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PLASMA CURRENT AND CONDUCTIVITY EFFECTS ON HOSE INSTABILITY

1. 1Introduction

e,

P

R

e

Several recent papers have developed linear theories of the hose
instability of a pinched charged particle beam, propagating in a resistive

plasma channel within a neutral gas.l'5 In the published analytic work to

PP

date, elaborate models have been developed to treat the beam dynamics, but |

et

the plasma has been represented simply as a fixed ohmic conductivity

R
AT

A D
P

- channel o(r), independent of time and axial posfitfion z. For the case of a
beam propagating into imitially neutral or weakly ionized gas the channel
conductivity is formed by beam ionization of the gas, and therefore should

Lk be treated self-consistently with the beam dynamics. The significance of

d

this linkage has been understood for some time, and two specific effects

6

have been pointed out by Briggs, Lee, and co-workers® for the case of beam

propagation into neutral gas. First, the equilibrium conductivity

LTt
AN

oo(r,z) increases monotonically with distance 7 = vzt = z behind the beanm
head, in the forWard'pﬁtt of the beam where recombination and/or plasma
cooling have not yet established a balance with beam-driven ionization and

heating. It is thus incorrect there to treat I as an ignorable coordinate

and Fourier analyze the mode dependence on 7. Since the growth rate of any
resistive instability is largest where % is small, the effects due to

~ increasing o, are important. The second effect is seen when there is an
apprecisble equilibrium plasma return current Ip. 1f Ip flows in a fixed
conductivity channel, an absolute instability results from the magnetic
repulsion between Ip and the current Ib of a transversely displaced beam.
However if the conductivity channel is formed by the beam itself, the head of
the beam cannot be displaced from the channel, which converts the instability

into a convective one (provided the effect of phase-mix damping among particles

of different betatron frequency is modeled cotrect1y1'3). Furthermore, the
Manuseript approved October 11, 1983,
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channel, and thus Ip as well, tend to follow the hose distortion of the beanm,

thereby further reducing the destabilizing effect of spatial separation

b

in the low frequency limit and elsewhere in terms of certain parametric.

between Ip and I, . The consequences of these effects have been worked out,

representations, by the Livermore gt0up.6 However hose instability theory

o ey

has never been treated in the straightforward form of a dispersion relation

Yy

analysis, valid for all frequencies, that includes self-consistent

My AP

. treatment of the channel conductivity and the plasma current.

In the present paper we include beam—-impact ionization and plasma

? recombination, treated self-consistently, in our conductivity model. These

é are usually the dominant processes for the case of a weakly ionized gas,

3 except for a short region near the "pinch poiat” at the front of the bean,

% where an inductive Ez spike can cause strong avalanche breakdown.’*8 e
further simplify the conductivity model by assuming the electron mobility

5 is constant, i.e., independent of variations in plasma electron

temperature. The conductivity then depends only on the electron density.

e -
E0 CIEE. NER Wt o

Although this is a reasonably accurate approximation in many cases, we have
recently discovered that a number of interesting beam propagation effects
can be associated with the temperature dependence. These will be discussed
in a future publication.
We also specialize to the limits of an idealized "beam body",
discussed in Sec. II, where Ib(;) has reached a plateau, avalanche is ¢
assused to be unimportant, and the plasma electron density n, is not yet
large enough for recombination to be important, and a "beam tail",
discussed in Sec. III, where fonization and recombination have reached a
balance for the beam equilibrium (dut not necessarily for the

perturbation). We then show that the inclusion of self-consistent
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conductivity physics modifies the problem in a way that is mathematically

o i s - ﬁv-‘ -;~
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simple but dramatically changes the physical results. Given any beam
dynamics model, and the mathematical machinery to solve for a dispersion

relation in the fixed channel case, there i8 no further difficulty in

# B TN

solving for a complete dispersion relation with a self-consistent treatment
of the channel. 1In fact, a dispersion relation is found in closed form

when the relatively simple "spread-mass” modells% of beam dynamics is used.

R A
1 8

For relativistic electron beams, it is convenient to use z and g as

independent variables, rather than z and t. In the beam body, normal modes

, :

i are found with 7 and z dependence

¥ exp[-1wgn(z/z )-12z/v, ]
w - -
S (:/co) {cos[mtln(;/co)-i sin[mrzn(clgo)]}exp(-iﬂz/vz)
(1la)

rather than the usual form
exp(-imc/vz - in/vz) (1b)

for a fixed channel. In Eq. (la), g, is an arbitrary index point. In the
bean tail, the form (1lb) holds, since 7 1s an ignorable coordinate in the
’ equilibriua.

Plasma current effects fall into three different regimes. (1) If there is
no significant equilibrium plasma current (lel << 1), conductivity
perturbations play no role. In the tail, w(R) is identical to the dispersion
relation for a fixed channel. In the body w(Q) is proportional to the

fraquency w(fl) that would be found in a fixed channel. In fact, for any
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conductivity profile of the form oo(r,c) = co‘(r)oo"(;), the exact 7

T
>

dependence of the normal modes is exp =i’

the dispersion relation m-w[ﬂ;do(r)] is the normal mode in a fixed channel with

conductivity profile qo(r). (2) If there is a higzh degree of current
neutralization (0 < Ib + Ip <L Ib), Ip is strongly destabilizing but

conductivity perturbations, which allow the beam to follow the channel,

partially cancel Ehe destabilizing effect. (3) If Ip flows parallel to Ib’ as

it could for example if an external discharge is applied to the chamnel, it
is possible in a fixed channel to stabilize the hose mode completely, but
conductivity perturbations restore the instability by causing the discharge
current to follow the unstable beam, rather than guiding i: along an
established path. 1In all cases, the perturbed conductivity tends to push
the hose growth rate toward the value it would have in the absence of
plasma current. In particular, we find that increasing the beam current,
thereby increasing both the fractional current neutralization
(destabilizing) and the conductivity ao(t,c) (stabilizing), usually leads
overall to a reduced instablility growth rate 51 in the beam body.

The tail of a beam propagating with a large return current in a weakly
ionized plasma channel is also subject to another, even more important
stabilizing effect: the balance between impact ionization and
recombination leads to a channel broader than the beam, so that most of the
return current flows outside the beam and has little destabilizing
effect. As a result of this and the effects discussed in the previous
paragraph, we find that increasing the beam current strongly reduces the
growth rate in the tail.

In the present paper, we do not include other sources and sinks in the

conductivity model, such as avalanche breakdown, beam heating of the

"k‘l h‘ -‘ .'\\-‘ )
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plasma, or plasma cooling due to radiation, conduction, etc. These effects
could be included formally, but would prevent solution for the 7 dependence
in the closed forms kla) or (1b). They are therefora best treated within a
numerical scheme that solves for the 7 dependence, e.g. the codes vipER?
(multi-component beam dynamics3), sty L0 (linearized beam particle
simulation), VALIUM] (linearized Vlasov solver for beam dynamics), or
EMPULSE!! (spread mass model beam dynamics). In a fully ionized channel,
the effects of plasma heating and coéling on hose instability can be
éxpected to be similar to those of ionization and recombination in a weakly
ionized channel.

