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This report summarizes research activities at the Informatioa Systems Laboratory, Staa-

LA

ford University, for the "Fast ithme for Improved Speech Codiag and Recognition™ project
during the past sixteen moaths. is research cflort has studied estimation techmiques for

processes that contain Gawssian noise aad jump componeats, and clamification methods for transi-
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presented are an algorithm for joint estimation of excitation and vocal tract respomse, a pitch

pelse location method wsing recursive least squares estimation, aad a stop comsomant recogition
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1. INTRODUCTION

During the course of this research contract, estimation techniques for processes that coatain

.,‘ Gaussiaa noise aad jump compoaents, and classification methods for transitional signals by usiag

X
’3 recursive estimation with vector quantization were studied. These sigaal processing tools have

pollible application to a wide raage of physical signals, although this research studied their use

i for speech processing. The major accomplishments presented are an algorithm for joint estima-
ey

'; tion of excitation and vocal tract response, a pitch pulse location method using recursive least
3

7 squares estimation, snd a stop comsonast recoguition method using recursive estimation and vec-
o

Ex tor quantization.

Y

H JOINT ESTIMATION OF EXCITATION AND VOCAL TRACT RESPONSE

Historically, the development of estimation theory and signal modeling techniques have wsu-

PR

ally presumed that the processes involved had Gaussiaa statistics. Most maturally occurring

processes tead to be Gaussiaa. However, maay maa-made signals have additional componeats
that can be characterized as harmonic structures or jump processes or impulsive noise. For exam-
ple, the rotating blade in aa sircraft gemerates an artifact whea the blade crosses the wing, like-

T,

wise the main rotor aad tail rotor of helicopters produce signals depeading on the orientation of

: the fuselage, underwater acoustical signals from man-made sources, radar/sonar returas generated
ﬁ; by pulsed sources, and in gemeral any signal that has been processed in a nonlinear fashion are
’ within the class of aon-gaussian signals.

' Estimation techaiques were developed for signals composed of & Gaussian noise component
i and » jump process componeat driviag a linear system. In particular, simultaneous estimation of
:‘_i'-' the system parameters (ARMA) aad the jump excitation were introduced. The techaique evolved
' from simple pulse in nocise detection to composite pulses aad noise from an ARMA structured sys-
R . tem. A decision-directed approach was used to estimate the uaknown prior statistics of the pulse
i

process. A full description of these techniques was preseated in the first ONR technical report,
M738-1, Feb. 1083,
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In this study, the estimation technique was applied to speech signals attempting to improve
the estimate of pitch and vocal tract response. Most speech modeling techniques haadle the
response and excitation separately. The semiperiodic opening of the vocal chords emits a pulse of
air to excite the vocal tract (throat, tongue, and mouth) provides an example of jump and noise
excitation that has been much studied. The complex interaction of the vocal chords, vocal tract

and nose, warraot simultaneous estimation of the response function and the excitation.

PITCH DETECTION BY LEAST SQUARES LATTICE ALGORITHM

There are maay advantages of recursive estimatioa techniques and particularly whea imple-
mented ia the form of a lattice flter. An overview of recursive least squares estimation and lat-
tice filters was presented in the second ONR technmical report, M736-2, Jan. 1984. Within the
Least Squares Lattice algorithm, a "likelihood” variable is calculated which indicated the
occurrence of unexpected or nom-gaussian componeats in the signal. The derivative of this vari-
able multiplied by other signal parameters appears to be a good detector of pitch pulses in speech.
The development 3ad experimental results of this pitch detection method are preseated.

RESEARCH ON RECOGNITION OF STOP CONSONANT

Recursive Estimation aad Vector Quaatization have been two very active areas of research
in the Jast few years. Each area has developed aew mathematical tools for analyzing sad charac-
terizing signals. These techniques are trying to satisfy different objectives; adaptive signal model-
ing or efficient signal quaatization, respectively. However there is a natural marriage of these two
powerful mathematical tools that often provides a more appropriate solution to problems in signal
modeling, coding, sad classification.

For adaptive speech modeling, the time varying nature of speech requires that quickly
changing burst sounds as well a8 fairly steady vowels sounds be efficiently approximated. The
recursive orthogonalising properties of the ladder structure allow speech transitions to be tracked
precisely while still yielding consistent parameters for steady sounds. Recursive estimation gea-

erates s full signal model for each data sample causing a considerable increase in the number of
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‘n;; parameters handled. For coding and transmission of signals, the recursive estimation generates s
] good signal model but the problem of efficieat parameter encoding remains. In coding or
¥y
éf,;g - classification applications, only a small nsumber of 'states of the world’ are of interest rather thas
:‘;‘fY
%%. the continuum of parameter values geaerated by RLS.
Vector Quantization (VQ) design algorithms have been wsed to desiga low bit rate data
g
,,f compression and data classification systems. For speech recognition, vector quantization tech-
Y
Mt niques have been developed for speaker dependeat and independent word recognition. VQ is well
suited for data compression or data clamification once the codewords have beea determined from
'11 a representative training data set.
£
4’; Experiments oa combining recursive estimation aad vector quantization were begua in this

ONR contract. Using recursive estimation to track changing signal characteristics aad vector
::% quantizatioas to systematically classify the resalting parameter, brings together adaptive process-
.

ing with limited state output. This idea was first applied to speech for recognition of transitional

sounds, which are curreatly very difficult to distinguish. This approach acknowledges that speech

o
SN o -

contains only a finite number of ideatifiable sound units (in each language), but that some sounds

X

happen quite quickly. This type of classification technique distinguishes transitional states in the

e

signal that are themselves of interest.

A classification scheme using parameter trajectory information was developed that allows

of o A
s .

3 e

transitional signal characteristics to be identified. The tramsitions in the data cam be tracked

using recursive estimation rather thaa being coarsely approximated by LPC (or equivalent)

s:’ parameterizations from fixed speech windows. By baviag a signal model at every data sample,
% the trajectory of the parameters can be readily determined. This new information assisted in
_ determining transitional components from steady state components.

\ i- i A classified vector quantization approach was also developed that allows quantization preci-
‘ sion to be specified for various signal components. No longer must the steady state signal com-
A , ‘ poaeats domiaate the vector quantizsed states. The results for recognising stop consonaats withia
‘:; 8 limited test are very encouraging.
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1
’i, 2. JOINT ESTIMATION OF EXCITATION AND
. VOCAL TRACT RESPONSE
oy -
2
,:% 2.1 INTRODUCTION
. Maay speech analysis techniques attempt to deconvolve the speech waveform into an excita-
“ tion component and a response function. The standard approach is to estimate the vocal tract
3 3 model parameters first and then the excitation sigaal from the residual errors (or directly from a
P
N bandlimited version of the original speech signal). A new approach for simultaneously identifying
;;:'f the system model parameters and detecting the unobserved random pulse-type inputs has been
g%’ developed. A key component of this procedure is the application of a new decision-directed algo-
rithm to estimate the period of the pitch pulse process. This decision-directed algoritbm incor-
N
ﬁf! porates an exact, recursive estimator to compute the rate of a discrete-time point process used to
e .
",3; . characterizse the arrival times of the pitch pulse process. Anm overview of this approach is
et
presented here. The complete description was contained ia the first ONR techuical report,
B
33% A common assumption of speech analysis is that a speech waveform can be modeled as the
S
output of a linear system driven by an approximately Gaussian noise part (for unvoiced speech)
S
22 plus 2 jump component, (periodic pulses for voiced speech). Typically, it is assamed that the
;é’ linear system used to model the vocal tract consists of an all-pole filter (an autoregressive or AR
TH7
representation) whose coeflicients are slowly time-varying. The all-pole model used to character-
% ,% ) . . .
';7."& ise the vocal tract and the mixed driving process (3 white Gaussian noise plus a pulse process)
y ~ ¢
3‘?“ sdmits the representation
- ) Iy
%% nwt ey = ‘255"0-4 + done + . (21)
1294 fmy -l
.‘1 b
:‘%, where {y,} is the observed speech waveform, {n,} is a binary (0,1) sequence denoting the epochs
‘ u of the pitch pulses, {v;} denotes a WGN process, and the coeflicients ¢; snd §; denote the model
"_'.: coeflicients. The estimation/detection problem is to simultaneously estimate these coeflicients

N ‘l:f;i:t
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and to detect the occurrence of the pulses (i.c., to detect the events n, = 1). Standard least
) squares techniques are used to estimate the a; coeflicients. The unique aspects of this analysis
gs - consist of the approsch used to detect the events n; == 1 and the joint estimation of the model
; parameters and detection of the pulse input (excitation).
) The estimation of the §; coeflicients follows in a straightforward manner once the pulses
3 have been detected. The detection problem is rendered diflicult by the absence of reliable
! & priori information about the probability of the event n; = 1. The problem of binary detection
_‘A with unknown priors leads to the application of so-called decision-directed (DD) detectors. DD
! detectors [DS], [KD] use the results of the past decisions to estimate the rate (i.c., the & priori
2\ probability) of the signal, which is used to adjust the parameters of the detector (sssuming that
. the previous decisions were correct). A method of dealing with nonstationary priors in a DD algo-
”E rithm was developed in [SM]. Specifically, the speech problem results in a pulse process that is
g intermittent (present for voiced speech only), and, when present, is of a bighly structured nature

. (the pitch process exhibits a neatly periodic structure). 'An algorithm to simultanecusly estimate
;.‘ the vocal tract parameters and to detect and estimate the pitch pulse waveform as well is
.'. presented here.
3
b

3
b2
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3.3 DECISION-DIRECTED DETECTOR

Cousider a discrete-time point process (DTPP) {n,} for ¢ = 1,2,3, . . ., such that

Pr(nyme1|B;,) = 1 - Pr(ny =0 | B,) = ) (2:2)
where )\ is the random rate of the process {n;} and By, is the sigma field generated by all the
factors that affect the probability of a pulse occurring at time {-1. To simplify the development,
assume that the eflect of the jump is restricted to isolated time points, §; = 0 for i > 0. The
prediction error process is ¢;.

€& = 4 - Acr Y, where Y, = |, ... ,-ﬂc-clr A = lgy,... .-.lf2-3)
The symbol ° denotes the least squares estimate of the vector A. The detection problem is to

decide between the two bypotheses Hy, noise only and Hj, pulse plus noise.

He ¢ = o
Hy ¢ = b + vy (2'4)
The Bayes decision rule with respect to ); is N;.

1, if (1-Xg)f (ec | m=0) < NS (ef | my==1)
N = 0, otherwise (2.9)

where f(-| n;=0) and f(-|ng==1) are the density functions of ¢; under hypotheses H, and H, ,
respectively. The output of the detector is the sequence {N;}. Let \; denote the rate of N,.
The philosopby of the DD approach is to estimate )\;, and to use this estimate for subsequent
operation. For the case where 9, ~ N(0,1), the likelihood ratio test (LRT) of (2.5) assumes the

form

1, ¢ > T(N)

N‘ - ol € < T(AN')

(2.6)

where T(A) = §/2 - [log) - log(1-))]/ b and ); is an estimate of ).

