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Derek K. Chang

Department of Mathematics
California State University
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I. INTRODUCTION

In engineering, economics and some other fields, we usually

face the following types of problems.

(1) With the information obtained from an observation of a

phenomenon in the past and present, we wish to predict it at a

future time with the best accuracy in some prescribed sense.

* (2) The data one gets in observing a phenomenon are almost

always an approximation of the real data, which is due to the

error caused in the process of observation; for instance, in the

measurement of a quantity. It is then desired to estimate the

original values by utilizing the observed data with the best ac-

curacy in a certain sense.

(3) With a given input time series and a linear filter, such

as an electric circuit, a unique output series can be generated.

In case the filter is known, and only the output series is observed,

it is desired to recover the input series, and to determin, whether

the solution to this inversion problem is unique, and whether the

filter is physically realizable, that is, whether the input series

*Prepared under the ONR Contract No. N00014-79-C-0754 (Iodifica-
tion No. P00003).
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at any time can be expressed solely in terms of the observations

of the output series made in the past and present, but not the

future.

To treat these problems, we need to establish some mathemati-

cal and statistical models of time series. Then we can describe

these problems precisely, and provide some solutions.

Let the triple (Q,Z,P) denote a probability space, where

0 is a sample space, E is the a-algebra of all events under

consideration, and P is a probability measure on E . Let C

stand for complex numbers. For any complex valued random variable

X:Q -C , which is E-measurable by definition, the expectation of

X is denoted by E(X) - :XdP . The Hilbert space H - L2 (O,E,P)

of all the (equivalence classes of) random variables with finite

second moments can be constructed as usual with an inner product

*.. defined by (f,g) - E(fQ) The "overbar" denotes complex con-
<1 4 jugation. Let 11'12 denote the corresponding norm of H . For

convenience, let Lo(P) stand for the subset of functions in

L2 (n,E,P) with means zero.

Let X - [X(t),tET] denote an indexed set of random vari-

ables. If T is the set Z of integers, X is called a discrete

parameter time series. If T is the set R of real numbers, X

is called a continuous parameter time series. If every X(t) has

a finite second moment, X is called a second order time series.

If in addition X is of means zero, i.e., E(X(t)) - 0 for all

tET , the covariance function r:TxT-C is defined as r(s,t) -

E(X(s)rET) for s,tET

_ ___ _
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In order to study the analytical properties of second order

time series with means zero, we first classify these series ac-

cording to their covariance structure as follows. A list of more

classes of time series can be found in [26] and [2].

1. If the value of the covariance function r of X de-

pends only on the difference of its two arguments, that is, if

r(s,t) - r(s+h,t+h) for all s,t,hET , then X is called a weakly

stationary time series. It is known that in this case we have the

representation

r(s,t) - 1ei(St)udu(u) , (1)

D

where D - R for T - R , the reals, D - [0,2Tr) for T -z ,

the integers, and k is a bounded, monotone increasing nonnegative

function on D , called the spectral function of X . It is known

that every weakly stationary time series X has a stochastic in-

tegral representation

X(t) l JeitkdZ(X) tET , (2)

D

where D is as above, Z:D-LO(P) is a vector valued function

with finite semi-variation and with orthogonal increments, i.e.,

for any a < a2 <a 3 <a 4 ,

E(Z(a 2-a1 )Z(a4-a3)) - 0

and the integral is in the sense of Dunford and Schwartz. (See

[10], p. 323.)

Note that without the restriction that the time series X is

of means zero, we have the slightly different concepts of weak and

* wide sense stationarity. See [21. They agree under our hypotheses.

i I __ __
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2. If X is not necessarily weakly stationary, but its co-

variance function r admits a representation

r(st) if eiSUtvdp(uv) , (3)
DxD

where P is a complex valued, positive definite function of two

variables with finite Vitali variation IPIV  on DxD defined as

I ii i

i,j-

then X is called a strongly harmonizable time series.[17]. It

was proved by Loive [17] that every strongly harmonizable time

series X also has a stochastic integral representation (2),

where D and Z are as before except that Z does not have

orthogonal increments, as in the weakly stationary case, but

satisfies certain other conditions generalizing (2).