In a previous paper we have discussed the effects of self-consistent
conductivity evolution on the sausage mode.12 The effect there was
generally similar but much stronger; channel perturbations, by neutralizing

the destabilizing effect of plasma return current, completely stabilized

the mode over a wide parameter range.
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2. Instability of the Beam Body

A. Assumptions and Formalism

We assume that the beam is highly relativistic (v >> 1), paraxial
(v‘L <L v, for all beam particles), and therefore that v, = ¢ for all beam
particles. The equilibrium beam profile Jbo(r,;) is treated as time-
independent. In the beam”s body and tail, we assume Ib has reached a

constant value. We may also assume that the beam radius a(z), defined by
I, = ra’J_(r = 0) (2)
b bo ’

and the plasma current Ip arz independent of ;. These latter assumptions
are reasonable because resistive decay of the plasma current with ¢ occurs

slowly, on the monopole decay scale7’8

Zuao(r = 0, ;)az

(2}, (3)

cro(c) = c -a o

where b is a large radius characterizing the region of space charge
neutralization (b >> a), while instability growth is characterized by the

much shorter dipole decay g scale,1'3’13

na,(0,2)a’
T *

Furthermore, the beam body is defined to lie behind the pinch point7’8, so

the conductivity in the body and tail exceeds the value ¢ = c/4na required
for space chirge neutrality, and with the use of the paraxial approximation
Max ‘*'“s juations reduce to Ampere”s law for the axial component A of

vector potontiall,
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We define the beam body as the region behind the pinch point, but
where recombination (which depends quadratically on ne) is not vet
important. Furthermore, we neglect avalanche ionization in the beam body;
this is usually reasomnable although avalanche may well be important in the
vicinity of the Ez spike at the pinch point, ahead of the body. In a
weakly ionized gas, the electron mobility is determined by electron-neutral
collisions which depend weakly on temperature; since the dependence
of g on ne i{s much more important, we neglect the temperature dependence.
In addition, we assume that beam-impact ionization is local, i.e. we
neglect any spatial spreading due to high-energy secondary electrons. We

may then write a simple equation for the conductivity,
g--a(r Z,2) = «J (r,5,2) (6)
ac P> b”)

where JS is the beam current density and « is here assumed to be a constant
for any gas, proportional to the beam-impact ionization frequency and
inversely proportional to the plasma electron-neutral collision

frequency. In equilibrium, the solution of Eq. (6) is
0,(r,8) = kI (r)(g=g ) + o (r,g ), (7

where 4 is the front of the beam body. The first term of Eq. (7) leads to
a conductivity profile of the same form as the beam profile. We assume
that the second term either is negligible or has the same profile, and

adbsordb it by choosing ;o so that
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no(r,; = <Jbo(r):. "3)

A pre-formed channel narrower or wider than the beam cannot be treated

f* within the simple analytic calculation performed in this section.

"

5 Qualitatively, a narrower channel decreases the decay lengths (3) and (4)
:E and accentuates the effect of Ip on stability3, which is stabilizing

%é if Ip/Ib > 0 and destabilizing if IP/Ib < 0. The opposite is true for a
':5 wider channel.

Since z is an ignorable coordinate of the equilibrium, we may look

for normal modes with z-dependence exp(=-iz/c). We also Zollow the usual

LA

procedure of expanding the azimuthal dependence of A and Jb in a Fourier

%& series eime, keeping only the monopole (m = 0) and dipole (a = 1) teras,
E-d
o and linearizing the dipole terms which are treated as small

"X

2P

perturbations. All perturbed quantities w(rl, z, ) thus take the form

W(r,s2,2) = py(r,z) exp(-iqz/c + 19).

BT,

Equation (5) for the dipole Al becomes

Tt s
;
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4nKJb°(r)

Ay 3 13 ) 4n 4w
i - e | e c— e ——
- Gezae” c 5 3;)A1 c bt & :
EW
"4 The second term on the right hand side of Eq. (9) represents the
by
- current driven in the perturbed channel by the unperturbed electric
;i field Ezo = - aAO/ag. E,, can be expressed in terms of Ip and G
N
:'i§
F
: T6(T)
:% E,o(2) = EAGHL (10a)
% 8
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i.e.

J (r) 1
2,003 = &= = = (
zo <Jb°(r)c <

b"
where we have neglected the weak logarithmic dependence7’8

10b)
of E on r, so
zo

that Jbo(r) has the same radial profile as J o(r) and co(r). Using Eq

(10b), Eq. (9) becomes

(12 bredio(8) 5 4n wolp 91
— =T - I a—jAy == —J - — = {(11)
ar r 3r c 3z’ 1 e bl c <Ib 4

Next we use the linearized version of Eq. (6), in the form

30 g

1 ¢ 3 1
—— = | | — 12
ac = Ll + c ac) C KJbl’ (L-)

to eliminate °1 from Eq. (11):
4ned,. (r) I
9 3 13 _ bo 3 - o b 3_ . p

M+e5d Geeseer e 8 5004, [1+Ca;+1b)‘lb1'
(13)

Since Eq. (13) has constant coefficients with respect to the

operator 5(3/3z), solutions exist of the form
Ay(r,8) = A(r) exp[-twtn(z/z )]

~ w - -
= A(r) ¢ * {cos[mrln(;/co)]- i sinfw tn(c/z )]}, (14)

Equation (13) thus reduces to

o % aﬂiﬂrﬂki aﬂﬂv
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When dimensionless variables
Tz r/a, (16)
kS
“‘ and
o Tpo(®) = 3 (1)/3, (0, (73
ERY
\,
oy are used, Eq. (15) can be rewritten in the form
0N - - -
N (d___‘l__d_.r 81337, (r)\A(r) --.lll(]_ +;-'J (r)a ,  (18)
5’;" dr r dr 1 - 1y
{2 which depends only on the parameters
X7
a
N z
z Ip/Ib (19)
«
5 and
dr zIb ?
‘é A=¢c 'c? = T (20)
“ .
b
\ By way of comparison, Ampere”s law takes the form
‘ (oL 7+ 8lur, T, (DA = - 2L J (D (21)
- dr r dr
.‘{.g
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in a fixed channel, where perturbed quantities are of the form
N -i
A (r,2) = a(neted/e, (22)

Equations (20) or (21) must be supplemented by an expression for :Ib(r)a2 as
a function of Q and £ and a functional of ;(r); as we shall see, this
calculation is the same for both cases. Thus the hose eigenvalue problem
in a self-consistent conductivity channel differs from the problem in a
fixed channel in only two ways: first, eigenfunctions are of the form (1l4)
rather than (22), due to the linear increase of the unperturbed
conductivity 9, with 7 in the beam body, and second, there is an extra term
on the right hand side of Eq. (18), due to the inclusion of perturbed
conductivity. Since several successful methods have been found to treat
TQQ the problem in a fixed channel, extension of these calculations to Eq. (18)

is immediately possible.
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B. Calculation of the Perturbed Beam Current

Since all particles have the same axial velocity v, s ¢ the
coordinate 7 {s a constant of the motion and plays no role in the
determination of Eb(r), i.e. the form of the 7 dependence, Eq. (14%) or
(22), and the value of 3 or » do not occur in the particle dynamics.
3b(;) does depend on the time history of the driving potential

;(t)e-iﬂz/c

(z plays the role of time in the beam frame), and also on
equilibrium quantities such as £ and the on-axis betatron frequency
Qso = [21(1+f)er°(0)/(ymc)]1/2, where e and m are the electron charge and
mass, and y 1s the relativistic factor. Eb(;) may be calculated by solving

the linearized Vlasov equation5 10

» by particle simulation*”, or by using
either of two simplified beam dynamics models, the multi-component model3
or the spread mass modell. The latter yields a closed-form dispersion
relation which is useful for demonstrating general properties, and which
the reader can easily solve for any case of interest to him. The other
dynamics models are more accurate, but dispersion relations are obtained
only through elaborate numerical solutions of the eigenvalue problem. We

have developed codes that generate these solutions, and will cite some

examples.
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1. Spread Mass Model

The spread mass model of E. P. Leel'% is the simplest beam

dynamics medel that includes the essential feature of phase-mix damping due

P

]
5 to betatron frequency spread. According to the spread mass model for the
pA
:‘ case of a beam with Bennett profile,
: 3 (r) . Uo(r|C) . 1 (',3)
: ) g 2,2 ’ “
fg bo 00(0,,) (1 +r°/a )2
- * Jb(t,;) and A(r,z) are represented as rigid sideways displacements of the
‘ equilibrium profiles
S
¢ Jb(r,;) - - Y(c)(deo/dr) (24a)
o
n
' A(r,5) = = D(2)(dA_/dr), (24b)
and Y(z) is given as a function of D(Z) byl’14
2 2
Y(3) = D(3)([1l + G(Q /QBO )] (25)
where
L)
. 6(x) = 6x[3x - x + (x-x))[ni+en(=Z)]} for Ixl < 1. (26)