Suppose that the rate of N; can be modeled as a finite-state Markov chain with state vector

pumpy,...,om|T, where <, . . ., <pn, with transition probabilities given by

Pr(h == p; | My p) = g(t) (2.7)
with initial distributior * = (8. ., %,|T where x, = Pr(\y = p,).

...........
.....................
,,,,,,,,,,,,,,,,,,,,,,,,,,
.....................
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\e Define x; = [2,(t),..,z(¢)]¥ by
%
iy Lif X = p
\Q . z(t) = 0, otherwise * 1 =12%...,m (2.8)
,\\:i
LD '
\fj,‘ Thus, \; = pTx,. This formulation was first introduced by Segall [Se]. The vector x; can be
< viewed as the state vector of a system obeying dynamics and observation equations of the form

\
N T .
‘* X1 = Qixy + ug ‘ (2.9)
_:-_: N o= pTx; + ¢

o where Q, = {g;;(!)}. The processes {u,} and {¢,} are Martingale Diflerence sequences with
a respect to the family of sigma fields {B,} with B, = o{N,, . . . ,N; x), . . . ,%¢,,).
Ny
Ay
?57 A general estimator for this problem was developed in [St] for the case where the transition
,-.*57 &

matrix, @y, is not only time dependent, but is realization-dependent as well. Suppose the transi-

§ tion matrix is conditioned on F,, and admits the structure in (2.10).

b

b 3

! 8;(t,Fy) it Ny==1

. 9(t) = rij{t,Fia), il Ny =0 (210)
X " The matrices S, = {s,;(¢F,,)} and B, = {r;(t, F_,)} thus define the dynamics of the Mar-
-

> kov chain. Note that these matrices are conditioned on the past data, represented by F,_,. The
.; ; estimator takes the form in (2.11).

< - - S’diag(p); 4 - &8

)] Xivajs ™= O&Xqpy + ‘,- ”“r = (2.11)
N P X - (o xm-l)z

o .

) Ay = R - (R -8,)"diag(p)

. L= xpeqpe XN

<3 The estimated rate is given by

$ *

Y - -

\: Ny = Pr’uul . . (2.12)
7
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2.3 APPLICATION TO PITCH DETECTION

Consider the waveform {¢,} defined by (2.3), and suppose that v, ~ N(0,1), b is a constant,
and {n;} is a DTPP that is pseudo-periodic, in the sense that, once a pulse occurs, the probability

of another pulse occurring soon is small, but increases as time progresses (an example of such a

process is the sequence of glottal pulses of voiced speech). Also, suppose that the repetition inter-
val (or pseudo-period) of this process may also be changing (e.g., as the pitch period is modulated,
as with a singing voice). The near periodicity of the signal may, however be directly incorporated

into the structure of the Q; matrix as introduced above. Define the elements of Q, as follows:

Loyt 1 -1y epza(Ji+ 1) imm 1, j=1

1,.0,p i==1,j>1

[1-1(,a )2 i(N+ 1] Jy), i>1, j=1

[1-1i,, o) (1-¥), i=j>1

%lt) = [1-1i;,. e )1¥, §»=3,jm2 and (2.13)

j=m-1,j=m

|l-1(1,,.,)]'2£. f==j+1,5>2 and

{ im=j-12<;<m

where ¢ € (0,1) is a constant;

L, i<t <aq
Is.ep ™ o, otherwise (214)

is the indicator function;

5 J-1
J,-max{j:ZN,-ZN,+ l,jSt} (2.15)
is the last time (up to and including ¢) that a pulse was detected; and

1
xl,+ 1], + al,

a == Jg + (2.16)

where the conditional expectation of the estimation error is

of m E"' (Mo 1pe) = T diog(p) Xew 1)t - No g (2.17)



In addition to the estimation of the model parameters and the detection of the pitch epochs,
the speech analysis problem requires the estimation of the variance of the input noise process v,
and the tracking of slowly-varying mode} parameters. The pitch pulse is usually not of a single
sample time duration, but may persist for several sample times. Thus, the combined
estimation/detection estimator must be generalized to allow input noise variance estimation and
the estimation of composite pulses (i.e., pulses that persist for several time samples). The general-

ized algorithm is (2.18) where Y, and A are defined as in (2.3).

- - . |
A; = A‘_l + P‘Y‘ [y, —AE;Y. - zbs(l—l)N‘_,‘l (218)

i=1

The matrix P; is given by

1 PY,Y[P,
P‘ == ; [Pl-l - al + Y‘TP‘_lY‘ ] . (2.19)
The unnormalized intensity estimate of the composite pulse profile is
biO) = (S0) but) (2.20)
S =S, + —¢l—— [(ft - f:b;(t-l)N,-,)’ - sc-x] (2:21)
2 azl-l [£ )
=]
. . Nea .
i) = b1 + (g - b(t-1)] (222)
Y af*-N,

The parameters a; a2 and a, are the weighting factors for the model coeflicients, the energy in
the deconvolved waveform, and the pulse intensity, respectively. The process N; is given by
(2.5). Fig. 2.1 illustrates the block diagram of the joint estimation and excitation detection sys-

tem.

The operation of the system with these transition dynamics is essentially as follows. Once a
pulse is detected, the Markov chain is forced into its lowest state, p,; thus raising the threshold
and reducing the probability of false alarms over the interval immediately following the detection
of a pulse. Once the time interval a, - J; has elapsed, the Markov chain is restored to its state

at the time that the last pulse was detected. Fig. 2.2a illustrates the residual from the AR
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approximation and the adaptive threshold used to detect the pulses. Note that the residuals are
clearly non-gaussian. Fig. 2.2b shows the residuals after the detected pulses have been removed.
Fig. 2.2c shows the estimated pulse rate as defined by (2.12). The dash line indicated the pulse
rate uncertainty as given by (2.17). The advantages of this procedure are: 1) the near-periodic
nature of the process may be explicitly modeled; and 2) the "period™ of the pulse train is adjusted

adaptively, and the probability of false alarms decreases as o; decreases.

The ability of this algorithm to track pitch period variation and detect unvoiced speech is
illustrated in Fig. 2.3. Fig. 2.3a is the beginning of the phrase * Thieves who rob .. ® . The
estimated pitch rate is shown in Fig. 2.3b; note the transition in pitch period and detection of
unvoiced regions. In this example the pitch pulse was assumed to consist of three successive time

samples. The estimated weighting coeflicients are illustrated in Fig. 2.4.
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24 CONCLUSIONS

A new approach to the pitch detection problem of speech analysis has been presented. This
solution provides a mechanism to account for the structure of the pitch period, and thereby allows
a reduction in pitch detection errors (false alarm rate). The key feature of this procedure is 2 new
decision-directed algorithm that incorporates a finite-state Markov chain model for the rate of the
process, and provides an exact, recursive nonlinear estimator for the rate. The algorithm allows

the estimation of time-varying model parameters and the variance of the input WGN process.

The algoritbhm bas been applied to samples of actual speech, and promising results have
beea obtained. It should be emphasized that much more work must be performed in order to
validate this algorithm in actual speech analysis, but these preliminary results appear encourag-
ing.

A further description of this decision-directed method of estimating a joint noise and jump

process was presented in the first ONR project report, M736-1, Feb. 1983.
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3. PITCH DETECTION BY LEAST SQUARES LATTICE

af‘ : 3.1 INTRODUCTION
’s A new method of pitch detection for speech has been developed that is based upon the
” unnormalised pre-windowed least squares lattice algorithm. It is an extension of a previously stu-
:-:; died method |[LM] that involved the forward residuals and the so-called likelihood variable. By
..: incorporating information from the forward residual covariance, well defined pitch pulse locations
| - are produced from which the period can easily be determined.

=3

?S'_E A well known pitch detection method (LPC-10) [NSA| using the average magnitude
'-:, difference function is discussed in Section 3.2. The unnormalized pre-windowed least squares lat-
, tice algorithm, which is fundamental to our approach, is summarized in Section 3.3. The new
‘3.'. \ method of pitch detection and the pitch variable is presented in Section 3.4. Simulation results
;‘éz‘ ’ using sampled speech and comparisons are made with LPC-10 are in Section 3.5.

152 - An efficient speech representation that captures the basic patterns in speech is essential for
;§ speech transmission at low bit rates or for speech recognition. The most popular parametric
s ';: speech model consists of a linear fiiter with time varying coeflicients driven by a time varying
e excitation process. The Linear Predictive Coding (LPC) [MG], [RS] model has an all pole filter
Z: with regularly updated coeflicients excited by either white noise or a periodic pulse sequence. The
ib Slter represents the time varying nature of the vocal tract. The filter parameters determine the
. spectral characteristics of the resulting sound for both types of excitation. The periodic pulses '1
'\‘, generate voiced sounds such as vowels while unvoiced or hiss sounds are produced by the white
,_:s noise process. Thus, the important parameters of such a speech model are: (1) filter coeflicients,
“ (2) voiced or unvoiced decision, (3) period of the pitch pulses (if voiced), and (4) signal energy.
’f:‘: Based on the above parametric speech model, Fig. 3.1 displays the corresponding speech transmis-
‘: . sion system. The analysis component of the system determines the speech parameters which are
‘ . thea encoded for transmission across the channel. At the receiver, a synthesis filter characterized
is: by the received coefficients is driven by the appropriate excitation process to generate a waveform
s":

e
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which hopefully sounds like the original speech.

The temporal information carried by the periodic pulses or the change from noise to pulses
is perceptually very important. The eflect of errors in the excitation cause severe distortion in the
synthesized speech. Errors in estimating the filter coeflicients cause changes in the spectrum of
the sound which tends to muffle the speech sound. Several techniques have been developed to
estimate the filter coeflicients. Unfortunately, the periodic excitation component is the most
difficult to estimate. Our research activities in this area bave been directed at better determina-

tion of the occurrence of pitch pulses.

3.2 STANDARD PITCH ESTIMATION TECENIQUE

The pitch detection procedure used in LPC-10, the National Security Agency standard for
2400 bit per second speech transmission, was used as a benchmark for pitch period estimates, see
Fig. 3.2. The transmitter is comprised of the necessary components required to determine the
parameters of the above speech model. Note that the reflection coeflicients (RC), energy (RMS),
voiced funvoiced (VUV) decision, and pitch for 3 segment of speech are encoded for transmission.
A speech segment is typically 180 samples (8000 Hz sampling rate).

The pitch information is obtained by a series of operations on the speech waveform as indi-
cated by Fig. 3.3. First, the speech is filtered by a low pass Butterworth filter (800 Hz
bandwidth). This output is then whitened by a low order adaptive inverse filter to remove the
speech formants. The average magnitude difference function (AMDF) of the resulting waveform
is then computed as in (3.1) where z, is the low pass and inverse filtered speech and L is the

length of the speech segment [RSCFM|.

