HD-8137 509	GENERAL EL	LECTROMAGNE	TIC MO	DEL FO	R THE	ANALY	SIS OF	ММ	1/	5	7
UNCLASSIFIED	RADC-TR-8	3-217-VOL-3	2-PT-3	F30602	-81-C	-0084	F/G 2	0/14	NL		
	2										

「私気がない」である。

and the second and a second second

Same a

1 3

1.12.62

RADC-TR-83-217, Vol III (of three), Pt 3 Final Technical Report September 1983

Several Electromagnetic Model For The Analysis of Complex Systems (GEMACS) Computer Code Documentation (Version 3)

The BDM Corporation

Dr. Diana L. Kadlec and Dr. E. L. Coffey

A CONTRACT OF A CONTRACT OF

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER

Air Force Systems Command Griffiss Air Force Base, NY 13441

IL FILE COPY

84 02 06 002

This report has been reviewed by the RADC Public Affairs Office (PA) ar is releasable to the National Technical Information Service (NTIS). At NTL it will be releasable to the general public, including foreign nations.

RADC-TR-83-217, Volume III, Part 3 (of three) has been reviewed and is approved for publication.

APPROVED:

KR Linbieway

KENNETH R. SIARKIEWICZ Project Engineer

APPROVED:

W.S. TUTHILL, Colonel, USAF Chief, Reliability & Compatibility Division

FOR THE COMMANDER:

Huis John

JOHN P. HUSS Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organization please notify RADC (RBCT) Griffiss AFB NY 13441. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notic on a specific document requires that it be returned.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)	
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOYT ACCESSI	ON NO. 3. OFCIPIENT'S CATALOG NUMBER
RADC-TR-83-217, Vol III, Part 3 #137.	597
4. TITLE (and Subtitie)	5. TYPE OF REPORT & PERIOD COVERED
GENERAL ELECTROMAGNETIC MODEL FOR THE ANALYS	SIS Final Technical Report
OF COMPLEX SYSTEMS (GEMACS)	February 81 - July 83
COMPUTER CODE DOCUMENTATION (Version 3)	BDM/A-83-020-TR
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(a)
Dr. Diana I. Kadlec	F30602-81-C-0084
Dr. Edgar L. Coffey	130002-01-0-0004
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT. PROJECT, TASK
The BDM Corporation	AREA & WORK UNIT NUMBERS
1801 Randolph Road, S.E.	02/028
Albuquerque NM 87106	23300333
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Rome Air Development Center (RRCT)	September 1983
Griffiss AFB NY 13441	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling O	flice) 15. SECURITY CLASS. (of this report)
	BUCK ACCENTED
Samo	UNCLASSIFIED
раше	15a. DECLASSIFICATION/DOWNGRADINC
Approved for public release; distribution un	limited
Approved for public release; distribution un	limited
Approved for public release; distribution un 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 diffe	limited
Approved for public release; distribution un 77. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 difference on the obstract o	limited
Approved for public release; distribution un 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 diffe Same	limited
Approved for public release; distribution un 7. DISTRIBUTION STATEMENT (of the abstract enfored in Block 20, 11 diffe Same 18. SUPPLEMENTARY NOTES	limited
Approved for public release; distribution un 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 diffe Same 18. SUPPLEMENTARY NOTES RADC Project Engineer: Kenneth R. Sjarkjewi	limited rent from Report)
Approved for public release; distribution un 77. DISTRIBUTION STATEMENT (of the obstract enfored in Block 20, If diffe Same 18. SUPPLEMENTARY NOTES RADC Project Engineer: Kenneth R. Siarkiewi	limited rent from Report) cz (RBCT)
Approved for public release; distribution un 7. DISTRIBUTION STATEMENT (of the abstract enfored in Block 20, 11 diffe Same 18. SUPPLEMENTARY NOTES RADC Project Engineer: Kenneth R. Siarkiewi	limited
Approved for public release; distribution un 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 diffe Same 10. SUPPLEMENTARY NOTES RADC Project Engineer: Kenneth R. Siarkiewi 1. KEY WORDS (Continue on reverse eigh 11 necessary and identify by block of	limited rent from Report) cz (RBCT)
Approved for public release; distribution un Approved for public release; distribution un 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, If diffe Same 8. SUPPLEMENTARY NOTES RADC Project Engineer: Kenneth R. Siarkiewi 9. KEY WORDS (Continue on reverse olds If necessary and identify by block of Slectromagnetic Compatibility	limited rent from Report) cz (RBCT) mmmber) MOM/GTD Hybridization
Approved for public release; distribution un Approved for public release; distribution un 17. DISTRIBUTION STATEMENT (of the obstract enfored in Block 20, 11 diffe Same 18. SUPPLEMENTARY NOTES MADC Project Engineer: Kenneth R. Siarkiewi 19. KEY WORDS (Continue on reverse olds 11 necessary and identify by block of Electromagnetic Compatibility Method of Moments (MOM)	limited rent from Report) cz (RBCT) member) MOM/GTD Hybridization EM Radiation and Scattering
Approved for public release; distribution un Approved for public release; distribution un 7. DISTRIBUTION STATEMENT (of the obstract enfored in Block 20, 11 diffe Same 8. SUPPLEMENTARY NOTES RADC Project Engineer: Kenneth R. Siarkiewi 9. KEY WORDS (Continue on reverse olds 11 necessary and Identify by block of Electromagnetic Compatibility Method of Moments (MOM) Geometrical Theory of Diffraction (GTD)	limited rent from Report) cz (RBCT) member) MOM/GTD Hybridization EM Radiation and Scattering
Approved for public release; distribution un Approved for public release; distribution un 7. DISTRIBUTION STATEMENT (of the obstract onfored in Block 20, if difference Same 8. SUPPLEMENTARY NOTES MADC Project Engineer: Kenneth R. Siarkiewi 9. KEY WORDS (Continue on reverse olds if necessary and identify by block of Electromagnetic Compatibility Method of Moments (MOM) Seometrical Theory of Diffraction (GTD) Intenna Analysis Metric Equation Solution	limited rent from Report) cz (RBCT) member) MOM/GTD Hybridization EM Radiation and Scattering
Approved for public release; distribution un Approved for public release; distribution un 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 diffe Same 8. SUPPLEMENTARY NOTES RADC Project Engineer: Kenneth R. Siarkiewi 8. KEY WORDS (Continue on reverse olds 11 necessary and Identify by block of Electromagnetic Compatibility Sethod of Moments (MOM) Secometrical Theory of Diffraction (GTD) Antenna Analysis Satrix Equation Solution 8. ABSTRACT (Continue on reverse olds 11 necessary and Identify by block of 11 necessary and Identify by block of 12 necessary and Identify by block of 13 necessary and Identify by block of 14 necessary and Identify by block of 15 necessary and Identify by block of 15 necessary and Identify by block of the second of t	limited rent from Report) cz (RBCT) MOM/GTD Hybridization EM Radiation and Scattering amber)
Approved for public release; distribution un Approved for public release; distribution un T. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 diffe Same Same S. SUPPLEMENTARY NOTES MADC Project Engineer: Kenneth R. Siarkiewi S. KEY WORDS (Continue on reverse side 11 necessary and identify by block of Electromagnetic Compatibility Method of Moments (MOM) Seometrical Theory of Diffraction (GTD) Intenna Analysis Matrix Equation Solution A ABSTRACT (Continue on reverse side 11 necessary and identify by block of EMACS solves electromagnetic radiation and	limited rent from Report) cz (RBCT) member) MOM/GTD Hybridization EM Radiation and Scattering meter) scattering problems. The
Approved for public release; distribution un Approved for public release; distribution un 7. DISTRIBUTION STATEMENT (of the obstract enfored in Block 20, 11 diffe Same 8. SUPPLEMENTARY NOTES RADC Project Engineer: Kenneth R. Siarkiewi 9. KEY WORDS (Continue on reverse olds 11 necessary and identify by block of Electromagnetic Compatibility Sethod of Moments (MOM) Geometrical Theory of Diffraction (GTD) Antenna Analysis Satrix Equation Solution 9. ADSTRACT (Continue on reverse olds 11 necessary and identify by block of EMACS solves electromagnetic radiation and Sethod of Moments (MOM) and Geometrical Theo	limited rent from Report) cz (RBCT) MOM/GTD Hybridization EM Radiation and Scattering mobor) scattering problems. The ry of Diffraction (GTD) are
Approved for public release; distribution un Approved for public release; distribution un 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 diffe Same 18. SUPPLEMENTARY NOTES RADC Project Engineer: Kenneth R. Siarkiewi 19. KEY WORDS (Continue on reverse olds 11 necessary and Identify by block r Electromagnetic Compatibility Sethod of Moments (MOM) Secometrical Theory of Diffraction (GTD) Antenna Analysis Satrix Equation Solution 8. ABSTRACT (Continue on reverse olds 11 necessary and Identify by block m SEMACS solves electromagnetic radiation and Sethod of Moments (MOM) and Geometrical Theo Used. MOM is formalized with the Electric F	limited rent from Report) cz (RBCT) member) MOM/GTD Hybridization EM Radiation and Scattering amber) scattering problems. The ry of Diffraction (GTD) are ield Integral Equation (EFIE)
Approved for public release; distribution un Approved for public release; distribution un 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, If difference Same 8. SUPPLEMENTARY NOTES RADC Project Engineer: Kenneth R. Siarkiewi 8. KEY WORDS (Continue on reverse side If necessary and identify by block of Electromagnetic Compatibility Sethod of Moments (MOM) Secometrical Theory of Diffraction (GTD) Antenna Analysis Satrix Equation Solution 8. ASTRACT (Continue on reverse side if necessary and identify by block m EMACS solves electromagnetic radiation and Sethod of Moments (MOM) and Geometrical Theo Ised. MOM is formalized with the Electric F For wires and the Magnetic Field Integral Equ	limited rent from Report) cz (RBCT) member) MOM/GTD Hybridization EM Radiation and Scattering meter) scattering problems. The ry of Diffraction (GTD) are ield Integral Equation (EFIE) wation (MFIE) for patches. The
Approved for public release; distribution un Approved for public release; distribution un 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If difference Same 8. SUPPLEMENTARY NOTES RADC Project Engineer: Kenneth R. Siarkiewi 8. KEY WORDS (Continue on reverse olds II necessary and Identify by block of Slectromagnetic Compatibility Method of Moments (MOM) Scometrical Theory of Diffraction (GTD) Antenna Analysis Matrix Equation Solution 8. ASSTRACT (Continue on reverse olds II necessary and Identify by block of Seconstrict on solution 8. ASSTRACT (Continue on reverse olds II necessary and Identify by block of Seconstrict of Moments (MOM) Seconstrict on solution 8. ASSTRACT (Continue on reverse olds II necessary and Identify by block of Seconstrict of Moments (MOM) and Geometrical Theo Secons of Moments (MOM) and Geometrical Theo Secons MOM is formalized with the Electric F For wires and the Magnetic Field Integral Equation and Secons employs both full matrix decomposition and Secons employs both full matrix decomposition and Secons Secons Sec	limited rent from Report) cz (RBCT) momber) MOM/GTD Hybridization EM Radiation and Scattering momber) scattering problems. The ry of Diffraction (GTD) are ield Integral Equation (EFIE) uation (MFIE) for patches. The and Banded Matrix Iteration
Approved for public release; distribution un Approved for public release; distribution un T. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If difference Same Same Same S. KEY WORDS (Continue on reverse side if necessary and identify by block of Slectromagnetic Compatibility Sethod of Moments (MOM) Seometrical Theory of Diffraction (GTD) Intenna Analysis Satrix Equation Solution S. ASTRACT (Continue on reverse side if necessary and identify by block of EMACS solves electromagnetic radiation and Sethod of Moments (MOM) and Geometrical Theo Sec. MOM is formalized with the Electric F For wires and the Magnetic Field Integral Equation is BMI) solution techniques. The MOM, GTD and	limited rent from Report) cz (RBCT) momber) MOM/GTD Hybridization EM Radiation and Scattering motor) scattering problems. The ry of Diffraction (GTD) are ield Integral Equation (EFIE) uation (MFIE) for patches. The and Banded Matrix Iteration hybrid MOM/GTD techniques in
Approved for public release; distribution un Approved for public release; distribution un T. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If difference Same Same Same S. KEY WORDS (Continue on reverse olds If necessary and Identify by block of lectromagnetic Compatibility Sethod of Moments (MOM) Seometrical Theory of Diffraction (GTD) Intenna Analysis Satrix Equation Solution S. ASSTRACT (Continue on reverse olds If necessary and Identify by block of Secometrical Theory of Diffraction (GTD) Intenna Analysis Satrix Equation Solution S. ASSTRACT (Continue on reverse olds If necessary and Identify by block of Secometrical Theory of Diffraction (GTD) Intenna Analysis Satrix Equation Solution S. ASSTRACT (Continue on reverse olds If necessary and Identify by block of Secometrical Theory of Diffraction (GTD) Intenna Analysis Satrix Equation Solution Secometrical Theory of Diffraction (GTD) Secometrical The	limited rent from Report) cz (RBCT) MOM/GTD Hybridization EM Radiation and Scattering mobor) scattering problems. The ry of Diffraction (GTD) are ield Integral Equation (EFIE) wation (MFIE) for patches. The and Banded Matrix Iteration hybrid MOM/GTD techniques in l object problems, electrically
Approved for public release; distribution un Approved for public release; distribution un T. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 diffe Same B. SUPPLEMENTARY NOTES RADC Project Engineer: Kenneth R. Siarkiewi D. KEY WORDS (Continue on reverse side 11 necessary and identify by block of Electromagnetic Compatibility Method of Moments (MOM) Geometrical Theory of Diffraction (GTD) Antenna Analysis Matrix Equation Solution B. ABSTRACT (Continue on reverse side 11 necessary and identify by block m EMACS solves electromagnetic radiation and Method of Moments (MOM) and Geometrical Theory used. MOM is formalized with the Electric F For wires and the Magnetic Field Integral Equation is BMI) solution techniques. The MOM, GTD and the code are used to solve electrically small D 1000 1873 EDITION OF 1 NOV 55 IS OBSOLETE	limited rent from Report) cz (RBCT) MOM/GTD Hybridization EM Radiation and Scattering meter) scattering problems. The ry of Diffraction (GTD) are ield Integral Equation (EFIE) uation (MFIE) for patches. The and Banded Matrix Iteration hybrid MOM/GTD techniques in l object problems, electrically

WARAFA COMPLEX

2. 2. 2. 4. 4. 4. 4. 4.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

large object problems and combination sized object problems.

and the second second

Volume I of this report is the User Manual. The code execution requirements, input language and output are discussed.

Volume II is the Engineering Manual. The theory and engineering approximations implemented in the code are discussed. Modeling criterion are given.

Volume III is the Computer Code Documentation Manual. This manual contains extensive software information of the code.

Accession For MTIS GRA&I DTIC TAB Unannounced Justification_ By. Distribution/ Availability Codes Avail and/or Special)ist

and the states of the

INCLASSIFTED SECURITY CLASSIFICATION OF THIT PAGE (When Date Entr.

1. NAME: RADCV (GTD)

- 2. PURPOSE: To compute the longitudinal and transverse radii of curvature of the elliptic cylinder at a given point.
- 3. METHOD: The longitudinal radius of curvature of the elliptic cylinder (in the plane of incidence) at the point defined by elliptical angle VR (as shown in figure 1) is given by:

$$\rho_{g} = \frac{(A^{2} \sin^{2} VR + B^{2} \cos^{2} VR)^{3/2}}{AB \sin^{2} \alpha_{g}}$$

The transverse radius of curvature at the point defined by elliptical angle VR is given by:

$$\rho_{t} = \frac{(A^{2} \sin^{2} VR + B^{2} \cos^{2} VR)^{3/2}}{AB \sin^{2}(\alpha_{s} - \pi/2)}$$

where

Figure 1. Illustration of Elliptical Cylinder Geometry Used in Computing the Radii of Curvature at Point X RADCV (GTD)

4. **INTERNAL VARIABLES:** VARIABLE DEFINITION Cylinder radius along the x axis A Cylinder radius along the y axis B RG Radius of curvature in the plane of incidence RGT Radius of curvature of the elliptic cylinder in the principal x-y plane RT Radius of curvature transverse to the plane of incidence SAS The sine of AS, where AS is π minus THSR (THSR is the theta angle of the observation direction in the reference coordinate system (RCS) relative to the cylinder axis in radians) SASP The absolute value of the sine of AS - $\pi/2$, where AS is π minus THSR (THSR is the theta angle of the observation direction in the RCS relative to the cylinder axis in radians) VR Elliptic angle defining the desired point on cylinder I/O VARIABLES: 5. A. INPUT LOCATION A /GEOMEL/ B /GEOMEL/ SAS /GTD/ SASP /GTD/ VR F.P. OUTPUT Β. LOCATION RG F.P.

812

F.P.

RT

RADCV (GTD)

6. CALLING ROUTINES:

RPLSCL

いたが

SCLRPL

SCTCYL

7. CALLED ROUTINE:

NONE

•1•1•1•1•

s.4101s.

•

1. NAME: RCLDPL (GTD)

A DOLONAL

- 2. PURPOSE: To compute the unobstructed electric field from a unit source reflected by a cylinder and diffracted by edge ME of plate MP into the given far-field observation direction or to a given near-field point.
- 3. METHOD: RCLDPL is the driver routine which directs all the ray tracing, physics and field calculations for determining the electric field from a unit source reflected from a cylinder and then diffracted by a plate in a given far-field direction or to a given near-field observation point. Pertinent geometry is shown in figure 1.

Figure 1. Ray Reflected by Cylinder and then Diffracted by Plate Edge

The code first checks the wedge angle number of edge ME of plate MP. If it is greater than 2, indicating it is part of a wedge, and the edge has already been considered, the fields are set to zero. If

17.75.1

debug information is requested, it is printed on file LUPRNT. Then control is returned to the calling routine. If the wedge angle number is less than 2, the code then checks, for far field only, if diffraction is possible. If it is not possible, a flag is set which indicates that reflection point starting data are not available for the next time RCLDPL is called. The field is set to zero. Debua information (if requested) is printed on file LUPRNT, and control is then returned to the calling routine. This check is not made for near field at this point in the code. Now for both near field and far field subroutine RFDFPT is called. RFDFPT computes the ray path and checks for near-field calculations if diffraction was possible. After returning from RFDFPT, the code makes three checks to determine if reflection and diffraction points are legal. The first check is to make sure that the reflection satisfies Snell's Law. Then the reflection point is checked to make sure it is on the curved surface of the cylinder. The diffraction point is checked to make sure it is on edge ME of the plate. If any of these checks fails, the fields are set to zero, debug information is printed if it was requested, and control is returned to the calling routine. If reflection and diffraction have occurred properly, then the complete ray path is checked for obstructions. If it is obstructed at any location, the fields are set to zero. Debug information is printed if it was requested, and then control returns to the calling routine. If a ray path is unobstructed, the field computations can begin.

The polarization unit vectors for the rays incident and diffracted on the plate and incident and reflected at the cylinder are The source field pattern factor is found by calling computed. subroutine SOURCE. The first field computed is that which is incident on the cylinder. It is computed in components perpendicular and parallel to the plane of incidence. Then the cylinder reflected field is computed. Following this, the field incident on the plate can be computed in parallel and perpendicular components. The caustic distances and ray spreading factors are computed for the reflected-diffracted ray. The phase factor is computed. Diffraction coefficients are found by calling subroutine DW. Now the total diffracted field can be computed and converted to theta and phi components in the reference coordinate system (RCS). Subroutine XYZFLD is called to compute the x, y, and z components of the field and to accumulate them with the fields from other interactions.

1. XXXXX

If debug information was requested, the total field magnitude is computed. The total field magnitude, and theta and phi components are printed on file LUPRNT. Control is then returned to the calling routine.

RCLDPL (0

(GTD)

4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
во	Diffracted field polarization unit vector parallel to edge
BOP	Incident field polarization unit vector parallel to edge
DD	Normalization constant for cylinder tangent vector
DH	Edge diffraction coefficient for hard field components
DHIT	Distance from source to hit point (from PLAINT)
DOTP	Test parameter used to determine if reflec- tion is legal
DPH	Slope diffraction coefficient for hard boundary condition
DPS	Slope diffraction coefficient for soft boundary condition
DS	Diffraction coefficient for soft field components
DV	Dot product of edge unit vector and diffracted ray propagation direction
EDPH	Phi component of diffracted field in RCS
EDPL	Diffracted field component parallel to edge
EDPR	Diffracted field component perpendicular to edge
EDTH	Theta component of diffracted field in RCS
EF	Theta component of source field pattern factor
EG	Phi component of source field pattern factor

817

5 VALVAN 5

I	RCLDPL (GTD)
EIPL	Component of field incident on cylinder (or plate) parallel to plane of incidence (or edge)
EIPR	Component of field incident on cylinder (or plate) perpendicular to plane of incidence (or edge)
EIX,EIY,EIZ	Source pattern factors for x,y,z components of incident E-field
ERX,ERY,ERZ	X,Y,Z components of cylinder reflected field in RCS
ЕХРН	Complex phase and spreading factor
FN	Wedge angle number
FNP	2π minus the wedge angle
GAM	Dot product of vector to the diffraction point with the observation unit vector
LHIT	Set true if ray hits plate (from PLAINT)
LRDC	Set true if reflection data are available from previous pattern angle (or for next pattern angle (when leaving routine))
ME	Edge on plate MP where diffraction occurs
MP	Plate where diffraction occurs
РН	Diffracted field polarization unit vector normal to edge
PHICR	Phi component of field incident on cylinder in RCS
РНО	Incident field polarization unit vector normal to edge
PS	Diffracted ray phi angle in diffraction point coordinate system in degrees
PSOR	Incident ray phi angle in diffraction point coordinate system

Ż

h

PSR	Diffracted ray phi angle in diffraction point coordinate system
RHI1	Caustic distance of cylinder reflected field incident on edge in the direction perpendicular to the edge
RHI2	Caustic distance of cylinder reflected field incident on edge in the direction parallel to the edge
RHIE	Edge caustic distance
RH01	Ray spreading radius at cylinder in plane normal to plane of incidence
RHO2	Ray spreading radius at cylinder in plane of incidence
SBO	Sine of the diffraction angle
SMAG	Length of ray from reflection point on cylinder to source and distance between reflection and diffraction points
SNF	Distance between diffraction point on plate and near-field observation point
SP	Distance between reflection and diffraction point
THICR	Theta component of incident ray direction on cylinder in RCS
трр	Distance parameter for edge-diffracted field
UB	Unit binormal of elliptic cylinder at phi angle at which reflection occurs (2-D)
UIPPX,UIPPY,UIPPZ	X,Y,Z components of incident polarization unit vector parallel to plane of incidence
UIPRX,UIPRY,UIPRZ	X,Y,Z components of incident/reflected polarization unit vector perpendicular to plane of incidence
UN	Unit normal of elliptic cylinder at phi angle at which reflection occurs (2-D)

X.Y.Z components of reflected polarization URPPX, URPPY, URPPZ unit vector parallel to the plane of incidence ٧I X.Y.Z components of ray propagation direction of ray incident on diffraction point VIC X,Y,Z components of ray propagation direction of ray incident on cylinder Elliptical angle defining reflection point VR on cylinder (2-D) XD X,Y,Z components of diffraction point in RĊS **XDMAG** Normalization constant for vector from RCS origin to diffraction point XDP Modified diffraction point location for shadowing test X1MAG Normalization constant for vector from RCS origin to second corner on edge ME XMAG Normalization constant for vector from origin to first corner on edge ME XR X,Y,Z components of reflection point on cylinder XRR Reflection point location on cylinder XSS Source location I/O VARIABLES: Α. INPUT LOCATION A /GEOMEL/ 8 /GEOMEL/

BCD /BNDRCL/ CTC /GEOMEL/ D /DIR/

5.

DP	/THPHUV/
DPR	/PIS/
DT	/THPHUV/
FLDPT	/NEAR/
FN	F.P.
LDEBUG	/TEST/
LNRFLD	/NEAR/
LRDC	/CLRDC/
LUPRNT	/ADEBUG/
ME	F.P.
MEP	/GEOPLA/
MP	F.P.
PHSR	/DIR/
PI	/PIS/
THSR	/DIR/
TPI	/PIS/
V	/GEOPLA/
VN	/GEOPLA/
VP	/GEOPLA/
VXS	/SORINF/
X	/GEOPLA/
XS	/SORINF/
ZC	/GEOMEL/
OUTPUT	LOCATION
EDPH	F.P.