The function G(x) is plotted in Fig. 1 for real x. Since the r dependence
of all quantities is specified in closed form, Eqs. (15), (23)-(26)

{immediately reduce to a dispersion relation
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5
(1-1a0)(1 + ’_}'1 (1+f) = 1 + G/ == 51 27)

1-iy QSO

which yields the solution for »(Q)
2 2 2 2

£ - G(%/q, ") £-G(a"/ ) 2
=y ==L 8o iy 30 L2, 2.41/2
wh 3 (0 + T+t A JoHae@T/a, T
(28)

We note that for each value of QZ there are two solutions for ;, but one of
these branches is found to be damped for all real values of 7, and thus of
no interest. Of course Eq. (27) may also be solved numerically for 2(;).

We may compare Eq. (28) with the well-known dispersion relation for a fixed

channell’la,

2, 2
[ = 1
1{£-6(2°/2,,")}

T TT T .

(29)
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2. Multi Component Model

The multi-component model of beam dynamics3 calculates the r
dependence of 3b' rather than assuming a form such as Zgq. (24), and {t
includes radially-localized resonances and other important properties of
the exact solution. According to Eqs. (57), (58) and (11) of Ref. 3, the

model yields an expression

- 2
dJ. (R) 12_°(R) 2
- 2r @dR (d 1 "bo'"",; R R e ! L2 0
() = 550y Ik 2 ® R ax i T 17 15 et A,
"8 30 (30)
where
2
4 2
2 _ 30 R _r - 1 + £f(r)
Qc (R) = —Rz— fo dr t(l —R!-) Jbo(t) [mw, (313)
and, for generality, we have defined
f(r) = Jpo(r)/Jbo(r)- (31b)

Since Jbo(r) and Jpo(r) have the same radial profile in the
bean body,f(r) = £ and we may rewrite (3la) as

2 4q 02 R rz -
a.“R) = — fdrr (1-5) 7 (0. (31¢)
R R

Using Eqs. (18), (20) and (30), the eigenvalue problem may be expressed, in

analogy with Eq. (61) of Ref. 3, as a fourth-order ordinary differential

equation

J
1 ,d 1,4 -3 - d "bod =2
(—_ :) r© T+ dw ==y - r T
dr r dr £~ dr
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B R e e o AL €2
1 -1y * r“drr dr “(z) - 2°
with

2,

Q{:; 1 x 2

b r

o)

il %t

ol and boundary conditions

)

A

3‘,'5;}&:

A r(0) = r°(0) = r“(e) = r*“(=) = 0. (34)
i?% This differs from the fixed-channel case only through the extra factor
R -

N M+ £(1 - tw) 11 on the right hand side of (32). Thus a code which we

- dovclop¢d3 to solve this complicated eigenvalue problem in the fixed-
?;1 channel case can also be used to find ;(n) in the present case.

18

}"'. *’ '.',v .y. .v‘v “» \'.\} “- :.- X .’_ ...-_'.. ~..-. --'.. ~.. \."...':...Q ".q\'\v’.‘-
"‘D ,‘. !\l\‘-‘ !'.- , ‘0'.- \\ . v "t S e _‘. o . M \‘. q, ’.\." “' N

oy iy T 1
N TER T A L TN b
1-(1 Gt ".‘-;,_t o 4’\‘A““ .}' k



o e
L

3. Vlasov Calculation of Jb(t)

If the beam equilibrium is taken to be time-independent, and
weak scattering of the beam off the gas is neglected, an exact expression
for Jb(t) in terms of A(r) can be obtained by integration of the linearized

Vlasov equation along unperturbed beam electron orbits. This procedure

yields
- p, 3f - s
Jy(r) = -e? f d3g z 7 be 2 dz” iA(r”) expiis“-i5 - LL‘—QSE-—-Z-—-)--"},
J P C /= . c
1 1
(35)

where p is the particle relativistic momentum, P, and p, are the axial and
perpendicular components of p, fbo(pz’pl) is the beam distribution
function, and (r,8,z) are the particle cylindrical coordinates.

9°(z”) and r“(z”) are the unperturbed particle trajectories backward in
time, i.e. 6” and r” are the coordinates a particle had when it was

at z°, if that particle has coordinates 6 and r when it is at z.

Thus 8°(z”°) and r“(z“) are also functions of p and of the unperturbed
potential Ab‘

Equations (35) and either (18) or (21) together constitute a very
complicated integral-differential eigenvalue problem. A code, known as
VALIUM, has been developeds with the capability to solve the fixed-channel
case (35) and (21) as well as the self-consistent channel case, Eq. (35)

and (18).
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on the properties of the beam head (rise time of Ib and avalanche

o 1
]
N 1
ot |
o
o C. Dispersion Relations
N |
§ " In this section we discuss the gzrowth spectra ;ui('.‘:) that resulct ‘
;:{3 from the dispersion relation derived in closed form in Sec. IIA, or from
y}\.‘
f:g; solution of the eigenvalue problems framed formally in Secs. IIB and IIC.
N
' The discussion will be organized in terms of the value of £ - either no
t‘. plasma current (f=0), extensive current neutralization (0 < 1 + £ <K 1), or
L
; 3 plasma current flowing parallel to the beam current (f > 0), and in terms
£% 3%
R of the effect of beamgenerated perturbations to the conductivity, which is
5; small if A < 1 (low beam current) and large if ) >> 1 (high beam
G current). The value of )\ depends only on I., but the value of f can depend

ionization near the pinch point), and the presence of a pre~formed

conductivity channel or an externally imposed Ez field, as well as on Ib.

€y
- We conclude by surveying the case of beam injection into field-free neutral

?%% gas, under conditions where both ) and f depend primarily on the single
%Séi parameter I,.

) We shall use the spread mass model dispersion relation, Eq. (28),
U?i to derive various analytic results in closed form. We also show plots of
:f% the dispersion relation for a variety of cases, Figs. 2-5, 7 as calculated
— from the multi-component model, Eqs. (32)-(34), which is more accurate and

7& which {s not immediately accessible to the reader. The numerical values of

the key features of the dispersion relations - maximum growth rates and
cut-offs - are given in Table 1 for each of these models and for the Vlasov
calculation, which is theoretically exact, but subject to numerical
uncertainties of perhaps a few percent. We find that both models agree
well with the exact result as regards the peak growth rate Max @,+ The

i

multicomponent model also gives an accurate estimate of the width of the

18
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Table 1

Comparison of the key features of the hose dispersion relation in the bean
body,as given by the spread mass (SM) model, the multicomponent (}C) model,

and a Vliasov (V) calculation. Here Hax 2, is the peak power-law growth

i
exponent for growth in r and )\ Max ;i is a natural scaled quantity from the

>

theory, 2, is the value of q for which ;i(n) = Max 4 is the largest

O
i’ “

value of @ for which () > 0, and an is the on—-axis betatron

w
i
frequency. These values, for the multicomponent model, can also be read

directly from the dispersion relation curves of Figs. 2-5.

