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PLASMA CURRENT AND CONDUCrVITY EFFECTS ON HOSE INSTABILITY

1. Introduction

Several recent papers have developed linear theories of the hose

instability of a pinched charged particle beam, propagating in a resistive

plasma channel within a neutral gas.1 - 5 In the published analytic work to

date, elaborate models have been developed to treat the beam dynamics, but

the plasma has been represented simply as a fixed ohmic conductivity

channel a(r), independent of time and axial position z. For the case of a

beam propagating into initially neutral or weakly ionized gas the channel

conductivity is formed by beam ionization of the gas, and therefore should

be treated self-consistently with the beam dynamics. The significance of

this linkage has been understood for some time, and two specific effects

have been pointed out by Briggs, Lee, and co-workers6 for the case of beam

propagation into neutral gas. First, the equilibrium conductivity

a (r,c) increases monotonically with distance 4 3 vzt - z behind the beam

head, in the forwar part of the beam where recombination and/or plasma

cooling have not yet established a balance with beam-driven ionization and

heating. It is thus incorrect there to treat ; as an ignorable coordinate

and Fourier analyze the mode dependence on C. Since the growth rate of any

resistive instability is largest where a is small, the effects due to

increasing aa are important. The second effect is seen when there is an

appreciable equilibrium plasma return current I p. If Ip flows in a fixed

conductivity channel, an absolute instability results from the magnetic

repulsion between Ip and the current Ib of a transversely displaced beam.

owever if the conductivity channel is formed by the beam itself, the head of

the beau cannot be displaced from the channel, which converts the instability

into a convective one (provided the effect of phase-mix damping among particles

of different betatron frequency is modeled correctlyl,3 ). Furthermore, the

Iknu la em Oelb, 11, 19 8.
1



channel, and thus Ip as well, tend to follow the hose distortion of the beam,

thereby further reducing the destabilizing effect of spatial separation

between Ip and Ib* The consequences of these effects have been worked out,

in the low frequency limit and elsewhere in terms of certain parametric

representations, by the Livermore groui.6 However hose instability theory

has never been treated in the straightforward form of a dispersion relation

analysis, valid for all frequencies, that includes self-consistent

treatment of the channel conductivity and the plasma current.

In the present paper we include beam-impact ionization and plasma

recombination, treated self-consistently, in our conductivity model. These

are usually the dominant processes for the case of a weakly ionized gas,

except for a short region near the "pinch point" at the front of the beam,

where an inductive E spike can cause strong avalanche breakdown.7'8 We

further simplify the conductivity model by assuming the electron mobility

is constant, i.e., independent of variations in plasma electron

temperature. The conductivity then depends only on the electron density.

Although this is a reasonably accurate approximation in many cases, we have

recently discovered that a number of interesting beam propagation effects

can be associated with the temperature dependence. These will be discussed

in a future publication.

We also specialize to the limits of an idealized "beam body",

discussed in See. II, where Ib(C) has reached a plateau, avalanche is

assumed to be unimportant, and the plasma electron density ne is not yet

large enough for recombination to be important, and a "beam tail",

discussed in See. 1II, where ionization and recombination have reached a

balance for the beam equilibrium (but not necessarily for the

perturbation). We then show that the inclusion of self-consistent

2
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conductivity physics modifies the problem in a way that is mathematically

simple but dramatically changes the physical results. Given any beam

dynamics model, and the mathematical machinery to solve for a dispersion

relation in the fixed channel case, there is no further difficulty in

solving for a complete dispersion relation with a self-consistent treatment

of the channel. In fact, a dispersion relation is found in closed form

when the relatively simple "spread-mass" model1'4 of beam dynamics is used.

For relativistic electron beams, it is convenient to use z and ; as

independent variables, rather than z and t. In the beam body, normal modes

are found with ; and z dependence

exp [-1WLn(4/4 0 )-iaz/Vz ]

(€C/o) {cos[ rn(C/ 0)-i sin[;urn(;l o )]exp(-inz/v Z)

(la)

rather than the usual form

exp(-iwC/v z - isz/vZ) (Ib)

for a fixed channel. In Eq. (la), Co is an arbitrary index point. In the

beam tail, the form (lb) holds, since ; is an ignorable coordinate in the

equilibrium.

Plasma current effects fall into three different regimes. (1) If there is

no significant equilibrium plasma current (IpI << I b), conductivity

perturbations play no role. In the tail, c(n) is identical to the dispersion

relation for a fixed channel. In the body w(n) is proportional to the

frequency w(f) that would be found in a fixed channel. In fact, for any

3
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conductivity profile of the form aO (r,) - a 0. -- (11 the exact ;

dependence of the normal modes is exp -ijd;'[2;%o(r,;), where Eq. (1b) with

the dispersion relation [Q;ao(r)] is the aormal mode in a fixed channel with

conductivity profile i (r). (2) If there is a high degree of current
0

neutralization (0 < Ib + Ip << Ib) , Ip is strongly destabilizing but

conductivity perturbations, which allow the beam to follow the channel,

partially cancel the destabilizing effect. (3) If I flows parallel to Tb, as

it could for example if an external discharge is applied to the channel, it

is possible in a fixed channel to stabilize the hose mode completely, but

conductivity perturbations restore the instability by causing the discharge

current to follow the unstable beam, rather than guiding i: along an

established path. In all cases, the perturbed conductivity tends to push

the hose growth rate toward the value it would have in the absence of

plasma current. In particular, we find that increasing the beam current,

thereby increasing both the fractional current neutralization

(destabilizing) and the conductivity a (r,C) (stabilizing), usually leads

overall to a reduced instability growth rate Wi in the beam body.

The tail of a beam propagating with a large return current in a weakly

ionized plasma channel is also subject to another, even more important

stabilizing effect: the balance between impact ionization and

recombination leads to a channel broader than the beam, so that most of the

return current flows outside the beam and has little destabilizing

effect. As a result of this and the effects discussed in the previous

paragraph, we find that increasing the beam current strongly reduces the

growth rate in the tail.

In the present paper, we do not include other sources and sinks in the

conductivity model, such as avalanche breakdown, beam heating of the

4
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plasma, or plasma cooling due to radiation, conduction, etc. These effects

could be included formally, but would prevent solution for the ; dependence

in the closed forms (1a) or (Ib). They are therefore best treated within a

numerical scheme that solves for the r dependence, e.g. the codes VIPER 9

(multi-component beam dynamics3), SIMM1 I0 (linearized beam particle

simulation), VALIUM 5 (linearized Vlasov solver for beam dynamics), or

EMPULSE11 (spread mass model beam dynamics). In a fully ionized channel,

the effects of plasma heating and cooling on hose instability can be

expected to be similar to those of ionization and recombination in a weakly

ionized channel.

In a previous paper we have discussed the effects of self-consistent

conductivity evolution on the sausage mode. 12 The effect there was

generally similar but much stronger; channel perturbations, by neutralizing

the destabilizing effect of plasma return current, completely stabilized

the mode over a wide parameter range.