A CALL AND DE DE L'AND DE LESSE MERINE MERINE AND DE LESSE

8.

in a chair a

	RCLDPL	(GTD)
EDTH	F.P.	
CALLING ROUTINE:		
GTDDRV		
CALLED ROUTINES:		
ASSIGN	RFDFPT	
8EXP	SMAGNF	
BTAN2	SOURCE	
CYLINT	STATIN	
DW	STATOT	
NANDB	TPNFLD	
NFD	WLKBCK	
PLAINT	XYZFLD	

6.

7.

-,

Page 3 of 3

11.71

and the second second

825

- 1. NAME: RCLRPL (GTD)
- 2. PURPOSE: To compute the geometrical optics field reflected from the elliptic cylinder and then reflected by plate MP.
- 3. METHOD: RCLRPL functions as a service routine for subroutine SCLRPL where the total cylinder-plate scattered fields are computed. The field components computed in RCLRPL which are used in SCLRPL are the hard (EHTHJ, EHPHJ) and soft (ESTHJ, ESPHJ) theta and phi components of the source field incident on the cylinder at the reflection point. These components, along with several other useful parameters, are passed to subroutine SCLRPL through common block /FUDGJ/.

The geometrical optics reflected field components ETH and EPH are computed in RCLRPL. These are calculated for the cylinderreflected, plate-reflected fields from a unit source in the given farfield observation direction or to a given near-field observation point. These components are not used presently. The pertinent geometry for this routine is shown in figure 1.

Figure 1. Illustration of Ray Reflected by Cylinder and Then Reflected by Plate.

The code first determines the ray path cylinder and plate reflection points. The procedure followed is different for near-field and far-field calculations. The flowchart shows near-field and far-field paths.

827

PREVIOUS PAGE

IS BLANK

The reflection point on the cylinder is found by imaging the observation direction for far field or the observation point for near field through plate MP. This point is checked to make sure it lies on the cylinder within the end caps. If it does not, the field is set to zero and control is returned to the calling routine. If it is a legal point, the reflection point on the plate is checked to make sure it is a legal point also. If plate reflection did not occur, the field is set to zero and control is returned to the ray path from the calling routine. If the point is legitimate, the ray path from the source to the cylinder, to the plate, to the far-field observation direction or near-field observation point is checked for shadowing. If the path is shadowed anywnere, again the field is set to zero and control returns to the calling routine. If the path is clear, then at this point it is known that the cylinder-reflected, plate-reflected field does exist.

The physics and field computations begin by computing the source field pattern factor from the source by calling subroutine SOURCE. Then the spreading radii needed FDR including the effect that the curved cylinder wall has on spreading the cylinder-reflected wave is computed. Other parameters, polarization vectors, and image locations are calculated for the field computations. The code computes the fields incident on the cylinder, the cylinder-reflected field and the plate-reflected field. The plate-reflected field's phase factor is based on the cylinder reflection point imaged through plate MP. For far field, this refers the field to the origin of the reference coordinate system. For near field, the phase factor includes the spherical wave spreading factor. The code ends by computing the hard (theta and phi) and soft (theta and phi) components of the field incident on the cylinder.

. INTERNAL VARIABLES:

VARIABLE DEFINITION

A1, A2 Field components of ray incident on plate, normal and tangent to the plate

A3 Determinant of polarization transformation

C11,C12,C21,C22 Coefficients used to convert polarization from theta and phi components in RCS to components normal and tangent to plate (and vice-versa)

CTHW

2-D dot product of unit normal at cylinder reflection point and ray propagation direction between reflection points

NAME OF ALL AND A

CANADARA

D	Propagation direction after plate reflec- tion in x,y,z RCS components
DD1	Dot product of unit vector of propagation direction and cylinder tangent unit vector through tangent point 1 (2-D)
DD2	Dot product of unit vector of propagation direction and cylinder tangent unit vector through tangent point 2 (2-D)
DHIT	Distance from source to hit point (from PLAINT)
DHJT	Distance between cylinder and plate reflec- tion point (from subroutine PLAINT)
ЭНТ	Distance to hit point (from PLAINT and CYLINT)
DI	X,Y, and Z components of incident ray direction on cylinder in RCS
DJ	X,Y,Z components of propagation direction of ray incident on plate
DMAG	Distance between plate reflection point and near-field observation point
DOTP	Test variable
DP	Phi unit vector for observation direction D
DT	Theta unit vector for observation direc- tion D
EF .	Pattern factor of theta component of inci- dent field in RCS (also theta component of cylinder-reflected field in RCS)
EG .	Pattern factor of phi component of incident field in RCS (also phi component of cylin- der-reflected field in RCS)
ЕНРНЈ	Phi component of hard component of field incident on cylinder
ЕНТНЈ	Theta component of hard component of field incident on cylinder (parallel to plane of incedence)

11.1525.1

SALANGAR ALLANDA ARARAGA THATTAK

2420-1420-243

CARACTER STORAGE

1. 1. Ja. 6. a.

EIPP	Incident field component parallel to plane of incidence on cylinder
EIPR	Incident field component perpendicular to plane of incidence on cylinder
EPH	Phi component of total cylinder-reflected, plate-reflected field
ERPP	Component of cylinder-reflected field parallel to plane of incidence
ERPR	Component of cylinder-reflected field per- pendicular to plane of incidence
ERX, ERY, ERZ	X,Y,Z components of cylinder-reflected field in RCS
ESPHJ	Phi component of soft component of field incident on cylinder
ESTHJ	Theta component of soft component of field incident on cylinder
ETH	Theta component of total cylinder-reflec- ted, plate-reflected field
EX, EY, EZ	X,Y,Z components of source field pattern factor in RCS
FLOPTI	X,Y,Z components of the location of the near-field observation point image through plate MP
GAM	Phase constant
LHIT	Set true if ray hits plate (from PLAINT)
LRFS	Set true if reflection data is available from previous pattern angle (or for next pattern angle (when leaving routine))
LTRFJ	Set true if geometrical optics reflected- reflected fields do not exist
MP	Plate on which reflection occurs after cylinder reflection
РН	Complex phase constant

PHIR Phi component of incident ray direction on cylinder in RCS PHJR Phi component of ray propagation direction between cylinder and plate in RCS RGJ Radius of curvature of cylinder at reflection point RH01J Ray spreading radius in plane of cylinder curvature at reflection point **RH02** Ray spreading radius in plane normal to plane of incidence at reflection point **S1** Distance between reflection points on cylinder and plate **\$2** Distance between cylinder reflection point and near-field observation point image through plate MP (therefore distance of complete ray path between reflection point on cylinder and the near-field observation point) SMAGJ Length of ray from reflection point on cylinder to source SNFF Distance from plate reflection point to near-field observation point SXN, SYN, SZN X,Y,Z components of unit vector of ray from reflection point on cylinder to source location in RCS THIR Theta component of incident ray direction on cylinder THJR Theta component of ray propagation direction between cylinder and plate **UB** Unit binormal at the cylinder reflection point UIPPX,UIPPY,UIPPZ X,Y,Z components of incident polarization unit vector parallel to plane of incidence

37.3.3.2 ° 1

0000000 | XAAAAA

10000000 (2015)2023

5.

DP

UIPRX,UIPRY,UIPRZ	X,Y,Z components of incident/reflected polarization unit vector perpendicular to plane of incidence
UN	Unit normal at the cylinder reflection point
UR	The z component of the location of the reflection point on the cylinder
URPPX,URPPY,URPPZ	X,Y.Z components of reflected polarization unit vector parallel to plane of incidence
VR	Phi angle used to define the x and y com- ponents of the reflection point on cylinder
VT	X, Y, Z components of polarization unit vector tangent to plate and normal to ray incident on plate
VXS	Matrix defining source coordinate system axes in RCS components
XRJ	X, Y, Z components of reflection point location on cylinder
XRR	Cylinder reflection point location
XRS	Reflection point on plate (also cylinder reflection point image location in plate) Also cylinder reflection point
XSS	Source location
I/O VARIABLES:	
A. INPUT	LOCATION
Α	/GEOMEL/
В	/GEOMEL/
BTS	/BNDSCL/
СТС	/GEOMEL/
D	/DIR/

832

/THPHUV/

DT	/THPHUV/
DTS	/BNDSCL/
FLDPT	/NEAR/
LNRFLD	/NEAR/
LRFS	/CLRFS/
MP	F.P.
PHSR	/DIR/
PI	/PIS/
THSR	/DIR/
TPI	/PIS/
VN	/GEOPLA/
VXS	/SORINF/
XS	/SORINF/
ZC	/GEOMEL/
OUTPUT	LOCATION
ЕНРНЈ	/FUDGJ/
ЕНТНЈ	/FUDGJ/
ЕРН	F.P.
ESPHJ	/FUDGJ/
ESTHJ	/FUDGJ/
ETH	F.P.
LRFS	/CLRFS/
LTRFJ	/FUDGJ/
RGJ	/FUGDJ/
RH01J	/FUDGJ/

Ì

Β.

	RCLRPL	(GTD)	
SMAGJ	/FUDGJ/		
SNFF	/DIST/		
TRANJ	/FUDGJ/		
XRJ	/FUDGJ/		
CALLING ROUTINE:			
SCLRPL			
CALLED ROUTINES:			
ASSIGN	NFD		SOURCE
BEXP	PLAINT		STATIN
BTAN2	REFBP		STATOT
CYLINT	RFDFIN		TPNFLD
IMAGE	RFPTCL		WLKBCK

SMAGNF

6.

7.

NANDB

and the second second

ŝ

No.

(GTD)

74

Contraction of the second

- 1. NAME: RDEFIL (GTD, INPUT, MOM, OUTPUT)
- 2. PURPOSE: Read data from the logical unit specified and increment the internal file pointers to indicate the current file position.
- 3. METHOD: The number of words between the current file position and the end of file is determined and, if less than the number of words requested, a fatal error is generated. Otherwise, the file is read in the binary mode and the current file pointer is incremented to point at the last word read from the file.
- 4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
LUNIT	Input argument designating logical unit to read
NUMLFT	Number of words left before the end of the file from current pointer position
NWORDS	Input argument designating number of words to be read
XWORDS	Input array into which the data will be read

5. I/O VARIABLES:

A.

INPUT	LOCATION
DBGPRT	/ADEBUG/
IOCKPT	/SYSFIL/
IOFILE	/IOFLES/
ISON	/ADEBUG/
LUNIT	F.P.
LUNIT	F.P. /ADEBUG/
LUNIT LUPRNT MODCHK	F.P. /ADEBUG/ /SYSFIL/
LUNIT LUPRNT MODCHK NDFILE	F.P. /ADEBUG/ /SYSFIL/ /IOFLES/

RDEFIL (GTD, INPUT, MOM, OUTPUT)

8.	OUTPUT	LOCATION
	IERRF	/ADEBUG/
	IOFILE	/IOFLES/
	XWORDS	F.P.

6. CALLING ROUTINES*:

A.

1. S. S. S.

BUBBLE	(1)	RESTRT	(1)
DECOMP	(3)	RWCOMS	(1,2,3,4)
GEODRV	(1)	RWFILS	(1,2,3,4)
GETSYM	(1,2,3,4)	SOLDRV	(3)
MOVFIL	(1,2,3,4)	STRTUP	(2,3,4)
PUTSYM	(1,2,3,4)	SUBPAT	(1)

7. CALLED ROUTINES:

ASSIGN

ERROR

STATIN

STATOT

WLKBCK

*1-INPUT 2-gtd 3-mom 4-output

1. NAME: REBLCK (MOM)

- 2. PURPOSE: To reblock the interaction matrix into several square submatrices when structure symmetry is present.
- 3. METHOD: When structure symmetry is present the full square interaction matrix is not generated. Instead, only an NR x NC matrix is needed, where NC is the number of elements per symmetry cell, and NR is the total number of elements. NR is always an integer multiple of NC, this integer being the number of symmetry cells. Since the matrix problem will be solved in (NC x NC) blocks, the data must be reblocked into that format.

Each column of NC elements is read into core from the input symbol (the matrix is stored in transposed form), and the proper elements stored in the columns of each submatrix of the output data set, as shown in figure 1.

Figure 1. Illustrating the Reblocking of an NRxNC Matrix Into an NCxNR Matrix

4. INTERNAL VARIABLES:

AND SUMMER AND SUME

SALES SCREEK

VARIABLE	DEFINITION
JNC	Internal variable equal to NC
JREC	Pointer to column number being read from input data set
KREC	Pointer to column number being written to output data set

REBLCK

(MOM)

LOCNAM	Pointer to input data set name in symbol table
MORE	Flag indicating a complex data set
N	Loop index over symbol table entries and submatrices
NAMEZ	User-assigned name of input data set (NR x NC)
NAMEZ1	User-assigned name of output data set (NC × NR)
NBIAS	Pointer to beginning of output for a column of NAMEZ1
NBITS	Attribute word of input data set
NC	Number of columns of input data set
NPRELM	Number of data words per matrix element
NR	Number of rows of input data set
NUMMAT	Number of symmetry cells in input data set; number of submatrices in output data set
Z	Temporary storage for matrix reblocking
I/O VARIABLES:	
A. INPUT	LOCATION
ISON	/ADEBUG/
KBCPLX	/PARTAB/
KOLBIT	/PARTAB/
KOLNAM	/PARTAB/
LUPRNŤ	/ADEBUG/
NAMEZ	F.P.
NAMEZ1	F.P.
NC	F.P.

22.20

ういいよう

5.

			REBLCK	(MOM)
		NDATBL	/PARTAB/	
		NPDATA	/PARTAB/	
		NR	F.P.	
		Z	F.P.	
	Β.	OUTPUT	LOCATION	
		IERRF	/ADEBUG/	
		Z	F.P.	
6.	CALLING ROUTINE:			
	ZIJDF	۲V		
7.	CALLE	D ROUTINES:		
	ASSIC	5N	GETSYM	

" and the factor of the

ASSIGN GETSYM STATIN CONVRT IBITCK STATOT ERROR PUTSYM WLKBCK

- 1. NAME: REFBP (GTD)
- 2. PURPOSE: To calculate the incident ray direction needed in order to obtain the reflected ray in a given direction from a specified plate.
- 3. METHOD: The incident ray unit vector (VI) is found by imaging the reflected ray unit vector (DR) through the plate (MP). Figure 1 shows the important geometry. The equation for VI is:

 $\overset{\wedge}{\mathbf{VI}} = \overset{\wedge}{\mathbf{DR}} - 2(\overset{\wedge}{\mathbf{VN}} \cdot \overset{\wedge}{\mathbf{DR}}) \overset{\wedge}{\mathbf{VN}}$

The theta and phi angles which define $\stackrel{\frown}{VI}$ are sent back to the calling routine.

4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
CPS	Cosine of PHSR
CTS	Cosine of THSR
DN	Cross product of DR and VN
DR	Reflected ray propagation direction in x,y,z RCS components
ERD	Error detection variable
LUPRNT	File on which warning message will be printed
MP	Plate upon which reflection occurs

REFBP (GTD)

PHIR Phi component of incident ray propagation direction in RCS PHSR Phi component of reflected ray propagation direction in RCS SPS Sine of PHSR STS Sine of THSR THIR Theta component of incident ray propagation direction in RCS THSR Theta component of reflected ray propagation direction in RCS VI X,Y,Z components of incident ray propagation direction in RCS VIN Dot product of plate normal and VI VN Array which includes unit vector normal to plate MP

5. I/O VARIABLES:

Α.	INPUT	LOCATION
	LUPRNT	/ADEBUG/
	MP	F.P.
	PHSR	F.P.
	THSR	F.P.
	VN	/GEOPLA/
Β.	OUTPUT	LOCATION
	PHIR	F.P.
	THIR	F.P.

6.	CALLING ROUTINES:	
	DPLRPL	RPLRCL
	RCLRPL	RPLRPL
	REFPLA	RPLSCL
	RPLDPL	SCLRPL
7.	CALLED ROUTINE:	

(GTD)

REFBP

BTAN2

.

850

1. NAME: REFCAP (GTD)

- 2. PURPOSE: To calculate the unobstructed electric field resulting from the reflection of a unit source off a given cylinder end cap.
- 3. METHOD: REFCAP is the driver routine which directs all the ray tracing, physics and field calculations for determining the electric field reflected by an elliptical cylinder end cap in a given farfield direction or to a given near-field observation point from a unit source. The important geometry is shown in figure 1.

Figure 1. Illustration of Source Ray Reflection from End Cap

First, the ray from the source image location is checked to make sure it passes through the given cylinder end cap. If it does not, the theta and phi components of the field are set to zero, and no other computations except debug functions (if requested) are performed in this routine. If reflection can occur, the ray path from the reflection point in the far-field observation direction or to the near-field observation point is checked for obstructions. If it is blocked by a plate, the field components are set to zero, and no other computations except debug functions (if requested) are REFCAP (GTD)

performed in this routine. If the path is unobstructed, the ray path from the source location to the reflection point is checked for obstructions. If a plate blocks this path, the theta and phi field components are set to zero, and no other computations except debug functions (if requested) are performed in this routine. If this path is clear, it is then known that reflection off the given end cap did occur and that the complete ray path is unobstructed.

The source field pattern factor from the source image location is computed by calling subroutine SOURCE and multiplying the returned field values by the reflection coefficient. Then the phase factor is computed. For far field this factor refers the field to the reference coordinate system (RCS) origin. For near field, the phase factor includes the spherical wave spread factor. Now the theta and phi components of the field can be computed. The electric field is given by:

$\bar{\mathbf{E}} = \underbrace{(\mathbf{EF} \ \hat{\boldsymbol{\theta}}}_{\mathbf{EF}}$	+ $\underline{EG} \hat{\phi}$)	$e^{j2\pi(XIC \cdot D)}$, for far field
theta component of source factor	phi component of source factor	EX – phase factor

and

The x, y, z components of the field are then computed and added to the previous components due to other reflection-diffraction interactions. The values are stored in common block /FLDXYZ/.

If the debug capabilities have been requested, the end cap reflected field magnitude is computed. The magnitude, theta and phi complex components are printed on file LUPRNT.

ar ana araite haracta an haracta a

REFCAP

(GTD)

INTERNAL VARIABLES: 4.

SATURA SOUTH

VARIABLE	DEFINITION
0	Observation direction unit vector
DHIT	Distance from source to hit point on plate (from PLAINT)
DHT	Distance from source to hit point on end cap (from CAPINT)
DI	Unit vector of incident ray propagation direction
DN	Dot product of reflected ray propagation direction and end cap unit normal
DNI	Dot product of incident ray and end cap unit normal
EF	Pattern factor for theta component of incident E-field
EG	Pattern factor for phi component of incident E-field
EIX	X component of source pattern factor of incident E-field
EIY	Y component of source pattern factor of incident E-field
EIZ	Z component of source pattern factor of incident E-field
EPH	Phi component of reflected E-field in RCS
ETH	Theta component of reflected E-field in RCS
EX	Phase term and for near field it also contains the spherical wave spread factor
FLDMAG	The electric field magnitude
FLDPT	The near-field observation point in x,y,z components
GAM	Phase term parameter

853

REFCAP (GTD)

	LHIT	Set true if ray hits plate (from PLAINT)
	МС	End cap where reflection occurs
	N	DO loop variable
	NC	Sign change variable
	NI	DO loop variable
	NJ	DO loop variable
	PHSR	Observation direction phi angle
	SNF	Distance from field observation point to source image location
	THSR	Observation direction theta angle
	VAX	X,Y,Z components defining the image source coordinate system in x,y,z RCS components
	VN	Unit normal to end cap in RCS x,y,z components
	XIS	Source image location
	XS	Source location in x,y,z components
	XSS	Source location in x,y,z components in RCS
5.	I/O VARIABLES:	
	A. INPUT	LOCATION
	CNC	/GEOMEL/
	D	/DIR/
	FLDPT	/NEAR/
	LDEBUG	/TEST/
	LNRFLD	/NEAR/
	LUPRNT	/ADEBUG/
	MC	F.P.

2001-2002

STATES STATES

REFCAP	(GTD)
--------	-------

	PHSR	/DIR/
	SNC	/GEOMEL/
	THSR	/DIR/
	TPI	/PIS/
	VXIC	/IMCINF/
	XIC	/IMCINF/
	XS	/SORINF/
B.	OUTPUT	LOCATION
	EPH	F.P.
	ЕТН	F.P.
		

6. CALLING ROUTINE:

GTDDRV

1××1×

7. CALLED ROUTINES:

ASSIGN

BEXP

CAPINT

NFD

PLAINT

SMAGNF

SOURCE

STATIN

STATOT

WLKBCK

XYZFLD

÷

22222222

857

NY G

ł.,

1. NAME: REFCYL (GTD)

- 2. PURPOSE: To compute the geometrical optics field due to reflection of a unit source off the curved surface of the elliptical cylinder.
- 3. METHOD: REFCYL functions as a service routine for subroutine SCTCYL, where the total cylinder-scattered field is computed. The field components computed in REFCYL which are used in SCTCYL are the hard (EHTH, EHPH) and soft (ESTH, ESPH) theta and phi components of the field incident on the cylinder at the cylinder reflection point. These components along with several other useful parameters are passed to subroutine SCTCYL through common block /FUDG/. The geometrical optics reflected field components ETH and EPH are computed in REFCYL. These are calculated for the cylinder-reflected field from a unit source in a given far-field observation direction or to a given near-field observation point. These components are not used presently. Pertinent geometry is shown in figure 1.

Figure 1. Geometry of Ray Reflected From Cylinder

The code first checks to see if reflection is possible. If it is not possible the code sets flags to indicate that starting point data are not available for the next time REFCYL is called and that reflection did not occur. The fields are set to zero and control is returned to the calling routine. If reflection is possible, the reflection point is computed by calling subroutine RFDFIN for nearfield calculations and by calling subroutine RFPTCL for far-field calculations. Then the far-field reflection point is checked to make sure it satisfies the law of reflection. This is based on a returned value from RFPTCL. Then for both far-field and near-field cases, the reflection point is checked to make sure it lies on the

curved sides of the cylinder within the end cap boundaries. Next the ray path is checked to make sure it is not shadowed. If it is shadowed, the code sets the flag which indicates a reflected field did not occur and sets the field to zero. Control is then returned to the calling routine. If the ray path is unobstructed, then at this point it is known that reflection did occur and the fields can be computed.

The physics and field calculations begin by computing the source field pattern factor from the source and computing the cylinderreflected wave spreading radii. Other parameters and polarization vectors are then calculated for the field computations. (See the flowchart). The code computes the field incident on the cylinder and the field reflected from the cylinder. The phase factor refers the far-field cylinder-reflected field to the origin of the reference coordinate system (RCS), and includes for near-field calculations the spherical wave spreading factor. The code ends by computing the hard (theta and phi) and soft (theta and phi) components of the field incident on the cylinder at the reflection point.

Additional, in-depth details to this solution are given on pages 105-107 of reference A.

4. INTERNAL VARIABLES:

ANNAL TARADAR (DICUTES SAMPLE VERSES

VARIABLE	DEFINITION
CSV	Cosine of VR
СТНІ	Dot product of cylinder normal and reflec- tion propagation direction unit vector
CW	Cosine of WR
D	Propagation direction after reflection in x,y,z RCS components
D1	Variable used in various near-field calcu- lations as a unit vector to indicate the direction between two points
D2	Variable used in various near-field calcu- lations as a unit vector to indicate the direction between two points
D12	Dot product of source vectors tangent to cylinder (2-D)

DD	Normalization constant for reflection point unit normal (from RFPTCL)
DD1	Dot product of unit vector of propagation direction and cylinder tangent unit vector through tangent point 1 (2-D)
DD2	Dot product of unit vector of propagation direction and cylinder tangent unit vector through tangent point 2 (2-D)
DHIT	Distance from source to hit point (from PLAINT)
DICOEF	X,Y, and Z components of incident ray direction in RCS
ООТР	Difference of dot products returned from subroutine RFPTCL (2-D)
DP	The phi unit vector for observation direc- tion D
DT	The theta unit vector for observation direction D
DXY	Dot product of vector from origin to source and propagation direction (2-D)
EF	Pattern factor of theta component of incident field in RCS
EG	Pattern factor of phi component of incident field in RCS
ЕНРН	Phi component of the hard component of field incident on cylinder
ЕНТН	Theta component of the hard component of field incident on cylinder
EIPP	Incident field component parallel to plane of incidence
EIPR	Incident field component perpendicular to plane of incidence
EPH	Phi component of reflected E-field

Ê

SAUVER REPART REALING REALING PROPERTY

.

17777777

.

