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20. ABSTRACT
> A Multiple-Target Tracking Algorithm has been designed and
tested for use with DIFARisonobuoys. The algorithm is implemented as a
functionally modular computer program composed of five main subroutines.
Operating in near real time and in less than 64K words of memory, the algor-
ithm is capable of separating raw measurements into data sets corresponding

to individual targets at the sensor level (using cluster analysis), corre-
lating target measurements across sensors (using physical constraint and
statistical tests), and selecting the most likely track scenario among the
various potential scenarios (using integer programming). The process requires
no operator decision and no a priori information about the number or initial
conditions of the targets. The algorithm is self initializing from the raw
buoy data. Using synthetic data, the algorithm was tested on several multi-
target scenarios with excellent results. '
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' | EXECUTIVE SUMMARY

3

"' ;: During the past year Tracor created and tested a
%, Multiple-Target Tracking Algorithm (MTTA) designed for use with
X . DIFAR gonobuoys. Operating in near real-time and in less than
SRS 64 K words of memory, the algorithm is capable of separating
i - raw measurements into data sets corresponding to individual
hd ; targets at the sensor level, correlating target measurements
.. across sensors, and selecting the most likely track scenario
X '5}: among the various potential scenarios. The process requires no

o
-

operator decision and no a priori information about the number
or initial conditions of the targets. The algorithm is self
initializing from the raw buoy data. Using synthetic data, the
algorithm was tested on several multi-target scenarios with
excellent results. This executive summary presents an overview
of work accomplished on the MTTA during the past year.
Included is a brief description of the algorithm's structure,
conclusions of the study, and recommendations for further work.
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The MITA is implemented as a functionally modular
; computer program composed of five main subroutines. At present
all processing 1s serial; however, with 1little effort the
N algorithm could be implemented in a parallel processing scheme.

v

Sorting Data at Sensor Level-Cluster Analysis.
When plots of frequency versus bearing measurements from a
DIFAR gensor are constructed, the noise free data lie along
either straight or curvilinear 1lines. For targets that are
moderately separated in bearing or frequency, the associated
lines will be quite distinct. Based on these observations,
experiments were conducted to test the usefulness of cluster
analytic techniques to separate target data at the sensor
level. They pi1oved to be successful and Ling's (1,r) algorithm
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(equivalent to a single-linkage clustering algorithm) was used
to separate data at the sensor level into potential target data
sets.

Automatic Cluster Extraction. While cluster
analysis worked well in separating observations 1into proper
target data sets, the sgtructure of the algorithm made it
difficult to distinguish these sets from the others created by
the algorithm. This 1s a standard and much discussed problem
in cluster analysis. Tracor was able to develop a three stage
attack on the problem which has proven to be quite successful.
The first step 1s to use Ling's isolation index to select
clusters which are well isolated from the rest of the data.
Next, the clusters are checked for randomness and only those
that are distinctly nonrandom are selected. Lastly, a
qualitative regression procedure 1s used to check clusters with
subsets for 1internal consistency. Only those clusters which

are isolated, nonrandom, and internally consistent are selected
as target data sets.

Intersensor Correlation-Initial Guess Procedure

and Constraint Rules. To correlate data from more than one
sensor, a crossed-bearing, crossed-frequency, batch type
algorithm is used to provide initial state vector estimates
from the data contained in the various two-sensor and
three-sensor cluster combinations. These estimates are then
subjected to a series of physical and statistical based tests
to determine their validity. The physical tests include checks
on reasonableness of position and velocity estimates. The
statistical tests use qualitative regression procedures to test
the two sensor estimates for compatability, and Gallant's
non-linear regression test to compare a three sensor estimate

gy |

J |
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and 1its associated two sensor estimates for consistency.
Intersensor cluster combinations which pass all tests are then
considered as potential target tracks.

Scenario Construction - 1Integer Programming.
Once the potential target track set has been delineated, all
that remains 1is to construct the set of tracks which provide
the most 1likely scenario description. To solve this problem,
Tracor has used a 0-1 integer programming set partitioning
procedure to s8ift through the 1large number of potential
scenarios to select the most likely one. To devise a cost
function, each track 1is fed into Tracor's hybrid tracking
algorithm and the value of the 1likelihood function for the
associated measurement model residual stream is computed. The
likelihood function for a scenario is based on the 1likelihood
function associated with each track, and finding the optimal
scenario is equivalent to maximizing the 1likelihood function
over the set of all possible scenarios.

The MITA was tested on four scenarios of varying
difficulty; three of the scenarios contained three targets
while one of the scenarios contained only two targets. For
three of the scenarios, all targets were detected, sorted, and
good track estimates were generated. In the remaining
scenario, two of the three targets were detected and tracked,
but the third target was only partially detected and no track
was generated. The following conclusions were drawn from this
study:

1) Observation geometry was the single most
important variable for successful detection
and tracking of the targets by the MTTA,
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2) Strong signal-to-noise ratio 1is important,
but not crucial to the successful operation
of the MTTA, and

3) Execution time for the MTITA varies from
scenario to scenario based on the complexity
of the trajectories. All scenarios were of
8ix minute duration, and the MTTA took from
seven to nine minutes to run through then.
Minimal parallel processing could turn the
MTTA 1into a faster than real time batch
processing scheme.

The recommendations for future work fall into two
categories ~-- refinement of <clustering and extraction
-procedures and MTTA extensions. Under the first category, the

W

, following topics were identified as algorithm deficiencies that

;55 need to be investigated:

‘*: ' 1) Examination of alternative clustering
5 approaches (CLASSY, Anderberg's overlapping

"; algorithm).

- 2) Using quadratic terms in the cluster

e extraction regression to model CPA.

%
iﬁj 3) Addition of a clustering attribute based on

k! power or SNR to help sort targets.

{'3 In the second category, all multi-target schemes must deal with
o the question of whether a measurement belongs to currently
3 existing tracks or 1is it part of a track that has yet to be

%ﬁ initialized. Tracor's proposed implementation of a complete
~

.'t ‘).“s}l" 'q ' o, J\ A “ ‘; .'J \ - ‘. - . -‘f N . 'Q¢."\;'{‘-‘_v.
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multi-target tracking algorithm would address this question as
soon as a data point was acquired. If it was determined that
the data point was not part of a current track, then it would
be put into a data pool and at designated times the MTTA would
be activated to search for and initialize new tracks. The
extension to the MTTA would consist of the decision rules
required to ask whether a point belongs to a track or not and
then the procedures required to update a track. An additional
task would be to investigate whether smoothing of raw data
would help both in tracking and updating.

In summary, Tracor has developed a self
initializing multi-target tracking algorithm' that has performed
well with simulated DIFAR data. It runs in nearly real time
and requires less than 64 K words of memory. Although in this
study the MTTA used Tracor's Hybrid Tracking Algorithm, any
single target tracking algorithm could be used to generate
scores for each potential track. What has been created is a
superstructure which sorts and makes decisions independently of
the particular target tracker used. Planned refinements and
extensions to the algorithm would give it the ability to run
for long periods of time providing a real-time picture of the
current tracking scenario. It is felt that the MITA represents
a promiging step towards a fully automated DIFAR based,
multi-target tracking algorithm.
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" ] 1.0 INTRODUCTION
\}_‘ For many years, the U.S. Navy has been concerned
__t - with the problems of detecting, classifying, and tracking
- submerged targets encountered in anti-submarine warfare (ASW)
Vé le; engagements. One of the problems which has been extensively
-.§3 __ investigated at Tracor is underwater target tracking with data
t 3;:: gathered by deployed, passive sonobuoy detection systems. Past
= efforts have concentrated on the problem of tracking a single
"‘:f ? target. In recent years, however, greater emphasis has been
%: - placed on developing techniques which can use passive data to
3.,, By track multiple targets simultaneously. When no a_ priori
information 18 avallable concerning target numbers or
S trajectories, the multiple target tracking problem becomes very
-J s difficult to solve. This report contains the findings from the
é% past year of Tracor's efforts to address the problem of
2 . tracking multiple targets with passive data when no a_ priori
.:: . information 1is available. Under the current contract a
:: multi-target tracking algorithm was developed which performed

very well on simulated multi-target DIFAR data. The algorithm
was able to properly sort data at the sensor level, correlate
data across sensors and reconstruct the tracks under

Fee |

P '»_” e o
y ‘%}&v"'
3

<1, consideration. It is felt that a positive step has been taken
. - in creating an effective DIFAR based multi-target tracking
1 algorithm.

bl

{1 1.1 Summary of Past Work

In the past, Tracor has studied both the single
and the multiple target tracking problems. Initial emphasis
was placed on developing a quick and accurate single target
tracking algorithm. This work 1led first to Tracor's
development of a batch-type tracker known as the Maximum i
Likelihood Estimator (MLE, Reference 1). The MLE was designed
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to initialize tracking solutions when no a priori information
was provided and to continue tracking a single target until all
the data have been processed. However, due to the batch nature
of the tracker, the MLE was forced to iterate through four
different motion models to account for possible target
maneuvers and to use sophisticated statistical techniques to
automatically choose the most appropriate motion model.
Unfortunately, this process was found to be both cumbersome and
time consuming.

v

L

WA

‘:7' In an effort to develop a quicker and more
e efficient tracker, Tracor then developed an Extended Kalman
« Filter (EKF, References 2 and 3) for single target tracking
L applications. Since the EKF was a sequential tracker, a
N single, less sophisticated motion model was used with process
i noise 1incorporated into the tracker to compensate for any
P unmodeled trajectory changes. This single motion model
‘ﬁ substantially reduced the complexity of the tracker and helped
to greatly speed up its execution time. Furthermore, if

reasonably good a_priori information was available for the
target's state, the EKF was not only much quicker, but it was
at least as accurate as the MLE. Unfortunately, when no a

e% priori state information was available, the EKF frequently
— failed to converge upon an adequate track of the target's
A trajectory, and thus could not be counted on to track targets
‘ under all conditions.

g2

I Since a quick but accurate tracker was desired
B for single target-tracking applications, Tracor also developed
h a tracker which utilized the best characteristics of both the
‘?‘ MLE and the EKF. This led to the development of Tracor's
_‘\ Hybrid Tracking Algorithm (HTA, Reference 2 and 3). The HTA
}:: utilized a batch type starter to initialize the tracker and
’%: then, after initialization had been successfully completed,

N 7
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automatically switched to a sequential tracker to continue
updating the target's trajectory. This tracker was found to
provide the accuracy needed to initialize a trajectory when no
a priori information was available, and to track as quickly
and as accurately as the EKF after 1initialization was
completed. The HTA was then chosen as Tracor's final product
for single target tracking applications.

After completing the development of the HTA as a
single target tracker, Tracor became 1involved in the
development of a multiple target tracking algorithm (MTTA).
This algorithm was to be developed to handle the very difficult
problem of tracking wmultiple targets when no a priori
information was available concerning target numbers or
trajectories. Furthermore, only passive frequency and bearing
data (the data types commonly avallable from deployed
sonobuoys) were to be used to track the targets. In the past,
several authors have developed multiple target trackers which
used a_ priori information or active data types such as range
measurements to 1initialize the tracker, but very few have
examined the more common and much more difficult problem of
tracking multiple targets with only passive data and no a
priori information.

Last year, (Reference 3) the development of the
MTTA was broken up into two phases. The first phase was
designed to enhance the HTA's performance so it could be
readily modified for further use in the MITA. As envisioned,
the HTA would serve as the core tracking algorithm which would
be used to track the various targets present in a given
scenario.




Once the improvements to the HTA were completed,
an attack on the second, more difficult, problem of data
sorting was begun. For the nmultiple target tracking problenm,
some means was needed to sort the data received from individual

sensors into sets of individual target data. Without any a
priori information concerning the targets that were present,
none of the traditional ''gating' or 'nearest neighborhood"
approaches could be used to sort the data. After studying
frequency versus bearing time histories of the data, it was
decided to try to use cluster analysis to sort the amultiple
target data into single target data sets. After several
trials, single-linkage cluster analysis was found to be fairly
successful in sorting the data when the time tag, estimated
frequency, and the cosine and sine of the bearing estimates
were used as object attributes. However, the results of the
cluster analysis program were output as tree diagrams or
dendrograms which required user interpretation to correctly
sort the data. For the cases studied, all the multiple target
data were generated by user dictated simulations, so it was
known what type of behavior to look for in the data. With this
advantage, it was possible to interpret the tree diagram
outputs such that individual target data sets could be readily
found. Without the benefit of this knowledge, it 1is doubtful
that the tree diagrams could have been used to find the correct
clusters of data. From these results it was decided that
cluster analysis showed good potential for sorting multiple
target data into individual target data sets, but a suitable
cluster extraction scheme had to be developed.

1.2 Results from Current Investigation

Tracor has continued its multiple target tracking
investigation through the current year. During this time,
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Tracor's MTTA has evolved into a large scale program containing

five separate modules. A top-down flowchart of these modules,
and a brief description of each one is given in Figure 1.1.
The following sections summarize the work that has been
performed this year in each of the module areas.

1.2.1 Selection of Clustering Algorithm

During this year's investigation three different
clustering algorithms were examined: the single-linkage
clustering algorithm from CLUSTAR, Ling's generalized (k,r)
algorithm, and Moody and Jardine's single-linkage,
non-hierarchical overlapping B, algorithm. Euclidean
distances were used in all algorithms to generate the necessary
resemblance matrix of dissimilarity coefficients. The
overlapping algorithm allows different clusters to contain one,
two or several points in common while the clusters maintain
their own separate identity. On the other hand, the
non-overlapping algorithm requires that the data points that
created the overlap in the Bk algorithm be in one cluster or
the other or the non-overlapping technique will force the two
clusters to merge into one cluster at these points.

Initially, it had been felt that the Bk
overlapping algorithm might provide some flexibility that would
be useful for solving the data sorting problem. However, in
the cases studied, the non-overlapping techniques have been
found to be adequate for sorting the data. Furthermore, both
the non-overlapping algorithms were found to be substantially
faster than the overlapping algorithm. It was therefore
decided to remain with the single-linkage, non-overlapping
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Figure 1.1. Top-Down Flowchart of Tracor's b
Multi-Target Tracking Algorithm (MTTA) :
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approach that had been used previously. Of the two remaining

algorithms that were under consideration, it was decided to use

Ling's (1l,r) algorithm rather than his generalized (k,r)
L 4

algorithm or CLUSTAR's single linkage algorithm because:

1) With k=1, Ling's (k,r) algorithm was
equivalent to a single-linkage algorithm and
produced the same results as CLUSTAR's
algorithm,

2) Its output was more accessible and easier to
use than the tree diagrams from CLUSTAR, and

3) Most importantly, Ling has developed a
quantitative measure for the (l,r) algorithm
that was found to be useful in implementing
a procedure for automatic cluster extraction.

1.2.2 Decision Rules for Automatic Cluster Extraction

One of the problems seen last year with the
single-linkage clustering algorithm was that it continued to
link or chain all the data and the clusters together until
ultimately, all the data were chained together in one large,
all-inclusive cluster. Naturally, the sorted data for the
individual targets were usually found in smaller, subclusters
contained as subsets of the large final cluster. In last
year's report, available knowledge concerning the simulated
scenarios was used to aid 1in picking the correct smaller
clusters from the tree diagram outputs. This year it was
sought to automate this cluster extraction process. In doing

12
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so three different decision rules have been established to
automatically extract the appropriate clusters. The three
rules or tests adopted include:

e

e

-5

g

Ling's isolation index is used to identify
potentially useful clusters. It identifies
clusters which are well isolated from other
clusters, 1implying that the data in the
isolated cluster have little similarity with
the data in other clusters,

A polarization test for data randomness
based on work done by Alam and Mitra
(Reference 4) which seeks to detect and
eliminate noisy clusters, i.e. those
clusters containing a high percentage of
points corresponding to background noise and
not signal measurements, and

Lastly, a regression based test 1is used to
make the final 1identifications of those
isolated clusters corresponding to 1likely
target data sets.

Initial Guess Procedure

After the multiple target data from individual
sengsors have been sorted by cluster analysis into individual
target data sets, these data clusters must be properly matched
with clusters from other sensors to construct tracks for the
individual targets. With only passive frequency and bearing
it is usually impossible to track a target with
data from just one sensor. Typically, data from two or three
sensors with other observation geometries must be used to track
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a given target. For the multi-target case, several clusters
from each of the sonobuoys will be available to try to track a
target. Ultimately, one must £find the right combination of
clusters from the different sensors that 1s needed to track
each of the individual targets. After the individual clusters
from each sensor have been established, the next step is to get
a rough idea of which combination of clusters can potentially
be used to build tracks. For this purpose, a crossed-bearing,
crossed-frequency least squares procedure has been employed to
generate an estimate of the initial target state for each
possible combination of matched, intersensor clusters. This
procedure has been used previously (Reference 3) to generate a
starting point for the HTA's initializer for use in tracking
single targets. It has been found that with some slight
modifications, this same crossed-bearing, crossed-frequency
procedure may be used to provide a cursory look at how well the
intersensor combination of data clusters go together to
provide estimates of potential 1initial conditions for the
targets. As will be described next, the rough estimates
produced here can be examined to see if they meet certain
physical and statistical constraints. For those estimates that
fail the constraints tests, their corresponding 1intersensor
cluster combination can be eliminated from further
consideration. This then helps to reduce the scope of the
problem under consideration before it passes on to the next
MTTA module.

