainder of the flight trajectory of the rocket is a very com-

plicated function of the unknown position vector. In order to

simplify the computation, we have assumed that the Earth model

can be locally approximated as a plane for the remainder of the

trajectory. At this time, the gravitational acceleration vector
within the trajectory can be approximated by the mean value between

the instantaneous gravitational acceleration vector at a point and

the gravitational acceleration vector at the target site c. This

is to say that we have

at - L 1t[r.{e'sf-r "j 5)
Ut 8 - 91.- 91.'

In this equation:
S 9491 are the three components of the gravitational acceler-

ation vector for each point along the remainder of the trajectory

in the O-EnC coordinate system.
U0,4.'Uwge are the three components of the gravitational accelera-

tion vector for the rocket at an instantaneous point in the O-EnC

coordinate system.
UIUa&,-e are the three components of the gravitational accelera-

tion vector for the target site c in the 0-&nC coordinate system.

6



The authenticity of the gravitational acceleration represented

by the mean gravity increases as the rocket approaches the target.

It can be shown from numerical computations that this kind of

treatment will not affect the desirable guidance accuracy.

The problem of ach.eving our desirable goal of guiding the

rocket to the target n minimum time is equivalent to the

problem of rapid control which requires minimum fuel consumption

and maximum effective load for the trajectory since the present

rocket propellers are all constant value impulse systems. We can

express the property index function as:

.rM i(6)

Now, equations (2), (3), (4) and (6) form an optimum control

problem for the motion of the rocket which is defined in the time

interval (0, tc) .

Solving this optimum control problem is the same as solving

for a set of control angles (O, ) which permits a corresponding

*rocket flight track that directs the rocket from its initial

state Xo to the state of the target site XI.. (the solution of

the state equation) within a minimum flight t~me tc. This is

the optimum instantaneous trajectory of the rocket from any

instantaneous point to the target point c.

This optimum control problem is actually a conditional max-

imum value problem in functional analysis. In order to simplify

the solution of this problem, we will temporarily consider the

case where there is no end point constraint. This is to say that

* the final value of the state variable in equation (4) is not fixed.

In order to solve the problem mentioned above, we will intro-

duce the Hamilton function:

7u.:'. ,.. . . . i ' % .~* * * ** * * **~



HinA4_LFONu~ant+#) + A.Xa+A9 (L"V#~Cos*+g 9 )

+Azw.+A,(--Lda #.+g )+Aes+ I
1 %.'*. .W

Through mathematical methods, we can obtain a property index J

which is equivalent to equation (6). According to the fact that

the derivative of the equivalent function J has to be zero when
.. a maximum or a minimum value is reached, we can obtain a set of

differential equations and algebraic equations which can be used

to solve for the state vectors (X11---X6) , the control vectors
(*@, ) and the Lagrange multiplication factor X(X1 6 )

These equations are:

The state equation and the initial value:

WOW , Sadg
• ,,,'" ", 20000 0t . .' .. O

-' 00-0010 X.

O 10 "X• 0 • 0

and
-. I

. X1e

/1 (3)

Maximum or minimum value condition:

-M9

this is to say thatAdum.....u~~gj.

(7)

.t .
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The accompanying equation and the interception are:

I--a-14 AdXl,.-O

This is to say that

i, A (8 )

0

*-'1, -A4

Is

and

A,6x,

A,06, -o (9)

A..3x,

By classifying the final values of the state variables pres-

cribed in equation (4) and adding them into the discussion, we can

obtain an approximate solution from equations (2), (3), (7), (8)

and (9); the control angles * and can be represented by the

equation:

'(10)

In this equation:

*is#& are the control angles which satisfy the velocity

vector at the target point; kI, k2, el and e2 are the additional

control angular parameters produced by the system so that the

positional vector of the target point can be reached.

Since it is realatively difficult to solve for the approximate

solution using the equations mentioned above, we will proceed with

9
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, a rough introduction of this problem in the "solution of the

optimum control problem" section of this paper.

'N III. SOLUTION OF THE OPTIMUM CONTROL PROBLEM

We have already defined the 0-M coordinate system as a

system obtained from rotating the instantaneous gravitational

inertial coordinate system at the launch site of the rocket O-xyz

around the/Oz axis by (-8c. The transformation relationship

between the two coordinate systems is thus:

0 0

In this equation:

a c is the projection of the total navigational angle between
the launch site of the rocket and the target point c on the xoy

plane. It is a combination of two separate parts. The first

part is a projection of the navigational angle between the launch
site of the rocket and an instantaneous point on the xoy plane Bc'

the second part is a projection of the navigational angle for the

remainder of the trajectory between the instantaneous point and

the target point c on the xoy plane 8
t .