It is easy to see that if P concentrates on the diagonal,

that is, if P(s,t) - 0 for s 0 t , then r(s,t) depends only

on the difference s-t , so that X is weakly stationary. Thus

the class of strongly harmonizable time series is an extension of

the class of weakly stationary time series. Again P is called

4 the spectral function of X

3. If the function P in (3) is not necessarily of Vitali

variation finite, but is of finite Frechet variation defined as

1 -IF = suptt () (t (ti  tj l0 :

IaiI<1 ,Ibj I<1,aibj EC , (5)

* then X is called a weakly harmonizable time series with P as

OWN-.-
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its spectral function [26]. By the definitions, W IF' !s v , and

it is known that IIF < -  does not imply that IPIV < - ([7]), so

that the class of weakly harmonizable time series is an extension

of the class of strongly harmonizable time series. It was proved

in [26] that every weakly harmonizable time series also has a

stochastic integral representation (2), where Z:D -L2(P) is

merely a vector valued function which, however, always has a finite

semi-variation, defined in ([10], p. 321). Note that the right

side of the integral representation (2) is actually the Fourier

transform of a vector valued function Z . The minimum require-

ment on Z for the integral in (2) to exist in the sense of Dunford

and Schwartz is that Z must be of finite semi-variation. Thus,

by relaxing the restrictions on Z , we extended weakly stationary

series to strongly harmonizable and then to weakly harmonizable

series, and no more extension is possible if the representation

(2) is to hold.

We may also consider multidimensional time series. If X(t) -

tr... , (0) tET , is a p-dimensional column vector of

random variables, where " tr " indicates the transpose, then X

is called a p-dimensional series. If for any p-vector w -

p w of complex numbers, the corresponding time series

Y(t)" w X(t), tET , is weakly stationary, then X is called

a p-dimensional weakly stationary time series. Similarly, we have

p-dimensional strongly and weakly harmonizable time series defined

in the same way.

The concept of weakly stationary time series was introduced
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in the 1930s. Since the stationarity assumption is reasonably

close to the reality in many areas in practice, and since powerful

and elegant mathematical tools are available for the study of

weakly stationary time series, a considerable amount of important

work has been done in this field. In the case of strongly harmoniz-

able time series, the situation becomes more complicated. Not

every result for weakly stationary time series has a corresponding

counterpart for strongly harmonizable series. However, the stand-

ard analysis, such as measure theory and integration theory, is

still of essential importance there. It was known that given any

weakly stationary time series (X(t),tET) as an input series, and

given a bounded linear projection L , which is clearly a (bounded)

linear operator, it can be proved that the resulting output series

Y(t) - LX(t) is not necessarily strongly harmonizable. (See [13],

p. 183 and [26], p. 301.) This shows that the classes of weakly

stationary as well as strongly harmonizable time series are not

large enough for operations under linear transformations such as

in general filtering problems (see below). This is indeed a short-

coming of the structure of these two classes.

The weakly harmonizable time series was first studied under

different names by Bochner [3] and Rozanov [28] in the 1950s.

More work in this area can be found in [21], [19] and [26]. The

class of weakly harmonizable time series is an enlargement of the

classes mentioned above, and it is closed under bounded linear

operators [26]. This closure property makes this class a more

attractive one for some practical applications than the other two.



7

However, we can no longer apply many known facts in standard anal-

ysis as in the previous two cases, since some new mathematical

concepts are involved, and we still do not have a well-rounded

theory of these processes for an analysis. It should be noticed

that some results can be extended from strongly to weakly harmoniz-

able cases, but the same proofs cannot be used, and a different

approach is often necessary.

II. THE LINEAR FILTERING PROBLEM

We now recall the definition of a linear filter for our work

here. A linear filter L is a mapping L:X -Y or, LX - Y ,

where X - (X(t):tET] and Y - (Y(t):tET) are two time series

with T -Z or IR , such that (i) For any a,bER and time

series X and Y , L(aX+bY)- aL(X) +bL(Y) ; (ii) For any

hET , with a time series Xh defined by Xh(t) - X(t+h), tET ,

(LXh)(t) - (LX)(t+h) , tET

Condition (i) says that L is linear, and condition (ii)

says that L commutes with translations on the T axis. In the

case that all the time series under consideration are in L0(P)

a linear filter does not have to be bounded, i.e., 1ILX(t)112/11X(t)11 2

need not be bounded for tET . For instance, one can have dif-

ferential filters which need not be bounded. A study of the

general concept of a linear filter on a second order homogeneous

time series on a globally symmetric in"ee set can be found in

Yaglom [29] and Hannan [12], which extea4v the work of Masani (18]

where the index set is the real line. However, they will not be
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considered here.