1 L-3
F.-T.z |zs-2a] , n=-L-1),..0..,(L-1) (3.1)

=@
Deep nulls occur in F, at delays corresponding to the pitch period of a voiced sound baving a
quasi-periodic structure. From this information, a pitch decision algorithm involving dynamic

programmiag determines the pitch period for the speech segment. The voiced/unvoiced decision

is made from a zero crossing analysis of the speech and the energy of the low pass filtered speech.
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3.3 PRE-WINDOWED LEAST SQUARES LATTICE

Since the pitch detection scheme utilizes parameters from the Least Squares Lattice estima-
tion algorithm, this algorithm will be briefly introduced here. The "unnormalized” pre-windowed
least squares lattice algorithm [Lee] was first derived from the well known multi-channel Levinson
(LWR) algorithm for stationary processes. A more complete description of recursive least squares
estimation is presented in [T]. The LWR solution involves solving the so-called normal equations,

(3.2) recursively for the forward and backward predictor coeflicients ¢; and ;.

1 b
o 1 [
82 . .
R' = R' 5, i (32)
. b, 0'
B 1 R,

The (ensemble) covariance matrix of the process is R, and R, and R; are the forward and back-
ward prediction error (i.e. residual) covariances. The forward and backward residuals ¢, r and

r,,r are obtained from the predictor coeflicients and the process yr.
¢.r = yr + ‘ﬁl 8 ¥r-i rr ™ yr, + 2 b ¥rpei (33)
- =]

In the derivation of the LWR algorithm, the mean square prediction error is minimized or
equivalently the following orthogonality property is satisfied at each order-update recursion (E

denotes expectation).
E(¢rm)=0, T-p<k<T-1 (3.4)
When the desired filter order N is obtained, the recursions terminate resulting in only O(N?) com-
putations compared to O(N?) required to simply invert R,.
It can be shown that the LWR algorithm leads naturally to a lattice flter structure that
computes the forward and backward residuals, However, the reflection coeflicients are fized
(time-independent) since the recursions are strictly an order-update solution for a stationary pro-

cess with known second order statistics R,. As a consequence, the LWR lattice solution is inca-

pable of tracking statistical variations.
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‘j . Consequently, the pre-windowed lattice algorithm was developed to track nonstationary
processes without any knowledge of the underlying statistics. Because the statistics are assumed
3 ) unknown, the sum of squared prediction errors weighted by ) is minimized instead.

% .EE. At el . (3.5)

The exponential forgetting factor, A (0<)<1), permits more rapid tracking of statistical varia-

tions in the process. The resulting solution extends the LWR solution to include time-update

- recursions so that the reflection coeflicients become time varying in general.

In order to introduce the time-update expressions, subscript T has to be appended to the

LN,

coeflicieats to indicate that they are time-dependent. The forward and backward predictor

W
. coeflicients become g, r and b, r. The sample covariance of the process, R, r is defined as in
i (3.6).
3 o - - by vr
R,r=YJr Y, 1 where Y, =1]. (3.6)
; 0 . 0 yo « o yr_,
s,
: An zuxiliary set of coeflicients is necessary to facilitate the time-update expressions. The
FA
t particular quantity of interest is known as the likelibood variable, 7, r, and acts like an adaptive
> weighting factor involving previous data.
Y Tp.r = | %, T 3.7
- ».T VT'---v”T-p' Rp. lllr.---,llr.;l ()
h The resulting algorithm is denoted pre-windowed since the data matrix (3.6) assumes that data
e prior to y, is exactly zero. Without going into the details of the derivation, we now discuss the
MY
! algorithm and the corresponding lattice structure of Fig. 3.4.
W,
w The input/output expressions for the forward and backward residuals of each lattice section
A use KJ,, r and K], , r, the forward and backward reflection coeflicients.
-~
§ Gerr =61 - K111 (3.8)
. tper,r =1y ra- Koy 11
I The lattice structure and (3.8) follow directly from the LWR solution except that in this case, the
: coeflicients are time dependent (denoted by the subscript T). The order-update expressions for
:
1

-; ’&'. '.. .S"l. KW -',., 1 “'.*- "-n \\. .-.#. \.\"‘1 " hq -‘. ..(: ;,.:,- - e _.‘-.. i
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the forward and backward residual covariances also follow from the Levinson solution.

R,'+ ,T = R;'.r - K,'+ LT Ap+ LT (3-9)

R"-t 1.7 *= R;.I‘ - K:+ LT 8yerr
The sample partial correlation coeflicient (PARCOR) is the A, ; r. When appropriately normal-
ized, the partial correlation coeflicient becomes the reflection coeflicients which have the desirable
numerical {eature of being bounded by & 1.
Kjv1r= 8)+1r R, T Kyorr =8y 1r By (3.10)

Here R, and R,'r_, are the matrix inverse of R, r and R; r_,, respectively. The order-update
expressions for the covariances (3.9) are employed initially when the time index is not greater

than the desired filter length N.

The remaining recursions in the algorithm involve the likelihood variable and represent the
major difference between the LWR solution and the adaptive lattice solution. The PARCOR
variable can also be time-updated.

Bperr=r8yrrat o /{(1-1r) (3.11)
When the time index exceeds the filter order, the covariances are time-updated instead as in

(3.12).

R:+ 1,7 = by R;¢ 1.7 + c'2+ ,T / (l = 7),1'—!) (3'12)
Rysir=XNRj 114 + "p2+ wr/(1-1,r)

The likelihood variable is updated as in (3.13).
Yy, T ™= Ty, v + rp’,f R;,'T (3'13)
It can be shown that the range of 7, r is between zero and one.

The complete set of order and time-update recursions of the unnormalized pre-windowed

adaptive lattice algorithm with exponential weighting are given by (3.8) to (3.13).
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3.4 PITCH DETECTION BASED ON LEAST SQUARES LATTICE

Q) The method of pitch prediction is an extension of previous results [LM] obtained with the
-:: unnormalized pre-windowed lattice algorithm of Section 3.3. This previously studied scheme util-
"' ized information contained in the forward residuals and the likelihood variable to determine pitch
;., pulse locations in the speech waveform. The results were promising since well defined pitch pulses
;’é could be identified. However, in addition to these desired pulses, spurious less dominant ones
;: were also present. Removing these from the waveform required a high degree of heuristic factors

that resulted in limited success.

_., The new method of pitch detection enhances the previous results by employing the forward

':‘ residual covariance. Consequently, more clearly defined pitch pulses can be obtained so that less

:f:: heuristic factors are required to identify the desired pulse locations. The significance of the lattice
\:: variables used in the pitch estimation process; forward residuals, likelihood variable, forward
::: residual covariance is discussed.

.-:E Forward Residuals

-

'_ Consider a data sequence y, where the time index & ranges from a finite time in the past
. (denoted zero) to the present time T. The p® order forward residual ¢, 7 is then defined as the
-: difference between the actual value yr and a linear least squares estimate 1; T|r-1,7-p that

:; involves only p previous data samples (yr_, , ..., yra)

- 6,7 = V1 ~ ¥ 1|71 1-p (3.14)
:E:: This estimate results from the projection of yr on the space spanned by the p previous measure-
_..: ments. The coeflicients for a linear predictor are o, 7 ;.

: u T|T-1,Tp =~ .gl 8Tk Y1-i (3.15)
'3 Now, ¢, r represents the new information in yr that is not present in the p previous meas-
Ca

: urements. As a result, it can provide information concerning waveform changes that may not be

::: ’ as obvious in the original process. It is precisely this feature of the residuals that is important for |

' pitch detection. If one observes a voiced segment of speech, the quasi-periodic structure is easily J
0

> -

e’
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seen. However, it is difficult to consistently identify waveform locations from which to reliably
extract the pitch period. This occurs since there is a high degree of correlation between speech

samples [RSCFM].

Since the residuals are a whitened form of the speech process, they provide more clearly
defined events from which to identify the pitch period. There is much other information con-
tained in the residuals, extraneous to pitch detection, that must be removed or masked. This
function is provided by the likelihood variable and the forward residual covariance. Since ¢, 7 is
not truely a whitened process, ie. innovations and since as much uncorrelation as possible is
required, only the highest order residual ey r is considered. The true innovations involve all past

data, yo,..., ¥Yr1

Likellhood Varlable

The definition of the likelihood variable 7, r from (3.7) in terms of the sample covariance

R, 1 is (3.16)
To.r = thzf-' Rp_.'ll' Yr. T where YT:T-' = [ Vrs---s¥roy ]1‘ 3{3‘16)

For a (zero mean) Gaussian process, the p® order likelibood function is p(Yy. r-p) whete R, is

the ensemble covariance of the process.
P(YT;T-;) = (2 ”)-'/2 ‘ Rp | -2 exp( "‘/2 Ylt: T-» Rp-l Yr. T-» ) (3-17)

Thus 7, r, called the likelihood variable is an estimate of the exponent of the likelihood function.
Although not obvious from this result, it has been shown (by simulation) that v, r is a good indi-
cator of deviations from a Gaussian distribution [LM, ML]. This is of course desirable for pitch
detection since the speech model consists of a Gaussian component for unvoiced segments and &
non-Gaussian quasi-periodic component for voiced segments. Thus, sudden changes in 17, r
should indicate the onset of voiced segments in speech. In fact, simulation results show that .1

does change significantly for voiced speech segments.

The likelihood variable detects general statistical deviations (see Section 3.5). Consequently

other speech characteristics such as plosives, which are not quasi-periodic, are also detected by
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\‘;\:

s

s -

g Nevertheless, promising results have been obtained by multiplying together the forward

residual signal and the derivative of 4, y. Simulations have shown that much of the extraneous

& to ot fo fu h
‘_: ) “: oty

information contained in the forward residuals is removed to expose well defined pulse locations

from which to identify the pitch period. However, as mentioned before, spurious pulses generally

.
.
+ g% o

-:3 remained which were then removed by a combination of thresholding and an exponentially decay-
-
2N ing function that basically extracts the largest peaks over the waveform. These heuristic methods
"
can be reduced by the enhanced pitch detection method. The new method which utilizes the for-
.\‘
:::‘_\ ward residual covariance further reduces the occurrence of these spurious pulses
o
% without thresholding.
o The role of the forward residuals is important since +, y corresponds precisely to their nor-
1) .
(- {4 malized sum (squared).
PSR
PN
> T, r = t Riteay eirensy (3.18)
k=0
: Thus 7, r contains information from p measurements see (3.16). For the same reason that ey r
:'.:, is used, only the highest order quantity 7y y is used for pitch detection; simulations have shown
* ." that 7n r produces better results (than lower orders) - namely well defined pitch pulse locations.
) ‘::
:f_ Forward Residual Covariance
S0
é'"': Recall the time-update expression for the forward residual covariance is (3.19).
. Ricie=XMRj, ra + 3'2+ wr/(1- ,1-1) (3.19)
It is essentially the sum of the present and all previous (exponentially weighted) forward residuals
squared. Since, the eflect of the initial order-update recursion becomes negligible, especially with
B the exponential “forgetting” factor, )\, the eflect of the initial order-update (3.9) can be ignored.
n_’.%
.- E Simulations indicate that the effect of 7, r_, on R, r_; is small and can be ignored.
Y
QRN r ' 2
oA Rivrr= 3 2 ¢fons (3.20)
- 4 4 =0
o

As a consequence of this lengthy memory, the covariance does not change significantly except for

5
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large (magnitude) increases in the residuals. This may occur, for example, when the variance of

the underlying process increases as in the case of voiced segments of speech. Furthermore, the
covariance does not change much for decreases in the residuals. The degree of change is aflected

directly by the value of )\, the memory factor in the algorithm.