ERPP	Reflected field component parallel to plane of incidence	
ERPR	Reflected field component perpendicular to plane of incidence	
ERX,ERY,ERZ	X,Y,Z components of reflected field in RCS (Also used to define components incident on cylinder)	
ESPH	Phi component of the soft component of field incident on cylinder	
ESTH	Theta component of the soft component of field incident on cylinder	
ETH	Theta component of reflected E-field	
EX,EY,EZ	Pattern factor of x,y,z components of inci- dent field in RCS	
FPTXY	The equivalent near-field observation point in the x-y plane	
LHIT	Set true if ray hits plate (from PLAINT)	
LRFC	Set true if reflection data are available from previous pattern angle (or for next pattern angle when leaving routine)	
LTRF	Set true if geometrical optics reflected field does not exist	
ORIGIN	The x,y,z components of the origin of the reference coordinate system (0., 0., 0.)	
РН	Phase and magnitude constant for incident or reflected field	
PHIR	Phi component of incident ray direction	
PHSR1	Variable used in various near-field calcu- lations to indicate the phi angle between two points	
PHSR2	Variable used in various near-field calcu- lations to indicate the phi angle between two points	

RG	Parameter used in transition function		
RHO1	Ray spreading radius in plane of cylinder curvature at reflection point		
RHO2	Ray spreading radius in plane normal to plane of incidence at reflection point		
S	Distance from source to reflection point in x-y plane		
SMAG	Distance from source to reflection point		
SNF	Distance between near-field observation point and the reflection point		
SNV	Sine of VR		
SNX	X component of normal at cylinder reflec- tion point		
SNY	Y component of normal at cylinder reflec- tion point		
SQRH	Spreading factor		
SW	Sine of WR		
SXN,SYN,SZN	X, Y, and Z components of unit vector of ray from reflection point to source in RCS		
THIR	Theta component of incident ray direction		
THIR THSR1	Theta component of incident ray direction Variable used in various near-field calcu- lations to indicate the theta angle between two points		
THIR THSR1 THSR2	Theta component of incident ray direction Variable used in various near-field calcu- lations to indicate the theta angle between two points Variable used in various near-field calcu- lations to indicate the theta angle between two points		
THIR THSR1 THSR2 TRAN	Theta component of incident ray direction Variable used in various near-field calcu- lations to indicate the theta angle between two points Variable used in various near-field calcu- lations to indicate the theta angle between two points Parameter used in transition function		
THIR THSR1 THSR2 TRAN TX1	Theta component of incident ray direction Variable used in various near-field calcu- lations to indicate the theta angle between two points Variable used in various near-field calcu- lations to indicate the theta angle between two points Parameter used in transition function X component of source vector tangent to tangent point 1 (2-D)		

р. н.

863

TY1 Y component of source vector tangent to tangent point 1 (2-D) TY₂ Y component of source vector tangent to tangent point 2 (2-D) UB X,Y components of unit vector tangent to cylinder reflection point in RCS (2-D) UIPPX, UIPPY, UIPPZ X,Y,Z components of incident field polarization unit vector parallel to plane of incidence X,Y,Z UIPRX,UIPRY,UIPRZ components of incident/reflected field polarization unit vector perpendicular to plane of incidence UN X,Y components of unit normal to cylinder reflection point in RCS (2-D) URPPX.URPPY.URPPZ X.Y.Z components of reflected field polarization unit vector parallel to plane of incidence VR Elliptical angle defining reflection point in RCS x-y plane VXS X,Y,Z components of unit vectors defining source coordinate system axes in RCS WR Phi angle defining propagation direction in cylinder reflection point coordinate system XE1 Point which lies on the infinite cylinder whose z component is equal to the intersection point on the z axis with the more positive end cap and whose x and y values are based on the elliptical cylinder's radii at the phi angle of a vector from the RCS origin to the field point XE2 Point which lies on the infinite cylinder whose z component is equal to the intersection point on the z axis with the more negative end cap and whose x and y values are based on the elliptical cylinder's radii at the phi angle of a vector from the

864

RCS origin to the field point

(GTD) REFCYL

XR	Location of reflection point in x, y, z reference coordinate system (RCS) coordinates
XSS	Source location in x,y,z components
XT1	The x,y,z components of tangent point 1 (2-D)
XT2	The x,y,z components of tangent point 2 (2-D)
I/O VARIABLES:	
A. INPUT	LOCATION

INPUT	LOCATION
Α	/GEOMEL/
В	/GEOMEL/
BTS	/BNDSCL/
CPS	/DIR/
СТС	/GEOMEL/
CTHS	/DIR/
D	/DIR/
DP	/THPHUV/
DT	/THPHUV/
DTS	/BNDSCL/
FLDPT	/NEAR/
LNRFLD	/NEAR/
LRFC	/CLRFC/
PHSR	/DIR/
PI	/PIS/
SPS	/DIR/
STHS	/DIR/

5.

1.11.1.1.1.1.1

1-

	THSR	/DIR/
	TPI	/PIS/
	VTS	/BNDSCL/
	VXS	/SORINF/
	XS	/SORINF/
	ZC	/GEOMEL/
Β.	ΟυΤΡυΤ	LOCATION
	ЕНРН	/FUDG/
	ЕНТН	/FUDG/
	EPH	F.P.
	ESPH	/FUDG/
	ESTH	/FUDG/
	ETH	F.P.
	LTRF	/FUDG/
	RG	/FUDG/
	RH01	/FUDG/
	SMAG	/FUDG/
	TRAN	/FUDG/
	XR	/FUDG/
CALLING ROUTINE:		

SCTCYL

6.

Β.

CALLED ROUTINES: 7.

ASSIGN	RFPTCL
BEXP	SMAGNF
BTAN2	SOURCE

NANDB	STATIN
NDF	STATOT
PLAINT	TPNFLD
RFDFIN	WLKBCK

8. REFERENCE:

A. R. J. Marhefka, "Analysis of Aircraft Wing-Mounted Antenna Patterns," Report 2902-25, June 1976, The Ohio State University ElectroScience Laboratory, Department of Electrical Engineering; prepared under Grant No. NGL 36-008-138 for National Aeronautics and Space Administration.

in the second

Contractor and a contractor

STATES DESCRIPTION AND AND A STATES

NAME		r)	
Cesso	JSE: lo execute a pr.	coordinate reflection for the geometry pro-	
METHOD: The axis along which the reflection is to take place is determined, that coordinate sign is changed, and control is returned to the calling subroutine.			
INTER	RNAL VARIABLES:		
VARI	ABLE	DEFINITION	
IRF		Input argument determining axis of reflec- tion: IRF=1 for X axis, =2 for Y axis, =3 for Z axis	
JAXIS Var sta		Variable IRF minus 2 for arithmetic IF statement	
I/O \	ARIABLES:		
Α.	INPUT	LOCATION	
	IRF	F.P.	
	X	F.P.	
	Y	F.P.	
	Z	F.P.	
Β.	OUTPUT	LOCATION	
	X	F.P.	
	Y	F.P.	
	Z	F.P.	
CALLI	ING ROUTINES:		
WYRDF	RV		
SPWDRV			
CALLED ROUTINES:			
NONE			

1.

2.

3.

4.

5.

6.

7.

Contractory - Scholards

1. NAME: REFPLA (GTD)

- 2. PURPOSE: To calculate the unobstructed electric field due to single reflection from a given plate from a unit source.
- 3. METHOD: REFPLA is the driver routine which directs all the ray tracing, physics and field calculations for determining the electric field resulting from single reflection off a given plate in a given far-field direction or to a given near-field point from a unit source. The significant geometry is shown in figure 1.

Figure 1. Geometry for Source Ray Reflection from Plate

First the ray path from the source image location in the desired direction is checked to make sure it does pass through the plate being considered. If it does not, the theta and phi components of the electric field are set to zero, and no other calculations except for debug functions (if requested) are performed in this routine. If reflection can occur, the ray path from the reflection point on the plate in the given far-field observation direction or to the given near-field observation field point is checked for obstructions. If the path is obstructed, the fields are set to zero, and no other calculations except for debug functions (if requested) are performed in this routine. If the path is clear, then the ray path from the source to the reflection point is checked. If this path is

blocked by another plate or a cylinder, the fields are set to zero, and no other calculations except for debug functions (if requested) are performed. If this path is clear, reflection from the given plate did occur and the complete ray path is unobstructed.

The source field pattern factor from the source image location is computed by calling subroutine SOURCE and multiplying the returned values by the reflection coefficient. Next the phase factor is computed. For far field, this will refer the field back to the origin of the reference coordinate system. For near field, the phase factor includes the spherical wave spread factor. Now the theta and phi components of the electric field are computed. The electric field in theta and phi components is given by:

 $\bar{\mathbf{E}} = (EF\hat{\theta} + EG\hat{\phi}) \qquad e^{j2\pi(\overline{XIS} \cdot \hat{D})}, \text{ for far field}$ theta component phi component EX - phase factor of source factor factor

and

$\bar{\mathbf{E}} = (\mathbf{EF} \ \hat{\mathbf{\theta}}$	+ \underbrace{EG}_{ϕ}	$\underbrace{\frac{e^{-j2\pi SNF}}{SNF}}_{SNF}, \text{ for near field.}$
theta component of source factor	phi component of source factor	EX - phase factor where SNF = FLDPT - XIS

The x,y,z components of the electric field are computed and added to the previous components due to other reflection-diffraction interactions. The values are stored in the /FLDXYZ/ common block.

If the debug capabilities have been requested, the field magnitude is computed. The magnitude, theta and phi components are printed on file LUPRNT.

4. INTERNAL VARIABLES:

VARIABLE

CPHI

DEFINITION

Cosine of PHIR

СТНІ	Cosine of THIR		
D	Unit vector x,y,z components of ray propa- gation direction after reflection in RCS		
DHIT	Distance from source to reflection point (from PLAINT)		
DHT	Distance from source to hit point (from PLAINT and CYLINT)		
DICOEF	Unit vector <,y,z components of incident ray propagation direction in RCS		
EF	Pattern factor for theta component of source field in RCS		
EG	Pattern factor for phi component of source field in RCS		
EIX	X component of source factor		
EIY	Y component of source factor		
EIZ	Z component of source factor		
ERP	Phi component of reflected field in RCS		
ERT	Theta component of reflected field in RCS		
EX	Complex phase factor		
FLDMAG	The electric field magnitude		
FLDPT	The x,y,z components of the field point location		
FX,FY,FZ	The x,y,z components of the accumulated electric field from all geometry interactions		
GAM	Phase distance to origin (dot product of image location and reflected ray propaga-tion direction)		
LDEBUG	Logical variable set true if debug requested		

LHIT Set true if ray intersects a plate or cylinder (from PLAINT or CYLINT) LNRFLD Flag to indicate if near-field (LNRFLD=1) or far-field (LNRFLD=0) calculations were requested LUPRNT Output file number MP Plate from which reflection occurs N DC loop variable NI 00 loop variable NJ DO loop variable PHIR Phi component of incident ray propagation direction in RCS PHSR Phi component of ray propagation. direction after reflection in RCS SNF Distance between source image and field point SPHI Sine of PHIR STHI Sine of THIR THIR Theta component of incident ray propagation direction in RCS THSR Theta component of ray propagation direction after reflection in RCS TPI 2π VAX X,Y,Z components defining unit vectors of the source image coordinate system axes in RCS VXI Array of components defining unit vectors of the source image coordinate system axes in RCS XI Triply dimensioned array of image locations

XIS	X,Y,Z components of source image location (single reflection from plate MP)
xqs	X,Y,Z components of source image location

XS Source location in x,y,z RCS

5. I/O VARIABLES:

Α.	INPUT	LOCATION
	D	/DIR/
	FLDPT	/NEAR/
	FX	/FLDXYZ/
	FY	/FLDXYZ/
	FZ	/FLDXYZ/
	LDEBUG	/TEST/
	LNRFLD	/NEAR/
	LUPRNT	/ADEBUG/
	MP	F.P.
	PHSR	/DIR/
	THSR	/DIR/
	ΤΡΙ	/PIS/
	VXI	/IMAINF/
	XI	/IMAINF/
	XS	/SORINF/
Β.	Ουτρυτ	LOCATION
	ERP	F.P.
	ERT	F.P.
	FX	/FLDXYZ/

REFPLA	(GTD)
--------	-------

FY /FLDXYZ/ FZ /FLDXYZ/

6. CALLING ROUTINE:

GTDDRV

7. CALLED ROUTINES:

ASSIGN

BEXP

CYLINT

NFD

PLAINT

REFBP

SMAGNF

SOURCE

STATIN

STATOT

WLKBCK

1. NAME: RESTRT (INPUT)

- 2. PURPOSE: Read common blocks and data sets from the checkpoint file.
- 3. METHOD: RESTRT searches for the desired checkpoint on the specified logical unit. The commons are read, the peripheral files are opened, and the data sets are restored. The search continues until the desired checkpoint has been read. If the desired checkpoint is not found, the routine writes an error message and terminates execution.
- 4. INTERNAL VARIABLES:

Contraction and the second second

VARIABLE	DEFINITION
ІСНКРТ	The checkpoint number that will be used for restarting (default = 1)
ICKLOP	Loop index for reading commons and periph- eral files
IEOF	Flag indicating that an end-of-file occur- red while reading the checkpoint file
ISDBON	Flag for debug command
ISTRDT	Flag to tell when to store data on periph- eral files
LOCTPO	Pointer for argument list
LUFILE	Checkpoint logical unit number specified by RSTART command
NAM	Temporary Hollerith location
NAMCPF	Name of module asked for by RESTRT command (default = INPUT)
NAME	File name or data set name
NDXNCD	Index of a keyword in the NCODES array
NREAD	Flag to tell RWCOMS to read common areas from IOCKPT
NUMCPF	Pointer to keyword of module for which RESTRT is requested

RESTRT (INPUT)

5. I/O VARIABLES:

Α.	INPUT	LOCATION
	IOCKPT	/SYSFIL/
	ISOFF	/ADEBUG/
	ISON	/ADEBUG/
	KOLCOL	/PARTAB/
	KOLNAM	/PARTAB/
	KWCHKP	/PARTAB/
	KWNAME	/PARTAB/
	LUPRNT	/ADEBUG/
	NAMSEG	/SEGMNT/
	NARGTB	/PARTAB/
	NCODES	/PARTAB/
	NDATBL	/PARTAB/
	NDEBUG	/SCNPAR/
	NDXBLK	/SEGMNT/
	NOPCOD	/ADEBUG/
	NPDATA	/PARTAB/
	NPTASK	/PARTAB/
	NTSKTB	/PARTAB/
	NUMCHK	/SYSFIL/
	RSTART	/SYSFIL/
	SECTRI	/SEGMNT /

RESTRT (INPUT)

Β.	OUTPUT	LOCATION
	CHKWRT	/SYSFIL/
	DBGPRT	/ADEBUG/
	IERRF	/ADEBUG/
	IMDCHK	/ADEBUG/
	INTARG	/ARGCOM/
	IRSTRT	/ADEBUG/
	LSTSYS	/SYSFIL/
	LUDBUG	/ADEBUG/
	NDEBUG	/SCNPAR/
	NFINCD	/IOFLES/
	NPTASK	/PARTAB/
	NTSKTB	/PARTAB/
	RSTART	/SYSFIL/
	RSTRTA	/SYSFIL/
CALL	ING ROUTINE:	
INPD	RV	
CALLI	ED ROUTINES:	
ASSI	GN	RDEFIL

SANATA DESCRIPTION

Server 1

6.

7.

ASSIGN	RUEFIL
CONVRT	RWCOMS
ERROR	RWFILS
GETSYM	STATIN
POSTIP	STATOT
PUTSYM	WLKBCK

RESTRT (INPUT)

0

and the second second

RESTRT

Ä

1. NAME: RFDFIN (GTD)

- 2. PURPOSE: To determine the reflection point on an elliptic cylinder for a given source and observation location in the near field of the cylinder.
- 3. METHOD: This subroutine solves a polynomial equation which is based on the geometry and satisfies Snell's law. The roots define possible reflection point locations. The true point is singled out using the laws of reflection. This procedure is explained in chapter IV of reference A. The coefficients are given on page 100 of the reference.

INTERNAL VARIABLES:

VARIABLE	DEFINITION
A	Cylinder radius along the x axis
В	Cylinder radius along the y axis
CA	Complex coefficients of sixth order poly- nomial equation
RT	Roots of polynomial equation
S	Smallest distance from source to reflection point to observation point
SM	Distance from source to reflection point plus the distance from the reflection point to the observation point
UR	Z component of reflection point on cylinder in RCS
VI	X,Y,Z components of reflected ray propaga- tion direction
VIM	Normalization constant for VI
VM	Elliptical angle defining possible reflec- tion point on cylinder
VR	Phi angle defining x and y components of reflection point
xc	X,Y,Z components of the observation point in the near field of the cylinder

RFDFIN (GTD)

	XR		X,Y,Z components of reflection point loca- tion on cylinder
	XS		Source location
5.	I/0 V	VARIABLES:	
	Α.	INPUT	LOCATION
		Α	/GEOMEL/
		в	/GEOMEL/
		XC	F.P.
		xs •	/SORINF/
	Β.	OUTPUT	LOCATION
		UR	F.P.
		VI	F.P.
		VR	F.P.
6		ING POUTINES.	

GEOMPC

į

RCLRPL

REFCYL

RPLRCL

CALLED ROUTINES: 7.

BTAN2

POLYRT

- **REFERENCE:** 8.
 - R. J. Marhefka, "Analysis of Aircraft Wing-Mounted Antenna Patterns," Report 2902-25, June 1976, the Ohio State University Α. ElectroScience Laboratory, Department of Electrical Engineer-ing; prepared under Grant No. NGL 36-008-138 for National Aeronautics and Space Administration.

- 1. NAME: RFDFPT (GTD)
- 2. PURPOSE: To compute the ray path for a source ray which is reflected by the cylinder and then diffracted by a given edge on a given plate.
- 3. METHOD: The reflection point on an elliptic cylinder and the diffraction point on a plate edge for the reflected-diffracted ray in a given observation direction is calculated via an iterative The equations are based on a first order Taylor series process. approximation to the equations governing the laws of reflection and diffraction. The details of the analysis are given on pages 141-148 of reference A. The iteration process follows the same basic scheme outlined in the description for subroutines RFPTCL and DFRFPT. The initial start-up procedure for this subroutine is composed of locating the reflection point on the cylinder for a known diffraction point which is taken to be on the corners of the plate edge under consideration. The details of this procedure are discussed on pages 149-154 of reference A. Pertinent geometry is shown in figure 1. To avoid the 2π -to-0 transition in ϕ (a numerical jump in the variable representing the angle), the reference ϕ value is rotated to place this branch cut behind the cylinder (shadowed from the plate edge).

Figure 1. Illustration of Ray Reflected from Cylinder and then Diffracted by a Plate Edge

RFDFPT

(GTD)

The iteration begins with an initial reflected-diffracted ray which satisfies the laws of diffraction and reflection. Starting data are obtained in one of two ways. If a previous call to this routine (for the same plate edge and source) has successfully found the reflected-diffracted ray path, this previous path is used as starting data. Otherwise the starting diffraction point is defined on the corner of the edge closest to the cylinder. Then the corresponding reflection point is found by enforcing Snell's law. The first method is preferred to the second since, in general, farfield ray directions (D) in subsequent calls to RFDFPT will not For example, in calculating a far-field pattern differ greatly. cut, the far-field θ and ϕ angles will differ by only a few degrees, and the closeness of the starting point will lead to fewer iterations in order to obtain convergence.

The path of the starting ray defines the initial cylinder reflection point (\overline{XR}) and the edge diffraction point (\overline{XD}) . In almost every instance, the resulting radiation direction of this ray will not be the desired radiation direction. The angular difference between (θ, ϕ) of the starting ray (THOR, PHORP) and the (θ, ϕ) of the desired direction (THSR, PHSRP) is divided into a number of small angular The purpose of the iteration is to steps $(\Delta\theta, \Delta\phi) = (DTSR, DPSR)$. move the reflection and diffraction points from their initial positions in small steps corresponding to angular changes $(\Delta\theta, \Delta\phi)$ so that when the iteration is complete the resulting \overline{XR} and \overline{XD} will define the reflection and diffraction points that give the desired The number of steps to be taken (IVD) is deter-D-directed ray. mined from the starting data. Should convergence not be reached in IVD steps, the number of steps is doubled (up to 32 steps) and the iteration repeated. The doubling process is the outer loop of the Should convergence be reached with IVD steps and the flowchart. Snell's law error be significantly smaller than required, IVD for the plate and edge under consideration is halved prior to exiting the routine.

The iterations which step through the (θ, ϕ) angles by $(\Delta \theta, \Delta \phi)$ correspond to the inner loop of the flowchart. Each iteration has three steps:

- (1) Compute the diffraction point (\overline{XD}) from known reflection point (\overline{XR}) , source point (\overline{XS}) and edge unit vector (\emptyset) . This is done by a simple application of Snell's law. All the far-field calculations are contained in this subroutine, but, to determine the near-field diffraction point, subroutine DFPTWD is called.
- (2) The change in cylinder elliptic angle (DV) and z coordinate (DU) are computed from a Taylor series expansion. The expansion requires the calculation of functions and partial

derivatives of equations defining elliptic angle (VR) and z coordinate (UR) in terms of the angles (θ, ϕ) . The equations are given in reference A.

(3) The coordinates of \overline{XR} are computed from the new values of UR and VR.

At the end of the prescribed number of iterations, the initial observation direction has been stepped slowly to the desired direction and the initial reflection-diffraction points have been stepped from their initial values to candidate reflection-diffraction points. Snell's law is then applied to the final reflection and final diffraction points to see if they qualify as the <u>bona fide</u> ray path. If the error is sufficiently small, the outer loop is exited. Otherwise, the number of steps is doubled, as described above. Should the routine not converge with 32 steps (the maximum number), a warning message is printed on LUPRNT.

This routine is called by RCLDPL (reflection from a cylinder, diffraction from a plate) and also by DPLRCL (diffraction from a plate, reflection from a cylinder). DPLRCL only calls this routine for the near-field case since, if the observation point and the source point are reversed, the ray path would be the same.

4. INTERNAL VARIABLES:

CONTRACTOR DE LA CONTRACTO

VARIABLE	DEFINITION
A	The x axis radius of the cylinder
В	The y axis radius of the cylinder
BCD	Diffraction limit for ray reflected by the cylinder and diffracted from the plate
D	The unit vector of the observation direction
DC	X,Y,Z components of diffracted ray propaga- tion used in iteration
DCP	X,Y components of phi polarization unit vector for diffracted ray used in iteration
DCT	X,Y,Z components of theta polarization unit vector for diffracted ray used in iteration
DE	Dot product of diffracted ray direction and edge vector of edge ME

DOTP Test parameter used to determine if reflection is legal DPSR Phi angle increment size DR X,Y,I components of ray direction between reflection and diffraction points DRM Distance from reflection point to the diffraction point DRP Partial derivative of DR with respect to phi DRT Fartial derivative of DR with respect to theta DRU Partial derivative of DR with respect to UR DRV Partial derivative of DR with respect to VR DTSR Theta angle increment size Cu Change in UR for one iteration using Taylor series expansion DV Change in VR for one iteration using Taylor series expansion ERC Error detection variable FI Equation governing the law of reflection FLDPT The x,y,z components of the near-field observation point FP Partial derivative of FI with respect to phi FT Partial derivative of FI with respect to theta FU Partial derivative of FI with respect to UR FV Partial derivative of FI with respect to VR Equation governing the law of reflection GI

GP Partial derivative of GI with respect to <u>phi</u> GT Partial derivative of GI with respect to theta GU Partial derivative of GI with respect to UR GV Partial derivative of GI with respect to VR Stored number of steps used in iteration IVD Flag to indicate near-field (LNRFLD = 1) or LNRFLD far-field (LNRFLD = 0) calculations were requested LRDC Set true if starting point data are available from previous pattern angle ME Edge on plate MP where diffraction occurs MEP Array which contains the number of edges on each plate MP Plate where diffraction occurs PHCR Phi component of diffracted ray direction used in iteration PHOR Phi component of diffracted ray direction from previous time RFDFPT was called (or present value for next time routine is called) PHORP, PHSPR Phi angle of diffracted ray direction in rotated RCS system (branch cut placed behind cylinder) PHSR The phi angle of the observation direction Branch cut displacement angle for the PHWR diffraction point along edge ME of plate MP ΡI π Normalization constant for cylinder tangent SNM **SNPX** Partial derivative of SNX with respect to angle VR

(le

SNPY	Partial derivative of SNY with respect to angle VR
SNX	X component of normal to cylinder
SNY	Y component of normal to cylinder
STP	Number of steps used in iteration
THCR	Theta component of diffracted ray direction used in iteration
THOR	Theta component of diffracted ray direction from previous time RFDFPT was called (or for next time routine is called)
THSR	The theta angle of the observation direction
ΤΡΙ	2π
UCD	Z component of reflection point location on cylinder for cylinder-reflected ray diffracted by a corner on edge ME of plate MP used as the starting point if previous data do not exist
UR	Z component of reflection point location on cylinder
URO	Stored components defining z component of starting reflection point locations on cylinder
V	Matrix of edge unit vectors for all edges of all plates
VCD	Elliptical angle defining reflection point on cylinder (2-D) for ray which is reflected by cylinder and diffracted by a corner on edge ME of plate MP used for the starting point location if previous data do not exist
VI	X,Y,Z components of unit vector of ray incident on cylinder
VIM	Distance from source to reflection point

li

	VIU	Partial derivative of VI with respect to UR
	VIV	Partial derivative of VI with respect to angle VR
	VR	Elliptical angle defining reflection point on cylinder (2-D)
	VRO	Stored elliptical angles defining starting reflection point locations on cylinder
	X	Matrix which contains all the corner loca- tions for all the plates
	XD	X,Y,Z components of diffraction point location
	XR	X,Y,Z components of reflection point location on cylinder
	XS	The x,y,z components of the source location in RCS
5.	I/O VARIABLES:	
	A. INPUT	LOCATION
	Α	/GEOMEL/
	В	/GEOMEL/
	BCD	/BNDRCL/
	D	/DIR/
	DE	F.P.