1.2.4 Physical and Statistical Constraints on the
Initial Guess Estimates

As stated, the initial guess estimates must meet
certain constraints before they are passed for further
consideration by Tracor's MTTA. The first test is to see if
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the position estimate falls within the physical limits of the '
"Q gsonobuoy's observation range and if the target's velocity
E:C:j?. estimate falls within the range of allowable values for target
Z‘-: trajectories. For instance, if the range for the day of a
] given sonobuoy is set at 10,000 meters, one could safely reject
<‘3;;z any initial guess estimates that would place a target 30,000
\ meters from the sonobuoy. Similarly, if the initial guess of
"‘ target velocity falls well outside the known range of wvalues
that are possible for target trajectories, one could safely
"" eliminate the intersensor cluster combination that yielded that

2 estimate. For the physical constraints routine wused 1in
1

‘f-l;«. Tracor's MTTA, the user inputs the maximum sonobuoy detection
- range and the maximum target speed, and the 'program rejects all
Y combinations whose estimates are greater than 1.5 times the
z-;\: allowable maximum wvalues. This allows a 502 error to be
N present in 1initial guess estimates while still accepting
. estimates from the upper range of allowed values. The initial
-ch guess procedure has been found to be more accurate than this
.‘# S0%Z error tolerance, but this tolerance permits a safety
A cushion which prevents possible intersensor cluster
a;_;n. combinations from being rejected prematurely. The second set
id of constraints applied to the initial guess estimator consists
": of two statistical tests that measure the consistency of the
= estimates produced by two or three sensors. The first test
uses indicator variables (References 5 and 6) to determine if
'-:-,':}',4 both sensors in a two sensor initial guess estimate are
"‘:; providing statistically compatible 1information. Once all
e two-sensor combinations have been examined, those three-sensor
e, combinations which contain at 1least two ''good" two-sensor
‘,3 combinations are tested. A nonlinear regression test developed
x.‘ by Gallant (Reference 7) is applied to the data to determine if
. the three-sensor initial guess estimate is equivalent to the
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Tracor Applied Sciences

various possible two-sensor estimates. At least two of the
three possible two-sensor estimates must be equivalent to the
three-sensor estimate for the three-sensor 1inital guess
estimate to pass the test.

1.2.5 Integer Programming and Optimal Track Scenario

Once the initial guess and constraints procedures
have selected a set of potential target data sets P, the only
remaining problem is to determine the subset of P that provides
the ‘'optimum'" track scenario. In the MTTA, the optimum
scenario is the one which maximize the value of the likelihood
function over the set of potential scenarios. Clearly, this is
a combinatorial problem that, even for moderate size problems,
possesses a large number of possible solutions. In a fashion
analagous to Morefield (Reference 8), Tracor has chosen to pose
this problem as a 0-1 set partitioning problem using integer
programming techniques to sift through the various possible
track scenarios to find the optimal set of tracks.

1.2.6 Scenario Simulation Results

With one exception, Tracor's MTTA  has
successfully tracked all the targets in the mnulti-target
scenarios studied in this investigation. Efforts to automate
the cluster extraction process have been largely successful,
and the initial guess and integer programming procedures have
worked quite well at finding the right set of trajectories
needed to track the multiple targets. Four different simulated
scenarios have been used in this investigation, and the MTTA
successfully tracked all of the targets in three of the four
scenarios. For the one scenario that failed, three targets
were present but the MTTA only tracked two of them. Careful
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} examination of the results indicated that for this particular
. scenario poor observation geometry caused the clustering

o
e 0
.o_A_"_l. $40

algorithm to become confused and to merge the data from two
targets into one cluster. This confusion was caused when the
observational geometries for two different sonobuoys forced two
N different targets to have nearly identical frequency and
»E bearing measurements during the same time period, and the
non-overlapping clustering algorithm could not sort the data =
into individual target sets. In spite of this problem, the
MTTA was still able to track two of the three targets. One of
the other scenarios tested the MTTA's capability to track R
multiple targets with data gathered from a weak signal source 5

Ky

-."l

that caused random noise to be included in the measurement
) set. For this scenario, the MITA effectively sorted the true
signals from the noise and was then able to track all the
targets found 1in the scenario. The other two scenarios ;i

o

v
e

presented good geometries with strong signals, so the MTTA was
able to track all the targets very well. The results from
these four scenarios are felt to offer representative examples
of how well the MITA can work in multi-target scenarios when no -
a priori information is available to initialize the tracker. N
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1.3 Report Organization -

Section 2 of this report 1includes detalled
descriptions of the cluster analysis work performed under this
contract. The next section describes the techniques that have

fatad o

s

§

been used to automate the cluster extraction process needed to
. sort multiple target data. 1In the fourth section, the initial
guess procedure 1is described in detail. Section 5 describes
the physical and statistical constraints that were used to
eliminate unlikely intersensor cluster combinations. The
integer programming procedure used by Tracor's MTTA is
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. described in the next section, which also includes details of
\ ' the optimization constraints and the HTA cost function that
:};: ;l; were used by the optimization algorithm. Section 7 contains a
A summary of the results obtained for the various simulated
ol - scenarios that were examined during this investigation.
-l‘}} Finally, Section 8 contains conclusions from this year's
~ research as well as recommendations for future investigationms.
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2.0 DATA SORTING BY CLUSTER ANALYSIS

Cluster analysis is a field in numerical taxonomy
that uses attributes which describe a set of objects to group
or sort those objects according to the degree of similarity
between them. For the data sorting problem, measurements from
an individual target should exhibit strong similarities 1in
their frequency and bearing estimates whereas measurements from
different targets should exhibit strong dissimilarities between
them. Last year's research established that single-linkage
cluster analysis showed good potential for sorting multiple
target data into single target data sets (Reference 3). It was
shown that frequency versus bearing time histories of the
measurements produced a rough, chain-like curve for each target
when the data were plotted in three dimensions. Because of the
chain-like ©behavior found 1in the data, single-linkage
clustering algorithms were chosen because they are known to
chain data together in forming clusters. Last years results
also showed that Euclidean distances between object attributes
were the most useful for generating the resemblance matrix of
dissimilarity coefficients needed to cluster the data. This
section contains the results of current studies which sought to
find ways to improve the usefulness of the single-linkage
clustering concept.

2.1 Description of Multi-Target Scenario Data

Before evaluating any clustering algorithm's
performance, some mnulti-target data had to be obtained to
perform the data sorting tests. For this study, simulated
multiple target data were created because no real data were
readily available. Frequency and bearing measurements for each
target were output at fixed time intervals, and these data were
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then merged by time tags to simulate a multiple target data
set. This procedure was performed for each of the three
sonobuoys found in a scenario, so that at the conclusion of the
simulation, a separate multi-target data set was generated for
each sonobuoy. The method wused to generate this multiple
target data was identical to the method used in last year's
report to generate the multiple-linetracker data (Reference 3).

2.2 Moody and Jardine's B, Overlapping Single
Linkage Clustering Algorithm

Three cluster analysis algorithms were evaluated
during the current investigation. The first, Moody and
Jardine's B, algorithm (Reference 9), is classified as an
overlapping single-linkage algorithm. Overlapping means that
two clusters share some points by overlapping their boundaries
at these points, but they also maintain separate boundaries
away from these points. An illustration of two overlapping
clusters is presented in Figure 2.1.

Cluster Overlap

Cluster 1 Cluster 2

Figure 2.1 - Example of two-overlapping clusters.
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.. Note how the boundaries for clusters 1 and 2 overlap at the

- apex of the data points in Figure 2.1; they are still
clagssified as separate clusters, but share five points 1in
common. For non-overlapping techniques, the £five ambiguous

ol data points in question may have been in either cluster 1 or
:; g cluster 2, they may have been grouped in a cluster by
_:: <. themselves, or they may have served as a link to join all the
RN data into one new cluster. However, the points in question
- could not be contained 1in two separate clusters as was
R illustrated in Figure 2.1.

>

® i It was originally felt when the B, algorithm
was programmed that such an overlapping scheme might be useful
j#j Q‘: for cases when a non-overlapping clustering algorithm could not
3 ™ clearly differentiate the data from two different targets.
. ‘ . Certain geometries are possible where a given sensor may not be
; able to clearly spot the differences between frequency and
N bearing estimates for two different targets, and it was feared
15 that a non-overlapping algorithm would chain the two different

data sets into one cluster at the point of intersection between
X the two data sets. Clearly if cluster analysis was to sort
multiple target data into clusters for each separate target,

s
»°

: :t, one would not like the two data sets to be combined into omne
<4

- cluster and then try to use this cluster as data from a single
; target. It was hoped that this non-overlapping technique would

be useful for preventing these ambiguities from confusing the
cluster analysis program. However, after closely examining the
performance of the Bk algorithm, it was decided to continue
AR usage of non-overlapping, single linkage clustering algorithms
b for the following reasons:
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1) The B, algorithm was found to be much
slower computationally than the non-
overlapping algorithms,

2) It was felt that if sufficient automatic
cluster extraction rules could be developed
for a non-overlapping algorithm, then data
from the two clusters could be sorted before
the data sets merged together. This would
prevent the need for an overlapping
algorithm, and

3) Finally, it was felt that automatic cluster
extraction rules could be perfected for at
least one of the clustering algorithms.
Since Ling had already 1looked at some
aspects of this problem for his (1,r)
algorithm, it was decided to expand upon
this work and concentrate on using the (1,r)
algorithm to automate the cluster extraction
process.

2.3 Selection of Ling's (1,r) Clustering Algorithm

After eliminating Moody and Jardine's B,
overlapping clustering algorithm £from further consideration,
two non-overlapping, single linkage clustering algorithms were
left. One of the candidate algorithms was the CLUSTAR single
linkage algorithm (Reference 10) that was used to produce the
clustering tree diagrams found in last year's report. This
algorithm was found to perform well, but the dendrogram outputs
were not considered to be very useful for automatic cluster
extractions. Having had the advantage of knowing in advance
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what data clusters to look for, it was possible to find the
desired clusters in the tree diagram outputs. Without this a
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L
EE'_ . priori knowledge, it was doubtful that the correct data
e clusters could have been correctly picked from the output.
i) Clearly, either CLUSTAR's output had to be modified to make it
3\’ - easier to obtain the clustered points, or another algoritkm had
\ ~, to be found which performed as well but whose output could be
2y _ easier to use in the cluster extraction process.

. y The second candidate clustering algorithm
o available was Ling's (k,r) algorithm (References 11 and 12).
i This algorithm requires at least k points.to be within some
.-. distance r in similarity before the data points can be grouped
JE:’.E{ ::.'.; together into a cluster. For k = 1, Ling points out that his
::I: > (1,r) algorithm is identical to a single-linkage clustering
Y n algorithm. Since CLUSTAR's single-linkage algorithm had
N performed so well, Ling's (1,r) algorithm was compared to it to
32: see if the (l,r) algorithm could be used. Indeed, Ling's (1,r)
:'.;‘ :"’ algorithm output the same results, but it had a few advantages
W which made it preferable to CLUSTAR's algorithm. First, the
o § clustering results output by the algorithm provided a set of
:‘ZJ data points for each new cluster, not clustering tree diagrams
&j :\1 as were seen before. Second, Ling had proposed two different
decision making rules that could be used with his (1,r)
,.. "'" algorithm to aid 1in the automatic extraction of isolated
'*.%\': > clusters. Since we have sought to automate the cluster
.‘Q - extraction process, it was hoped that these decision rules
i & would be beneficial 1in picking the 1isolated clusters.
:;’_,, o Furthermore, both algorithms took about the same amount of
Ao processing time to sort the data, so neither could be penalized
:‘ - due to their respective computing cost. Since both algorithms
o H produce the same results for about the same cost, it was
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decided to use Ling's (1,r) algorithm because the output was
eagier to use and because some decision making rules were
avallable to aid in automating the cluster extraction process.

2.4 Data Normalization

It should be recalled from last year's report
that the raw attribute data for each measurement liad to be
normalized in some fashion to give each attribute roughly the
same range of numerical values before the resemblance matrix
could be generated. For instance, 360 second trajectories have
been used to generate the multi-target data, so the raw time
units vary from 0 to 360. Over such a short time interval and
for the center frequency values and geometries used in our
simulations, the Doppler shifted frequency measurements
typically vary by only 0.1 to 0.2 Hz. The bearings typically
change by at most 20° to 30°, so the cosine and sine of the
bearing measurements vary by only a few tenths. Unfortunately,
this large variation in time values as compared to the change
in the frequency and the cosine and sine of the bearing
estimates caused the clustering algorithm severe problems when
the raw attributes are used. When Euclidean distances were
used to generate a resemblance matrix for the data, the large
difference in time units dominated the dissimilarity
coefficient while differences 1in the other attributes were
virtually ignored. Because of this problem, the raw attribute
measurements must somehow be scaled to provide the same order
of magnitue of differences between sample measurements for each
of the attributes.

Last year, experiments were run to test the five
different data standardization techniques available in CLUSTER
to find the single one that best fit our problem. The one
which was finally picked scaled each of the attributes so that
their respective range of values fell between 0 and 1.
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Specifically, in last year's report, each of the attributes
were scaled by the following transformation:

_ Xij - m}n (xij)
xij ) max (X;.) - min (X,.)
g My TH

where:

subscript i refers to the ith sample
subscript j refers to the jth attribute
max (xij) is the maximum value over all i
samples of the jth attribute
min (xij) is the minimum value over all i
samples of the jth attribute.

This normalization process worked adequately for  our
investigation, but one big problem was encountered with this
technique. The maximum and oninimum values used for
normalization varied with each data set, so no two data sets
were normalized in the same fashion. This was felt to cause
large fluctuations in the values for the dissimilarity
coefficients for the different data sets found in last years
clustering tree diagrams. Due at 1least in part to this
variation 1in the data normalization process, the cutoff
threshold for  Thalting the clustering process varied
substantially from one data set to another. Because of these
problems, a standard data normalization procedure was
instituted in this year's 1investigation. The following
procedure has been used to normalize the input attribute data
for each measurement set:

1) t = t/120
2) cosB = 5% cosB
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R This procedure yields a consistent technique for scaling all

ﬁ*' the attributes for every problem. Furthermore, for the
scenarios 1investigated here, this normalization procedure 9

{ﬁ allows each attribute to vary by about two or three units. ’

g§ Tests have shown the data normalization procedure described

. above works very well, so this technique was used to normalize a

all data simulated in this study.
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3.0 AUTOMATIC CLUSTER EXTRACTION

After Ling's (l1,r) algorithm sorts the data into
clusters, some way 18 needed to pick the best clusters out of
the set. Last year when the tree diagrams were used, the a
priori knowledge of how the data should be properly sorted was
used to pick the best set of clusters. However, with Ling's
(1,r) algorithm, we have sought to automate the process by
which the best clusters are chosen. Thus, we are not forced to
rely on user interpretation to find the best results and can
make the procedure more usable for real applications. In this
report, the process of automating the procedure for picking the
best clusters is referred to as automatic cluster extraction.
First isolated clusters are identified, and then two tests are
employed to «cull both noise clusters and internally
inconsistent clusters. Following is a detailed discussion of
this automatic cluster extraction process.

3.1 Single Linkage Clustering and Cluster Formations

A clustering procedure is said to be hierarchical
if, for any given pair of clusters produced by the procedure,
either one cluster is a subset of the other or they are
disjoint. Thus, a hierarchical clustering procedure produces a
nested structure that can be represented by a tree diagram or a
dendrogran.

Single-linkage clustering 1s a Thierarchical
procedure that is based on the ''nearest neighbor' concept. A
brief description of single linkage clustering follows. Given
a set of objects

S, -{ol, 0, «oes on}
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and a distance d that is defined for each object pair “(Oi’
Oj), the single linkage-clustering procedure first determines
the clogest pair of objects in the set and then joins them to
form a cluster C. By defining the distance between cluster C
and any object 0k to be

d(Cc, 0,) = min {d(oi, 0): 0y ¢ c}

and forming a new object set S that consists of C and all
points of S, not contained in C (i.e. S; = {C} U {SO/C} ),
the above process can be repeated using Sl in place of So‘
If the distance between two clusters is defined to be

d(c , ¢ ') = min {d(oi,oj): 0, c',0; '’

then the above procedure can be repeated for sets SZ’ S3,
-== until all objects are grouped into one large cluster.

Single linkage clustering is a nonmetric
procedure in the following sense. If the original distances
d(Oi, Oj) are replaced by their rank orderings (i.e., the
smallest is replaced by 1, the next smallest by 2, etc.), and
the above algorithm is applied to the set So’ then the sets
Sl, S5, 33,... will be unchanged (i.e., the same
collection of clusters will be produced). Thus, each distance
d on the object set So can be replaced by a symmetric nxn
matrix, Md,s » having 1integral entries ranging from 1
(denoting the %distance between the closest pair of objects) to
n(n-1)/2 (denoting the distance between the two objects that
are farthest apart). Figure 3.1 1llustrates the concepts
discussed above. The fact that each pair (So’ d) can be

replaced by the pair (S_, M ) results in a great
o d,s°

b L




N e W W N N T T S ST TR TR TR T AT e e T e W

S Tracor Applied Sciences

»l
N
b ;
F. S°={01,02,03}
%
- Object Combinations Distance Rank Ordering
o

2 d¢0,, 02) .5 2
- d(0,, 03) 2 3
d(02, 03) .25 1

\.IC

b

- i

0. 0. 0,

O 0 2 3 .
0: 2 0 1 Md’
.. 03 3 1 0

]

¥
- ™
- [
:‘ -~
N .
)

S = {Cy, 0,1} )

(@]
]

{02, 03}

i" Sz = {Cz} N Cz {01, 02, 03}

X
by
.
o «-'.
-
]
s
Y '.'
<
]
- « >
SNt
.
L )

Yo Figure 3.1. Clustering Example

Lt 343
N

4
X

T A

1

3




o Tracor Applied Sciences

simplification since for So = %01, 0y, +-vy On}, there

(§ are only (n(n-1)/2)! distinct possible choices for Md,s

.f This fact will be exploited when measures of clust@r

ﬁz significance are considered since the output from a clustering

$~ algorithm consists of a large number of clusters, some of which

- are contained in, and some of which contain, the target data

-r.:, sets sought.

