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20. ABSTRACT

A Multiple-'Target Tracking Algorithm has been designed and

.' ~ tested for use with DIFAR~sonobuoys. The algorithm is implemented as a

functionally modular computer program composed of five main subroutines.

Operating in near real time and in less than 64K words of memory, the algor-
ithm is capable of separating raw measurements into data sets corresponding

to individual targets at the sensor level (using cluster analysis), corre-
lating target measurements across sensors (using physical constraint and
statistical tests), and selecting the most likely track scenario among the

various potential scenarios (using integer programmning). The process requires
no operator decision and no a priori information about the number or initial

conditions of the targets. The algorithm is self initializing from the raw
buoy data. Using synthetic data, the algorithm was tested on several multi-

target scenarios with excellent results.
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EXECUTIVE SUMMARY

During the past year Tracor created and tested a

Multiple-Target Tracking Algorithm (MTTA) designed for use with

DIFAR sonobuoys. Operating in near real-time and in less than
64 K words of memory, the algorithm is capable of separating

, :raw measuremnts into data sets corresponding to individual

targets at the sensor level, correlating target measurements

across sensors, and selecting the most likely track scenario

among the various potential scenarios. The process requires no

operator decision and no a priori information about the number

or initial conditions of the targets. The algorithm is self

initializing from the raw buoy data. Using Synthetic data, the

algorithm was tested on several multi-target scenarios with

excellent results. This executive summary presents an overview

of work accomplished on the MTTA during the past year.

Included is a brief description of the algorithm's structure,

conclusions of the study, and recommendations for further work.

The MTTA is implemented as a functionally modular

computer program composed of five main subroutines. At present

all processing is serial; however, with little effort the

algorithm could be implemented in a parallel processing scheme.

Sortina Data at Sensor Level-Cluster Analysis.
When plots of frequency versus bearing measurements from a

DIFAR sensor are constructed, the noise free data lie along
either straight or curvilinear lines. For targets that are

moderately separated in bearing or frequency, the associated

I lines will be quite distinct. Based on these observations,
experiments were conducted to test the usefulness of cluster

analytic techniques to separate target data at the sensor

level. They pioed to be successful and Ling's (l,r) algorithm

I!
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(equivalent to a single-linkage clustering algorithm) was used
to separate data at the sensor level into potential target data

sets.

Automatic Cluster Extraction. While cluster

analysis worked well in separating observations into proper

target data sets, the structure of the algorithm made it

difficult to distinguish these sets from the others created by
the algorithm.- This is a standard and much discussed problem
in cluster analysis. Tracor was able to develop a three stage

attack on the problem which has proven to be quite successful.

* The first step is to use Ling's isolation index to select

clusters which are well isolated from the rest of the data.

Next, the clusters are checked for randomness and only those

that are distinctly nonrandom are selected. Lastly, a

* qualitative regression procedure is used to check clusters with

subsets for internal consistency. Only those clusters which
are isolated, nonrandom, and internally consistent are selected

as target data sets.

Intersensor Correlation-Initial Guess Procedure

and Constraint Rules. To correlate data from more than one

sensor, a crossed-bearing, crossed-frequency, batch type

algorithm is used to provide initial state vector estimates

from the data contained in the various two-sensor and

three-sensor cluster combinations. These estimates are then

subjected to a series of physical and statistical based tests
to determine their validity. The physical tests include checks

on reasonableness of position and velocity estimates. The

statistical tests use qualitative regression procedures to test

the two sensor estimates for compatability, and Gallant's

non-linear regression test to compare a three sensor estimate

2
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and its associated two sensor estimates for consistency.

Intersensor cluster combinations which pass all tests are then

considered as potential target tracks.

Scenario Construction - Integer Programming.

Once the potential target track set has been delineated, all

that remains is to construct the set of tracks which provide
the most likely scenario description. To solve this problem,
Tracor has used a 0-1 integer programming set partitioning
procedure to sift through the large number of potential

scenarios to select the most likely one. To devise a cost
function, each track is fed into Tracor' s hybrid tracking

algorithm and the value of the likelihood function for the
associated measurement model residual stream is computed. The

.. likelihood function for a scenario is based on the likelihood
function associated with each track, and finding the optimal

scenario is equivalent to maximizing the likelihood function
over the set of all possible scenarios.

* The IITTA was tested on four scenarios of varying

difficulty; three of the scenarios contained three targets
while one of the scenarios contained only two targets. For
three of the scenarios, all targets were detected, sorted, and

good track estimates were generated. In the remaining

scenario, two of the three targets were detected and tracked,
Sbut the third target was only partially detected and no track

was generated. The following conclusions were drawn from this

study:

-1) Observation geometry was the single most

important variable for successful detection

and tracking of the targets by the MTTA,

3
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2) Strong signal-to-noise ratio is important,

but not crucial to the successful operation

of the MTTA, and

3) Execution time for the MTTA varies from

scenario to scenario based on the complexity

of the trajectories. All scenarios were of

six minute duration, and the MTTA took from
seven to nine minutes to run through them.I"' Minimal parallel processing could turn the
MTTA into a faster than real time batch
processing scheme.

The recommendations for future work fall into two
. categories -- refinement of clustering and extraction

procedures and MTTA extensions. Under the first category, the

following topics were identified as algorithm deficiencies that

need to be investigated:

1) Examination of alternative clustering

approaches (CLASSY, Anderberg 's overlapping

algorithm).

2) Using quadratic terms in the cluster

extraction regression to model CPA.

3) Addition of a clustering attribute based on

power or SNR to help sort targets.

In the second category, all multi-target schemes must deal with
the question of whether a measurement belongs to currently

existing tracks or is it part of a track that has yet to be

initialized. Tracor's proposed implementation of a complete

4



p multi-target tracking algorithm would address this question as
soon as a data point was acquired. If it was determined that

{, s.'.the data point was not part of a current track, then it would
be put into a data pooi and at designated times the MTTA would
be activated to search for and initialize new tracks. The
extension to the MTTA would consist of the decision rules
required to ask whether a point belongs to a track or not and

.~ ; ~ then the procedures required to update a track. An additional
task would be to investigate whether smoothing of raw data
would help both in tracking and updating.

jIn summary, Tracor has developed a self

initializing multi-target tracking algorithm that has performed
.well with simulated DIFAR data. It runs in nearly real time
:JN and requires less than 64 K words of memory. Although in this

study the MTTA used Tracor's Hybrid Tracking Algorithm, any
* -, single target tracking algorithm could be used to generate

A scores for each potential track. What has been created is a
superstructure which sorts and makes decisions independently of
the particular target tracker used. Planned refinements and
extensions to the algorithm would give it the ability to run
for long periods of time providing a real-time picture of the
current tracking scenario. It is felt that the MTTA represents
a promising step towards a fully automated DIFAR based,

multi-target tracking algorithm.

5



1.0 INTRODUCTION

For many years, the U.S. Navy has been concerned

i> .-: with the problems of detecting, classifying, and tracking

submerged targets encountered in anti-submarine warfare (ASW)

engagements. One of the problems which has been extensively

investigated at Tracor is underwater target tracking with data

gathered by deployed, passive sonobuoy detection systems. Past

efforts have concentrated on the problem of tracking a single

target. In recent years, however, greater emphasis has been

placed on developing techniques which can use passive data to
7-4 track multiple targets simultaneously. When no a priori

information is available concerning target numbers or

trajectories, the multiple target tracking problem becomes very

difficult to solve. This report contains the findings from the

past year of Tracor's efforts to address the problem of

tracking multiple targets with passive data when no a priori

information is available. Under the current contract a

multi-target tracking algorithm was developed which performed

very well on simulated multi-target DIFAR data. The algorithm

was able to properly sort data at the sensor level, correlate

data across sensors and reconstruct the tracks under

consideration. It is felt that a positive step has been taken

-__ in creating an effective DIFAR based multi-target tracking

algorithm.

1.1 Summary of Past Work

In the past, Tracor has studied both the single

and the multiple target tracking problems. Initial emphasis

was placed on developing a quick and accurate single target

t tracking algorithm. This work led first to Tracor' s

development of a batch-type tracker known as the Maximum

Likelihood Estimator (MLE, Reference 1). The MLE was designed

6
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to initialize tracking solutions when no a priori information
was provided and to continue tracking a single target until all

the data have been processed. However, due to the batch nature

of the tracker, the MLE was forced to iterate through four

different motion models to account for possible target
maneuvers and to use sophisticated statistical techniques to
automatically choose the most appropriate motion model.

Unfortunately, this process was found to be both cumbersome and

time consuming.

In an effort to develop a quicker and more

efficient tracker, Tracor then developed an Extended Kalman

Filter (EKF, References 2 and 3) for single target tracking

applications. Since the EKF was a sequential tracker, a

single, less sophisticated motion model was used with process

noise incorporated into the tracker to compensate for any

unmodeled trajectory changes. This single motion model

substantially reduced the complexity of the tracker and helped

to greatly speed up its execution time. Furthermore, if

reasonably good a priori information was available for the

target's state, the EKF was not only much quicker, but it was

at least as accurate as the MLE. Unfortunately, when no a

priori state information was available, the EKF frequently

failed to converge upon an adequate track of the target's

trajectory, and thus could not be counted on to track targets

under all conditions.

Since a quick but accurate tracker was desired
for single target-tracking applications, Tracor also developed

a tracker which utilized the best characteristics of both the

IMLE and the EKF. This led to the development of Tracor's

Hybrid Tracking Algorithm (HTA, Reference 2 and 3). The HTA

utilized a batch type starter to initialize the tracker and

then, after initialization had been successfully completed,

7



5 automatically switched to a sequential tracker to continue

updating the target's trajectory. This tracker was found to

provide the accuracy needed to initialize a trajectory when no

a priori information was available, and to track as quickly
and as accurately as the EKF after initialization was
completed. The HTA was then chosen as Tracor's final product

V for single target tracking applications.

After completing the development of the HTA as a

i single target tracker, Tracor became involved in the

development of a multiple target tracking algorithm (MTTA).

This algorithm was to be developed to handle the very difficult

problem of tracking multiple targets when no a priori
information was available concerning target numbers or

trajectories. Furthermore, only passive frequency and bearing

data (the data types commonly available from deployed

sonobuoys) were to be used to track the targets. In the past,

several authors have developed multiple target trackers which
used a priori information or active data types such as range

measurements to initialize the tracker, but very few have

examined the more common and much more difficult problem of

tracking multiple targets with only passive data and no a

priori information.

Last year, (Reference 3) the development of the
. MTTA was broken up into two phases. The first phase was

designed to enhance the HTA's performance so it could be

* readily modified for further use in the MTTA. As envisioned,

the HTA would serve as the core tracking algorithm which would

be used to track the various targets present in a given

scenario.

8
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Once the improvements to the HTA were completed,
an attack on the second, more difficult, problem of data
sorting was begun. For the multiple target tracking problem,
some means was needed to sort the data received from individual
sensors into sets of individual target data. Without any a
priori information concerning' the targets that were present,
none of the traditional "gating" or "nearest neighborhood"

approaches could be used to sort the data. After studying
frequency versus bearing time histories of the data, it was
decided to try to use cluster analysis to sort the multiple
target data into single target data sets. After several
trials, single-linkage cluster analysis was found to be fairly
successful in sorting the data when the time tag, estimated
frequency, and the cosine and sine of the bearing estimates

4were used as object attributes. However, the results of the
cluster analysis program were output as tree diagrams or
dendrograms which required user interpretation to correctly

sort the data. For the cases studied, all the multiple target
data were generated by user dictated simulations, so it was
known what type of behavior to look for in the data. With this

advantage, it was possible to interpret the tree diagram
.5. outputs such that individual target data sets could be readily

found. Without the benefit of this knowledge, it is doubtful
that the tree diagrams could have been used to find the correct
clusters of data. From these results it was decided that
cluster analysis shoved good potential for sorting multiple
target data into individual target data sets, but a suitable
cluster extraction scheme had to be developed.

1.2 Results from Current Investisation

Tracor has continued its multiple target tracking
investigation through the current year. During this time,

9



Tracor's MTTA has evolved into a large scale program containing

five separate modules. A top-down flowchart of these modules,
and a brief description of each one is given in Figure 1.1.
The following sections summarize the work that has been

m performed this year in each of the module areas.

1.2.1 Selection of Clustering Algorithm

During this year's investigation three different
clustering algorithms were examined: the single-linkage

clustering algorithm from CLUSTAR, Ling's generalized (kr)
algorithm, and Moody and Jardine's single-linkage,

non-hierarchical overlapping B k algorithm. Euclidean
distances were used in all algorithms to generate the necessary

resemblance matrix of dissimilarity coefficients. The
overlapping algorithm allows different clusters to contain one,S two or several points in common while the clusters maintain
their own separate identity. On the other hand, the

non-overlapping algorithm requires that the data points that

created the overlap in the B k algorithm be in one cluster or
the other or the non-overlapping technique will force the two
clusters to merge into one cluster at these points.

Initially, it had been felt that the B k
overlapping algorithm might provide some flexibility that would

be useful for solving the data sorting problem. However, in
the cases studied, the non-overlapping techniques have been
found to be adequate for sorting thZ data. Furthermore, both

the non-overlapping algorithms were found to be substantially
faster than the overlapping algorithm. It was therefore

decided to remain with the single-linkage, non-overlapping

* 10
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Figure 1.1. Top-Down Flowchart of Tracor's

Multi-Target Tracking Algorithm (FTTA)
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approach that had been used previously. Of the two remaining

algorithms that were under consideration, it was decided to use

Ling's (lr) algorithm rather than his generalized (k,r)
algorithm or CLUSTAR's single linkage algorithm because:

1) With k-1, Ling 's (k,r) algorithm was

equivalent to a single-linkage algorithm and

produced the same results as CLUSTAR's

algorithm,

2) Its output was more accessible and easier to

use than the tree diagrams from CLUSTAR, and

3) Most importantly, Ling has developed a

quantitative measure for the (l,r) algorithm

that was found to be useful in implementingp
a procedure for automatic cluster extraction.

1.2.2 Decision Rules for Automatic Cluster Extraction

One of the problems seen last year with the

single-linkage clustering algorithm was that it continued to
link or chain all the data and the clusters together until

ultimately, all the data were chained together in one large,

all-inclusive cluster. Naturally, the sorted data for the

individual targets were usually found in smaller, subclusters

contained as subsets of the large final cluster. In last

year's report, available knowledge concerning the simulated

scenarios was used to aid in picking the correct smaller
clusters from the tree diagram outputs. This year it was

sought to automate this cluster extraction process. In doing

12
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so three different decision rules have been established to

automatically extract the appropriate clusters. The three
rules or teats adopted include:

1) Ling's isolation index is used to identify

potentially useful clusters. It identifies
clusters which are well isolated from other

clusters, implying that the data in the J
isolated cluster have little similarity with

the data in other clusters,

2) A polarization test for data randomness

based on work done by Alam and Mitra
(Reference 4) which seeks to detect and

eliminate noisy clusters, i.e. those
clusters containing a high percentage of

points corresponding to background noise and
not signal measurements, and

3) Lastly, a regression based test is used to
make the final identifications of those

isolated clusters corresponding to likely
target data sets.

1.2.3 Initial Guess Procedure

After the multiple target data from individual

sensors have been sorted by cluster analysis into individual
target data sets, these data clusters must be properly matched
with clusters from other sensors to construct tracks for the
individual targets. With only passive frequency and bearing
measurements, it is usually impossible to track a target with
data from just one sensor. Typically, data from two or three
sensors with other observation geometries must be used to track

13
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a given target. For the multi-target case, several clusters

1 '  from each of the sonobuoys will be available to try to track a

'1- target. Ultimately, one must find the right combination of

clusters from the different sensors that is needed to track

each of the individual targets. After the individual clusters

from each sensor have been established, the next step is to get
a rough idea of which combination of clusters can potentially

be used to build tracks. For this purpose, a crossed-bearing,
crossed-frequency least squares procedure has been employed to

generate an estimate of the initial target state for each
possible combination of matched, intersensor clusters. This

procedure has been used previously (Reference 3) to generate a
M starting point for the HTA's initializer for use in tracking

i. single targets. It has been found that with some slight
modifications, this same crossed-bearing, crossed-frequency

procedure may be used to provide a cursory look at how well the

intersensor combination of data clusters go together to

provide estimates of potential initial conditions for the

targets. As will be described next, the rough estimates

produced here can be examined to see if they meet eertain

physical and statistical constraints. For those estimates that
fail the constraints tests, their corresponding intersensor

cluster combination can be eliminated from further

consideration. This then helps to reduce the scope of the

problem under consideration before it passes on to the next

MTTA module.