FLDPT /NEAR/

LNRFLD /NEAR/

LRDC F.P.

LUPRNT /ADEBUG/

ME F.P. MEP /GEOPLA/

MP	F.P.
PHSR	/D1R/
PHWR	/BRNPHW/
PI	/F1S/
THSR	/DIR/
ΤΡΙ	/PIS/
UCD	/BNDRCL/
v	/GEOPLA/
VCD	/BNDRCL/
X	/GEOPLA/
XS	/SORINF/
OUTPUT	LOCATION
DOTP	F.P.
OR	F.P.
DRM	F.P.
LRDC	F.P.
SNM	F.P.
IV	F.P.
VIM	F.P.
VR	F.P.
XD	F .P.
XR	F.P.

6. CALLING ROUTINES:

DPLRCL

8.

RCLDPL

7. CALLED ROUTINES:

BTAN2

DFPTWD

NFD

ANTONIA CONTRACTOR

AND ADDRESS

- 8. REFERENCE:
 - A. R. J. Marhefka, "Analysis of Aircraft Wing-Mounted Antenna Patterns," Report 2902-25, June 1976, The Ohio State University ElectroScience Laboratory, Department of Electrical Engineering; prepared under Grant No. NGL 36-008-138 for National Aeronautics and Space Administration.

1. NAME: RFPTCL (GTD)

CRAME VIIIII ATTACES INCLUSE STRUCT

- 2. PURPOSE: To calculate the reflection point on the elliptic cylinder for a source ray reflected in a given direction. The routine also computes cylinder reflection points for source rays that are reflected by a given plate and then reflected by the cylinder.
- METHOD: Figures 1, 2 and 3 show the geometry involved. The reflec-3. tion point for a ray reflected in a direction defined by the phi angle PHSR is calculated via an iterative process. The routine starts with the tangent ray nearest to the reflected ray direction (or other nearby reflected ray whose reflection point is known) and steps along the cylinder surface, calculating the approximate reflection point for each reflected ray phi angle PHPR (which is stepped from PHOR to PHSR in evenly spaced steps). Each reflection point calculation uses the previous reflection point as a reference. As long as the steps are sufficiently small, the approximation is The equations are based on a first order Taylor series accurate. approximation of the equation governing the laws of reflection. Further details are given on pages 102-104 of reference A. The point obtained at the end of the process is the estimated reflection The routine then takes the sum of dot products of the point. cylinder normal and the incident and reflected rays (which should be zero in order to satisfy the law of reflection). If it is larger than some minimal amount, the number of iteration steps for angle PHPR is doubled and the calculation is redone. If the error is much smaller than necessary, the number of steps used in the next calculation is divided by two.

Once a reflection point is calculated for a particular geometry, the elliptical angle defining the reflection point (VRO(MR)) is saved, along with the number of steps used to calculate it (IVD(MR)) for the next time RFPTCL is called for the same geometry. Since the next pattern angle is likely to be quite close to the previous one, this gives the computer a good starting point in defining the next reflection point, hence minimizing computer time. LRFC is a logical variable which if true tells the user that there are data from the previous pattern angle available to compute the next reflection point. If a reflection does not occur, LRFC is set false, and the next time the routine is called, it will start at the nearest tangent point.

An important note to users is that if the same problem is run with a different starting angle or with a different angle increment, the answers may not be precisely the same due to the iterative approach.

Figure 1. Illustration of Cylinder Reflection Point

XR' = reflection point for ray with reflected phi angle PHPR = \hat{x} A CSV + \hat{y} B SNV

Figure 2. Geometry for Calculating Reflection Point

Illustration of Iterative Method Used in Computing the Cylinder Reflection Point Figure 3.

INTERNAL VARIABLES: 4.

VARIABLE	DEFINITION
Α	Radius of cylinder along the x axis
B	Radius of cylinder along the y axis
BTI	This defines unit vectors for the two rays reflected by each plate and tangent to the cylinder. The unit vector for the source ray reflected from plate MP tangent to tangent point 1 is given by:
	$T1 = \hat{x} * BTI(MP,1) + \hat{y} * BTI(MP,2)$

BTS

CPP

CPS

CSV

DD

DOTP

DPSR

DR

DS

DPX.DPY

The unit vector for the source ray reflected from plate MP tangent to tangent point 2 is given by: T2 = x * BTI(MP,3) + y * BTI(MP,4)This defines unit vectors of the two source rays tangent to the cylinder. The unit vector for the source ray tangent to tangent point 1 is given by: T1 = x * BTS(1) + y * BTS(2)The unit vector for the source ray tangent to tangent point 2 is given by: T2 = x * BTS(3) + y * BTS(4)Cosine of PHPR Cosine of PHSR Cosine of VR Normalization constant for reflection point normal vector One half the difference between the dot products of the reflected ray direction and cylinder unit normal and the incident ray direction and cylinder unit normal Size of angle step used in iteration X and Y components of partial derivative of reflected ray direction with respect to phi observation angle Dot product of incident ray unit vector and cylinder unit normal Dot product of reflected ray propagation direction unit vector and cylinder unit

DV Change in angle VR

normal

Ϋ́,

Ą

 \mathbf{A}

DVB	Partial derivative of the reflection law equation (FI) with respect to elliptical angle VR
DVT	Partial derivative of the reflection law equation (FI) with respect to the phi angle of the observation direction
DX,DY	X and Y components of unit vector of reflected ray (direction defined by angle PHPR) in RCS
ERC	Error parameter (sum of DS and DR)
ERCA	Absolute value of ERC
FI	Equation satisfying the law of reflection
IVD	Number of iterations used to find reflec- tion point the last time RFPTCL was called for plate MP
IVDM	Number of steps used in iteration
LRFC	(Entering routine) set true if reflection occurred last time REFCYL was called. (LRFC set true when leaving routine if reflection occurred this time)
MP	Used to specify whether source or source image is used MP=O designates source MP>O designates source image for reflection from plate MP
MPXR	Maximum number of plates present
MR	Index variable (MP+MPXR+I) for storing data for next call to RFPTCL
PHE	Phi angle between reflected ray direction and tangent point 2
РНЕР	Phi angle between reflected ray direction and tangent point 1
PHIR	Phi component of source location in RCS

1. S. C. S.

10 A A

N. 1. 1. 1. 1.

Sec. Sec.

PHOR	Reflected ray phi angle (stored as starting point parameter for next time routine is called)
PHORB	Phi angle defining ray tangent to tangent point 1
PHORP	Phi angle of cylinder reflected ray direc- tion in rotated RCS
PHPR	Reflected ray phi angle (iterated from PHOR to PHSR)
PHSPR	Phi angle defining reflected ray direction in rotated RCS
PHSR	Phi component of reflected ray propagation direction in RCS
PI	Π
S	Distance from source to reflection point in x-y plane
SIPX,SIPY	X and Y components of partial derivative of incident ray vector with respect to ellip-tical angle VR
SIX,SIY	X and Y components of incident ray propaga- tion vector in RCS (not always normalized)
SNPX, SNPY	X and Y components of partial derivative of cylinder normal at reflection point with respect to elliptical angle VR
SNV	Sine of VR
SNX,SNY	X and Y components of ray normal to cylinder reflection point in RCS (not always normalized)
SPP	Sine of PHPR
SPS	Sine of PHSR
STP	Number of steps used in iteration
TPI	2π

	VR	Elliptical angle defining reflection pcint in RCS x-y plane
	VRO	Elliptical angles defining tangent points for source ray (or source ray reflected from plate) tangent to cylinder
	VTI	Array of elliptical angles defining for each plate the two tangent points on the cylinder for rays which are reflected from that plate
	VTS •	Consists of two elliptical angles defining the two tangent points on the cylinder from the source
	XI	Array which contains the source image loca- tions in wavelengths for all plate single and double reflections
	XIS	Source location
	XS	X,Y and Z components of source location
5.	I/O VARIABLES:	
	A. INPUT	LOCATION
	A	/GEOMEL/
	B	/GEON.L/
	BTI	/BNDICL/
	BTS	/BNDSCL/
	LRFC	F.P.
	LUPRNT	/ADEBUG/
	MP	F.P.
	MPXR	/GROUND/
	PHSR	F.P.
	PI	/PIS/
	TPI	/PIS/

VTI	/BNDICL/
VTS	/BNDSCL/
XI	/IMAINF/
XS	/SORINF/
OUTPUT	LOCATION
DD	F.P.
DOTP	F.P.
LRFC	F.P.
S	F.P.

F.P.

6. CALLING ROUTINES:

VR

RCLRPL

Β.

STATES ST

S. COLORA

REFCYL

RPLRCL

7. CALLED ROUTINE:

BTAN2

- 8. REFERENCE:
 - A. R. J. Marhefka, "Analysis of Aircraft Wing-Mounted Antenna Patterns," Report 2902-25, June 1976, The Ohio State University ElectroScience Laboratory, Department of Electrical Engineering; prepared under Grant No. NGL 36-008-138 for National Aeronautics and Space Administration.

1. NAME: ROMBNT (GTD, MOM)

- 2. PURPOSE: To numerically compute the integral of the function exp (-jkr)/kr for a wire segment or $[(1/kr)^3 + j(1/kr)^2] \exp(-jkr)$ for a patch observation point.
- 3. METHOD: To evaluate the field due to a segment, a local cylindrical coordinate system is defined with origin at the center of the segment and z axis in the segment direction. This geometry is illustrated in the discussion of subroutine TNEFLD. Subroutine ROMBNT is called by subroutines TNEFLD and SOURCE to evaluate the integral

$$G = \int_{-k\Delta/2}^{k\Delta/2} \frac{e^{-jkr}}{kr} d(kz)$$

where

$$z = \left[\rho'^{2} + (z - z')^{2}\right]^{1/2}$$

and other symbols are defined in the discussion of subroutine TNEFLD. To evaluate the magnetic field at a patch observation point, this subroutine is called by the subroutine TNHFLD to evaluate the integral

$$G = \int_{-k\Delta/2}^{k\Delta/2} \left[\frac{1}{(kr)^3} + \frac{j}{(kr)^2} \right] e^{-jkr} d(kz)$$

The numerical integration technique of Romberg integration with variable interval width is used. The Romberg integration formula is obtained from the trapezoidal formula by an iterative procedure (see reference A). The trapezoidal rule for integration of the function f(x) over an interval (a, b) using 2^k subintervals is

$$T_{0k} = (b - a)/N \left[\frac{1}{2} f_0 + f_1 + \dots + f_{N-1} + \frac{1}{2} f_N \right]$$

where

These trapezoidal rule answers are then used in the iterative formula

$$T_{m,n} = 1/(4^m - 1)$$
 $4^m T_{m-1,n+1} - T_{m-1,n}$

The results T_{mn} may be arranged in a triangular matrix of the form

where the elements in the first column, T_{Ok} , represent the trapezoidal rule results and the elements in the diagonal, T_{kO} , are the Romberg integration results for 2^k subintervals.

Convergence to increasingly accurate answers takes place down the first column and the diagonal as well as toward the right along the rows. The row convergence generally provides a more realistic indication of error magnitude than two successive trapezoidal rule or Romberg answers.

This convergence along the rows is used to determine the interval width in the variable interval width scheme. The complete integration interval is first divided into a minimum number of sub-intervals (presently set to one) and T_{00} , T_{01} , and T_{10} are computed on the first subinterval. The relative difference of T_{01} and T_{10} is then computed and if less than the error criterion, R_x , T_{10} is accepted as the integral over that interval and integration proceeds to the next interval. If the difference of T_{01} and T_{10} is too great, T_{02} , T_{11} , and T_{20} are computed. The relative difference of T_{11} and T_{20} is then computed and if less than R_x , T_{20} is accepted as the integral over the subinterval. If the difference of T_{11} and T_{20} is determine the integral over the subinterval. If the difference of T_{11} and T_{20} is accepted as the integral over the subinterval.

ROMBNT (GTD, MOM)

is too great, the subinterval is divided in half and the process repeated starting with T_{00} for the new left-hand subinterval. The subinterval is repeatedly halved until convergence to less than R_{χ} is found. The process is repeated for successive subintervals until the right-hand side of the integration interval is reached. When convergence has been obtained with a given subinterval size, the routine attempts doubling the subinterval size for a few times to maintain the largest subinterval size that will give the required accuracy. Thus, the routine will use many points in a rapidly changing region of a function and few points where the function is smoothly varying.

Since the function to be integrated is complex, the convergence of both real and imaginary parts is tested and both must be less than R_X . The same subinterval sizes are used for real and imaginary parts.

When the field of a segment is being computed at the segment's own center the length r becomes

$$\mathbf{r} = \left[\mathbf{b}^2 + (\mathbf{z} - \mathbf{z}')^2 \right]^{1/2}$$

where b is the wire radius. For small values of b, the real part of the integrand is sharply peaked and hence difficult to integrate numerically. Therefore, the integral is divided into the components

$$G' = \int_{-kA/2}^{kA/2} \frac{e^{-jkr}-1}{kr} d(kz)$$

$$G'.' = \int_{-k\Delta/2}^{k\Delta/2} \frac{1}{kr} d(kz)$$

G = G' + G''

G' must be computed numerically, however the integrand is no longer peaked. G'', which contains the sharp peak, can be computed as
G'' =
$$2\log\left[\left(\sqrt{b^2 + \Delta^2} + \Delta\right)/b\right]$$

To further reduce integration time for the self term, the integral of G' is computed from $-k\Delta/2$ to O and the result doubled to obtain G'.

4. INTERNAL VARIABLES:

CARACTER AND A CARACTER

1. 2. 4. 4. 2. B. 4.

VARIABLE	DEFINITION
ВК	Wire radius, b
DZ	Subinterval size on which T ₀₀ , T ₀₁ ,are computed
DZOT	0.5 DZ
EL1	-k∆/2
EL2	kΔ/2
EP	Tolerance for ending the integration interval k∆/NM*10
FNM	Real number equivalent of NM
FNS	Real number equivalent of NS
G11	Imaginary part of f ₁
G1R	Real part of f _i
G21	Imaginary part of f ₂
G2R	Real part of f ₂
G3I	Imaginary part of f ₃
G3R	Real part of f ₃
G4I	Imaginary part of f ₄
G4R	Real part of f ₄
G5I	Imaginary part of f ₅
G5R	Real part of f ₅

ROMBNT (

and the state

たいであるというで

1000 m

1. 1. S. W.

(GTD, MOM)

IJ	Indicates self-term integration when equal to zero, or patch observation point when equal to one
NM	$65536 = 2^{16}$
NS	Present subinterval size is $k\Delta/NS$
NT	Counter to control increasing of sub- interval size
NTS	Larger values retard increasing of sub- interval size
NX	Maximum allowed subinterval size is $k\Delta/NX$
RX	R _x
SGI	Imaginary part of G
SGR	Real part of G
SS	Δ
TE1I	Relative difference of T ₀₁ and T ₁₀ for imaginary part
TE1R	Relative difference of T_{01} and T_{10} for real part
TE2I	Relative difference of T ₁₁ and T ₂₀ for imaginary part
TE2R	Relative difference of $T_{11}^{}$ and $T_{20}^{}$ for real part
1001	Imaginary part of T ₀₀
TOOR	Real part of T _{OO}
T011	Imaginary part of T ₀₁
TO1R	Real part of T ₀₁
T02 I	Imaginary part of T _{O2}
TO2R	Real part of T _{O2}
T10I	Imaginary part of T ₁₀

ROMBNT

(GTD, MOM)

	T10R		Real part of T ₁₀
	т111		Imaginary part of T ₁₁
	T11R		Real part of T ₁₁
	T20I		Imaginary part of T ₂₀
	T2OR		Real part of T ₂₀
	Z		Integration variable at left-hand side of subinterval
	ZE		k∆/2
	ZEND		$k\Delta/2 - EP$ (EP = tolerance term)
	ZP		Integration variable
5.	I/0 \	VARIABLES:	
	Α.	INPUT	LOCATION
		ВК	F.P.
		EL1	F.P.
		EL2	F.P.
		IJ	F.P.
	Β.	OUTPUT	LOCATION
		ICALL	/ADEBUG/
		NUMWRD	/ADEBUG/
		SGI	F.P.
		SGR	F.P.
6.	CALL	ING ROUTINES:*	
	SOUR	CE (2)	
	TNEFI	LD (3)	
	TNHFI	LD (3)	

*2-GTD 3-Mom

- ROMBNT (GTD, MOM)
- 7. CALLED ROUTINES:

ASSIGN

CNVTST

NTGRAN

STATIN

STATOT

WLKBCK

8. REFERENCES:

and the second of the second

197222200

A. A. Ralston, "A First Course in Numerical Analysis," McGraw-Hill, 1965, p. 212.

AND THE PROPERTY AND TH

4555

100

918

- - •

. Choi o

<u>.</u>

- 1. NAME: ROTATE (GTD, INPUT)
- 2. PURPOSE: To rotate a point to or from the origin of a given coordinate system.
- 3. METHOD: The coordinates of a point rotated in a given coordinate system are given by

$$\begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{\mathbf{Z}} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{R}_{\mathbf{Y}} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{R}_{\mathbf{X}} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z} \end{bmatrix}$$

where

$$\begin{bmatrix} \mathbf{R}_{\mathbf{x}} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \Psi & -\sin \Psi \\ 0 & \sin \Psi & \cos \Psi \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{R}_{\mathbf{y}} \end{bmatrix} = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{R}_{\mathbf{z}} \end{bmatrix} = \begin{bmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

and Ψ , θ , ϕ are the rotation angles about the x, y, and z axis respectively.

4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
A _{nm}	The components of the rotation matrix
CP	cos¢
CS	COSY
ст	cosθ
NOP	Operation code to designate rotation from or to the origin
PHI	ϕ , the rotation about the z axis

ROTATE (GTD, INPUT)

PHISV	Saved value of PHI
PSI	Ψ , the rotation about the x axis
PSISV	Saved value of PSI
RX,RY,RZ	Rotation angle about the x, y, and z axis, respectively
SP	sin¢
SS	sin¥
ST	sin0
THETA	θ , the rotation about the y axis
THTSV	Saved value of THETA
X,Y,Z	Coordinates of input/output variables to be changed

I/O VARIABLES 5.

. WEELENY

a station of the

Α.	INPUT	LOCATION
	LSOFF	/ADEBUG/
	NOP	F.P.
	RX,RY,RZ	F.P.
	X,Y,Z	F.P.
Β.	OUTPUT	LOCATION
	X,Y,Z	F.P.

CALLING ROUTINES:* 6.

> COORDS (1) CYAXIS (2)

GTDCS (1)

PATCH (1)

WYRDRV (1)

*1-INPUT 2-GTD

	342 4 41	ما ما ها ها ها ما ها ما	والمتقاط موتية المناط		
			ROTATE	(GTD, INPUT)	
E.				· · ·	
	7.	CALLED ROUTINES:			
		ASSIGN			
		STATIN			
		STATOT			
		WLKBCK			an taon ann an Aontainn an Aontaichte ann an Aontaichte an Aontaichte an Aontaichte an Aontaichte an Aontaichte an Aontaichte an Aontaichte Aontaichte an Aontaichte an

1. NAME: ROTRAN (GTD)

- 2. PURPOSE: To transform and rotate a point or vector defined in the global coordinate system (as stored in the segment table SEGTBL) to the cylinder-centered reference coordinate system (RCS) used for the GTD calculations.
- 3. METHOD: The point X_x defined in the global coordinate system may be represented by point X_{rt} in the cylinder-centered RCS where (refer to figure 1):

$$\overline{\mathbf{X}}_{rt} = \begin{bmatrix} \mathbf{V}_{cl} \end{bmatrix} \overline{\mathbf{X}}_{t}$$
, where $\overline{\mathbf{X}}_{t} = \overline{\mathbf{X}}_{x} - \overline{\mathbf{X}}_{o}$

or

XRT(1)		XCL(1)	XCL(2)	XCL(3)	XX(1) - XO(1)
XRT(2)	=	YCL(1)	YCL(2)	YCL(3)	XX(2) - XO(2)
XRT(3)		ZCL(1)	ZCL(2)	ZCL(3)	XX(3) - XO(3)

where \bar{X}_0 is the location of the cylinder-centered RCS origin defined in the global coordinate system and \hat{x} , \hat{y} , \hat{z} are unit vectors defining the cylinder centered RCS axes in global coordinate system (g) components:

 $\hat{x} = \hat{x}_{g} \quad XCL(1) + \hat{y}_{g} \quad XCL(2) + \hat{z}_{g} \quad XCL(3)$ $\hat{y} = \hat{x}_{g} \quad YCL(1) + \hat{y}_{g} \quad YCL(2) + \hat{z}_{g} \quad YCL(3)$ $\hat{z} = \hat{x}_{g} \quad ZCL(1) + \hat{y}_{g} \quad ZCL(2) + \hat{z}_{g} \quad ZCL(3).$

ROTRAN (GTD)

ZCL

うくろいて

This defines the cylinder-centered reference coordinate system z axis in global reference system components

5. I/O VARIABLES:

A.	INPUT	LOCATION
	XCL	/ROTRDT/
	XO	F.P.
	XX	F.P.
	YCL	/ROTRDT/
	ZCL	/ROTRDT/
B.	OUTPUT	LOCATION
	XRT	F.P.

6. CALLING ROUTINE:

GTDDRV

7. CALLED ROUTINE:

NONE

1. NAME: RPLDPL (GTD)

No. of the second

- 2. PURPOSE: To calculate the unobstructed electric field for a unit source ray that is reflected off plate MR and diffracted by edge ME on plate MP into a given far-field observation direction or to a given near-field observation point.
- 3. METHOD: RPLDPL is the driver routine to compute the plate-reflected and then edge-diffracted fields. Pertinent geometry is shown in figure 1 and computation details are given in references A-C. The fields are first initialized to zero. Then the diffraction point on edge ME of plate MP is found for the given observation direction or point based on the location of the source imaged through plate MR. The diffraction point is computed in subroutine DFPTWD. If diffraction did not occur, debug information (if requested) is printed on file LUBRNT and control is returned to the calling routine. If diffraction did occur on the vector tangent to the edge, the point location is checked to see if it is between the corners. If it is not, the diffraction point is set at the closest corner and a flag, LDIF, is set to indicate only corner-diffracted fields exist.

Figure 1. Illustration of a Ray Reflected by a Plate and Then Diffracted by a Plate Edge

Now the ray path is checked for any obstructions. If the path is shadowed, debug information (if requested) is printed and control returns to the calling routine. If the path is clear the field computations begin.

First, necessary diffraction angles and geometry are calculated. Then the source field pattern factor is found by calling subroutine SOURCE and is multiplied by the reflection coefficient. Then the incident field perpendicular and parallel to the edge can be computed.

If slope diffraction is requested, the incident slope field pattern factor is computed by calling subroutine SOURCP. This factor also must be multiplied by the reflection coefficient to account for axis direction changes due to single reflection.

The phase term is now computed. The edge diffraction coefficient is determined in subroutine DW. Now the edge-diffracted fields are computed, first in terms of a parallel and perpendicular orientation and then in theta and phi components. By calling subroutine XYZFLD the x, y, z components of the edge-diffracted field are computed and accumulated with all other fields computed by other reflection and diffraction interactions.

If corner diffraction was requested, the far-field corner-diffracted fields are computed for each corner on edge ME in the same manner as for the edge diffraction.

After all fields have been computed and the x, y, z components accumulated, debug information (if requested) is printed on file LUPRNT. This consists of the field magnitude and theta and phi components of the total field. Control is then returned to the calling routine.