5
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2. Instability of the Beam Body

A. Assumptions and Formalism

We assume that the beam is highly relativistic (y >> .), paraxial

(v << vz for all beam particles), and therefore that v - c for all beam

particles. The equilibrium beam profile Jbo(r,;) is treated as time-

independent. In the beam's body and tail, we assume 1 has reached a

constant value. We may also assume that the beam radius a(-), defined by

Ib - aJbor - 0), (2)

and the plasma current I are independent of C. These latter assumptionsp

are reasonable because resistive decay of the plasma current with C occurs

slowly, on the monopole decay scale
7'8

CT0 W~ 
2va0(r - 0, )a2  In( b, (3)

where b is a large radius characterizing the region of space charge

neutralization (b >> a), while instability growth is characterized by the

much shorter dipole decay scale,1-3'13

T wo(O,)a 2

c 1  s2c (4)

Furthermore, the beam body is defined to lie behind the pinch point7'8 , so

the conductivity in the body and tail exceeds the value a - c/4na required

for space chorge neutrality, and with the use of the paraxial approximation

Max -110 4uations reduce to Ampere's law for the axial component A of

vector potential
t,

6
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7 -m 3A (3)- c b c 3r

We define the beam body as the region behind the pinch point, but

P- where recombination (which depends quadratically on n ) is not yet

important. Furthermore, we neglect avalanche ionization in the beam body;

this is usually reasonable although avalanche may well be important in the

vicinity of the E spike at the pinch point, ahead of the body. In a
z

weakly ionized gas, the electron mobility is determined by electron-neutral

collisions which depend weakly on temperature; since the dependence

of a on n is much more important, we neglect the temperature dependence.

In addition, we assume that beam-impact ionization is local, i.e. we

neglect any spatial spreading due to high-energy secondary electrons. We

may then write a simple equation for the conductivity,

Jz) = Jb(r,;,z), (6)

where Jb is the beam current density and K is here assumed to be a constant

for any gas, proportional to the beam-impact ionization frequency and

inversely proportional to the plasma electron-neutral collision

frequency. In equilibrium, the solution of Eq. (6) is

ao(r, ) - KJbo(r)(-Co) + ao(r,; ), (7)

where Co is the front of the beam body. The first term of Eq. (7) leads to

a conductivity profile of the same form as the beam profile. We assume

that the second term either is negligible or has the same profile, and

absorb it by choosing Co so that

7
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A pre-formed channel narrower or wider than the beam cannot be treated

within the simple analytic calculation performed in this seccion.

Qualitatively, a narrower channel decreases the decay lengths (3) and (4)

and accentuates the effect of I on stability 3 , which is stabilizingp

if Ip/I b > 0 and destabilizing if i p/Ib < 0. 7ie opposite is true for a

wider channel.

Since z is an ignorable coordinate of the equilibrium, we may look

for normal modes with z-dependence exp(-i~z/c). 'e also follow the usual

procedure of expanding the azimuthal dependence of A and J, in a Fourier0

series eim , keeping only the monopole (m 0 0) and dipole (m - 1) terms,

and linearizing the dipole terms which are treated as small

perturbations. All perturbed quantities '(r i, z, ;) thus take the form

(r,z, - 1 (r,) exp(-iaz/c + i9).

Equation (5) for the dipole AI becomes

(L Lr 4iJbo(r) 3Arr r r fjb 4 a 41 = + 40 (9
arr r c ' 1 c bi c a - (9)

The second term on the right hand side of Eq. (9) represents the

current driven in the perturbed channel by the unperturbed electric

field Ezo - - Ao/ . Ezo can be expressed in terms of I and ao,

E p 1a

Jpo(r)

zo a (r,C)' (10a)

j 0.%- 
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i.e.

Jpo (r) Ip

Izok;)  <Jbo (r); b 71Ob)

where we have neglected the weak logarithmic dependence7'3 of Ezo on r, so

that J po(r) has the same radial profile as Jbo(r) and a0 (r). Using Eq.

(10b), Eq. (9) becomes

:04r-c , b (r) I a It

( r r 7r 3 C J-r) - - c < b

Next we use the linearized version of Eq. (6), in the form

= + 4 2 - . (12)

to eliminate a 1 from Eq. (11):

4KJb°(r) I I b

i rrrC I C t1b bl

(13)

Since Eq. (13) has constant coefficients with respect to the

operator (a/9), solutions exist of the form

A1 (r,C) - A(r) exp[-iW-n(/Co)

- A(r) C {cos[ rn(;/ 0)] i sin(Wr n(4lIo)]}. (14)

Equation (13) thus reduces to

9
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d 1 J+bo pr) + p b (()

i', dr r dr r+ Ar)= c i+_, ) ()

When dimensionless variables

r r/a, (6)

and

-bo (r) I Jbo(r)/Jbo(O), (17)

are used, Eq. (15) can be rewritten in the form

4,

+ 81-Jbo(r)(r)r) -1 + ^_ J (r)a2 , (18)

drr dr b -

which depends only on the parameters

f - Ip/I b  (19)

and

dTI  cIb
X - - - s-r-. (20)

By way of comparison, Ampere's law takes the form

+ 81 d J (r) c ;)a (21)
dr r d;

10
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.. in a fixed channel, where perturbed quantities are of the form

A1 (r, ) - A(r)e - / c. (22)

Equations (20) or (21) must be supplemented by an expression for Jb(r)a' as

a function of 1 and f and a functional of A(r); as we shall see, this

calculation is the same for both cases. Thus the hose eigenvalue problem

in a self-consistent conductivity channel differs from the problem in a

fixed channel in only two ways: first, eigenfunctions are of the form (14)

rather than (22), due to the linear increase of the unperturbed

conductivity a with in the beam body, and second, there is an extra term

on the right hand side of Eq. (18), due to the inclusion of perturbed

conductivity. Since several successful methods have been found to treat

the problem in a fixed channel, extension of these calculations to Eq. (18)

is imediately possible.

0N
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I- 4.4

*.I. 3. Calculation of the Perturbed 3eam Current

Since all particles have the same axial velocity v c, the

coordinate - is a constant of the motion and plays no role in the

determination of Jb(r), i.e. the form of the - dependence, Eq. (14) or

(22), and the value of w or w do not occur in the particle dynamics.

b() does depend on the time history of the driving potential

A(r)ei 'z/c (z plays the role of time in the beam frame), and also on

equilibrium quantities such as f and the on-axis betatron frequency
-80 2rlfeJ()(m~ 1/2
o =- 2 (l+f)eJbo( 0)/(ymc)] /  where e and m are the electron charge and

mass, and y is the relativistic factor. Jb(r) may be calculated by solving

the linearized Vlasov equation5, by particle simulation I0 , or by using

either of two simplified beam dynamics models, the multi-component model
3

or the spread mass model1 . The latter yields a closed-form dispersion

relation which is useful for demonstrating general properties, and which

the reader can easily solve for any case of interest to him. The other

dynamics models are more accurate, but dispersion relations are obtained

only through elaborate numerical solutions of the eigenvalue problem. We

have developed codes that generate these solutions, and will cite some

examples.