0c can be computed by using the instantaneous rocket position

x,y provided b y the navigational computation. 8 t can be|t
obtained approximately by using the local horizontal component of

the projection of the instantaneous rocket velocity vector on the

.4 xoy plane as the initial speed and the local horizontal component

of the projection of the acceleration vector produced by the

impulse power of the propeller on the xoy plane as the accelera-

tion. Note that the acceleration is estimated locally at the

target point c. The authenticity of the flight path represented

by this approximation increases as the rocket approaches the tar-

get point.

10
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The equations representing the specific estimation of 8c

are:

m.....B ' + ,

(XX+ )"'

.ill 
V

F e(xs' .+  , ," A I, ! ',

c"Gc is a given constant; it represents the cosine of the

inclination angle of the trajectory at the target point.

Wr",,bW, are the three components of the apparent accelera-

tion of the rocket W measured by sensitive instruments in the 0-

xyz coordinate presystem.

yigue 1.Coordinate system for the iterative guidance
method.

V. 1--launch point; 2--trajectory; 3--projection of the impulse vector;
4--Earth; 5--center of the Earth

.-. " .-'* ~* & K **. . >



W *,* are the pitch angle and the off-course angle of the
rocket in the O-xyz coordinate system, respectively. It is

I. obvious that the pitch angle * and the off-course angle are
I--. related to * and , as follows:

From equation (7), which specifies the maximum value condi-

tions, we can obtain the equations representing the control

* variables & and l. The equations are:

' -(12)

By integrating the accompanying equation (8), we can obtain

Asssss,. - 146.t (13)

In this equation, the Aio are integration constants with i = 1,---

6.

It is obvious that the representative equations of the con-

'a, trol angles and * depend on the determination of the integra-

tion constants Xio" We will now classify the final values of the

state variables (the state of the target point c) prescribed by

. equation (4) and add them into our discussion. We expect to

obtain a set of specific representative equations for the control

angles and

(i) Assuming that the velocity vector (.,A., .) at the target
point is a fixed value, while the position vector (9,46) is not

_a fixed.

Since (L,,C.) is not fixed, the final value of the corres-

ponding state variables x2,x4, x6 are also not fixed. This is

.12
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the same as sayingJx e,,r 0 (I-I,4.6), . We can then obtain the

following equation from the interception condition equation (9):

,*4"

We should consider that equation (13) becomes:

A, A

At this time equation (12) becomes:

* (12*)

Equation (12*) indicates the instantaneous control angles should

be a set of instantaneous constants if the rocket is required to

"* reach the pre-selected velocity vector at the target point c. We

might as well indicate them as:

(14)

Since we can decompose the spatial motion of the rocket into

a combination of horizontal motion and lateral motion, we can

rewrite the equation of motion of the rocket (1) by incorporating

the decomposition with the characteristics of inertial guidance

and obtain another equation as:

. ' 1. :

I Ac

In this equation:

( -I

13

-. r W



S. Y°

V

FV.

WOW(**1 +* .

We now substitute equation (14) into equation (1*) within

the time interval (00t c ) and seek the solutions by integrating

the equations and setting the initial value

(e,,t.', et).-'(Eod.o,%,C' e) and the final value
we can obtain

v. t-,16Z.-R!!
• W {, . (15)

In this equation:

The remaining flight time tc is a time estimate for the rocket to

complete the remainder of its trajectory, with tc equals zero
second at the particular instant in time when this estimation is

carried out.

The computation of tc is based on the control requirement.

We can obtain the equations necessary for solving tc by establish-
ing the concept that the expected velocity increment between the
instantaneous position of the rocket and the target point c must
be equal to the residual velocity increment computed by integrat-

ing the equation of motion (1) on the time interval (O,t C). These

equations are:

14
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These equations can be used by the guidance computer; t c values

which satisfy our occuracy requirements can be obtained through

iterative computations.

(ii) Assuming that the velocity vector Q,*,. and two
position components tic and 4Care determined at the target point

-is not fixed.

It can be shown from the principles of rocket guidance that
the control angles fg , necessary to insure that the rocket reaches

its preselected velocity vector at the target point c are the major

constituent parts of the control angles f and %g while the

additional control angles necessary for the formation of the position

vector are the minor constituent parts. We might as well assume

that:

,. ,# _#,( 16 )

By treating (&t-,),(.-.,) as small quantities, expanding

9a- a a.m approximately and keeping only the first order terms

and substituting these terms into equation (1') at time interval

O, tc we carry out integral solution according to initial

value (m,)I(l, 9%,9eC and terminal value .' #,ec:t -

- (I..*o~,eC, ) and we can obtain the computational equations for
-h',#,cis .sWe will present the computations of these

1representative equations in "Guidance equations and

explanation of their applications".