7 3.2 The Isolation Index

‘ﬁ ]
I-:. When performing cluster analysis on a set of j-_}
ﬁ objects, each cluster 1s formed at a particular clustering

level. For single 1linkage clustering, these levels can be i
;? taken to be 1integers beginning with 1. Formally, the single

linkage clustering level r of a cluster C is defined by
r = min {k: C ¢ Skf. 5*

Some authors refer to r as the ''time of birth'" of cluster C.
If the sets Sl’ Sq, S3, «ess are called clustering sets, N
then the clustering level of a cluster C is just the index of

N the clustering set in which C first appears. The index k of
4g set S, will be referred to as the clustering level k.
N
After a cluster has first formed at level r, it

may remain wunaltered for many future clustering levels.
- However, when C is not equal to the entire set of objects, it
5:'{ follows that eventually C will be augmented to form a new
' cluster C'. A cluster that remains unchanged for a number of
. levels 1s sald to be well igolated. The following definition
i quantifies an isolation index measure possessed by cluster C:
‘ i(C) =r' - r, -‘
A
¢3 ‘5
L}
-~ 30
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where r' is the clustering level of the augmented cluster C'
that is described above. The clustering 1level r' can be
thought of as the "time of death'" of cluster C. In Figure 3.1,
cluster C, is '"born" at 1level 1 and 'dies'" at level 2.
Therefore, i(Cl) =2 -1 =1,

- B 3.3 Isolation Index Distribution - Survival Function
-
*i N Recall that the matrix My, determines the
o clusters that are produced by a single -19nkage clustering
o procedure. By choosing a null probability model on Md S
o it is possible to use probabalistic techniques to assess "tRe
—“;ﬁ significance of single-linkage clusters. The simplest and most
E conservative model to impose on the space of all possible
; 53 random matrices Md,s is to assume that each matrix is
5 _ equiprobable. Under °this assumption, the mathematics are
. . tractable and the statistical theory resulting from the use of

this model can be interpreted as establishing bounds for other
models (i.e., a cluster that is judged to be statistically
insignificant according to this model 1is wunlikely to be

n significant under any other model). Under the equiprobable
2 - assumption, the isolation index of a cluster of size 1 becomes
L a random quantity whose distribution can be calculated.
:j A Specifically, if C is a cluster of size j with clustering level
- r, then
5w 1 (J‘ 0-9) (N - T - 3, @)
N Prob [i (c) = s] = S 2.1 s-1
NN (N-r>
2 s
p: where N = (3). The probability of the event {i(C) = s} being
" . small implies that the chance of a cluster with this isolation
i 4 index appearing simply by accident or at random is small.
“»
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Thus, a good assumption is that thase data ‘''belong together,'
i.e. came from the same target. Therefore, the survival
function is used to help select the set of candidate clusters;
a probability threshold is set and those clusters with survival
function values falling below the threshold are passed on for
further testing.

3.4 Polarization Test and Cluster Extraction

Once the 1isolation index has been wused to
identify clusters of data that possess greater than expected
similarities, these clusters must then be analyzed to determine
their randomness and internal consistency. Two primary reasons
for doing this take advantage of the way in which single
linkage clustering joins data together (see section 3.1):

1) Random noise can appear as an 1solated
cluster, either when targets are present or
when just random noise is clustered, and

2) As larger and larger clusters are formed
from the data, isolated clusters can become
subsets of larger isolated clusters.
Eventually, there may be several isolated
clusters contained in one 1large 1isolated
cluster, and they may or may not be
observations for the same target.

This section discusses the test for randomness
employed by the MTTA. To motivate the selection of this test,
imagine a cluster of data triples (time, frequency, and
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i bearing) projected onto the frequency-bearing plane, (Figure ]

3 . 3.2 provides several examples). Then,

f: \' 1) Figure 3.2.a represents random noise,

> frequency and bearing estimates are
scattered randomly about,

2) Figure 3.2.b represents data from a target
showing significant bearing change but
little Doppler change,

3) Figure 3.2.c represents data for a target
that shows 1little Dbearing change but
substantial frequency change, possibly
approaching CPA with the sonobuoy, and

4) Figure 3.2.d represents data from a target
with 1little bearing change or frequency
change. This is a typical plot for a target
in which a large amount of data has been
gathered over a short time interval.

If a grid is imposed on the plane, then the
number of observations occurring in a cell can be tallied and
the number of observations occurring in a particular row or
column can also be tallied. Then for clusters of random noise
(as in Figure 3.2.a), the row totals should be roughly equal
and the column totals should all be roughly equal while for
target clusters, such as those displayed in Figures 3.2.b and

4_‘ > ¢, either the row or column totals (or both) will display very
N - distinct departures from equality. If a multinomial
s distribution 1s assumed for these row and column totals, then

ﬁ Alam and Mitra (Reference 4) have devised a test to determine
I

7] 33
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if the mass of the points is spread out evenly over the row and
column totals or if it is concentrated, or polarized, in just a
few of the rows and columns. A brief explanation of the test
follows.

A partial ordering of the vectors P=
(p1’°"’pn) is dgfined by the relation:
P> P 1fi=t1p(i) Ziglp'(i) s 3=1,2, ...,k
where P(1) is the 1ith 1largest value among Pyse+esPy"
Then, a multinomial distribution with probability vector P is
said to be less polarized than the multinomial distribution
with probability vector BY 1f % P'. Note that

(B 5 o £8) < (B 2. - 21 0 < (1,0,0, ..., 0.

Let R = (rl,...,rk), zri = n be the k row
totals associated with a particular cluster and consider the
following test:

HO: K=-R" against the alternative

HI: > 8

where f{' is the equally likely case. Alam and Mitra comnsider
the test statistic

T(R) = ri/n
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and show that H 3 is rejected for large values of T. The
critical region of the test is

{1 T®) > c} where
PIT®@ > c | B=R"} = «.

For KR! = (1/k, 1/k,...,1/k) Alam and Mitra show that
T* = kT(ES -n

is asymptotically distributed as xzk-l. A gimilar test can
also be conducted for the column totals.

In applying this test, the grid size selected was
25 by 25, with bearing running from O to 2w radians and
frequency from 148.8 to 151.2 Hz. In their paper, Alam and
Mitra briefly discuss the convergence properties of the test
and show that n must be fairly 1large before the xzk-l
approximation 1s very good. This was observed in the current
study, for large clusters (n > 60) testing at the .995
percentage point of the X%4 distribution was very
effective at distinguishing noise clusters from data clusters.
However, for clusters of size less than forty, the test still
discriminated very well but the X§4 distribution did not
provide a good critical value. Clusters composed mostly of
observational data had high values of T* while clusters
composed mostly of noise had much lower values of T*. However,
the values of T* found for noise clusters were higher than the
cut-off points supplied by the X§4 distribution.
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At this point there were two basic choices:

1) Compute the conditional distribution
function CDF of T(ﬁs directly wusing the
recursion formula presented by Alam and
Mitra, or

Determine 1if some simple, ''rule-of-thumb"
existed which would allow reasonable
decisions to be made.

The second alternative was chosen because:

1) Implementation of the Alam and Mitra CDF
algorithm would have been a formidable
programming task, particularly for n > 5,

Including the calculation as a subroutine
would have imposed a substantial computation

penalty, and

3) A simple and reasonable ''rule-of-thumb"
value was readily available.

Primary considerations involved in selecting a cut-off value

were:

1) It should not reject H  for very small
clusters (n £ 5) no matter how concentrated

its members are,
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(“ 2) It should reject Ho for small clusters (5 1
o £ n £15) only if most of their members are B
'% concentrated in one or two cells, and -
- R
4‘ 3) It should reject Ho for moderate sized -
= clusters (15 < N <40) only if a significant ]
f; number (402 or better) of their members are

:I concentrated in one or two cells. _
ﬁ Figure 3.3 contains an example of several graphs ;j
A that were constructed for various values of T*. Simulation

'i: results had shown that for small time periods (<5 minutes),

% clustered target bearing and frequency data would usually be

A confined to two or three cells, with some noise points possibly

S scattered about in other cells. Thus, curves were constructed

% for T* ags a function of X1» X9, X3 where:

< 1) x; was the number of points in cell i,

N 2) x, ranged from 0 to n,

N 3) x, ranged from 0 to n-x,,

o 4) x, ranged from 0 to n-x,-x,, and

'f 5) the remaining n-X,-x,-X, points  were

- considered to be placed one to a cell.

<.

o Clearly, the value of T* is invariant to which cells contain

fE the points, so that the choice of X1 Xgs Xg is not

;: important.

9% The dashed lines of Figure 3.3 indicate the two g
fj cutoff points, the leftmost line corresponds to the .995 ??
o

N d
% e
%

; 3
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tf' percentage point of the X%A distribution and the rightmost .i

S line corresponds to twice this number. Keeping in mind that :

;S the hypothesis being tested is .

L H: =R = (1/k, ..., 1/k) versus

::‘ HI: > f',

X

:3 it 1s clear that the rule-of-thumb value requires substantially

by higher cut-off wvalues than does the approximation value.

f{ Additionally, the rule-of-thumb value will not reject Ho for

fﬁ n < 5 and requires almost total concentration in a single cell

#3 for n near 5. For n > 10, concentrations in the 40% to 60%

> range are required for single cell polarization and in the 80%

g: - 9072 range for two and three cell polarizations. The

f; comparable X§4 approximation values are at least 2072 - 30%

;i below this. Using the rightmost line as the cut-off has worked

, quite well in this study. In order for a cluster to be ;‘

’§ declared ''random'" it must accept H  for both the row and '

- column totals.

7 3
3.5 Internal Consistency and Cluster Extraction -T

: -

\; This section discusses the final stage in the

L cluster extraction process, the test for internal consistency.

T: Figure 3.4 1llustrates the logic flow for the procedure. _

’ ::;

j} At this point 1in the extraction process, the

i clusters under consideration are assumed to be well-lsolated, il

. non-random groups of data. What remains 1is to examine for

:E consistency each cluster that contains two or more isolated

':j clusters as subsets. Basically, the 1idea 1is to determine

A whether the information contained in all the 1isolated

ﬁ_ subclusters is compatible or not.

',
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3.5.1 Regression and Internal Consistency

;Z One of the primary difficulties in finding an
internal consistency test for isolated clusters which contain
other 1solated clusters as subsets is that the frequency and
bearing estimates are functions of time within these clusters.
Typically, these 1isolated subclusters correspond to time
segments of observations for one or more targets; they start as
small groups of two or three points and then chain outward
until the cluster under consideration is formed. Under these

ko

§ circumstances, usual measures of similarity such as means,
3 ranges, modes, etc., can be very misleading. For a particular

target, the average frequency, bearing sine, or bearing cosine i
from the first part of an observation period can be quite
different from the average computed from the last part of the

RIS -

observation period. Based on these considerations, regression

Ll

techniques were used to develop the internal consistency test.

Lank

When frequency, bearing sine, and bearing cosine
for a particular target are plotted against time £for short
intervals (less than six minutes), they are nearly 1linear -
J functions and can be approximated fairly well by straight :
: lines. Measurements from two different and distingu.shable
» targets define different straight 1lines, and this forms the
basis for the use of single-linkage clustering techniques.
However, as was shown in Section 3.1, the single-linkage
algorithm creates ever larger clusters by joining points or
clusters to already existing clusters. If clusters are joined o
from two different and distinguishable targets, then the
:§ ' problem of internal consistency can be cast as a regression
‘VJ

problem to determine whether a set of a data defines one or two
regression lines. The 1lines could differ by a change 1in _
intercept, a change in slope, or by both. |




........

Tracor Applied Sciences
Neter and Wasserman (Reference 6) give a
.' . procedure for doing this. The basic formulation of the model
W is:
o
- 1) Let Y, be the measurement under
adiin examination (frequency, bearing sine, or
f; bearing cosine) and let T, be the time of
SR the measurement,
" 2) Let I, be an 1indicator variable attached
iﬁ - to Y, such that I; = 0 if Y, comes
-t? from the first cluster and Ii = 1 {f Y,
" E comes from the second cluster, and
fé 73 3) The model becomes
- *

| . Yi Bo + BlTi + Bin + B3Ti Ii + Gi
':;:: °
ﬁ;flt' and the response (regression function) is

-
SIS E(Y) = B + ByT + B,I + ByT*I.
g
:j E; To understand the function of the indicator variable in this

model, note that for measurements from the first cluster (I=0),

S
¥
s

J‘

E(Y) = B_ + B,T + B, (0) + B4(0)

. =B +B,T

X} _’.o 1

°
s and for measurements from the second cluster (I=1),
o

X E(Y) = B_ + BT + By(1) + B3(1)(T)
L H (B, + B,) + (B) + By)T.

5
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Thus, 32 measures the difference 1in intercept estimates
between the two 1lines and B3 measures the differences 1in
slope estimates between the two lines. Therefore, the test for
equality of the two regression lines corresponds to a test of
the hypothesis

Ho: Bz = B3 = 0 versus
Hl: BZ or 33 # 0.

The test statistic is

SS (B., B3|B_, B,) SSE .
0 : = F*

where

1) ss (BZ’B3IBo’Bl) is the reduction in
the regression sum of squares due to the
inclusion of I, and T*I in the model,

2) SSE 1is the error sum of squares for the
model, and

3) o, is the number of objects in cluster 1
and n, is number of objects in cluster 2.

The above procedure outlines a method for
determining whether a set of measurements coming from two
different clusters 1is internally consistent or not. This is
done for each of the three measurements available 1{i.e.

frequency, bearing sine, and bearing cosine. A weighted
decision scheme is then used based on the three calculated
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F-values (F;, Fpg, and Fps), to determine whether the two
clusters contain consistent information or not. Considerations
used to establish this scheme include:

1) Frequency information should be weighted
less than bearing sine and bearing cosine
information. This is done because frequency
is only measured to the nearest tenth of a
Hertz, so a normal Doppler shift of only 0.1
Hz can indicate a spurious inconsistency,

2) The bearing sine (bearing cosine)
measurements from two targets may be quite
close while the bearing cosine (bearing
sine) measurements are substantially
different. Thus, only one of the bearing
component measurements is needed to indicate
inconsistency, and

3) When in doubt, pass a cluster. The result
of passing a cluster that should not be
passed is an increase in processing time for
other areas of the MITA algorithms. The
result of not passing a cluster that should
be passed 1is the possible loss of a target
track.

The weilghting scheme (to be discussed below)
depends on a method developed by Suich and Derringer,
(Reference 13) and extended by Ellerton (l4) to examine the
significance of subsets of the regression variables.
Typically, this subset of variables describes some particular
characteristic, such as trend or curvature, of the response
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system. In our case, the characteristic being examined is the
tendency of the data to be best described by two regression
lines instead of one.

i
']
:’.3‘1
!
:a.
§
4
2
ﬁ
-3
1
|
1
1
!
1
]
1
i
’ " e I oy I . "i

n Let Yf(iﬁ represent the full regresssion model
and let Yr(ib represent the reduced regression model, that
is, the full model minus the variable subset under
consideration. The quantity to be tested, vy, 1is the ratio of
the average, squared expected differences in prediction of the
two models to the average variance of these predicted

e A ey

differences;

average expected squared prediction difference

average variance of predicted differences

The test statistic is the usual F-ratio, which in this case 1is,

SS (B2, BalBo, B,) SSE

2 n1+n2 -4
and the hypothesis tested 1is

HO: Y =Y, versus

Hl: Y>> Y,

Acceptance of the null hypothesis indicates that either the
o full model should be reassessed as a predictor or that the
- error variation in the data is simply too large relative to the
variation in predictive power of Yf(§7 and Qr(iﬁ.
Essentially, if there are large errors relative to the range
covered by the data, then a subset of variables may, under the
5 usual F-test, appear to be significant when in fact they are -

simply fitting the errors in the data. The purpose of this

test is to detect that situation.
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In the extraction algorithm Y, was set equal to
2, and the critical value then became about four times the
F-value used to make the standard test:

Ho: B2 = B3 = () versus

H1: at least one of By, B, A 0.

3.5.2 Weighting Scheme

Using the regression analysis just described, the
interval consistency test reduces to the following, letting
F, stand for the '"usual" regression F critical value and Fg
stand for the value generated by applying Ellerton's work, the
weighting scheme used is:

1) 1f |Fp < F, then We =0
F; 2 Fy ‘WE =1 .
2) If{ Fa < F Woe = 0
BS N u BS
Fu < FBs < FE then wBS = ]
Fas 2 Fg Wpg = 2 ‘
3) If Fr. <F W.. =0
Bc < Fu BC
Fu < FBC < FE then wBC = 13
Fac > Fg Wpg = 2 ;

4) W= Wf + WBS + WBC’ and

5) If W2 2 then reject the hypothesis that the two

clusters are consistent.
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Basically, this scheme says that frequency variation alone 1is
not enough to reject the idea of consistency, instead it must
reject in concert with either bearing sine or cosine. On the
other hand, bearing sine or cosine measurements are enough by
themselves to reject consistency if the indication of multiple
cluster data is extremely strong. Middle of the road rejection
values from both bearing cosine and sine measurements are also
enough to reject consistency. Because a false rejection of the
consistency hypothesis 13 much more costly than a false
acceptance, all critical values were set with o = .00S5.

If a particular cluster possesses exactly two
isolated subclusters, then the above procedure is fine as 1t
stands, the cluster will be accepted or rejected based on the
final value of W. However, 1f a given 1isolated cluster
contains more than two 1isolated clusters as subsets, then
another procedure for rejecting consistency is needed. Suppose
the cluster in question has k isolated subclusters, then there
are (%) cluster pairs to be examined for consistency. If it is
assumed that all clusters come from the same track, then k-1 of
the potential pairs should 1link together or show consistency.
Thus, for clusters with k isolated subclusters (k >2), the
consistency hypothesis will be rejected if fewer than k-1
cluster pairs pass the two cluster consistency test.
Experience has shown this to be a fairly liberal criterion.