12
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1. Spread Mass Model

The spread mass model of E. P. Lee'' 4 is the simplest beam

dynamics model that includes the essential feature of phase-mix damping due

to betatron frequency spread. According to the spread mass model for the

case of a beam with Bennett profile,

0 (r,C) 1
bo a (0,r) 22

o ( r /a)

J (r,C) and A(r,C) are represented as rigid sideways displacements of the
b

equilibrium profiles

J b(r,;) - - Y(c)(dJbo/dr) (24a)

A(r,4) = - D(;)(dA /dr), (24b)

and Y(C) is given as a function of D(C) by
I1 14

Y(r) - D( )(1 + G(I2 /So2)] (25)

where

G(x) + 6x{.- x + (xx2)[ i+Ln--)1i for Jxi < 1. (26)

The function G(x) is plotted in Fig. I for real x. Since the r dependence

of all quantities is specified in closed form, Eqs. (15), (23)-(26)

imediately reduce to a dispersion relation

13
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4 which yields the solution for ,(n)

2 2/ 2 2 2
wX.(X+ f - G(2 /Q2 ) f-G /Q ) 2 2 2 1/2

1 + f ) (x+ 1 + f +4G(2/2)
i (28)

2
We note that for each value of Q there are two solutions for , but one of

these branches is found to be damped for all real values of ,, and thus of

no interest. Of course Eq. (27) may also be solved numerically for 2(j).

We may compare Eq. (28) with the well-known dispersion relation for a fixed

channel
1 ,14,

2 2: ir[f-G(Q2/n~2 Y

("ITI +- l+f " (29)

14



2. Multi Component Model

The multi-component model of beam dynamics3 calculates the r

dependence of Jbl rather than assuming a form such as Eq. (24), and Lt

includes radially-localized resonances and other important properties of

the exact solution. According to Eqs. (57), (58) and (11) of Ref. 3, the

model yields an expression

2r dR d 1 dJ bo (R )  2 (R) "2
I-0 r J - IRt dr'r'- A(r'),

b(r) 1 + f(O) r R2 dR R dR 2 2 0
'10 3 0 (30)

where

4Q2 2
o2 (R) - Rj dr r(l - r7) Jbo(r) r l + f(O) (31a)

and, for generality, we have defined

f(r) 3 Jpo(r)/Jbo(r). (3lb)

Since J bo(r) and J po(r) have the same radial profile in the

beam body,f(r) - f and we may rewrite (31a) as

n 2 (R) =' 4 so dr r (i - r) b(r). (31c)

Using Eqs. (18), (20) and (30), the eigenvalue problem may be expressed, in

analogy with Eq. (61) of Ref. 3, as a fourth-order ordinary differential

equation

1 (d_ )4 ;3 +  dLI j_ Jbo d -2 r

d;r d;r dr

15
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f -. d 4 bo ~(2

with d; dr r dr r dr

r(r) .' 0 dr' r'2 A(r-) (33)

and boundary conditions

r~ao ) - r - r-) r"(-) - 0. (34)

This differs from the fixed-channel case only through the extra factor

r.f(I. - 1w)- on the right hand side of (32). Thus a code which we

developed to solve this complicated eigenvalue problem in the fixed-

channel case can also be used to find wn) in the present case.

16Lz -1 A



3. Vlasov Calculation of Ib(r)

If the beam equilibrium is taken to be tLme-independent, and

weak scattering of the beam off the gas is neglected, an exact expression

for Jb(r) in terms of A(r) can be obtained by integration of the linearized

Vlasov equation along unperturbed beam electron orbits. This procedure

yields

a2 3 Pza be ___

J b(r) = -e r d {A(r) + rz dz' iA(r') expFi3'-io -Q(z-z'),,

(35)

where is the particle relativistic momentum, Pz and p, are the axial and

perpendicular components of p, fo(PzP 1 ) is the beam distribution

function, and (re,z) are the particle cylindrical coordinates.

O'(z) and r'(z') are the unperturbed particle trajectories backward in

time, i.e. eo and ro are the coordinates a particle had when it was

at z', if that particle has coordinates e and r when it is at z.

Thus 8e(z*) and rO(zO) are also functions of e and of the unperturbed

potential A .o

Equations (35) and either (18) or (21) together constitute a very

complicated integral-differential eigenvalue problem. A code, known as

VALIUM, has been developed5 with the capability to solve the fixed-channel

case (35) and (21) as well as the self-consistent channel case, Eq. (35)

and (18).

17
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C. Dispersion Relations

In this section we discuss the growth spectra .t(2) that result

from the dispersion relation derived in closed form in Sec. IIA, or from

solution of the eigenvalue problems framed formally in Secs. IB and IIC.

The discussion will be organized in terms of the value of f - either no

-I plasma current (f-O), extensive current neutralization (0 < 1 + f << 1), or

plasma current flowing parallel to the beam current (f > 0), and in terms

of the effect of beam-generated perturbations to the conductivity, which is

small if X < 1 (low beam current) and large if X >> I (high beam

current). The value of X depends only on Ib9 but the value of f can depend

on the properties of the beam head (rise time of Ib and avalanche

ionization near the pinch point), and the presence of a pre-formed

conductivity channel or an externally imposed Ez field, as well as on Ib .

We conclude by surveying the case of beam injection into field-free neutral

gas, under conditions where both X and f depend primarily on the single

parameter lb"

We shall use the spread mass model dispersion relation, Eq. (28),

to derive various analytic results in closed form. We also show plots of

the dispersion relation for a variety of cases, Figs. 2-5, 7 as calculated

from the multi-component model, Eqs. (32)-(34), which is more accurate and

which is not immediately accessible to the reader. The numerical values of

the key features of the dispersion relations - maximum growth rates and

cut-offs - are given in Table I for each of these models and for the Vlasov

calculation, which is theoretically exact, but subject to numerical

uncertainties of perhaps a few percent. We find that both models agree

well with the exact result as regards the peak growth rate Max " The

multicomponent model also gives an accurate estimate of the width of the

18
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Table 1

Comparison of the key features of the hose dispersion relation in the beam

body,as given by the spread mass (SM) model, the multicomponent (MC) model,

and a Vlasov (V) calculation. Here Max wi is the peak power-law growth

exponent for growth in - and X Max W i is a natural scaled quantity from the

theory, Qm is the value of Q for which wi() = Max wit c is the largest

value of .1 for which wi(Q) > 0, and .Q, is the on-axis betatron

frequency. These values, for the multicomponent model, can also be read

directly from the dispersion relation curves of Figs. 2-5.