. . A Max w, nm/szao 2%
sM MC v SM y [0 v SM uc v
0 1.0 =0.17 =0.17 0.52 0.53
0.5 0.12 0.11 0.52 0.55 0.62 0.66
0 0.69 0.66 0.52 0.61 0.71 0.78
-0.25 1.25 1.23 0.52 0.62 0.73 0.82
-0.5 2.4 2.4 0.52 0.63 0.76  0.87
-0.7 4.6 4.9 0.52 0.67 0.78 0.90
-0.9 15.9 18.7 0.52 0.79 0.79 0.96
0.044 1.0 0.04 0.04 0.38 0.42 0.46 0.46
0.5 0.16 0.l4 0.51 0.53 0.63 0.67
0 0.69 0.66 0.74 0.52 0.61 0.6 0.71 0.78 0.8
-0.25 1.22 1.21 1.34 0.52 0.62 0.65 0.73 0.82 0.9
-0.5 2.3 2.4 2.5 0.52 0.63 0.66 0.75 0.87 0.9
-0.7 4.6 4.8 5.0 0.52 0.67 0.68 0.78 0.90 0.9
-0.9 15.8 18.7 17.2 0.52 0.79 0.7 0.79 0.96 0.9
0.44 1.0 0.32 0.29 0.51 0.51 0.68 0.72
0.5 0.40 0.36 0.42 0.51 0.53 0.51 0.69 0.73
0 0.69 0.66 0.74 0.52 0.61 0.6 0.71 0.78 0.8
-0.25 1.12 1.11 1.21 0.52 0.62 0.61 0.73 0.82
-0.5 2.3 2.2 2.5 0.52 0.63 0.62 0.75 0.86 0.9
-0.7 4.3 4.5 4.7 0.52 0.67 0.63 0.77 0.89
-0.9 15.5 18.3 18.9 0.52 0.80 0.71 0.78 0.95
4.4 1.0 0.64 0.60 0.54 0.62 0.75 0.82
0.5 0.65 0.62 0.53 0.62 0.74 0.80
0 0.69 0.66 0.74 0.52 0.61 0.6 0.71 0.78 0.8
-0.25 0.74 0.70 0.82 0.52 0.55 0.56 0.68 0.77
-0.5 0.88 0.87 1.11 0.52 0.55 0.58 0.65 0.78 0.9
"007 1.7 201 203 0052 0067 0.65 0067 0-85
-009 1109 14.2 1408 0.52 0078 0072 0-76 0095 0'9
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Ei unstable spectrum and the value bl for peak growth [;i(?m) = Max ;i]’ bSut
i‘: the spread mass model underestimates both the spectral widch and the value
i;. of 2.
¥ i
* -
:
I =0
) p
2 In the case of no equilibrium plasma current, I? = f = 0, Eq. (13)
.:"l
2? for Aw(2) in the beam body becomes formally identical to Zq. (21), which
2 determines rlu(ﬁ) in a fixed conductivity channel. Thus the dispersion
;ig relation for power-law growth in the beam body, A;(Q), is identical to the
3
;{ dispersion relation for exponential growth in a fixed channel with f = O.
J-"
i e Perturbed conductivity plays no role when f = 0, since the absence of
2 equilibrium plasma current indicates that E,, = 0 and thus a dipole
vﬁ conductivity 9y yields no dipole plasma current Ezogl‘ When the spread
+ L
R mass model is used, the dispersion relation is given by Eq. (29),
2
X3 2 2
W -
aw() = 16(a%/e, ), (36)
Lt o
L ,
%é and is shown in Fig. 1. For the spread mass model, the peak growth rate is
3R Max ;i = 0.69 A-l at Q/QBO- 0.52, and the unstable spectrum runs from R = 0
R
g
— to Q9= 0.71 QBO' The equivalent result from the multicomponent model is
: shown as the £ = 0 curve in Fig. 2; the peak growth rate is
Bvace
Tﬁf Max w, = 0.65 ) 1 at Q/QBO = 0.61, and the unstable spectrum runs
5%y
;ﬁ from Q = 0 to Q= 0.78 QBO' We note that mi(O) = 0, an exact result.
l'g‘;.‘;
."";
%& Low Beam Current ( )\ > 0)
S

Next we consider the limit ) + O, which corresponds to low beam

current, as seen in Eq. (20). For example, in air we use the estimate15
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A = 0.044 I 37

where Iy is in kiloamperes. =Zquation (37) corresponds to < = 8.3 ¥ 19'4
cm/statcoul in Eq. (6).

In the limit )\ +» 0, for any given value of f and for any beam dvnamics
model the dispersion relation for Au(2) is identical to the dispersion
relation for rlw(ﬁ) in a fixed channel. This is because the conductivity
changes slowly in this limit, and thus the effect of conductivity
perturbations is negligible. For example, the spread mass dispersion

relation, Eq. (28), reduces tol’14

2 2
£ - 6(2 /9, )
1+ f '

Ao = - i (38)

If £ < 0, there is an unstable mode at Q = 0 with growth rate

;1(0) = x-l[-f(l + f)-ll, an exact result, but the most unstable mode is

1

still at /g = 0.52, where b= Max a, = AL (£ + 0.69)(1 + )L, The

i

equivalent result from the multi-component model is shown in Fig. 2 for

i

several values of f. The peak growth rate for any given value of f is
close to that given by the spread mass model, as seen in Table 1, but the

value of Q for peak growth increases with the return current fraction, and

{ the unstable spectrum given by the multi-component model is considerably
% broader. The multi-component dispersion relation is close to the Vlasov
§ result, as seen in Table 1.
A If the beam is propagating into initially unionized gas
%E with A <K 1, Eq. (14), together with Eq. (38) or Fig. 2, indicates very
&
iy rapid power-law growth of the instability. If on the other hand, the gas
1; is pre-ionized or rapidly ionized at the beam head, the limit ) << 1 should
¥ 21
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}:H correspond to propagation in a fixed channel. This limit may bSe obtained
i

B by writing

K -

Eﬁ T (39a)

SN

g "D

N and expanding 2In (;/;o) in Eq. (l4) to obtain exponential mode growth it a

3?; rate independent of ),

o

i |
'ei':] - ,

-~ A (r,2) = A(rjexp[-iu(s = 7 )/e]. (39b)

. Y

¥

o

t}: Current Neutralized Case, £ < O, Increasing Values of

'h'_.‘:‘a

Figures 3-5 show the multicomponent dispersion relation for a sequence

ta

of increasing values of \A. We note that for anv given value of [ in the

-
N0 -

‘{3 range = 1 < f < 0 (partial current neutralization), Awg decreases
LY
Hadl as )\ increases. Thus, if f is held fixed, the growth rate 2y decreases

«&S with increasing Ib for two reasons: o « x-l x Ib-l because co(;) grows

"

-.J.‘i

:g: faster for large I,, and additionally because for large I, the conductivity

e -

. channel tends to follow the perturbations of the beam current, thus

»

BN inhibiting the spatial separation of I, and Ip. The latter effect is most
T

b, dramatic at 2 = 0, where
i
| c—— ‘
Q‘Q'w’
] - -
i ) SE A+ o, tE-fQ+FH >0 |
N, Awy = (40)
o 0 , otherwise.

%: For moderate values of f and large values of )\, 1\ ax ;1 is reduced by

3

VX

iq about 30% by the effect of perturbed conductivity over the range

R 0 < A < 4.4 covered in Figs. 2-5. 1In the limit £ » - 1, however, the

i

ﬁ%
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stabilizing effect of perturbed conductivity goes away and 2y = A for

-l .I'A P

fixed f.

The spread mass dispersion relation, Eq. (28), differs from the

aftj

?gﬁ multicomponent results mainly in that the unstable spectrum is narrower and

;;é the peak growth rate is always at 3 = 0.52 280 for the former, as seen in
%) Table 1. The Vliasov unstable spectral width is close to the multicomponent
Sﬁ results.

3

' 1)

By : Ip Parallel to Ib, f > 0, Increasing Values of )

‘§ The effects of perturbed conductivity are most dramatic if £ > 0, i.e.