3.6 Automatic Cluster Extraction Summary

In order to be selected as a target data set a
cluster must possess three characteristics:

1) Isolation from the rest of the data,
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2 2) Polarization of observations in a few
\- . frequency or bearing bins, and
: _ 3) Internal consistency among isolated
O subclusters.
-
~ Cluster 1isolation is measured using Ling's survival function.
.-“ - Those clusters possessing a survival function value of 1less
A than 10~% are considered well isolated and selected for
;: - further testing. Once a cluster 1s considered isolated it is
::: = subjected to the Alam and Mitra polarization test to determine
:’E < 1f most of its members are concentrated in a few bins or not.
= o Those clusters whose observations are concentrated in a few
-~ bins are determined to be nonrandom collections and are passed
"’_; :\ on to the final test. Clusters remaining at this point are
< examined for subclusters which happen to be isolated clusters
. also. Those clusters which contain no isolated subclusters are
53;:: h considered 1internally consistent and declared target data
" - sets. Clusters containing isolated subclusters are given a
\: regression test for internal consistency. Those that pass the
R Q test are passed as target data sets.
e
't N All the above tests are conducted |using
hay = hypothesis tests with alpha values set high to allow marginal
i groups to pass through and be selected. It is felt that it {is
:__ " better to pick a bad cluster as a potential target data set
S than reject a cluster that is a target data set.
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N 4.0 INITIAL GUESS PROCEDURE

Once the sonobuoy data have passed through the
cluster formation and cluster extraction algorithms, they have
been grouped into sets of clusters for each sensor that

o correspond to potential target data sets. The next step is to

l../.

E; - solve the intersensor correlation problem which seeks to
:33 RS determine which data clusters from each sensor contain
..\ .\>

) - observations on the same target. For this study, simultaneous

.:-,.1 “ observations for a target were required from either two or
*"E o three sensors because, in general, a single sonobuoy cannot
s S - provide enough information with which to track a target. For
= | even a small number of sensors and targets, the number of
-_: - potential combinations can become fairly large. For example,
j:-.. consider a 3 target scenario observed by three sonobuoys and
‘_?;::I ' assume that each buoy hears each target perfectly and that the
‘ cluster formation and extraction routines perfectly separate
«\ o the data. There are then three data clusters associated with
"\ - each sensor, and these can be combined into 27 (i.e., 3%3 + 3%*3
"? - + 3*3) potential two-cluster intersensor combinations and 27
Bl o (3*#3*%3) potential three-cluster intersensor combinations.

1 ~

Wi ~ To help separate unlikely combinations from
-_f‘ﬂ ":; likely combinations, an initial guess procedure and a set of
“ ) guess evaluation criteria were developed. This section
‘_f:jg describes the initial guess procedure itself and the following
::f;« section discusses the evaluation criteria.

AT

:' i 4.1 Crossed-Bearing, Crossed-Frequency Initial Guess

R i Procedure

An initial guess procedure which used
2 E crossed-bearing and crossed-frequency information to generate




— Y " T s Yo e Tar. i T N L T L T AT, T LY N e e e aT W v T T e W TR TR N ET
(02 % 2 ¢ K aSk e e o AT A S S i TS - ~ ~ S e TR
- - .

A RAS - INAh
§ ." sJole
) o ‘t"'., 44 ‘:‘ .o. ‘:'

Los - "‘l ”
-« s ¢ 0 2

R PL

L DA
o L% e

X,

A
» "al'.-%.'#-

I,
F'd

as
1]

AR
’1}-'.4)6,1.;

VA

20
a.l

WY

N
OV Y

7,

b

33
Xy
-~

R SN

=4
S

[
.

S e T
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initial conditions for target tracks was described in last
year's report (Reference 3). It was used to generate a
reasonable guess of a target's position and velocity. This
guess was then passed to the initializers of either Tracor's
EKF or HTA so that the tracker could more quickly converge onto
an acceptable set of initial conditions for the target. This
procedure used the frequency and bearing measurements from two
or more sensors Iin a least squares formulation to estimate the
target's initial position and velocity. The estimates from
this procedure were found to be reasonably good and greatly
improved the speed and the initialization characteristics of
Tracor's two trackers.

For a Dbearing estimate from sensor 1, the
crogssed-bearing equatinn 1is:

X sin Bi - y cos Bi = X sin Bi - ¥4 cos Bi

where
Bi = the bearing estimate for sensor i,
(xi,yi) = the position components for sensor i,
(x,y) = the position components for the target.

Similar crossed-bearing equations can also be obtained for any
other observing sensors. The crossed-frequency formulation
uses the bearing and frequency estimates from a given sensor to
generate target velocity estimates. The actual
crossed-frequency equation for buoy i 1is:

. . £ x, cos B, + y. sin B,
X cos Bi + y 8in Bi =c |2 {1+ i i i 1l
fi c
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'2§$ £, = Doppler-shifted frequency estimate

f& ;i from buoy 1,
AR £, = Unghifted center frequency

> "" transmitted by the target,
SONE c = Speed of sound in the water,
.x§ - (x,y) = Velocity components for the target,
2 (ii,ﬁi) = Velocity components for the buoy.
%; - Once again, similar crossed-frequency measurement equations can
X be generated for other sensors that observe the target.

% ; A motion model is needed to correlate the target's
’}H ’ position and velocity estimates and to provide a means of
; ' mapping all measurements back to an 1initial epoch so that a
“;j ’ batch-type, least sgquares estimate can be generated for the
x[j - target's initial position and velocity. Since only a smail
?ﬁ - data stream which covers a short time span is used in the
'}4 - initial guess procedure, a linear motion model was selected to
N2 Iy describe the target's trajectory. The 1linear motion model
;é - used is:

&
. x = x_ +x, At

Eﬁ 2 A P AL
1?: o Following Bard (Reference 15), the crossed-bearing and
= - crossed-frequency equations can be combined with the motion
3:.. R model in a two-equation least squares model to estimate (xo,
:(:-: . yos *O’ &o)-

e

N

0

Bearing estimate from buoy i,




- e e T N A T I R S LT T, T LWL E L T TR et TR T T T e et

A

N Tracor Applied Sciences

o

e

oo 4.2 Measurement Weighting Equations

} Last year, least squares estimates fur the

N target's initial state vector were generated by weighting all J

the measuremencs equally. This resulted in good position
estimates but relatively poor velocity estimates. It was felt y
that weighting the measurements might improve the target's ;
:l velocity estimates.

~

. . Agssoclated with each frequency and bearing

33‘; measurement 1is a standard deviation value which describes 1
'tj statistically the accuracy of the measurement. These standard

‘.?.-" deviations are computed as functions of the estimated

R signal-to-noise ratio for the received signal. Typically, the

?;.\ measurement standard deviations are wused to compute a

o measurement weight which enables the data to be processed by a

e weighted least-squares tracking algorithm. With the
crogssed-bearing and crossed-frequency initial guess algorithm,

‘ the measurement equations are functions of the frequency and _
‘EIZ:‘, bearing estimates. Some method has to be used which computes I‘
:"‘ standard deviations of the crossed-bearing and the

D crossed-frequency measurements as functions of the standard *
: ::j deviations computed for the frequency and bearing estimates.

Z_'S Following Young (Reference 16), a first order Taylor series

- approximation 18 used to compute the standard deviation fer the

e modified measurement equation. If we use G to represent either

\ the crossed-bearing or the crossed-frequency measurement

S function and £ and 8 to represent the frequency and bearing

- estimates, respectively, the following equation 1is used to

*. compute the measurement weights: '

4

N 2 26\ 2 2 2 5

8 °c = (a‘f') o * (g) %8

,‘\

::'

o~
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In the above formulation, the assumption has been made that the
buoy positions and their velocities are perfectly known, so no
buoy position or velocity errors are allowed to propagate
through this standard deviation equation. Specifically for the
bearing equation, the measurement equation, G, is:

G = Xy sin Bi - ¥4 cos Bi'

Since no buoy position errors are encountered and since the
frequency estimate does not contribute to this measurement
equation, the crossed-bearing standard deviation becomes a
function of the bearing estimate only

2 2 2
G
o} = — ag
G <as) B

2 2
9 = (%3 cos Bi + ¥y sin Bi) oBi

Conversely, the crossed-frequency measurement equation 1is a
function of both the bearing and frequency estimates

G =c fg (1 + Eifcos B + ¥4 sin 81> -1
fi c :

To obtain the crossed-frequency standard deviation, 1t {is
assumed that no errors are encountered in obtaining buoy state
values so that they do not contribute to the sources for the
crossed frequency measurements:

¢ - speed of sound in the water,
(%45 §i) - velocity components of buoy 1,
fo- unshifted center frequency value for the
transmitted target signal.
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R o ™ S e e e A O

> 3

st




AR N Y

Tracor Applied Sciences

fi - Doppler shifted frequency received by the
sonobuoy.

The crossed-frequency equation for sigma then reduces to:

2 - aG 2 aG 2 2
%G (a‘e’) % * <§'f'i' o,

~o (. ; 2
[f x sin Bi + y; cos B%ﬂ cBi

i
x cos B + y sin B :
+ cho( = )T fl
- T €2
fi

Using the weights generated by these equations in the
estimation procedure has greatly 1improved the velocity
estimates without affecting the position estimates £from the
MTTA's IG algorithm. The IG algorithm now in use in the MTTA,
therefore, 1s a weighted least-squares crossed-bearing,
crossed-frequency algorithm.
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5.0 PHYSICAL AND STATISTICAL CONSTRAINTS ON THE
INITIAL GUESS ESTIMATES

After 1initial guess estimates are generated for
each of the possible intersensor cluster combinations, these
estimates must be examined to determine which ones provide
initial conditions which are ©plausible in real world
encounters. As stated previously, there are twenty-seven
possible two-cluster intersensor combinations, and
twenty-seven, three-cluster intersensor combinations for the
three-target, three-sensor scenario shown 1in Figure 7.1.
Figure 5.1 shows all the possible bearing 1line-of-sight
intersections that would result from combining bearings from
two sensors 1In the crossed-bearings procedure. Notice the
large number of incersections that result from this simple
example. Although it 1is not as easy to 1illustrate, a large
number of possible intersections also result from using the
crossed-bearing procedure for all possible three-cluster,
intersensor combinations. This section examines ways to use
physical and statistical constraints to eliminate the unlikely
combinations produced by the initial guess procedure.

5.1 Physical Constraints Test

The first step in eliminating implausible initial
guess values 1is to examine the estimates in terms of sonobuoy
detection 1limits and maximum submerged target performance
levels. These 1imits are referred to as the physical
constraints on the problem. These constraints have been left
as user defined inputs so that they may be varied for the
different classes of sonobuoys or the different types of
targets that might be encountered in real engagements.
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TR

The first physical constraint fixes a maximum
detection range for the sonobuoys to eliminate candidate
initial guess estimates that £fall well outside the detection
range of the sonobuoy pattern. In real applications, an
operator uses parameters such as the class of sonobuoys used,
the minimum detectable signal level (MDL) for these sonobuoys,
ambient conditions such as sea state, and other factors to set
w a maximum range for the day for the sonobuoys. For our
. - simulation, we used a transmitted signal-to-noise ratio of 80

3 dB in a 1 Hz band at a distance 1 yard from the source to
o simulate each of the target's signal sources. Furthermore, the

- MDL used for our simulation was set to a reasonable value of O

N dB in a 1 Hz band (this gives +10 dB in a 0.1 Hz band). Given

. this 80 dB source level, a 0 dB MDL, and assuming a 20 log R

i: signal propagation 1loss through the water, the maximum
detectable range for each of the sonobuoys would be 10,000

. yds. To insure a sgizable safety margin, a 50% error tolerance

' was added to this 10,000 yd range, so the maximum allowable

= range was set at 15,000 yds. Any initial guess estimate whose

N position wvalues would cause the target to £all outside this
15,000 yd range for any of the observing sensors was then

s

rejected and was never considered again in the MTTA.

AL A

The second physical constraint restricted the

&Ll

target's speed to some maximum value which once again was set
by the program user. For actual applications, operators
usually know what the maximum submerged speeds are for certain
classes of targets. If not, the operator could set the upper
limit to the maximum known value for any class of targets. For
this simulation, the maximum target speed was set to 10 m/sec,
which corresponds to roughly 20 knots. Once again, a 507 error
RN tolerance was added to this value so that the maximum allowed

H speed used by the program was 15 m/sec. This tolerance was
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much larger than the speed of the fastest target in the
scenario which was 9 m/sec, so this upper limit was considered

2o
1

r

to be reasonable for our experiments.

b ¢
)

With these physical constraints, several of the
initial guess egstimates could be rejected, so their -
corresponding intersensor combinations could also be eliminated
from further consideration. However, many more combinations

passed these two tests than were rejected, so many of the ~
combinations were still under active consideration at this -
point. If one looks at Figure 5.1, one sees that most of the :i
two-cluster 1intersensor combinations £fall well within the

15,000 yd range of their participating sonobuoys. While the ~

target speed constraint helped reject a few of the remaining
combinations, most combinations were still left intact after
this test also. Since so many combinations were left, it was
decided to perform some statistical tests on the remaining

Wi

cluster combinations to examine the quality of the initial
guess estimates, and to then eliminate all estimates that were
found to fit the data poorly in a statistical sense.

5.2 Two Sensor Statistical Compatability Test '
After a particular two sensor 1initial guess
estimate has passed the physical constraints test, it 1is then
subjected to a statistical test that measures the consistency
of the 1information contained in the contributing clusters.
This test 1is similar to the test used to determine cluster 2
consistency and is based on the use of indicator variables. y
From section 4.2, it will be recalled that the
initial guess procedure uses a weighted least squares method to i
il
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da B estimate the target's initial state vector (x_, Yos Xg
I ¥¢). In doing this, it fits a model of the form
k]
. where (using the notation of section 4.1):
x: sinB; - y: cosB, for sensor 1l's bearing data
- X, sinB, - y. cosB, for sensor 2's bearing data
: _':' ° . N b
e c fg 1 + X, cos B, +y, sin g, | For sensor 1 frequency
~ 4 £ c - data
A M, = 1
- = 1 -
- £, x, cos B, + ¥, sin B, 1 For sensor 2 frequency
- c|— (L1 + -1 data
fz ¢
" 5 \ :
?: :; (Blr BZ’ B3) B") = (xo) yo’ ;{O’ ;o)
= ((sinB;, - cosB;, At sinB;, - At cosB,)
A for sensor 1l's bearing data
Sj . (sinB2, - cosB,, At sinB., - At cosB:)
W < for sensor 2's bearing data
(zix’ ziz’ zia' ziu) ~\ (0, O cosB,, sinB;) for sensor 1l's
;; frequency data
. (0, O cosB,, sinB,) for sensor 2's
v .
,} o L frequency data
s
N T4
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A
W
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€ - the measurement error assoclated with
the i1th observation.

When using two sensor data to estimate the
initial state vector of a particular target, there are only two
possibilities:

1) The two clusters contain observations which
generate estimates for an actual target, or

2) The two clusters contain information which
leads to estimates for a spurious target.

The problem is to separate spurious target estimates from real
ones. Figure 5.1 1illustrates the potential number of bearing
intersections for even a simple example. Because a 1linear
least squares procedure is used, the state vector estimated by
the initial guess procedure 1is a weighted average of all the
measurements from both clusters. This will result in producing
a great number of the spurious intersections shown in Figure
5.1. The question of separating real from spurious estimates
can then be viewed as one of determining whether the two
clusters are estimating the same target or not.

One way to do this is to use indicator variables,
that 1is, to formulate the model as above with an additional
term ziS;

My = ByZyy + ByZyy + BaZyy + B2y, +Bs2;5 T €,

where Z15 = 1 if the observation comes from cluster 1
0 if the observation comes from cluster 2.

_l.l
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2
. The response model associated with this is
for observations from cluster 1,
B
- for observations from cluster 2.
) 1f By is significant, then there 1s a significant difference
X in the mean response of the system to the data from the two
<™
sensors. In essence, 35 is a measure of the degree of
E averaging required between the two data sets to generate an
initial state vector estimate. A large amount of averaging
'}E:- implies two different targets are producing the estimate, a
b small amount of averaging implies only one target produced the
' . estimate.
" Thus, the two sensor consistency test reduces to
P a standard 1linear model test of the significance of the
indicator variable ZS' This corresponds to the hypothesis
. test
\, HO: By = 0 versus
‘ H: Bg ¥0
2
- with test statistic
i;
e SSR (ZS|ZI: ZZo Z3, z“) - SSE (Zl’ ZZ» ZB: ZH» ZS)
- F* =
’ 1 n, +n; -5

A Y

’ \.:.-'.\:_-“_.\_.‘;-.*".' "~{‘-" R ,\- . -'.‘:‘_ AEATA TR .1‘4,
L SV VYT, B N f-mﬂ\l }:’h{‘.. J\.\ -\}A\L A
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where SSR(ZSiZI,ZZ,Z3,24,) is the reduction
in regression sum of squares caused by including

ZS’

SSE(ZI,ZZ,Z3,Z4,ZS) is the error sum of
squares for the full model,

n,, ny - number of points in clusters 1 and 2, and

F* - has an F distribution.

The decision rule is:

if F* < Fc (1, n, +ny - 5) accept Hj
if F* > F, (1, ny +ny - 5) accept Hy

where

F, 1, n; + n, - 5) 1is the desired critical

point of the F-distribution with 1 and n, +

n, -5 degrees of freedon.
Again, because the cost of a type I error is much higher than
that of a type II error, the alpha level for this test was set

at .005.

5.3 Three Sensor Statistical Compatability Test

Once all two-sensor initial guess estimates have
been examined, attention 1is turned to potential three-sensor
initial guess estimates. As with the two-sensor estimates, the
three-sensor state estimates are made up of weighted averages
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IO

_ of observations taken from all three clusters. Thus, spurious
N target estimates which satisfy the physical constraints of the
NS problem often occur.