fMax im 30 c /Q 30

SM MC V SM MC V SM 1C V

0 1.0 -0.17 -0.17 0.52 0.53
0.5 0.12 0.11 0.52 0.55 0.62 0.66
0 0.69 0.66 0.52 0.61 0.71 0.78

-0.25 1.25 1.23 0.52 0.62 0.73 0.82
-0.5 2.4 2.4 0.52 0.63 0.76 0.87
-0.7 4.6 4.9 0.52 0.67 0.78 0.90
-0.9 15.9 18.7 0.52 0.79 0.79 0.96

0.044 1.0 0.04 0.04 0.38 0.42 0.46 0.46
0.5 0.16 0.14 0.51 0.53 0.63 0.6?
0 0.69 0.66 0.74 0.52 0.61 0.6 0.71 0.78 0.8

-0.25 1.22 1.21 1.34 0.52 0.62 0.65 0.73 0.82 0.9
-0.5 2.3 2.4 2.5 0.52 0.63 0.66 0.75 0.87 0.9
-0.7 4.6 4.8 5.0 0.52 0.67 0.68 0.78 0.90 0.9
-0.9 15.8 18.7 17.2 0.52 0.79 0.7 0.79 0.96 0.9

0.44 1.0 0.32 0.29 0.51 0.51 0.68 0.72
0.5 0.40 0.36 0.42 0.51 0.53 0.51 0.69 0.73
0 0.69 0.66 0.74 0.52 0.61 0.6 0.71 0.78 0.8

-0.25 1.12 1.11 1.21 0.52 0.62 0.61 0.73 0.82
-0.5 2.3 2.2 2.5 0.52 0.63 0.62 0.75 0.86 0.9
-0.7 4.3 4.5 4.7 0.52 0.67 0.63 0.77 0.89
-0.9 15.5 18.3 18.9 0.52 0.80 0.71 0.78 0.95

4.4 1.0 0.64 0.60 0.54 0.62 0.75 0.82
0.5 0.65 0.62 0.53 0.62 0.74 0.80
0 0.69 0.66 0.74 0.52 0.61 0.6 0.71 0.78 0.8

-0.25 0.74 0.70 0.82 0.52 0.55 0.56 0.68 0.77
-0.5 0.88 0.87 1.11 0.52 0.55 0.58 0.65 0.78 0.9
-0.7 1.7 2.1 2.3 0.52 0.67 0.65 0.67 0.85
-0.9 11.9 14.2 14.8 0.52 0.78 0.72 0.76 0.95 0.9
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unstable spectrum and the value :m for peak growth jx , but

the spread mass model underestimates both the spectral width and the value

of "

I -0
p

In the case of no equilibrium plasma current, I = f - 0, Eq. (13)

for Xw2() in the beam body becomes formally identical to Eq. (21), which

determines T w(j) in a fixed conductivity channel. Thus the dispersion

relation for power-law growth in the beam body, Xw('Q), is identical to the
4.

dispersion relation for exponential growth in a fixed channel with f - 0.

Perturbed conductivity plays no role when f - 0, since the absence of

equilibrium plasma current indicates that Ezo - 0 and thus a dipole

conductivity a, yields no dipole plasma current Ezoll . When the spread

mass model is used, the dispersion relation is given by Eq. (29),

XwCa) - iG(,l /Q 2 ' (36)

and is shown in Fig. 1. For the spread mass model, the peak growth rate is

Max - 0.69 X- at Q/Q8o" 0.52, and the unstable spectrum runs from Q = 0

to 2 - 0.71 a 0. The equivalent result from the multicomponent model is

shown as the f - 0 curve in Fig. 2; the peak growth rate is

Max Wi - 0.65 X at I/sO - 0.61, and the unstable spectrum runs

from - 0 to a - 0.78 s0 We note that Wi(0) - 0, an exact result.

Low Beam Current ( X - 0)

Next we consider the limit X + 0, which corresponds to low beam

current, as seen in Eq. (20). For example, in air we use the estimate 15
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X = 0.044 1b (37)

where Ib is in kiloamperes. Equation (37) corresponds to < 8.8 x 10-

cm/statcoul in Eq. (6).

In the limit X 0, for any given value of f and for any beam dynamics

model the dispersion relation for Xi(l) is identical to the dispersion

relation for rlj(&) in a fixed channel. This is because the conductivity

changes slowly in this limit, and thus the effect of conductivity

perturbations is negligible. For example, the spread mass dispersion

relation, Eq. (28), reduces to
I'1 4

f G( 2 ' !
1 30

XW - i i + f " (38)

If f < 0, there is an unstable mode at a - 0 with growth rate

-() -1 -1
w1(O) - L [-f(l + f)-J, an exact result, but the most unstable mode is

- - -1 -1
still at Q/Qso= 0.52, where win Max wi = x  (-f + 0.69)(1 + f)-. The

equivalent result from the multi-component model is shown in Fig. 2 for

several values of f. The peak growth rate for any given value of f is

close to that given by the spread mass model, as seen in Table 1, but the

value of s for peak growth increases with the return current fraction, and

the unstable spectrum given by the multi-component model is considerably

broader. The multi-component dispersion relation is close to the Vlasov

result, as seen in Table 1.

If the beam is propagating into initially unionized gas

with X << 1, Eq. (14), together with Eq. (38) or Fig. 2, indicates very

rapid power-law growth of the instability. If on the other hand, the gas

is pre-ionized or rapidly ionized at the beam head, the limit X << 1 should
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correspond to propagation in a fixed channel. This limit may be obtained

by writing

= 0 (39a)

and expanding Zn ( /;o) in Eq. (14) to obtain exponential mode growth at a
0

rate independent of X,

Al(r,r) = A(r)exp[-iw(r - )/c]. (39b)

Current Neutralized Case, f < 0, Increasing Values of X

Figures 3-5 show the multicomponent dispersion relation for a sequence

of increasing values of X. We note that for any given value of f in the

range - 1 < f < 0 (partial current neutralization), XWi decreases

as X increases. Thus, if f is held fixed, the growth rate w. decreases1
-l -i

with increasing Ib for two reasons: w = Ib I because a o() grows

faster for large Ib, and additionally because for large Ib the conductivity

channel tends to follow the perturbations of the beam current, thus

inhibiting the spatial separation of Ib and I . The latter effect is most

dramatic at a 0, where

- f (I + f)-- X, if - f (I + f)- I- > 0

i 0 , otherwise. (40)

For moderate values of f and large values of X, X Max i is reduced by

about 30% by the effect of perturbed conductivity over the range

0 < X < 4.4 covered in Figs. 2-5. In the limit f - I, however, the
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stabilizing effect of perturbed conductivity goes away and i N-for

fixed f.

The spread mass dispersion relation, Eq. (28), differs from the

multicomponent results mainly in that the unstable spectrum is narrower and

the peak growth rate is always at Q - 0.52 20 for the former, as seen in

Table I. The Vlasov unstable spectral width is close to the multicomponent

results.