Next we discuss the problem mentioned at the beginning of

Section I. Let X - (X(n),nEZ) be a time series, and let L be

a polynomial filter, also called a moving average filter, as fol-

lows:

LX(n) - -a X(n-J) ' nEZ , (6)

where ao,...,a N  are constants. If Y - CY(n),nEZ is such

that Y(n) - LX(n) for all nEZ , Y is called an output series,

and X is called an input series. The inversion problem is to

solve the equation Y - LX for the series X with given Y and

L . Let f be a function defined by

f(t) M I a e i j t  O't<2t (7)

J-OJ

f is called the spectral characteristic of the polynomial filter

L defined by (6), and it is also called the "frequency response"

in the engineering literature.

The following result is from [20]. Let Y be a given weakly

stationary time series with a spectral function P , and let L

be a polynomial filter defined by (6). Let Q denote the set of

zeros of f in the interval W - [0,2w) , i.e., Q -[tEW:f(t) -0 .

Then there exists a weakly stationary time series X - (X(n),nEZ)

such that Y(n) - LX(n) for all nEZ if and only if the follow-

ing two conditions are satisfied:

(i) JI4L(t) - 0 , (8)
Q
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l I (t) < o.(9)
W-Qf(

If both conditions are satisfied, then the solution series X to

the inversion problem is unique if and only if Q is empty. If

Q is not empty, there exists only one solution belonging to the

closed span of all square integrable functions relative to 4

under the L2 norm and whose spectral function v satisfies the

condition "dv(t) - 0 . Furthermore, if all the roots of the

characteristic polynomial P(t) a are outside the unit
j-O a

circle (tEC:Itl -1) , then the filter L is physically realizable.

Actually, with l/P(t) - b t n being the Taylor series expan-
n-0

sion, we have the expression X m Z bnmn , for all mEZ
n 0

However, if some roots are inside and none is on the unit circle,

then L is not physically realizable. In this case, the function

l/P(t) has a Laurent series expansion b tn , and the future
n- n n

values of Y are clearly involved in the expression

X - bYm-n mEZ

In case both X and Y are of continuous parameter, results as

described below are the analogs of the above.

One defines an integral filter L on a continuous parameter

time series X - [X(t),tER3 as follows:

LX(t) - lg(u)X(t-u)du , tEIR , (10)
R

where g is a Lebesgue integrable weight function over R , and

C _ ,,
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the integral on the right side of (10) with a vector integrand is

in the sense of Bochner [9]. The spectral characteristic F as-

sociated with L is now taken as the Fourier transform of g ,

i.e.,

F(t) - 'e- itUg(u)du , tEIR. (11)
IR

With L and F just defined and with W =iR , all the results

listed above for polynomial filters still hold, except the last

part concerning the physical realizability of L . For the un-

bounded linear filter defined by a difference-differential operator

and also for some more general filters, similar results have been

obtained by the author in [5]. In the case when both input and

output series X and Y are strongly harmonizable, the corre-

sponding work was done by Kelsh [15].

Since the spectral function 4 of the output series Y is

now defined on IR x , the necessary and sufficient conditions

(8) and (9) for the existence of a solutiun X , which is also

strongly harmonizable, to the equation Y - LX with L defined

by (6) should be replaced by

(i)' 11 t(QxQ) - 0 , (12)

(ii)' Is Tf(r)1dv)1dL lt(u,v) < , (13)
i ~Q xQc

where l (u,v) is the total variation of i on theretnl
(-,u) x (--,v) , and 1IPIt (QxQ) is that on the set Q xQ . The

uniqueness part is the same as in the weakly stationary case,

except that the condition Jdv(t) - 0 should be replaced by

Q

I.__ _ __,._ _ __ _
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lvlt(QxQ) " 0 , where v is the spectral function of X . Finally,

the physical realizability part is identical with that in the

previous case. A similar result holds for the integral filters

defined by (10).