(iii) The velocity vector(f,,*.,t.)and two position components

Sc and c are determined at the target point c; 7lc is not fixed.

We can obtain a set of equations for the computation of k,

k2, el and e2 by going through procedures similar to those in (ii).

15



The optimum control angle obtained for such an optimum control

problem, however, will guide the rocket to fly towards the crust

of the Earth in an attempt to guide the rocket to reach the

target within a minimum time. This does not satisfy the permiss-

able rocket flight track under practical conditions so we will

no longer discuss this result in this paper.

If we wanted to obtain a feasible conclusion, we have to

consider adding a constraint on the vector radius m( '+ '+C /)z/

during the flight of the rocket. By solving for the rapid control

problem of this kind of a system, we can realize the optimum con-

trol for this type of final constraint.

(iv) Both the velocity vector and the position vector are

fixed at the target point c.

For this type of requirement, the rocket will have to simul-

taneously satisfy the final constraint of three velocity components

and three position components. Intuitively, this requirement for

optimum control cannot be realized by rockets which can only be

-adjusted to change the direction of the impulse power generated

by the propeller, not the magnitude of the impulse power generated

by the propeller. Theoretically, this involves the research into

whether or not this type of a system can be controlled. The
numerical computation shows, however, that satisfactory guidance

accuracy can be achieved by guiding the rocket using the guiding

'-- equations described in (ii). It can be shown that those equations

will not produce an excessively large deviation in the position

component (Ec)

Depending on the special requirements of certain rocket

launch vehicles, we can also interchange the kl, k2, e1 and e2

values obtained separately from conditions (ii) and (iii) so that

the required target ranged can be reached. It should be noted

that whenever the rocket is being guided by (iii), the requirement

16
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that the rocket flight vector radius r-(r+qs+€9f" be greater than

the minimum constraining radius roe must be satisfied so that we
"V can insure that the rocket will not collide with the crust of

the Earth. If this requirement cannot be fulfilled, we should

guide the rocket according to (ii).

IV. THE GUIDING EQUATIONS AND EXPLANATION FOR THEIR
APPLICATION

In order to facilitate the computation of the guidance com-

puter, we have summed up the computational parameters and the

guiding equations and arranged in the following format:

(i) The parameters used for the guidance computations in

each level: V098,,,8,g,9 ,€
(for application in the first order guidance computations in each

level).

(ii) The instantaneous measured values and the values

obtained from navigational computations which are used at each

time point throughout the guidance computations:

(iii) The computational guiding equations:

(1) To obtain the control angle *:
. a

lSt- *)*(+
. -..

(b) V.

*'1 .."-'-7
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(2) To obtain the control angle *:

~le
A
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Be-D-V.t.

B,-B,r-Ft, -- ,.-B,

B, Bar - 4-V

2

Gi'B.m g

H-C.-C-et.- 1 e. +B, dai

RaH
SB,H

The specific computational procedure of the guidance

computer is to first take the pre-estimated residual flight

time of the rocket t(o0) as the initial value during the first

computation of the guiding equation at all levels. After several

iterations of AV and tc, we will take the tc(n) value which

satisfies IV;'-."I <8 (if necessary, we can also go through

several cycles from equations c) to (f)), and continue the com-

putation with the right sequence. Eventually, we will feed the

computational results 0 and * into the state control loop, control
the propeller to deflect the impulse power to the optimum direction

and complete the guidance procedure at the first time point.

During the entire flight time, the latter time point always uses

the computational result tc of a'-prior time point minus the time

interval At as its initial value tc (o) (same as tc-At). By repeat-

ing the computational procedures mentioned above, the rocket will

ultimately be guided to the end point and all pre-selected states

of the target point will be satisfied.

19



Based on the guidance principles, the optimum control is

generally added to the system after the rocket has flown through

the atmospheric layer. This procedure will insure the stability

and the reliability of the aviation system of the rocket. In

addition to this, the time in which the guidance mechanism is

initiated or terminated cannot be the same as the time when the

propeller is turned on or off. In other words, the optimum guid-

ance is introduced after the propeller has been started, and the

optimum guidance is terminated before the propeller is turned off.

On the other hand, the ,Vf-,-7- Anjs represents a

deviation value between the estimated position along the n

direction and the pre-selected position of the target point c.

The estimation of the position is based on a continuous flight

track towards the target point under the action of the instant-

aneous velocity vector of the rocket and the acceleration vector

produced by the impulse power of the propeller. This deviation

value consists of two parts. One part is the position difference

quantity (n C-r), and the other part is a position quantity produced
by the instantaneous velocity, the impulse acceleration of the

propeller and the component of the gravitational acceleration.