)
L
.
.

- Figure 5.2 contains a flowchart of the three
- sensor statistical test. Note that for a particular
three-gsensor combination to be examined, at least two of the
y .. associated two-sensor estimates must have passed the two-sensor

test. Once a three-sensor initial guess has been calculated, a
nonlinear least squares hypothesis test developed by Gallant
(Reference 7) 1is used to decide whether this estimate 1is

‘ ﬂ statistically equal to each of the previously computed
» two-sensor estimates. It is this test which forms the heart of
§ o the three-sensor compatability test. If at least two of the
. - aggsociated two-sensor estimates are statistically equal to the
v - three-sensor estimate, then the three-sensor estimate is passed

on for further consideration.

2

[+ The intent of the three-sensor test 1is to search
' for consistency among the already computed two-sensor estimates
3 ; and the current three-sensor estimate. Requiring agreement
. with at least two of the possible two-sensor estimates prevents
N ‘; one two-sensor estimate from dominating the three-sensor

estimate.

The Gallant nonlinear regression test (Reference

AT A LA A A

- 7) considers the hypothesis
-
‘A H: X = X5  versus
;o H: XX
: - 1 . o
‘ -
-
E
o 64
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GET 3-SENSOR

COMB INATION

RETURN

GET 3 SENSOR
ESTIMATE

SATISFY
PHYSICAL

ONSTRAINT

Figure 5.2.

Initial Guess Procedure's 3-Sensor

Combination Tests
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.. . at the o-level of significance where
= -
, . Xo - represents the 1initial guess, state
SO vector estimate under consideration.
-
O The data, M/, are measurements assumed to be
. =
s responses to the input vector Z; linked by the non-linear
OLEDA regression model
’_:; ;::: =gl
Ry My = £(2g, X,') + eq.
-
-" . Under the null hypothesis the quantities
NG
“n‘: \:‘i - > 1 -
:‘.._: .: Mi £ (ZI’ i: ) ei
e . are called the measurement residuals and are assumed to be
S independent, normal, random variables with zero mean. If each
}. - measurement has an associated positive weight Wi, then the
?:‘; T following sum
X
K-
W e =
2 S(i:) zwiei
.."!
Eﬁ; ' is the weighted residual sum of squares for J_(:.
b —E Then, for the initial guess routine the
S regression function is:
. = [ 2 - v A
< My =2 - [(x, + %, Aty) sin Bi.s (v, + ¥, 8¢)) cosBig]
.:f:: r M (l-z)°[xo cos B4 + Y, sin Bi.s]
.
:E ”
IO
e N
3
-~
({oj 66
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2 1
* where 7
;3 (xo, Yos io’ &o) - - initial state vector of é
F bty - ty - tg, .
s sin B, - sine of bearing estimate ?
b from sensor s, _
"™ ,'..
- cos B, - cosine of bearing D
. estimate from sensor s,

3 1 - when measurement is ‘i
\ﬁ Z = crossed-bearing, '
N o - when measurement is 4
3 crossed-frequency.

) .
) 2
e In Gallant's notation, the input vector, 2, for each -
3 measurement 1is: Ei
-:: ?- (zl’ zz: Z3s ZA) = (Z, Ati: sin Bis’ cos Bis) -4
-.‘ . 1
P _

and the parameter vector is:

s,
. ‘.' ”

" i P .

E xo - (xo’ Yor X5 yo)‘ )
N ~]
: The test statistic used is )

h ; .
5 > s (T)

o, T (X ! ) = o
? TSR
‘s o 3
v 5
i < :.:

2 ¥
& Jd
; '
T g%
d 67
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(N where X, - are values for the previously
e A
(2 computed two sensor state
AR vector estimates,

N )_(: - the three-sensor state vector
i estimate.

\J The critical point is given by

.

;- F (p,n-p)

- C* = 1l + I-)__o__—-_

Lo nop

LR

-

N a where
v D - number of parameters estimated

\ n - number of data points
‘ ' F,p, n-p) - o percentage point of the
X F-distribution with p numerator
E S and n-p denominator degrees of
¢ " freedonm.

NI Lastly, the decision rule is:

~

x4

N if T(XZ) < c*,accept H,

' %

s if T(Xo) > c*,accept H,.

v

i The test procedure then is:

" 1) Get the three-sensor data and compute an
= . initial state vector ?o with the 1initial
- guess procedure,
3 é 2) Compute S(X:),
RIS

\’

‘
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o 1
m 3) For each of the ©previously computed !
O >

E‘-';'-"..' two-sensor estimates, Xc',, associated with

‘r':'.:.;l the three sensors under examination, compute 1
o~ S(Xo) (using the three sensor data),

’
A 4) Perform Gallant's test on each of the X
fj. two-sensor estimates, and 4
. 5) If two of the two-sensor estimates pass,

lj::. then pass the three-sensor estimate as good, J
4:': otherwise fail it. ,
_ The test statistic T is derived by finding the l
ﬁ“- likelihood ratio for the composite hypothesis :
" A
oY

IN H : X = ; versus a
% Hi: X4+X! .

; The exact distribution of T is not known, but Gallant finds a ]
™ random variable which is asymptotic to T and whose distribution

Y2 determined. Basically, the test examines the ratio of the
:;’ residual sum of squares for the two-sensor and three-sensor

estimates. By definition, the two-sensor estimates will always
produce larger values of S()_(T than the three-sensor estimate,
so Gallant's test provides a measure of what is too large.

L’L“L’
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" is known. It is from this asymptotic distribution that C* is 1
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6.0 INTEGER PROGRAMMING AND SCENARIO SELECTION

Up to this point, the MTTA has been concerned
primarily with examining multi-sonobuoy data and organizing it
into sets of observations that form potential tracks. These
potential tracks must now be organized into 1likely track
scenarios. That is, given the current set of observations,
determine which set of potential tracks most likely describes
the actual events taking place. With even a small number of
potential tracks, this becomes a combinatorial problem of
fairly large dimensions. To sift through the various potential
scenarios to select the optimal set, Tracor has used a linear
optimization technique known as integer programming (IP).

The most general integer programming formulation
is:
n
min c¢'x -q_; ciXy
such that -
XesCz"
where

is an n-dimensional cost function

is the constraint set

is the set of all n-dimensional integer
vectors.

Typically, integer programming problems are difficult to solve
so a great deal of research has concentrated on identifying and
finding efficlent solution techniques for certain special

classes of this problem. Fortunately, the scenario selection
problem falls into a well known problem type called the set
partitioning problen.




6.1 Set Partitioning Formulation

Garfinkel and Nemhauser (Reference 17) give the
basic formulation of the set partitioning problem. Consider a
set I = {1, 2, ..., m} and let P be a set such that P = {Pl,
cees Pn} where PJQ I for the index set J = {1, ...,
n}. Then a subset J* of J defines a partition of I if

U P, =1
jeJ* ]

and for j, k € J*, j # k implies
Pjﬂpk = f.

Thus, a partition of I consists of a set of disjoint subsets of
I such that their union is equal to I.

Let a cost, cj, be assoclated with each j € J
so that the total cost assgsociated with a given partition is
165 Cj . The set partitioning problem is to then find the
partition of I having the minimum cost. Written as an IP, this
problem 1is:

n
min'z cy Xy
j=1
n
subject t:ojz=1 g4 * L i=1,...;m

xq = 0, 1; j =1,...n

odiidhde.
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\ . where X3 = §1 if j is in the cover
T 0 otherwise
a4 =91 1if 1 € P_-]
i - 0 otherwise.
& -
-;3'.7-? The optimal solution to this problem, if one exists, will yield
SN an x-vector of zero's and 1's such that a 1 in the ktD
.. element of x implies Pk is in the partition and a zero in the
5 'E;Z kth position implies P, 1is not in the partition. This
! ’E problem can be rewritten in vector notation as
A :
min ¢ 'x
2
2

LN

subject to Ax = 1

where

1 18 a column vector of l1l's
c = (cl, Copeenneny cn)
oo X = (xl, Xy +evs xn) x; as above

A= (ai.j) a;4 a8 above.

mxn
Note that A has m rows an n columns. The kth column of A
corresponds to Pk' The m"h row of column k has a 1 in it
if m is in Pk and 18 zero otherwise.
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6.2 Applying Set Partitioning to the Scenario 7
Selection - Constraints
To see that the scenario selection problem can be
cast as a 0-1 set partitioning problem let: RS
K = {Kl, Kypeoes Kn&, Kn1+1,..., K"1+n2’ -
Kn1+n2+1 T n1ﬁ2+o . .+n _1 ’ -
K K2 ]
n1+n2+0 - o+rln_1+1 900 ey nth- . -‘mn} ::
where Kl""’ Kn represent the n; clusters y
1 associated with sensor 1 ;j
Kn1+1,..., Kn1+n2 represent the n, clusters
associated with sensor 2
. |
o :ﬁ‘di
Kn1+n2...+nn_1+1, represent the n, clusters _
ceey Kn1+n2+...+nn associated with sensor n;
Then a particular track scenario can be represented by 1
T* = T U T U LI ) U T o
3 3 i |
with cost
n;+n,+.. .‘mn
X. = ¢c. +¢c. + ... + ¢,
z cyxy = ¢y tey, 3 .
j=1 3
where
Tj represents a given track,
i.e. a partition of K, .4
= K K cos
J 1 b j 2 ’ ’ .
Ke™s ®
jn
73 ' J
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xj a binary variable such that

1 if track j is in the scenario

X, =
J
0 if track j 1is not in the
scenario j
cj the cost of track j.
Forming the complemunt set Tj as
k+1
'1‘j = K-T*
k+1
we can write K as the union of the Tj 's for any track
scenario, i.e. 1
K=T, UT, U...UT UT
17 3, e e

Lastly, if we allow a particular cluster to appear in one and
only one of the Tj 's for a particular scenario we have that
i

j; # 3, implies Tjif\ Tjk - g.

Therefore, for any track scenario, the T,'s form a |
partition of K, the set of all clusters. If each cluster in i
the complement set T is considered to be a potential

track made up of a sinéiZEon cluster with zero cost, then the 1
problem may be written as:

min c¢'x
subject to
Ax + IS = ]
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where
c = (cl, Co, =oes cn) cost vector
X = (xl, Xos eees X)
Xy - 1 if track T1 is in scenario
0 if track Ti is not in scenario
A - (aij)mxn
aij = 1 1f cluster Ki is in traqk '1'j
0 if cluster Ki is not in track Tj
I = m x m identity matrix
S = (sl, S9, ooy sm) vector of slack
variables having zero cost
84 = 1 1f cluster Ki is in complement set
0 otherwise
1 = column vector of all ones.
6.3 Applying Set Partitioning to Scenario Selection -

Cost Function

This section derives the cost function used in
the IP formulation of the scenario selection problem. As
explained in previous reports (References 2 and 3), Tracor's

HTA uses an extended Kalman filter to sequentially track a
given target. The filter 1s 1initialized by a batch,
least-squares algorithm that uses a constant acceleration

Y

s

P
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motion model for target trajectories. Two measurement types,
bearing and Doppler shifted frequency, are wused by the
measurement model.

The measurement model of the Kalman filter
produces a residual stream as data are processed,

A

ey =¥y - Yy

where Yi - observed measurement value

Yi - predicted measurement value.

The ei's are assumed to be independent, normal random
variables with zero mean and variance LA Thus for a
particular track, the likelihood function for the measurement
model residual stream can be computed. For track '1'i
possessing ny observations, this function becomes:

2
oo (e /w)’ % (e, /w,) RN CWLARh
L =  ————— e e e
1 \or w, Va2r w, Voo
ni 2 i
- izl(ei/wi)
= e
(2n)ni/2(w1, LERI )%
i
Lee s, = {1, , T, ceer Ty }ve

}
a track scenario, then the likellhood o% SJ is defineaias:

L(Sy) =Ly, Li,--- Lin.

where Li is the likelihood function for'%he measurement

&~
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-
.‘ model residual stream corresponding to track Ti . If Xy ‘
is a variable such that k '
B = {1 1if T; 1is in scenario i
Xg i
" 0 otherwise, -
s
N
- then the above can be written as -
n : x x x -
. - - 1 2 n
3 L (si) L(S) Ll L, cee Ln
' where xil-l , xiz-l , ceey . =] and all other N
-« n S
; x4= 0. J td
5 In general then, N
N -
- X x X
' - Lig, 2%, % D -
L(S) L1 L2 cee Ln g
and a reasonablé scenario selection candidate would be that set
of xi's which maximizes L(S). This is equivalent to finding
that set of xi's which minimizes -
3 -
b - -2 1n L(S) = X (-2 1n Ll) +x, (-2 1n L,) 3
: +ooutx (-2 1n Ln) ...
::; Thus, for the scenario selection problenm,
: nj ni 5 >
c; = =2 1ln Li = n; ln 27 +;Wi +.Z(ei/wi) -
A i=1 i=1 _
Y,
2 :
5
< becomes the cost associated with track T g» @and the optimum .
- scenario 1is the one that maximizes the scenario likelihood -
< function. '
) N
’ >
S
; 7 -
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6.4 Integer Programming Summary

In summary, it is important to keep in mind the
following aspects of the MTTA integer programming formulation.
For the given scenario under consideration the members of the

component tracks, T, , T, ,000, T are determined
by the 1initial guess rg‘utine s 2 the member.ks of the complement
set, j are the clusters that are ''left over. The

cost cj,k sf a particular track Tj is determined by applying
the HTA to the data contained in the clusters which comprise
T,.
i

The solution algorithm is a 1list based search
procedure described in Garfinkel and Nemhauser (Reference 17)
and, while there are potentially faster algorithms available,
this formulation was felt to be sufficient at the present
time. Larger problems will 1likely force consideration of
faster solution algorithms.

Finally, it should be noted that Morefield
(Reference 8) has also used integer programming to solve the
intersensor correlation problenm. He used a set packing
algorithm which, with the addition of slack variables, 1is
equivalent to the set partitioning algorithm. However, his
rationale for casting the problem 1in this framework 1is
substantially different, using a Baysian approach to track
formation and his cost function 1is slightly different. More
importantly, he wuses data types which ignore the passive
initialization problem and he works with substantially smaller
data sets. Because of this Morefield used neither clustering
techniques or initial guess procedures to prune the data,
relying on the IP to handle these chores.
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: 7.0 RESULTS
"
<
> 7.1 Introduction
S This section presents the results of applying
S Tracor's MTTA to several different simulated multi-target
N scenarios. Topics discussed in this section include:
y = 1) Generation of simulated multi-target data,
\ "f 2) A three target scenario with good geometry,
. strong signal, and a threshold of 0 dB in a
N d 1 Hz band, <
D
< o 3) A three target scenario with poor geometry,
T strong signal, and a threshold of 0 dB in a
-‘ 1 Hz band,
x N 4) A three target scenario with good geometry,
MRS moderate signal, and no threshold, and
o
¢ 5) A two target scenario with good geometry
MR strong signal, and a threshold of 0 dB in a
N 1 Hz band.
N The section corresponding to topic (2) contains a detailed
3 discussion that 4{llustrates the performance of the MITA.
N é Figures and tables are presented which show the results of the
i data clustering, automatic cluster extraction, initial guess
» }:3 estimation, and integer programming modules.
g L0
v
BN All scenarios generated were single trial runs,
a thus the results presented are not Monte Carlo averages and
&
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reflect more variation than do typical Monte Carlo results.
All scenarios were of six minute duration and employed three
sensors to gather data. Computing was performed on a UNIVAC
1100/61 where the run times per scenario ranged from seven to
nine minutes depending on the scenario complexity and the
received signal strength. This point should be noted, Tracor's
MTTA 1is currently running 1in near real time. With only a
minimal amount of ©parallel ©processing, 1i.e., separate
processors to cluster each buoy's data and two processors to
evaluate potential tracks for the IP module, the algorithm
could easily be made to run in real time. Because the MTTA
uses relatively little storage space (less than 64 K words for
the clustering algorithm and less than 30 K words for all other
modules) and requires only six to seven significant digits of
numerical accuracy, current parallel processing options would
be more than adequate for MITA computations.

7.2 Scenario Data Generation

To study Tracor's MTITA tracking capabilicies,
multi-target data were needed to test the tracker. Since no
real multiple target data sets were readily available,
simulated multiple target data were generated to fill this
need. Following 1is a brief discusssion of the type of
sonobuoys modeled, the type of trajectories used by the
targets, and the target signal strength levels that were used
to simulate the multi-target data.

7.2.1 Sensor Locations

For all the geometries 1Investigated, three
non-moving passive sensors were used to gather data from the

targets. These sensors were deployed in an equilateral,

Rl
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triangular arrangement that is known as a tri-tac pattern. The
baseline distance between each of the sonobuoys was fixed at
7000 m. This arrangement was felt to be sufficient to insure
that each of the targets could be observed by all the sensors.

'- 7.2.2 Target Trajectories

Three different multi-target geometries were

s

simulated for the current study. For each geometry, all the
targets followed wunique, constant velocity, constant heading
N trajectories for six minute durations. These trajectories were
: - specifically designed to prevent track intersections during
g this six minute time span. The three geometries used are

summarized in Tables 7.I-III. These scenarios were used to

determine 1if certain geometric and dynamic combinations could

be formed that might prevent the MTTA from tracking all the
. targets. As will be discussed, the scenarios described 1in
' Tables 7.I and 7.II1 proved to be favorable observation
geometries whereas the scenario described in Table 7.II1 proved
to be an unfavorable multi-target geometry with the MTTA
m failing to track one of the three targets.