It is easy to see that if p concentrates on the diagonal,

then (i)' and (ii)' reduce to (i) and (ii). In the multidimensional

case, the work becomes more involved. For the multidimensional

polynomial filters, Kelsh [151 solved the problem for a sub-class

of multidimensional strongly harmonizable time series, which was

called the factorizable spectral measure series, and which con-

tains all the multidimensional weakly stationary series as a proper

subset. Since the frequency characteristic matrix may be singular,

the generalized inverse of a matrix introduced by Moore and Penrose

[231 played an important role there.

In the case when Y is weakly harmonizable, the spectral

function 4 of Y is only of Frechet variation finite. The above

condition (ii) can no longer be used, since Wt (u,v) will gen-

erally be infinite. Instead, we use the following definition of

a reproducing kernel Hilbert space associated with the spectral

function (cf. [1]).

Let f(-,.):]RxR-C be a positive definite function. Let

H be the set of linear combinations of the functions f(a,-):3- C

i.e., H = sp[f(a,.):aE]R . For any two elements g - b f(a

h - ickf(ak,') in H define an inner product by

k NOW,
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(gh' Z bjkf(ai $a)
J= k-l J a ,

Let H* be the closure of H under (.,.> . Then H* is called

a reproducing kernel Hilbert space associated with the function

f , and f is called its reproducing kernel. Now we regard f

as a vector valued function, f:a - H* , for all aElR. A theory

of integration of a scalar function with respect to a vector in-

tegator is available, see ([10], p. 323). Let Ll(fH* ) be the

set of all functions g:R- C which are integrable relative to

f:JR -H* in this sense.

Now let Y be a weakly harmonizable time series with spectral

function P . Let L be a linear filter, either a polynomial or

an integral filter, with the spectral characteristic F . The

necessary and sufficient conditions for the existence of a weakly

harmonizable time series X satisfying LX - Y are as follows:

(1)" IPIF(QXQ) = 0
i (ii)" XXQC/PEL ( * .

Qc

For the uniqueness and the physical realizability, we have the

same situation as before. Similar results hold for certain multi-

dimensional filters (cf. [5]). It should be noted that the above

conditions and hence the result for weakly harmonizable time series

is not the same as that for the strongly harmonizable time series.

However, both agree when specialized to the stationary case.
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III. OPTIMAL SIGNAL ESTIMATION

Next we consider the problem of filtering signal from noise.

Let S - (S(t):tER] and N - (N(t):tE]R) be the signal and noise

time series respectively, and let X - (X(t):tE]R be the out-

put series which consists of both signal and noise, i.e., X - S4N

We only consider the continuous parameter case here. If the signal

S and the noise N are not observable, but the output X is

observable, it is desired to estimate S by a best linear filter

L operating on X in the mean square error sense, i.e., with

the error IS(t)-LX(t)11 2 minimized for tEIR . We assume that

the series S and N are of the same type, and some conditions

on their spectral functions are needed for obtaining correspond-

ing results.

In the case that the noise series N is Gaussian, the work

in this problem can be found in [14] and [221. In the weakly

stationary case, the problem was treated by Grenander [111, as

follows. Let S , N and X be weakly stationary. Then X will

have the integral representation X(t) - (eitX dZ() , where
R

2Z:]R- L0 (P) is a vector valued function with orthogonal incre-

i ments. Let iS and 4N be the spectral functions of series S

and N . If PS and 4N are absolutely continuous, i.e., ifp the derivatives fs(t) - ds(t)/dt and fN(t) - dpN(t)/dt exist,

and if S and N are uncorrelated, i.e.,

rS,N(uv) - E(S(u)=7) - 0 , UvE

then the best linear filter S in the mean square error sense,

which is also called an optimal filter, is given by the formula
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fs () e itXdZ (X) tER()- fs (A) +fN TX)

If the integrand, which is called a response function or a filter

function, can be approximated by an expansion

fs(X) M iakX
fs () +iN (X) M -Mkml k

then we have

S(t) - ckX(t+ak).

k-l
In general, if the signal and the noise are not necessarily

uncorrelated, but are weakly stationarily correlated, i.e.,

rS,N(uv) - rS,N(u-v) - ei(u 'v)X d LS,N ( X ) I u,vER,

and if the function SN:R -.C is absolutely continuous, so that

one has

rSN(u-v) - Jei(UV)fSN (X)dXIR

the solution to the filter problem is given by the expression

f(t) fs(x) 4 SN(x) e dZ(k) tE3R (14)i - ~t) "R S(-'Nk) 2e(S ,N( ) )  "

Note that in the above results, one has to assume that all the

spectral functions and the cross-spectral function are absolutely

continuous. If this is not the case, the results become more

complicated.