1.2.4 Physical and Statistical Constraints on the
Initial Guess Estimates

As stated, the initial guess estimates must meet
* certain constraints before they are passed for further

* consideration by Tracor's HTTA. The first test is to see if

S14



the position estimate falls within the physical limits of the

sonobuoy's observation range and if the target's velocity

estimate falls within the range of allowable values for target
trajectories. For instance, if the range for the day of a
given sonobuoy is set at 10,000 meters, one could safely reject
any initial guess estimates that would place a target 30,000
meters from the sonobuoy. Similarly, if the initial guess of

target velocity falls well outside the known range of values
that are possible for target trajectories, one could safely

eliminate the intersensor cluster combination that yielded that
estimate. For the physical constraints routine used in

I Tracor's MTTA, the user inputs the maximum sonobuoy detection

range and the maximum target speed, and the program rejects all

combinations whose estimates are greater than 1.5 times the

allowable maximum values. This allows a 50% error to be

present in initial guess estimates while still accepting

estimates from the upper range of allowed values. The initial
guess procedure has been found to be more accurate than this

50% error tolerance, but this tolerance permits a safety

cushion which prevents possible intersensor cluster

combinations from being rejected prematurely. The second set

of constraints applied to the initial guess estimator consists

of two statistical tests that measure the consistency of the

estimates produced by two or three sensors. The first test

uses indicator variables (References 5 and 6) to determine if
both sensors in a two sensor initial guess estimate are

providing statistically compatible information. Once all

two-sensor combinations have been examined, those three-sensor

combinations which contain at least two "good" two-sensor

combinations are tested. A nonlinear regression test developed

by Gallant (Reference 7) is applied to the data to determine if
the three-sensor initial guess estimate is equivalent to the

15
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5 various possible two-sensor estimates. At least two of the

three possible two-sensor estimates must be equivalent to the

three-sensor estimate for the three-sensor inital guess

estimate to pass the test.

1.2.5 Integer Programming and Optimal Track Scenario

* Once the initial guess and constraints procedures

have selected a set of potential target data sets P, the only

remaining problem is to determine the subset of P that provides

the "optimum" track scenario. In the MTTA, the optimum

*scenario is the one which maximize the value of the likelihood

function over the set of potential scenarios. Clearly, this is

a combinatorial problem that, even for moderate size problems,
possesses a large number of possible solutions. In a fashion

analagous to Morefield (Reference 8), Tracor has chosen to pose
this problem as a 0-1 set partitioning problem using integer

-programming techniques to sift through the various possible

track scenarios to find the optimal set of tracks.

1.2.6 Scenario Simulation Results

With one exception, Tracor's MTTA has

successfully tracked all the targets in the multi-target

scenarios studied in this investigation. Efforts to automate

the cluster extraction process have been largely successful,

and the initial guess and integer programming procedures have

worked quite well at finding the right set of trajectories

needed to track the multiple targets. Four different simulated

scenarios have been used in this investigation, and the MTTA

successfully tracked all of the targets in three of the four

scenarios. For the one scenario that failed, three targets

were present but the MTTA only tracked two of them. Careful

5 16
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examination of the results indicated that for this particular

scenario poor observation geometry caused the clustering

algorithm to become confused and to merge the data from two

targets into one cluster. This confusion was caused when the

observational geometries for two different sonobuoys forced two

different targets to have nearly identical frequency and

bearing measurements during the same time period, and the

non-overlapping clustering algorithm could not sort the data

into individual target sets. In spite of this problem, the

MTTA was still able to track two of the three targets. One of

the other scenarios tested the MTTA's capability to track

multiple targets with data gathered from a weak signal source

that caused random noise to be included in the measurement

set. For this scenario, the MrTA effectively sorted the true

signals from the noise and was then able to track all the

targets found in the scenario. The other two scenarios

presented good geometries with strong signals, so the MTTA was

able to track all the targets very well. The results from

these four scenarios are felt to offer representative examples

of how well the MTTA can work in multi-target scenarios when no

a priori information is available to initialize the tracker.

1.3 Report Organization

Section 2 of this report includes detailed

descriptions of the cluster analysis work performed under this
contract. The next section describes the techniques that have

been used to automate the cluster extraction process needed to

sort multiple target data. In the fourth section, the initial

guess procedure is described in detail. Section 5 describes

the physical and statistical constraints that were used to

eliminate unlikely intersensor cluster combinations. The

integer programming procedure used by Tracor's MTTA is
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.I described in the next section, which also includes details of
the optimization constraints and the HTA cost function that
were used by the optimization algorithm. Section 7 contains a

summary of the results obtained for the various simulated
- scenarios that were examined during this investigation.

Finally, Section 8 contains conclusions from this year's

-.. -. research as well as recommendations for future investigations.

YJ

11
.'

.53

C'i



brcor APPlied Scincs

P2.0 DATA SORTING BY CLUSTER ANALYSIS

Cluster analysis is a field in numerical taxonomy

that uses attributes which describe a set of objects to group
- or sort those objects according to the degree of similarity

between them. For the data sorting problem, measurements from
an individual target should exhibit strong similarities in

their frequency and bearing estimates whereas measurements from
different targets should exhibit strong dissimilarities between

them. Last year's research established that single-linkage
cluster analysis showed good potential for sorting multiple

target data into single target data sets (Reference 3). It was

shown that frequency versus bearing time histories of the
measurements produced a rough, chain-like curve for each target

when the data were plotted in three dimensions. Because of the

*chain-like behavior found in the data, single-linkage

clustering algorithms were chosen because they are known to
chain data together in forming clusters. Last years results

also showed that Euclidean distances between object attributes

were the most useful for generating the resemblance matrix of
dissimilarity coefficients needed to cluster the data. This

section contains the results of current studies which sought to

find ways to improve the usefulness of the single-linkage
clustering concept.

2.1 Description of Multi-Target Scenario Data

Before evaluating any clustering algorithm's

performance, some multi-target data had to be obtained to

perform the data sorting tests. For this study, simulated

7e multiple target data were created because no real data were

readily available. Frequency and bearing measurements for each

target were output at fixed time intervals, and these data were



then merged by time tags to simulate a multiple target data
set. This procedure was performed for each of the three
sonobuoys found in a scenario, so that at the conclusion of the
simulation, a separate multi-target data set was generated for
each sonobuoy. The method used to generate this multiple

target data was identical to the method used in last year' s
report to generate the multiple-linetracker data (Reference 3).

2.2 Moody and Jardine's B , Overlapping Single
Linkage Clustering Algorithm

Three cluster analysis algorithms were evaluated
*during the current investigation. The first, Moody and

Jardine's B k algorithm (Reference 9), is classified as an
overlapping single-linkage algorithm. Overlapping means that

* two clusters share some points by overlapping their boundaries
at these points, but they also maintain separate boundaries
away from these points. An illustration of two overlapping
clusters is presented in Figure 2.1.

Cluster overlap

Clute 1"o 0 0 00Clse

Figure 2.1 - Example of two-overlapping clusters.
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P Note how the boundaries for clusters 1 and 2 overlap at the
apex of the data points in Figure 2.1; they are still

classified as separate clusters, but share five points in

common. For non-overlapping techniques, the five ambiguous

data points in question may have been in either cluster 1 or
cluster 2, they may have been grouped in a cluster by

themselves, or they may have served as a link to join all the
data into one new cluster. However, the points in question
could not be contained in two separate clusters as was

illustrated in Figure 2.1.

It was originally felt when the B k algorithm

was programmed that such an overlapping scheme might be useful
for cases when a non-overlapping clustering algorithm could not

'21 clearly differentiate the data from two different targets.

Certain geometries are possible where a given sensor may not be

able to clearly spot the differences between frequency and

bearing estimates for two different targets, and it was feared
that a non-overlapping algorithm would chain the two different
data sets into one cluster at the point of intersection between

the two data sets.- Clearly if cluster analysis was to sort

multiple target data into clusters for each separate target,
one would not like the two data sets to be combined into one
cluster and then try to use this cluster as data from a single

target. It was hoped that this non-overlapping technique would

be useful for preventing these ambiguities from confusing the

cluster analysis program. However, after closely examining the
performance of the B k algorithm, it was decided to continue
usage of non-overlapping, single linkage clustering algorithms

for the following reasons:
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1) The Bk algorithm was found to be much

slower computationally than the non-

overlapping algorithms,

2) It was felt that if sufficient automatic
cluster extraction rules could be developed

for a non-overlapping algorithm, then data

from the two clusters could be sorted before
the data sets merged together. This would

prevent the need for an overlapping

N algorithm, and

3) Finally, it was felt that automatic cluster

extraction rules could be perfected for at

least one of the clustering algorithms.

Since Ling had already looked at some

aspects of this problem for his (l,r)

algorithm, it was decided to expand upon

this work and concentrate on using the (l,r)

algorithm to automate the cluster extraction

process.

2.3 Selection of Ling's (1,r) Clustering Algorithm

After eliminating Moody and Jardine's Bk

overlapping clustering algorithm from further consideration,

two non-overlapping, single linkage clustering algorithms were
left. One of the candidate algorithms was the CLUSTAR single

linkage algorithm (Reference 10) that was used to produce the

clustering tree diagrams found in last year's report. This

algorithm was found to perform well, but the dendrogram outputs

were not considered to be very useful for automatic cluster
extractions. Having had the advantage of knowing in advance

22
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what data clusters to look for, it was possible to find the
desired clusters in the tree diagram outputs. Without this a
prior knowledge,_ it was doubtful that the correct data

clusters could have been correctly picked from the output.

Clearly, either CLUSTAR's output had to be modified to make it

easier to obtain the clustered points, or another algorit1hu had
to be found which performed as well but whose output could be
easier to use in the cluster extraction process.

The second candidate clustering algorithm

available was Ling's (k,r) algorithm (References 11 and 12).
j This algorithm requires at least k points to be within some

distance r in similarity before the data points can be grouped
~* ~.together into a cluster. For k - 1, Ling points out that his

S (l,r) algorithm is identical to a single-linkage clustering

algorithm. Since CLUSTAR's single-linkage algorithm had
W performed so well, Ling's (l,r) algorithm was compared to it to

see if the (l,r) algorithm could be used. Indeed, Ling's (l,r)
.. algorithm output the same results, but it had a few advantages

which made it preferable to CLUSTAR's algorithm. First, the

clustering results output by the algorithm provided a set of
data points for each new cluster, not clustering tree diagrams
as were seen before. Second, Ling had proposed two different
decision making rules that could be used with his (l,r)

algorithm to aid in the automatic extraction of isolated
clusters. Since we have sought to automate the cluster

extraction process, it was hoped that these decision rules

would be beneficial in picking the isolated clusters.
Furthermore, both algorithms took about the same amount of
processing time to sort the data, so neither could be penalized

.4 due to their respective computing cost. Since both algorithms

produce the same results for about the same cost, it was
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decided to use Ling's (ir) algorithm because the output was

easier to use arnd because some decision making rules were
available to aid in automating the cluster extraction process.

2.4 Data Normalization

It should be recalled from last year's report 2
that the raw attribute data for each measurement hiad to be
normalized in some fashion to give each attribute roughly the

4 same range of numerical values before the resemblance matrix

could be generated. For instance, 360 second trajectories have
been used to generate the multi-target data, so the raw time

units vary from 0 to 360. Over such a short time interval and
for the center frequency values and geometries used in our

dsimulations, the Doppler shifted frequency measurements
typically vary by only 0.1 to 0.2 Hz. The bearings typically

change by at most 20 0to 3Q0% so the cosine anid sine of the

7 bearing measurements vary by only a few tenths. Unfortunately,
this large variation in time values as compared to the change

in the frequency and the cosine and sine of the bearing

estimates caused the clustering algorithm severe problems when
the raw attributes are used. When Euclidean distances were

used to generate a resemblance matrix for the data, the large
difference in time units dominated the dissimilarity

coefficient while differences in the other attributes were

virtually ignored. Because of this problem, the raw attribute
measurements must somehow be scaled to provide the same order
of magnitue of differences between sample measurements for each

of the attributes.

-~ Last year, experiments were run to test the five

different data standardization techniques available in CLUSTER
to find the single one that best fit our problem. The one

which was finally picked scaled each of the attributes so that

their respective range of values fell between 0 and 1.
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Specifically, in last year's report, each of the attributes

were scaled by the following transformation:

S. X.. min (X.ij )
iJ "max (X..) min (Xij)

".7 where:

subscript i refers to the ith sample

subscript j refers to the jth attribute

max (X) is the maximum value over all i

' samples of the Jth attribute
min (Xij) is the minimum value over all i

,-V samples of the jth attribute.

This normalization process worked adequately for our

investigation, but one big problem was encountered with this

technique. The maximum and minimum values used for

4 normalization varied with each data set, so no two data sets

. were normalized in the same fashion. This was felt to cause

large fluctuations in the values for the dissimilarity

coefficients for the different data sets found in last years

clustering tree diagrams. Due at least in part to this

variation in the data normalization process, the cutoff

threshold for halting the clustering process varied

substantially from one data set to another. Because of these

problems, a standard data normalization procedure was

instituted in this year's investigation. The following

m-. "' procedure has been used to normalize the input attribute data

for each measurement set:

1) " t/120

% 2) cos - 5* cosa
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3) sin$ - 5* sinJ6
4) -"O* f

This procedure yields a consistent technique for scaling all

the attributes for every problem. Furthermore, for the

scenarios investigated here, this normalization procedure

allows each attribute to vary by about two or three units.
Tests have shown the data normalization procedure described

above works very well, so this technique was used to normalize

all data simulated in this study.

V.6
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*3.0 AUTOMATIC CLUSTER EXTRACTION

After Ling's (ir) algorithm sorts the data into
clusters, some way is needed to pick the best clusters out of

the set. Last year when the tree diagrams were used, the a
priori knowledge of how the data should be properly sorted was

-- used to pick the best set of clusters. However, with L ing' s
(l,r) algorithm, we have sought to automate the process by

which the best clusters are chosen. Thus, we are not forced to

rely on user interpretation to find the best results and can
make the procedure more usable for real applications. In this

report, the process of automating the procedure for picking the

j best clusters is referred to as automatic cluster extraction.
.4 First isolated clusters are identified, and then two tests are
: .employed to cull both noise clusters and internally

inconsistent clusters. Following is a detailed discussion of

* this automatic cluster extraction process.

*3.1 Single Linkage Clustering and Cluster Formations

A clustering procedure is said to be hierarchical

if, for any given pair of clusters produced by the procedure,

either one cluster is a subset of the other or they are

disjoint. Thus, a hierarchical clustering procedure produces a

nested structure that can be represented by a tree diagram or a

dendrogram.

Single-linkage clustering is a hierarchical

procedure that is based on the "nearest neighbor" concept. A
brief description of single linkage clustering follows. Given

a set of objects

JSo 0{019 02, **0, 01
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and a distance d that is defined for each object pair c(Oi,
O ), the single linkage-clustering procedure first determines

the closest pair of objects in the set and then joins them to

. form a cluster C. By defining the distance between cluster C

and any object Ok to be

d(C, Ok) - mn Id(Oi, Ok): 0 i E C1

and forming a new object set S that consists of C and all

points of S, not contained in C (i.e. Sl - 9 S/~)
*1 the above process can be repeated using S1 in place of So .

If the distance between two clusters is defined to be

• d(c, c) = min d(OiO ) 0i EC '

then the above procedure can be repeated for sets S2, S3 ,

--- until all objects are grouped into one large cluster.

'I Single linkage clustering is a nonmetric

procedure in the following sense. If the original distances

d(Oi, 0) are replaced by their rank orderings (i.e., the

smallest is replaced by 1, the next smallest by 2, etc.), and

the above algorithm is applied to the set So, then the sets

S1, S2, S3,... will be unchanged (i.e., the same

, collection of clusters will be produced). Thus, each distance

d on the object set So can be replaced by a symmetric nxn

matrix, M , having integral entries ranging from Id'9s(denoting the "distance between the closest pair of objects) to

n(n-l)/2 (denoting the distance between the two objects that

are farthest apart). Figure 3.1 illustrates the concepts

discussed above. The fact that each pair (So, d) can be

replaced by the pair (So, Md,So) results in a great

28
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* S° = {1, 02, 03}

Object Combinations Distance Rank Ordering

d(01, 02) .5 2

• d(01 , 03) 2 3

d(02 , 03) .25 1

01 02 03

01 0 2 3

02 2 0 1 Md, so

S, - {C1 , 01} CI = {02, 03}

S2 = {C 2 } C2 = {01, 02, 03}

Figure 3.1. Clustering Example
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simplification since for S o " 0 2' "'v OnI, there

are only (n(n-l)/2)! distinct possible choices for Md,s
This fact will be exploited when measures of cluster

significance are considered since the output from a clustering

algorithm consists of a large number of clusters, some of which

are contained in, and some of which contain, the target data

sets sought.

3.2 The Isolation Index

When performing cluster analysis on a set of

objects, each cluster is formed at a particular clustering

level. For single linkage clustering, these levels can be

taken to be integers beginning with 1. Formally, the single

linkage clustering level r of a cluster C is defined by

r - min 1k: C E Skr.

Some authors refer to r as the "time of birth" of cluster C.

If the sets S1 , S2, S3, .... are called clustering sets,

then the clustering level of a cluster C is just the index of

the clustering set in which C first appears. The index k of

set Sk will be referred to as the clustering level k.

After a cluster has first formed at level r, it

may remain unaltered for many future clustering levels.

However, when C is not equal to the entire set of objects, it

follows that eventually C will be augmented to form a new

cluster C'. A cluster that remains unchanged for a number of

levels is said to be well isolated. The following definition

quantifies an isolation index measure possessed by cluster C:

i(C) = r' - r,
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where r' is the clustering level of the augmented cluster C'

that is described above. The clustering level r' can be

thought of as the "time of death" of cluster C. In Figure 3.1,

: .cluster C, is "born" at level I and "dies" at level 2.

Therefore, i(C) - 2 - 1 - 1.