4. INTERNAL VARIABLES:

TANKARAN I ARAANA

VARIABLE DEFINITION

ADN Dot product of vector from plate MP to the source image and the plate unit normal

AFN Wedge angle number

BETN Difference in diffracted and incident phi angles

BETP Sum of diffracted and incident phi angles

BO Diffracted field beta polarization unit vector in diffraction edge-fixed coordinate system (in x,y,z RCS components)

BOP Incident field beta polarization unit vector in diffraction edge-fixed coordinate system (in x,y,z RCS components)

ANNEAR

ALCONTAL

BRD	Lower and upper limit for edge diffraction angle
CNP	Cosine of half wedge angle
CORN	Corner diffraction coefficient
СРН	Cosine of PSR
СРНЈ	Cosine of PHJR
СРНО	Cosine of PSOR
СТН	Cosine of THR
СТНЈ	Cosine of THJR
СТНР	Cosine of THPR
DEL	Parameter used in transition function
DH	Diffraction coefficient for hard boundary condition
DHIR	Distance from reflection point to diffrac- tion point
DHIT	Distance from source to reflection point (from PLAINT)
DHT	Distance from source to hit point (from PLAINT and CYLINT)
DIN	Edge diffraction coefficient (from subrou- tine DICOEF) for incident diffracted field
DIP	Edge diffraction coefficient (from subrou- tine DICOEF) for reflected diffracted field
DPH	Slope diffraction coefficient for hard boundary condition
OPS	Slope diffraction coefficient for soft boundary condition
DS	Diffraction coefficient for soft boundary condition

929

DV	Dot product of edge unit vector and diffracted ray propagation direction unit vector
ЕСРН	Phi component of corner-diffracted E-field
ECTH	Theta component of corner-diffracted E-field
EDPH	Phi component of edge-diffracted E-field
EDPL	Component of diffracted field parallel to the edge
EDPR	Component of diffracted field perpendicular to the edge
EDTH	Theta component of edge-diffracted E-field
EF	Theta component of corner-diffracted E-field in RCS
EG	Phi component of corner-diffracted E-field in RCS
EIPL	Component of incident field parallel to the edge
EIPLP	Pattern factor for component of incident slope field parallel to the edge
EIPR	Component of incident field perpendicular to the edge
EIPRP	Pattern factor for component of incident slope field perpendicular to the edge
EIX,EIY,EIZ	Source pattern factor for x,y, and z compo- nents of incident E-field
EXPH	Complex phase term
FN	Wedge angle number
FNN	Wedge angle indicator
FNP	Angle exterior to wedge in degrees

Dot product of the diffracted ray direction GAM and the vector from the origin to the diffraction point ISN Sign change variable J Index variable Logical variable set true if diffraction LDIF point is on edge tangent but not within (The diffraction is set to the corners. closest corner) Logical variable set true if edge diffrac-LDIFFR tion exists (from subroutine DFPTWD) Set true if ray hits a plate or cylinder LHIT (from PLAINT or CYLINT) Index variable used to step through corners MC Edge on plate MP where diffraction occurs ME Corner at end of edge ME MEC Plate for which diffraction occurs MP Plate where reflection occurs MR DO loop variable N DO loop variable NI DO loop variable NJ PD Dot product of diffraction edge binormal and diffracted ray propagation direction Diffracted field phi polarization unit PH vector in diffraction edge-fixed coordinate system (in x,y,z RCS components) Phi component of reflected ray propagation PHIR direction in RCS Phi component of incident (source) ray PHJR propagation direction

PHO Incident field phi polarization unit vector in diffraction edge-fixed coordinate system (in x,y,z RCS components) PHSR Phi component of ray propagation direction after diffraction in RCS PP Negative dot product of diffraction edge binormal and incident ray unit vector PS PSR*DPR **PSD** Diffracted ray phi angle in edge-fixed coordinate system **PSO** PSOR*DPR **PSOD** Incident ray phi angle in edge-fixed coordinate system **PSOR** Phi component of incident ray direction in edge-fixed coordinate system PSR Phi component of diffracted ray propagation direction in edge-fixed coordinate system QD Dot product of diffraction plate normal and diffracted ray propagation direction Negative of dot product of diffracted plate **0**I normal and incident ray propagation direction Sine of BO, the angle the diffracted ray **SBO** makes with the edge SNF Distance between diffraction point and near-field observation point Sine of half wedge angle SNP Distance from source image to diffraction SP point (from subroutine DFPTWD) Sine of PSR SPH Sine of PHJR SPHJ **SPHO** Sine of PSOR

SPP *Distance from source image to modified diffraction point Sine of THJR STHJ Sine of THR STHR Coefficient of corner-diffracted fields TERM Theta component of reflected ray direction THIR in RCS THJR Theta component of incident (source) ray propagation direction Angle diffracted ray makes with edge THPR Angle between edge unit vector and ray from THR source image location to corner MC Distance parameter used in calculating TPP diffraction coefficients VAX 3 X 3 matrix defining the source image coordinate system axes Unit vector from source image to corner 1 VC or 2 of edge ME Distance from source image to corner 1 or 2 VCM of edge ME Vector used to move diffraction point off VECT edge for shadowing tests Unit vector of ray incident on edge from VI plate reflection (from subroutine DFPTWD) Unit vector of ray from source image to VIP modified diffraction point X.Y. and Z components of source ray propa-VJ gation direction Distance along the edge from first corner VMG of edge to diffraction point Single reflection source image location X1

933

- XC Corner location
- XD Diffraction point (calculated in subroutine DFPTWD) in RCS
- XD1 Diffraction point location
- XDP Modified diffraction point used for shadowing tests
- XIS Source image location (for reflection from plate MR)
- XS Source location in RCS
- XSS Single reflection source image location
- ΖP Dot product of propagation direction unit vector and vector from diffraction point to corner MC
- I/O VARIABLES: 5.

A. INPUT L	.OCA	T	IC)I
------------	------	---	----	----

D /DIR/

- DP /THPHUV/
- DPR /PIS/
 - DT /THPHUV/

FLDPT /NEAR/

- FNN F.P.
- LCORNR /LOGDIF/
- LDEBUG /TEST/
- LNRFLD /NEAR/
- **LSLOPE** /LOGDIF/ LSURF /SURFAC/
- LUPRNT /ADEBUG/

ME	F.P.
MEP	/GEOPLA/
MP	F.P.
MR	F.P.
PHSR	/DIR/
PI	/PIS/
THSR	/DIR/
TPI	/PIS/
V	/GEOPLA/
VMAG	/EDMAG/
VN	/GEOPLA/
VP	/GEOPLA/
VXI	/IMAINF/
X	/GEOPLA/
XI	/IMAINF/
XS	/SORINF/
OUTPUT	LOCATION
ECPH	F.P.
ECTH	F.P.
EDPH	F.P.
EDTH	F.P.

6. CALLING ROUTINE:

GTDDRV

Sec. Sec.

8.

'n

7. CALLED ROUTINES:

ASSIGN

BEXP

BTAN2

CYLINT

DFPTWD

DICOEF

DW

FFCT

NFD

PLAINT

REFBP

SMAGNF

SOURCE

SOURCP

STATIN

STATOT

TPNFLD

WLKBCK

XYZFLD

8. REFERENCES:

A. R. G. Kouyoumjian and P. H. Pathak, "A Uniform Geometrical Theory of Diffraction for an Edge in a Perfectly Conducting Surface," Proc. IEEE, Vol. 62, November 1974, pp. 1448-1461.

CONTRACT ANY CONTRACT ANY CONTRACT

- B. W. D. Burnside and P. H. Pathak, "A Corner Diffraction Coefficient," to appear.
- C. Y. M. Hwang and R. G. Kouyoumjian, "A Dyadic Diffraction Coefficient for an Electromagnetic Wave Which Is Rapidly Varying at an Edge," USNC-URSI 1974 Annual Meeting, Boulder, CO., Oct. 1974.

2020262

R

ないというです。

A STATE

66

Page 2 of 3

.

C

940

Page 3 of 3

2

1. NAME: RPLRCL (GTD)

- 2. PURPOSE: To compute the unobstructed electric field from a unit source reflected by plate MP and then reflected by the cylinder into the far-field observation direction or to the near-field observation point.
- 3. METHOD: RPLRCL functions as a service routine for subroutine RPLSCL, where the actual plate-cylinder fields are computed. The geometrical optics reflected field components ETH and EPH computed in RPLRCL are used only for reference purposes. The field components calculated in RPLRCL, which are used in RPLSCL, are the hard and soft components of the plate-reflected field incident on the cylinder at the reflection point. These components, along with several other useful parameters, are passed to subroutine RPLSCL through common block FUDGI. Pertinent geometry is shown in figure 1.

The code first makes two checks to determine if it is possible for reflection to occur off the cylinder. One check determines if the observation direction or point is in the lit or dark geometrical optic region of the cylinder. The other check is to determine if the observation direction or point is in the paraxial region beyond the end caps. If reflection cannot occur, a flag is set to indicate starting data are not available for the next time subroutine RPLRCL is called. Another flag is also set to indicate the field does not The fields are set to zero and control is returned to the exist. calling routine.

If cylinder reflection could occur, the reflection point is determined by calling subroutine RFDFIN for near-field calculations and subroutine RFPTCL for far-field calculations. The code then checks to see if the cylinder reflection point is beyond the cylinder end If it is, a flag is set to indicate that the geometrical caps. optics field does not exist. The fields are set to zero and control is returned to the calling routine. If the reflection point is on the curved surface of the cylinder, the ray path from the cylinder reflection point in the far-field observation direction or to the near-field observation point is checked for obstructions. Then, the code checks to see if reflection occurs from plate MP. Next. the remainder of the complete ray path is checked for obstructions. If at any point the ray path is shadowed or reflection does not occur from plate MP, the code sets a flag to indicate that the geometrical optics field does not exist. Those fields are set to zero and control is returned to the calling routine.

If the plate and cylinder reflections do occur, and the ray path is not obstructed, the field computations can begin. First, the source field pattern factor is found by calling subroutine SOURCE. The source factor is then multiplied by the reflection coefficient. Next, the polarization unit vectors perpendicular and parallel to the plane of incidence are computed. These are used to compute the incident field components parallel and perpendicular to the plane of The plate-reflected field components parallel and incidence. perpendicular to the plane of incidence are then computed. Next. the theta and phi components of the reflected field are computed. The subroutine then ends by computing the theta and phi components of the hard and soft field components incident upon the cylinder.

INTERNAL VARIABLES: 4.

VARIABLE

CTHW

DEFINITION

Dot product of cylinder normal and reflection propagation direction unit vector

CW

Cosine of WR

D Propagation direction after cylinder reflection in x, y, z RCS components 01 Direction unit vector used for determining if cylinder reflection is possible D2 Direction unit vector used for determining if cylinder reflection is possible DD X-Y distance from the z axis to the cylinder reflection point **DD1** Dot product of unit vector of propagation direction and cylinder tangent unit vector through tangent point 1 (2-D)Dot product of unit vector of propagation **DD2** direction and cylinder tangent unit vector through tangent point 2 (2-D)DHIS Distance from reflection point on plate to reflection point on the cylinder DHIT Distance from source to hit point (from PLAINT) DHT Distance to hit point (from subroutine PLAINT) DICOEF X.Y. and Z components of incident ray direction on cylinder in RCS DOTP Variable used to indicate if reflection occurred and satisfied Snell's Law DJ X.Y.Z components of propagation direction of ray incident on plate DXY Dot product of vector from origin to source image location and propagation direction (2-D)Pattern factor of theta component of inci-EF dent field in RCS EG Pattern factor of phi component of incident field in RCS

EHPHI Phi component of the hard component of field incident on cylinder (parallel to plane of incidence) EHTHI Theta component of the hard component of field incident on cylinder (parallel to plane of incidence) EIPP Incident cylinder field component parallel to plane of incidence EIPR Incident cylinder field component perpendicular to plane of incidence EPH Phi component of cylinder-reflected E-field ERPP Cylinder-reflected field component parallel to plane of incidence ERPR Cylinder-reflected field component perpendicular to plane of incidence ERX, ERY, ERZ X,Y,Z components of field incident on (or reflected from) cylinder in RCS **ESPHI** Phi component of the soft component of field incident on cylinder (perpendicular to plane of incidence) ESTHI Theta component of the soft component of field incident on cylinder (perpendicular to plane of incidence) ETH Theta component of cylinder-reflected Efield EX.EY.EZ Pattern factor of x,y,z components of source field incident on cylinder in RCS FPTXY Location of field point in z=0, x-y plane LHIT Set true if ray hits plate (from PLAINT) LRFI Set true if reflection data are available from previous pattern angle (or for next pattern angle (when leaving routine))

LTRFI Set true if geometrical optics reflectedreflected field does not exist MP Plate on which reflection occurs ORIGIN The origin of the reference coordinate system (RCS) (0., 0., 0.) PH Complex phase and ray spreading coefficient PHIR Phi component of incident ray direction on cylinder PHJR Phi angle for direction of ray incident on plate PHSR1 Phi angle of D1 PHSR2 Phi angle of D2 RH011 Ray spreading radius in plane of cylinder curvature at reflection point RHO₂ Ray spreading radius normal to plane of incidence at reflection point S Distance from source image to cylinder reflection point **SMAGI** Length of ray from reflection point on cylinder to source image SNF Distance between field point and cylinder reflection point SORH Part of spreading factor SXN, SYN, SZN X,Y, and Z components of unit vector of ray from reflection point on cylinder to source image location in RCS THIR Theta component of incident ray direction on cylinder THJR Theta angle which defines direction of ray incident on plate THSR1 Theta angle of D1

THSR2 Theta angle of D2 UB Unit vector of binormal to cylinder at reflection point (2-D) UN Unit vector of normal to cylinder at reflection point (2-D) UIPPX,UIPPY,UIPPZ X,Y,Z components of incident field polarization unit vector parallel to plane of incidence **UIPRX, UIPRY, UIPRZ** X.Y.Z components of incident reflected field polarization unit vector perpendicular to plane of incidence URPPX_URPPY_URPPZ X.Y.Z components of reflected field polarization unit vector parallel to plane of incidence VAX Matrix defining source coordinate system axes in RCS components VR Phi angle at which cylinder reflection occurs XE1 Vector in the direction of the more positive end cap used to determine if cylinder reflection can occur XE2 Vector in the direction of the more negative end cap used to determine if cylinder reflection can occur XIS X,Y,Z components of source image location also reflection point on plate XPI Location of reflection point on cylinder in x,y,z RCS XSS Source image location XT1 Cylinder tangent point one location in x-y plane of vector from source image XT2 Cylinder tangent point two location in x-y plane of vector from source image

5. I/O VARIABLES:

No. 100 2000

A.	INPUT	LOCATION
	A	/GEOMEL/
	В	/GEOMEL/
	BTI	/BNDICL/
	CPS	/DIR/
	CTC	/GEOMEL/
	CTHS	/DIR/
	D	/DIR/
	DP	/THPHUV/
	DT	/THPHUV/
	DTI	/BNDICL/
	FLDPT	/NEAR/
	LDEBUG	/TEST/
	LNRFLD	/NEAR/
	LRFI	/CLRFI/
	LUPRNT	/ADEBUG/
	MP	F. P.
	PHSR	/DIR/
	PI	/PIS/
	SPS	/DIR/
	STHS	/DIR/
	THSR	/DIR/
	TPI	/PIS/
	VTI	/BNDICL/

VXI	/IMAINF/
XI	/IMAINF/
XS	/SORINF/
ZC	/GEOMEL/
OUTPUT	LOCATION
CPS	/DIR/
EHPHI	/FUDGI/
EHTHI	/FUDGI/
ЕРН	F. P.
ESPHI	/FUDGI/
ESTHI	/FUDGI/
ETH	F. P.
LRFI	/CLRFI/
LTRFI	/FUDGI/
RGII	/FUDGI/
RHO1 I	/FUDGI/
SMAGI	/FUDGI/
SPS	/DIR/
TRANI	/FUDGI/
XRI	/FUDGI/

6. CALLING ROUTINE:

RPLSCL

1.2.2.2.1

Β.

7. CALLED ROUTINES:

ALLEVELS

Service Services

ADDIANA SUMMAN AND DOWN STITLE

ASSIGN	RFDFIN
BEXP	RFPTCL
BTAN2	SMAGNF
CYLINT	SOURCE
NANDB	STATIN
NFD	STATOT
PLAINT	TPNFLD
REFBP	WLKBCK

1. NAME: RPLRPL (GTD)

CARGARIAN SANATAN

「北京調査の日

- 2. PURPOSE: To compute the unobstructed electric field from a unit source due to double reflection from specified plates (reflection off plate MP and then plate MPP).
- 3. METHOD: RPLRPL is the driver routine which directs the ray tracing, physics and field calculations for double reflection off specified plates in a given far-field direction or to a near-field observation point from a unit source. The pertinent geometry is shown in figure 1.

Figure 1. Geometry for Double Reflected Ray

First the ray path from the double reflection source image is checked to see if it passes through plate MPP. If it does, the ray path from the reflection point on plate MPP in the desired far-field

RPLRPL

(GTD)

direction or to the near-field observation point is checked for obstructions. If this ray did not hit another plate or a cylinder, the rays between the first and second reflection points and between the source and first reflection point are also checked to see if they are blocked. If none of these separate paths is blocked, then it is known that reflections on the two plates specified did occur in the correct order and that the complete ray path is unobstructed. If at any check the ray was blocked by another plate or a cylinder, or the ray did not pass through plates MP and MPP as required for double reflection, the code immediately sets the theta and phi components of the electric field to zero, and no other computations except debug functions (if requested) are performed in this routine.

If the ray path is unobstructed and the reflections occurred, the source field pattern factor at the double reflection source image location is computed in subroutine SOURCE. The phase factor is then computed. For far field this will refer the electric field back to the origin of the reference coordinate system (RCS). For near field the phase factor includes the spherical wave spread factor. Now the theta and phi components of the electric field are computed. The electric field is given as:

 $j2\pi(XIJ \cdot D)$, for far field $\bar{\mathbf{E}} = (\mathbf{EF} \ \theta$ EG from subroutine from sub-EX - phase factor SOURCE routine SOURCE theta component phi component of source of source factor factor

and

Ē	Ξ	(EF	ê	+	EG	$\hat{\phi}$)
			_		-	~

SOURCE -

of source

factor

e ^{-j2πSNF}	E a · a		fiald.
SNF '	TOP	near	riela.
\sim			

from subroutine SOURCE theta component phi component of source factor

EX - phase factor from subroutine where SNF = |FLDPT - XIJ| RPLRPL (GTD)

The x, y, z components of the electric field are computed and accumulated by calling subroutine XYZFLD.

If the debug capabilities have been requested, the doubly reflected field magnitude is computed. The magnitude, theta and phi complex components of the field are printed on file LUPRNT.

4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
СРНІ	Cosine of PHIR
Срнј	Cosine of PHJR
СТНІ	Cosine of THIR
СТНЈ	Cosine of THJR
D	X,Y,Z components of ray propagation direc- tion after second reflection in RCS
DHIJ	Distance from double reflection image to hit point on plate MPP
DHIS	Distance between reflection points
DHIT	Distance from source to reflection point (from PLAINT)
DHT	Distance (calculated in PLAINT or CYLINT) from source or point from which ray originates to hit point
DICOEF	X,Y,Z components of incident ray propaga- tion direction in RCS
DJ	X,Y,Z components of propagation direction of ray incident on plate MPP
EF	Theta component of source field pattern factor
EG	Phi component of source field pattern factor
EIX,EIY,EIZ	X,Y,Z components of source field pattern factor

RPLRPL (GTD)

ų

,¥Š

2

ERP	Phi-component of electric field
ERT	Theta component of electric field
EX	Complex phase factor
FLDMAG	The electric field magnitude
FLDPT	The x,y,z location of the near-field obser- vation point
GAM	Phase distance to origin (dot product of double reflection image location and reflected ray propagation direction)
LDEBUG	Logical variable set true if debug option requested
LHIT	Set true if ray intersects a plate or cylinder (from PLAINT or CYLINT)
LNRFLD	Flag to indicate if far-field (LNRFLD=O) or near-field (LNRFLD=1) calculations are requested
MP	Plate from which first reflection occurs
MPP	Plate from which second reflection occurs
PHIR	Phi angle of incident ray propagation direction in RCS
PHJR	Phi angle of ray direction between reflec- tions in RCS
PHSR	Phi angle of ray propagation direction after reflection in RCS
SNF	Distance from double reflection image loca- tion to observation field point
SPHI	Sine of PHIR
SPHJ	Sine of PHJR
STHI	Sine of THIR
STHJ	Sine of THJR

954

RPLRPL (GTD)

۲ *

S, K

1

5.

THIR	Theta angle of incident ray propagation direction in RCS
THJR	Theta angle of ray direction between reflections in RCS
THSR	Theta angle of ray propagation direction after reflections in RCS
VAX	X,Y,Z components defining unit vectors of the source image coordinate system axes in RCS components
VAXP	X,Y,Z components defining unit vectors of the source image coordinate system axes in RCS for double reflection
XI	Triply dimensioned array of image locations
XIJ	X,Y,Z components of double reflection image location
XIS	X,Y,Z components of single reflection source image location (single reflection from plate MP)
XQ	X,Y,Z components of double reflection image location
XS	Source location in x,y,z RCS
I/O VARIABLES:	
A. INPUT	LOCATION
D	/DIR/
FLDPT	/NEAR/
LDEBUG	/TEST/
LNRFLD	/NEAR/
LUPRNT	/ADEBUG/
MP	F.P.
мрр	F.P.

	RPLRPL	(GTD)
0.000		
PH2K	/DIR/	
THSR	/DIR/	
TPI	/PIS/	
VXI	/IMAINF/	
XI	/IMAINF/	
XS	/SORINF/	
OUTPUT	LOCATION	
ERP	F.P.	

F.P.

ERT

CALLING ROUTINE: 6.

GTDDRV

Β.

7. CALLED ROUTINES:

ASSIGN

BEXP

CYLINT

IMDIR

NFD

PLAINT

REFBP

SMAGNF

SOURCE

STATIN

STATOT

WLKBCK

XYZFLD

 $\Delta (\lambda)$

\$154

states and the states of

1. NAME: RPLSCL (GTD)

- 2. PURPOSE: To compute the unobstructed electric field from a unit source reflected by plate MP and then scattered by the cylinder in the given far-field observation direction or to a given near-field observation point.
- 3. METHOD: RPLSCL is the driver routine which directs all the ray tracing, physics and field calculations for determining the electric field reflected by a plate and then scattered by the cylinder in the given far-field observation direction or to a given near-field observation point. The geometry is shown in figure 1.

Figure 1. Illustration of Ray Reflected by a Plate and Then Scattered by the Clyinder

The code begins by initializing the fields to zero. The code then makes a check to see if the plate-reflected rays can illuminate the cylinder curved surface. If they cannot, debug information (if requested) is printed on file LUPRNT. Control is then returned to the calling routine. If the plate-reflected rays can illuminate the curved surface of the cylinder, the code steps through the tangent vectors to calculate fields based on a value ALR. ALR is the reflected ray phi angle in the tangent point coordinate system. The tangents are found from the image of the source through plate MP tangent to the cylinder curved surface. If ALR is less than π , a plate-reflected cylinder-reflected ray can be determined. If ALR is greater tha. π , a creeping wave exists for this tangent on the

cylinder. If ALR is approximately π , grazing incidence occurs on the cylinder. After the fields associated with one tangent have been found, the code proceeds to the next tangent and calculates the new value of ALR. The fields associated with this tangent are then determined. All the fields are accumulated in subroutine XYZFLD in common block FLDXYZ. After the total field is found, debug information (if requested) is printed on file LUPRNT. The debug information consists of field magnitude, theta and phi components of the total field. Control is then returned to the calling routine.

If ALR is less than π , a reflected ray path will possibly be found on the cylinder. Subroutine RPLRCL calculates the ray path for a plate-reflected ray followed by a cylinder-reflected ray. It also calculates parameters associated with this ray path and field. These parameters and the field incident upon the cylinder are passed to subroutine RPLSCL through common block FUDGI. Once control is returned to RPLSCL, this subroutine checks to make sure reflected fields are present. If they are not, the code will proceed to the next tangent. If reflected fields are present, the code checks to see if reflection should be handled by the second tangent. If it should, the tangent index is set for the second tangent. Field The hard and soft components of the computations can now begin. field incident on the cylinder, obtained from common block FUDGI, are converted into the cylinder-reflected field. This is the total plate-reflected cylinder-reflected field. The x, y, z components of this field are computed in subroutine XYZFLD. The field is also accumulated in this subroutine with fields from other interactions.