When the series S , N and X are of Cramer class as de-

fined in [8], which contains the class of all strongly harmoniza-

ble time series, and when S and N are uncorrelated, then

similar results were obtained in [27]. Without assuming that S

and N are uncorrelated, Kelsh [151 considered the same problem
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for multidimensional Cramer class series, and got the corresponding

result using the technique essentially due to Rao (27]. For one

dimensional strongly harmonizable series S , N and X , Kelsh's

result can be stated as follows.

Let 4S,6N:]RxRl- be the spectral functions of S and N ,

ASON:]RxR-C be the cross-spectral function, and let is,N: ]R

Sbe defined by S,N(V) for u,vER . Then the

optimal filter is
9(t) - f1F(%)dZ(x) , tER , (15)

R

where F:l- C is a solution to the set of integral equations

)(u - JrJ itu-isv +
0RxRF(u)etsvd (lxSPN LS,N*4 S N ( eU d(SS ,N)(uv) ,

for all sEl . In general, it is not easy to solve this system

of integral equations analytically. However, if the spectral

functions S N and AS, are absolutely continuous, expres-

sion (15) can be reduced to an explicit form as in (14).

IV. SAMPLING A HARMONIZABLE PROCESS

Next we discuss the sampling problem of the continuous pa-

rameter time series. When we study a time series in practice, it

is sometimes physically difficult or economically undesirable to

observe the whole series. It is then required to sample it at

only finitely many times, and to estimate the original series from

the observed samples. Sampling theorems are very Important in

many fields in practice, such as the communication and information

theory.

iS
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The following result is called Kotel'nikov-Shannon formula,

and is an abstraction of a classical (nonstochastic) result due

to Cauchy [4].

If X - (X(t):tElR is a weakly stationary time series with

spectral function 4 which is supported by a bounded interval

(-1/2h,l/2h) , h >0 , i.e., it is constant in (--,-1/2h] and

[1/2h,-) , then

X(t) - lim Xfnhsin [ h( t n h (/ h ]

N- -- n -N "'" T (t-n )/' tE t (16)

where the convergence on the right side of (16) is in the sense of

mean square. This formula gives a periodic sampling theorem, where

one observes the time series at the periodic points t - nh

-N n 'N , and the random variable X(t) at any time t can be

estimated by (16) by taking large enough N .

If X is weakly stationary but its spectral function P is

not necessarily supported by a compact set, then the following

results of Lloyd [16] hold.
.

If iA has an open support S such that the sets (S-nh) ,

nEZ , are mutually disjoint, i.e., no two values in S differ by

an integer multiple of 1/h , then

X(t) - l.i.M. E(l -Inl/N)X(nh)K(t-nh) , tENR , (17)
N"t n--N

where K(t) - h4e 2 l"iktA, tER , and l.im. denotes the con-
S

vergence in mean square. If S is a finite union of intervals,

or if sup ItK(t)I < , then
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N
X(t) - l.i.m. Z X(nh)K(t-nh) , tEUR . (18)

N- n--N

The problem of sampling for strongly harmonizable time series

has been studied by Rao, Piranashvili and Pourahmadi (cf. [27],[24],

[25]). The formula (16) was obtained by Piranashvili [24] for

strongly harmonizable time series whose spectral function has a

bounded support in R xR . The formulas (17) and (18) have been

extended to strongly harmonizable time series by Rao [27] and

Pourahmadi (25]. Let X be a strongly harmonizable time series

with spectral function i , and let v be a function defined by

v(s) - kJI ((--,s),R) , sEIR . If v has an open support S such

that the sets (S +n/hI, nEZ , are mutually disjoint, then (17)

holds. If S is a finite union of intervals, or if sup ItK(t)(
! _-w< L-<m

then (18) holds.