3.3 Isolation Index Distribution - Survival Function

Recall that the matrix Md,S determines the

clusters that are produced by a single-linkage clustering

procedure. By choosing a null probability model on MdS

it is possible to use probabalistic techniques to assess tRe

significance of single-linkage clusters. The simplest and most

conservative model to impose on the space of all possible

-- random matrices Mds is to assume that each matrix is

equiprobable. Under °this assumption, the mathematics are

* tractable and the statistical theory resulting from the use of

this model can be interpreted as establishing bounds for other

" models (i.e., a cluster that is Judged to be statistically
N, insignificant according to this model is unlikely to be

significant under any other model). Under the equiprobable

assumption, the isolation index of a cluster of size 1 becomes

a random quantity whose distribution can be calculated.

Specifically, if C is a cluster of size J with clustering level

r, then

1. j (n-i)
Prob [i (c) = s] - S

(Nr)

* where N = (a. The probability of the event fi(C) 9 s being

* small implies that the chance of a cluster with this isolation

index appearing simply by accident or at random is small.

31
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Thus, a good assumption is that thase data "belong together,"
i.e. came from the same target. Therefore, the survival

function is used to help select the set of candidate clusters;
a probability threshold is set and those clusters with survival

* * function values falling below the threshold are passed on for
further testing.

3.4 Polarization Test and Cluster Extraction

Once the isolation index has been used to

identify clusters of data that possess greater than expected

similarities, these clusters must then be analyzed to determine

their randomness and internal consistency. Two primary reasons

for doing this take advantage of the way in which single
linkage clustering joins data together (see section 3.1):

1) Random noise can appear as an isolated
cluster, either when targets are present or
when just random noise is clustered, and

2) As larger and larger clusters are formed

from the data, isolated clusters can become
subsets of larger isolated clusters.
Eventually, there may be several isolated
clusters contained in one large isolated

cluster, and they may or may not be

observations for the same target.

This section discusses the test for randomness

employed by the MTTA. To motivate the selection of this test,
imagine a cluster of data triples (time, frequency, and
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bearing) projected onto the frequency-bearing plane, (Figure

'p 3.2 provides several examples). Then,

1) Figure 3•2.a represents random noise,

frequency and bearing estimates are

scattered randomly about,

2) Figure 3.2.b represents data from a target

showing significant bearing change but

little Doppler change,

3) Figure 3.2.c represents data for a target

that shows little bearing change but

substantial frequency change, possibly

approaching CPA with the sonobuoy, and

4) Figure 3.2.d represents data from a target

with little bearing change or frequency

. change. This is a typical plot for a target

in which a large amount of data has been

a* gathered over a short time interval.

If a grid is imposed on the plane, then the

number of observations occurring in a cell can be tallied and

the number of observations occurring in a particular row or

column can also be tallied. Then for clusters of random noise

(as in Figure 3.2.a), the row totals should be roughly equal

and the column totals should all be roughly equal while for

target clusters, such as those displayed in Figures 3.2.b and

c, either the row or column totals (or both) will display very

distinct departures from equality. If a multinomial

distribution is assumed for these row and column totals, then

Alam and Mitra (Reference 4) have devised a test to determine

q.33
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Figure 3.2. Bearing/Frequency Plot Examples
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if the mass of the points is spread out evenly over the row and

column totals or if it is concentrated, or polarized, in just a

few of the rows and columns. A brief explanation of the test

:" follows.

4M A partial ordering of the vectors PM

'"(Pl.. 'Pn) is defined by the relation:

".- ">p i  i p'(i) ; j = 1, 2, ... , k..... ~i ( )

where p(i) is the ith largest value among lp'k'k

Then, a multinomial distribution with probability vector ?is

said to be less polarized than the multinomial distribution
with probability vector P" if t"* IM. Note that

k-1 ,) < (1, 0, 0, 0).

Let "(r- , , rk), ri - n be the k row

totals associated with a particular cluster and consider the

following test:

H 0 - R against the alternative

where R is the equally likely case. Alam and Mitra consider

the test statistic

T( r 2/n
i
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and show that H0 is rejected for large values of T. The

critical region of the test is

1Ir T(R > C1 where

P1T(Z " C I r l' I-a
.%4

For R- (1/k, l/k,... ,I/k) Alam and Mitra show that

T* kT(V - n

is asymptotically distributed as X2k-l. A similar test can

also be conducted for the column totals.

In applying this test, the grid size selected was
25 by 25, with bearing running from 0 to 2w radians and

4 frequency from 148.8 to 151.2 Hz. In their paper, Alam and
Mitra briefly discuss the convergence properties of the test
and show that n must be fairly large before the x2k-l
approximation is very good. This was observed in the current

study, for large clusters (n .> 60) testing at the .995

percentage point of the ×2 distribution was very24
effective at distinguishing noise clusters from data clusters.
However, for clusters of size less than forty, the test still
discriminated very well but the A distribution did not

provide a good critical value. Clusters composed mostly of

observational data had high values of T* while clusters

composed mostly of noise had much lower values of T*. However,
the values of T* found for noise clusters were higher than the

cut-off points supplied by the X2 distribution.
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At this point there were two basic choices:
.o

1) Compute the conditional distribution

,. .- function CDF of T(R directly using the

recursion formula presented by Alam and

Mitra, or

2) Determine if some simple, "rule-of-thumb"

existed which would allow reasonable
decisions to be made.

The second alternative was chosen because:

- 1) Implementation of the Alam and Mitra CDF

:-; algorithm would have been a formidable

programming task, particularly for n > 5,

2) Including the calculation as a subroutine

would have imposed a substantial computation

-'". penalty, and
4'

3) A simple and reasonable "rule-of-thumb"

3I value was readily available.

Primary considerations involved in selecting a cut-off value

were:

1) It should not reject H for very small

clusters (n . 5) no matter how concentrated
.4:. .its members are,
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2) It should reject H 0for small clusters (5

'n '- 15) only if most of their members are
concentrated in one or two cells, and

3) It should reject H 0for moderate sized

clusters (15 < N <40) only if a significant
number (40% or better) of their members are
concentrated in one or two cells.

Figure 3.3 contains an example of several graphs

that were constructed for various values of T*. Simulation

results had shown that for small time periods (S5 minutes),
clustered target bearing and frequency data would usually be
confined to two or three cells, with some noise points possibly

scattered about in other cells. Thus, curves were constructed
for T* as a function of x1, x2, x3 where:

1) xi was the number of points in cell i,

2) x1 ranged from 0 to n, :
3) x 2 ranged from 0 to x,
4) x3 ranged from 0 to n-x -x2  and

5) the remaining n-x 1 -x 2 -x 3  points were

A. cons idered to be placed one to a cell.

Clearly, the value of T* is invariant to which cells contain

the points, so that the choice of xi, x 2, x 3  is not

important.

The dashed lines of Figure 3.3 indicate the two

cutoff points, the leftmost line corresponds to the .995
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percentage point of the X24 distribution and the rightmost

line corresponds to twice this number. Keeping in mind that

the hypothesis being tested is

H : - (1/k, ... , l/k) versus
H1 : > R ,

it is clear that the rule-of-thumb value requires substantially

higher cut-off values than does the approximation value.

Additionally, the rule-of-thumb value will not reject H for

n ' 5 and requires almost total concentration in a single cell

for n near 5. For n 1 10, concentrations in the 40% to 60%

range are required for single cell polarization and in the 80%
- 90% range for two and three cell polarizations. The

2comparable X24 approximation values are at least 20% - 30%

below this. Using the rightmost line as the cut-off has worked

quite well in this study. In order for a cluster to be

declared "random" it must accept H for both the row and

column totals.

3.5 Internal Consistency and Cluster Extraction

This section discusses the final stage in the

cluster extraction process, the test for internal consistency.

Figure 3.4 illustrates the logic flow for the procedure.

At this point in the extraction process, the

clusters under consideration are assumed to be well-Isolated,

non-random groups of data. What remains is to examine for

consistency each cluster that contains two or more isolated

clusters as subsets. Basically, the idea is to determine

whether the information contained in all the isolated

subclusters is compatible or not.

.1"
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3.5.1 Regression and Internal Consistency

One of the primary difficulties in finding an

internal consistency test for isolated clusters which contain
other isolated clusters as subsets is that the frequency and
bearing estimates are functions of time within these clusters.
Typically, these isolated subclusters correspond to time

segments of observations for one or more targets; they start as

small groups of two or three points and then chain outward -

until the cluster under consideration is formed. Under these

circumstances, usual measures of similarity such as means,
ranges, modes, etc., can be very misleading. For a particular
target, the average frequency, bearing sine, or bearing cosine
from the first part of an observation period can be quite
different from the average computed from the last part of the

observation period. Based on these considerations, regression
techniques were used to develop the internal consistency test. r

When frequency, bearing sine, and bearing cosine

for a particular target are plotted against time for short
intervals (less than six minutes), they are nearly linear
functions and can be approximated fairly well by straight

lines. Measurements from two different and distingu-shable

targets define different straight lines, and this forms the
basis for the use of single-linkage clustering techniques.

However, as was shown in Section 3.1, the single-linkage

algorithm creates ever larger clusters by joining points or
clusters to already existing clusters. If clusters are Joined

from two different and distinguishable targets, then the

problem of internal consistency can be cast as a regression

problem to determine whether a set of a data defines one or two

regression lines. The lines could dif fer by a change in

intercept, a change in slope, or by both.
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Neter and Wasserman (Reference 6) give a

I procedure for doing this. The basic formulation of the model

is:

1) Let Yi be the measurement under

examination (frequency, bearing sine, or

bearing cosine) and let Ti be the time of

the measurement,

2) Let I be an indicator variable attached

to Y, such that 1, 0 if Y, comes

from the first cluster and Ii - 1 if Yi

- comes from the second cluster, and

"' 3) The model becomes

Y. B + BIT i + B 21i + B3 T i*Ii + Ei

and the response (regression function) is

E(Y) - B0 + B1T + B21 + B3T*I.

To understand the function of the indicator variable in this

model, note that for measurements from the first cluster (I-0),

E(Y) B 0 + B1T + B2 (0) + B3(0)
";' -B° + BIT

and for measurements from the second cluster (1-1),

E(Y) -B + BIT + +
0 B1  B2 (l) +B 3 (l)(T)
(Bo + B2) + (81 + B3T.
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Thus, B2  measures the difference in intercept estimates

between the two lines and B3 measures the differences in

slope estimates between the two lines. Therefore, the test for

equality of the two regression lines corresponds to a test of

the hypothesis

H0: B2 =iB 3 O0 versus
H1: B2 or B3 O.

The test statistic is

VSS (B2, B 3 IB ,BI) SSE
0 F

2 -i F*2

where

1) SS (B2,B3 B,) is the reduction in

the regression sum of squares due to the

$ inclusion of I, and T*I in the model,

2) SSE is the error sum of squares for the

model, and

3) n1 is the number of objects in cluster 1
and n2 is number of objects in cluster 2.

The above procedure outlines a method for

determining whether a set of measurements coming from two

different clusters is internally consistent or not. This is -

.4 done for each of the three measurements available i.e.

4frequency, bearing sine, and bearing cosine. A weighted

decision scheme is then used based on the three calculated
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F-values (F f F BS and Fc) to determine whether the two

.1 clusters contain consistent information or not. Considerations

used to establish this scheme include:

1) Frequency information should be weighted

less than bearing sine and bearing cosine

information. This is done because frequency

is only measured to the nearest tenth of a

- Hertz, so a normal Doppler shift of only 0.1
Hz can indicate a spurious inconsistency,

2) The bearing sine (bearing cosine)

measurements from two targets may be quite

close while the bearing cosine (bearing

sine) measurements are substantially

different. Thus, only one of the bearing

* component measurements is needed to indicate

inconsistency, and

3) When in doubt, pass a cluster. The result

of passing a cluster that should not be

passed is an increase in processing time for

other areas of the MTTA algorithms. The

result of not passing a cluster that should

be passed is the possible loss of a target

track.

The weighting scheme (to be discussed below)

depends on a method developed by Suich and Derringer,

(Reference 13) and extended by Ellerton (14) to examine the

significance of subsets of the regression variables.

Typically, this subset of variables describes some particular

H characteristic, such as trend or curvature, of the response
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system. In our case, the characteristic being examined is the

tendency of the data to be best described by two regression

lines instead of one.

" Let Yf(e represent the full regresssion model

and let Yr(3 represent the reduced regression model, that

is, the full model minus the variable subset under
-'- consideration. The quantity to be tested, y, is the ratio of

the average, squared expected differences in prediction of the

two models to the average variance of these predicted

differences;

y= average expected squared prediction difference

average variance of predicted differences

The test statistic is the usual F-ratio, which in this case is,

SS (B2 , B 3jBo , BI) SSE

2 n+n2- 4

and the hypothesis tested is

H :Y " Y versus
H1 : Y > Yo.

Acceptance of the null hypothesis indicates that either the

full model should be reassessed as a predictor or that the

error variation in the data is simply too large relative to the

variation in predictive power of Yf(1 and Yr 0).
Essentially, if there are large errors relative to the range

covered by the data, then a subset of variables may, under the

A % usual F-test, appear to be significant when in fact they are

simply fitting the errors in the data. The purpose of this

test is to detect that situation.
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In the extraction algorithm Y0 was set equal to

r2, and the critical value then became about four times the

F-value used to make the standard test:

Ho: B2 - B3 - 0 versus
HI: at least one of B1 , B2 A 0.

3.5.2 Weighting Scheme

Using the regression analysis just described, the

interval consistency test reduces to the following, letting

Fu stand for the "usual" regression F critical value and FE

" stand for the value generated by applying Ellerton's work, the

weighting scheme used is:

1 I) If Ff < Fu  then W 0

Ff u
.- . F u  W F 1

2) I FBS > F uWBS

F u < FB < F then W

)F >FEIWBS 2

BS E

i i!3 ) If F 0 hnrjc h yohssta h w

3)I BC Fu WEC =0

<FBC E teWBC =
F >* I I
FBC -FE WBC= 2

4 ) W Wf + WBS + WBC' and

5) If W 2 then reject the hypothesis that the two

clusters are consistent.

47
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Basically, this scheme says that frequency variation alone is

not enough to reject the idea of consistency, instead it must

reject in concert with either bearing sine or cosine. On t he

other hand, bearing sine or cosine measurements are enough by
themselves to reject consistency if the indication of multiple
cluster data is extremely strong. Middle of the road rejection

* - values from both bearing cosine and sine measurements are also
enough to reject consistency. Because a false rejection of the

consistency hypothesis is much more costly than a false

acceptance, all critical values were set with a .005.

If a particular cluster possesses exactly two

isolated subclusters, then the above procedure is fine as it
stands, the cluster will be accepted or rejected based on the
final value of W. However, if a given isolated cluster

contains more than two isolated clusters as subsets, then

another procedure for rejecting consistency is needed. Suppose

the cluster in question has k isolated subclusters, then there
ar k() cluster pairs to be examined for consistency. If it is

assumed that all clusters come from the same track, then k-l of

the potential pairs should link together or show consistency.

Thus, for clusters with k isolated subclusters (k >2), the

consistency hypothesis will be rejected if fewer than k-I

cluster pairs pass the two cluster consistency test.

Experience has shown this to be a fairly liberal criterion.

~ii3.6 Automatic Cluster Extraction Summary

In order to be selected as a target data set a
* * cluster must possess three characteristics:

N.1) Isolation from the rest of the data,
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2) Polarization of observations in a few

. frequency or bearing bins, and

3) Internal consistency among isolated

subclusters.

Cluster isolation is measured using Ling's survival function.
• .Those clusters possessing a survival function value of less
"" 'than 10 are considered well isolated and selected for

further testing. Once a cluster is considered isolated it is
-subjected to the Alam and Mitra polarization test to determine

if most of its members are concentrated in a few bins or not.
Those clusters whose observations are concentrated in a few
bins are determined to be nonrandom collections and are passed

': ". on to the final test. Clusters remaining at this point are

examined for subclusters which happen to be isolated clusters
also. Those clusters which contain no isolated subclusters are
considered internally consistent and declared target data
sets. Clusters containing isolated subclusters are given a

regression test for internal consistency. Those that pass the

q test are passed as target data sets.

All the above tests are conducted using

hypothesis tests with alpha values set high to allow marginal
groups to pass through and be selected. It is felt that it is

" 'better to pick a bad cluster as a potential target data set

than reject a cluster that is a target data set.

'U
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4.0 INITIAL GUESS PROCEDURE
U

Once the sonobuoy data have passed through the

cluster formation and cluster extraction algorithms, they have

been grouped into sets of clusters for each sensor that

correspond to potential target data sets. The next step is to

solve the intersensor correlation problem which seeks to

determine which data clusters from each sensor contain

-observations on the same target. For this study, simultaneous

observations for a target were required from either two or

three sensors because, in general, a single sonobuoy cannot

provide enough information with which to track a target. For

*even a small number of sensors and targets, the number of

potential combinations can become fairly large. For example,

consider a 3 target scenario observed by three sonobuoys and

assume that each buoy hears each target perfectly and that the

cluster formation and extraction routines perfectly separate

the data. There are then three data clusters associated with

each sensor, and these can be combined into 27 (i.e., 3*3 + 3*3
- + 3*3) potential two-cluster intersensor combinations and 27

(3*3*3) potential three-cluster intersensor combinations.

To help separate unlikely combinations from

likely combinations, an initial guess procedure and a set of

guess evaluation criteria were developed. This section

describes the initial guess procedure itself and the following

section discusses the evaluation criteria.