7.2.3 Simulated DIFAR Multi-Target Data

After the three scenarios described above were

> created, simulated sonobuoy measurement data for the targets

' were needed so that the MTTA could attempt to reconstruct the

: é tracks for all the targets. To generate the data for
individual targets, a DIFAR simulator (References 2 and 3) was

N used to generate frequency and bearing measurements. This
simulator used a peak picking method to estimate the frequency

from a normalized frequency spectrum and an arctangent
processor to estimate the bearing. For this simulation, a data

81
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TABLE 7.1
DESCRIPTION OF THE 3 TARGET
TRACKS FOR SCENARIO 1
Buoy Positions
uoy f X(m) Y (m) V(m/s)
1 -3500 1000 0
2 0 7062 0
3 3500 1000 0
Initial Target Tracks (t =0s.)
Target # Xo(m) Yo(m) Vo(m/s) Course Heading (°*
1 -3500 -750 -6 45
2 2500 500 9 90
3 -500 4500 4 300

Final Target Tracks (tf=3605)

Target # Xf(m) Yf(m) Vf(m/s) Course Heading ()
1 -1473 777 6 45
2 2500 3740 9 90
3 220 3253 4 300

Logt o'y

T .

-

.
P
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o TABLE 7.11I

(‘ |

T DESCRIPTION OF THE 3 TARGET

Sl TRACKS FOR SCENARIO 2

o ':' Buoy Positions

. - Buoy # X (m) Y (m) V(m/s)

@ 1 -3500 1000 0

D 2 0 7062 0

< 3 3500 1000 0

X

<

5 Initial Target Tracks (to=0s.)

R

2 i

e Target X (m Y_ @ v_(@/s) Course Heading (°)

-750
500

6
9

15
90

il 3 -500 4500 4 300

LA

i Final Target Tracks (t;=360s)

e

>, - Target # xo(m) Yo(m) [ Vo(m/s) Course Heading (°)|
X 1 -914 191 6 15

o 2 2500 3740 9 90

S 3 220 3253 4 300 |
4 v

b
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DESCRIPTION OF THE 2 TARGET
TRACK FOR SCENARIO &

TABLE 7.1III

Buoy Positions

Ty Ty—Tw SR A S DA ..—1

]
. ala'a

Buoy #

X(m)

Y (m)

V(m/s

-3500
0
3500

1000
7062
1000

Initial Target Tracks (to=Os.)

arget #

X, (m)

Y, (m)

Vo(m/s)

Course Heading (e

-1000
-3000

-500
7000

6
6

0
i 300 R

Final Target Tracks (tf=360s) j

1160
-1920

-500
5129

Target ¥ Xe(m) Y- (m Ve (m/s) Course Heading (°)
| _j

6
6

0 3
300

....................................

Y e
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N update rate of 10 sec. was used to make the measurement, and
since the accuracy of the frequency estimates 1is inversely
proportional to the update rate, the frequency measurements
were limited to a 0.1 Hz resolution. As described before
(References 2 and 3), this data generation program is a fairly
realistic model which outputs non-Gaussian measurements for the
individual targets.

To form the multi-target data needed for the
current investigation, 1individual target data sets were
generated for each of the targets present in a given scenario.
o Then, the individual target data sets were merged for each of
% = the sonobuoys to produce what was referred to last year as
P multiple 1linetracker data (Reference 3). Certain weaknesses

w

were acknowledged previously in simulating the data in this

L
v
P

,t{ fashion, but overall, this type of multiple target data was
{ . felt to be more than adequate for testing the MTTA.

'
ity

For all but one case, each target transmitted a
fz ) tone whose SNR level as measured 1 yard from the source was
' simulated as 80 dB in a 1 Hz band. For these cases, the DIFAR
simulator used a threshold of 0 dB in a 1 Hz band that had to
:ﬁ - be met or exceeded before any measurement estimates were

/P

output. If one uses a 20 1log R approximation for the
propagation loss, where R is the magnitude of the distance from
the source to the receiver, an 80 dB source level without any
: fluctuation could be heard 10,000 yards away and just meet the
_: 0 dB threshold criterion. However, the DIFAR sirulator
& introduces some random noise terms to model random fluctuations
?:.v in both the target signal source level and the ambient noise
N level, so the absolute maximum observation range for the

:: g sonobuoys cannot be set.
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One other case was simulated which used a lower

N

SNR value for the target source level, but eliminated the
thresholding criterion so that measurement estimates were made
;{ for all time updates. Usually, threshold levels are set so B
y that most target measurements exceed the 1level but no, or

L__“

ol

. almost no, random noise measurements are introduced into the
;é data set. Unfortunately, such thresholding techniques can
- eliminate actual measurements in order to insure that no noise %
= is 1included in the data. For this particular case, the —
threshold was dropped to see if the sensors could pick up a
e weaker signal than that used in the other simulations. The -
i; target source level was lowered by 3 dB to 77 dB in a 1 Hz )
A band. This 3 dB 1loss effectively decreased by approximately ;ﬂ
307 the range at which the signal could be heard. To )
compensate for this loss in range of the detection system, the
:i threshold was eliminated so that measurement updates were
always made. The clustering algorithms were then used to pick 1}
the true measurements from the random noise found in the data.

o

v
A
'y

The results from eliminating the measurement threshold and then
clustering the data to separate true target data from random
noise are presented in a subsequent subsection. 'T

oy 7.3 Three Target Scenario, Good Geometry, Strong
‘ Signal |

7.3.1 Introduction f]

This seciion contains a discussion of the results
obtained by applying the MTTA to a three target scenario with
good observation geometry in a low noise environment. It is
very likely that no multi-target algorithm will be able to
handle all possible observation geometries, so this report .

86 |
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contains examples of the MTTA's performance for both good and
bad observation geometries. Furthermore, real ocean ambient
noise levels and target source levels vary drastically from one
situation to the next, so detected SNR's vary greatly for
different encounters. This wvariation 1in detected SMR's

seriously affects the quality of the measurements which in turn

iQ} B greatly affects tracking accuracy. By running a three target
_ff ) scenario under various degrees of signal degradation, it was
m = hoped that a better idea of algorithm performance could be
L - obtained.

EE; . Figure 7.1 contains a plot of this scenario. The
F:a 2 plus signs represent the buoys, the solid lines the actual

trajectories, and the dashed lines MTTA's estimated
trajectories. Detailed results of the MTTA's solutions £from
each module are presented next.

;ﬁl 7.3.2 Data Clustering Results - Buoys 1 and 3

Table 7.IV contains the frequency, bearing sine,

r and bearing cosine measurements generated by buoy 1, while

g Table 7.V contains the measurements generated by buoy 3 of the

scenario. The column headed 'TARGET' indicates whether the
measurement came from target 1, target 2, or target 3.

Tables 7.VI and 7.VII present the clusters

generated by Ling's algorithm (for buoys 1 and 3,
respectively), the associated cluster level or node number (see

j!? h section 3.2), and the object numbers for the members of eac™
R cluster. Examination of these tables 1illustrates severi’

points:

87
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TABLE 7.1V

SIMULATED MULTI-TARGET DIFAR DATA FOR

TIME

15.0039
15.0000
25.0330
25.002Q°7
35.025¢C
315.0023
35,0000
45.0G50
$5$.030%8
€5.+40380
§5.0232
65.0C3"
65.0300
7539330
85.0030
85,3000
85.439C
9¢.0387°
95.0000
95.0330
105.000
11%.230
115.00°0C
115.230C
125.G00
125,000
12%.920
135,207
135,350
135,330
14%.900
145.533
155,039

BUOY 1 OF SCENARIO 1

FREQUENCY Cos(p)
150.000 - e308%43
150,100 655623
149.90C e3884837
150.,1Q°C «6BZEET
149,900 «391830
1s0.700 «9TQFCE
150.100C « 778779
149,900 0370085
149.900 «32887H
15%.2090 «996032
150.109 0661244
149,900 447230
150.100 «638200
150.100 «556564
149,800 «560186
150.80C « 999073
150.100 «781C6E
149,860 «e52984°7
150.000 «997932
150.100 0698291
149.900 «9R9INE
149,807 « 756862
149,900 «999826
152.10°C «T712585
149.800 o 783048
149,900 e 975569
150.100 «672628
149,207 2617891
149,900 «9752¢1
157,140 o 799018
149,200 «682499
149.900 +993101
149,700 0671620

(CONTINUED)
89

SIN(g)

-.951275
«75508¢
~e937338
e 765984
-+%200S0C
-e2237808
627298
-e92899°¢
-09““37“
-e843933-231
«750171
'089“°1°
«769871
830792
-o228367
-.430S87-001
6710832
-.368363
-.6842881-C01
«T71581%
«187611
°065“937
-,186046~-C01
eT7C1586
-e669238
0219698
« 7399848
-« 786578
«221982
601713
-.730887
117262
-.780892

TARGET

=
O

HNFEWNFHWONDHRWDEHNDWRDHFEONHELWHWNDHEFPLONHWHWLE

KRN, LG OGNS LG0T AT COURLN, (53 St ghe ¥ Lo s SRl Ohy |




2 - - &Y
Vgt ,:ﬁ'« V‘v Uk

e d mww d
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N TABLE 7.IV (CONCLUDED) :
o K
22 SOMPLE o FREQUENCY CoS (8) SIN(8)  TRACET )
% | ]
\ 36 155,060 149.900 «908245 413439 2 ‘
35 165.300 149.700 «610771 -.791807 1 )
' 36 165,200 149.90C 2999421 «340218~C01 2 R
e 37 175.709 149,73°C ¢ 771546 -.712233 1 N
33 175.900 149,900 «987672 0156538 2
¥ 39 175.C00 150,100 «819608 «572931 3 5
i 43 18%.2300 149.700 689152 -e720617 1 d
) &1 165,230 152,10C e777887 628405 3
i 42 195.3C0 149,200 «999627 =¢126506-031 2
R 43 19£.3539 1s9.10° .8089¢51 «587876 3 a
W ' 205,230 149 .70C «T85327 - 0666699 1
BN 45 2054300 149 .80¢ «973847 «228911 2 ‘
46 2065.03¢C 150.10C 2797952 6027212 3 i
YR “7 21%.390 149,700 «761986 -e647593 1
N 4E 215.9350 149,.80C e963291 «2682399 2 )
by 49 235,000 159.10° 795608 612580 3 ﬂ
Qg Sa 225,.33¢C 149,700 777883 -e628809 1
X 51 23%.000 149,700 e792367 -+.610045 1
52 235,080 149,80C «93530" «353858 2 1
o 53 235.0G7 153.140 o 7159726 «650248 3 i
rY 54 248,550 149,607 e81772C -«575616 1
wd 53 245,707 153,000 « 696281 e 717760 3 ,
> S6 255,060 149,600 «885389 ~.534151 1 1
‘ §7 - 25%5.03C 159,000 «813719 «5812%9 3
58 265.000 149,600 817620 - ST5T758 1
59 265,330 157.060 <7755 36 «671708 3 :
60 275.03¢C 149,600 «86684"7 -, 495783 1l !
- 61 29%.300 149,630 0863783  =.50393% 1 j
62 295.000 1649,72C «917841 «396947 2
— 63 29%.000 150,.00C «796430 «634730 3
64 308.3CS 189 ,60C NLIYXY) - 46526C 1
ks 65 315.33¢C 140,607 «872KT2 - 488667 1 :
B 66 325.20C 149,650 o881€62  =o563167 1
e 67 2éS.300 149,702 9ugsAa? «316£32 2
B Y] 325.000 150,060 «82189" *S69686 3 .
' 69 335,000 149,600 «898065 -e887937 1 J
. 70 335,000 149,700 956681 0255982 2 ‘
s 71 33%.350 150.007 s77169¢ 636231 3 .
A1 72 34%,20° 49,6870 INEHEC -e417516 1 i
£ 73 345,300 152,00° e511832€ J4116Gus 3 '
‘ 78 355,300 149,600 «$19773 «+392650 1
X 73 355,333 153.300 e812332 «583198 3 i
% !
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TABLE 7.V

SIMULATED MULTI-TARGET DIFAR DATA FOR
BUOY 3 OF SCENARIO 1

Tracer Applied Sciences
SAMPLE
NO. TIME
1 S . 00300
2 €.00300
3 15.0000
“ 15,5230
s 25.023¢C
¢ 25.5030
L4 25 .0000
8 35.5000
9 . 35,0030
1C 45 .50a0
11 45.6330
12 4S.u000
13 £S5 .0300
14 $5.000C
18 65 .5030
l¢é 65.200C
17 75.3350
18 75 «3500
19 85.00G0
20 85.0030
21 95 .0000
a2 1C%.302
23 10%.300
24 115.33¢C
25 115.000
26 125.300
27 12%.200
<8 135,230
29 135,339
33 148,320
31 15%.252
32 155.230
33 158,250

FREQUENCY COoS(3)
150.600 -.957011
150,607 ~«881346
150.600 -~e991340
183.3G2 =s936695
150,600 ‘0996“0°
150,206 =e969837
150.200 ~+.790688
150,600 -,588932
150.100 -+ 988085
15J.60" -e936766
159,100 -e996927
150.300 =.707386%
150.00C -.999033
150.300 -e7a42)1°2
150.0CC -e998722
3530300 ’0720056
149 ,9gn -.98g110
15r.300 - -e797587
150.600 =e93u02¢
1“9.80° '0969759
149,807 '0959518
159.,60C =s98513¢
149,607 =e922599
149,600 ~.866289
157.300 -.81562"7
150,600 -.820882
149,607 =e840747
159.50? -095577Q
149,507 =e79.231
152,302 =.569786
152.600 =e890218
147,80¢C =eTT77763
159.300 =e 731640

(CONTINUED)
9

SOA A ;?:’!’;":u.L Ay

SIN(R)

-+290051
‘0“72“72
-e13132%
-¢353145

886668~C01

’02“3756
612219

. =el48%60

'0153907
°03““SSS

-e783859~0(1

«706824

=+336628-001

«667267

«505850-001

«65388°%
«i€3750
«61620¢°
=+357209
« 284067
e28l646
‘0171788
+3685761
499543
«578576
-+571098
«S8414830
-e25561%
512719
«742091%
-.482u02
e62E533
681906

.....

TARGET
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Tracer Applied Sciencss
NO. TIME
3 165,200
35 165,300
36 l165.20°0
37 175.030
38 17%5.300
39 175.33¢0
40 18%.900
4] 188,950
42 1¢8.4930
43 195,340
a8y 195.000
4s 2G5.330
46 208.30°C
47 21%.000
%8 215330
&9 24%.330
50 225.33C
Sl 235,032
52 235,800
52 23%.33%
54 24¢€,230
58 245,32C
56 255.300
57 255.300
58 265,327
59 205,030
Y1) 27%,.,35C
6l 268,230
62 285.,04C
63 295.30C
64 29 5¢34C
65 3C8.03°7
66 k3oL ey
67 3c%.,300
63 31%.937
69 315,039
7C 32%.20C
71 226,230
72 138,330
73 r3e,332
75 338.72¢
78 348,050
76 348,257

TABLE 7.V (CONTINUED)

92

FREQUENCY COS (8)
600 -~e9569606
;ig.ago -e727551
150,300 -e797286C
153.600 -e 9152532
149,800 -,738751
150.300 -eb8585617
159,600 -e9615032
149 ,4C0 -.67122"
159.30" -e718734
1:90333 =,6%1288%
150.300 ~e71282°
149,300 =,0N384¢
150,300 - 84TREY
150.6C0 -,95%%861
149.300 -.6n3935
149,700 -~.588741
50.300 -e823967
:50.600 -e,976378
149,300 -¢533%69
159,300 ‘07252U2
150.,60C - FP 1812
150.307 - TOBE4LS
149 .3C0 -a492151
150.300 -,733£82
150.600 -, 988240
187.3CC =.776°1C
149,300 -s453732
149,3%" = 4DhE9E
150.300 - TR12G6E
149.30C = 469660
150.3C7 -, 750252
15n.60C -e995L T
149,207 -,35019¢
15%.3¢0r =e75172%
149,200 -,389%68
- 738016
i
152 .30C -e882F 30
150.60°7 -s96€°61
149,200 -e376682
150,200 - 777938
149,200 -e435891
15C.200 -,916276
(CONTINUED)

SIN(R)

=, 204673
+686053
«603609

-.4C2879
«673978
« 763794

=e274796
« 799008
«695316
e 7754170
e TC01746
« 797408

. «53D2G7

-.281502
« 7971190
2835993
2566638

=-.216070
« 885737
«70999¢p

=-+190884
«63967?
«87051°

«679277

~.317558
627136
«88597¢

«Fl4851
2623521
«88284S
661151

+552907-221

920731
+68790C
«920992
«706196
-«187611
«50547¢%
=,2548%27
0925117
+628344
900000
422073

R E] p i) = d [} % W LML) - 1‘-.~\.“ ‘
- i f“:“ v"lxﬂ:‘&"h‘k?"‘.’ ‘.":‘l)“i“‘.'\"* ‘.v‘vl"fl\‘. .l".l. ‘l.ll .\‘l‘ WD, ) mahwm.f:ﬂ}‘.'ﬂ LI

WSO LN AT

TARGET
NO.

1
2
3
1
2
3
1
2
3
2
3
2
3
1
2
2
3
1
2
3
1
3
2
3
1
3
2
2
3
2
3
1
2
3
2
3
1
3
1
2
3
2
3




TABLE 7.V (CONCLUDED)

i

& SAMPLE SIN TARGET

E & No. TIME FREQUENCY COS (B) (8) NO .

. 77 355,030 150 .600 ~e976356  =+216167 1

g o 76 55,230 149,207 -.26575° «964n39 2

) R 79 355,230 150.3C0 -e821147 4575723 3
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1) The Tthierarchical nature of the data
organization imposed by the algorithm;

2) The varying lengths of time that clusters
remain 1isolated before becoming subsets of
other larger clusters; and

3) All clusters are eventually merged to form a
cluster containing the whole set of data.