(fi the plasma current flows parallel to the beam current (as may occur in the
.¢; back half of a triangular beam pulse where Iy is falling, or in the

gg presence of a strong external discharge). Figure 2 shows that

gﬁt when A » O the hose mode is damped for all values e«f 3 if f » C.7, but

22 Figs. 3=5 show that even the smallest positive )\ leads to a full range of

EEI unstable modes, and that if A >> 1 the external discharge does not even

;;% reduce the growth rate significantly. (See also Table I.) In this limit

gi the plasma current tends to follow the distorted beam, rather than

¢

constraining the beam to follow a straight channel. [Of course a discharge

may also exert a strong stabilizing effect by providing a pre-existing

F K

conductivity at the beam head; mathematically this corresponds to

Pl £ %

. increasing %o in Eq. (7). This effect is not due to the continuing

e presence of discharge current during transport of the beanm.]
W Limit of Large )\
[
o In the limit of very large A\ and fixed £,
5
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:\ >> (l + f) -’

Eq. (28) reduces to the dispersion relation
- 2 2 7
o) = 1G(2 /QBO)’ (41)

identical to the dispersion relation for rln(j) in a fixed channel with £ =
0. 1In this limit, the conductivity channel follows the hose distortions of

the beam so easily that I, does not separate from I, and presence of

P
equilibrium plasma current has no destabilizing effect on hose stability.
However our assumption that the plasma 1s weakly ionized normally will

break down before this limit is reached.

Beam Injected into Neutral Gas, Yo Discharge Current

Of particular interest is the scaling of hose growth with Iy, for the
case of beam propagation in an initially neutral gas with no externally
driven plasma current.. We have seen that the hose dispersion relation
depends on two parameters: 1, which is proportional to I, and f, which
depends in general on the radius a and the rise-time T, of Ib(;), as well
as on the value of Ib in the beam body. However a simple scaling is
possible for the case in which Ib(;) rises quickly to its plateau
value (rr/a g 20 to 40), and avalanche ionization due to the E,-spike at
the pinch point is unimportant (Ez/p < 100 keV/cmatm in air, i.e. gas
density not too low and beam current density not too high). Under these
conditions, f£(7) depends only on Ips after reaching a maximum at the pinch
point, it levels off to a value that varies slowly with 7 and may be

estimated as8

24
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Egz sT=F: (42)

‘;?: To obtain an expression in closed form for the scaling of the peak growth

;u~ rate with I, we use (42) and (37) in the spread mass dispersion relation
%f; (28). ©Yoting that the peak growth rate Max ;i from Eq. (23) always occurs
o at Q/Qso = Q.52 where Gr reaches its maximum value 0.69, we find that

e

?'.' : vax 3, = o+ 1 pe G2 - 4ce(L + £) L2 (43)

N 1 =% I -

}f; . with G, = 0.69, Gy = 1.01. The quantity in brackets is slowly varying, so
éi that Max ;1 scales essentially as f'l. Max ;1 from Eq. (43) is plotted as

ﬁﬁ} a function of I, in Fig. 6, using the multicomponent model and Eq. (42);
%; the result differs slightly from Eq. (43). We see that Max 51 is a

Q’ monotonically decreasing function that approaches a liamit

Rt Max o, » 0.69, as { T * 7M. (44)

A > ®

Thus higher current beams, with larger return current fractions |[f|, are

seen to be less unstable.
Equation (42) happens to be the condition for marginal stability of

the hose mode with Q = 0. Since (42) is only a rough estimate of f, and £

— does vary somewhat even within the beam body, specific cases may have an

‘:' unstable mode at Q = 0, but the growth rate 51(0) then would be quite small
‘ﬁa ) compared to Max Ei- Instability in the range 2 <K Qso is driven primarily
' by repulsion between I, and Ip and has been called the "self-hose™, but as
ﬂ' seen in Figs. 2-5 there is a smooth transition to the much stronger "high-

o WS,
P ALARL

frequency hose"”, with a peak growth rate in the range 0.6 < Q/Qso < 1.

K.V

In cases where avalanche is important near the pinch point, or where

the current rise time t_ is long |£f| can be larger than the estimate given

25
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'3 by Eq. (42), leading to a larger hose zrowth rate. Several cases,
4
‘ calculated with the multicomponent simulation code VIPER (described ia the
V3
{ﬁ next section), are also shown in Fi3. 6. For these cases, the relativistic
J& factor is vy = 100, the beam curreant pulse shape is Ib(;) = Iy,tanh
LY ’I‘
(;/3030), the gas is air at standard demsity, I, is 4, 10, 40 or 1CO ka,
': and the radius of the beam body is a, = 0.5 (Ibo/lo kA) cm, so that the
‘-
ft1 current density is cthe same for the four cases. In order to compare with
&
A,
theory, the initial perturbation was started in the beam body at = 3an, .
N
'ﬁ and recombination, scattering of the beam and ohmic energy loss were turned
gt
i*: off. The hose growth rates seen in Fig. 6 do not deviate greatly from the
M
scaling of Eq. (43).
f,f:
Y
h

R
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3. Ingtability of the Beam Tail

As 7 increases and the plasma electron density n_, becomes large,

e
recombination can become competitive with impact ionization, and thus
"saturate” the plasma conductivity g. This effect can be modeled by
extending Eq. (6) to the form

3 » = - 2 T

sz-do(r,, < Jpo(r) = 8.0, 7 (x). (45)
For simplicity, we neglect temperature dependendence in the recombination
coefficient as well as the mobility. For a weakly ionized gas where

electron-neutral collisions dominate the resistivity, we then have

sr S Br °g/°o’ where sr is a constant for any given gas species, pg is

the gas density, and o is standard atmospheric density; a typical value

0-15

for air is 8.~ 7x1 sec/cm.

The solution to Eq. (45) is

0,(rs2) = g, () tanh (8 o . 2), (46a)

where the saturated value 1is

2,

Ogqp(r) = [k Iy (£)/8_ (46b)

sat

We see from Eqs. (46) that g, saturates first on axis, where Ieat is
largest; saturation can occur considerably later off axis. Of course,
saturation may not occur during the duration of the beam if Jy or pg is too

small.

We consider next an idealized beam tail, where Iy is saturated at
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least out to several beam radii a. e assume, as we did iIn the beam bodv,
that Ib, Io and a are constant. YWith these assumptions, 7 is an ignorable
coordinate in the beam tail, and hose eigenmodas are of the form (22).

The perturbed conductivity 7 is determined from the linearized

equation

33

7T T Jp1 T 2% (47)
i.e. from (22),

- <Jb(r)

a(r) = (48)

ZStSO(r) - 1w

When we use Eqs. (48), (46b) and (l0a) in Eq. (5), the linearized Ampere”s
law can be written as

i (r)a2

wrag -

1A
2c2 ’

-

T+

LR
a. e
1]

d
(5'-:
dr

2
trwo (r)a -1,

[SFRS ]

== (14201 - (49)

Ad,(r)e
analogous to Eq. (15) in the beam body. The radial profiles of
Jpo(r) and oo(r) are essentially identical to each other, but are broader
than that of Jbo(r), so the radial dependence of f(r) = Jpo(r)/Jbo(r) is
important.

As in Sec. II, Jb(r) for use in Eq. (49) may be expressed in terms
of A(r) by using the multi-component model, Eqs. (30) and (3la), or the

Vlasov orbit integral, Eq. (35). For the multi-component model, the
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ﬁ% resulting eigenvalue equation is
£l
(r)a2
1 .,d 1.4=3_,. d "% 1 4 =2
%) g\—_:l‘ r_+1»—_—z—-q-—_r :
gﬁ dr r dr 2c r- dr
5
k:-E:s
d3 5, 2
all f(r) 1 1 1 y1l d 1 7bo 20 -

: \ L ! - — = - 4
§a i nco(r)a2 L'+ 100 ;7 dr ¢ dr () - 57

H 1 - == ~
% XJbo(r) 2¢c

' (50)
B
Iy
:§§ where r(r) is the auxiliary function defined in Eq. (33). =Equation (50) is
B

’ analogous to Eq. (32) and is supplemented by Eq. (3la) and the boundary
§~ conditions (34). We shall use Eq. (50) for the analysis and numerical
N
ﬁg examples used in this section.