This is a desirable feature, not shared by the likelibood variable, since the covariance can
detect a specific event of the waveform. Thbus it becon:>s possible to consistently track recurring
large-magnitude increases in the speech waveform. By further masking (multiplying time signals
together) the forward residuals with the derivative of the covariance, a single event in each period
of the voiced segment can then be emphasized and therefore be more easily detected. In fact,
simulation results show that employing the covariance does enhance significantly the pitch pulse
locations. Consequently, the peed for thresholding is reduced and windowing can be used instead

of an exponentially decaying function.

Simulation results also show that the highest order covariance Rf y provides better results

than lower orders; this appears to be related to the reduced correlation of the forward residuals

CN.r.

Method of Pitch Detection

The fundamental concepts underlying the new method of pitch detection have now been dis-
cussed. Those concepts can be combined into a single pitch detection variable. Recall that the
likelibood variable detects changes in the process statistics. Consequently, it's derivative (i.e. first
order time difference) indicates the intensity of those changes.

SINT = INT - IN.T1 (3.21)
If the forward residuals are multiplied by (3.21), then statistical changes in the process cam be
emphasized. However, since (3.21) detects more events than that required for pitch detection, the
residuals are multiplied by the derivative of the forward residual covariance.

6Riz = Rivz - Riza (3:29)
This will then emphasize only those statistical changes that also include an increase in variance.

Thus the complete pitch detection variable, denoted ny 1, is (3.23).

LALA
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nn,r = POS (enr Snr SRN ) (3:23)
where POS simply retains positive results of the quantity in parentheses.

Y Equation (3.22) clearly indicates a specific event in each period of a voiced speech
‘J'._a, waveform, see Section 3.5. For unvoiced speech, pitch pulses are not produced by (3.22) so that
the need for separate voiced/unvoiced decision logic is eliminated. A summary of the (scalar

N case) pre-windowed lattice algorithm with (3.20) to (3.23) incorporated follows on the next page.
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. SUMMARY : PITCH DETECTION VARIABLE
UNNORMALIZED PRE-WINDOWED LATTICE ALGORITHM

Initialization:
Ry ™= Ry ., == 32 priori estimate N == filter order
For each observatioe yy , T 2 0:

Cor=ror™=yr T.r=0 Rir=R{r=\R§r,+ yryr

Forp =0,... mia {N,T}-1:

Apirr= A8y 10+ G rrra/(l-7010)
Ty.r ™= Yy r + 'pz.f / Rp'.r
Kyvir=A8,.11 | R} 1 Koir=8,r /Ry

Gar=e¢r-Koarnr, har=rnr.-K.arer

It T < N then:

R.'o .7 ™= R:.r = Ku'-r 1.7 81

Ricvrw Rypy - Klorr 8)011
Else:

Rivir=ARiira+ i/ (1-7,14)
Rjyvr=XNRjoyra+ rfrr/(1-7,1)
INT = Inag - Thr [ Rie
Oyvr = Inr~Inra RN r= Rir-Rira

nn,r = POS (6R4,r In,r enr )
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8.5 SPEECH DATA RESULTS

Some simulation results obtained with the new pitch detection approach using the variable
ny,r are presented. The following phonetically balanced sentences, developed by the Advanced

Research Projects Agency (DARPA), were studied.

File 1: 'cats and dogs each hate the other’ ; male speaker

File 2: 'the pipe began to rust while new' ; female speaker
Both sentences were sampled at 8000 Hz. with 16-bit integer quantization. The analysis lattice
employed in the simulations had the following parameter specifications; Rg.; = R{_, == 100,000,
A == 99, and N == 10. This value of ) corresponds essentially to a window length of 100 samples

which greatly exceeds the filter leagth N used.

File 1

The speech wavelform of File 1 is shown in Fig. 3.5. The voiced segments are clearly visible
as those areas of (relatively) large magnitude. The first 2000 samples of this sentence which
cortesponds to the word ‘cats’ is examined in detail. The consonant ’c’ is visible beginning at
about sample 300 while the onset of the vowel 'a' occurs near sample 700, see Fig. 3.6. The
unvoiced letters 'ts’ are not visible in this plot. The segment of interest for pitch detection is the
vowel /a/ since it corresponds to a quasi-periodic voiced segment of speech. The goal is to
extract the pitch information from this segment. The variables used in ny r are shown separately

then the full pitch estimate.

The ten reflection coeflicients Ky r are shown in Fig. 3.7. This combined reflection
coeflicient Ky r corresponds to SIGN ( K% r K, r ) where SIGN simply applies the sign of K%
(which is the same as K}, r - see (3.10)) to the product in parentheses. A sudden change occurs in
all coeflicients at the location of 'c’ which is due to a change in the likelihood variable vy ¢

(caused by a change in the process statistics), whose influence on Ky r is through (3.10)(3.12).

The periodic structure of the coeflicient waveforms is caused precisely by the periodic nature of
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the voiced segment 'a’. In fact, this periodicity appears in all lattice variables, which is not

surprising since they each contain some combination of the forward residuals.

The forward residual ey 7 is shown in Fig. 3.8 and its covariance R} r in Fig. 3.9. Both of
these variables appear in the pitch detection variable nyy. We observe that ey y does
correspond to a partially "whitened” version of the speech waveform of Fig. 3.6. Certain events
are emphasized more than others so that the periodic structure is well defined. It is this result
that permits clearly defined pitch pulses to be exposed when cy r is appropriately masked by
Sty r and 6RY r. From the covariance waveform, the periodic structure consists of very abrupt
increases and exponentially decaying decreases (due to )\). In addition, 'c’ produces very little
change in the waveform which is desirable for pitch detection. Both of these results are of course

due to variance changes occurring in the original speech waveform.

The likelihood variable vy ¢ waveform is displayed in Fig. 3.10. It is seen that both ‘¢’ and
'a’ sigpificantly affect 75 ¢ or, in other words, 7y, detects (equally well) both types of statistical
variations; the onset of the unvoiced plosive 'c’ and the voiced vowel 'a’. This is desirable for
pitch detection but, as mentioned previously in Section 4, there is in a sense more information

thap necessary.

Next, Syy,r and SRY r are presented in Figs. 3.11 and 3.12, respectively. As expected from
Fig. 3.9, the dominant pulses of SRS r are positive and little emphasis is placed on '¢’; such is not
the case with Syy r. However, when the forward residuals are masked by these quantities, well
defined pitch pulse locations are obtained with relatively few spurious pulses as indicated in Figs.
3.13 and 3.14. Fig. 3.15 shows further improvement when éyy r masks SR r, but even better
results are obtained when both é7y r and SR r mask the forward residual ey r as shown in Fig.

3.16.

A more detailed look at ny r for samples 1000 - 1400 shows the quasi-periodic structure of
'a’, Fig. 3.17. Note that the less dominant pulses in any period of ny ¢ (if they exist) tend to
cluster about the desired dominant pitch pulse locations. Hence the need for thresholding is

reduced since windowing can be used to extract a pitch pulse location centered near the cluster.
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73
- ' For comparison with pitch results obtained with LPC-10, Fig. 3.18 displays a portion of ny r
{samples 800 - 1800). The upper row of numbers corresponds to the pitch periods obtained with |
. ":
-:::- the new method and the lower row contains those determined by the LPC-10 algorithm; the dot-
.
-~ ted lines indicate the boundaries of the 180 sample frames for which the LPC-10 pitch periods
cand were obtained. The new method using ny r provides results comparable to those of the NSA
A
<
N standard.
I
~a The words "and dogs’ (samples 3000 - 5000), from the same sentence (File 1), shown in Fig.
E~" 3.19 were also analyzed. The onset of 'a’ is visible at about sample 3200 with 'o’ beginning at
\,'* about 4600; the highly sinusoidal structure of the nasal 'n’ ranges from 3500 to 4500 and the two
JL N
;‘;; consonants 'd’ actually occur as one at about sample 4500 ('gs’ is not visible in this plot). Here
. the ny r does not produce (significant) pitch pulses for much of the highly sinusoidal structure of
}.i, the nasal 'n’, sce Fig. 3.20. However, by examining more closely the range 3600 - 4400 and by
changing scales, pitch pulse locations are indeed present, Fig. 3.21. Thus increased dynamic
R range results from the new pitch detection method which is a direct consequence of the product
s
:}' en.r &In.r SRY 1. This result is in a sense a trade-off required to obtain such well-defined pitch
1Y
\-" pulses. Nevertheless this effect is not a problem since pitch pulse locations can be determined on
- a local basis by windowing (e.g. 50 - 200 samples) so that the range of ny  over a window length
g
k is relatively small.
»
XX
Flle 2
, The pitch period of female speakers is typically less than that of male speakers so that it is |
: |
X o generally more difficult to consistently determine. From the second sentence, the onset of the
word 'while’ is displayed in Fig. 3.22. The consonants 'wh’ are barely noticeable so that the onset

of the vowel 'i’ occurs almost immediately at sample 1700. Good results are obtained with ny r,

. Fig. 3.23 and 3.24. The results concur with those of LPC-10, see Fig. 3.25.
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8.6 CONCLUSIONS

As 3 consequence of the lattice filter algorithm, the information needed to compute the
pitch period is available at each time instant. On-line pitch detection is therefore possible and
moreover additional parallel processing is not needed to determine pitch pulse locations. That is,
the recursions required to compute the reflection coeflicients that characterize the parametric
speech model also compute simultancously the pitch variable. Furthermore, the voiced /unvoiced
decision is inherent in the masking technique; either a pitch pulse is present (voiced) or it is not
(vnvoiced).