Ip Parallel to Ib, f > 0, Increasing Values of

The effects of perturbed conductivity are most dramatic if f > 0, i.e.

the plasma current flows parallel to the beam current (as may occur in the

back half of a triangular beam pulse where Ib is falling, or in the

presence of a strong external discharge). Figure 2 shows that

when X + 0 the hose mode is damped for all values i q if f > 0.7, but

Figs. 3-5 show that even the smallest positive N leads to a full range of

unstable modes, and that if X >> 1 the extprnal discharge does not even

reduce the growth rate significantly. (See also Table I.) In this limit

the plasma current tends to follow the distorted beam, rather than

constraining the beam to follow a straight channel. [Of course a discharge

may also exert a strong stabilizing effect by providing a pre-existing

conductivity at the beam head; mathematically this corresponds to

increasing Co in Eq. (7). This effect is not due to the continuing

presence of discharge current during transport of the beam.]

Limit of Large A

In the limit of very large X and fixed f,
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>> (I + f) ,

Eq. (28) reduces to the dispersion relation

(41)

identical to the dispersion relation for rlj(j) in a fixed channel with f =

0. In this limit, the conductivity channel follows the hose distortions of

the beam so easily that I does not separate from lb and presence of

equilibrium plasma current has no destabilizing effect on hose stability.

However our assumption that the plasma is weakly ionized normally will

break down before this limit is reached.

Beam Injected into Neutral Gas, No Discharge Current

Of particular interest is the scaling of hose growth with Ib, for the

case of beam propagation in an initially neutral gas with no externally

driven plasma current.- We have seen that the hose dispersion relation

depends on two parameters: X, which is proportional to Ib, and f, which

depends in general on the radius a and the rise-time rr of Ib(r) , as wellr b I swl

as on the value of Ib in the beam body. However a simple scaling is

possible for the case in which Ib c) rises quickly to its plateau

value (Tr/a < 20 to 40), and avalanche ionization due to the Ez-spike at

the pinch point is unimportant (Ez /p < 100 keV/cm-atm in air, i.e. gas

density not too low and beam current density not too high). Under these

conditions, f(-) depends only on b; after reaching a maximum at the pinch

point, it levels off to a value that varies slowly with ; and may be

estimated as
s

24

. ..- . ...



f 
(42)

To obtain an expression in closed form for the scaling of the peak growth

rate with Ib, we use (42) and (37) in the spread mass dispersion relation

(28). Noting that the peak growth rate Max wi from Eq. (23) always occurs

at P./23 a 0.52 where Gr reaches its maximum value 0.69, we find that

- Gr 1 _2 (43)

Mrx I + Re G 2 4Gf(1 +f) (43iG 2f ff-

with Gr - 0.69, Gi = 1.01. The quantity in brackets is slowly varying, so

that Max wi scales essentially as f-'. Max i from Eq. (43) is plotted as

a function of Ib in Fig. 6, using the multicomponent model and Eq. (42);

the result differs slightly from Eq. (43). We see chat Max Wi is a

monotonically decreasing function that approaches a limit

Max wi + 0.69, as { r .-l. (44)

Thus higher current beams, with larger return current fractions If , are

seen to be less unstable.

Equation (42) happens to be the condition for marginal stability of

the hose mode with I2 - 0. Since (42) is only a rough estimate of f, and f

does vary somewhat even within the beam body, specific cases may have an

unstable mode at Q - 0, but the growth rate Wi(O) then would be quite small

compared to Max wi" Instability in the range Q << a8o is driven primarily

by repulsion between Ib and Ip and has been called the "self-hose", but as

seen in Figs. 2-5 there is a smooth transition to the much stronger "high-

frequency hose", with a peak growth rate in the range 0.6 < -Ns/ 8 < 1.

In cases where avalanche is important near the pinch point, or where

the current rise time Tr is long IfI can be larger than the estimate given
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by Eq. (42), leading to a lar-er hose growth rate. Several cases,

calculated with the multicomponent simulation code VIPER (described in the

next section), are also shown in Fig. 6. For these cases, the relativistic

factor is y - 100, the beam current pulse shape is I b(;) - lbotanh

(;/30a ), the gas is air at standard density, Ibo is 4, 10, 40 or 100 kA,

and the radius of the beam body is ao V 0.5 (Ibo/1 0 kA) cm, so that the

current density is the same for the four cases. In order to compare with

theory, the initial perturbation was started in the beam body at : - 30a0,

and recombination, scattering of the beam and ohmic energy loss were turned

off. The hose growth rates seen in Fig. 6 do not deviate greatly from the

scaling of Eq. (43).

26

% % %. " . * 



3. Instability of the Beam Tail

As increases and the plasma electron density ne becomes large,

recombination can become competitive with impact ionization, and thus

saturate" the plasma conductivity c. This effect can be modeled by

extending Eq. (6) to the form

- ao(r,r) - <- (r).(45)
0 'bo~ ro0

For simplicity, we neglect temperature dependendence in the recombination

coefficient as well as the mobility. For a weakly ionized gas where

electron-neutral collisions dominate the resistivity, we then have

3r = r' g /0o' where 8r' is a constant for any given gas species, p is

the gas density, and p0 is standard atmospheric density; a typical value

for air is S r 7 x 10-15 sec/cm.

The solution to Eq. (45) is

a (r,C) - asa (r) tanh (5r sat;), (46a)

where the saturated value is

asat (r)- J bo (r)/3r 11l/2 .  (46b)

We see from Eqs. (46) that a saturates first on axis, where asat is

largest; saturation can occur considerably later off axis. Of course,

saturation may not occur during the duration of the beam if Jb or 0g is too

small.

We consider next an idealized beam tail, where a0 is saturated at
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least out to several beam radii a. 'e assume, as we did in the beam body,

*that Ib, I and a are constant. With these assumptions, is an ignorable

coordinate in the beam tail, and hose eigenmodes are of the form (22).

The perturbed conductivity 1 is determined from the linearized

equation

V-- J - 2 0'(7

i.e. from (22),

(r) Jb(r) (48)23 r 0o(r) - i"(4

When we use Eqs. (48), (46b) and (10a) in Eq. (5), the linearized Ampere's

law can be written as

Id 1(rda2
2

drr dr 2c2

i1rWo (r)a 2
{1 + f(r)rl - 0jb' (49)

2Xbo(r)c b

analogous to Eq. (15) in the beam body. The radial profiles of

J po(r) and a0 (r) are essentially identical to each other, but are broader

than that of Jbo(r), so the radial dependence of f(r) Jpo (r)/Jbo(r) is

important.