4.1 Crossed-Bearinga, Crossed-Frequency Initial Guess
Procedure

An initial guess procedure which used

crossed-bearing and crossed-frequency information to generate
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initial conditions for target tracks was described in lastU year's report (Reference 3). It was used to generate a

reasonable guess of a target's position and velocity. This

K;. guess was then passed to the initializers of either Tracor's
EKF or HTA so that the tracker could more quickly converge onto

an acceptable set of initial conditions for the target. This
procedure used the frequency and bearing measurements from two
or more sensors in a least squares formulation to estimate the

target's initial position and velocity. The estimates from
this procedure were found to be reasonably good and greatly
improved the speed and the initialization characteristics of

Tracor's two trackers.

For a bearing estimate from sensor i, the

crossed-bearing equation is:

x sin B - y cos i -xi sin ei - Yi cos Bi

.

where

Si  = the bearing estimate for sensor i,
(xi,Yi) = the position components for sensor i,

(x,y) = the position components for the target.

Similar crossed-bearing equations can also be obtained for any

other observing sensors. The crossed-frequency formulation
uses the bearing and frequency estimates from a given sensor to

generate target velocity estimates. The actual
crossed-frequency equation for buoy i is:

.( cos + sin ) 1
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.." where

.5 - Bearing estimate from buoy i,
i

fi - Doppler-shifted frequency estimate
from buoy i,

• " Unshifted center frequency

transmitted by the target,
c - Speed of sound in the water,
S(iy) - Velocity components for the target,

(iii) fi= Velocity components for the buoy.

Once again, similar crossed-frequency measurement equations can
be generated for other sensors that observe the target.

A motion model is needed to correlate the s

position and velocity estimates and to provide a means of
mapping all measurements back to an initial epoch so that a
batch-type, least squares estimate can be generated for the

target's initial position and velocity. Since only a small
"K data stream which covers a short time span is used in the

initial guess procedure, a linear motion model was selected to
describe the target's trajectory. The linear motion model
used is:

x "a Xio A
xx o+ At

0 0",' " ',y YO + YO t

o- . Following Bard (Reference 15), the crossed-bearing and

crossed-frequency equations can be combined with the motion
4" ., model in a two-equation least squares model to estimate (xo,
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4.2 Measurement Weighting Equations

Last year, least squares estimates fur- the

target's initial state vector were generated by weighting all
the measurements equally. This resulted in good position

estimates but relatively poor velocity estimates. It was felt
that weighting the measurements might improve the target's

velocity estimates.

Associated with each frequency and bearing

measurement is a standard deviation value which describes

statistically the accuracy of the measurement. These standard
deviations are computed as functions of the estimated

signal-to-noise ratio for the received signal. Typically, the
measurement standard deviations are used to compute a

measurement weight which enables the data to be processed by a
5'weighted least-squares tracking algorithm. With the

* .crossed-bearing and cros sed- frequency initial guess algorithm,
the measurement equations are functions of the frequency and
bearing estimates. Some method has to be used which computes

standard deviations of the crossed-bearing and the

crossed- frequency measurements as functions of the standard
deviations computed for the frequency and bearing estimates.
Following Young (Reference 16), a first order Taylor series

approximation is used to compute the standard deviation for the

modified measurement equation. If we use G to represent either
the crossed-bearing or the crossed-frequency measurement

function and f and S to represent the frequency and bearing
estimates, respectively, the following equation is used to
compute the measurement weights:

22 2 2 2
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In the above formulation, the assumption has been made that the

buoy positions and their velocities are perfectly known, so no

buoy position or velocity errors are allowed to propagate
through this standard deviation equation. Specifically for the

bearing equation, the measurement equation, G, is:

G xi sin 0 yi cos Si .

Since no buoy position errors are encountered and since the

frequency estimate does not contribute to this measurement

"" "equation, the crossed-bearing standard deviation becomes a

function of the bearing estimate only

2 (- )2 a2

2 ~22
a - (xi  cos i + Y , sin 8i) B8

Conversely, the crossed-frequency measurement equation is a

function of both the bearing and frequency estimates

-" !o + xcos 8 i + yi sin Bi.

f i c

To obtain the crossed-frequency standard deviation, it is

assumed that no errors are encountered in obtaining buoy state

values so that they do not contribute to the sources for the
crossed frequency measurements:

c - speed of sound in the water,

, ( i , Yi) - velocity components of buoy i,

-e"unshifted center frequency value for the
transmitted target signal.
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f*" Doppler shifted frequency received by the

sonobuoy.

The crossed-frequency equation for sigma then reduces to:

02 .(;G) 2 aG )22
G a) + ( Ofi

2 L)]i21coLG  sin B~i + Yi cos a3 i i ..

+ c f o  + .-"

Using the weights generated by these equations in the

estimation procedure has greatly improved the velocity

estimates without affecting the position estimates from the
MTTA's IG algorithm. The IG algorithm now in use in the MTTA,

therefore, is a weighted least-squares crossed-bearing,

crossed-frequency algorithm.
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5.0 PHYSICAL AND STATISTICAL CONSTRAINTS ON THE

INITIAL GUESS ESTIMATES

After initial guess estimates are generated for

each of the possible intersensor cluster combinations, these

estimates must be examined to determine which ones provide
" "initial conditions which are plausible in real world

encounters. As stated previously, there are twenty-seven
possible two-cluster intersensor combinations, and

N twenty-seven, three-cluster intersensor combinations for the

three-target, three-sensor scenario shown in Figure 7.1.

Figure 5.1 shows all the possible bearing line-of-sight

intersections that would result from combining bearings from

two sensors in the crossed-bearings procedure. Notice the

large number of incersections that result from this simple

example. Although it is not as easy to illustrate, a large

number of possible intersections also result from using the

crossed-bearing procedure for all possible three-cluster,

intersensor combinations. This section examines ways to use

physical and statistical constraints to eliminate the unlikely

combinations produced by the initial guess procedure.

5.1 Physical Constraints Test

The first step in eliminating implausible initial

guess values is to examine the estimates in terms of sonobuoy

detection limits and maximum submerged target performance
levels. These limits are referred to as the physical

constraints on the problem. These constraints have been left

as user defined inputs so that they may be varied for the

different classes of sonobuoys or the different types of

[ - targets that might be encountered in real engagements.

.46
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The first physical constraint fixes a maximum

detection range for the sonobuoys to eliminate candidate

initial guess estimates that fall well outside the detection

range of the sonobuoy pattern. In real applications, an

operator uses parameters such as the class of sonobuoys used,

- the minimum detectable signal level (MDL) for these sonobuoys,

2." -ambient conditions such as sea state, and other factors to set

a maximum range for the day for the sonobuoys. For our

_- -simulation, we used a transmitted signal-to-noise ratio of 80

dB in a 1 Hz band at a distance 1 yard from the source to

.- simulate each of the target's signal sources. Furthermore, the
* -" MDL used for our simulation was set to a reasonable value of 0

dB in a 1 Hz band (this gives +10 dB in a 0.1 Hz band). Given

this 80 dB source level, a 0 dB MDL, and assuming a 20 log R

.- signal propagation loss through the water, the maximum
detectable range for each of the sonobuoys would be 10,000

* yds. To insure a sizable safety margin, a 50% error tolerance

was added to this 10,000 yd range, so the maximum allowable

range was set at 15,000 yds. Any initial guess estimate whose

position values would cause the target to fall outside this

15,000 yd range for any of the observing sensors was then

rejected and was never considered again in the MTTA.

The second physical constraint restricted the
target's speed to some maximum value which once again was set

by the program user. For actual applications, operators
I .'r.-.usually know what the maximum submerged speeds are for certainclasses of targets. If not, the operator could set the upper

limit to the maximum known value for any class of targets. For

this simulation, the maximum target speed was set to 10 m/sec,

which corresponds to roughly 20 knots. Once again, a 50% error

tolerance was added to this value so that the maximum allowed

speed used by the program was 15 m/sec. This tolerance was

[5.
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much larger than the speed of the fastest target in the

scenario which was 9 m/sec, so this upper limit was considered

to be reasonable for our experiments.

With these physical constraints, several of the

initial guess estimates could be rejected, so their

corresponding intersensor combinations could also be eliminated

from further consideration. However, many more combinations

passed these two tests than were rejected, so many of the

combinations were still under active consideration at this

point. If one looks at Figure 5.1, one sees that most of the

. two-cluster intersensor combinations fall well within the

i 15,000 yd range of their participating sonobuoys. While the

target speed constraint helped reject a few of the remaining

combinations, most combinations were still left intact after

- this test also. Since so many combinations were left, it was

* decided to perform some statistical tests on the remaining

cluster combinations to examine the quality of the initial

guess estimates, and to then eliminate all estimates that were

found to fit the data poorly in a statistical sense.

5.2 Two Sensor Statistical Compatability Test

After a particular two sensor initial guess

estimate has passed the physical constraints test, it is then

*subjected to a statistical test that measures the consistency

of the information contained in the contributing clusters.

. This test is similar to the test used to determine cluster

consistency and is based on the use of indicator variables.

From section 4.2, it will be recalled that the
initial guess procedure uses a weighted least squares method to
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estimate the target's initial state vector (Xo0  Yo' Xo'
•-"). In doing this, it fits a model of the form

M i -BZil + B2Zi2 + B3 Z13 + B4Zi4 + Ei

where (using the notation of section 4.1):

x, sin'i - Y, cosji for sensor l's bearing data

X2 sin62 - Y2 cosa 2 for sensor 2's bearing data

c ,'-[ f ( +k, cos + sin , For sensor 1 frequency
i = c data

[fo ix2 COS B2 + Sin B2 I For sensor 2 frequency
c ( + 2 - data

co c

(Bi, B2, B 3, B4 ) - (xo , Yo' Xo' )

(sinal, - cosS1, At sina1 , - At cossi)

for sensor l's bearing data

(sina2, - cosa2 , At sina2, - At COs62)

for sensor 2's bearing data
(zi , zi2 , zi, zt4 ) =1 (0, 0 cos j, sinai) for sensor l's

frequency data

(0, 0 cosB 2 , sin6 2) for sensor 2's
frequency data
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E - the measurement error associated with

the jt observation.

When using two sensor data to estimate the

initial state vector of a particular target, there are only two

possibilities:

1) The two clusters contain observations which
generate estimates for an actual target, or

2) The two clusters contain information which
leads to estimates for a spurious target.

The problem is to separate spurious target estimates from real

ones. Figure 5. 1 illustrates the potential number of bearing
intersections for even a simple example. Because a linear
least squares procedure is used, the state vector estimated by
the initial guess procedure is a weighted average of all the
measurements from both clusters. This will result in producing

a great number of the spurious intersections shown in Figure
5.1. The question of separating real from spurious estimates
can then be viewed as one of determining whether the two
clusters are estimating the same target or not.

One way to do this is to use indicator variables,

that is, to formulate the model as above with an additional
term Zi5

Mi B BZi + B Zi + B Z 3 + B4 Z 4 +B Zi + e

where Z1 1 if the observation comes from cluster I

10 if the observation comes from cluster 2.
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* The response model associated with this is

E(Mi) - BIZ I + B2Z2 + B3 Z3 + B4Z4 + B5
for observations from cluster 1,

E(Mi) - BIZI + B2Z2 + B3Z3 + B4Z4
for observations from cluster 2.

If B5 is significant, then there is a significant difference

in the mean response of the system to the data from the two

sensors. In essence, B5  is a measure of the degree of

averaging required between the two data sets to generate an

initial state vector estimate. A large amount of averaging
implies two different targets are producing the estimate, a

"' small amount of averaging implies only one target produced the

estimate.

Thus, the two sensor consistency test reduces to

a standard linear model test of the significance of the
indicator variable Z5. This corresponds to the hypothesis

test

Ho: B5 -0 versus
H1: B5 0 0

with test statistic

-* SSR (ZsIZI, Z2 , Z 3, Z ) SSE (Zl, Z2 , Z3 , Z4, ZS)i', " F*-

1 n1 + n2 -5

. .
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where SSR(Z 5 1Z 1 ,Z2 ,Z3 ,Z4 ,) is the reduction

in regression sum of squares caused by including

SSE(ZZ 2 ,Z3 ,Z4 ,Z5 )  is the error sum of

squares for the full model,

nl, n2 - number of points in clusters 1 and 2, and

F* - has an F distribution.

The decision rule is:

if F* < FC (1, n1 + n2 -5) accept H0
if F* > Fc (1, n, + n2 - 5) accept H1

where

F( I, + n2 - 5) is the desired critical

point of the F-distribution with 1 and nI +

n2 -5 degrees of freedom.

Again, because the cost of a type I error is much higher than

that of a type II error, the alpha level for this test was set

at .005.

5.3 Three Sensor Statistical Compatability Test

-, Once all two-sensor initial guess estimates have

been examined, attention is turned to potential three-sensor

initial guess estimates. As with the two-sensor estimates, the

three-sensor state estimates are made up of weighted averages
6
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of observations taken from all three clusters. Thus, spurious

target estimates which satisfy the physical constraints of the

problem often occur.

-=Figure 5.2 contains a flowchart of the three

*- sensor statistical test. Note that for a particular

" three-sensor combination to be examined, at least two of the

associated two-sensor estimates must have passed the two-sensor

test. Once a three-sensor initial guess has been calculated, a

. -nonlinear least squares hypothesis test developed by Gallant

" (Reference 7) is used to decide whether this estimate is

statistically equal to each of the previously computed
, two-sensor estimates. It is this test which forms the heart of

the three-sensor compatability test. If at least two of the

associated two-sensor estimates are statistically equal to the

three-sensor estimate, then the three-sensor estimate is passed

- on for further consideration.

The intent of the three-sensor test is to search
for consistency among the already computed two-sensor estimates

and the current three-sensor estimate. Requiring agreement
with at least two of the possible two-sensor estimates prevents

one two-sensor estimate from dominating the three-sensor

estimate.

The Gallant nonlinear regression test (Reference

4. 7) considers the hypothesis

. Ho: ra ro versus

4H rit

64

[-.7



Wam App1edSdw=u

GE -SNO

COBIATO

DOEURTR

aN

'SS NSO

11!M
S1, T

'4Y

GE 3 ENO
ESTMAT

N STM?

EAS 22S1S
ESTIMATE

MAR MAR

Figure 5.2. Initial Guess Procedure's 3-Sensor

Combination Tests

* 65



Ira= Apiled Scms

m at the a-level of significance where

X represents the initial guess, state0
vector estimate under consideration.

The data, M(, are measurements assumed to be
-"' responses to the input vector Z linked by the non-linear* a

~" ~ regression model

M i m f(Zi X 0 + ej.

Under the null hypothesis the quantities

i (?7 9 ei

are called the measurement residuals and are assumed to be

. independent, normal, random variables with zero mean. If each
- measurement has an associated positive weight Wi, then the

4 following sum

S(x) = Wie i

is the weighted residual sum of squares for

Then, for the initial guess routine the
regression function is:

M i Z *[(x 0 + i 0 Ati) sin ais - (Yo + 0 Ati) c°Ssis]
+ (C-Z).E ° cos is + yo sin is ]

- i .

4 '*66

-/4



eTracr Applied Sciences

..

where
: (xo' yo o0, " - initial state vector of

target,

Atj - t i - top
sin Bs - sine of bearing estimate

from sensor s,
cos Bis - cosine of bearing

estimate from sensor s,-when measurement is

Z crossed-bearing,
0 when measurement is

crossed- frequency.

..-h
In Gallant's notation, the input vector, Z, for each

measurement is:

( Z2 Z3 , Z4 ) (Z, tti, sin Bis, cos Bis)
it "

and the parameter vector is:

',.: X o a (X o ' Y ' ' Y )
0 0 Yx 0  YO).

The test statistic used is

'a'

T(X') --
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where X - are values for the previously

computed two sensor state

vector estimates,

- the three-sensor state vector0
estimate.

The critical point is given by

C* + pF (p,n-p)

n-p

where

p number of parameters estimated

n - number of data points

F,(p, n-p) - a percentage point of the

F-distribution with p numerator

and n-p denominator degrees of

freedom.

Lastly, the decision rule is:

* .. if T <_ c*,accept Ho
if T(X 0 ) > c*,accept H1 0,. -4

The test procedure then is:

1) Get the three-sensor data and compute an

initial state vector with the initial

guess procedure,

2) Compute S(Xr),

68
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3) For each of the previously computed

two-sensor estimates,.~, associated with
the three sensors under examination, compute

SW~) (using the three sensor data),
0

4) Perform Galn' test on each of the

two-sensor estimates, and

5) If two of the two-sensor estimates pass,

then pass the three-sensor estimate as good,

otherwise fail it.

The test statistic T is derived by finding the
likelihood ratio for the composite hypothesis

H 0: ~u versus

H: X 3e

The exact distribution of T is not known, but Gallant finds a
random variable which is asymptotic to T and whose distribution

is known. It is from this asymptotic distribution that C* is

determined. Basically, the test examines the ratio of the

residual sum of squares for the two-sensor and three-sensor

estimates. By definition, the two-sensor estimates will always

produce larger values of S(Ithan the three-sensor estimate,

so Gallant's test provides a measure of what is too large.
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I6 6.0 INTEGER PROGRAMMING AND SCENARIO SELECTION

Up to this point, the MTTA has been concerned

primarily with examining multi-sonobuoy data and organizing it

into sets of observations that form potential tracks. These

potential tracks must now be organized into likely track

.. scenarios. That is, given the current set of observations,
determine which set of potential tracks most likely describes
the actual events taking place. With even a small number of

potential tracks, this becomes a combinatorial problem of

fairly large dimensions. To sift through the various potential

scenarios to select the optimal set, Tracor has used a linear

optimization technique known as integer programming (IP).