Note, that for buoy 3, cluster 75 contains exclusively all the
points generated by target 1, cluster 76 does the same for
target 2, and cluster 55 contains all the points associated
with target 3. Similarly for buoy 1, cluster 71 contains only
target 1 data, cluster 72 contains target 2 data, and cluster
€7 contains all the data from target 3. Thus, the clustering
algorithm has clearly separated the target data, now the MITA
must seek to automatically identify those clusters which are
most likely to contain the desired individual target data.

Tables 7.VIII and 7.IX contain the 4isolation
indices and survival function values for all of the clusters
generated (see sections 3.2 and 3.3). Keeping only those
clusters whose survival function values are less than 10'4,
it can be seen that not only do all the candidate clusters pass

the isolation test, but so do several others. Thus, additional

cluster extraction techniques are needed to pick out the
appropriate data. Thisg is discussed in the next section.




o. b‘ l’ a

4
2

Cra s

A
o e

&
o

......

~~~~~~~~~~~~~~~~~~~

...............

ISOLATION INDEX

L,
4 Tracer Applled Sciences
X
. TABLE 7.VIII
) SURVIVAL FUNCTION AND ISOLATION INDEX VALUES FOR
N CLUSTERS FROM BUOY 1 OF SCENARIO 1
5
2 CLUSTER NO, = 1 SUPVIVAL FUNCTION =
:-.: CLUSTER NO. = 2 SURVIVAL FUNZTION =
3 CLUSTER NCo = 3 SURVIVAL FUNCTION =
¥ CLUSTER NO. = & SUPVIVAL FUNCTION =
a CLUSTER KO. = € SUPVIVAL FUNCTION =
CLUSTER NO. = 6 SURVIVAL FUNCTION =
E‘ CLUSTER NO. = 7 SURVIVAL FUNCTION =
i CLUSTER NO, = e SUPVIVAL FUNCTION =
CLUSTER NO. = 9 SURVIVAL FUNCTTON =
E CLUSTER NC. = 1C SURVIVAL FUNCTION =
CLUSTER NOe = 11 SUFVIVAL FUNCTION =
& CLUSTER NO. = 12 SURVIVAL FUNCTION =
¥ CLUSTER NO. = 13 SUPVIVAL FUNCTION =
& CLUSTER N3« = 18 SUPVIVAL FUNCTION =
:'3 CLUSTER NO. = 1t SURVIVAL FUNCTION =
3 CLUSTER NO. = 1€ SUPVIVAL FUNCTTON =
V CLUSTER NO. = 17 SUPVIVAL FUNCTION =
g CLUSTER NO, = 18 SURVIVAL FUNCTION =
CLUSTER NO. = 29 SURVIVAL FUNCTYON =
i CLUSTER NO., = 20 SUPVIVAL FUNCTION =
? CLUSTER NC. = 21 SURVIVAL FUNCTION =
! (CONTINUED)
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«1830669-321 73
«8501675 3
«1487049 35
«2180120 28
«3200111 14
.9302080-002 85
«8555628-201 45
«8972366 2
4933486 13
«9218307 1
¢1112133-0J2 62
.7217808 6
8046436 4
4817269 15
«2850254 23
8569467 2
$229%015 18
«1566482 17
45666636 7
«3173511 21
«6106839-002 92 |
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CLUSTER
CLUSTER
CLUSTER
CLUSTER
CLUSTER
CLUSTER
CLUSTER
CLUSTER
CLUSTER
CLUSTER
CLUSTER
CLUSTER

CLUSTER

CLUSTER
CLUSTER
CLUSTER
CLUSTER
CLUSTER
CLUSTER
CLUSTER
CLUSTER
CtUSTER

NO.
NO.
NO.
NO.
NO.
NO.
NO.
NO.
NO.
NO.
NO,
NO.
NO.
NOeo
NO,
NO.
NO.
NO.
NO.
NO.
NO.
NO,

36
37
e
3%
L1
41

L ¥4

TABLE 7.VIII (CONTINUED)

SURVIVAL
SURVIVAL
SURVIVAL
SURVIVAL
SURVIVAL
SURVIVAL
SURVIVAL
SurwvrvVa
SURVIVAL
SURVIVAL
suevIval
SURVIVAL
SURVIVAL
SURVIVAL
SURVIVAL
SURVIVAL
SUPVIVAL
SURVIVAL
SURVIVAL
SURVIVAL
SUPVIVAL

SUPVIVAL

(CONTINUED)
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FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTTON
FUNCTTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTTON
FUNCTION
FUNC T ION
FUNCTION
FUNCTION
FUNCTION
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«66448110
e1872693~011
«9803829-001
«T076964-032
4401400
02269791
«3375559~-031
4559114
«1351269-0Q01
.eeaixnu-no1
4384878
«1611562-001
6837861
*2384186-09%
e8362393
«5632228-071
¢5559623~-C3¢
« 7801826
«8179311-021
2886278
8729810

0216%5139-0%4%
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17
45
10
27
41
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39
10
10
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TABLE 7.VIII (CONTINUED)

A . TSOLATION INDEX
' CLUSTER NO. 44 SURVIVAL FUNCTION .zsszum-oos— €6 -

CLUSTER NO, SUPVIVAL FUNCTION

"
E
w

4619360-006 149

VY |

CLUSTER NO, 86 SURVIVAL FUNCTION

«678649] 2

5N,

CLUSTER NO. 47 SURVIVAL FUNCTION

02166189 11

3 CLUSTER NO. = 48 SURVIVAL FUNCTION =  .2682209-006 142
" CLUSTER NO. = 8%  SURVIVAL FUNCTTON =  .3830850-002 25
ﬁ CLUSTER NO. = SC SURVIVAL FUNCTION = «5722709 10

3 CLUSTER NO. = S1 SUPVIVAL FUNCTION = 1132821 13
¥ CLUSTER NO. = 52 SURVIVAL FUNCTION =  .8452878-001 22
' "CLUSTER NOs = 53  SURVIVAL FUNCTION =  .2268977-005S 153
,3 ) CLUSTER NO, = 58 SURVIVAL FUNCTION = e3129244-3506 127
§ CLUSTER NO. = 55 SURVIVAL FUNCTION = ,1102686~005 165

% CLUSTER NOe = 56 SUPVIVAL FUNCTION =  .7777778 1
™ CLUSTER NO. = S7 SUPVIVAL FUNCTION =  +1671483-003 31
a CLUS‘IER NO. = S8 SURVIVAL FUNCTION = .8172325-006 104
CLUSTER NO. = SO SUSVIVAL FUNCTION =  ,141%5610-075 68
g CLUSTER NOo =  6C SURVIVAL FUNCTION = ¢1192093-0"6 92
E CLUSTER NOe = 61 SUPVIVAL FUNCTION =  .129%684-032 57
CLUSTER NO. = 62 SUPVIVAL FUNCTION =  .1404643-302 28
ﬁ CLUSTER NOe = € SUPVIVAL FUNCTION =  ,133936) 5
i CLUSTER NO. = 64 SUPVIVAL FunérION S L4649013-u03 43
ﬁ — (CONTINUED)
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CLUSTER NO. = 65
CLUSTER NO. = 6
CLUSTER NO. = 67
CLUSTER NO. = 68
CLUSTER NO., = 69
CLUSTER NO. = 178
CLUSTER NO. = T1
CLUSTER NO. = T2
CLUSTER NOG. = 73

TABLE

SURVIVAL
SURVIVAL
SURVIVAL
SURVIVAL
SURVIVAL
SURVIVAL
SURVIVAL
SURVIVAL

SURVIVAL

7.VIII (CONCLUDED)

FUNCTTON
FUNCTYON
FUNCTTON
FUNCTION
FUNCTION
FUNC TION
FUNCTION
FUNCTION

FUNCTION

»1341105-006
1985212

+8940697-007

2839254

«47058424-022
«3411472-003
«1043081-006
«104¢3391-006

«1043081-006

ISOLATION INDEX

42
5
229

14
17
600
190
409
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CLUSTER
CLUSTER
CLUSTER
CLUSTER

CLUSTER

CLUSTER

CLUSTER
CLUSTER
CLUSTER
CLUSTER
CLUSTER
CLUSTER
CLUSTER
CLUSTER

CLLSTTR
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TABLE 7.1X

SURVIVAL FUNCTION AND ISOLATION INDEX VALUES FOR
CLUSTERS FROM BUOY 3 OF SCENARIO 1

NO.
NO.
NO.
NO,
NO.
ND,
NO.
NO.
NO.
NO.
NO.
NO.
NO.
NO.

NOo

11}

H

1

Ayl D

SUFVIVAL
SURVIVAL
SURVIVAL
SUPVIvVaL
SUFVIVAL
SURVIVAL
SUPVIVAL
survVIVAL
SURVIVAL
SUPVIVAL
SuevIvVaL
SURvVIVAL
SUPVIVAL
SURVIVAL

SUPVIVAL

(CONTINUED)
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FUNCTION
FUNCTTYON
FUNCTION
FUNCTION
FUNCTTON
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTTION
FUNCTTION
FUNCTION
FUNCTION
FUNCTION

FUNCTION
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«48691%0
6630117
$2757257
c4C42685-gn4
4B86ULYUES
2128872
+789¢106-001
8570225
567405
1141836
5789733
.6548277-502
.856£013
1609325005
1137623

ISOLATION INDEX

14
8
25
191
14
30
49

11
28

95

262
28
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e TABLE 7.IX (CONTINUED) |
W
E* ISOLATION INDEX
2L CLUSTER NO. = 16 SURVIVAL FUNCTION =  .5202636-071 38 ]
b CLUSTER NO. = 17 SURVIVAL FUNCTION =  .1236796-095 281
% CLUSTER NO. = 18 SURVIVAL FUNCTION =  .8138705 4 1
K3 CLUSTER No. = 19 SUPVIVAL FUNCTION = 1868028 13
h CLUSTER NO, = 2C SUPVIVAL FUNCTION =  ,.2989062 16 J
é?‘ CLUSTER MO, = 21 SURVIVAL FUNCTION = 9258659 1 ;
g“g CLUSTER NO., = 22 SURVIVAL FUNCTION =  .3250551-001 33
K CLUSTER NO. = 2% SUPVIVAL FUNCTION =  .6843247-302 96 I
f<Y  cLusTER WO, = 2ze SUPVIVAL FUNCTION =  .66072%8 8
‘TE CLUSTER NO. = 25 SURVIVAL FUNCTION =  .3638257 13
B cLuSTER NO. = 26 SUPVIVAL FUNCTION =  .85608R9 3 ‘
B cLusTER No. = 27 SUPVIVAL FUNCTION =  .6270218-001 53
?%g CLUSTER NO. = 28 SUPVIVAL FUNCTTION =  .4153132-002 104
@Y  CLUSTER NO. = 20 SURVIVAL FUNCTION =  .8346999 1
é% CLUSTER NO. = 3C SURVIVAL FUNCTION =  .1916807 8
;ﬁ CLUSTER NOs = 31 SURVIVAL FUNCTION =  .6958670-393 92
B CLUSTER NO, = 1z SUBVIVAL FUNCTION =  .5e58256 4
é% CLUSTER NO. = 3% SURVIVAL FUNCTION =  ,1608063 35
iy CLUSTER NO. = 3t SUPVIVAL FUNCTIOM =  .2457201-003 79
7 CLUSTER NO. = 3t SUPVIVAL FUNCTION = ,62774PS 3
£ CLUSTER NO, = 3¢ SUPVIVAL FUKCTIOM =  .2229120 4
CLUSTER NC, = 37 SUPVIVAL FUNCTION =  ,2197e62 29
(CONTINUED)
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L

CLUSTER

CLUSTER

CLUSTER
CLUSTER

=3 CLUSTER

A

# 3 w mA,

CLUSTER
g CLUSTER

CLUSTER
g CLUSTTR
;'3 CLUSTER
¥ cLusTER
ﬁ CLUSTER

cnic T

'? CLUSTER

CLUSTER

T

i
y
\

A
A
‘l

NO.
NO.
NO.
NO.
NO .
NO.
NO .
NO.
NO.
NOe.
NO.
NO.
NO.
NG,
NO.
NO.
NO.
NO.
KO0,
NG.

NC.

39
40
41
42
43

44

Y
47
W

49
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TABLE 7.IX (CONTINUED)

SUFVIVAL
SUPVIVAL
SURVIVAL
SURVIVAL
SURVIVAL
SURVIVAL
SUSVIVAL
$UPVIVAL

SURVIvVAL

T SURVIVAL

SURNVIVAL
SURVIVAL
SURVIVAL
SUPviIvVaL
SURVIVAL
SUSVIVAL
SUPVIVAL
SUFVIVAL
SUFvVIvaL
SUFVIVAL

SUFVIVAL

FUNCTION .

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTIGCN

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION =

FUNCTION

FUNCTION

FUNCTZION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

(CONTINUED)
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«298N232-306
«1332875-001
«4812570

«5071954-001
.1750886-004
.1288421-001
67554835

.2072058

«2908707-004
e7182716-002
«$94T246-001
«3642718-001
1591002

«1291833

02542985

«$E€31157-032
«5627866-001
«1341105-906
4996627-022
+5C66395-036

«1639178-035
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CLUSTER NO. = 59
CLUSTER NO. = 6O
CLUSTER NO. = 61
CLUSTER NO. = 62
CLUSTER NO. = 62
CLUSTER NO. = 68
CLUSTER NO. = 6§
CLUSTER NO., = 66
CLUSTER NO. = 67
CLUSTER NO. = 68
CLUSTER NO. = 6§
CLUSTER NO. = 70
CLUSTER NO. = 71
CLUSTER NO. = 72
CLUSTER NOe = 77
CLLSTER NO. = Tu
CLUSTER NCe = 7°
CLUSTER NO. =  7¢
CLUSTER NO. = 77

''''''''

TABLE 7.IX (CONCLUDED)

SURYIVAL
SUPVIVAL
SURVIVAL
SURVIVaAL
SUPVIVAL
SUPVIVAL
SURVIVAL
SURvVTIVAL
SURVIVAL
SURVIVAL
SUBVIVAL
SURVIVAL
SURVIVAL
SURVIVAL
SURVIvVAL
SuevIvaL
SUPVIVAL
SURVIVAL

SURVIVAL

FUNCTION
FUNCTION

FUNCT TON
FUNCTION
FUNCTTON
FUNC TION
FUNCTION
FUNCTION
FUNCT TON
FUNC TTON
FUNCT ION
FUNCT TON
FUNCTION
FUNCTION
FUNCTTON
FUNCTION
FQNCTION
FUNCTTON

FUNCTION

"

$1273486
«4329841

.1890116-006
«13641105-pp6
«1034689-371
+3669095

«2089143-004
+1516987.-301
+1882628-002
«1192093-096
e1742001 07,
.155%671

«35777%6
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7.3.3 Cluster Extraction Results -- Buoy 3 and Buoy 1

A cut-off point of 10'4 was used for the
survival function to determine which clusters were passed to
the extraction module for further processing. For buoy 1, the
following cluster numbers survived this test: 35, 38, 43, 44,
45, 48, 53, 54, 55, 58, 59, 60, 65, 67, 71, 72, and 73. For
buoy 3, these cluster numbers were chosen: &4, 14, 17, 38, 42,
46, 55, 57, 58, 61, 62, 65, 68, 59, 74, 75, 76, and 77.

The polarization test (see section 3.4)
eliminated from further consideration clusters 38, 53, and 55
from buoy 1 and clusters 4, 14, 17, 42, 46, 58, and 74 from
buoy 3. The regression test and the exclusion inclusion rules
resulted in cluster 67, 71, and 72 being extracted for buoy 1
and clusters 55, 69, and 75 being extracted for buoy 2. Thus
for buoy 1, the clustering and extraction processes were able
to completely separate the data into three clusters containing
only the measurements belonging to a given target. For buoy 3
the same processing techniques produced two of the required
data clusters but not the third, selecting cluster 69 rather
than 76. From Table 7.VII, it can be seen that cluster 76
contains clusters 69 and 74 as subsets. The polarization test
rejected cluster 74 as a potential candidate and the regression
test rejected the consistency hypothesis of 69 and 74. Thus,
only the last two-thirds of the data for target 2 which was
contained in cluster 69 was selected for further conmsideration.

7.3.4 Initial Guess Results

Table 7.X gives a 1listing of the clusters
extracted for each buoy along with an identification of which
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target 1is represented by each cluster. Allowing a track to be
composed of both two-cluster and three-cluster intersensor
combinations, there are then

(3*%3 + 3%3 + 3%3) + (3*%3%3) = 54

potential target tracks. Only twelve of these potential
inter-sensor combinations correspond to actual tracks. Table
7.XI lists the results from the initial guess algorithm. From
this table it can be seen that:

1) of the twelve cluster combinations
corresponding to actual tracks, only 1 was
rejected (marked by the asterisk),

2) Of the 42 cluster combinations corresponding
to pseudo tracks, 29 (69%7) were rejected,

3) Five of the three-cluster combinations were
not even considered because at least two of
the associated two-cluster combinations had
been rejected, and

4) From Figure 5.1, several of the pseudo
estimates can be seen to correspond quite
closely to the 1llustrated 1line-of-sight
crossed-bearing intersections.

Once the potential track set has been pruned by the initial
guess procedure, the resultant state vector estimates and their
associated cluster combinations are then passed to the integer
programming module.

...........................
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7.3.5 Integer Programming Results

Figure 7.2 gives the integer programming problem
to be solved for this scenario (see Section 6). Note that the
number of potential tracks represented in the objective
function (i.e., the number of columns) is fewer than the number
passed by the initial guess module. This happens because those
tracks with positive costs, as computed by the HTA, need not be
considered since they would never be part of the solution to
this minimization problem. This can significantly reduce the
amount of time spent finding an optimum since the solution

algorithm spends a 1lot of time arranging and sorting the
columns .

The solution found by the algorithm is

X13 = %14 = X3 = 1
xl-X2-oooXlz-XIs-SI-sz-oco 84-0.

Using Figure 7.2 and Table 7.X this solution is
seen to correctly correspond to:

X,3 - three sensor data for target 3 (1, 1, 1),
x14 - three sensor data for target 1 (2, 2, 3),
X16 - three sensor data for target 2 (3, 3, 2).

7.3.6 Conclusion

The MTTA correctly sorted the raw sensor data,
correctly eliminated about 70% of the possible pseudo-tracks,
and then identified the actual tracks. For this scenario,

Figure 7.1 illustrates the estimated tracks generated by
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' . the MTTA and the actual trajectories followed by the targets.
. The "tic" marks in each true trajectory line represent two
- .. minute 1intervals. All the estimated trajectories have come 1
;t_ k fairly close to the actual tracks before the first tic mark.

The early severe fluctuations are a direct result of the batch
) initializer's updating scheme. After an initial state vector )
‘- N estimate is obtained for t=0, a Kalman filter is used to update
2N the state to the current time. The filter is applied with a
§ & large initial covariance matrix which allows it to search over
: ’Q a wide area to update the state estimate. Typically, early in
% e the track, only one buoy supplies the first three or four
) measurements, and this 1limited observation geometry coupled

N with the large covariance matrix results in state updates which

% x5 are substantially different from the actual ones. In all
‘ ~ cases, the 1initial state vector estimates at t=0, and the
2‘ updated estimates passed to the sequential filter after
' . initialization were quite close to the true values. In any
i ' event, the tracking accuracy 1is a result of HTA
;a‘ characteristics, not MTTA performance, given that MTTA has
jd correctly solved the intersensor data matching problem.
?x, R The large fluctuations observed for target 2 in
3 }:: Figure 7.1 are due to the fact that for buoy 3, the cluster
~E extraction algorithm did not put the first third of the Tz
N -~ (target 2) data set with the last two-thirds. Thus, buoy 2 by
3 ::.Z itself supplied the first few measurements for target 2. This
* ' failure of the extraction algorithm can be traced to the
3 ; linearity assumption of the testing mechanism; target 2 went

through CPA relative to buoy 3 resulting in severe nonlinear
: 5 frequency and bearing changes. The first part of the '1‘2 data
¥ set contained the Doppler compression data up through CPA, the
. ﬁ last part consisted of the Doppler expansion data for 'I'2 that
K was found after CPA. The cluster extraction algorithm rightly
§ 3 viewed these two data streams as different processes, and
S -13 concluded that they did not go together. It is felt that this
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problem can be remedied by 1including quadratic terms in the
extraction's regression model to compensate for the nonlinear
frequency and bearing changes encountered during CPA.

7.4 Three Target Scenario with Bad Geometry Low
Noise, 0 dB threshold in 1 Hz Band

Figure 7.3. shows the scenario discussed in this
section. Table 7.II1 1lists the true 1initial and £final
conditions for each of the targets in this scenario. The
trajectories simulated are the same as those modeled for the
scenario discussed in section 7.3 except that target 1 has a
forty-five degree course heading instead of the fifteen degree
heading that was used previously.

From Figure 7.3, it can be seen that the MTTA
provides reasonable tracks for targets 1 and 2, but no track at
all is generated for target 3. Tables 7.XII and 7.XIII list
the data and the clusters, respectively, selected for buoy 1,
while Tables 7.XIV and 7.XV 1list the same information for buoy