In the case where X - (X(t):tE]R] is weakly harmonizable

with spectral function F , we have the following result due to

Chang and Rao [6]. Given any e >0 , if there exists a bounded

Borel set A - (Ac) cR such that

JJdF (u,v) < c/4 , I B c Ac (B a Borel set),
BxB

and if a0 - diameter of A , then for any h<-r/0 , one has an

N ( -N,t ) such that

Ixt -N .-.,yin(t'nh)/h 112 < C(t)[(f-ha0)N]'- +€

where O<C(t) <0 is bounded for t in bounded sets. If the

spectral function F has a bounded support, then we can set c - 0

The above formula actually gives an estimation of the error in the
mean square sense.
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V. A NUMERICAL ILLUSTRATION

In this section we give a numerical example which deals with

the data of a nonstationary time series. The data is from a tape

which contains digitized acoustic data of the time series output

for one beam of a multibeam sonar. The time series is primarily

dominated by energy emitted by a transiting merchant ship, and it

contains significant energy over a board range of frequencies. The

tape is very kindly provided by Dr. D. F. Gingras of the Naval

Ocean System Center at San Diego, California. Since the data is

used solely for the purpose of illustration, no specific details

will be discussed.

A set of 4000 data is read in from the tape and stored in a

vector Y of real numbers. Let a0,...,a 6 be the real coeffi-

cients to be determined. For each 8 sn 94000 , we define the

"error"

Cn = Y (n ) -- aJY(n-J)

Minimizing the sum £8n relative to the ai's , we obtain the,, ,nin8 n

values for the filter coefficients aO,...,a6 . Correct to three

decimal places, these are as follows:

a0 - 0.852 a3 - -0.087

a1 - -0.463 a4 - 0.007

a2 - 0.227 a5 - 0.002

a6 - -0.100

With the given sequence Y as the output series, and with the co-

efficients aj obtained as above, we can consider the filtering
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problem Y(n) - LX(n) 0ajX(nJ) for na7 , where X is an

unknown input series. Note that if we assume that Y(n) - 0 for

all n X0 , the problem becomes quite simple. This is not assumed

here.

The characteristic polynomial of the filter L is of the

form P(t) t a tJ The roots t1 ,...t 6 of P can also be

K computed. These are as follows:

t = 1.295 t3,t4 - 0.501 *1.357i

t2 = -1.746 t5 ,t6 - 0.739*l.118i

Since all these roots lie outside the unit circle, the filter L

is physically realizable. To compute the values for the sequence

X , we need to expand the rational function 1/P using the Taylor

series method. With the coefficients blb 2 ,... thus determined,

we can use the formula X(m) - b Y(m-n) to obtain the input
n_0

series X . The first 24 b's , correct to three decimal places,

are as follows:

b0 - 1.177 b6 - 0.136 b12 - 0.018 b18 " 0.003

b - 0.640 b7 - 0.147 b13 ' 0.025 b19 , 0.004

b2 - 0.033 b8 M 0.049 b14 " 0.015 b2 0 ' 0.003

b3 = -0.032 b9 - -0.003 b15 - 0.003 b2 1 ' 0.001

b4 - 0.030 b10 - 0.003 b16 - 0.000 b22 ' 0.000

b5 - 0.019 b11 " 0.008 b17 - 0.002 b2 3 ' 0.000
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A set of two hundred values (from the same data records) of X

and Y , correct to two decimal places, is given in Table I, and

the graphs for both series X and Y with these values are plot-

ted in Figure 1 for comparison.
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TibLE 1

X : 5O.Q4 46.50 17.34 3.26 q1.16 62.02 U'.2 4  4.3S
Y : 3b.O0 26.00 6.0" 31.n0 27.00 i3.00 26.00 18.00

X : 22.51 -24.86 -24.45 -9.87 -q.74 -M.53 -2S.60 -62.92
Y : u.m) -2q.00 -13.n0 -7.nO -15.09 -7.nO -22.00 -40.0O

X : -2o.09 -12.47 -2A.3A -2b.q2 -42.'4 -53.19 -3a.62 -1Q.oh
¥ : U.IO0 =In.no0-18.9A -10.no -?.nn-23.)0 -In.nO -j.O00

X : -21.52 -lq.6 119.q8 31.81 2a.22 15.39 1.51 19.35
y : -In.nO -6.90 20.00 24.nO 17.00 8.)0 0.00 Iq.00

A: 1.61 32.4u 2q.11 48.21 6.16 -25.Ab 7.92 1u.3u
Y : 33.00 5.00 1-.00 29.n0 -13.00 -18.nO 11.00 1.00