If ALR is greater than π , a creeping wave can occur along the cvlinder. The code to determine the incident point and the point at which the creeping wave leaves the cylinder is different for nearfield and far-field calculations. Please refer to the accompanying flowchart for the specifics of this procedure. While in the different near-field and far-field paths, the code does compute the same items. The x, y, z components of the point at which the creeping wave leaves the cylinder and the x,y,z components of the point at which the creeping wave begins on the cylinder are computed. These points are checked to make sure that they exist on the curved surface of the cylinder and not beyond the end caps. Also, the code checks to see if reflection from plate MP can occur. The ray path between the reflection and initial diffraction point are checked for shadowing. The ray path from the source to the plate reflection point is checked for shadowing also. While still in the separate near-field/far-field paths, the incident source field pattern factor is computed by calling subroutine SOURCE. The source factor is multiplied by the reflection coefficient. Various other parameters associated with the path lengths needed for phase factors and ray spreading radii are computed. The code comes back together and checks if the cylinder-diffracted ray is obstructed. If not, the

total phase factor is computed, and the hard and soft components of the creeping wave are determined. From this, the total plate-reflected cylinder-diffracted field can be found. It is converted into x,y,z components and accumulated in subroutine XYZFLD.

If ALR is approximately equal to π , grazing incidence can occur on In this section, the code first checks to see if the cylinder. reflection from plate MP can occur. If it can, the ray between the reflection point and the far-field observation direction or nearfield observation point is checked for obstructions. Then the source ray is checked for shadowing. If the ray paths are clear, Then the This point is checked to the grazing incident point is computed. make sure it is on the curved surface of the cylinder and not beyond the end caps. If the ray path is legitimate, then the source field pattern factor is computed by calling subroutine SOURCE. The source factor is multiplied by the reflection coefficient. A phase factor The hard and soft components of the field incident is determined. at the grazing point are determined. By combining this field with the grazing incident transition field, the total plate-reflected cylinder-scattered field can be determined. The x,y,z components of the grazing incidence field are computed and accumulated in subroutine XYZFLD.

4. INTERNAL VARIABLES:

VARIABLEDEFINITIONALRCylinder-reflected ray phi angle in tangent
point coordinate system (2-D)ALSPhi angle defining direction of ray from
RCS origin to source image in tangent point
coordinate systemBX,BY,BZX,Y,Z components of polarization unit

- BX,BY,BZ X,Y,Z components of polarization unit vector of soft component of field incident on cylinder (parallel to cylinder surface and normal to incident ray propagation direction)
- CCC Real part of the Fresnel integral
- CFH Hard transition field coefficient
- CFS Soft transition field coefficient
- DEPH Phi component of transition field in RCS

DETH Theta component of transition field in RCS

DHIT	Distance from source image to plate reflec- tion point (from PLAINT)
DHIV	Distance from plate reflection point to cylinder
DHT	Distance from source to hit point (from PLAINT)
DICOEF	Unit vector of ray incident on cylinder
DIJ	X,Y plane vector from a source image tangent ray to the point the creeping wave leaves the cylinder.
DIJXDJ	Cross product of DIJ and DJT
DIT	Cylinder incident ray vector
DIXDIJ	Cross product of DIT and DIJ
DJ	X,Y,Z components of unit vector of propaga- tion direction of source ray incident on plate
DJT	X-Y plane components of observation direction
DMAG	Distance between plate reflection point and the near-field observation point for grazing incidence calculations
EF	Pattern factor for theta component of incident field in RCS
EG	Pattern factor for phi component of incident field in RCS
ЕНР	Phi component of hard component of field incident on cylinder in RCS
EHT	Theta component of hard component of field incident on cylinder in RCS
EIX,EIY,EIZ	Pattern factor for x,y,z components of incident field in RCS
EP	Phi component of cylinder-scattered E-field with phase referred to RCS origin

K,

5

ER	Dot product of unit vector tangent to cylinder and the propagation direction unit vector
ERP	Phi component of field reflected by plate then reflected by cylinder
ERT	Theta component of field reflected by plate then reflected by cylinder
ESP	Phi component of soft component of field incident on cylinder in RCS
EST	Theta component of soft component of field incident on cylinder in RCS
ET	Theta component of cylinder-scattered E-field with phase referred to RCS origin
FPTXY	The x-y plane components of the near-field observation field point
I	Variable used to step through tangent points
LHIT	Set true if ray hits a plate (from PLAINT)
LTRFI	(Returned from RPLRCL) set true if geo- metrical optics cylinder-reflected field does not exist
LVJ	Logical variable set true first time creeping wave computations begin
MP	Plate where reflection occurs
ORIGIN	RCS origin (0.,0.,0.)
PHIR	Phi component of propagation direction of ray incident on cylinder
PHJR	Phi component of propagation direction of source ray incident on plate
S	Length of vector from source image to tangent point (2 or 3-D). Also, the total distance between the source image point and the cylinder incidence point

S1 X-Y plane distance between the source image and incident point **S2** X-Y plane distance between the field point and the point on the cylinder at which the creeping wave leaves SNF Distance between near-field observation point and point at which ray path leaves cylinder (from reflection or creeping wave) SS Distance of path along the cylinder SSS Imaginary part of the Fresnel integral STA Elliptical angle defining source the tangent point x-y location THIR Theta component of propagation direction of ray incident on cylinder THJR Theta component of propagation direction of source ray incident on plate UB Unit binormal at reflection point phi angle (2-D) in x-y plane UN Unit normal at reflection point phi angle (2-D) in x-y plane VAX Source image axes VD Elliptical angle defining point where creeping wave leaves cylinder ٧I Elliptical angle used to define tangent points (2-D) ٧J Elliptical angles defining the two tangent points on the cylinder for the vector from the field point tangent to the cylinder VJB The elliptical angle defining the x-y plane point on the cylinder at which the creeping wave leaves the cylinder ٧L Elliptical angle defining lower range of creeping wave travel on cylinder (2-D)

المشيديدين

VU		Elliptical angle defining upper range of creeping wave travel on cylinder (2-D)	
XD,Y	′D,ZD	X,Y,Z components of direction of ray from source to cylinder tangent point (incident ray for creeping and grazing incidence cases)	
XII,YII,ZII		X,Y,Z components of point where incident creeping wave (or grazing wave) meets cylinder	
XIS		X,Y,Z components of image source location (for reflection from plate MP)	
ХРР		X,Y,Z components of point where ray leaves cylinder	
XPT		Incident point on cylinder	
XRF		X,Y,Z components of point where creeping wave leaves cylinder	
XSS		Source image location through plate MP	
ххх		Argument of the Fresnel integral	
I/0	VARIABLES:		
Α.	INPUT	LOCATION	
	Α	/GEOMEL/	
	AS	/GTD/	
	В	/GEOMEL/	
	BTI	/BNDICL/	
	CJ	/COMP/	
	CPI4	/COMP/	
	CPS	/DIR/	
	СТС	/GEOMEL/	
	CTHS	/DIR/	

.

SUBJECT STREET, CONCERN

5.

AN 1997

.

D	/DIR/
DTI	/BNDICL/
EHPHI	/FUDGI/
EHTHI	/FUDGI/
ESPHI	/FUDGI/
ESTHI	/FUDGI/
FLDPT	/NEAR/
ID	/GTD/
LDEBUG	/TEST/
LNRFLD	/NEAR/
LRFI	/CLRFI/
LTRFI	/FUDGI/
LUPRNT	/ADEBUG/
MP	F.P.
PI	/PIS/
PHSR	/DIR/
RGII	/FUDGI/
RHOII	/FUDGI/
SAS	/GTD/
SMAGI	/FUDGI/
SPS	/DIR/
STHS	/DIR/
THSR	/DIR/
TPI	/PIS/
TRANI	/FUDGI/
VTI	/BNDICL/

2

Ŵ

	VXI	/IMAINI/
	XI	/IMAINI/
	XRI	/FUDGI/
	XS	/SORINF/
	ZC	/GEOMEL/
Β.	OUTPUT	LOCATION
	EP	F.P.
	ERP	F.P.
	ERT	F.P.
	ET	F.P.
	LRFI	/CLRFI/
CAL	LING ROUTINE:	
GTD	DRV	
CAL	LED ROUTINES:	
ASS	IGN	QFUN
BEXP		RADCV
BTAN2		REFBP
CYLINT		RPLRCL
DQ	G32	SMAGNF
FC	т	SOURCE
FK	ARG	STATIN

FKARGSTATINFRNELSSTATOTNANDBTANGNFDWLKBCKPFUNXYZFLD

PLAINT

6.

7.

 $\hat{U}_{\mu}\hat{U}$

Ξ.

-

.

Ì

an a set of the set of

4

•

Page 6 of 6

•

- 1. NAME: RWCOMS (GTD, INPUT, MOM, OUTPUT)
- 2. PURPOSE: To read or write common blocks on the checkpoint file.
- 3. METHOD: RWCOMS uses arrays the same length as each common area. These common arrays can be read from, or written to, the checkpoint file.
- 4. INTERNAL VARIABLES:

VARIABLES DEFINITION ADEBG Array the same length as ADEBUG common AMP Z.J Array the same length as AMPZIJ common ARGCM Array the same length as ARGCOM common CSTM Array the same length as CSYSTM common DFDT Array the same length as DEFDAT common FLDCM Array the same length as FLDCOM common GEODT Array the same length as GEODAT common GTDDT Array the same length as GTDDAT common ICOM Index to commons **ICOMSV** Save the index IEOF End-of-file indicator IFILE File number for input or output (CHKPNT or MODCHK) INDXP1 INDXWB+1 INDXWB Size of array NAMOLD INTM Array the same length as INTMAT common IOFLS Array the same length as IOFLES common IWBSAV Saved value of walk back table index **JNCN** Array the same length as JUNCOM common MDLE Array the same length as MODULE common

975

PREVIOUS PAGE

RWCOMS (GTD, INPUT, MOM, OUTPUT)

Contains the names of commons written to NAMCOM the checkpoint file NAME Name of common block being read in NAMOLD Array to store first four locations of walkback table NCOMSZ Array containing the length of each common **NMWRDS** Number of words in common being read NREAD Input variable that will indicate a read or write NUMCOM Number of commons PARTB Array the same length as PARTAB common SCNPR Array the same length as SCNPAR common SGMNT Array the same length as SEGMNT common Array the same length as SYMSTR common SMSTR Array the same length as SYSFIL common SYSFL TEMP Array the same length as TEMPO1 common

5. I/O VARIABLES:

Α.	INPUT	LOCATION
	ADEBG	/ADEBUG/
	AMPZJ	/AMPZIJ/
	ARGCM	/ARGCOM/
	CSTM	/CSYSTM/
	DFDT	/DEFDAT/
	FLDCM	/FLDCOM/
	GEODT	/GEODAT/
	GTDDT	/GFDDAT/
	IFILE	F.P.

976

. ...

RWCOMS (GTC

(GTD, INPUT, MOM, OUTPUT)

IOFLS	/IOFLES/
ISOFF	/ADEBUG/
ISON	/ADEBUG/
JNCN	/JUNCOM/
LUPRNT	/ADEBUG/
MDLE	/MODULE/
MXWALK	/ADEBUG/
NAMRTN	/ADEBUG/
NREAD	F.P.
NRSUBS	/ADEBUG/
PARTB	/PARTAB/
SCNPR	/SCNPAR/
SGMNT	/SEGMNT/
SMSTR	/SYMSTR/
SYSFL	/SYSFIL/
TEMP	/TEMP01/
OUTPUT	LOCATION
ADEBG	/ADEBUG/
AMPZJ	/AMPZ1J/
ARGCM	/ARGCOM/
CSTM	/CSYSTM/
DFDT	/DEFDAT/
FLDCM	/FLDCOM/
GEODT	/GEODAT/

COMPANY OF

8.

RWCOMS (GTD, INPUT, MOM, OUTPUT)

GTDDT	/GTDDAT/
IEOF	F.P.
IOFILE	/IOFLES/
IOFLS	/IOFLES/
JNCN	/JUNCOM/
MDLE	/MODULE/
NAMRTN	/ADEBUG/
NOGOFG	/ADEBUG/
NRTIMS	/ADEBUG/
PARTB	/PARTAB/
RSUMS	/ADEBUG/
SCNPR	/SCNPAR/
SGMNT	/SEGMNT/
SMSTR	/SYMSTR/
SYSFL	/SYSFIL/
TEMP	/TEMP01/

6. CALLING ROUTINES:*

RESTRT (1) STRTUP (2,3,4) WRTCHK (1,2,3,4)

*1 - INPUT 2 - GTD 3 - MOM 4 - OUTPUT

	RWCOMS	(GTD, INPUT, MOM, OUTPUT)
7.	CALLED ROUTINES:	
	ASSIGN	
	RDEFIL	
	STATIN	
	STATOT	
	WLKBCK	
	WRTFIL	

-

1. NAME: RWFILS (GTD, INPUT, MOM, OUTPUT)

2. PURPOSE: Read or write all data files to/from a checkpoint file.

- 3. METHOD: The symbol table is searched for a data file that is not null. The data set name is read/written and file attributes calculated. PUTSYM is called to handle the file-to-file transfer via the TEMP or SEGTBL array. Should TEMP not be large enough to handle one record of the file, a fatal error is generated.
- 4. INTERNAL VARIABLES:

100000000 10000000

X77777777 (1993)2223

VARIABLE	DEFINITION		
I	Pointer to symbol table entry		
IFILE	Checkpoint file number, either IOCKPT or MODCHK		
IR1	Internal variable equal to zero		
KGEOM	Flag indicating geometry data set		
NAME	User-assigned name of data set		
NBITWD	Data set bit attribute word		
NDF	Internal variable to save file length while reinitializing file		
NFILE	Logical unit number for data set		
NPRBUF	Number of records which will fit into buffer array		
NPRELM	Number of words per data set element		
NPRREC	Number of words on data set record		
NREAD	Flag indicating whether to read (ISOFF) or write (ISON) files		
NRECS	Internal variable equal to NPRREC		
NS	Hollerith equivalent of NAME		
NUMREC	Number of records contained in data set		

- RWFILS (GTD, INPUT, MOM, OUTPUT)
- 5. I/O VARIABLES:

Α.	INPUT	LOCATION
	IFILE	F.P.
	ISOFF	/ADEBUG/
	ISON	/ADEBUG/
	KBCPLX	/PARTAB/
	KBGEOM	/PARTAB/
	KOLBIT	/PARTAB/
	KOLCOL	/PARTAB/
	KOLLOC	/PARTAB/
	KOLNAM	/PARTAB/
	KOLROW	/PARTAB/
	LUPRNT	/ADEBUG/
	NDATBL	/PARTAB/
	NDFILE	/IOFLES/
	NPDATA	/PARTAB/
	NREAD	F.P.
	NTEMPS	/TEMP01/
	SEGTBL	/SEGMNT/
	TEMP	/TEMP01/
8.	OUTPUT	LOCATION
	IERRF	/ADEBUG/

RWFILS (GTD, INPUT, MOM, OUTPUT)

6. CALLING ROUTINES:*

RESTRT (1)

STRTUP (2,3,4)

WRTCHK (1,2,3,4)

7. CALLED ROUTINES:

ASSIGN

CLSFIL

CONVRT

IBITCK

OPNFIL

PUTSYM

RDEFIL

STATIN

STATOT

WLKBCK

WRTFIL

1	-	INPUT
2	-	GTD
3	-	MOM
4	-	OUTPUT

(GTD, INPUT, MOM, OUTPUT)

and a constant

- 1. NAME: SCALE2 (MOM, OUTPUT)
- 2. PURPOSE: To scale a linear axis.
- 3. METHOD: Given a minimum value XMIN, a maximum value XMAX, and the number of intervals N, SCALE2 finds a new maximum XMAXP, a new minimum XMINP, and the size of the intervals DIST.
- 4. INTERNAL VARIABLES:

122222

A CONTRACTOR

VARIABLE	DEFINITION		
A	Approximate interval size		
AL	Log ₁₀ of A		
B	A scaled		
DEL	Round-off error		
DIST	Distance between each scale mark		
FM1	Minimum value divided by the interval size		
FM2	Maximum value divided by the interval size		
M1	Variable used to keep points within the minimum value		
M2	Variable used to keep points within the maximum value		
N	Input number of intervals		
NAL	Variable used to make the minimum/maximum interval large enough		
NP	Check for the number of intervals		
VINT	Array containing number of interval sizes		
XMAX	Input maximum value		
XMAXP	Output maximum value		
XMIN	Input minimum value		
XMINP	Output minimum value		

SCALE2 (MOM, OUTPUT)

5. I/O VARIABLES:

Α.	INPUT	LOCATION
	LUPRNT	/ADEBUG/
	N	F.P.
	XMAX	F.P.
	XMIN	F.P.
Β.	OUTPUT	LOCATION
	DIST	F.P.
	XMAXP	F.P
	XMINP	F.P.
C 4 1 1		

6. CALLING ROUTINE:

PAGPLT

7. CALLED ROUTINES:

ASSIGN

STATIN

STATOT

WLKBCK

122.22

and a statistically

5

(MOM, OUTPUT)

- 1. NAME: SCALE3 (MOM, OUTPUT)
- 2. PURPOSE: To scale a log axis.
- 3. METHOD: Given a minimum value XMIN, a maximum value XMAX, and N intervals where N is greater than one, SCALE3 finds a new range XMINP and XMAXP divided into N equal logarithmic intervals. The ratio of adjacent uniformly spaced scale values is DIST.
- 4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
A	Approximate interval size
AL	Log ₁₀ of A
В	A scaled
DEL	Round-off error
DIST	Output distance between scale marks
DISTL	Approximate interval size
FM1	Approximate minimum limits
FM2	Approximate maximum limits
FN	Number of intervals
M1	Minimum limit factor
M2	Maximum limit factor
N	Input number of decades
NAL	Integer power of the full interval
NP	Approximate number of decades
NX	Minimum power
VINT	Integer containing number of decades
XMAX	Input maximum value
XMAXL	Logarithmic value of XMAX

SCALE3 (MOM, OUTPUT)

XMAXP	Output maximum value
XMIN	Input minimum value
XMINL	Logarithmic value of XMII
XMINP	Output minimum value

5. I/O VARIABLES:

Α.	INPUT	LOCATION
	LUPRNT	/ADEBUG/
	N	F.P.
	XMAX	F.P.
	XMIN	F.P.
8.	OUTPUT	LOCATION
	DIST	F.P.
	XMAXP	F.P.
	XMINP	F.P.

- 6. CALLING ROUTINE: PAGPLT
- 7. CALLED ROUTINES:

ASSIGN

STATIN

STATOT

WLKBCK

C...

1. NAME: SCAN (INPUT)

- 2. PURPOSE: Scan the input command and generate the scan tables for the parsing routine.
- 3. METHOD: SCAN breaks up the input command text into fields. These are numeric, alpha, keyword, and operator fields. The numeric field is converted into an integer or floating point number and put in the NVAL or VAL array. The alpha field is packed into the NVAL array. Keyword fields have the keyword number put in the NVAL array. The operator number is put in the NVAL array. Then a field code for each will be put in the NCODE array.

When the SCAN table is completed, the next command is read to look for a possible end of file before the END command.

If the IGNORE flag is on, the scan table is scanned for monadic signs. These signs are added to the number that follows it in the SCAN table.

4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
FIRST	This flag tells SCAN that the input data are the first of this record
FRAC	Fractional portion of a floating point number
IFOUND	This flag tells SCAN that the exponent was found for this number
INTOVR	Flag that gets set when a number has too many digits
IP	Exponent sign
IPROVR	Flag for too many digits in the exponent
IPWR	Exponent for a number
IS	Sign of numbers in SCAN table, used in compressing tables
ISHIFT	Byte shifter
NCOMCD	Flag for comment card

SCAN (INPUT)

NDCARD	Variable containing the code for the END command
NDXEND	Index to the NCODES array for the keyword END
NFLDS	Number of entries in the SCAN table
NP1	Index N plus one
NTABSV	Saves the value of NTAB
NTAB1	NTAB plus one
NUMCHR	Number of characters in an alpha field
NUMDEC	Number of decimals in a number
NUMFLD	Field counter
NUMREC	Record counter
NXTCHR	Next character in a field
T/O VARTARIES.	

INPUT LOCATION IBLANK /SCNPAR/ ICOMMA /SCNPAR/ IDIG /SCNPAR/ IGNORE /SCNPAR/ IMINUS /SCNPAR/ IPER /SCNPAR/ IPLUS /SCNPAR/ IRIGHT /SCNPAR/ ISLASH /SCNPAR/ ISOFF /ADEBUG/ ISON /ADEBUG/

5.

Α.

SCAN (INPUT)

ISTAR	/SCNPAR/
ISYMBL	/SCNPAR/
JDIG	/SCNPAR/
KWEND	/PARTAB/
KWNAME	/PARTAB/
LETR	/SCNPAR/
LSTCOL	/SCNPAR/
LUPRNT	/ADEBUG/
LUTASK	/ADEBUG/
MXANCT	/SCNPAR/
MXEXFP	/SCNPAR/
MXFPCT	/SCNPAR/
MXINCT	/SCNPAR/
MXSYMB	/SCNPAR/
NBYTSZ	/ADEBUG/
NCARD	/SCNPAR/
NCODES	/PARTAB/
NCOMCH	/SCNPAR/
NCONCH	/SCNPAR/
NDFILE	/IOFLES/
NTALPH	/ADEBUG/
NTEND	/ADEBUG/
NTFLPT	/ADEBUG/
NTINT	/ADEBUG/
NTKEYW	/ADEBUG/

-

SCAN (INPUT)

NTSYMB	/ADEBUG/
NVALMX	/SCNPAR/
OUTPUT	LOCATION
NARGS	/SCNPAR/
NCARD	/SCNPAR/
NCARDS	/SCNPAR/
NCCARD	/SCNPAR/
NCHAR	/SCNPAR/
NCODE	/SCNPAR/
NDFILE	/IOFLES/
NOGOFG	/ADEBUG/
NSCNER	/SCNPAR/
NSCOL	/SCNPAR/
NTAB	/SCNPAR/
NVAL	/SCNPAR/
VAL	/SCNPAR/

6. CALLING ROUTINES:

INPDRV

Β.

いためという

WYRDRV

- 7. CALLED ROUTINES:
 - ASSIGN

GETKWD

STATIN

STATOT

WLKBCK

1.1.1.1.1

1. NAME: SCLRPL (GTD)

CONTRACTOR CONTRACTOR

- 2. PURPOSE: To compute the unobstructed electric field from a unit source scattered by an elliptic cylinder and then reflected by plate MP in the given far-field observation direction or to the given near-field observation point. The cylinder scattering can occur by a creeping wave and a reflected ray or by two creeping waves.
- 3. METHOD: SCLRPL is the driver routine which directs all the ray tracing physics and field calculations for determining the electric field scattered by a cylinder and then reflected by plate MP in a given far-field direction or to the given near-field observation point. The ray paths are shown in figures 1 and 2.

The code begins by making two special checks. One check is to determine if the source location is in the paraxial region beyond the end caps such that it cannot illuminate the curved surface of the cylinder. The other check is to make sure the ray path which leaves the cylinder can cause reflection to occur from plate MP in the correct direction. If the result of either of these checks is such that cylinder-scattered plate-reflected fields cannot be found, the code will print debug information, if requested, on file LUPRNT. Control is then returned to the calling routine. If the correct interaction can be found, the tangent vectors from the source to the cylinder are specified. Ray tracing and field computations are performed for both of these tangents. The type of field calculation is based on the value ALR. ALR is the reflected ray phi angle in the tangent coordinate system. If it is approximately π , grazing incidence occurs. If ALR is greater than π , a cylinder creeping wave occurs for this tangent. If ALR is less than π , a reflected wave After performing the ray path calculations and field calcuoccurs. lations, the code will check to see if the second tangent remains to If it does, a new value of ALR will be computed and be addressed. the appropriate field calculations will be performed. If both tangents have been addressed, debug information (if requested) will be printed on file LUPRNT. The debug information consists of the total field magnitude and the theta and phi components of the field. Control is then returned to the calling routine.

If ALR is less than π , it is possible that a reflected ray can occur from the cylinder. Subroutine RCLRPL calculates the ray path for a ray reflected by a cylinder and then reflected by a plate. It also computes the incident field upon the cylinder at the cylinder reflection point and other geometry-specific terms. These terms and field are passed to SCLRPL through common block FUDGJ. The ray spreading radii and phase factor are computed in this subroutine based upon parameters from common block FUDGJ. Then the field First, the cylinder-reflected field is computations can begin. computed. Then the field reflected from plate MP is computed in

theta and phi components. This is the total cylinder-relected plate-reflected field. Subroutine XYZFLD is called to compute the x, y, z components of the total field and to accumulate them with other fields from previous interactions.