The Vlasov form of the eigenvalue equation is obtained by using Eq.

3% (35) in Eq. (49). This integro-differential equation may be solved
e numerically by our code VALIUM.

In regard to the spread mass model we note that the model in the form
of Eqs. (23)-(28) can only be used if Jbo(r) and ao(r) both have Bennett
profiles of equal width, and thus is not applicable to the present

- . case.l |

Figure 7 shows the growth spectrum calculated from Eq. (50) for four
cases spanning a wide range of parameter space: )\ = 0.044, £ = - 0.042
(solid curve); A = 0.44, £ = - 0.30 (dashed curve); \ = 4.4, £ = - 0.81
(dotted curve); and A\ = 0.44, f = 4+ 1.0 (dot-dashed curve). We use the
notation £ = Ip/Ib' even though the spatial profiles of Jp(r) and Jb(r) are

different. The first three cases represent roughly beams of 1, 10 and 100

kA injected into neutral air, to the accuracy of our simple conductivity
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::',; formula (45), with < specified »v (37) and our return current scaliag given
'
’ by (42); the fourth case represents a 10 kA beam "guided” by a 12 kA net
5
i: dischargze current.
STE In each case the radial profile of Jbo(r) is taken to be a 3ennett
hY.
profile cut off at three Bennett radii, in the form
:.'3
-'::J L) 2
s, ’ “ N ].
LY J (t) = 1 +22 . . <.
d bo aBZ' 1+ exp 2(r - JaB)/aB‘
)
??d For this profile, the Bennett radius ag is slightly smaller than the
¥
DA
’?fy scale radius a defined in Eq. (2). A cut-off is necessary because
W,
» otherwise the slow radial fall-off of the conductivity profile (46b) would
"‘ ")
% 3 cause essentially all of the plasma current to flow outside the beam. This
.l“ .
;% : is one of many mathematical complications3’8 associated with the slow fall-
off of the Bennett profile at large radii; the Bennett profile is a proper
o
:ES representation of Jbo(r) only in the central core of the beam. A cut-off
Al
ﬁ;é is also consistent with the slow approach to conductivity saturation at
}@5 large radii. In cases of high fractional current neutralization the growth
£ .
:ﬁ%“ rates do depend on the choice of cut-off, so it can be important in
1y
'-.‘z.- :
;?ﬁ% modeling experiments to determine the profile of Jbo(r) or ao(r) in the
s wings.
%5 It is striking that the scaled peak growth rate T Max wy is nearly
the same (to within -+ 30%) in all cases. But Ty 2 woo(O) a2/2c increases

rapidly with Ib; if, for example, the beam current density Jp(0) on axis is
held constant as Ib is varied, then the recombination saturated value

of ao(O) is constant while 32 < Ib and T = Ib' Thus Fig. 7 shows that the
actual growth rate in the beam tail Max wg decreases as Ib'l, even though

the return current fraction increases rapidly with I,.
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The strong decrease of Max 8y with increasing Iy is due to three
separate effects: (1) The conductivity channel relaxes toward the
perturbed beam, thus reducing the magnetic repulsion between the plasma
return current and the beam. This effect appears ian Eq. (47) and thence in
the f(r) term in the first factor of the right hand side of Eq. (49).

(i1) The unperturbed conductivity channel qo(r) is broader than the beam
profile Jbo(t), as seen in Eq. (46b). Thus much of the plasma current
flows outside the beam and exerts no force on the beam. Mathematically,
the destabilizing factor [l + f(O)]-1 on the right hand side of Eq. (49) is
smaller (for Ip/Ib < 0) than (1 + Ip/Ib)-l. (1ii1) The growth rates
naturally scale inversely with the dipole diffusion time, some radial
average o§ the quantity nco(r)a2/2c2 that appears on the left hand side of
Eq. (49). When Jbo(t) and co(r) have identical Bennett profiles, the

appropriate average is t,, defined in Eq. (4), but when the profile

1’
of oo(r) is broader than that of Jbo(r), the true dipole diffusion

time ;1 is longer than t,; this effect reduces Max g for all cases,2'4’17

even if |Ipl K I
The numerical results of each of these effects is illustrated in Table
2. For each of the four cases calculated in Fig. 7, rlMax w, as calculated
. for the correct equilibrium (first column) 1s‘compared with the value
obtained if the conductivity channel is not allowed to follow the beam
perturbations (second column), or if, in addition, the channel
shape ao(r) is set equal to beam shape Jbo(r). We note that the

stabilizing effects are present in all cases, but are very strong for

highly current-neutralized cases.

31

IR ’ . *i n“{’.‘,* 3'06 X Lk SNy o \".' X ) ;'\r\r._v; " -:..4.-\-‘ (\.-‘: " X% 4.. . ol _..»..\_._ SN T ~-.~.<

SRR i ey '**ns.&\" \.‘\.‘\"’ e - \-'\"~\s\ Y




;’J{"

Table 2

Comparison of the non-dimensionalized peak growth rate .2 Max 2y in the bdean
/0

tail, as calculated from the correct equilibrium [; (r) = Jg (£)]. with

o
perturbed conductivity 7 included, with 7 neglected, and from a prescribed
fixed conductivity channel with co(r) x Jbo(r). Four cases are counsidered:
the first three are approximately correct values of £ for a beam with the

given vy injected into neutral gas, and the fourth case is for a plasma current

externally constrained to be equal to I,.

Maximum Growth Rate 7 Max Sy

1/2 1/2

A £ 9 * Jbo 36 = Jbo 25 * Jbo
; self-consistent ; = 0 ; =0
0.044 -0.04 0.49 0.49 0.63
0.44 -0.3 0.53 0.58 1.20
4.4 -0.8 0.40 0.81 7.0
0.44 1 0.40 0.25
32
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4o Multi~-Component Simulations

A. VIPER Model Description

The VIPER multi-component simulation model allows one to relax
many of the simplifving assumptions of the previous sections. In
particular, this code can treat the beam h2ad region where the assumptions
of constant Ib(;), In(:)’ a(z), and co(;) are violated, and where the
nagnetostatic approximation to the electromagnetic fields, Eq. (35), is not
valid. Because the conductivity in this region is low, considerable hose
growth can occur before the beam body is reached. In addition, simulatioms
indicate that the dominant frequency ) observed in the beam body and tail
is strongly influenced by conditions in the beam head. The sharp
geparation of the beam into a body and a tail, as described in the
dispersion relation models, is also somewhat arbitrary since conductivity
saturation due to recombination occurs first on axis and much later in the
radial wings of the beam. Thus, there is a long transition region
in 7 between the body and the tail.

The VIPER model treats the evolution of self-congistent fields,
conductivity, and beam dynamics for both monopole (m=0) and dipole (m=l)
quantities. A description of the model equations is given in the
Appendix. The coordinate transformation to r and z discussed in the
introduction is used throughout, and all quantities are radially
resolved. Monopole and dipole fields are treated using the
ultrarelativistic equations derived by Lee20 for arbitrary conductivity.
In addition to the beam-impact ionization term in (6), the conductivity
equations include a siample E/p avalanche model and recombination.
Axisymmetric beam dynamics are represented by an envelope equation which

assumes that the beam expands or contracts self-similarly, maintaining a
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Bennett profile. Zmittance changes due to> multiple scattering and
anharmonic damping influence the envelope radius, as does beam 2nerzv loss
due to the iaductive electric field £,o+ Tipole beam dynamics arz treated
using the linearized multi-componer.c model described in Ref. 3. Each axial
segment, propagating at a fixed distance r from the beam head, is
partitioned into several hundred components whose densities are chosen so
as to reproduce the desired Bennett profile. Since the individual
components have different edge radii and since each is allowed to oscillate
independently in the transverse plane, the dynamics are radially

resolved. The principal quantity of interest is the average hose
displacement ?(;,z) of these components, weighted by the individual
component densities. Because the model is linearized, Y is treated as an

infinitesimal (compared to the beam radius), and is normalized to the

initial perturbed displacement.
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B. VIPER Simulation »>f a 10 kA Bean

In this section, we present an example of a single VIPER
simulation of a 50 MeV, 10 kA beam propagating in full densitv air.
Parameters for the run are listed in Table 3. All distances are expressed
in terms of the nominal beam radius a, = 0.5 cm.