As in Sec. II, Jb(r) for use in Eq. (49) may be expressed in terms

of A(r) by using the multi-component model, Eqs. (30) and (31a), or the

Vlasov orbit integral, Eq. (35). For the multi-component model, the
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resulting eigenvalue equation is

1 d 14 -3 d ao (r)a 2 1 d -2

dr r dr 2c r dr

," ( r 1 1 d I dJ bo 7 2

=( + r r~ 2  j1i + -f(O))  d dr 2.

iW r l 0 r~ar d r c(r)-

XJbo(r) 2c'

(50)

where r(r) is the auxiliary function defined in Eq. (33). Equation (50) is

analogous to Eq. (32) and is supplemented by Eq. (31a) and the boundary

conditions (34). We shall use Eq. (50) for the analysis and numerical

examples used in this section.

The Vlasov form of the eigenvalue equation is obtained by using Eq.

(35) in Eq. (49). This integro-differential equation may be solved

numerically by our code VALIUM.

In regard to the spread mass model we note that the model in the form

of Eqs. (23)-(28) can only be used if dbo(r) and ao(r) both have Bennett

profiles of equal width, and thus is not applicable to the present

case.
1 6

Figure 7 shows the growth spectrum calculated from Eq. (50) for four

cases spanning a wide range of parameter space: X - 0.044, f - - 0.042

(solid curve); X - 0.44, f - - 0.30 (dashed curve); X - 4.4, f -- 0.81

(dotted curve); and X - 0.44, f - + 1.0 (dot-dashed curve). We use the

notation f =- Ip/b, even though the spatial profiles of Jp(r) and Jb(r) are

different. The first three cases represent roughly beams of 1, 10 and 100

kA injected into neutral air, to the accuracy of our simple conductivity
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formula (45), with < specified by (37) and our return current scaling given

by (42); the fourth case represents a 10 kA beam "guided" by a 1C kA net

discharge current.

- In each case the radial profile of Jbo(r) is taken to be a Bennett

profile cut off at three Bennett radii, in the form

2 2

bO a 2, 1 i t exp -2(r - 3aB)/a "
aB

For this profile, the Bennett radius aB is slightly smaller than the

scale radius a defined in Eq. (2). A cut-off is necessary because

otherwise the slow radial fall-off of the conductivity profile (46b) would

cause essentially all of the plasma current to flow outside the beam. This

is one of many mathematical complications3'8 associated with the slow fall-

off of the Bennett profile at large radii; the Bennett profile is a proper

representation of Jbo(r) only in the central core of the beam. A cut-off

is also consistent with the slow approach to conductivity saturation at

large radii. In cases of high fractional current neutralization the growth

rates do depend on the choice of cut-off, so it can be important in

modeling experiments to determine the profile of Jbo (r) or a0(r) in the

wings.

It is striking that the scaled peak growth rate 7 1Max wi is nearly

2the same (to within - 30.) in all cases. But T a 0° (0) a /2c increases

rapidly with 1b; if, for example, the beam current density Jb(O) on axis is

held constant as lb is varied, then the recombination saturated value

of C (0) is constant while a2 c Ib and T 1 Ib• Thus Fig. 7 shows that the

actual growth rate in the beam tail Max wi decreases as b- , even though

the return current fraction increases rapidly with Ib .
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The strong decrease of Max w. with increasing lb is due to three

separate effects: (i) The conductivity channel relaxes toward the

perturbed beam, thus reducing the magnetic repulsion between the plasma

return current and the beam. This effect appears in Eq. (47) and thence in

the f(r) term in the first factor of the right hand side of Eq. (49).

(ii) The unperturbed conductivity channel a0(r) is broader than the beam

profile Jbo(r), as seen in Eq. (46b). Thus much of the plasma current

flows outside the beam and exerts no force on the beam. Mathematically,

the destabilizing factor [I + f(O)]-1 on the right hand side of Eq. (49) is

smaller (for Ip/Ib < 0) than (1 + Ip/Ib)- . (iii) The growth rates

naturally scale inversely with the dipole diffusion time, some radial

average of the quantity a (r)a2/2c2 that appears on the left hand side of
0

Eq. (49). When Jbo(r) and ao(r) have identical Bennett profiles, the

appropriate average is rl, defined in Eq. (4), but when the profile

of ao(r) is broader than that of Jbo(r), the true dipole diffusion

time T is longer than Tl; this effect reduces Hax A, for all cases,
2-4'17

even if IIpI << I b

The numerical results of each of these effects is illustrated in Table

2. For each of the four cases calculated in Fig. 7, TIMax w i as calculated

for the correct equilibrium (first column) is compared with the value

obtained if the conductivity channel is not allowed to follow the beam

perturbations (second column), or if, in addition, the channel

shape 0(r) is set equal to beam shape Jbo(r). We note that the

stabilizing effects are present in all cases, but are very strong for

highly current-neutralized cases.
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Table 2

Comparison of the non-dimensionalized peak growth rate I 1Mx in the beam

tail, as calculated from the correct equilibrium [7o(r) z i(, )] wi.ih

perturbed conductivity included, with i neglected, and from a prescribed

fixed conductivity channel with a (r) = Jbo(r). Four cases are considered:

the first three are approximately correct values of f for a beam with the

given y injected into neutral gas, and the fourth case is for a -plasma current

externally constrained to be equal to Ib .

Maximum Growth Rate 7, Max ji

f a : J1/2 0 J1/20 = Jbo o bo o = bo

a self-consistent a 0 ' J 0

0.044 -0.04 0.49 0.49 0.63

0.44 -0.3 0.53 0.58 1.20

4.4 -0.8 0.40 0.81 7.0

0.44 1 0.40 0.25
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4 . Multi-Component Simulations

A. VIPER Model Descrintion

The VIPER multi-component simulation model allows one to relax

many of the simplifying assumptions of the previous sections. In

particular, this code can treat the beam head region where the assumptions

of constant Ib() , III(r), a( ), and a 0() are violated, and where the

magnetostatic approximation to the electromagnetic fields, Eq. (5), is not

valid. Because the conductivity in this region is low, considerable hose

growth can occur before the beam body is reached. In addition, simulations

indicate that the dominant frequency j observed in the beam body and tail

is strongly influenced by conditions in the beam head. The sharp

separation of the beam into a body and a tail, as described in the

dispersion relation models, is also somewhat arbitrary since conductivity

saturation due to recombination occurs first on axis and much later in the

radial wings of the beam. Thus, there is a long transition region

in C between the body and the tail.

The VIPER model treats the evolution of self-consistent fields,

conductivity, and beam dynamics for both monopole (m-0) and dipole (m-1)

quantities. A description of the model equations is given in the

Appendix. The coordinate transformation to r and z discussed in the

introduction is used throughout, and all quantities are radially

resolved. Monopole and dipole fields are treated using the

ultrarelativistic equations derived by Lee20 for arbitrary conductivity.

In addition to the beam-impact ionization term in (6), the conductivity

equations include a simple E/p avalanche model and recombination.