The most general integer programming formulation

3 is:

n
min c x __ CiXi

such that
X e S C zn

where

c' is an n-dimensional cost function

S is the constraint set
zn is the set of all n-dimensional integer

vectors.

Typically, integer programming problems are difficult to solve

so a great deal of research has concentrated on identifying and

, 'finding efficient solution techniques for certain special

. classes of this problem. Fortunately, the scenario selection

problem falls into a well known problem type called the set

partitioning problem.
.57
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6.1 Set Partitioning Formulation

Garfinkel and Nemhauser (Reference 17) give the

* ~.basic formulation of the set partitioning problem. Consider a

set 1 - 11, 2, ... , ml and let P be a set such that P - lEl: P2, PnI where Pj I for the index set J - 11, ..

.> 11. Then a subset J'* of J defines a partition of I if

U p =
j EJ* J

and for ,k E J*, j k implies

.% .9

P Pk

Thus, a partition of I consists of a set of disjoint subsets of

I such that their union is equal to I.

Let a cost, c be associated with each E J

so that the total cost associated with a given partition is

i C. m The set partitioning problem is to then find the
jj =J*

min..- j j

j~i =1

I suchth suject tnolijxjua to 1,i

Xi 0, 1; j

IN
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Pwhere xj 1 if J is in the cover
.0 otherwise

ajj I lif iE P
f- otherwise.

The optimal solution to this problem, if one exists, will yield

an x-vector of zero's and l's such that a 1 in the kth

element of x implies Pk is in the partition and a zero in the

kth position implies Pk is not in the partition. This

problem can be rewritten in vector notation as

min c x

subject to Ax - I

where

1 is a column vector of l's
c - (c 2 ...... Cn)

Y. x =  1'x x2, .. , Xn) xi as above

A - (aij)mxn aij as above.

Note that A has m rows an n columns. The kth column of A

corresponds to P The mh row of column k has a I in it

if m is in Pk and is zero otherwise.

.O
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6.2 Applying Set Partitioning to the Scenario

Selection - Constraints

To see that the scenario selection problem can be

cast as a 0-I set partitioning problem let:

K ... K,..., Kn K K

Knl1+n2 I  n I .. ,n+n2 + . .. +n n I ,
.n 1l+n 2 - •.nl+ 1 1 ,... n1 n 2 1 .'nn}j

where K1 ,..., K represent the n, clusters
I associated with sensor I

K K represent the n2  clusters
nl+l'''' n1  nassociated with sensor 2

* -4

KnI+n 2 . . +n n-1+l, represent the nn clusters

K
K nl+n...-+nn associated with sensor n;

Then a particular track scenario can be represented by

T*= Tj U T U ... U TJ 2 Jk

with cost
+.n l+ Tn2+ . . -+ n

n
Ecx c + c+

t" jXj +Cj cj

j=1

where

T represents a given track,
j i.e. a partition of K,

= K:. KK ; 2 -,

n
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, Xj a binary variable such that

1 if track j is in the scenario

x. -

0 if track j is not in the

scenario j

cj the cost of track J.

Forming the complement set T l as
Jk+1

T
Jk+l

we can write K as the union of the T 's for any track
scenario, i.e.

5 -KTjU T J2U...U TJk U TJk+l-

Lastly, if we allow a particular cluster to appear in one and

r only one of the T 's for a particular scenario we have that
Ji

:' ' Ji Jk implies T CiT k- .

Therefore, for any track scenario, the T 's form a

partition of K, the set of all clusters. If each cluster in

the complement set T is considered to be a potential

track made up of a sington cluster with zero cost, then the

problem may be written as:

min c x

subject to

Ax + IS-1
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where

c (Cc(, c2 , ... , cn) cost vector

x " (XI, x2 , ... , xn)

xi - 1l if track Ti is in scenario

0 if track Ti is not in scenario

K'- : A - (aij)xn

ajj~ -]1- if cluster Ki is in track T

10 if cluster Ki is not in track T

I - m x m identity matrix

S (Sl' s2, sm) vector of slack

variables having zero cost

si - I if cluster li is in complement set

0 otherwise

1 - column vector of all ones.

6.3 Applying Set Partitioning to Scenario Selection -

Cost Function

This section derives the cost function used in

the IP formulation of the scenario selection problem. As

explained i previous reports (References 2 and 3), Tracor's
HTA uses an extended Kalman filter to sequentially track a

given target. The filter is initialized by a batch,

least-squares algorithm that uses a constant acceleration
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motion model for target trajectories. Two measurement types,

U bearing and Doppler shifted frequency, are used by the

measurement model.

The measurement model of the Kalman filter

produces a residual stream as data are processed,
e Y

.e i Yi

where Y, - observed measurement value

Y - predicted measurement value.

The ei 's are assumed to be independent, normal random

variables with zero mean and variance we. Thus for a

particular track, the likelihood function for the measurement

model residual stream can be computed. For track Ti

possessing ni observations, this function becomes:

" e- (e/w1 )2 e ' w (e2 w2) " e- (en w) 2w n

Liz w
2w2

-.'/2ne

(2)ni/2 (wI, w2
...w )

Let S n , T T..,

j i Ti Ti'b
a track scenario, then the likelihood o S is definegias:

I.

L(Si) = Lil Li 2 " L i

n.
where is the likelihood function for the measurement
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model residual stream corresponding to track T If Xj

is a variable such that

Xi - if Ti is in scenario i
0 otherwise,

then the above can be written as
x1 x2  xn

L(si) L(S) 1 L2 .. Ln

where xi-, x i=l, 00.•, xi - and all other
xi O. 1 2 n

In general then,

L(S) - L1 x*L 2 £*...*Ln n

and a reasonable scenario selection candidate would be that set

of xi's which maximizes L(S). This is equivalent to finding -

that set of x i 's which minimizes

-2 in L(S) - x1 (-2 in L1) + x2 (-2 in L2)
+"."+x (-2 In Ln)n n.

Thus, for the scenario selection problem,
ni  ni

ci -- 2 in Li = ni in 27T + I=Wi + _(ei/Wi) 2

becomes the cost associated with track Ti, and the optimum

scenario is the one that maximizes the scenario likelihood

function.

7"77
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6.4 Integer Programming Summary

In summary, it is important to keep in mind the

following aspects of the MTTA integer programming formulation.
For the given scenario under consideration the members of the

component tracks, T T Tat

by the initial guess routine, the membeN of the complement

set, T , are the clusters that are "left over." The

cost cJ f a particular track T is determined by applying

the HTA to the data contained in the clusters which comprise

T.

The solution algorithm is a' list based search
procedure described in Garfinkel and Nemhauser (Reference 17)

and, while there are potentially faster algorithms available,

this formulation was felt to be sufficient at the present

time. Larger problems will likely force consideration of

faster solution algorithms.

A *-: Finally, it should be noted that Morefield

U(Reference 8) has also used integer programming to solve the

intersensor correlation problem. He used a set packing

algorithm which, with the addition of slack variables, is

equivalent to the set partitioning algorithm. However, his

rationale for casting the problem in this framework is

substantially different, using a Baysian approach to track

formation and his cost function is slightly different. More

importantly, he uses data types which ignore the passive

initialization problem and he works with substantially smaller
data sets. Because of this Morefield used neither clustering

techniques or initial guess procedures to prune the data,

relying on the IP to handle these chores.
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7.0 RESULTS

4-7.1 Introduction

This section presents the results of applying

Tracor' s MTTA to several different simulated multi-target

scenarios. Topics discussed in this section include:

1) Generation of simulated multi-target data,

2) A three target scenario with good geometry,

* strong signal, and a threshold of 0 dB in a

1 Hz band,

3) A three target scenario with poor geometry,

strong signal, and a threshold of 0 dB in a

*~ 1Hz band,

. :. 4) A three target scenario with good geometry,

moderate signal, and no threshold, and

5) A two target scenario with good geometry

% . strong signal, and a threshold of 0 dB in a

1 Hz band.

~ The section corresponding to topic (2) contains a detailed

discussion that illustrates the performance of the MTTA.

.~ >'Figures and tables are presented which show the results of the
data clustering, automatic cluster extraction, initial guess

estimation, and integer programming modules.

All scenarios generated were single trial runs,

N thus the results presented are not Monte Carlo averages and
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reflect more variation than do typical Monte Carlo results.

All scenarios were of six minute duration and employed three

sensors to gather data. Computing was performed on a UNIVAC

- 1100/61 where the run times per scenario ranged from seven to

nine minutes depending on the scenario complexity and the

received signal strength. This point should be noted, Tracor's
MTTA is currently running in near real time. With only a

minimal amount of parallel processing, i.e., separate

processors to cluster each buoy's data and two processors to

evaluate potential tracks for the IP module, the algorithm

could easily be made to run in real time. Because the MTTA

uses relatively little storage space (less than 64 K words for

the clustering algorithm and less than 30 K words for all other

modules) and requires only six to seven significant digits of

numerical accuracy, current parallel processing options would

be more than adequate for MTTA computations.

7.2 Scenario Data Generation

To study Tracor's MTTA tracking capabilities,

multi-target data were needed to test the tracker. Since no

real multiple target data sets were readily available,

simulated multiple target data were generated to fill this

need. Following is a brief discusssion of the type of

sonobuoys modeled, the type of trajectories used by the
targets, and the target signal strength levels that were used

to simulate the multi-target data.

7.2.1 Sensor Locations

* For all the geometries investigated, three

non-moving passive sensors were used to gather data from the

targets. These sensors were deployed in an equilateral,
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triangular arrangement that is known as a tri-tac pattern. The

baseline distance between each of the sonobuoys was fixed at
7000 m. This arrangement was felt to be sufficient to insure

F . that each of the targets could be observed by all the sensors.

7.2.2 Target Trajectories

Three different multi-target geometries were
simulated for the current study. For each geometry, all the

targets followed unique, constant velocity, constant heading
trajectories for six minute durations. These trajectories were

specifically designed to prevent track intersections during

Q this six minute time span. The three geometries used are

summarized in Tables 7.1-111. These scenarios were used to
determine if certain geometric and dynamic combinations could
be formed that might prevent the MTTA from tracking all the

targets. As will be discussed, the scenarios described in

Tables 7.1 and 7.111 proved to be favorable observation

*" geometries whereas the scenario described in Table 7.11 proved

to be an unfavorable multi-target geometry with the MTTA
failing to track one of the three targets.

7.2.3 Simulated DIFAR Multi-Target Data

After the three scenarios described above were

created, simulated sonobuoy measurement data for the targets

were needed so that the MTTA could attempt to reconstruct the

tracks for all the targets. To generate the data for

individual targets, a DIFAR simulator (References 2 and 3) was
used to generate frequency and bearing measurements. This

* simulator used a peak picking method to estimate the frequency

from a normalized frequency spectrum and an arctangent

processor to estimate the bearing. For this simulation, a data
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TABLE 7.1

•.2'

DESCRIPTION OF THE 3 TARGET

TRACKS FOR SCENARIO 1

Buoy Positions

Buoy X(m) Y(m) V(m/s)

1 -3500 1000 0
2 0 7062 0

3 3500 1000 0

Initial Target Tracks (to=0s.)

Target Xo (m) Y0(m) V0(m/s) Course Heading
1 -3500 -750 .6 45

2 2500 500 9 90

3 -500 4500 4 300

Final Target Tracks (tf-360s)

Target # Xf(M) Yf(m) Vfm/s) Course Heading

1 -1473 777 6 45

2 2500 3740 9 90
1" 3 1220 1 3253 4 1 00
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TABLE 7.11

DESCRIPTION OF THE 3 TARGET

TRACKS FOR SCENARIO 2

..Buoy Positions

Buoy # X(m) Y(m) V(m/s)

,1 1 -3500 1000 0

"- 2 0 7062 0

3 3500 1000 0

Initial Target Tracks (to=0s.)

Target # Xo(m) Y (m) V (m/s) Course Heading (o)

1 -3000 -750 6 15
2 2500 500 9 90

3 -500 4500 4 300

Final Target Tracks (tf=360s)

4 . Target # Xo(m) Yo(m) Vo(m/s) Course Heading (o)j

4 1 -914 -191 6 15

2 2500 3740 9 90
:'. 3 220 3253 4 300
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TABLE 7.111

DESCRIPTION OF THE 2 TARGET

TRACK FOR SCENARIO 4

Buoy Positions

Buoy # X(m) Y(m) V(m/s)

1 -3500 1000 0

2 0 7062 0

3 oo o

Initial Target Tracks (to-0s.)

Target # (m) Y (M) V (m/s) Course Heading (

1 -1000 -500 6 0

2 -3000 7000 6 300

Final Target Tracks (tf=360s)

.Target f(MY(m Vf(m/s) Course Heading (

1 1160 -500 6 0

2 -1920 5129 6 300

,o..
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update rate of 1.0 sec. was used to make the measurement, and

since the accuracy of the frequency estimates is inversely

proportional to the update rate, the frequency measurements

were limited to a 0.1 Hz resolution. As described before

(References 2 and 3), this data generation program is a fairly

realistic model which outputs non-Gaussian measurements for the

individual targets.

To form the multi-target data needed for the

current investigation, individual target data sets were

generated f or each of the targets present in a given scenario.

Then, the individual target data sets were merged for each of

the sonobuoys to produce what was referred to last year as

multiple linetracker data (Reference 3). Certain weaknesses

-* were acknowledged previously in simulating the data in this

fashion, but overall, this type of multiple target data was

3 felt to be more than adequate for testing the MTTA.

For all but one case, each target transmitted a

tone whose SNR level as measured 1 yard from the source was

simulated as 80 dB in a 1 Hz band. For these cases, the DIFAR

simulator used a threshold of 0 dB in a 1 Hz band that had to

be met or exceeded before any measurement estimates were

output. If one uses a 20 log R approximation for the

propagation loss, where R is the magnitude of the distance from

the source to the receiver, an 80 dB source level without any

* fluctuation could be heard 10,000 yards away and Just meet the

0 dB threshold criterion. However, the DIFAR sirulator

introduces some random noise terms to model random fluctuations

in both the target signal source level and the ambient noise

level, so the absolute maximum observation range for the

sonobuoys cannot be set.

85



Tracer Applied Sciences

One other case was simulated which used a lower

SNR value for the target source level, but eliminated the

thresholding criterion so that measurement estimates were made

for all time updates. Usually, threshold levels are set so

that most target measurements exceed the level but no, or

almost no, random noise measurements are introduced into the

data set. Unfortunately, such thresholding techniques can

,. eliminate actual measurements in order to insure that no noise

is included in the data. For this particular case, the

threshold was dropped to see if the sensors could pick up a

weaker signal than that used in the other simulations. The

target source level was lowered by 3 dB to 77 dB in a 1 Hz

band. This 3 dB loss effectively decreased by approximately

30% the range at which the signal could be heard. To

compensate for this loss in range of the detection system, the

threshold was eliminated so that measurement updates were

always made. The clustering algorithms were then used to pick

the true measurements from the random noise found in the data.

The results from eliminating the measurement threshold and then

clustering the data to separate true target data from random

noise are presented in a subsequent subsection.

7.3 Three Target Scenario, Good Geometry, Strong

Signal

7.3.1 Introduction

This section contains a discussion of the results

obtained by applying the MTTA to a three target scenario with

good observation geometry in a low noise environment. It is

very likely that no multi-target algorithm will be able to

handle all possible observation geometries, so this report
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, contains examples of the MTTA's performance for both good and

bad observation geometries. Furthermore, real ocean ambient

noise levels and target source levels vary drastically from one

situation to the next, so detected SNR's vary greatly for

different encounters. This variation in detected SNR's

seriously affects the quality of the measurements which in turn

greatly affects tracking accuracy. By running a three target

scenario under various degrees of signal degradation, it was

hoped that a better idea of algorithm performance could be

obtained.

Figure 7.1 contains a plot of this scenario. The

4 plus signs represent the buoys, the solid lines the actual

trajectories, and the dashed lines MTTA's estimated

trajectories. Detailed results of the MTTA's solutions from

each module are presented next.

7.3.2 Data Clustering Results - Buoys 1 and 3

Table 7.IV contains the frequency, bearing sine,

r .rand bearing cosine measurements generated by buoy 1, while

Table 7.V contains the measurements generated by buoy 3 of the

scenario. The column headed 'TARGET' indicates whether the

measurement came from target 1, target 2, or target 3.

Tables 7.VI and 7.VII present the clusters

generated by Ling's algorithm (for buoys 1 and 3,

respectively), the associated cluster level or node number (see

section 3.2), and the object numbers for the members of eacl.

cluster. Examination of these tables illustrates sever A

points:

4 -
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TABLE 7.IV

SIMULATED, MULTI-TARGET DIFAR DATA FOR
BUOY 1 OF SCENARIO 1

SAMPLE TIEFEUNYCS I~) TARGET
*NO. T FEUNYCS)SI()NO.

2 15.0000 l~nloo 06S5623 67S5081 3
3 25.0330 149090C o34.843! .*93733.