As an extension of previous results using the likelihood variable, the new method minimizes
the need for thresholding since more distinct pitch pulses are generated. As a consequence of this,

the exponentially decaying function used to determine the period can be replaced by a simpler

windowing technique,

...............
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4. RESEARCH ON RECOGNITION OF STOP CONSONANTS

4.1 INTRODUCTION

Current speech recogpition techniques can accurately determine the vowels within a particu-
lar word since vowels are of relatively long duration and change character slowly. Within the
class of consonants, the stop consonants are hard to distinguish due to their short duration and
transient nature. In order to recognize these transitional sounds, an estimation technique that can
track the changes is necessary. The approach presented here utilized the recursive exact least
square lattice estimation algorithm to determine an autoregressive model (hemce a spectral
representation) of the speech. This recursive algorithm updates its representation at every speech
sample using exponentially weighted past data. Thus it is possible to track the spectral changes
in the speech without much time smearing. The experiments performed here on natural speech
data were motivated by an attempt to better characterize the fast tramsitions that occur in stop
consonants. A representation based on trajectories of appropriate speech parameiers was

developed and analyzed.

The region of first and second formant (spectral peak) where each vowel typically occurs
was determined by Peterson and Barney |PB]. Diphthongs follow a trajectory within a known
region between the vowels. The current understanding of speech perception has not clearly
identified whether spectral characteristics are sufficient to distinguish transient consonants such as
stops. If the parameterization for stops was dependent on the following (preceding) vowel, the
task of automatic speech recognition would be more difficult. The results of Stevens and Blum-
stein [BS] indicate that the place of articulation for stop consonants is cued by spectral properties
in the 10 to 20 milliseconds period initiated by the burst onset. Their studies indicate that the
spectral properties of this short time interval appear to be invariant of the following vowel. This
burst onset of the stops lasts less than 160 speech samples at an 8 kHz. sampling rate. Ounce the
formant transition has started, the transition is dependent on the following vowel but can be used

as a context dependent cue for determination of the consonant, if the voicing condition is already
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t‘;'. konown. Fast estimation techniques are necessary to determine the speech spectra over such a

“ short time interval.

_:: The fast recursive exact least square lattice algorithm developed by Morf et al. [LM] esti-

::. mates the signal spectral by fitting an autoregressive model. By determining a new estimate for
' every speech sample using an exponential weighting of past data allows the estimates to keep up

:: with the short time signal characteristics. Section 4.2 describes the recursive lattice estimation

: algorithm. This algorithm was applied to natural speech words from a set of Diagnostic Rhyme
) Test word. The voiced stops /b/, /d/ and [g/ followed by various vowels, spoken by a single

',: male speaker were examined in detail.

o

_ The process of clustering observations should be insensitive to a transformation of variables

: provided the distance metric is appropriately changed. Thus a clustering in the space of reflection

j-,:_: coeflicients with a suitable metric is equivalent to frequency domain clustering. The technique

:: called Vector Quantization (VQ) was used in this study to perform the clustering of parameters.

. . The standard VQ algorithm is presented in Section 4.3. Experiments applying the technique of

» vector quantization, appropriately modified, have determined a suitable parameterization for dis-

"4 tinguishing the stop consonants. These modifications to the standard VQ technique are discussed

. A in Scctions 4.6 and 4.7.

? Section 4.4 discusses the results of applying the standard VQ method to consonant-vowel

" words. Section 4.5 looks at the diflerences in the same vowel spoken in different words. Section

- 46 introduces an augmented parameterization that includes information about reflection

; coeflicient trajectories that can assist in classifying stop consonants. Section 4.7 presents a new

- Classified Vector Quantization method and its application to consonant-vowel words. Section 4.8

summarizes the results of our procedure to recognize the voiced stops, /b/, /d/, [g/. A summary

3‘ and discussion of future research is in Section 4.9.
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4.2 RECURSIVE LATTICE ESTIMATION ALGORITHM

An alternative parameterization of an autoregressive model is in terms of reflection
coeflicients {p;}, in the lattice filter structure. The lattice structure can be related to the transfer
function of an acoustical tube formed from connected cylinders of differing diameters. The propa-
gation of acoustic waves down the tube experiences reflections and transmissions at each discon-
tinuity. The reflection coeflicients of the lattice filter structure can be related to the signal propa-
gation across a discontinuity in the acoustic tube model. Furthemore, the reflection coeflicients
can be interpreted as correlation coeflicients between the signals in the two paths of the lattice
structure. Thus the process of estimating reflection coeflicients is similar to orthogonalizing the
observed signal with respect to its delayed version. This is one reason why spectral estimation by
reflection coeflicients has been shown to adapt quickly. These techniques have been used success-

fully in speech analysis and synthesis, fast adaptive equalization and spectral estimation.

Recently developed techniques by Morf et al. [LM] recursively update reflection coefficient
estimates as new data samples are observed with exponential decay of past data. This algorithm
solves for the exact least squares fit to the observed data. The square root normalized algorithm,
(4.1), has a3 very compact notation and normalizes all signals to unit variance at each stage. The
response of this algorithm to synthetic signals with time varying characteristics and to speech

phrases was first studies in [ML).

Parrr = VI-vir V10011 Pasrr1 + Vo rtara

Ve, - -
Vaerr = 2,7 = Pu+1,T%s,T-1 (4.1)

V1-raerr V1-941,

Na,T-1 = Pa+1,TVa, T
V-t rVl-var

The tracking ability of the algorithm can be seen from the first four reflection coefficients

Nas)r =

computed from the first 40 ms. of 'did’ and 'bid’, see Fig. 4.1. The burst of the /d/ or /b/ and

the transition to the steady vowel /i/ is seen in the time waveform. The pitch pulses cause

momentary fluctuations in the coefficient values. The initial trajectories of the reflection
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:‘-: coeflicients are seen to be different, particularly at higher than first order. Yet they all converge

to similar values after the onset burst as the vowel sound stabilizes. Note that the vowel oscilla-
tion commences at about the same time in both words. The rise of the first reflection coeflicient
is diflerent during the burst onset. The second reflection coefficient is more steady in 'b’ and

changes suddenly at the beginning of voicing oscillation. The third and fourth coeflicients bave

l‘.‘.

different values for the different stop consonants. Certain similarities were noted in the reflection

coeflicient trajectories for all the trial words starting with 'b’, and likewise for 'd’. The reflection

TV Y
TR
PN Y

coeflicients determine a spectral representation so the formants (spectral peaks) can be estimated.
The second formant illustrates a rising trend for 'b’ with less of a change for 'd'. The acoustic

models for the stop consonants diflerentiate each by the slope of the second formant.
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4.3 VECTOR QUANTIZATION

Vector quantizers have been used for waveform and voice coding systems. Our application
of the vector quantization technique is to perform a clustering of speech sounds into categories
that can be identified with vowels and consonants. First the general framework of Vector Quanti-
zation is presented. A vector quantizer maps input vectors drawn from the AM-dimensional
Euclidean space RY into a finite set (codebook) of reproduction vectors (codewords) contained in
the space RX. A vector quantizer (VQ) is described by the input vector dimension (M), the
reproduction vector dimension (K'), the number of reproduction vectors (N), the set of reproduc-
tion vectors C = {%,,i==1,2, - - - N}, and the mapping of the input space into the set of repro-
duction vectors §(x). In our studies the reproduction vector is of the same dimension as the input

vector, M= K.

A VQ used to compression speech for ira.smission requires two functional blocks: an
encoder, which views the input vector x and generates the index of the reproduction vector
specified by G(x); and a decoder, which uses this index to generate the reproduction vector ;. A
VQ can be used to communicate over a digital channel by placing the encoder at the transmitter
and the decoder at the receiver and sending the index of the codeword across the channel. For
speech compression, each input LPC vector is mapped into a codeword of log,N bits per vector.
The bit rate is log,/V bits times the rate of generation of LPC vectors. As the bits per vector
increases, the codebook size grows exponentially requiring a similar increase in computational
effort and storage at both the encoder and decoder. The decoder stores the codebook and per-
forms the simple task of looking up the reproduction vector indexed by the encoder. The encoder
has the more complicated task of partitioning the input space into a collection of bins according
to §(x), one bin for each reproduction vector in the codebook, snd determining in which bin an

input vector is contained.

If we define a distortion measure d(x;k) which represents the penalty or cost associated with

reproducing a vector x by %, then the best mapping §(x) is the one which selects as the reproduc-

tion vector for x the codeword ®; that minimizes d(x;%,). With such a minimum distortion or
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nearest neighbor mapping, the encoder operates by computing d(x;%;) for s =12, -- - N, and
then selecting the value of ¢ (by a full search) for which d(x;%,) is minimized. This implies that
the bin associated with a particular codeword %; is the set of input vectors for which %; is the

minimum distortion codeword.

Vector quantization applied to LPC voice coders is used to encode and decode the autore-
gressive model generated by an LPC analysis of a speech frame. (The coding of the excitation
parameters is not considered here.) The LPC speech model is shown in (4.2).

of(1+ 0,27+ a2 - -+ 4+ 46,27?) = o/A(2) (4.2)

The order p used here is 10. Once the model parameters {0, 4,8, - - - 8,} bave been obtained,

they are coded by means of vector quantization. The input vector x to the VQ is the vector

[0 a,8; -+ 6, of model parameters. Each codeword is a vector [#; 4, ;2 - - &,]T that
represents a reproduction model (4.3).

Fif(1+ d g2+ G082 - - + b4 p27") = 8;]Ai(2) (4.3)

The distortion measure chosen for LPC vocoding is the modified Itakura-Saito distortion. It
can be regarded as a measure of the dissimilarity between the power spectrum |o/A(e’*)]2 of the
input model and the power spectrum |&;/A;(e’*)|? of the reproduction model. For this case of
sutoregressive models, the distortion can be expressed as

& R(x)a;

Ui

d(x;x;) = + lnéf-lno?*-1 , (4.4)
where &; is the vector [14;,4;7 - - 4,]7 and R(x) is a p+1 by p+1 Toeplitz correlation

matrix with elements {r,(k-j), k,j = 0,1, --- p}.
' i dé
- ST (ALN
(k) = [)]oja(em)|2em LS (45)
Since the last two terms in (4.4) do not depend on %;, they can be ignored when finding the

nearest neighbor of an input vector. Thus the encoding can be performed by computing

& R(x)a; /o7 + Ind} for esch i = 1,2, - - - N and picking the codeword that minimizes this quan-
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tity. This quantity can be efliciently computed in the following manner.

[r O)r, (0)+ 2 33 ry(m)r, (m)fo7 + lna? (4.6)
max]

-k
'L.(k)- b Gimbimes
m=0
Since the computation of distortion between an input vector and each reproduction vector,
d(x;%;) must be czlculated often, (4.6) is used to speed up the computations. Thus the codewords

are stored as the following p+ 2 scalar quantities.

ro O)/6F , 20, (1))}, 2r, (A6, . .., 20, (p)6} , 06} (7

The standard VQ algorithm proceeds by performing the following operations for every vec-

tor in the training sequence, see Fig. 4.2. First, find the codeword that is closest to each input
vector and compute the average IS distortion for all of the data. Second, for all the input vectors
that are encoded into a particular codeword, compute the centroid of the region and define it as
the new codeword. If the decrease in distortion is above a threshold, repeat the process again on
all of the training sequence. Otherwise, if the size of the codebook is below the desired number,

then generate additional codewords as perturbed versions of existing codewords.