X : -1.q -36.44 -21.63 -22.06 -14.S' 12.98 3.82 -uA3.ql
Y : -'9.01 -26.0 n -7.00 -13.n) -q.00 15.n0 -4.00 -31.10

X : -37.65 -35.71 -27.08 -28.84 -0.38 41.n 42.43 -29.48
Y : -10.0 -21.00 -10.00 -18.00 q."0 35.0 23.00 -32.00

------------ --------------------------------------------------------------
X : -54.60 -24.72 -25.q2 -32.84 -2.06 1.89 -20.87 -56.9
Y : -24.00 -5.00 -20.00 -21.00 5.00 n.00 -11.00 -36.0

X : -29.33 46.23 63.3 51.70 63.24 57.73 21.S7 42.92
Y : -1.00 45.00 31.00 21.00 U2.00 32.00 .10 30.n0

X : 45.59 16.25 6.15 -42.qq -75.q7 -60.6' -43.61 -63.os
y : 13.00 -4.0 0.00 -46.00 -46.n0 -31.n0 -27.00 -43.00

X : -08.65 -o2.0 -52.70 -25.59 -5.88 -1n.dq 5.56 18.34
Y -5.00 -28.00 -19.00 0.00 4.00 -2.00 17.n0 17.'n

X : -16.33 -S4.q6 -13.7U 2q.q8 42.14 4q.19 43.92 24.A8
¥y -15. 0 -33.n0 q.00 22.10 23.M0 28.00 23.n') 1.on

X : 34.20 24.15 2.77 -0.71 30.88 4S.'8 15.79 1.18
y : 25.00 4.00 -7.00 -4.00 21.n0 22.0 -4.0 -1.00

hi
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"4 TABLE 1 (Continued)

X -8.23 -59.02 -A6.41 -64.37 -0.74 IQ.18 Q.62 -33.10
y -. 00 -47.00 -S1."0 -32.00 13.n 9.0) 5.09 -23.00

X -26.27 20.79 3?.j6 29.50 21.5' -195 -56.82 -70.72
Y : 2.00 28.00 15.no 15.00 Q.nO -12.00 -38.0 -40.00

-------------------------------------------------------------------------
x : -;M.37 ln.38 17.36 14.21 ol.42 S1.27 1I.16 j0.26
IF : -3.fl0 0.n A-.00 9.00 54.00 24.00 1.nO 26.00

---------------------- -----------------------------------------5 0.8a 32..,6 10.57 36.31 58.69 22.91 -30.1 -5".6Q

: 26.0 q.00 -3.00 24.nO 32.00 -3.00 -31.n0 -32.0n
------------------------------------------------------------------------
X : -1o.4q -31.08 -aS.qO - .45 -40.44 -21.23 -,.A5 -7.21
y : n.On -1.0 -30.00 -30.00 -16.0" -2.00 3.0n -3.00

: -17.05 -lo.41 12.,! 38.81 41.67 42.31 37.32 20.33
y : -6.00 -3.nO 19.00 27.00 22.00 25.00 20.00 8.00

X : -6.hq 24.73 77.68 80.61 21.'7 -25.42 -46.07 -57.S4
y : -13.0 23.0 47.01 3S.00 -7.00 -22.00 -28.00 -37.00

X : -66.QA -58.4Q -4503 -22.8? 12.46 -6.08 -33.9 7 -12.12
Y : -46.0n -36.00 -24.0n -4.00 20.00 -7.nO -15.00 A.00

X : 45.63 85.60 Q9.99 66.4 2q.03 -49-.7 -48.3' 21.8
y : 42.00 54.00 52.90 78.00 1?."0 -4q.00 -21.00 19.00

x : 69.26 43.3o 26.50 5.22 -28.49 -52.19 -31.25 -6.$74 : 33.00 -9O 13.00 1.0" -19.00 -34.nO -16.00 -9.00

I 20.25 13.12 -6.6U 6.62 3S.81 41.q5 -8.41 -12.37
Y : 15.0n 2.00 -4.00 15.0 28.00 22.00 -21.0n -27.00

X : -S4.06 -22.13 16.36 1.63 -3b.77 -57.53 -57.1) -26.63
y : -s1.00 -3.00 12.00 -I!.AO -26.00 -2q.Ao -25.009 -4.o

-------------------------------------------------------------------------------------------
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