4 25.000r O* 15.OV @64F6C .76S9914 3
5 35e033C 1490900 .391P0~' -.9200S0 1
6 35*0033J 150.000 9970P26 -.23978'. 2
7 35.*0000 150.10E' .778779 0627298 3
a 45.0Zj0 1490900 o370085 -92999?1

9 55.000 149 *900 *328874 .'.7.1
10 550000 1500 00 o9964.3? -.643933-031 2
11 S.000J: 150.100 e6612411 0750171 3
12 6 5 o oco 140,900 *44723E0 -*8944iQ 1
13 65*0300 150.100 .638200 o769871 3
14 75.0000 150.100 .556 #830792 3
is a5.0aa0 149.800 .560186 -ee28367 1I16 8 5. 3000 1500000 *999073 -.430587-001 2
17 85.joOO 1506100 *741C66 96711433 3
is 950002 149.Ao0 052944'P -.a'83'.3 1
19 95.0000 1500000 .997932 -.4'.ze4i-oi 2

io 9500000 lstle100 .698291 6715814 3
21 105.000 1490900 *949146 e147611- 2
2. 2 1150az 240080"- e756'62 -.654037 1
23 115.ooc 249*9007 *999P26 -.1861446-C01 2
2'. 115.030 iso3ce 671258S .TC1586 3
25 125.000 149.800 *7.3fP48 -.669238 1

26 125.000a 149.900 091F5569 .219694 2
27 125.000 150.100 *6726210 *739984 3
26 135vaZOO 1490WO 9617149! -*81 F 1
Z ; 135 * 3;0 149@90C *9750S12 .221983 2
3c 1350130 15?0100 070901. 9601?13 3

rr231 145*000 14901300 0692'.99 -.7309871
32 14SoQ33 1490900 9993101 e117262 2
33 15.033 149.700 e671624. -.7609921

(CONTINUED)

* 89



TABLE 7.IV (CONCLUDED)

' 4SAMPLE TIME FREQUENCY COS (M SIN ($) TARGET
NO. NO.

34 ISSO-000 14.0 90624.5 .418439 2
35 165.000 149.70C .610771 -o791807 1
36 16S.O 3c 149.90C .999421 .340218-COl 2
37 17S*T00 149 070c s71194.6 -. 712233 1
38 175.000 149,900 *.93767?2 .156538 2
39 175.coo 1509100 *819604 .572931 3
40 185.000 1'49*700 .689152 -. 724617 1
41 185.*)Zo sr 10C .o 778 628405 3
4.2 19s.0CC 149,4!CO 099992C -. 126606-0Z~1 2
43 19S.000 15010T 08089-C1 *587876 3
44 205.*030 149.700 e745327 -. 666699 1
45 205*300 149*eof* *973447 .228911 2
#16 205.030 150.100 9797952 .602721 3
4.7 21S*1:oo 14.9.O .of 761986 -. 647593 1

e S* O 1499S0C *963391 *268399 2
49 21!.toCf 150010!1 97901soP o62258w) 3
so5 225e.330 1499700 o77788 3 -. 6284091
51 23!*0o0 14997DO O792367 -,6100451
52 235.000 1490900 0930"c .3S3854 2
53 235o0iC 150.100 o75971'!6 .650240, 3
54 24 5 o Z?' 11.9 f0V *6177?2C -057561f' 1
55 245.000- 1510000 e696,81 o717760 3

S5500 1soo 49.600 9845389 -.534151 1
57-- 255.000 150.000u 6613719 *5812!9 3
$a 265.000 149060 961762r -.57Th 1
59 265.020 1520000 .775536 0b!1?0%b0 275o=0 149.600 086844V -.04957831
61 295.000 149o63!! *BE3743 -95C3933
62 295.000 149.0 * 7" 917041 *396047 2
63 295.000 150.Oce *79643e *634730 3
646 303o=0 149.0 obc -.64 0466260
65 315*300 WOW60 o87Z47T' .04s667
66 315.00C 149060C 9841F67 -0540163
67 315*00 1#49070" 09465$? .3161532 2
68 32 5 0 re ~ 0 IW =821890* .569646 3
69 335.000 149060t, *894065 -. 447937 1N
To 335.000 149*700 .966681 .255982 2
7 1 335o300 1ioec07" 077149F .636231 3
72 345.0 149.60" 09"6660 -.1.17516
73 3454300 1livoa0 991163 0411446 3
74 3S56300 14.9.600 .919773 .392450O 1

is 355.000 150.30C 9812331 .583198 3
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TABLE 7.V

SIMULATED MULTI-TARGET DIFAR DATA FOR

BUOY 3 OF SCENARIO 1

SAMPLE TRE
% NO. TIME FREQUENCY COS(W3 SIN(B) TARGE

I31 5*00900 1500600 -.957C011 -.2900511
2 5 030 15044or! -.881346 -*472'a72 2
3 15.0000 150600c -.99134L0 -.131323 1

15.0000 15:1a i0.0 .936695 -.350145 2
2 5*0OOC 1 rIn.60 c -*99640q o846669-C01

6 250.oOC 1504200 -.969837 -e243756 2
7 2.000 35.30 .7906sa .612219 3iS 35.00Do, 150.600 -.988933 -.148360 1

9 .35.0000 150.100 -988085 -.153907 2
10 45.0000a 2h.-:60'n -*936766 -9344SSS5 1
21 a4s.Go3o 150.100 -.996927 -o783P59-0ia 2
12 4 1. Zoo 150e300 -.707389 *706821 3
13 55.0000 150.000 -.9991133 -o336628-001 2I1. 4 55.0000 150.300 -*74451 .667267 3
is b65.0000 150.0CC -.998722 s5051150-001 2

16 65.OOC 160.300 -.720066 .693E8'r 3
17 75.000 149.0900r _*9q 8 1 1 0  .15c3750 2
Is .7 -ao 15f.9300 -*7S7S8? .6162010 3
19 as 0000G 1509600 -093402r, -.357209 1

22 1cs*"Zu 150*60C -*98S13a -.1717881
23 10.0"1a0 149.600 -0922S99 o385761 2
211 11503 149.600 M&866289 o499543 2
25 115.000 15').300 .815S62P .578576 3
26 12S.O0 150,600 -*8?0882 -.571098 1
27 12!.000 149*60i -.81074! .514134 2I28 135803c 150o.96 677Q -o255615 1
29 13 c 03 149.0wo -.7o.z1o *612719 2

1456= 1 O ~ .0 -*669?86 7213N31 15s 0 6o Z_ 15o2eor' -0896011k -.4112405
32 1SZO 149o50t' -e777763 6628533 2
33 1556.6"oO 150o300 -*7311140 e681906 3

(CONTINUED)
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TABLE 7.V (CONTINUED)

SA E TIM FREQUENCY COS(s) SIN(s) TARGET
NO. NO.

34 165.au0 150.600 -0969606 -e244673 1

35 165.co 149040Q -.727s5 .686e53 2
36 6500 10.0~ -7972&C .603609 3

37 175*3a0 130.600 -0912~2 -94&C2879 1

38 175.000O 2490400 -97387S1 .673978 2

39 175.0300 150s300 -06546t e763794 3

40 2839030 1530.60C -.961503 .eZ74796 1
185.3jo 1'.Q"co -*6 112n .799008 2

42 19,50030b.3! -.716734 *695316 3
-~ 3 '52J 19.00 -631385 .775470 2

43 195.000 149 *3MC ,.?IZ*ZQ9 7V17'* 3
4 2 90000 1*9.300 .b'03"*5 .797404 2

46 2G0OC 10.300) -.84768 .530207 3
47 Me=0~ 150.300 -959c61 -.281502 1
48 21.5000 19.3060V 63035 .797110 2

49 22.00 49 m0 -.546741 s835993 2
49 22!5.000 150.300 -9823967 .566638 3
5.' 25Cv 5.0 -.976378 -*Z16C7V

521 235.000j 1*90i - S33599 845737 2
53 235w.20 149300 -.7fl42C.U 70999 3
53 23!o.000 150.6300 -9PI61: .1J908841

54 24s.3 n5.0 -.76664' .63967? 3
S 245.03C 159.30. -*92151 87051C 2

5s6 255.00 0 150.30 -.733e82 .679277 3
58 265.00 150.600 -.948240 -.317555 1
5e 265 .033 150 .6CO -7761c 627136 3

60 27S.30C 1490300 433.857

61 2 b5.e3 3 149930M. o40696 091'4451 2
2aS.0Di0 150.300 -9713' .l f 623521 3

63 295o000 149.300 -.469664 882845 2
63 : V. -.750253 .661151 3

65 2 5*3%" 1 00 - 9 bk7C .5 S2007 - M1

66 30~!oWZ 1149e2lur -939019'0 9V20731 2
67 3~~0 10.Cr -o?7S1725 066790C 3

6 ? 3C! 03020 - 389 Sbg 92099 R 2
63 31S*33,, 149.300 -738016 .706196 3

70 32590 ISO0.601 -92243 -*1876111
7c 32.0010.C 8 6 ^30 505479 .3

72 3 3 5 o""3Z 150.60M -o96606! 02S4927 1

73 !3S3~.3 149.200 -,379682 0925117 2
74 3359120 150.300 -. 7??935 *628344 3
75 34*D.300 1*9.200 -*435891 .900000 2

ISC.OO0 .ft916?76 ef#2Z*733

(CONTINUED)
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TABLE 7.V (CONCLUDED)

SAMPLE TE FEUNYCSa I() TARGET
NO. TI ~~~SN~NO.

77 35S00aO 1500600 -0976356 -*216167 1
76 35o-0140*20r -*Z65759 .964139 2

579 35_e3 15!1.3CO -414 5C2
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1) The hierarchical nature of the data

organization imposed by the algorithm;

2) The varying lengths of time that clusters

* - remain isolated before becoming subsets of
other larger clusters; and

3) All clusters are eventually merged to form a
cluster containing the whole set of data.

Note, that for buoy 3, cluster 75 contains exclusively all the
points generated by target 1, cluster 76 does the same for
target 2, and cluster 55 contains all the- points associated
with target 3. Similarly for buoy 1, cluster 71 contains only

target 1 data, cluster 72 contains target 2 data, and cluster
* (7 contains all the data from target 3. Thus, the clustering

algorithm has clearly separated the target data, nov the MTTA
must seek to automatically identify those clusters which are

most likely to contain the desired individual target data.

Tables 7.VIII and 7.IX contain the isolation

indices and survival function values for all of the clusters
generated (see sections 3.2 and 3.3). Keeping only those

clusters whose survival function values are less than 1-

it can be seen that not only do all the candidate clusters pass

the isolation test, but so do several others. Thus, additional

* cluster extraction techniques are needed to pick out the

appropriate data. This is discussed in the next section.
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TABLE 7.VIII

zi SURVIVAL FUNCTION AND ISOLATION INDEX VALUES FOR

~ \~CLUSTERS FROM BUOY 1 OF SCENARIO 1

ISOLATION INDEX

- CLUSTER NeO.* 1 SUPVTVAL FUNCTION = .1e30669-301 73

*CLUSTER NO. = 2 suvrVVAL FUNCTION = 8501675 3

CLUSTER NtO. z 3 SURVIVAL FUNCTION = 01487049 35

CLUSTER NO. = 4 SUPV!VAL FUNCTION = .2180120 28

CLUSTER NO* = S SUPV!VAL FUNCTION = .3200111 14

CLUSTER NO. 6 SURVIVAL FUNCTION = 9302010-O02 85

. 1 CLUSTER NO. 7 SURVIVAL FUNCTION = eSE55628-301 45

U CLUSTER NO. = P SUOVTVRL FUNCTION = 99723#66  2

CLUSTER NO& = 9 SURVIVAL FUNCTION .I4933486 13

CLUSTER NO*. IC SURVIVAL FUNCTION .9218807 1

CLUSTER NO* = It SURVIVAL FUNCTION o .11?133-O32 62

! CLUSTER NO. 12 SURVIVAL FUNCTION *7217808 6

CLUSTER No* z 13 suprvVAL FUNCTO4 *8046436 4

CLUSTER No. 14 SUPVIVAL FUNCTION *4417269 15

*CLUSTER NO. I ! SURVIVAL FUNCTION * 28S5M2 23

*CLUSTER NO Itl SUPVI VAL FUNCTION .8969467 2

S CLUSTER No., 17 SUPVIVAL FUNCTION 0229?015 18

CLUSTER No* 18 SURVIVAL FUNCTION 9 1566442 17

CLUSTER NO* 19 SURVIVAL FUNCTTIN = 9666636 7

U CLUSTER No,. = 20 SUPVIVAL FUNCTION = e3173511 21

CLUSTER NC, = ~i SURVIVAL FUINCTION = 6083-0 92

R (CONTINUED)
103



IbwAgpl dm

TABLE 7.VIII (CONTINUED)

ISOLATIOIN INDEX

CLUSTER NO. = 22 SURVIVAL FUNCTION = .6644110 5

CLUSTER NO. = 23 SURVIVAL FUNCTION = .187?263-091 72

" d.. CLUSTER NO. : 218 SURVIVAL FUNCTION = .9803829-001 17

CLUSTER NOe = 2! SURVIVAL FUNCTION : .TO76964-002 45

CLUSTER NO. : 26 SURVIVAL FUNCTION = .4401400 10

CLUSTER NO. = 27 SURVIVAL FUNCTION = .2269791 27

CLUSTER NO. = 28 SURVIVAL FUNCTION = .3375559-031 41

CLUSTER NO. = e SU VTVAL FUCTION = .4659114 4

CLUSTER NO. : 3C SURVIVAL FUNCTION = .1351269-001 39

CLUSTER NO. = v1 SURVIVAL FUNCTION = .6633140-001 10

CLUSTER NO. = 32 SUVVIVAL FUNCTION = .e4384878 10

CLUSTER NO. = !3 SURVIVAL FUNCTION = .1611562-001 25

.CLUSTER NO* = 34 SURVIVAL FUNCTION = .6437461 8

CLUSTER NO. = 35 SURVIVAL FUNCTION : *2384186-00b 173

CLUSTER NO. = 36 SURVIVAL FUNCTION = .136R393 15

CLUSTER NO. : 37 SURVIVAL FUNCTION : .5632228-031 26

CLUSTER NO. : 3E SURVIVAL FUNCTION : .SS59623-,:3 116

CLUSTER NOe = 39 SURVIVAL FUNCTION = .7801826 3

CLUSTER NO. = 40 SURVIVAL FUNCTION : .8179311-021 45

CLUSTER NO, : 11 SURVIVAL FUNCTION : .2886278 9

CLUSTER NO. = 12 SU'VIVAL FUNCTION : .729810 9

CLUSTER NO. : 10 SURVIVAL FUNCTION : .265139-004 64

(CONTINUED)
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9 TABLE 7.VIII (CONTINUED)

ISOLATION INDEX
CLUSTER NO. = 44 SURVIVAL FUNCTION = 926524V7-005-- 66

CLUSTER NO. = 4.5 SUPVIVAL FUNCTION = 4619360-00b 149

CLUSTER NO* = 46 SURVIVAL FUNCTION = .&786491 2

CLUSTER NO. = 47 SURVIVAL FUNCTION = .2166149 11

CLUSTER NO* = 48 SURVIVAL FUNCTION = o268?209-006 142

CLUSTER NO& = 49 SURVIVAL FUNCTION = .38308S0-002 25

i CLUSTER NO. = SC SURVIVAL FUNCTION = .5722709 10

CLUSTER NO. = 51 SUPVIVAL FUNCTION, = 1132821 13

CLUSTER NO. = 52 SURVTVAL FUNCTION = 0B#52'?8-301 22

I CLUSTER NO. = 53 SURVIVAL FUNCTION = -2264977-n 153

CLUSTER NO. = 54 SURVTVP.L FUNCTION = .312924'a-Z06 127

CLUSTER NO. = S SURVIVAL FUNCTION - ,1102686-005 165

i CLUSTER NO. = S6 SUPVIVAL FUNCTION o7777778 1

CLUSTER NO = 57 SUPVIVAL FUNCTION .16714S3-003 31

CLUSTER NO. 58 SURVIVAL FUNCTION - 4172325-006 104

CLUSTER NO. = S9 SUOVIVAL FUNCTION = ,lu1610-05 68

CLUSTER tdO = bC SURVIVAL FUNCTION = *1192093-06 92

I CLUSTER NO* z 61 SURVIVAL FUNCTION = 1293644-032 57

CLUSTER NO. = 62 SUeVIVAL FUNCTION * ,1404b3-302 28

CLUSTER NO. = 6! SUPVIVAL FUNCTION .17 0 9 1 6 1  5

I CLUSTER NO. Z 64 SUOV!VAL FUNCTION &46 4 9 013-u03 43

(CONTINUED)
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TABLE 7.VIII (CONCLUDED)

: ISOLATION INDEX

* CLUSTER MO. = 65 SURVIVAL FUkCTION = .13 1105-006 42

CLUSTER NO. = 66 SURVIVAL FUNCT!ON = .1985213 5

CLUSTER NO. = 67 SURVIVAL FUNCTTON = .89O697-O7 229

CLUSTER NO. = 6B SURVIVAL FUNCTION = .239254 4

CLUSTER NO. = 69 SURVIVAL FUNCTION = .47)8424-0)2 14

CLUSTER NO. = 70 SURVIVAL FUNCTION = .34114T2-O03 17

CLUSTER NO. = 71 SURVIVAL FUNCTION = .O4301-006 600

CLUSTER NO. : 72 SUPVIVAL FUNCTION = .1",143091-06 190

CLUSTER NO. : 73 SURVIVAL FUNCTION = .103081-006 409

106
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*" TABLE 7. IX

SURVIVAL FUNCTION AND ISOLATION INDEX VALUES FOR
.A CLUSTERS FROM BUOY 3 OF SCENARIO 1

ISOLATION INDEX

. CLUSTER NO. = 1 SUPVTVAL FUNCTION = ,4869190 14

CLUSTrR NO. = 2 SUpVIVAL FUNCT!ON = ,6630117 8

CLUSTER NO* =  3 SURVIVAL FUNCTION = .27572S? 25

CLUSTER NO, : 4 SUPVIVAL FUNCTION = .40426S5-014 191

CLUSTER kO. = S SUPVIVAL FUNCTION = 04864466 14

-CLUSTER kO.o = 6 SURVIVAL FUNCTION = 92124872 30

CLUSTER NO* = 7 SURVIVAL FUNCTION = .7896106-001 49

CLUSTER NO. = P SUoVIVAL FUNCTION/ = 8570225 3

CLUSTER NO. = 9 SURVIVAL FUNCTION .567405S 11

CLUSTER NO. : iC SUpVIVAL FUNCTION = ,111836 28

CLUiSTER ~O* z 12 SUCVIVAL FUNCTTOK = 95!89733 8.