Axisymmetric beam dynamics are represented by an envelope equation which

assumes that the beam expands or contracts self-similarly, maintaining a
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Bennett profile. Emittance changes due to nultiple scattering and

anharmonic damping influence the envelope radius, as does beam energv' !oss

due to the inductive electric field E * Dipole beam dynamics are created

using the linearized multi-componer.c model described in Ref. 3. Each axial

segment, propagating at a fixed distance ; from the beam head, is

partitioned into several hundred components whose densities are chosen so

as to reproduce the desired Bennett profile. Since the individual

components have different edge radii and since each is allowed to oscillate

independently in the transverse plane, the dynamics are radially

resolved. The principal quantity of interest is the average hose

displacement 7(-,z) of these components, weighted by the individual

component densities. Because the model is linearized, Y is treated as an

infinitesimal (compared to the beam radius), and is normalized to the

initial perturbed displacement.
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B. VIPER Simulation )f a 10 kA Beam

In this section, we present an example of a single VIPER

simulation of a 50 MeV, 10 kA beam propagating in full density air.

Parameters for the run are listed in Table 3. All distances are expressed

in terms of the nominal beam radius ao M 0.5 cm.

The beam radius a, on-axis conductivity io and "effective current

fraction" 1 + fe are plotted as functions of distance ; from the beam head

in Fig. 8. Here I + fe is the pinch force, averaged over the beam profile

Jbo(r), and normalized to the value it would have if there were no plasma

current and the self-fields were purely magnetostatic. Thus fe - Ip/Ib in

the beam body, where Jpo(r)/Jbo(r) is approximately constant, but 1 +

fe 0 in the beam head, where space charge forces largely cancel the

magnetic pinch forces, and in the beam tail the difference between the

profiles of JPo(r) and Jbo(r) is included in the definition of f e" The

beam radius a(r), plotted at five values of the propagation distance z/ao

between 0 and 2400, shows the processes of nose erosion 7'8 and Nordsieck

expansion 2 1 (Fig. 8a). The conductivity a (C, r-0), seen in Fig. 8b, rises
0

linearly with after Ib reaches its plateau value (4/a 0 > 50), and until

recombination saturation sets in. As a function of z, ao decreases slowly

due to the effect of Nordsieck expansion. The effective current fraction

(Fig. 8c) varies slowly with both r and z for ,a > 50. Thus, this beam

has a substantial region where a, Ip/Ib, and do0/d4 are approximately

constant in 4 and z, and the dispersion relation analysis for the beam body

can be applied.

Figure 9 plots the average hose displacement (z) for ;/a° - 124

and 149. Because the instability is convective in the beam frame, 7(z) at

a fixed location 4 initially grows, but eventually saturates and decays.
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. Table 3

Parameters for VIPER Simulation Example

Parameter Symbol Value

Maximum Beam Current Ibo 10 kA

Initial relativistic factor YO 100

Nominal radius ao  0.5 cm

Gas pressure p 760 torr

Rise length 30ao

Pulse length 300ao

Start of perturbation o 20ao

Initial perturbation form Yo( sin [0.157(C-r )/a for 20 < -/a < 40

Current profile I - Ibo tanh (C/ r)
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The frequency of the hose oscillations seen in Fig. 9 varies slowly

with r and z, so a single mode approximation in the dispersion relation

(28) or (32) can be used. Taking local beam parameters at -/a. = 9 and

z/ao = 600, we have Q. a 0.057, and 2/7o 0.31. Note that this value

is significantly below the value = .62 expected from Eq. (32) and

Table 1 for ?eak hose growth.

For a convective instability, the maximum ("saturated") value

of Y reached at a given denoted Ya(_), should increase with r at a
sat

power-law growth rate w. in the beam body, as prescribed in Eq. (14) or at

an exponential growth rate wi in the beam tail, as prescribed in Eq.

(22). For example, l satI (r) is 1900 for 7 = 124, but is 3000 for ;

149, as seen in Fig. 9. The plot of Ys( Fig. 10, shows power law

growth as expected. A least squares fit gives iexp 2.28 for the

"computer experiment" growth rate. The multicomponent dispersion relation

for 1 + f - 0.57, X - 0.44, and Q/ - 0.31 gives w - 2.40.

(Variations if f and Q/Qo within the beam body introduce an uncertainty

of + 0.25 in the theoretical prediction for W1 .) The observed growth rate

thus agrees well with the dispersion relation predictions for the observed

- th
value of 1, but is substantially below the value w 1 3.8 predicted for

the fastest growing mode, where Q/Qo M 0.62.

This reduction in hose growth rate from the theoretical maximum is

seen in all VIPER simulations in which the perturbation begins in the

expanded beam head. This region of the beam has a lower Q 0 than in the

body and a lower dipole decay length. Low frequency modes grow rapidly in

the beam head and persist into the beam body. Higher frequency modes are

stable in the beam nose and usually do not catch up with the lower

frequency modes in the beam body. Thus, the observed Q/so in the beam
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body is substantially less than 0.62. in general, the amount of hose

growth depends strongly on the extent :o which 2. varies throughout the
20

beam.

In the example used here, the simplifying assumptions of :he

analytic theory of Sec. II are very well satisfied within the beam body.

Even in this case, we have seen that the transition from beam head to body

plays an important role in choosing the dominant value of -. In many other

cases, the assumptions may not be well satisfied, so that the analytic

theory is only qualitatively applicable. For example, the !b(;) pulse

shape may rise slowly or may not have a flat-too. I (;) may fall off

significantly within the beam body, and therefore the beam radius may

decrease as the pinch becomes stronger, particularly for high-current cases

where - I. < I/I < -1. In such cases, code studies are essential to

predict hose growth accurately. A variety of such studies, over a wide

parameter range, will be presented in future reports.
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5. Conclusions

We have derived dispersion relations that inclade conductivity

evolution self-consistently (but with the important assumption of constant

electron mobility) in both the equilibrium and the linearized hose

perturbations of a propagating beam. ';e have used the dispersion relations

to explore a wide range of beam and gas parameters. ?articularly for cases

in which there is a high degree of overall current neutralization, the hose

growth rate turns out to be much less than might have been expected from

previous work. We have also used the multicomponent code VIPER to

demonstrate some additional effects that can modify the interpretation and

use of the dispersion relations. As an example, hose growth in the beam

body is usually dominated by low frequency modes that are excited at and

grow rapidly near the pinch point at the front of the beam, rather than by

the modes that are most unstable in the body.
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4": ADpendix

In this appendix we summarize the model equations used in the VIPER

hose dynamics code discussed in Seccion 4. The model is based on the

linearized multicomponent formulism described in Ref. 3. 'e represent the

unperturbed beam current JbO(r) as a superposition of components with

density profile

(I - r"/R) O(R - r), (A-i)

where

R, if R r,

0, if R < r.