If ALR is approximately equal to π , grazing incidence occurs. The grazing incidence portion of the code first checks to make sure that reflection from plate MP can occur. If it cannot, the code will check to see if the second tangent remains and will address it appropriately. If reflection from plate MP can occur, the ray path is checked to see if it is shadowed anywhere. If it is, the code will check for another tangent. If shadowing did not occur the grazing incidence point is computed. This point is checked to make sure that it is on the curved surface of the cylinder. The source field pattern factor is found by calling subroutine SOURCE. Next. the phase factor is computed. The hard and soft theta and phi components of the cylinder field are now found. The grazing incidence-From this the total field being scattered field is now computed. made up of the grazing incidence-scattered field and the field reflected from the plate is computed in theta and phi components. The x, y, z components are computed by calling subroutine XYZFLD.

If ALR is greater than π , a creeping wave can occur from the The location of the point at which the creeping wave cylinder. leaves the cylinder and the point at which the creeping wave begins on the cylinder are computed in two different manners depending upon whether near field or far field was requested. For the computation sequence, see the accompanying flowchart. While in the separate field computation paths, the code checks the ray from the source to the cylinder for obstructions. If the path is blocked, the code proceeds to the next tangent. If the path is clear, calculations continue for this tangent. The incident source field pattern factor is computed by calling subroutine SOURCE. For both near field and far field, the code checks to see if reflection can occur from plate MP. If it cannot, the code will look to see if a tangent remains to be addressed. If reflection does occur on plate MP, the ray from the cylinder to the plate and into the observation direction or to the observation point is checked for any obstruction. If it is obstructed, the code will proceed to the next tangent. If the ray in unobstructed, the phase factor is computed, the hard and soft creeping waves are computed, and then the total cylinder creeping wave field is computed. From this, the total field scattered by the cylinder and reflected by the plate is computed in theta and phi Subroutine XYZFLD is called to compute and accumulate components. the x, y, z components.

SCLRPL (GTD)

4.

INTERNAL VARIABLES: VARIABLE DEFINITION A1,A2 Field components of ray incident on plate normal and tangent to plate A3 Determinant of polarization transformation ALR Phi angle defining propagation direction in tangent point coordinate system (2-D) ALRS Difference between ALS and ALR ALS Phi angle defining direction of ray from RCS origin to source in tangent point coordinate system AN Distance from plate MP plane to the observation field point (from subroutine IMAGE) Distance from plate plane to XRF, the point ANR at which the creeping wave leaves the cylinder (from subroutine IMAGE) BX,BY,BZ X,Y,Z components of polarization unit vector of soft component field incident on cylinder (parallel to cylinder surface and normal to incident field propagation direction) Coefficients used to convert polarization C11,C12,C21,C22 from theta and phi components in RCS to components normal and tangent to plate (and vice-versa) 222 Real part of Fresnel integral (from subroutine FRNELS) CF Phase term and ray spreading factor Hard transition field coefficient CFH Soft transition field coefficient CFS DEPH Phi component of transition field in RCS Theta component of transition field in RCS DETH

SCLRPL

NAME OF A

	~	r	5	۰.	
- 1	13	н		- 1	
<u>ا</u>	~		-		

TIHO	Distance from source to plate hit point (from subroutine PLAINT)
DHJT	Distance from where ray leaves cylinder and hits plate MP (from subroutine PLAINT)
DHT	Distance to hit point (from subroutine PLAINT and CYLINT)
DICOEF	X,Y, and Z components of incident ray direction on cylinder in RCS
DIJ	X-Y plane vector from a source tangent to the point the creeping wave leaves the cylinder
DIJXDJ	Cross product of DIJ and DJT
DIT	Incident ray vector
DIXDIJ	Cross product of DIT and DIJ
DJ	X,Y,Z components of propagation direction of ray between cylinder and plate in RCS
DJ1	Direction unit vector towards XE1
DJ2	Direction unit vector towards XE2
DJT	X-Y plane components of observation direction
DMAG	Distance between the observation field point and the plate reflection point
EF	Theta component of source field pattern factor in RCS
EG	Phi component of source field pattern factor in RCS
ЕНР	Phi component of hard component of geomet- rical optics field incident on cylinder in RCS
EHT	Theta component of hard component of geo- metrical optics field incident on cylinder

SCLRPL (GTD)

EIX	X component of the source field pattern factor
EIY	Y component of the source field pattern factor
EIZ	Z component of the source field pattern factor
EP	Phi component of scattered-reflected field in RCS
ER	Dot product of cylinder tangent unit vector and reflected ray propagation direction (2-D)
ERP	Phi component of geometrical optics reflected-reflected field in RCS
ERT	Theta component of geometrical optics reflected-reflected field in RCS
ESP	Phi component of soft component of geomet- rical optics field incident on cylinder in RCS
EST	Theta component of soft component of geo- metrical optics field incident on cylinder in RCS
ET	Theta component of scattered-reflected field in RCS
FLDPTI	Near-field observation field point image location (imaged through plate MP)
FPTXY	The x-y plane location of the field point image
GM	Intermediate variable for transition function
LHIT	Logical variable set true if a plate is hit (from subroutine PLAINT and CYLINT)
LTRFJ	Logica! variable set true if cylinder- reflected field is not present

SCLRPL (GTD)

τι.

LVJ Logical variable set true the first time creeping wave computations begin MP Plate where reflection occurs ORIGIN Origin of the reference coordinate system (0., 0., 0.)Phi angle of incident ray direction on PHIR cylinder PHJR Phi angle of ray propagation direction between cylinder and plate PHJR1 Phi angle of DJ1 PHJR2 Phi angle of DJ2 RGF Longitudinal radius of curvature of the cylinder at the point the creeping wave leaves the cylinder RGI Longitudinal radius of curvature of the cylinder at the creeping wave incidence point RT Transverse radius of curvature of the cylinder S The total distance between the source point and the incident point **S1** X-Y plane distance between the source and incident point **S2** X-Y plane distance between the field point image and the point on the cylinder at which the creeping wave leaves the cylinder SKWIG Parameter used in transition function SNF Distance between plate reflection point and field point SPHJ Sine of PHJR SS Distance of path along the cylinder

SLIPPL (GTD)

555 leaginary part of Freshe integras (from subroutine FRME(5) STA Eliptical angle defining the SUM tangent point & y locat un STINJ Sine of THUR THE Theta component of incident ray direct un on a Finder THUR Ineta amponent of ray propagation direc tion between sylinder and prate THURL Theta angle of 0.11 TH.IR? Ineta angle of DJ2 TIM Parameter used in transition function THI, TVI #-Y components of ray from source tangent to tangent point 1 (2.0) TH2. 1Y2 1-Y components of ray from source tangent to tangent point 2 (2.0) #-Y components of unit vector tangent to cylinder at tangent point I-V components of unit vector normal to cylinder at tangent point Ph1 angle at which crooping wave leaves cylinder ۷I Elliptical angle used to define tangent moints (2-0) Elliptical engles defining the two tangent ¥J points on the cylinder for the vector from the field point image tangent to the cylinder. The elliptical angle defining the kyrolic ٠.3 point on the cylinder at which the crooping wave leaves the cy mer Elliptical angle defining lower limit of creeping wave travel on cylinder

SCI	801	(618)	
~ `			

VT 1.1.7.7 components of polarization unit vector perpendicular to plane of incidence for ray incldent on plate Elliptical angle defining upper limit of crooping wave travel on cylinder 10.10.20 1.1.2 components of direction of ray from source to cylinder tangent point (incident ray for crosping and grazing incidence Cases) ¥1, ¥1, Z1 X,Y,Z components of point where incident creeping weve (or grazing wave) mets cylinder Point at which crooping wave begins 19 T 00 cylinder. X, Y, Z components of point where croeping weve leaves cylinder X,Y,Z components of reflection point loss tion on plate MP; also point where creeping wave loaves cylinder; also image of the in plate IP 1115 Source location Transition function 1/0 WERLARLES: Interior LOCATION ۸. ٨ /CECHEL/ 24 /STD/ /EEEL/

and the second second second

5.

BTS MMSCL /

CAS . Th/

L. ,,

014

SCLMPL (G10)

CTC	/GEOMEL/
•	/01R/
6P	/THPHIN/
DT	/THPHAN/
DTS	/MDSCL/
EMPNJ	/FUBGJ/
ENTRJ	/FUDGJ/
ESPILJ	/FUBSJ/
ESTIN	/FUBGJ/
FLOPT	/WEAR/
10	/618/
LBEBUS	/TEST/
LIBFLO	/WEAR/
LIFS	/CLMFS/
LTRFJ	/FUBSJ/
LIPPINT	/ADEDNA/
••	F.P.
PHER	/018/
Pt	/#15/
LIGHT	/FV86.J/
ng.)	/FW86.J/
546	/618/
5467	/610/
SINGJ	/FNB6.J/
SHIFF	/01ST/

And all the second

ALCONT CONTROL

SCLAPL (GTD)

THE	/01#/
TP1	/ P 15/

TRANJ /FUBGJ/

VII /GEOPLA/

VTS /DHDSCL/

VES /SORIUF/

18.J /FUBLJ/

xs /seeinf/

ZC /GEGNEL/

8. ONTENT LOCATION

AS /618/

CAS /6TB/ EP F.P.

ENP F.P.

ERT F.P.

ET F.P.

10 /676/

LINFS /CLINFS/

SAS /678/ SABP /678/

- SCLIPT (
- (610)

6. CALLINS NOUTINE:

STEENV

7. CALLED NOUTINES:

ASSIGN	QF VIL
BE 30P	MOCV
STANE	ACLAPL
CVLINT	NEFOP
988.32	
FCT	SOURCE
FLARE	STATIN
PRIMELS	STATET
	TANK
	TRUFLE
-	WLABC X
PPun	XY ZFLO

PLANT

÷.,

1010

(GTD)

Page 1 of 5

1.7

· .

· Notes

1011

6

¢

Page 2 of 5

EKSENSE Der Sond

1012

1.1

+ 1

18 C

A No.

in in the

A State States

7.

 \sim

653X

× × × ×

1014

<u>.</u>

à.

1015

•

1. NOVE: SCTCVL (GTD)

- PURPOSE: To compute the unobstructed electric field of a unit source scattered by the elliptic cylinder's curved surface in the given far-field direction or to the given near field observation point.
- 3. NE THERE : SCICIL is the driver routine which directs all the ray tracing, physics, and field calculations for scattering by a cylinder. A Uniform Geometrical Theory of Diffraction solution (see reference A) is used to compute the reflected and diffracted fields of a source in the presence of the curved surface of an emiptic cylinder. In a given observation direction the solution contains two terms. In the lit region the solution is composed of a reflected field and the dominant creeping wave field, as Elustrated in figures 1 and 2. In the shadowed region the solution is composed of a clockwise and a counterclockwise reeping wave field, as illustrated in figures 3 and 4. The reflected field and reeping were field are modified versions of the usual GTD solution, that is, they are obtained from a uniform solution that is railed at the shadow boundaries (tangent point vector regions) and that goes to the goometrical optics solution in the deep lit region and the usual creating uses solution in the doep shadow region. The solution is presented in reference A and on pages 112-113 of reference 8.

Figure 1. Illustration of Reflected and Creeping Wave Scattering by the Elliptic Cylinder for a Given Far Field Observation Direction

1010

Salar and and and

Pie d Deservation are to en

1 N 1

R

The fire ds are initial ced to cert at the beginning of the routine. then a next is made to make our the propagation direction of the source ray is towards the y index, and another head is mode to ensure that the observation control direction is not beyond an end ap in the parala a line on which the time to during tay, build not reach. If proper upination is mut possible, debug information and requested, is printed and a UPRNI and untrail singurned to the along noutline. If yonder sattering is passible, the lode then determines what types of scattering and or based upon the angle ALP, which is shown in figure by ALP, since and e between the source ray tangent to the glinder and the observation direction. The scattering possibilities are reflection, likeping wave, or grazing incidence. After the field associated with one tangent point or on that side of the yonder has been simplified, the field associated with the other tangent point in the new process omputed. The tangent point condinate system is shown in figure bill cast, debug information of requested, sprinted or file JPRNI - ontro is then returned to the alling routine

For reflected fields, ALH is easy than a line lefection point on the cylinder is found in subroutine REFLAL. The hard and soft theta and philicomponents of the field incident at the grinder reflection point (EHTH, ETPH, 25TH, 25PH) and other important parameters meeded for the reflected field calculations are found in REFCAL and passed to SCTCAL in common block. FUDGL The ray path is checked for obstructions in REFCAL also. The reflected field theta and philicomponents are computed in SCTCAL. The $x_{i,y_{i}}$ components are computed in subroutine REFCAL.

For creeping wave fields, ALR is greater than so. The process to determine the ray path for the creeping wave is different for far field and near field calculations, as shown in the accompanying flowchart, but the end results are the same. If the ray paths are obstructed or if the path meets or leaves the cylinder at an end ap instead of on the cylinder's curved sides, the fields are left at zero. If the path is correct, the field is calculated. The s, y, z components are computed and accumulated in subroutine syzfiD.

For grazing incidence, ALR is approximately x_1 . The point at which the ray is incident on the cylinder is computed and checked to make sure it is between the end aps. If it is not, the fields are left at zero. If the point is precit, the field is alculated. The x_1, y_2 components are computed and accumulated in subroutine $x \neq ZFLD$.

Figure 6. Illustration of langent Point wordinate system

SCTCTL (GTD)

4. INTERNAL VARIABLES:

WARIABLE	DEFINITION
ALPHA	Angle between creeping wave path on cylinder and line perpendicular to the z axis
ALR	Phi angle defining radiation direction in tangent point coordinate system (2.0)
ALRS	Difference between ALS and ALR
AL S	Phi angle defining direction of ray from ACS origin to source in tangent point our dinate system; also angle between reeping wave path on cylinder and line parallel to 2 anis
AS	Angle between creeping wave path on cylin der and line parallel to z axis
82,87,82	E.T.2 components of polarization unit vector of soft component of field incident on cylinder (parallel to cylinder surface and normal to incident ray propagation direction)
ω	Real part of the fresnel integra: ifrom subroutine FRMELS)
a	Complex phase and ray spreading coefficient
CFN	Hard transition field coefficient
យរ	Soft transition field coefficient
CSAS	Det product of cylinder tangent unit rector and vector free origin to source
•	Propagation direction unit rector for ray scattered from cylinder in 1,7,2 PCS components
01	Observation unit vector used in determining if observation point or direction is in the paramial region above the more positive end (ap

SCTUVE (GTO)

62 Observation unit vector used in determining if observation point or direction is in the parasial region above the more negative end . 80 BE PN Phi component of transition field in RLS DE TH Theta component of transition field in RCS Cost 1 T Distance from source to hit point (from PLAINTY DICOFF 1,1,2 components of unit vector of propaga tion direction of ray incident on cylinder. DIJ I-Y plane vector from a source tangent to the point the creeping wave leaves the cylinder. ALL DEL Cross product of DLJ and DJF 01T Incident ray vector DIMOLI Cross product of D11 and D13 **BJT** X-Y plane components of observation direction Chief Street Distance between point at which creeping wave loaves cylinder and the near-field observation point £F Pattern factor for theta component of incldent field in RCS Pattern factor for phi component 66 of incident field pattern factor in ACS 610 Phi component of herd component of field incident on cylinder or crooping wave field In ACS ENT Theta component of hard component of field incident on cylinder or creeping move field In MCS EIN.EIV.EIZ I, F, I components of incident field pattern factor

1004
SETERI GTO)

EP Philliamponent of sylinder t field £ . Dot product of unit vector tangent to plinder and the propagation direction unit ettor Phi component [:**3**≢ Jeometrical optics reflected field **EB**T **01** geometrical optics. reflected field E 52 Phi amponent of soft amponent of field incident on cylinder or creeping wave field In MCS EST Theta component of soft component of field incident on cylinder or creeping weve field In MCS ET Theta component of cylinder E-field FI Parameter used in transition function FPTTY The x-y plane location of the near-field observation point Veriable used in transition function variable used to step through tangent I mints 10 Index verieble LINET Set true if ray hits a plate (from PLAINT) LIFCT Set true when croeping wave computations begin. (Returned from MPLACL) set true if goomet-LTH rical aptics cylinder reflected field does not exist Set true first time near-field computations LWJ beg in The origin of the reference coordinate system (0., 0., 0.)

1025

SUTURE (GTD)

Phi (Phi component of propegation direction of ray incldent on cylinder PHSR1 Phi angle of D1 PH582 Phi angle of D2 Radius of curvature of cylinder at point IRF in x-y plane 122 Radius of curvature of cylinder at incident ray point on cylinder in a y plane 81 Transverse radius of curvature of the cylinder. S The total distance between the source point and the incident point \$1 I-Y plane distance between the source and inclident points \$2 X-Y plane distance between the field point and the point on the cylinder at which the creeping wave loaves SIMA Bet product of cylinder unit normal and cylinder-scattered ray propagation direc. tion unit vector Parameter used in transition function Bot product of cylinder unit normal and voctor from origin to source Distance between last specular point on cylinder and near-field observation point 22 Distance of path along the cylinder 222 imaginary part of fresnel integral (from subroutine FRIELS) STA Elliptical angle defining the SOUTCE tangent point x-y location THE Thete component of propagation direction of ray incident on cylinder

SCTC+1 (610)

Trike 1 inets onsie of Di 71602 Thete anale of D2 TTEN Perameter used in transition function TEL.TVI I and Y components of unit rector of ray from source tangent to aiment point 1 of TH2. TV2 # and Y component, of init rector of ray from fource tangent to take nt point 2 of +lliptic cylinder (2-0) I, T components of unit vector tangent to cylinder at tangent point (2-0) 4.1 components of unit normal to ty inder at tangent point (2-0) Computational variable Computational variable VI. Elliptical angle used to define tangent points (2-0) Maximum of vI(1) and VI(2) VIII VINCO Minimum of VI(1) and VI(2) NJ. Elliptical angles defining the two tangent points on the cylinder for the vector from the field point tangent to the cylinder. Bienstened two NLIN The elliptical angle defining the sty plane point on the cylinder at which the crossing weve loaves the cylinder Elliptical anale defining 1 po int crooping wave meets cylinder Elliptical angle defining point where crooping wave leaves cylinder 10.10.20 1,1,2 components of direction of ray from source to cylinder tangent point (incident ray for croaping and grazing incidence (4505)

SETEVE (GTD)

#1.71.21 I.V. components of point where incldent Creeping ----(or arazina -4.46) meets cylinder 101 I.T. Components of point where creeping wave begins on cylinder 1,1,2 components of point where creeping wave leaves cylinder 11 Par meter used in transition function **LIS** Parameter used in transition function XXX illuit of integration for freshell integral

5. I/O WARLABLES:

A .	LINPUT	LOCATION
	A	/GEONEL/
	AS	/6 TD/
	•	/GEGNEL/
	BTS	/BHDSCL/

CJ /CDIP/

CP14 /CDIP/

CPS /018/

CTC /GEGNEL/

C7N6 /01R/

0 /012/

OTS /ONDSCL/

ENTRY /FVDG/

ENTN /FUDG/ ESPN /FUDG/

ESTN /FUDG/

1.2.00

SCIENC (610)

FLOPT	/ WE AR /
186	/610/
LDEBUG	/1651/

i.

Part of

LINEFLD /WEAR/

LNFC /CLMFC/

LTRF /1006

ADE BUG / LUPPET

PHSA /01#/

11 1915/

/FUDG/

/FUDG/ **16** /610/ SAS

/FUDG/ 2016

/018/ \$25

STHS /018/

THEA /012/

TP1 /#15/

TRAN /1466/

VTS /BIBSCL/ /5001107/ VIIS

/1466/

ß /SORINF/ x

/GEGNEL/

SCTCVI (GTD)

₿.	ONTPUT	LOCATIO	
	EP	F . P .	
	EMP	₹.₽ .	
	ERT	₹.₽ .	
	ET	F. P .	

6. CALLING MONTINE:

GTEERV

7. CALLED NONTINES:

ASS ION	() F WA
	MOCY
STARE	REFCYL
89532	
FCT	SOURCE
PLANS	STAT IM
FIMELS	STATOT
	TANK
1170	W.MDCX
97'm	IV2FLD

PLAHIT

e. nereneuces:

A Are

A. P. H. Pothet, U. D. Burnside and R. J. Herhefka, "A Uniform GTD Analysis of the Diffraction of Electromagnetic Haves by a Smooth Convex Surface," submitted for publication to IEEE Irons, on Antonna and Promontion. (Als: report 704583-4, APTI 1999, The Unio State University ElectroScience Laboratory, Department of Electrical Engineering; propared under Contract In. HERED-76-C-8664 for Nevel Air Bovelegment Conter. 51.1. (616)

B. A. J. Marnefaa, "Analysis of Arrival's sing Mounted Antenna Patterns," Report 2902-25, June 1976, The Onic State University ElectroScience Laboratory, Department of treatman ing meeting; prepared under Grant No. NGC 36-006-138 for National Aeronautics and Space Administration.

.03

É

\$

1032

....

• •

-- 14

.035

I. MARE: SEUCON GTU, MUNIC

- PURPOSE: To fit the segment orner tor sate owner area and compute the interpolation length for the orient basic for tops.
- METHOD: For a wire source, the cortinates of the wire ended for ł. the interaction matrix generator are retrievet to 🗰 ree 11.4 10.1 array the onnection sata for the 1 a. 1 🕐 Le ampert are then 1714 41 retrieved from the D8.#.3 ST 4852 41 P.3 1 8.0 segment from array SEGIBL ' **ne** interpolation engths. 1.4 1000 computed as the average distance from the a sport 1 leuments. connected to the end of the source regment. n.e 2414 110 mouted. i i patin for both ends of the source segment e, the ×7≮ dinates of the patch, the prientation of the unit of the second and 1.2. and the patch areas are retrieved from the stuffs array و ا source sall, ontrop is transferred to PORTRAN statement soc and the coordinates, prientation and connection parameters is f a wire cegment are retrieved from the SEGIBL array and baded int. 1 Mg MOP Area AMP213. However, for a patch observation segment the patch enter point and the prientation of the unit vectors . and to are used Into the compon area AMPILL.
- 4. INTERNAL VARIABLES:

history and a second

VARIABLE	DEFINITION
AREA	Surface area of a patch
•	wire rédius of sour e segment
CASI	Observation segment unit rector in the rightmostron
UABJ	Source segment unit vector on the co direction
Dix	wire ength from enter of segment to enter of following segment
Dil	whre ength from enter of segment to enter of preceding segment
FINCOM	Number of tata segments onne ted to ectner and of the source segment
IBLE	uete bio e index
I C CIII	onne ton data för efre sovervation. Vedment

SECOND GLE MAD

ICONI Pointer to the wat S. B. S. Marcon orme tea i end of the course segment 10002 Pointer to the next segment والمتراف مساوح end 2 of the sout e segeners 1001 Pointer to the nest Ve une - 1 100 100 1 end 1 of the observation legment 1002 Pointer to the next vegeners ine tes end 2. Fithe observation segment I E BADS trov + aa 1000 Segment number for simple junct or I SCORD T Ubservation segment number 15618 Array ontaining segment information ITYP Input argument designating J ocation of source segment - thin Jata block JB (AS) An integer to bias onnection data to ind cate end one is connected to source segment JAIAS2 An integer to bles connection data to indi cate end two is connected to source segment JD (AS) An integer to indicate onnection of wire segment to a patch JAL K The data block where desired sourle segment 1s located JOR Segment connection data word for SOLF 6 segment JCD1 Pointer to next segment onne ted to end 1 of the source segment 1002 Pointer to next segment connected to end 2 of the source segment JIE Array containing numbers of the segments which have end I connected to end a of the source segment

SEUCON (GTU, MON)

Array untaining the integer values if the

JIZ

segments which have end 2 unnected 1 end 1 of the source segment 101 Array containing the numbers of the sey ments which have end i onne ted to end. of the source segment JOL. Array containing the odentific at us of the segments which have end 2 onne ted to end 2 of the source segment JSE6 input argument designating segment number to be retrieved **JSOURT** Segment identification number of segment stored in the JSEG ocation of SEGIBL array LIMINA Same as USEG MARCING. Maximum number of connections allowed MARSEG Maximum number of segments per data blo + MAL JMC Integer representation of FNCON integer value of the number of segments which have end I connected to end 1 of the source segment **IIIC** 17 integer value of the number of segments which have and I connected to end 2 of the sevrce segment integer value of the number of segments which have end 2 connected to end 1 of the source segment integer value of the number of segments which have end 2 connected to end 2 of the source segment Data block (urrently in use DESEG. Total number of wire and patch data seg ments Total number of wire sements

SE R CM

S white segment length SAGI Observation segment unst vector in the direct or Source segment unst SAL . . t. . . 1.04 direct or SALPI Observation segment unit the the * Ctur dire tion Source vegeent unit vector in the SALPJ direction SEGTRI Arrey untaining information. segment equivalent to SGTBL SJI If negative, I as indicating multiple junc tion at end i of source segment; if zero, flag indicating a simple junction at end (of source segment 512 Some as variable SJL for end 2 of source segment SIL fotal length of segments connected to end of source segment **T181.T1V1.F1Z1** I, V, and I components of the unit vector for the observation patch T183.T1V3.T123 I.V. and 2 components of the unit vector for the source patch 1281,1241,1221 I.F. and Components of ty unit vector for the observation patch 121.J.124J.122J I, Y, and I components of ty unit vectors for the source patch #1. 1.21 I.Y. and I components of center point of wire or match observation point NJ. YJ. ZJ I.T. and . components of center point of wire or patch source point

Š

- SE JUDIN (GTU, HOM)
- 5. 1/0 VARIABLES:

F

F.