APPLICATION TO SPEECH RECOGNITION

For the speech recognition task, the VQ technique is used to cluster the LPC speech models
into a few characteristic types. The use of the Itakura-Saito distortion measure provides a means
to cluster observed LPC models based on the distance between their spectra. After establishing
the VQ codebook on a training set, an unknown observation can be encoded 30 its closeness (dis-

tortion) to each codeword can be determined.

The LPC models used in this study are parameterized by reflection coefficients rather that
predictor coeflicients as in (4.2). The recursive lattice estimation technique was used to determine
a new LPC model for every speech sample rather than the common approach of once every 128 to
256 samples. The eflicient computation of the IS distortion measure (4.6) uses the speech correla-

tion function. The reflection coeflicients can be transformed into a normalized correlation
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sequence, instead of using (4.5).
p The process of encoding a speech sequence once codewords have been established proceeds
)
3.
:ﬁ in the following manner.
¥
“~
(i) Recursive lattice algorithm is applied to the speech sequence. Each speech sample gen-
i erates a set of reflection coeflicients, {k,,k;,...,k o}
ACY
,".: (i) The reflection coeflicients are transformed into the normalized correlations {r,(1),...,r,(10)}.
10
: (iii) Calculate o> = [](1-%3).
k- f=)
N
ey
Yo (iv) The input vector x becomes {lnd? 1,r,(1),...,r;(10)}.
(v) For each codeword, the distortion {4.6) is computed using x and the codeword description
-\. (4.7).
A
T (vi) The codeword with the lowest distortion is the reproduction vector X; and is associated with
that speech sample.
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4.4 ANALYSIS OF ENTIRE WORDS

In order to better understand the eflect of the lattice VQ on spoken words, our studies
began by examining entire words. The square root normalized recursive least square lattice algo-
rithm was applied to the speech signal. A short time constant, \==159/160 was used to track the
fast variations in the speech waveform, particularly during the stop consonant portion. A set of
ten reflection coeflicients were determined for every speech sample. The reflection coefficients
were transformed into normalized correlation coeflicients of order tea so that the standard VQ
algorithm could be used to obtain the codewords. The results of studying the two words 'bad’
and 'bat’ are presented in this section. Each word was sampled at 8 Khz. and converted to a 12
bit integer. The dl;ration of each word was more than 4500 samples so that more than 4500 vec-
tors were used in the determination of the codebook. This is contrary to the standard LPC

method of determining a single speech model vector for blocks of 128 to 256 speech samples.

The standard VQ approach uses the Itakura-Saito distortion measure to indicate how well
the codewords fit the input data. Another distortion measure was used to compare codewords.
The diflerence between the log of the spectra associated with the codewords was computed, called
the spectral difference measure. The limit of perceptual difference in two (autoregressive) spectra

was determined for subjective studies to be 2 db spectral difference.

The standard VQ algorithm was used to find codebooks of size four and eight for the entire
word, 'bad’ and 'bat’. When four codewords were used, the word 'bad’' was encoded into these
codewords as shown in Fig. 4.3. This figure shows which codeword was chosen (vertical axis) for
each time sample (horizontal axis). From Fig. 4.3 and 4.4, the speech waveform and the VQ par-
tition can be compared. Generally, there were two codewords for the vowel /a/, the other two
representing the other parts of the words. No codeword was determined that represeated the stop
consonant /b/. Here the codewords could not be used to distinguish the silence, the first stop
consonant, the vowel, or the final consonant. For these four codewords, the Itakura-Saito distor-
tions were .165 and .170, respectively and the difference between codewords are all greater than 3

db, so the four codewords are distinct.
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‘\:.: When eight codewords were determined, the vowel part was more accurately determined but

] ’ again a clear identification of the silence and the consonant were not make. The distributions of

- ‘ codewords, Fig. 4.5 and 4.6 show that three codewords represented the different stages of the !
\ vowel. In Fig. 4.5 for the words 'bad’, codewords one and five are used alternatively during the

vowel. This happens because these codewords are only 2.1 db spectral difference apart and hence
‘: not perceptually distinguishable entities. Similarly codewords three and seven are 2.3 db apart.
Thus although the IS distortion for 'bad’ has dropped to .099 for eight codewords from .165, the
additional codewords try to refined the specification of the vowel rather than distinguish other

o parts of the words. The spectral differences between the codewords is given in Table 1.

From the above experiments, we could not determine the codewords for the various parts of

P ‘.‘.'-' L

the words. Therefore, the steady state vowel part was extracted from each word and studied

e

separately.
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k 6.770 e. 047 9. 563 . 000 6.015 6.559  10.319 3
ol 2.133 3. 645 s. 322 6.01% . 000 3.453 s.823 s
! 3. 820 s. 261 7. 423 6. 559 3. 453 . 000 7.934 a
: . 347 3. 932 2.353  10.319 s.e23 7. 938 . 000 9
?-' 3. 500 &.891 8.231 3.376 s. 403 4.806 9.277

spectral differences (db) of 8 codewords for /bad/

. 000 8. 381 S. 954 9. 669

3. 591 7.109 6. 439 10.
8. 281 . 000 S. 198 2. 609 7.3864 3. 008 4.150 4.
3. 954 95.196 . 000 4. 804 S. 908 3. 142 4.018 7.
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spectral differences (db) of 8 codewords for /bat/
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v 4.5 ANALYSIS OF VOWELS

j-: Since the vowels dominated the previous experiments, the steady state vowel parts of
:’,CJ several different words were studied to find the general codewords representing the vowels. From
-

the words, 'bad’, 'bat’ and 'gat' the steady state yowel portions were extracted for a training

sequence to generate a codebook for the vowel fa/. Similarly the steady state parts in the words

ror

(Y
DRI

"bid’, 'bit’, 'did’, 'dip’ was used for the vowel /i and 'boast’, 'bowl’, 'dole’, and 'ghost’ was used

&
b
i.

N

- by T,

for the vowel /o/. When only one codewords was determined for each vowel, the codewords were
surprisingly similar. Table 2 shows that the codewords for different vowels differ between 3 and
4.4 db. For words containing the same vowel, the codewords for the same vowel sometimes

differed as much as the difference between /a/, fof and [if in Table 2.

TABLE 2: Spectral diflerence between vowels
Codeword [s/ o/ 1/
/a/ 0.00 4.39 3.29
Jo/ 4.39 0.00 3.00
li/ 3.29 3.00 0.00

When four codewords were used for the steady state part of the vowels, the codewords for

the same vowel in diflerent words were often different, see Fig. 4.7, 4.8 and 4.9. Often 3 vowel

was split into two codewords, one for the beginning and another for the end. For /i/, the begin-

;E ning of the vowel is represented by codewords 3 and 4, and the end of the vowel is codewords 1
_J_ and 2. Some of the four codewords were quite similar, for example in /o/ codewords 1 and 2 and
“: codewords 2 and 4 are less than 2 db apart, see Fig. 4.9. When eight codewords were used for the
3‘{' /a/ vowel, many of them were very similar, see Table 3, therefore it is appropriate to use four
::'::_: codewords to represent different stages of the same vowel.
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1. 650 . 0C0 3. 673 1. 868
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a. %08 3. 672 . 000 4,064
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! .00 | ' ’ *
}', .00 1000.00 2000.00 3000.00 4000.00 5000.00
S standard VQ codeword for /o/ 1S = .0543
Figure 4.9

.;{ . 600 2. 389 2. e52 2. 348 1.718 2.078 2. 628 3 a2 '
&

2. 369 . 602 3.733 2 438 2793 1.£07 3. se3 3. =83
1 2. 833 3. 743 . o00 3. 310 2. 557 3. 083 1.039 3.a%0
-
..g 2. 468 3. 43958 3.310 .0%0 1. 410 2. 643 3.178 2. 783
L9
\4

1.718 2. 793 2. 397 1.810 . 000 2. 204 2. 707 2. 902
- 2. 078 1. 607 3. 033 2. 643 2. 304 . 000 2.839 3. 138
.
- 2.639 3. %83 1. 039 3.178 2. 707 2.839 . 060 3. s8s

3. 424 3. %43 3. 4%0 2. 783 2. 902 3.138 3. 8% . 600

. spectral differences (db) of 8 codewords for /a/
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These codebooks for the respective vowels were tested to see if they could distinguish the
correct vowel. When the training sequences of the vowels was encode by each codebooks, a IS
distortion was determined, see Table 4. The IS distortion for 3 vowel codebook on the wrong
vowel was at least four times higher than for the correct vowel. Therefore, it is not very difficult

to distinguish the vowel in each word using the standard VQ technique.

TABLE 4: Itakura-Saito distortion between vowels
Vowel /a/ Jo/ li/
codebook /a/ 058 460 340
codebook /o/ 418 .062 .490
codebook /i/ 365 447 082
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4.6 MODIFIED VQ WITH TRAJECTORY INFORMATION

From the previous resuits, the vowels are not hard to distinguish because they are relatively

stationary and of long duration. However, the stop consonants (like 'b’, 'd’ and 'g’) are transient
in nature and are of short duration, typically less than 20 ms. (160 samples). Using a LPC based
VQ system that determines speech model parameters every 128 (to 256) samples would not yield
enough information to identify these very short sounds. From studies in acoustic phonetics, it is
known that the formant trajectories of these consonants follow different paths. If the parameteri-
zation used to represent speech sounds included information about formant trajectories, these
transitional sounds would be easier to identify. As seen in Section 3, the trajectories of the
reflection coeflicients were different for the beginnings of the words 'did’ and 'bid’. A steep
change occurred during the initial consonant while during the steady state vowel, very slowly
changing coeflicients resulted. By incorporating this trajectory information in the speech parame-

terization, recognition of transitional sounds should be improved.

v The trajectory of a reflection coeflicient was determined as a smoothed derivative. During
the vowels, the reflection coeflicients had a ripple due to the pitch period. This ripple in the oth-
erwise steady reflection coeflicient values bad an undesirable influence in the modified VQ
approach. Thus a linear approximation over 15 sample points to the derivative of the reflection
coeflicients was used for the trajectory information. The fluctuations due to the influence of the
pitch were smoothed out. The trajectories of the first and second order reflection coeflicients,
denoted Ak; appeared to be the most indicative of changing signal characteristics so they were

b included in the modified VQ technique. The standard VQ algorithm of Section 3 was modified so
;

VR

that the codewords conmsist of two parts; the original correlation coeflicients and the trajectory of
the reflection coeflicients. The distortion measure used for the spectrum part in the modified VQ
was still the IS distortion. The Euclidean norm was used as the distortion measure for the two
reflection coeflicient trajectories. The total distortion was the weighted sum of the IS distortion
and the Euclidean norm of the trajectories. The centroid (dk;) was calculated as the averages of

the reflection coeflicient trajectories. A weighting factor for the Euclidean norm was used to bal-
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ance the two distortion measures. This factor is the ratio of the minimum IS distortion (M) to