3. Buoy 2 sees all targets perfectly. From Tables 7.XII and
7.XIII, it can be seen that buoy 1 sees target 3 perfectly,
however, it gets targets 1 and 2 confused and splices the last
ten points from target 1 onto the target 2 observation set. A
similar phenomena occurs for buoy 3 when the first 10
observations from target 2 are interspersed among those of
target 1. Buoy 3 also sees target 3 perfectly. Looking at the
data, it 1is clear that the measurements become quite similar
during these times and the clustering algorithm simply cannot
distinguish between the right and wrong data sets. However,
when the power levels of the various signals are examined, a
clear difference is exposed. The choice of attribute variables
used in this study ignores signal power and consequently
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7 TABLE 7,XIV

SIMULATED MULTI-TARGET DIFAR DATA FOR
BUOY 3 OF SCENARIO 2
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Tracor Applied Sciences

treats all measurements as 1f they were received at a common
power level. However, the propagation losses for a near target
should be much smaller than those for a distant target, so
clearly the received signal powers should vary according to the
proximity of the target to the receiver. Other studies

'curtently under way at Tracor indicate the power levels can be

clustered by applying an intensity index to the power level and
then clustering with this index. It is felt that application
of a similar methodology to DIFAR data could improve the
ability of the algorithm to separate data from two targets that
are close in bearing and frequency, but differ in power levels.

7.5 Three Target Scenario with Good Geometry,
Moderate Noise, No Threshold

Geometrically, this scenario is the same as the
one discussed in section 7.3. The difference between the two
scenarios is in the simulated source power levels. For the
first scenario, there was an 80 dB source level, but for this
scenario, the source level was reduced to 77 dB. Figure 7.4
provides graphical comparison of the target true tracks versus
the MTTA's estimates of these tracks.

This particular scenario was simulated to test
the following two data processing capabilities of the MTTA:

1) The ability of the clustering and automatic
cluster extraction algorithms to separate
signals from random, background noise, and

2) The ability of the MTTA's HTA and IP to pick
the correct targets and to adequately track
them with nolsy data gathered from moderate
strength target signals.
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‘_\’ 1
As stated previously, the 3 dB drop in the simulated target -'!
‘::‘_j signal strength resulted in an approximate 30% decrease in the
:j range over which the target could be readily detected. For .
:f this scenario, each of the targets could be well detected by -:‘I
G one (i.e, the closest) sonobuoy, each could be fairly well -
‘:‘;Z detected by a second sonobuoy, but the targets could just be \
I marginally detected by the sonobuoy farthest from the signal

‘: source. Particularly if a 0O dB threshold was used for

) detection by the sonobuoys, each target would be nearly

tj unobservable for one sonobuoy in the pattern. To compensate

:q for any possible loss of data, it was decided to drop the

':’, threshold criterion and to let the clustering algorithm sort

N the true signals from the random noise. '

E Overall, the MTITA performed very well in

N processing the noisy data. For the most part, random noise was

\ eliminated from the true signals by the clustering and a
: automatic extraction processes. Most of the signal clusters

= contained a couple of noise points that were similar to the ?
L true measurement set, but that did not really belong with the '
- true data. However, the DIFAR simulator computes a measurement '3
(3 standard deviation that is a function of the estimated SNR of

‘3 the received signal. For the spurious noise samples, the ‘;:1
ok estimated SNR values were very small (i.e., less than 0 dB), so

- a large variance was computed for the frequency and bearing

\“ estimates. The HTA uses the measurement variance to weight the -
\‘; measurement before generating a least squares update of the .
3 target track. When large variances are provided with :+
, measurement data, the tracker essentially weights the data so

v, ]
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L . that they can cause little or no change in the track update.

*' The net effect 1is that when only a few poor measurements are

2 provided to the HTA with variances that indicate the data "
L should carry minimal weight, the HTA can continue to track the

h_ - ~ target without seriously degrading the track updates. The 1
t_; g results from this scenario, presented in Figure 7.4, illustrate 1
" 3 this point well.

ISEER )Y

From the figure, it can be seen that after some
fluctuations during the track initialization phase, excellent
track estimates were obtained for targets 2 and 3. For target

s

[
a_n_
A

Y h 1, somewhat poorer estimates of the trajectory were obtained.
- Part of the problem with this estimate is that target 1 is
W %:‘ approaching buoy 3 nearly head-on from a very long distance.
“ b Because the target is heading nearly directly at the buoy, very
. "' little bearing change would be observed even for a well

received signal. Since the signal is only of moderate strength
N o and 1is fairly distant from the sonobuoy receiver, the
\3 :‘,:I propagation losses are substantial enough to cause the signal

to be poorly received. Since the signal is so poorly detected,
ﬁ '.- serious fluctuations result in the bearing measurements which
N may in turn appear to the tracker to be a significant bearing
.,.; ;: rate. Hence, even though buoy 3 does observe target 1 and the
- clustering and cluster extraction processes adequately sort the

l_l'l!
a A

data, the measurements from buoy 3 are still of such poor
quality that they adversely affect the tracking solutions from
the MTTA for target 1. Nonetheless, these tracking solutions

A b
A8 A A S
]

L for all the targets would probably be adequate for real world
y
gb - In conclusion, the MITA seems to have passed the
~ ﬁ twvo tests that this scenario was designed to examine. First,
o.‘
0y
‘B

af

[
(3]
-~




Tracor Applied Sciences

it did an adequate job of separating noise from true signals.
Second, the MTTA did an adequate job of tracking the targets
with the poorer quality data generated for this examination.
However, once again, bad observational geometry adversely

_affected the MTTA's estimates, perhaps even more so than the

degraded quality of the data.

7.6 Two Target Scenario with Good Geometry, Low Noise,

and 0 dB in a 1 Hz Band Threshold

The last case considered by this study was a
relatively simple, two target scenario. The same tri-tac buoy
pattern was used to observe the targets, and favorable
geometries and 1low background noise 1levels were wused to
gimulate this scenario. Figure 7.5 contains a plot of the true
target trajectories versus the MTTA's estimates of the tracks
for this two-target scenario. While the tracking solutions
presented in the plots show good results, one interesting point
was encountered in generating these results that needs further
discussion. For target 2, the MTTA picked only a 2-cluster,
intersensor combination to track the target rather than the
correct 3-cluster combination that would have been preferred.
The remaining third cluster was left unused, and the MTTA did a
good job of tracking the target without the data from this
cluster. One must question why the third cluster describing
target 2 was excluded, however, and so the results were more
closely examined to find the cause of this exclusion.

For this scenario, each sonobuoy should have
generated two different data clusters, one cluster to represent

v
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= Tracor Applied Sciences :
,. each of the two targets. The clustering and extraction _]
: algorithms did a perfect jJjob of sorting the data into

«. individual target data sets for each of the sonobuoys. Next, \
= the data clusters were passed to the initial guess (IG)

o - algorithm to eliminate wunlikely cluster combinations and to -"
: keep the rest. Since the data were simulated for this -
\ scenario, it was known that the correct cluster combination for S
o target 1 should have been (1, 2, 1), meaning the first cluster <

from sensor 1, the second cluster from sensor 2, and the first
cluster from sensor 3 should be combined to track target 1.
For target 2, the correct three-cluster combination should have .
been (2, 1, 2). The IG correctly passed all of the correct 3

a

P s Io FE

:, 2-cluster combinations and the single 3-cluster combination for
5 target 1. It also passed all of the correct 2-cluster ‘
:.'fj combinations for target 2, but the IG rejected the one
. 3-cluster combination that should have been passed to represent .3
*.: target 2. Apparently, the 3-cluster statistical test found too
: much statistical difference between this estimate and the -
P 2-gensor combinations that make-up this cluster triplet.
Because of this rejection by the IG, the preferred 3-cluster ’{
3 combination was rejected before the MTTA's IP could even N
,' consider it. Without this cluster triplet, the IP could only .
pick the single 2-sensor combination that minimized the cost By
' function and leave the remaining cluster unaccounted °~~. This ‘
b proved to be exactly what happened when the MTTA picked opt nal
';: solutions of (1, 2, 1) for target 1 and (2, 1, 0) for tar, 2
P and left the second cluster for sensor 3 unused. :31
:; In conclusion, the MTTA once again performed well *1
X in tracking the two targets in this scenario as can be seen in A
Figure 7.5. Unfortunately, the MTTA's IG module prematurely ~
T eliminated the cluster combination that would have been
i preferred to track target 2. This one case is the sole
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L l example in all the multi-target scenarios studied where the IG

2 failed to pass the preferred 3-sensor solution. It should be

:_*ii : remembered, however, that any statistically based test is going

N to make a wrong decision part of the time, even though

- ~ hypothesis tests are constructed to minimize type I errors. 1
" : The result is that, occasionally, good initial guess estimates 1
are going to be eliminated purely by chance.
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(| 8.0 SUMMARY AND RECOMMENDATIONS
i; - 8.1 Project Summary
1
- ‘ The scenarios discussed in Section 7.0 have shown
o~ that in 1its present form the MITA possesses the ability, with
: . no required operator interventions, to properly sort passive
X :; sonobuoy data into individual target data sets, correlate those
‘ data sets across sensors, and select the correct target track
g scenario from the hundreds of potential tracks. Additionally,
- ) in 1its current configuration, the algorithm has performed in
% H: near real time and, with minimal processing alterations, could
operate substantially faster than real time.
5 g Simulation results showed the importance that
. . scenario geometry played in correctly identifying appropriate
tracks. Under certain circumstances, the clustering algorithm
f can become confused over target data and group together points
y i from different targets having substantially different power
2 levels. However, even in the worst case studied, two of the
: three possible tracks were estimated fairly well. Results
v based on good geometry but moderate to high background noise
f *E levels indicate that the MITA 1is not as sensitive to noise
¥ levels as it 1is to bad geometry. This implies that the
B Z clustering and extraction algorithms are confused 1less by
4

g - measurements corrupted by noise than by similar measurements

g coming from different targets. Remedies to these problems will
B be discussed in the next section.
ﬁ -
tﬁ 8.2 Recommendations for Future Work
X
™ The recommendations for future work contained in
: this report fall into two natural categories: enhancements to
N
B
N
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correct the deficiencies observed in the MTTA under the current
contract, and extensions required to make the MTTA able to
perform for long periods of time.

Under the current contract, the following

‘ deficiencies were detected in the MTTA:

1) Confusion of targets under certain
geometries, even when the power levels of
the signals were different, and

2) Incorrect cluster extraction when targets
were undergoing CPA.

To remedy the first problem, it is felt that the estimated
power level can be converted to an intensity index, and this
index can then be used as an added attribute to sort the data
by clustering techniques. The reason for converting the power
level to index form 1is that typically the raw power-level
estimates vary too much to be useful, but indexing such as 1is
done for visual displays has proven to be useful in other
studies. The second problem can be corrected by adopting a
curvilinear model instead of a linear one for the extraction
regression equations. This should permit the model to more
closely approximate the nonlinear measurement time histories
chgerved during CPA.

Proposed extensions to the MTTA are essentially
based on the nature of the nulti-target tracking problem
itself. Basically, the problem can be divided into two parts.
The first part consists of recognizing new targets and
initializing their tracks, and the second part consists of
updating tracks for established targets. Tracor's. MTTA, as it

143
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{ l presently stands, is essentially a solution to the first part
‘-::: h of the problem. It can take raw data, automatically cluster to
':’_: R recognize targets, and then estimate the associated tracks for
N

each of the targets.

R - |
Y

Figure 8.1 represents Tracor's conception of the
3 completed multitarget algorithm. The current MTITA 1s located

' in the '"search for new targets...' box. The boxes surrounding
it contain data management functions. They maintain sensor

\; :; data pools, place elements in the current track table, and
:}‘3 N remove points forming a trajectory from the sensor data pools.
N There 1is no theoretical development associated with the
- implementation of these functions, they amount to the lines of
E-:ﬂ code necessary to set up the appropriate data structures and
‘ module linkages.

. The thrust of the theoretical development will be
‘;" concentrated on determining if a given data point is associated
:‘:3 i:: with one or more current tracks and then performing the
appropriate update. There are several potential candidate
+ E strategies for attacking this problem including:

5

:% L‘E 1) Nearest neighbor and gating approaches of
2 ' Sea (Reference 18) and Singer and Sea (Refer-
5 - ence 19).

:g N

.”.:j ! 2) A posteriori analysis of track density by
b o Sittler (Reference 20) and Stein and
EREEN Blackman (Reference 21),

SN

fy .. 3) Probability data association scheme used by
‘ a Bar-Shalom and Tse (Reference 22), and

2 .

‘:: :::: 4) Cluster-based data association schemes.

1=,;

o
»,

i 144

ke - AT AT At AT T AN " Q" LT LIPS PO 2P0 R PR A PR I PR i S i i Ot e e PR A A AR ST P I
'ft"ﬂ‘:‘\‘ln ,. 41 ANy .'* b W W y \ SN - ey N AN NN AT

T ¥ a Tk YL Y W VT ETW TN TN Y Y




o
- GET A
1) DATA POINT [

i
N
i

BELONG
TO CURRENT
TRACK
?

UPDATE A
US| TRACK 00 TO

X N DATA POOL

ENOUGH
POINTS TO
INITIALIZE

y

CURRENT SEARCH FOR ]
: (MTTA )‘_'* NEW TARGETS 1
2 AND INITIALIZE a

3

PLACE IN
- CURRENT TRACK
TABLE

N

&

o

- REMOVE TRACK

St POINTS FROM 1

g DATA POOL
~ .

!

Figure 8.1. Logical Flowchart of Tracor's i
Proposed Final MTTA
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At this point, the thinking 1is that track determination and
state update will be handled by a combination of (1) and (4) in
conjunction with the existing sequential filter used by the
HTA. Recent work (Reference 23) indicates that (1) is among

Vthe most widely wused of all measurement classification

schemes. Coupled with a gating mechanism at the clustering
stage, it seems like a very promising approach. Additionally,
to handle the problem of intersecting targets, it may very well
be appropriate to allow . given measurement to update more than
one track but with a substantially reduced measurement weight
for each track. This is similar in philosophy to use of the
Bk overlapping cluster algorithm to sort data.

In summary, it is felt that the most difficult
part of the multi-target tracking problem, target recognition
and track initialization, has largely been solved. The
literature contains a broad range of strategies for updating
tracks once initialization has occurred, but up until now,
there has been 1little work done with the problem of
multi-target track 1initializatioms. It 1is believed that
Tracor's MTTA provides the basis for solving this total
problem, and it {s recommended that 1its development be
continued.
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