CLUSTER NO. Z 12 SURVIVAL FUNCTTON = ,6918277-LO2 95

CLUSTER NO, Z 13 SURVIVAL FUNCTION = 98568013 3

L.LUSTER NO* = 14 SURVIVAL FUNCTION = .160937S-005 262

CL%.7711 NO. : 15 SUPVIVAL FUNCTION = .1137623 28

U (CONTINUED)
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TABLE 7.IX (CONTINUED)

ISOLATION INDEX

CLUSTER NO. : 16 SUpwIVAL FUNCTION = ,5202636-011 - 38

CLUSTER NO. = 17 SURVIVAL FUNCTION = .1236796-005 281

CLUSTER NO. : IS SURVIVAL FUNCT7ON : .8134705 4

CLUSTER NO. : 19 SURVIVAL FUNCTION = .1868028 13

CLUSTER NO* = 2C SURVIVAL FUNCTION= ,289062 16

CLUSTER NO. = 21 SURVIVAL FUNCTION = .925659 1

CLUSTER NO, = Z2 SURVIVAL FUNCTION = .32oS51-001 33

CLUSTER NO. = 2! SURVTVAL FUNCTION = .6I.4247-302 96

CLUSTER NO. : z2 SURVIVAL FUNCTION = 06607276 8

CLUSTER NO. : 25 SURVIVAL FUNCTION = .3638257 13

CLUSTER NO. : 26 SUPVZVAL FUNCTION = . 5608P9 3

CLUSTER NO. : 27 SUPVIVAL FUNCTION = ,6270218-001 53

CLUSTER NO. : 26 SURVIVAL FUNCTION : .4153132-002 104

CLUSTER NO. : 29 SURVIVAL FUNCTION = .8346999 1

CLUSTER NO. = 30 SURVIVAL FUNCTION .o1916807 8

CLUSTER NO* = 31 SURVIVAL FUNCTION = ,6954673-393 92

CLUSTER NO. : 32 SUOVIVAL FUNCTTON = .50562s6 4

CLUSTER NO. : 33 SURVIVAL FUNCTION = e1608063 35

CLUSTER NO, 34 SURVIVAL FUNCT!OI. = .24572P1-003 79

CLUSTER NO. : 3! SUVIVAL FUNCTION = 627m4PS 3

CLUSTER NO* : 36 SURVIVAL FUNCTION = .322912U 4

CLUSTER k0o : 3? SURVIVAL FUNCTION = v21971662 29

(CONTINUED)
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TABLE 7.IX (CONTINUED)

VARIABLES CLUSTERED

"-. CLUSTER NO. = ZP SUrVIVAL FUNCTION.: ,298"232-06b 207

CLUSTER NO* = 39 SUPVIVAL FUNCTION = .1332875-001 14

7CLUSTER NO. = '0 SURVIVAL FUNCTION = .4812570 7

*- CLUSTER NO. = 41 SURVIVAL FUNCTION = ,5071954-001 19

CLuSTER NO. = 42 SURVIVAL FUNCTiON : 01750886-004 203

CLUSTER NO. = 43 SUpVIrVAL FUNCTION *1288421-001 13

CLUSTER NO. = 44 SUQVTVAL FUNCTION = 967554R5 3

CLUSTER NO. = 4s SUPVIVAL FUNCTION = oZ78058 10

CLUSTER NO. = 46 SURVIVAL FUNCTION = .2908707-004 193

CLUSTER NO. = 47 SURVIVAL FUNCTION = 7l63716-002 62

U CLUSTER NO. 4iP SUPRIVAL FUNCT!OtJ =  .9047246-001 6

CLUSTER NO. = 49 SURVIVAL FUNCTION : o3642718-001 18

CLUSTER NO. = Sr SURVIVAL FUNCTION : .1591002 10

- CLUSTER NO, = 51 SURVIVAL FUNCTION = o1291833 5

CLUSTER NO. = 52 SURVIVAL FUNCTION = o2S4!985 3

CLUSTrR No, = S? SUOVIVAL FUNCTION = .9631157-002 22

CLUSTER No : So SURVIVAL FUNCTION = 95627866-001 6

CLUSTER NOo : SS SUPVIVAL FUNCTION = ,13411nS-J06 692

CLUSTER O, = 56 SURVIVAL FUNCTION = ,4996607-02 20

CLUSTER NO* = 57 SURVIVAL FUNCTION = oS' 6 6 3 Q5-0 3 b 136

CLUSTER N0o = s SURVIVAL FUNCTION = 9163Q8-035 167

(CONTINUED)
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TABLE 7. X (CONCLUDED)

ISOLATION INDEX

CLUSTER 40.= - q SURVIVAL FUNCTION = .1273446 6

CLUSTER NO* = 6C SURVIVAL FUNCTION = .4329841 2

CLUSTER NO. = 61 SURVIVAL FUNCTION = .1490116-006 36

' CLUSTER NO, = 62 SURVIVAL FUNCTION = .13411OS-O06 110

CLUSTER NO. = 63 SUpVIVAL FUNCT!ON = o1T3689-Z31 55

CLUSTER NO. = 64 SUPVIVAL FUNCTION = ,3669095 3

CLUSTER NO* = 6S SURVIVAL FUNCTION = o2089143-004 23

CLUSTER NO, 66 SUPVIVAL FUNCTION = .1516947.- O1 37

CLUSTER NO. = 67 SURVIVAL FUNCTION = .1882628-002 12

CLUSTER NO. 68 SUPVIVAL FUNCTION = 91192093-0.06 75

CLUSTER NO* = bc SUPVIVAL FUNCTION = 299

CLUS7FR lto = 70 SURVIVAL FUNCTTON = .1559601 13

CLUSTER NO, = 71 SUOVIVAL FUNCTION = 93577756 12

CLUSTER NO., 7: SURVIVAL FUNCTION = 7.--"

CLUSTE uOo = 77 SURVIVAL FUJCTTON = .68673,9-:3 28

CL6STER NO. "- T sUpVIVAL FUNCTION = 9253!17-'-. 242

CLUSTEk NCO * 7= r  SUPVIVAL FtItNCTTON = .I4-tfP1-0 C6 250

CLUSTER NO. = 76 SURVIVAL FUNCTION = e8940697-00? 19

CLUSTER NO. : 77 SURVIVAL FUNCTION .89.6o7-OC7 178
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7.3.3 Cluster Extraction Results -- Buoy 3 and Buoy 1

A cut-off point of 10 -4 was used for the

* survival function to determine which clusters were passed to

the extraction module for further processing. For buoy 1,. the

following cluster numl~ers survived this test: 359 38, 43, 44,

45, 48, 53, 549 55v 58, 59, 609 65, 67, 71, 72, and 73. For

buoy 3, these cluster numbers were chosen: 4, 14, 17, 38, 42,

46, 559 579 58, 61, 62, 65, 68, 59, 74, 75, 76, and 77.

The polarization test (see section 3.4)

eliminated from further consideration clusters 38, 53, and 55
from buoy 1 and clusters 4, 14, 17, 42, 46, 58, and 74 from

> buoy 3. The regression test and the exclusion inclusion rules

resulted in cluster 67, 71, and 72 being extracted for buoy 1
and clusters 55, 69, and 75 being extracted for buoy 2. Thus
for buoy 1, the clustering and extraction processes were able
to completely separate the data into three clusters containing

only the measurements belonging to a given target. For buoy 3
the same processing techniques produced two of the required

data clusters but not the third, selecting cluster 69 rather

than 7 6. From Table 7.VII, it can be seen that cluster 76
contains clusters 69 and 74 as subsets. The polarization test

rejected cluster 74 as a potential candidate and the regression

test rejected the consistency hypothesis of 69 and 74. Thus,

only the last two-thirds of the data for target 2 which was
contained in cluster 69 was selected for further consideration.

7.3.4 Initial Guess Results

Table 7.X gives a listing of the clusters

jextracted for each buoy along with an identification of which



* TABLE 7.X

BUOY, CLUSTER, AND TARGET NUMBER

CORRESPONDENCE TABLE

Buoy Number Cluster Number Target Number

1 1 3

2 1j

3 2

2 13

2 1

3 2

31 3

2 2

112



Tac Appld ScrMs

p target is represented by each cluster. Allowing a track to be

composed of both two-cluster and three-cluster intersensor

6:. combinations, there are then

(3*3 + 3*3 + 3*3) + (3*3*3) - 54

potential target tracks. Only twelve of these potential

• * . inter-sensor combinations correspond to actual tracks. Table

7.XI lists the results from the initial guess algorithm. From

this table it can be seen that:

1) Of the twelve cluster combinations

* corresponding to actual tracks, only 1 was

rejected (marked by the asterisk),

2) Of the 42 cluster combinations corresponding

Sto pseudo tracks, 29 (69%) were rejected,

" '3) Five of the three-cluster combinations were

not even considered because at least two of

the associated two-cluster combinations had

been rejected, and

4) From Figure 5.1, several of the pseudo

estimates can be seen to correspond quite

I. ~closely to the illustrated line-of-sight

crossed-bearing intersections.

Once the potential track set has been pruned by the initial

guess procedure, the resultant state vector estimates and their

associated cluster combinations are then passed to the integer

programming module.
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*7.3.5 Integer Programming Results

Figure 7.2 gives the integer programming problem

to be solved for this scenario (see Section 6). Note that the
number of potential tracks represented in the objective
function (i.e., the number of columns) is fewer than the number

-~ passed by the initial guess module. This happens because those
tracks with positive costs, as computed by the HTA, need not be

~ -* considered since they would never be part of the solution to
this minimization problem. This can significantly reduce the

. .*.amount of time spent finding an optimum since the solution
algorithm spends a lot of time arranging and sorting the
columns.

The solution found by the algorithm is

x 1 2 1 - XIS - - . S4 -0.

Using Figure 7.2 and Table 7.X this solution is
seen to correctly correspond to:

x 3- three sensor data for target 3 (1, 1, 1),
x 14 - three sensor data for target 1 (2, 2, 3),

X6- three sensor data for target 2 (3, 3, 2).

7.3.6 Conclusion

The MTTA correctly sorted the raw sensor data,
correctly eliminated about 70% of the possible pseudo-track's,
and then identified the actual tracks. For this scenario,

Figure 7.1 illustrates the estimated tracks generated by
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* the 14TTA and the actual trajectories followed by the targets.

The "tic" marks in each true trajectory line represent two

minute intervals. All the estimated trajectories have come

fairly close to the actual tracks before the first tic mark.

The early severe fluctuations are a direct result of the batch

-4initializer's updating scheme. After an initial state vector
estimate is obtained for t-0, a Kalman filter is used to update

.. , .,the state to the current time. The filter is applied with a
large initial covariance matrix which allows it to search over

a wide area to update the state estimate. Typically, early in

the track, only one buoy supplies the first three or four

measurements, and this limited observation geometry coupled

* with the large covariance matrix results in state updates which

are substantially different from the actual ones. In all

cases, the initial state vector estimates at t-0, and the

updated estimates passed to the sequential filter after

* initialization were quite close to the true values. In any
event, the tracking accuracy is a result of HTA

characteristics, not MTTA performance, given that MTTA has

correctly solved the intersensor data matching problem.

The large fluctuations observed for target 2 in

Figure 7.1 are due to the fact that for buoy 3, the cluster

extraction algorithm did not put the first third of theT2
(target 2) data set with the last two-thirds. Thus, buoy 2 by

4. itself supplied the first few measurements for target 2. This
a., failure of the extraction algorithm can be traced to the

linearity assumption of the testing mechanism; target 2 went

through CPA relative to buoy 3 resulting in severe nonlinear

4. ~ frequency and bearing changes. The first part of the T2 data
4. **2

set contained the Doppler compression data up through CPA, the

last part consisted of the Doppler expansion data for T 2 that

was found after CPA. The cluster extraction algorithm rightly

viewed these two data streams as different processes, and

concluded that they did not go together. It is felt that this
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problem can be remedied by including quadratic terms in the

extraction's regression model to compensate for the nonlinear

frequency and bearing changes encountered during CPA.
..

7.4 Three Target Scenario with Bad Geometry Low

Noise, 0 dB threshold in 1 Hz Band

section. Table 7.11 lists the true initial and final

conditions for each of the targets in this scenario. The

trajectories simulated are the same as those modeled for the

scenario discussed in section 7.3 except that target 1 has a

forty-five degree course heading instead of the fifteen degree

heading that was used previously.

From Figure 7.3, it can be seen that the MTTA

provides reasonable tracks for targets 1 and 2, but no track at

all is generated for target 3. Tables 7.XII and 7.XIII list

the data and the clusters, respectively, selected for buoy 1,

while Tables 7.XIV and 7.XV list the same information for buoy
3. Buoy 2 sees all targets perfectly. From Tables 7.XII and

7.XIII, it can be seen that buoy 1 sees target 3 perfectly,

,V however, it gets targets 1 and 2 confused and splices the last
ten points from target 1 onto the target 2 observation set. A
similar phenomena occurs for buoy 3 when the first 10

observations from target 2 are interspersed among those of

target 1. Buoy 3 also sees target 3 perfectly. Looking at the

data, it is clear that the measurements become quite similar

during these times and the clustering algorithm simply cannot

distinguish between the right and wrong data sets. However,
when the power levels of the various signals are examined, a

clear difference is exposed. The choice of attribute variables

used in this study ignores signal power and consequently

12
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4. TABLE 7.XII

SIMULATED MULTI-TARGET DIFAR DATA FOR

BUOY 1 OF SCENARIO 2

SAMPLE TIME FREQUENCY COS($) TARGET
NO. NO.

S.,.. ::"" .... 7 1-.22 1

..... 1. - , - .4 - f., r- ' 3

': *'• " " I- " , 7 7 '

* - - I - - *-.- -- • ,

". -". *-" - 1

7 3
7. c -7- a .Zo - 3

-~,.. . ~ . 4 * ... 4 ..5
" 1

* 4". - -- I1

- . ..... 4

-" ' " - - ..C '" . - . •1

- I I - * . ..1-4" £ "

79. 7 3

121
1 -. ~2

2
- -* . -* 4.. .. 3

' 1
- - 1...) *-r~- ,.- -3

* .4 -*.*~2

7 1 -, -1~2

-- 9 *7

* - * 2 ~;~i~i2

-, *~T * -TIMTED

* I-. -,*,-:122
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TABLE 7.XII (CONCLUDED)

SAME TIME FREQUENCY COS) SIN(O) TAGET
'NO, -NO

;-" .- '1

4 .77cP7 3
4.14~ 7-* 1

1 
-2

7 7~L
" .8 .- ,- - o 1 ,"" ' ""'

-* q. -.* ,.v 4  I ,, 7

r - a' -'z

14 f 1" - I * ° ' +-: 1

... ....-- ; ~ ': A I ' 2

,.'.; . .- -• * * 7 • ?".'3

4' . 9 ..." . . ,- 7 " " 1
" -. ' T - '9 -. I I

- - . * r a

I,--- ,'9-... --" """ ' ' 3

T . -" " . . . - 1

9, . • 9 " -.- -, - '-.: " 1

'I....I*:Iii . ± " 3

Io--r-31

V 2

3

4 3

* - 3
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TABLE 7.XIV

SIMULATED MULTI-TARGET DIFAR DATA FOR

BUOY 3 OF SCENARIO 2

SAMPLE TARGETNO..-T IME, FREQUENCY COS (S) S IN (8)NO
. -:.--7NO. NO.

-I u b .C -.7', ,'. 3t7
7 'is. JjP3"., '! . V. -So,.€:- -,= ~ 2

"- , . -V .H- -. 2 ' -~ / .:
- " ~ . ... " • 2 j - " -. " - -- ' 3

-;' b J. . r --.. I, .,.".. -. ',- .-. a -, le - 1
--. - - - - - . . . - . 2

. .. . .. . . . 7 '1- 37 "

NAC - - .. - ..... I -.. ."" 1

-- • . 5 - Ip *. - - C - 2
.-- S - -S - - 5.- -2

" ' ti.. " ".,"
57+ • .- ,, -. 9:. . -

; a

. . I tr - 7 , Z7 <, C i 7- 3

,, - i . .. . - . -' -,-

, - - - -" -0 5 - +',= 2
55 ..- 5. .- I

7 2K

C -- - (

I - - 9 . ' "- - .o S- . - 1

* % -- - -. - ,- -- 7 i . : .i:3-. , --. 7" "7---: +7c 3

--.-" 1 .+

-"- . -.- - .C -- -. ; -' " " - - I' 1

' A-- " -, -" - , " a' , ''* 1
! (CONTINUED)
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q TABLE 7.XIV (CONCLUDED)

SAMPLE TIME FREQUENCY COS(a) SIN(a) TARGFT
NO. NO.