The beam radius a, on—axis conductivity T and "effective current
fraction” 1 + f, are plotted as functions of distance ; from the beam head
in Fig. 3. Here 1 + fe is the pinch force, averaged over the beam profile
Jbo(r), and normalized to the value it would have if there wers no plasma
current and the self-fields were purely magnetostatic. Thus f, = Ip/Ib in
the beam body, where Jpo(r)/Jbo(r) is approximately constant, but 1l +
fe + 0 in the beam head, where space charge forces largely cancel the
magnetic pinch forces, and in the beam tail the difference between the
profiles of Jpo(r) and Jbo(r) is included in the definition of fe. The
beam radius a(g), plotted at five values of the propagation distance z/a,

between O and 2400, shows the processes of nose erosion7’8

and YNordsieck
expansionzl (Fig. 8a). The conductivity oo(;, t=0), seen in Fig. 8b, rises
linearly with g after I, reaches its plateau value (c/a° 2 50), and until
recombination saturation sets in. As a function of z, I decreases slowly
due to the effect of Nordsieck expansion. The effective current fraction
(Fig. 8c) varies slowly with both 7 and z for gra, 2 50. Thus, this beam
has a substantial region where a, Ip/Ib, and doo/d; are approximately
constant in 7 and z, and the dispersion relation analysis for the beam body
can be applied.

Figure 9 plots the average hose displacement ¥(z) for ;/ao = 124

and 149. Because the instability is convective in the beam frame, Y(z) at

a fixed location g initially grows, but eventually saturates and decays.
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Symbol

(R

“max

-
20

Y (2

Ib(;) = Ibo tanh (;/gr)

Table 3

= sin [O.l:?(g-;o)/ao] for 20 ¢ .;/a0
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Parameters for VIPER Simulation Example

Value

10 kA
10C

0.5 cm

760 torr

3OaO

3003o

Zan

<

’

4

0




The frequency  of the hose oscillations seen in Fig. 9 varies slowly
with r and 2z, so a single mode approximation in the dispersion ralation
(28) or (32) can be used. Taking local bdeam parameters at ;/aO = 149 and

z/a_, = 600, we have Y2y * 2.057, and }/Qlo = 0.31. VYote that this value

-

o]

is significantly below the value 2/380 = 0.62 expected from Eq. (32) and
Table 1 for peak hose growth.

For a convective instability, the maximum ("saturated”) value
of ¥ reached at a given 7, denoted ?sat(:)’ should increase with 7 at a
power-law growth rate ;i in the beam body, as prescribed in Eq. (14) or at
an exponential growth rate 2y in the beam tail, as prescribed in Eq.
(22). For example, |§sat| (z) is 1900 for ¢ = 124, but is 3000 for 7, =

149, as seen in Fig. 9. The plot of Y (z), Fig. 10, shows power law

sat
growth as expected. A least squares fit gives ;iexp = 2.28 for the
"computer experiment” growth rate. The multicompounent dispersion relation
for 1+ £ = 0.57, & = 0.44, and 2/2, = 0.31 gives 3, = 2.40.
(Variations if £ and Q/QBo within the beam body introduce an uncertainty
of + 0.25 in the theoretical prediction for ;i') The observed growth rate

thus agrees well with the dispersion relation predictions for the observed

value of 2, but is substantially below the value 9 th

;= 3.8 predicted for

the fastest growing mode, where Q/QBO = 0.62.

This reduction in hose growth rate from the theoratical maximum is
seen in all VIPER simulations in which the perturbation begins in the
expanded beam head. This region of the beam has a lower QBO than in the
body and a lower dipole decay length. Low frequency modes grow rapidiy in
the beam head and persist into the beam body. Higher frequency modes are
stable in the beam nose and usually do not catch up with the lower

frequency modes in the beam body. Thus, the observed Q/QSO in the beanm
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body is substantially lass than 03.62. 1In general, the amount of hose

growth depends strongly on the extent to which :20 7aries throughout the

beam.

In the example used here, the simplifyving assumptions of the
analytic theory of Sec. II are veryv well satisfied within the beam body.
Even in this case, we have seen that the transition from beam head to body
plays an iamportant role in choosing the dominant value of 3. Ia xmany other
cases, the assumptions may not be well satisfied, so that the analytic
theory is only qualitatively applicable. For example, the Ib(;) pulse
shape may rise slowly or may not have a flat-ton. Ip(;) aay fall off
gsignificantly within the beam body, and therefore the beam radius aay
decrease as the pinch becomes stronger, particularly for high-current cases
where - 1 < Ip/Ib < -~%. In such cases, code studies are essential %o
predict hose growth accurately. A variety of such studies, over a wide

parameter range, will be presented in future reports.
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P
o 5. Conclusions
T
i We have derived dispersion rzlations that inclide conductivity
Eﬁ evolution self-consistently (but with the imnortant assumption of coanstant
Ea electron mobility) in both the equilibrium and the linearized hose
a perturbations of a propagating beam. “e have used the dispersion relations
%3 to explore a wide range of beam and gas parameters. Particularly for cases
:? in which there is a high degree of overall current neautralization, the hose
“ . growth rate turns out to be much less than might have been expected from

‘i previous work. We have also used the multicomponent code VIPER to
{; demonstrate some additional effects that can modify the interpretation and
) use of the dispersion relations. As an example, hose growth in the beam

;i body is usually dominated by low frequency modes that are excirzed at and

i; 3row rapidly near the pinch point at the front of the beam, rather than by
a the modes that are most unstable in the body.

b«
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o0 appendix
A
ﬁﬂ In this appendix we summarize the a0del equations used in the VIPER
Y hose dynamics code discussed in Section 4. The model is based on the
Q..-‘
E_‘ linearized multicomponent formulism described in Ref. 3. <We represent the
-\
s
, unperturbed beam current Jbo(r) as a superposition of components with

density profile

oo
’-“ ]
R (1 -2’ o® - 1), (a-1)
{

-5 where
T8

» - - 1, if > r,
ﬁ,
‘n
.é' The edge radius R is used to index the components. Thus we can write
‘;3 ® 2,.2
b} Jo(®) = [ " R (1 = r*/R%) FR) 2(R - 1), {A=2)
'!'-' o 0
N

'ﬂ where F(R) is the amplitude of component R. F(R) can be calculated by
R}
&g’ differentiating Eq. (Aa-2) twice.3 For a beam with Bennett profile
A
v{'h‘!
- , ) I,(z,2) ; <
ok J Ty %y 2) = ’ (A=3)
o bo na’(z,2) (1 + r/a’(5,2)]°

a !
o we find
@
s t21,r°
W F(R) = . (A=-4)

s
;.:.‘4 b1+ r%a%H4

The perturbed current Jbl(r)eie is calculated by assuming that each
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f} component undergoes a rigid linearized displacement Y{(},z,z) alonz the v~
}; axls (perpendicular to the direction of propagation). The formal resul: is
oy
‘f. Jbo(r) + Jbl(r)sine
2 2 iz - Ty

\ ®© > > 2,7, - K \

= f dR 9 [R7= |z = Y(R)|7} 1 - il;———égil——;F(R). (A=%)