The edge radius R is used to index the components. Thus we can write

Jbo(r) 0 '* dR (1 - r2 /R2 ) F(R) 9(R - r),
0

where F(R) is the amplitude of component R. F(R) can be calculated by

differentiating Eq. (A-2) twice. 3  For a beam with Bennett profile

Ib( ,z)
Jbo(r, , z) = 2,z (A-3)

2o 2 2r, z a (C,z)[l + r /a2(,,z)]

we find

121bR

F(R) -121+ R 3 (A-4)
S6a(1 + R2/a

The perturbed current Jbl(r)e is calculated by assuming that each
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Ycomponent undergoes a rigid linearized displacement Y'R,~,z' along the

axis (perpendicular to the direction of ?ropagation). The formal res-,l: is

J bo(r) + J bl (r)sine

in dR 0 [R- I Y- (R)11, ~ R)~(R.(As
0

* To take account of the fact that a slice may expand or contract, we

generalize the formalism slightly by defining p = R/a, and use o as the

component index, i.e. each component expands at the same rate as a and the

beam expansion is thus self-similar. Linearizing in Y(R,,;,z) and expanding

the theta function gives

J rF~)Y~) 241 br f o Y(P)
Jbl~r a.! dp 2~p 4(p 1n2 f d 4 (A-6)

r/a P -ra na (1+ P-)

for a beam of Bennett profile. In practice, the VIPER -model includes only

components with p 4 p max 3; as a result, the unperturbed current or)

which is calculated by evaluating (A-2) for p 4 p max falls off more

rapidly than a true Bennett distribution for r/a > 3.

In VIPER we normally use a conductivity evolution equation

da j 1 2 (A-7)
d; b c r

which includes avalanche as well as the beam-impact Ionization and

recombination included in Eq. (45). (We have used more elaborate

temperature-dependent conductivity models on occasion.) The avalanche
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coefficient aE is a function of the ratio of the electric field 7-

to the gas density a,, given as Eqs. (15) and (17) of Ref. 13. in :gs

units, the recombination coefficient used in VIP -R for air is
9

7.1 x l-15 (0/0 ) sec/cm, where o is the air density at standard

temperature and pressure, and the impact-ionization coefficient is < 3 8.6

X 10-4cm/statamp-sec. An appropriate expansion of (A-7) gives daI/d;.

The electromagnetic fields are calculated using Lee's "Empulse"

approximation20 to Maxwell's equations, which is appropriate for

ultrarelativistic paraxial beans. In the Lorentz gauge, these field

equations are

1 9A
- --- r-,A + t =-J +0 -79(A8o r r r o - bo o - (A-)

c a 2 2A*3,5 r * . Ao

4r r3r 3r-' r 3r o -r (A-9)

for the m - 0 potentials. We have defined

A° 0- A zo- o" (A-10)

The corresponding m - 1 equations, linearized in perturbed quantities, are

c 3 1r r(A1  - i - J + a 3A +  A - (A-i)

c3 ia 3 1 1 - r 13 3 + 4o, - -- (A-12)T- 7 -r 77 -r 7-r Io~ e) o. -r r-) o 3r)
r

where
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A1 A - (A-13)

Within Lee's approximation the electric field components are given by

Ez , - A-14)

E=-7 (-5)

and the Lorentz force on the beam electrons is given by

FLz - eE , (A-16)

e~lA*

L - eV"A (A-17)

The boundary conditions used are perfectly conducting conditions on a

cylinder at large radius, as well as the conditions that all fields vanish

ahead of the beam. These field equations are valid in low conductivity

regions as well as the high conductivity beam body.

Axisyimmetric beam dynamics are treated using an envelope model of a

type widely used in beam physics problems.11 ,2 1 We define

2 a ;2 /a2 , where a2 is the mean square radius of the beam (n depends

weakly on the cut-off rmax applied to the Bennett profile3 ,8), and
determine the constant n2 by integrating r2Jbo(r) out to the beam edge

rma. The resulting equations describing the m - 0 dynamics are:

2 2 2 2 2 d- da
d2 a e, (A-18)

dz 2y 2a 3n
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.7.

- - na 3 -U(da/dz)

dz 2+ 2 a, (A-9)

dz -- Eo (A-20)
mc

Here e 2 is the squared beam emittance, U is the radially averaged pinch

force, ad is a sausage oscillation damping coefficient2 2 (taken to be 0.7)

Ezo is the axial electric field at r-0, and e SC is the multiple scattering

rate,

S - (2h c/e X r) (A-21)

where h is Planck's constant and

X - 2.7 x 10 4 (p /Pg)Cm (A-22)Xr0

is the radiation length in air. The pinch force term is

U 2ddA (r)
U b -2 dr r2 Jbo (r) oA23

Finally, m-I dynamics are described by equations for the hose displacement

Y(p) of components at a fixed value of C. The radially averaged y

component of force on the beam component denoted by p is found to be

*

4 F(p) aAP ap 2 dA ,

(ap)4 - dr r2Y(P) --a + Al (A-24)

where Ap is the spacing between components (an infinitesimal quantity in
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WI1w~-
F analytic expressions). A Newton's lad equation af motion for

K Y(P, , z) can be obtained bydividing out the conponent mass density,

giving

Y 2 aQ 1 dr r 2A + Y dA A-5

* A more detailed derivation of the above equations and a description of

numerical methods is found in Ref s. 9.
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Figure 1

The complex function G defined in Eq. (26), as a function of x 2 3

(upper scale) or of I/a so (lower scale).
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W. P. 77 %

2.0

1.50.

1.0-

f 0.5

0

\f 1.0

-0.5

O50 0.2 0.4 0.6 0.8 1.0

Figure 3

Growth rates in the beam body for X, a 0.044 and several values of f.

Calculations are based on the multi-component model, Eas. (32)-(34).

Note that the ordinate is (1 + f)xw ii
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f= 1.0-

f = 0.5 1%, 0.25

0 0.2 0.4 0 0.8 1.0
9/QPO

Figure 4

Growth rates in the beam body for A -0.44 and several values of f.

Calculations are based on the multi-component model, Eqs. (32)-(34).

Note that the ordinate is (1 + f)lXwi.
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0 0.2 0.4 0.6 0.8 1.0
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Figure 5

Growth rates in the beam body for X - 4.4 and several values of f.

Calculations are based on the multi-component model, Eqs. (32)-(34).

LNote that the ordinate is (1 + 4~ ,
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4 0
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*01
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A

Figure 6

Maximum growth rate in the beam body, for a beam injected into neutral

gas, as a function of (lower scale) or 1b (if the gas is air, upper

scale). The curve is the theoretical result from Eqs. (42) and (a3),

while the dots are the results of four VIPER runs.
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Figure 9

Hose amplitude Y as a function of z/ao at two different locations in

the beam, ;/a. 124 (dotted curve) and 149 (solid curve), from the

VIPER run.
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Saturated hose amplitude Y stas a function of C/a from2 the VIPER run.
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1.9. The recombination coefficient 3 used in Eq. ;A-7) for air is a simple
r

estimate based on dissociative recombination rates for :i

and O + with electron temperature of the order of !eV. The

de-ionization of beam-excited air is actually quite a complex

subject. NO+ and cluster ions can increase the recomination rate

somewhat, and hydrated ions can dominate if water vapor is present.
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