This second part is produced in an attempt to compensate for the

position difference quantity. The results of numerical computa-

tions indicate that when the rocket approaches the target, the

numerical value of the position difference is far less than the
numerical value of the other terms combined in the expression for

R. At this time, the k1 and k2 produced by R will generate an

excessive additional part (k2At-k1 ) in the control angle *.

Similarly, the H in the equation will also generate an excessive

additional part (e2 at-e 1 ) in the control angle *.

In order to avoid destroying the stability of the aviation

system of the rocket while still maintaining a sufficiently high

degree of accuracy, we have applied the method of setting k1 , k2,

S1l and a2 to be zero under separate conditions in advance. For

20



the numerical computation of a certain multistage rocket which

sent a satellite into the Earth's orbit, the specific method is:
4.

41c(Ta'40' k, =J42 = 0~#Ar,-200 #-#(21")
tT,-10" w(10I) until the propeller is

u~T.1o' ~ 1O turnetl off

V. GUIDANCE METHOD AND ITS FLOW CHART

The guidance scheme for the accomplishment of a space flight

mission of a rocket (such as the launching of an Earth satellite)

is generally consisted of navigation, guidance and the control of

the on-off of the propeller.

*The mission of the navigational system is to use sensitive

instruments to measure the apparent velocity and the apparent

acceleration of the rocket itself and subsequently obtain a set

of instantaneous position, velocity and gravitational acceleration

of the rocket after the measured information has been transmitted

to and processed by the guidance computer. The function of the

guidance system is to take the information obtained by the navi-

gational system, the results of the computations and certain

related quantities which have already been entered into the system

- . and subsequently compute the guiding equations through the guid-

ance computer. The guidance system then predicts. the optimum

impulse direction of the propeller at any instant in time so that

the rocket can reach the target accurately. When the actual fly-

ing velocity of the rocket(V'--+Dl+I. equals the prescribed

velocity V.(V-mf,+4.+e') (or use tc - 0), the guidance will issue

a command to shut off the propeller, hence completing its control

concerning the turning off of the propeller.

The operational procedures of the iterative guidance scheme

are shown in Figure 2.
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-" Figure 2.. The computational procedure of the iterative
'>" guidance scheme.

'. i 1--navigational computation; 2--shutting off the propeller;
3--computation; 4--transformtion of coordinate system;

'. ir•5--computation; 6--iterative computation; 7--to obtain value;
. .: -8--computation; 9--compute 0; lO--state control loop

VI. CONCLUSION

Based on the instantaneous state of the rocket and the state
I " ' of the pre-selected target point, the iterative guidance method

predicts the future motion principles of the rocket, forms mobile

.1

aerial flight commands for the rocket and directs the rocket

. towards the target. Since a minimum flight time is the basis ofthe iterative guidance method, the impulse direction of the rocket
propeller determined by this method has the effect of fuel saving

and the effective loadof the trajectory is also increased.

5 The numerical computati e ati ve guidance scheme

for launching a certain Earth satellite shows that as far as the
guidance accuracy of the point in which the satellite entered the

,22
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"A:represents deviation
V:velocity of the rocket

* r:vector radius of the rocket
I :inclination angle of the rocket at the end

point of the trajectory
a:major axis of the satellite orbit
r :vector radius of the satellite orbit at a

point closest to Earth
Sra :vector radius of the satellite orbit at a

point farthest away from Earth
I:inclination angle of the satellite

-Q:focus of the satellite orbit

1--deviation quantity; 2--method; 3--iterative guidance scheme;
4--delta guidance method; 5--category; 6--ADH degree; 7--Al degree;
8--AQ degree

I'. orbit is concerned, the accuracy of the iterative guidance method
is generally 10 times higher than that of the delta method. The

following table lists the various maximum deviations in the orbit

entry point associated with the iterative guidance method and the

guidance method.

When the delta guidance method is applied to a rocket generat-

ing system with multiple propellers, the failure of one single

propeller will cause the failure of the entire flight operation.

When the iterative guidance system is used, however, the mission

will be fulfilled even if this kind of a situation occurred.

In addition, the iterative guidance method does not require

repeated adjustment of the parameters in the guiding operations

and the massive computation of the interference trajectories

since the iterative guidance method does not require that the

interference trajectory and the standard trajectory be basically

23'p.
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overlapped. Only a small number of interference trajectories

are computed for the observation of the guidance accuracy, hence

drastically reduce the ground design and computational work

load. For different types and different launch missions, all

the iterative guidance method requires is the transmission of

the fixed variables of the rocket and the state of the target

into the guidance computer and the proper selection of the time

quantities T1 ,---,T4. A concrete guidance scheme can then be

obtained based on this information. This is why the iterative

guidance methods also possess certain advantages such as

design, flexibility, 3hort design time and ease of performing
nobile launching missions.
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