0 R -
. To take account of the fact that a slice may expand or contract, we

? generalize the formalism slightly by defining o = R/a, and use o as the
o
.z component index, i.e. each component expands at the same rate as a and the
i, beam expansion is thus self-similar. Linearizing ia Y(R,7,z) and expanding
)
f; the theta function gives
v 241,

Iy =3 g E® XD b ey, _2¥e) g
¥ bl a 2 4 2.4
o r/a P 1a” r/a (1 +5°)
5
% for a beam of Bennett profile. In practice, the VIPER model includes only
% components with p < Pnax” 3; as a result, the unperturbed current Jbo(r),
f which 13 calculated by evaluating (A-2) for p < ® pax’ falls off more
’; rapidly than a true Bennett distribution for r/a > 3.
2 In VIPER we normally use a conductivity evolution equation
A
:ﬁ
N d o 2
J g
\ d—C- K Jb + r g Bro (A=7)
& which includes avalanche as well as the beam-impact lonization and
U
Q recombination included in Eq. (45). (We have used more elaborate

temperature-dependent conductivity models on occasion.) The avalanche
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% coefficient 1 is a function of the ratfo of the electric field I,

A to the gas density o, ziven as Egs. (1%) and (17) of Ref. 13. 1Ia c3s
. units, the recombinsation coefficient used ia VIPER {ar air is19

N =15 , . . ;

T 8 = 7.1 x 10 (5./0o ) sec/cm, where 5_ is the air density at standard
ERN r g2 0 o}

: temperature and pressure, and the impact-ionization coefficient is ¢« = 8.5
e X lo'acm/statamp-sec. An appropriate expansion of (A-7) gives dclldc.
.‘

3 The electromagnetic fields are calculated using Lee”s "Empulse” .
W, 9
§§ approximation“o to Maxwell”s equations, which is appropriate for
‘o ultrarelativistic paraxial beaas. In the lorentz zauge, these field
§:¥ equations are
ﬁg
34 "

¢ 12 3 s, * N o

) — . — — 2 - -
e arrar Dar e T T (4=8)
<
134 2, %

o A ,
i e ra 2% 1 -~
4r r 3r ~ 3Jrig rdr o adr '’ )
for the m = 0 potentials. We have defined
- Az A-10)
Sl o T Az % (¢

*
3A 54
c 3 13 * . 1 0
Tarrar TA Yoyl - gy to S top 5 (A1D)
3a, " 3¢ 34 b
oA c 3 13 1 13 1 o, _ %" _
'ﬁ? Tr3rrac® B¢ t3c f % 3T T % T 2 o (a-12)

where
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. , (a=13)

Within Lee”s approximation the electric field components are given bv

*
-2 (A=14
Ez = 3z 3 \'\ 14)
= - A=15
".L VL'D’ (-\ 4.))

and the Lorentz force on the beam electrons is given by

P, = - eE, (A-16)
F v A" (A-17
S WA N

The boundary conditions used are perfectly conducting conditions on a
cylinder at large radius, as well as the conditions that all fields vanish
ahead of the beam. These field equations are valid in low conductivity
regions as well as the high conductivity beam body.

Axisymmetric beam dynamics are treated using an envelope model of a
type widely used in beam physics pr:oblems.“"21 We define

n2 - ;2 /a2

, where 52 is the mean square radius of the beam (n depends
weakly on the cut-off Tpax 8PPlied to the Bennett prof11e3’8), and

determine the constant nz by integrating erbo(r) out to the beam edge

Tpax® 1he resulting equations describing the m = 0 dynamics are:
dvy da
dza 52 - zazU - n233 dz dz
o R e S L (s-19)
dz vy a'n
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" s 3.3...,.2 2
de2 Zayna’y sU(d"a/dz"7) - a
— - + = a—, (:\-:9)
LRl
dz €2+ v a%y sc
d
== . (A-20)

mc

Here €2 is the squared heam emittance, U is the radially averaged pinch

force, ay is a sausage oscillation damping coefficient22 (taken to be 0.7)

Ezo is the axial electric field at r=0, and Esc is the multiple scattering

rate,
= (20 c/e® A ) (a=21)
“se r 3 ’
where h is Planck”s constant and
A= 2.7 x 10“(9 /o deca (A=22)
T o g -

is the radiation length in air. The pinch force term is

%*
re . 2 da, ()
U= ——z—f de r Jbo(r) —-_dx'_" (A°23)
YIbmc

Finally, m=1 dynamics are described by equations for the hose displacement
Y(p) of components at a fixed value of 7. The radially averaged y

component of force on the beam component denoted by p is found to be

L F(p) ate a0 ar
” dr r7[Y(p) — + A/], (A=24)
(ap) 0

where Ap 1s the spacing between components (an infinitesimal quantity in
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analytic expressions). A Newton”s law equation >f motion for

Y(p, &, 2) can be obtained by dividing out the coamponent nass density,

giviag
2 d{*
2 . ao % 3.
Y 3 g = hd 4 ez_ ‘!f. dr r2 f\:\1 + Y -d_rg.". . (A-.?.S)
3z (ap) ac 0 -

A more detailed derivation of the above equations and a description of

numerical methods is found ia Refs. 9.
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Figure 1
The complex function G defined in Eq. (26), as a function of x
(upper scale) or of n/nso (lower scale).
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. Figure 2

Growth rates in the beam body for A = 0 and several values of f.

Calculations are based on the multi-component model, Eqs. (32)-(34).
Note that the ordinate is (1 + f)xui, a form which conveniently compress

the range of variation.
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Hose amplitude Y as a function of z/a° at two different locations in
;“ the bean, z;/a° = 124 (dotted curve) and 149 (solid curve), from the
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13. The particular expression (3) applies for the case of identical

“

X

30

3 Bennett radial profiles for Jy, and 5 . The numerical coefiicient

k? in 3 depends (fairly weaklv) on these profiles, as discussed in Sec.
[y

£

} I1I.

B 14. For the case £ # 0, Egs. (25) can be derived by extending the analysis
) of Ref. l,or by .inference from the analysis leading to Zq. (7da) of
N

N Ref. 2. Equation (29) is derived as Zq. (76a) of Ref. 2, and Eq.

N

X

(25) may be inferred from the reasoning used there. The beam
dynamics model used in Ref. 2 is different from the spread mass

aodel, but leads to the same results. ¥We note here a typograghical

LB X5

error in Eq. (76a) of Ref. 2: the factor (1 =~ fm)'z should be
(1 - fm)'ln

o
W ¥, 2
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The recombination coefiicient 3 used in Zq. (A-7) for air is a siapl

astimate based on dissociative recombination rates for

and 02+ with elactron temperature of the order of leV. The
de-ionization of beam=excited air is actually quite a complex
subject. NOT and cluster ions can increase the recominatioa rate
somewhat, and hydrated ions can dominate if water vapor is present.
Not all the recombination rates are well nown. For an extended
critical discussion and list of references, the reader is referred %o
A. W. Ali, "On Zlectron Beam Ionization of Air and Chemical Reactioas

for Disturbed Air Deionization', September 22, 1981 (AD/A104517)
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-

E. P. Lee, "The Yew Field Zquationms,’

Lawrence Livermore National
Laboratory Report UCID-17286 (1976).

E. P. Lee and R. X. Cooper, Particle Accel. 7, 83 (1975).

E., P. Lee and S. S. Yu, "Model of Emittance Growth in a Self-Pinched

Beam,"” Lawrence Livermore National Laboratory Report UCID-13330

(1979).

.. v'. \(’ Q"f f\ ..t'~ {' T‘ﬂ' I’...& \r“‘ ~r‘r .’.‘- LY ‘-R\--xil M IS I
, ; -.-.\' RN DAY s..*\* SV

BSOS AT YA DA NN