-. 1: - -, !, . -'. -*' '  2
v .. q4 e - +" *: -. i7:' 77".. .. -. 7 Z e7 • t + + 7 74 U++  3

'.7 ?.7' i"•.'., -.- 3 " ,7- 2
7 7 7 . i 2

.. , .0 2, "" , br, ''
., 3

3'. - . ... ~ - 7 .- . , ' 27
* . 2 . "1. ec<'L: -. '- 9 -,_ 7 o '

3
-,-.m,, - I'1 ?; - ' -

*- -- * **" * ' 1 "

I*o+ e= "" !'...C,+"- .' -P .• : ~ 2'+
. -- ,4 * - " .- *L ? 

' 3 ,

4 . . 2
-.. -j .v :,. 7.

1
7*j 5;;J . "7 " 3

*,, . . • . . -, L th- 2?

1 7, 1
3

U-. - .+/ : , -- , I -,3 - - 1
C - + . c,• , - - , IT,' 5 " : ,,

.57 .-,-?l + . '- " , . 2t+ +, ':. .. . ... . .a -.S " "- ,~ r- ... -. . , , . .- 3

1

'' "D.. S -.,-5, * , -7 
"

, - 3

:: , ' , 0 , "" . , I o . + "

4121

2
tI 3

*~~ 77' 3.-

2

3
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treats all measurements as if they were received at a common
power level.- However, the propagation losses for a near target

should be much smaller than those for a distant target, so
clearly the received signal powers should vary according to the

proximity of the target to the receiver. Other studies

currently under way at Tracor indicate the power levels can be

clustered by applying an intensity index to the power level and

then clustering with this index. It is felt that application

of a similar methodology to DIFAR data could improve the
ability of the algorithm to separate data from two targets that

are close in bearing and frequency, but differ in power levels.

7.5 Three Target Scenario with Good GeometryL
Moderate Noise, No Threshold

Geometrically, this scenario is the same as the
one discussed in section 7.3. The difference between the two
scenarios is in the simulated source power levels. For the

first scenario, there was an 80 dB source level, but for this
scenario, the source level was reduced to 77 dB. Figure 7.4
provides graphical comparison of the target true tracks versus
the MTTA's estimates of these tracks.

This particular scenario was simulated to test

the following two data processing capabilities of the MTTA:

1) The ability of the clustering and automatic

cluster extraction algorithms to separate

signals from random, background noise, and

2) The ability of the MTTA's UTA and IP to pick
the correct targets and to adequately track
them with noisy data gathered from moderate
strength target signals.
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As stated previously, the 3 dB drop in the simulated target

signal strength resulted in an approximate 30% decrease in the
range over which the target could be readily detected. For
this scenario, each of the targets could be well detected by

one (i.e, the closest) sonobuoy, each could be fairly well

detected by a second sonobuoy, but the targets could just be

4'-' marginally detected by the sonobuoy farthest from the signal

source. Particularly if a 0 dB threshold was used for
detection by the sonobuoys, each target would be nearly

unobservable for one sonobuoy in the pattern. To compensate

S for any possible loss of data, it was decided to drop the
Nthreshold criterion and to let the clustering algorithm sort

the true signals from the random noise.

Overall, the MTTA performed very well in
processing the noisy data. For the most part, random noise was

eliminated from the true signals by the clustering and
automatic extraction processes. Most of the signal clusters
contained a couple of noise points that were similar to the

true measurement set, but that did not really belong with the
true data. However, the DIFAR simulator computes a measurement

standard deviation that is a function of the estimated SNR of
the received signal. For the spurious noise samples, the

estimated SNR values were very small (i.e., less than 0 dB), so
a large variance was computed for the frequency and bearing

estimates. The HTA uses the measurement variance to weight the
measurement before generating a least squares update of the

target track. When large variances are provided with

measurement data, the tracker essentially weights the data so
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I that they can cause little or no change in the track update.
The net effect is that when only a few poor measurements are
provided to the HTA with variances that indicate the data
should carry minimal weight, the HTA can continue to track the
target without seriously degrading the track updates. The
results from this scenario, presented in Figure 7.4, illustrate

* this point well.

From the figure, it can be seen that after some

I *~:fluctuations during the track initialization phase, excellent
track estimates were obtained for targets 2 and 3. For target
1, somewhat poorer estimates of the trajectory were obtained.
Part of the problem with this estimate is that target 1 is
approaching buoy 3 nearly head-on from a very long distance.
Because the target is heading nearly directly at the buoy, very

little bearing change would be observed even for a well

received signal. Since the signal is only of moderate strength
and is fairly distant from the sonobuoy receiver, the

~ ~. propagation losses are substantial enough to cause the signal

PIP to be poorly received. Since the signal is so poorly detected,
-9 serious fluctuations result in the bearing measurements which

may in turn appear to the tracker to be a significant bearing

,~ rate. Hence, even though buoy 3 does observe target 1 and the
clustering and cluster extraction processes adequately sort the

data, the measurements from buoy 3 are still of such poor
quality that they adversely affect the tracking solutions from
the MTTA for target 1. Nonetheless, these tracking solutions
for all the targets would probably be adequate for real world
encounters.

In conclusion, the MTTA seems to have passed the
two tests that this scenario was designed to examine. First,

IN
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it did an adequate job of separating noise from true signals.

Second, the MTTA did an adequate job of tracking the targets

with the poorer quality data generated for this examination.

However, once again, bad observational geometry adversely

affected the MTTA's estimates, perhaps even more so than the

degraded quality of the data.

7.6 Two Target Scenario with Good Geometry, Low Noise,

and 0 dB in a 1 Hz Band Threshold

The last case considered by this study was a

relatively simple, two target scenario. The same tri-tac buoy
pattern was used to observe the targets, and favorable

geometries and low background noise levels were used to

simulate this scenario. Figure 7.5 contains a plot of the true

target trajectories versus the MTTA's estimates of the tracks

for this two-target scenario. While the tracking solutions

presented in the plots show good results, one interesting point

was encountered in generating these results that needs further

discussion. For target 2, the MTTA picked only a 2-cluster,

intersensor combination to track the target rather than the

correct 3-cluster combination that would have been preferred.

The remaining third cluster was left unused, and the MTTA did a

good Job of tracking the target without the data from this

cluster. One must question why the third cluster describing

target 2 was excluded, however, and so the results were more

closely examined to find the cause of this exclusion.

For this scenario, each sonobuoy should have

generated two different data clusters, one cluster to represent

1-3
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each of the two targets. The clustering and extraction .

algorithms did a perfect job of sorting the data into

individual target data sets for each of the sonobuoys. Next,

the data clusters were passed to the initial guess (IG)

algorithm to eliminate unlikely cluster combinations and to

keep the rest. Since the data were simulated for this

scenario, it was known that the correct cluster combination for

target 1 should have been (1, 2, 1), meaning the first cluster

from sensor 1, the second cluster from sensor 2, and the first

cluster from sensor 3 should be combined to track target 1.

For target 2, the correct three-cluster combination should have
been (2, 1, 2). The IG correctly passed all of the correct

2-cluster combinations and the single 3-cluster combination for

target 1. It also passed all of the correct 2-cluster
combinations for target 2, but the IG rejected the one

3-cluster combination that should have been passed to represent

target 2. Apparently, the 3-cluster statistical test found too

much statistical difference between this estimate and the

2-sensor combinations that make-up this cluster triplet.

Because of this rejection by the IG, the preferred 3-cluster

combination was rejected before the MTTA's IP could even

consider it. Without this cluster triplet, the IP could only
pick the single 2-sensor combination that minimized the cost

function and leave the remaining cluster unaccounted . This

• proved to be exactly what happened when the MTTA pickeu opt Qal

solutions of (1, 2, 1) for target 1 and (2, 1, 0) for tarL 2

and left the second cluster for sensor 3 unused.

In conclusion, the MTTA once again performed well "

in tracking the two targets in this scenario as can be seen in
Figure 7.5. Unfortunately, the MTTA's IG module prematurely

eliminated the cluster combination that would have been

preferred to track target 2. This one case is the sole

140
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.* example in all the multi-target scenarios studied where the IG

failed to pass the preferred 3-sensor solution. It should be

remembered, however, that any statistically based test is going

to make a wrong decision part of the time, even though

hypothesis tests are constructed to minimize type I errors.

The result is that, occasionally, good initial guess estimates

are going to be eliminated purely by chance.

4141



Tracer Applied Sciences

U8.0 SUMMARY AND RECOMMENDATIONS

8.1 Proj ect Summary

The scenarios discussed in Section 7.0 have shown

* that in its present form the MTTA possesses the ability, with
no required operator interventions, to properly sort passive

sonobuoy data into individual target data sets, correlate those

data sets across sensors, and select the correct target track

*scenario from the hundreds of potential tracks. Additionally,

in its current configuration, the algorithm has performed in

near real time and, with minimal processing alterations, could

operate substantially faster than real time.

Simulation results showed the importance that

scenario geometry played in correctly identifying appropriate

tracks. Under certain circumstances, the clustering algorithm
can become confused over target data and group together points

* .. *from different targets having substantially different power
levels. However, even in the worst case studied, two of the

three possible tracks were estimated fairly well. Results

based on good geometry but moderate to high background noise

levels indicate that the MTTA is not as sensitive to noise

levels as it is to bad geometry. This implies that the

clustering and extraction algorithms are confused less by

measurements corrupted by noise than by similar measurements

coming from different targets. Remedies to these problems will

be discussed in the next section.

8.2 Recommendations for Future Work

The recommendations for future work contained in

this report fall into two natural categories: enhancements to
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correct the deficiencies observed in the MTTA under the current

contract, and extensions required to make the KTTA able to

perform for long periods of time.

Under the current contract, the following

deficiencies were detected in the MTTA:

1) Confusion of targets under certain

geometries, even when the power levels of

the signals were different, and

2) Incorrect cluster extraction when targets
were undergoing CPA.

To remedy the first problem, it is felt that the estimated

power level can be converted to an intensity index, and this

index can then be used as an added attribute to sort the data

by clustering techniques. The reason for converting the power

level to index form is that typically the raw power-level
estimates vary too much to be useful, but indexing such as is
done for visual displays has proven to be useful in other
studies. The second problem can be corrected by adopting a

curvilinear model instead of a linear one for the extraction

regression equations. This should permit the model to more
closely approximate the nonlinear measurement time histories

cbserved during CPA.

Proposed extensions to the MTTA are essentially

based on the nature of the multi-target tracking problem

* itself. Basically, the problem can be divided into two parts.
The first part consists of recognizing new targets and
initializing their tracks, and the second part consists of

*updating tracks for established targets. Tracor's MTTA, as it
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presently stands, is essentially a solution to the first part
of the problem. It can take raw data, automatically cluster to

recognize targets, and then estimate the associated tracks for
each of the targets.

* Figure 8.1 represents Tracor' s conception of the
*completed multitarget algorithm. The current MTTA is located

in the "search for new targets..." box. The boxes surrounding

it contain data management functions. They maintain sensor

data pools, place elements in the current track table, and

remove points forming a trajectory from the sensor data pools.

There is no theoretical development associated with the

implementation of these functions, they amount to the lines of
.1 code necessary to set up the appropriate data structures and

module linkages.

N The thrust of the theoretical development will be

* concentrated on determining if a given data point is associated
with one or more current tracks and then performing the

appropriate update. There are several potential candidate

4. strategies for attacking this problem including:

1) Nearest neighbor and gating approaches of

Sea (Reference 18) and Singer and Sea (Refer-
ence 19).

2) A posteriori analysis of track density by
Sittler (Reference 20) and Stein and

~:*: ::~Blackman (Reference 21),

3) Probability data association scheme used by
Bar-Shalom and Tse (Reference 22), and

4) Cluster-based data association schemes.
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At this 2oint, the thinking is that track determination and

state update will be handled by a combination of (1) and (4) in

conjunction with the existing sequential filter used by the

HTA. Recent work (Reference 23) indicates that (1) is among
the most widely used of all measurement classification

schemes. Coupled with a gating mechanism at the clustering
stage, it seems like a very promising approach. Additionally,
to handle the problem of intersecting targets, it may very well

be appropriate to allow .given measurement to update more than

one track but with a substantially reduced measurement weight
for each track. This is similar in philosophy to use of the
B k overlapping cluster algorithm to sort data.

-, In summary, it is felt that the most difficult

~ part of the multi-target tracking problem, target recognition

and track initialization, has largely been solved. The*1 literature contains a broad range of strategies for updating
tracks once initialization has occurred, but up until now,

there has been little work done with the problem of

multi-target track initializations. It is believed that

rs Tracor's MTTA provides the basis for solving this total

problem, and it is recommended that its development be

continued.

414

.4zYV



Tracer Applied Sieces

9.0 REFERENCES

1) Reeder, Hugh, Final Report: A Maximum Likelihood
Procedure for Air ASW Programs , ontractN60921-79-C-0123, 15 May 1980.

2) Corser, Glenn and Wilson, Thomas, Final Report : Hybrid
Passive Tracking Algorithms, Contract N00014-78-C-0670,
31 October 1980.

3) Cooper, Don and Corser, Glenn and Wilson, Thomas, Final
Report: Hybrid Tracking Algorithm Improvements iiin?
Cluster Analysis Methods, Contract N00014-78-C-0670, 26
February 1982.

4) Alam, Kursheed and Mitra, Amitava, "Polarization Test
for the Multinomial Distribution," J. Am. Stat. Assoc.
Vol 76, 1981.

5) Draper, N.R. and Smith, H., Applied Regression Analysis,
John Wiley, New York, 1966.

6) Neter, John and Wasserman, William, Applied Linear
Statistical Models, Richard D. Irwin, Homewood,--=.,
1974.

* 7) Gallant, A.R., "The Power of the Likelihood Ratio Test
of Location in Nonlinear Regression Models," J. Am.
Stat. Assoc. Vol. 70, 1975.

8) Morefield, Charles L., "Application of 0-1 Integer
NProgramming to Multi-Target Tracking Problems," IEEE

Trans. on Automatic Control, Vol. AC-22, No. 3, 1977.

9) Jardine, Nicholas and Sibson, Robin, Mathematical
T Taxonomy, John Wiley and Sons Ltd., London, 1971.
X4

10) Marshall, Kim and Romesburg, Charles H., "CLUSTAR and
NCLUSTID-Programs for Hierarchical Cluster Analysis," The

American Statistician, Vol. 34, No. 3, August 1980.

ll) Ling, Robert F., "On the Theory and Construction of
k-Clusters," The Computer Journal, Vol. 15, No. 4,
November 1972.

12) Ling, Robert F., "A Probability Theory of Cluster
Analysis," J. Am. Stat. Assoc., Vol. 68, No. 341, March
1973.

1147
"- ''";' , , ',," 0 ,.'' ,/ ', , :,,.,... ,. .... ... ,..,.. . .. *. ....., .. . U .



4

13) Suich, Ronald and Derringer, George, "Is the Regression
Equation Adequate? -- One Criterion," Technometrics,
Vol. 19, 1977.

14) Ellerton, Roger, "Is the Regression Equation Adequate?
-- A Generalization," Technometrics, Vol. 20, 1978.

15) Bard, Yonathan, Nonlinear Parameter Estimation, Academic

Press, New York, 1974.

16) Young, Hugh D., Statistical Treatment of Experimental
Data, McGraw-Hill, New York, 1962.

17) Garfinkel, Robert S. and Nemhauser, George L., Integer

18) Programming, John Wiley, New York, 1972.

18) Sea, R.G., "Optimal Correlation of Sensor Data with
Tracks in Surveillance Systems," Proc. 6th Hawaii Int'l
Conf. on Sys. Sci. IEEE, 1973.

19) Singer, R.A., and Sea, R.G., "A New Filter for Optimal
Tracking in Dense Multi-Target Environments," Proc. 9th
Ann. Conf. on Cir. and Sys. Th., 1971.

20) Sittler, R.W., "An Optimal Data Association Problem in
Surveillance Theory," IEEE Trans. Mil. Elec., Vol MIL-8,
1964.

21) Stein, J.J. and Blackman, S.S. "Generalized Correlation
of Multi-Target Track Data," IEEE Trans. Aero. and Elec.
S7s., Vol. AES-11, No. 6, 197T.

22) Bar-Shalom, Y. and Tse, E., "Tracking in a Cluttered
Environment with Probabilistic Data Association,"
Automatica, Vol. I, 1975.

23) Goodman, Irwin R. and Wiener, Howard L. and Willman,
Warren W., Naval Ocean-Surveillance Correlation
Handbook, 1979. Z(a ft), Naval Research Lab, Systems

search Branch, Washington.

148

V ~ ~~ *~**% ~ .%.\.4 .4..-.- * ' - _' -04. *44-



48

DTII

-9-9AMAJ-dLlA