KRR IR
e e e e
L ]

[

twice the variance of the reflection coeflicient trajectories (D).

s

(l

)

MODIFIED VQ ALGORITHM

b

N == number of the input samples

Aki(n) == reflection coef ficient trajectory ot sample n

&
e

dk; = codeword for reflection coefficient irajeclories
IS == Itakura—-Saito distortion
M = minimum IS distortion

D; = variance of reflection coef[icient trajectories

INITIALIZING : dky=0 dk;=0 M==0
N
D, = LY ak¥n) i=12
N s=]
ENCODING: choose the codeword that minimizes the total distortion

total distortion=IS+ —S—(Aky-db, P+ M—(Ak,-dk,)
2D, 2D,

UPDATING: D, = —IﬁZ(AI:.?—dkf)
M == min IS distortion
. ) == L‘—l— —dk.
avpdiat (dk) = -1 (A ki-dk)

total distortion = min IS+ %avydiat(dkl)-;- %avydist(dkz)

NEW CODEWORDS: compute the centroids of the standard VQ parameters and Ak,

TESTING: if relative decrease of distortion < threshold : go to splitting

else : go to encoding

SPLITTING: il number of codewords = size of codebook : stop
else :  split codewords

go to encoding

-
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fa The modified VQ approach was first applied to simulated data that represent the ideal
- acoustical models of the stop consonants. The simulation of the sound 'ba’ had two poles (750 Hz

:i:: and 1600 Hz) for the steady state vowel while the first formant went from 200 Hz to 750 Hz and

<

_' the second formant went from 1400 Hz to 1600 Hz in the first 20 ms (160 samples) of the transi-

tional part. The reflection coeflicient trajectories were approximately constant in the tranmsition

region and zero in the steady state region. The reflection coeflicients of fourth order were com-

LS
“ ’
sXalais’s

g

i

puted from the simulated data. When the size of the codebook was two, the result turned out to

2

be perfect, the two partitions were exactly the transitional part and the steady state part. Next
the considerably more difficult problem of real speech data was studied using this modified VQ

approach.

In order to find the codeword for the consonant 'b’, the beginnings of three words which
start with 'ba’ (‘bad’, 'bat’ and 'bank’) was cascaded and used to generate the codebooks of size
eight of both modified and standard VQ (Table 5 and 6). The IS distortions were very close in
these two codebooks. The distributions of the modified codewords are in Fig. 4.10. Basically, one
codeword was used for the silence (codeword 3) and one for the transition (codeword 8). The
other six codewords represented the vowel. A consistent pattern of change from the codeword for
silence (3) to the same codeword (8) occurred at the transition time in all of these three words.
This eflect was not seen in the standard VQ (Fig. 4.11). Instead, at the beginning of each word,
several codewords were used before reaching the vowel. It appeared that there were too many
codewords for the steady state parts, so the size of both codebooks was reduced to four. Surpris-
ingly, the difference of the vowel /a/ in different words was so important that three different code-

words were used for the same vowel in three different words. The other one represented the tran-

»
sitional parts while the leading silence was encoded as a vowel.
Going through exactly the same procedures but using 'gab’, 'gafl’ and 'gat’ for 'ga’, different
types of problems were encountered. In the case of eight modified codewords, there was one for
the silence and still too many for the vowel, but it was very 'unstable’ at transient time. This did ;
|
not happen in the standard VQ. But the standard VQ mapped most of the beginring of 'b’ into
MR I O P SR S AN _‘V."v.'-“ B IP I IR I ."‘.' S o ..‘1. D -'--‘-A‘-‘u.‘-.". I .‘.\-\4- -\'~“.. - ’ “ ’
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the silence. If four modified codewords were used, there was one for silence (codeword 1) aad the
same two codewords (2,4) representing two stages of the vowel in three different words as in Fig.
4.12. This was better than that in 'ba’. But, it still alternated between two codewords (1,3) at
transient time again. The upstability persisted in the modified VQ but not in the standard VQ
(Fig. 4.13). Comparing Fig. 4.12 and 4.13, if the eflects of the reflection coeflicient trajectories is
included, the transition can be detected earlier at the beginning of each word. However, the stan-

dard VQ assigned all the samples of 'b’ to the codeword for silence (1).

The differences of the same vowel in different words were very large so that many codewords
were used to represent the same vowel. To find the typical codeword for the stop consonants, the
strong influence of the following vowel had to be diminished. This lead to a classified VQ algo-

rithm where the number of codewords used for vowels was restricted so more codewords would be

determined for the transitional parts.

I N R L A L S




.n; _-" .~' D

.

LA
RS ]

.
-“

“ g
r

-

o ox ", "
vl Sl )
.“.‘.- .

L4

FoPS W
MY

4;¢

~76~
]
Y-TSY 2 4 . 262139 . 279971
~. 123740 .177142 . 446814
. 309272¢-01 . 247709
| = 429619r-04 . 230907¢-03
. 823386 . 633448 -. 152013
- 1739831 . 124693 . 501873
. 642003e=02 . 134824¢-01
| = 663232-04 . 98333%¢-04
' . 349098 . 205957 . 128860
-. 615857¢~-01 . 715450e-01 -, 422913e-01
.337069¢-01 . 369361e-01
. 783153e-02 . 155118e~02
. 865827 . 626488 -. 694115e-01
-. 280562¢-01 . 295258 . 182878
. 873702¢-01 . 123212
- 198653e-03 . 3348087¢-03
. 745936 . 389708 . 1578%
-. 143733 . 144030 . 442576
. 832621 =01 . 276019
-. 208266¢~-03 . 372548e~03
. 881377 . 763747 -, 224618
. 135996 299462¢-01 . 357397
~. 391172¢~01 . 432891 e-02
-. 342635e-04 . 696324e~04
798454 . 434789 -, 258210
-. 200801 . 276570 . 196048
. 152234 . 16452002
-. 143626¢-02 . 124287 -02
. 919844 . 745508 -, 1206%
. 139044 . B29787¢-01 . 106712
. 153276 . 637693e-01
. 495182¢-03 . 602024 802

Modified VQ codewords for /ba/
(last two entries are trajectories of

. 378734
. 433686

. 3228%0
.378517e-01

. 1859463e-01
. 303090e~01

. 363710
. 330512

. 375382
. 357337

. 183121
. 100329

. 345911
. 324956

. 9468035¢-01
. 111964

reflection coefficients)

Table 5
1
l . 302182 . 194437 . 119021
. 23%479¢-01 . 610928e~02 - 876120e-02
- 249855e¢-02 . 39995%e-02
. 825190 . &634324 -. 149538
-. 173634 . 123710 . 9502010
. 7646131 e~02 . 106940e-01
. 799472 . 437494 -, 258349
-. 198613 . 270308 . 210387
. 154198 .101171e-03
. 873909 . &36323 - 648970¢-01
. 212173e-02 . 274094 . 187848
. 76546408 . 133481
. 723796 . 335170 . 202934
-. 133175 . 154734 . 441683
. 46055S8¢-01 . 249998
. 881331 . 783173 - 224739
. 136009 . 300092e-01 . 356547
- $9112%e~01 . 3847B4e-02
. 834473 . 417306 -, 793471¢-01
-, 104307 . 182997 . 16679%
. 187232 . 339953e~01
. 9203118 . 768690 =-. 930458¢-01
. 199437 . 6770660~01 . 105970
. 199892 . 82R916e~01

- . s

. 671577¢-01
=-. 140060¢~01

- 323133
.385303e-01

-, 348869
. 319899

-. 397912
. 333131

~. 39%472
. 385229

~. 184928
. 100334

-. 287117
. 3488434

~. 9230688e-01
. 117992

Standard VQ codewords for /ba/
Table 6
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-._ 4.7 CLASSIFIED VQ

A classified VQ design allows a time varying signals to be divided into different components
where each component is quantized to a desired accuracy. When VQ is applied to a spoken word,
the codewords represent primarily the vowel sounds since they are the longest and most station-

ary sounds, see Section 4.4. When only vowels are quantized, there is a difference between repeti-

: Af'l."‘ff 'l “e 8 o
¥ QS

A

;:'_::: tions of the same vowel in difference words. This difference can be similar to the diflerence
Ay
't-‘ between nonvowel sounds and vowels. Since the stop consonants are short transitional sounds,

codewords must be explicitly allocated to represent them if they are to be identified. The
T classified VQ approach separates consonant-vowel words into a few codewords for the vowel and a

few codewords for the silence, consonant and vowel transition.

The classification procedure uses codewords determined for a steady state vowel to separate
a word into a 'vowel’' part and a 'transitional’ part. This 'transitional’ part is used to defzed a
codebook that can identify the stop consonant, see Fig. 4.14. Four codewords were determined
for the steady state part of a vowel (using different words) as in Section 4.5. Then, the training
sequences of similar consonant-vowel words were encoded by that vowel codebook to find the best

codeword for each speech sample. If the distortion was below a certain threshold, the sample was

assigned to that codeword. If the distortion was above the threshold, the sample was put in a

‘transitional’ group. After this classifying procedure, the ’transitional’ group contained the sam-

T K W P
IR

ples for silence, stop consonants and the beginnings of the vowel. A few sample points of the

[}

steady state vowel part were occasionally included. A codebook for the transitional part was

R

.’I'{l

-

designed so that four codewords could be forced for these transient sounds.

-

e

0

The steady state vowel parts of six words (‘bad’, 'bat’, 'dab’, 'gab’, 'gafl’ and 'gat’) were -

P

combined as the training sequence to design a codebook of size four for the vowel /a/ using the

a4 e
R )

standard VQ algorithm. The threshold for accepting each codeword was twice the average distor-

SRR

tion of that codeword. The training sequence of 'ba’ was classified in this way where those sam-

.
(L I I

ples assigned to the fifth codeword are in the 'tranmsitional’ group, see Fig. 4.15. For 'bad’ and

2 'bat’ only, this group consisted of the first 500 samples from each word and very few of the vowel.
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S -82.
:n But almost all the samples in 'bank’ belonged to this 'transitional’ group. The nasal consonant

'n’ affects the vowel so that the steady state part of 'bank’ was quite different from that in all the

- ./i'°

s -»
.

RN other words, i.e. 'an’ is different from 'a’. Therefore, only the beginning of the words 'bad’ and

hES

R

*ﬁ' 'bat’ were used in the following study. Four codewords were designed for the transitional parts of
o

L3 4

~
,
P 3
St
ot -

»

these two words using the standard and modified VQ algorithm, Fig. 4.16. Using the standard

VQ, there is one codeword for the vowel /a/ (2), one for the silence (1), one for the transition (3)

T

5
f 3
-t

.
v

and the other one was between transition and steady state (4). The codeword for the vowel (2) in

this codebook was similar to one of the codewords in the codebook of /a/. The distributions of
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those codewords using the modified VQ still has one for the silence (1), one for the transient part

(4) and one for the vowel (2). Codeword 3 represents a very few samples between the silent part

"7"-‘: -"\T'T"
»

LN

and transient part. In the very beginning of these words, the codeword for silence (1) and code-
word (3) alternate. This is natural occurrence since there is no definitive boundary between
silence and the stop consonant. Comparing the standard and modified VQ (Fig. 4.16), at the
beginning of each word the first sample not encoded into silence occurs earlier in the modified VQ
method. The modified algorithm can detect the transition from silence to consonant earlier than

the standard VQ.

A similar approach was applied to the training sequence of 'ga’ (from 'gab’, 'gafi’ and ’gat’).
There were about 3000 samples in the 'transitional’ group as in Fig. 4.17. Besides the beginnings
of those three words, some samples from the steady state part of 'gab’ were included. These sam-
ples were used to design a codebook of size four. For the standard VQ , there was a codeword for
silence, for the transition, for the vowel, and one for these samples from the middle of the vowel

part of 'gab’. Codewords for the vowel were quite similar to those in the codebook for the steady

-k'

state /a/. For the modified VQ, the beginning of 'gat’ was very different from those of 'gab’ and
'gafl’. The codewords represent the silence, the transition, the vowel, and a codeword for the

beginning of 'gat’.

When the beginnings of 'dab’ and 'dan’ were encoded by the vowel codebook, the effect of

the nasalized vowel was seen again, see Fig. 4.18. The final part of the vowel in 'dan’ was
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influence by the following nasal consonant 'n’ such that the distortion was more than twice the
expected distortion for that codeword. Therefore the end of the vowel in 'dan’ was not included
in the 'transitional’ group. In this case, the distributions of codewords in both the standard and

modified VQ were exactly the same. The smoothed derivatives of reflection coeflicients did not

make any differences in this case.

The same experiments were repeated for diflerent vowels; 'bo’ (from 'boast’, 'bone’ and
'bowl!’), 'do’ (from 'dole’, 'dough’ and 'doze’) and 'go’ (from 'ghost’, *goat’ and ’'go’). The distri-
butions of the codewords for 'd’ and g’ in the standard and modified VQ were very similar. But

for 'b’, they were significantly different at the very beginnings of each word.

In general, the classified VQ enabled us to have more codewords for the transitional parts.
Also, in some cases, the codebooks including the reflection coeflicient trajectories could detect the

transient parts better than using the standard VQ only. Since these results were quite promising,

a test of recognizing stop consonants could be performed.
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4.8 RECOGNITION OF VOICED STOP CONSONANTS

The classiied VQ approach was tested as a means of recognizing the voiced stop con-
sonants, /b/, /d/, and [g/. The codebooks were computed as in the previous section. The dis-
tortion was computed for each 'transitional' codebook applied to the beginning of a test word.
The test assumes that the corect vowel has been identified since the 'transitional’ codebooks for

the various stop consonants depend on the following vowel.

For each word beginning with 'ba’, 'ga’, or 'da’, the transitional part was determined. The
standard and modified VQ codebooks for 'ba’, 'ga’ and 'da’, were applied to each word to com-
pute the distortion, Table 7. The IS distortion using the wrong codebooks was at least twice that
using the right codebook. By choosing the codebook with the minimum IS distortion, the correct
stop consonant was always determined. Using the modified VQ, the correct consonant was chosen
but the contribution to the distortion from the reflection coeflicient trajectories was not always
consistent. Most of the time, the IS component of the distortion dominated the distortion due to
the trajectory. This suggested that the weighting factor in this encoding process might need to be

changed.

The same experiments were repeated on those words with vowel /o/ and /i/ and these
results are in Table 8 and 9. The standard VQ approach always chose the correct stop consonant.
Using the modified VQ, the results were correct except for the word 'boast’ where the codebooks
for 'b’ and 'd’ were confused. and for the word 'gilt’ where the total distortion for th: codebooks
for 'b’ was slightly less than for 'g’. In both cases, the IS component of the modified VQ distor-
tion indicated the correct consonant. However the distortion due to the trajectories was lower on
the wrong codebook. The total distortion was only slightly lower for the wrong codebook than for
the corect codebook. This points to a problem with the weighting factor that is used to combine

the two distortions.

Under the conditions of our study where the same word was used to train the VQ and test

for recognition, the correct consonant was identifiable once the following vowel was known. Most

of the silence prior to the spoken word was removed from the training sequence. However there

-----
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boast

.2661
.1546
.1149
.1082

1.2220
1.0646
.2065
.1083

.2309
.1410
.07566
.1043

.0951

1.0259

.1387

Table 8

nb.

bid

.19115
.12342
.06166
.07380

.91977
.72942
.17145
.20925
. 29257
. 19427

.09342
.10318

. 10242

.60865

.19532

Table 9

~

bone

.2640
.1425
.1143
.1289

1.4526
1.2499

.2934
L1121

.6452
.5471
.0845
.1117

.0900

1.1914

.5447

Recognition results of stop consonants

bit

.16165
.08343
.06748
.08896

.39164
.30031
.08522
.09745

.62178
.49728
.11707
.13196

. 08324

.21629

.43107

bowl ghost
.2085 .8164
.1354 .7019
.0915 .1597
.05649 .0694
.8148 .1718
.7214 .0757
.0747 .0864
.1121 .1088
.2833 .6297
.2115 .b266
.0624 .1079
.0812 .0883
.1182 .6090
.6717 .0708
.2087 .5244

gill

.40434
.31994
.07797
.09083

.38263
.26439
.06536
17113

.81987
.50658
.12942
.09718

.32107

.10809

.49734

goat

.6889
.5820
.1514
.0625

.2423
.1290
.1208
.1057
.6329
.4333

.1071
.0922

.56361

.1218

.4365

gilt

.36715
. 26941
.08698
.08850

[-36857
.23271
.09456
|.17718

.38270
.27590
. 120869
.09292

.27138

.1

1140

. 26494

L o g g aea 4
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go-90- dole
.7310 .4602
.6219 .3233
.1293 .1304
.08g8 .1433
.2032 1.1981
.1111  1.0673
.0848 .1483
.0993 .1134
.4601 .2174
.3615 .1176
.1052  .1025
.0920 .0964
.5348 .2273
.1073 1.0545
.3603 .1139

did

.35072
.26580
.06880
.10093

[

.05777
.89151
.09846
.23406

.19346
.09713
.09438
.09827

.26571

.45456

.08861

dough

.3767
.2343
.1355
.1494

1.1766
1.0267
.1901
.1097
.2005
.1011

.0950
.1038

.1641

.9934

.0992

aip

.31618
.24C83
.Q7170

.07900

.63908
.49977
.09863
.18000

.19155
.09969
.09432
.08942

.24203

. 44875

10056

doze
modified V@
.4335 total
.3019 IS
.1343 d4ki
.1290 dk2

.6278
.5230
.0976
.1121

.2170
1317

.1027
.0679

standard VvQ
.2670 IS

.B215

.1273

with vowel /o/

modified Vg
total

I8

dki

dk2

standard VQ
Is

Recognition results of stop consonants with vowel /i/
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was 3 short varying amount of silence in each word which often was represented by a codeword

and thus added to the distortion. When the distortions contributed by the samples encoded by
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the codewords for silence were excluded from the average distortions, almost all the samples in

PR
vl

the stop consonant portions were thrown away if the wrong codebooks were used because most of

the transitional parts were mapped into the codewords for silence. Thus, all the information from

o

-$ I3 . » - -
N the consonants was lost. If an appropriate way to exclude silence was possible, it would help in
-~ .

= .

!,Q" the recognition the stop consonants.

re

A". ) -
2ty LA

S bad bat gadb gart dad dan
modified VQ
.147856 .16939 .40074 .40508 .30927 .39356 total
‘bt .10520 .11650 .282986 .31468 .20882 .32280 IS
.03046 .02204 .11367 . 06941 .08200 .03104 dki
.06425 .08573 .12189 .11134 .118914 .11049 dk2
.51074 .45589 .05414 .04417 .06483 .08720
‘g’ .48234 .43019 .03491 .02834 .05054 .06337
.02756 .02129 .018621 .01369 .01138 .02313
.02923 .03012 .02226 .01797 .01722 .02453
.55131 .48383 .07982 .09300 .02672 .04928
‘d*  .63016 .46423 . 08391 .08152 .01234 .03168
. 02037 .016383 .01405 .01042 .01400 .01596
.02183 .02288 01777 .01254 .01477 .01925
standard vQ
‘d*  .07782 .10744 . 14382 .15048 .09005 . 18869 IS
‘g® .53383 .43642 .03461 .02368 .063561 .07491
. hl
a°  .52963 .46376 .06092 .07958 .01207 .03073
Table 7 PRecognition results of stop consonants with vowel /a/
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4.9 SUMMARY AND FUTURE WORK

This research effort bas lead to an understanding of the combination of recursive estimation
with vector quantization. The ability to track quickly changing signal characteristics and classify
them into a small number of signal types, provides a powerful signal processing tocl. The addi-
tional information provided by trajectories of coefficients was useful to separate steady state and
transitional signal segments. The classified VQ approach allows different signal segments to be
quantized (or clustered) into a varying number of levels. For speech recognition, particularly for
phoneme based approaches where quickly changing consonants must be identified, this method
appears very useful. A method of recognizing the rviced stop consonants, /b/, /d/, and /g was
developed and tested using this approach. For the limited data base of words, the method accu-

rately determined the consonant for various following vowels.

Future research activities would include an investigation of the combined recursive estima-
tion and vector quantization for speech transmission, an extended look at the recognition problem
to reduce the effect of the following vowel, and a recognition test using a larger data base. There
is considerable potential for theoretical developments in combined recursive estimation and quant-
ization, use of parameter trajectories for signal classification and 'adaptive’ vector quantization

using the classification approach.
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§. SUMMARY

During the course of this research contract, estimation techniques for processes that coatain
Gaumian noise aad jump compoaents, aad classificatioa methods for transitional signals by usiag
recursive estimation with vector quaatization were studied. New theoretical techniques were
developed and practical application coasidered. Experieace was gained in recursive estimation
and vector quantization techaiques and an investigation of their combined use was begun.

Three technical reports were issued during this project. The first report, M736-1 presented
a detailed discussion of "Simultaneous Jump Excitation Modeling and System Parameter Estima-
tion”. The second report, M736-2 presented aa overview of recursive least squares estimation and
lattice filters. This final technical report is the third report and focused on pitch estimation and
stop consopant recognition. Here in this last report, the combination of recursive estimation aad
veetor quantization is stadied for the first time.

It is our intent to continue studying signal processing techniques that utilize the fast track-
ing nature of recursive estimation and the efficient classification features of vector quantizsation.

Hopetully, future contracts will allow us to continue this research.
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