A. IMPUT	LOCATION
DEGPRI	(ADE BUG /
19217	/SECONT
ISGTOL	/ SE COUNT .
1 SOFF	ADE BUG (
i son	/ ADE BNG /
LTVP	F . P
JEIASI	/ SE GIONT #
JOIAS2	/ SE GIONT /
JOIAS 3	/SEGIONT/
JSEG	F.P.
LUPRET	/ ADE BLIG /
MAIICON	/ JANCOM/
MAISEG	/SEGNOIT/
	/SEGNET/
MPISES	/SECONT/
WEINE	/SECONT/
SEGTOL	/ SEGUNT /
. GUTPUT	LOCATION
ANNOW	/ ••••••
	/
AREA	/ *** 213/
•	/ 449 21J/
CABI	/ 100 213/

Stoleye , weiter

	A J 16
014	Alle
DIL	APR
: (01	
10 02	AM .
1 E R@+	AUX BUG
KOI	
x03	
1 1	
38.1 ·) ut (1
101	jiji ang ji
JO 2	
1566	• •
NC X	JUNE (IN
MC12	- JUNIL OM
e (02	NU HILL
B UNZ	a junk (Ma
\$	(apip ())
SAGI	1 NHP (3
SAGJ	2 4000 () () (
SALPI	/ APIP ()
SALPJ	/ APP 23.3
T1#1,7171 ,7121	(a)# [:;]
1183,7143, 7123	/ NUP () (
T 2%1,12v1,12 21	
T2XJ.T2VJ.T2ZJ	

1111

seize a

F

. 34

SEJUON	(útt),	
--------	--------	--

#1.VI.21	MP 213
₩.J. ₹.J. Z.J	

6. CALLING NOUTINES: *

SARC (3)

ZGTORV (2)

- 21JSE1 (3)
- 7. CALLED NOUTINES:

ASSIGN

ENDOR

14114

1

GETSEG

STATIN

STATOT

WL.KOCK

• 2 GTD 3 - MEM

•

NAME of the second s

2

5

- PURPUSE BUILS THE RELEASE STREETS STREETS AND AND THE REPART OF THE STREETS
- HETHUD A a weat e stolk knows to a constant water while along with their A, interaction with e could with the argument istory examined for each of the knows of a stole water on the sec found the corresponding values of a sole stole water on the sec available word of the klick array of examples the stole alector the eftmost port on and the value of the score stole of the groups portion when the search is complete store stole Any estraneous entry of subhits the stole of the other and the area to be erroneous sate of the stole of mand are grouped.

Some Reymonds and Late much than one application nteral un e • ... example, oversithe k, asecult overs the s. ases of a construction of a constru , Đ and i the Interactions are placed sequent a place with the the the 41.01 by use of the 15104 (151) when it is the other a report is found that matches an ISETTE republic the sub-interaction indicas * ± Regmonds up to, but not in uding, the regular printed to by the Reymonds up to, but not in using, STOP (15' index are placed in k)(N) ine kind (10) And the Placed in k)(N) index sign (1) 450 5 neret ire. (R.J. interactions in SETH rows 2.3.4.5.6. and b are placed in KJIN' and the Reymond sear his ontinues for the reymond in rom 9 (CV). This algorithm ensures that the kulk' is all a ways be r numerical order and that no sup is at on a log us

The "NEXT RMT Grunn of SETTB makes treasy trade an additional interaction to SETTM. For example, suppose the interaction $(K_{i}J_{j}) + \frac{1}{2}B$ were to be added with segmend TBA. It private et on The new segmend would be added in row 32.

22 Keyword number (R) y y n 23

The NEX' We entry in row 8 would be use 22, as shown

🖞 🤰 🖌 🤌

	.* €1 ∞q	water .	No. Cal		. • .	ч .
	ie	r., 4 - 1		-		
	?	•		•		
•		ên∎	4	4		
4	2 e	8 #				
•	24	P *	•	•		•.
٤	36	a:				
	4)	71	-	~		•
•		ę	•	•		
,	ji,	÷1				
	4					
	2ት	5 M				
	29	2.0				
	3*	D -	4	-		
4		8	•			
•	37	, ie	*	÷.		
t	31					
	34	<u></u> Э	m	~		
	3.1		'	ч		
19	40	ŧ	x	÷ •		
x	36	ŧ.				
2	39	t u			•	
22	. n. 12		<i>ر</i>			

-

4 INTERNA, VAPIABLES

•

X

VAR LABLE	DESCETE TOM
	ndex over angument is entry of
::	ene of Automotive
: SE T	NON NUMBER OF KRYNDURD F SPOTE
STOF	e conta di merati stiffi kerawardi to de Sma geret
6 . 7	State of Maria to the state
La	St. The example

талан талана. Талан сил, од т

a da anti-

4 M. - 1 Mł

*

∴**4 X _**

Âs (₩1° **44**

اھر ÷

à •

A

• • • • •

2 PURPOSE SUDFILITING TO ANY STREET AND ANY STREET

WE THUE THE TYPE of the second of the sec

4 NTERNA, AB AB (-

in Same

4

AR ABI . 1997 **h**. . . **h** nterne contratore en la secondada en secondada 🔍 PS (4) (1) -Second Second States and the second second ·* 1 10 · Into the car store an ended ndex 1 the staument . . . they not all my it gas that your · · • ready theer typest me as 101 an ann an Anna an Anna an Anna an Anna an Anna 18.2 ast comment out at with the caded : ND z wat on first at a concentration of the WOA'BE STAF i RE Ai that we at the thet was able to the ade 1 s mot at integer arras. 1 🗰 1 · • · · • we streat at a second €d#d 182 451 t lat at million caded NAMES VIII . **1988** and to the state of the 115 the set attraction we are stressed at a ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦
 ♦ W Dx 5 albe -٠

44

A-34-1

`.₩

Net E .	Number of the second
NE US 7 N	
WPR <u>t</u> M	NUMBER OF STREET, AND A STREET
MROWS	Public of the second seco
₩£ A.,	al of the factor of the second s
ê 1	Ne esta de la composition en altre
FL TARG	
INTARG	Adria, pr
PASS	
I SOF F	ADI BUS
1 SON	ADI BUG
K BCP L J	PAR 1 AB
K BRE AL	PADIA
KOL 811	PAR 1 48
ROL COL	PARTAR

KOLCOL PARTAB KOLNAR PARTAB KOLNON PARTAB

5

NDATEL PARTAS

0%

St Offer Man

 NTEMPS
 TEMPC.

 NTELP*
 ADEBUG

 SUTPUT
 SCAT.ON

 TEMP
 ADEBUG

 TEMP
 TEMPO.

6 ALLING ROUTINE

SEEQ!

ALLED ROUTINES

ASSIGN PU?SYN

CONVET STATEN

Ennon STATOT

GETANG SYNDEF

GETSYN WLKBCK

101108

•	NAME . SHELL IGT	D. NHUR, NJERST	
2	PURPOSE: Subroutine to perfirm a she wart		
3.	METHOD A shell sorting techn que is used to generate an ingeriev array to be returned to the la ling subroutine		
4,	INTERNAL VARIABLES		
	VAR I ABLE	let E N (, Γ −)N	
	H (under to the upper she opening contest	
		under to the ordering array for the owe she	
	1	undex to the under his array to the upper She	
	L'TEMS	ist of teas to be sinted passed through as 14 ling argument	
	£	Nakimum number of tems rower she to be surted	
	.0	index to sort items in ownrishe	
	ι Ο Γ	Ordering array for sort passed through as a ^{llig} ing argument	
	M	Increment between ower and upper she	
	10 E T E MS	total number of items to be sorted	
5.	ITO VARIABLES:		
	A. IMPUT	. OK A * 100	
	LTEMS	· <i>P</i>	
	NITENS.	i p	
	0. OUTPUT	()# (A *) () 0	
	(0 (1 F	

SHELD UP IN MARK

6. CALLING NOUTINES+

GEMACS (1)

STATEN (1.2.3.4)

lone

Source Water

*1-10PVT 2-6TD 3-000 4-00TPVT

18.84

1057

. •

.

NAME SHAGNA , 11

i

- 2 PURPOSE To ompute the distance between two provides
- 3 METHOD recture gebra used to impute the tistarie
- 4 INTERNA, HAR, ABUNS

SAME the protonomic

- 8 .1 The 24 1 1 1 ۰. . 51514r6 P . \$. . 3 DU YOUT P 24 At 127 (. . 8447 J · · · · · point
- 5. I/C VARIABLES.

A	1000	. OK A 1 ()M
	€ 2 DP *	۰., ۴
	t	۶ <u>۵</u>
●.	OUTPUT	. O(, A * ; On

. .

- SHE
- 6. CALLING NOUTINES.
 - DIFPLT

OPLACI

OPLAPI

ENDIF

GTOORV

INCFLD

RCLDPL

MAL N.

REFCAP

REFER

REFPLA

RPLAL.

API SU.

SCLAPE

SCTCT1

CALLED HOUT INE

NONE

and the second

and the start of the

11.2.2.A

.

•

•

×4

ĺ

٠1

N. A.

and the second . The Marine states and a second state of the states of t . **. .** . .

14 G A 4 ere a che segnes constante semen Rock as the symmetry profile to see .

ment in a new of the second second

.

20 M. Stithug, na Lament (Lamen) -

. .

3. Three orthogonal symmetry , area

'n
• • •

•

•

e **u la**

a a age a sub

▲ .

.

Majar - Majar

•

ĵ.

2

● ● ₩ ₩

+4

Maximum District And Annual An Annual Annu

/** Jon to solve to solve

enere i stree en tat ve gedt totse for teat volgen. No

~ **,**

enst the cent of the state

th there is a there is the two is two is

int for a local to the control of the control

N'EPRA LABORE :

4

ARIABLE	4 · •
u∎ S.Æ	na an a
· 4·	and the second
A 4.	MALE STREET
•	· · · · · · · · · · · · · · · · · · ·

• •

16 a 16 a 16

پ	
۱۹ ۳ ۹ (····
the second	 If the state of the state of
. γ€ ₩ς	ling of the second s Second second s
• * 1	 Cathering and the Cathering of the processing
• 5 🐌	Med parts for any for a straight the
· Taglige	The end of the second sec
HE ADS	.>55 6 ¥os theader of reations of reations. Littera
: ARG	nder t. N'ARL strate
:00	MARIAN POLICIA MAR
	€ tor and ex system
INDEA	index to the symbol table for A
	Prode i to internet internet
	ndex to the symbol table for
l MQ-a a	Undex to the symbol table for t
I NDE 1	nder to the symbol table for t
IREAL	O for real system
INECI	First record index
IMEC2	ast record noe.
ISTAT	O for antenna sour e segment
KBAND	Attribute indicating banded watrix
	ndex of the est symbol insed to A
	Crides of the ast symbols maked to be
. 1000.0	makes of the set combined as

いいと

4 G

×

,,,-Pry Ma,≱#

. . . . nde a 1.1 . **.** 1.00 1 100. 1 1.84 411 rider a 1 C & 4 C - 1 , 188 **N A** 1 **F** se 🛥 tra ligtig set 84.900 1 WK 1 Frence Bar St. 40 141 1 Set 二溴二二 (美子 - 1 H.# No. Stars 1 1.8.4 . OX CUN 5 151 12 🗰 - 18 t. 18 -P ۳ . . • • <0C√+1 A Conter 1 E XE E ····· nde s. 11 .44 JA' 1 COX RHS any - "Em sera; - nde i - 1 : 00.501 er af sur of securities the filler area. 51110 Fredicted number of terations requires r onvergen. e MA # [? # Maximum number of sterat 115 8 M10178 Ninima 2∮ teret performed before predicting the number iterations needed for invergence 109119 Add 11 tone iterations in real red. onvergen e Dutbut name for 4 MCELI s for mate a storage 31 11 MP 1000 Manda Oc Mollerith argument ne WHE VG #+ 1 1 N Onvergenie names MART A of symbe معدا و ومود 01 S # 00 1000 - 5. **Ø** - 34d - 3414 NATE I . 6 A rebui 8

1066

Ν.

ા ા ્યર્થ 🙀

-1 am -...*L ••••• 4 + + -141.4 54 est 10 | TA At * + -**P**_ . . : -----1111 541+ A **16** 1 17 Attended and the second second 10111 Attendeter menteren i 1011+ Attes but en entre service **UDBONA** 54000 11 h 1 2 NAMES I NUMber abmetric ex HC. NIDU' -am **ICELLS** . 1 .+ 20000111 NCOLA NCOL 8 1 NCOL (ICOL I 6 NCOL 1 Э MEED **⊙**₹ words needed 074 Jutpu! the amometry sate - - - - - **#** Output na R of the Ded date MLEF" Amount. ¥ 010 **nt. 1001**£ (present Submate in PIN C ni e WPPCO: WPRELM 10 15 Dø

. 044

÷.,

N. 100

1. M +

....

ŧ٧

WEES

NICLA

NRCh/

INFICE V

WE HEAA

S. D.

NEPUT

 \mathbf{n} 41

NVRSTN

ŧ

OL DECR - <u>+ 4</u>1.84

OLDIME):d (#E

PREIRE Predicted relative

PRELTR Pred: ted 20141

PM [1 Power et: anterna.

PUBLOS • جين 9 3**8**đ 255

> . er + 5+ ŧ, 41.100

SOL I RE urrent (#F

SOLING 342 ut 1 m magn 1034

Antenna vo tage

. mpedance

* * * * 804 **€**:Ĵ

Magn 1 use

71.0050

RELEM

VL T

2

21

THIS

1070

ad magn fude

1-41-5

÷,

1.1.1.1	•	
• •	• •	

+ 🔺

5 + 5+

5+5+

ALH BLE

GEODA"

AR AB. + -

HE PN

PI PM

166P#

X 1 (#1

· ' 📲 🖬

IN ! ANU

Phys

<u>, " 🖗 </u>

• •	· 🖷 📍 👘	MIDOLAR 1

APG: ON			
APG. (D)			

OLEP" 5+5+220 10#1.t . (¥⇒£5

:05(#1 5+58 82 105(#2 5+5+1

PASS ANG: UN

1**2**211 FGE ODA 1

SECONT. 1 SE 6

1**5678**1 · SE COUNT 15044 ADE BUG

1500 ADE BUG

COBANC PARINO **KBC P**1 1 -----

«BGE CP PARIAS

COL OAL PAR - M

C BRE A PAR' N

10'

14 pr

,	A	4.6	

₩.,

FAR AR

¶Ŭ€ B	+ A Ø	- AØ
¶ Č€ B	+ &#</td><td>A</td></tr></tbody></table>	

K854.: 4

£ (94). 🛤

and a

ки **ман Раз**'ан

sije **neda** – Pap - Le

JPRN ALTER

MARGER SELAM

NDA*B: PAP AB

NDATINX PARTAS

NOPCOE ADE BUG

NTEMPS TEMPOL

NTE PT ADEBUG

NUMARG ARGLON

No 1 RE SECONT

566780 / SECION

UPOBLE SEGIONT

ZERO / ADEBUS

OUTPUT . OCATION IERRE ADEBUG

10CRP1 SYSE1.

NDGCFG ADEBUG

10'2

...

6

 \mathbf{k}

- 2. Puer Pristo de la companya de la company
- E MCCHIRE Contractions and the second sec
- 4 107 F # 104 . AB 14 -

AB AB -1 S N N . the transfer of the second second 📲 🖕 🖬 👘 🖓 🖓 · . . 🖤 ્રાજ્ય નાગ્યું ના *** · MARE **Na** 1 J 1 🕰 Sag fary component of the Caspora he. - --------egonal street segonal P.P. 1 P.A. • • • 641 P.C. Magnet, the fithe tragens where La, LASAV \$ 15 mt # + 1 1 e emperie e geogy & INDE ENRYMAN TO THE STRAND TO THE REPORT OF THE STRAND + 41 at + : ORDE # TOPUT SY 20 MP PT TAU PUT AT 192 • matr -JSP and the second 451 - 🛥 👘 -NACE SUBSTITUTION OF THE PARTY OF • • • • · · · · • ** nne i ÷ (151 No the ch **1** per la la sur la sur 50 - p - 1 - 1 - 1 tart subst to the second substantial and · •¢ **********

.'•	
L	the second seco
MEND e	han sau nder han han an enter state and an
₩ 1	
₩(n 1995 (1995) an garage e statue (1997) ang
NCCH S	17 € 1 1 € 1 6 € 1 4 5 1 1 1 1 5 6
•	And the second s
₩ RA1.,	nDut srgument the underst time operations to an entry per- e-magent of ⊥
NPRE L M	11.0×110 + 01 − 020 + 1 > 3660 A
49	TOUT BY QUARTER STORED FOR THE MARK STORE
Minchers .	internal variable for we
NE AL	ogi el verteble denoting si tes matrix when impl
3400 I	The accumulated sum of the oner product a the thaginary term for a complex matrix
Super	The eliminated sum fithe real part of the the the product for a materials
TRANSP	cogical variable odiating e transposed Natrix when 'BUE
	The side of the state of the state of the
*1	The mag have part of the south of the

ai Al ^{ta} Hana,
•
▲(+ 巻:共)
• 6
· •

- 8 347₽01 OEATION v FP
- 6. CALLING MONTINE.

BAC SUB

Ë

7. CALLED NOUTINES:

ASSIGN

STATIN

STATOT

W. KOCK

aris.

.

~ .

. .

۰ م

1.1.

MANE SOLVON NEDA

- 2 PUBPOSE Advisionents perstant seguri en antegra de la seguri de la seg Seguri de la seguri
- 3. WE MODE the matching of matching and signed signed structures of the second structure of the sec
- 4 INTERNAL FAR ABLES

TARIABLE TO A

- una de la gamera de la constante La constante de **A** *• ******* **4** * • * • ÷ • BANC 1971 A. HAR AL M. MALLY M. H. MANNER MALLY S . **b**. . • 4 14 A + #1 - #t. + 🗮 🖓 🖓 MATE I WHAT SUF 01461 magiments part in the sites the 01400 Magnitude of the tasks were DIAGO part fithe tag ta w empri 101 nout argument sessional must est 10 gre 102 induit enguments tes griet sy their extension 1 1 -.... IF MD Frag equals set for treather a • ***** PQUA & SMP FOR DALL VERSE FOR POL i i ndex to the maginary part of the south or • • • • 1. Index to the real parts of the south a

(**)))) >**

其 1	
M 2	ete a a construction de la const
关 🎮 .	
) :	n na tanàna amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana ami Ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'
j a	a the second of
)@	▶ a set of the set
) a	ntantanan ara-ara-ara-ara-ara- ara-ara-ara-ara-ara
(• 3• 3• 3• 3• 10 10 10 10 10 10 10 10 10 10 10 10 10
4F1	• • • • •
K#2	αφ
K\$ 7 A# 7	n server en
₩.	ntau i tana antara ang ang ang ang ang ang ang ang ang an
ICDE S	
WLAST	Ten gyt og transformer en
	mput angume te y st y tech e puter words per element til elemat
	conternal coartable contractors of News
	C rows orga ments texting of the second of
whow's	The multiple of a single with a single of the single of th
	*••••

BA

see a second and a

.

n Santa Filinia (Santa Anna), an Anna (Santa Anna), an Anna (Santa Anna), an Anna (Santa Anna). Anna 18

s the mean operation to the second

AN AN ...

•	₩₽ ₩	- (H · A) * · · · · · · · · · · · · · · · · · ·
	1	• •
	÷	

.

SCIN ACHE BUILI

NATION AND A REAL OF A REA

ь р - й

n nastres no sala nan sala nan sala nan sala nan sala nan sala na sala na sala na sala na sala na sala na sala

ыў:

BAL SUP

4 • • • 0 • ₩•

4 S.S. 198

* **A** * - •

. * & *

₩. K0- I

CALCUMPT OF

13

1

20

 $\langle \cdot, \cdot \rangle$

de la

Sec. 7

N, N

NAR U

•

ne Na Antonio (1997). Na Antonio (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1 Antonio (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997)

Control = Contro

¹ Mer (γ. N. 1999) − Congress (Meg) (Memp) (2000) (2000) (2000) (2000) Mega (A. 1997) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000)

an Mariana an Anna an A Meanna an Anna a

1

* e

• • ·

• • •

• • • • •

•

.

. **:**

F#4

*

a 1 🖝 1

10 - L Pulse surface current in paties M<u>ea</u>r Fi<u>e</u>ld

$$\mathbf{E} \left[\left(\begin{array}{c} \mathbf{a} & \mathbf{1} \mathbf{b} \mathbf{a} \\ \mathbf{a} & \mathbf{b} \end{array} \right] \left[\left(\begin{array}{c} \mathbf{a} & \mathbf{1} \mathbf{b} \mathbf{a} \\ \mathbf{a} \end{array} \right) \left[\mathbf{a} \\ \mathbf{a} \end{array} \right] \left[\left(\begin{array}{c} \mathbf{a} & \mathbf{1} \mathbf{b} \mathbf{a} \\ \mathbf{a} \end{array} \right) \left[\mathbf{a} \\ \mathbf{a} \end{array} \right] \left[\left(\begin{array}{c} \mathbf{a} \\ \mathbf{a} \end{array} \right) \left[\mathbf{a} \\ \mathbf{a} \end{array} \right] \left[\left(\begin{array}{c} \mathbf{a} \\ \mathbf{a} \end{array} \right) \left[\mathbf{a} \\ \mathbf{a} \end{array} \right] \left[\mathbf{a} \\ \mathbf{a} \\ \mathbf{a} \end{array} \right] \left[\mathbf{a} \\ \mathbf{a} \\ \mathbf{a} \\ \mathbf{a} \end{array} \right] \left[\mathbf{a} \\ \mathbf$$

where

11 1 2.9

$$H_{\phi} = \frac{A}{4\pi} (r_{1}h_{1}) + R + 2 \qquad + \left[\frac{1}{2} + \frac{1}{2} +$$

- (W) A support cave. Negative static support of the support of t
- - ter e di strevisione d'ales.
- the transformation of the second second second second the

.

* . * . * . * .

* . 4 . 8

1.1.1.2

3

- a standard and a standard and a standard a s
- set to surface current and meters
 - I POTO BUT BUT DET
 - Magn tude fi
 - Persangu ar imponents of k
 - ot**ándarit spher e** minitinatin system. G**ilipone**nts
 - iological indicate sistem. Simponents
 - istem es tilf e tippint frame engs of wire. Segment
 - hara terstis **"De**dahre of free obale. Pig-ou

÷

- Angul an trague of a st
 - dermenten tin fitee spale åt som en e
 - ength the re cegnent

(DPA) a and , and water is a gater of the gater.

Et SPON d' he noted that isster a consult that they are superwave engths. Hence, STADE to returns the score of the second s

"WO SOUT & DATABETETS ATK USED 1. DASS grouppers a caller to seal in

SPI when redition were engined in the signerewere rengined

SP2 whre ength swevelengths

4 INTERNAL VARIABLES

TARIABLE	¥4 ∓ ∃ N	· . 💼

ACTOP Absolute is up of the schedule is some of a score of operations of the system.

BL Heve multiples where sadaus

s, ny 🖬 🗼

DE2 Mare number times wire had ength times

(101 Integra of os(krist dz. ver wire ength (returned by ACMANT)

CONST Predamie of free space 376 seasons divided by 8+2

CPN costne of a child system.

(PMP osine of a source condinate system

(#) (n/2x)/os(bry/lary used in papering ere near fields

(....

their scorps for a second single show the second states and the second s
1. **N**/W +

# 2 #	
* 28*	and the second
y '	n net foreigne syntext foreigne ar er sig f engte
7 pe	e san an a
* H P	some to a construct out of the
· # 2	and a second gradient of the second
91	n gener talt e teterre tal traine en else 1 e anit d'ann bare se stagat e traine e e 1 98 e ess than i talt he tur traine e e ann said t
{ •	₩adsa umponent of a restrict source yondrola system
{ ## (,{# =	Rea and maginary imponent to on the Using urrent distribution
t NAS . E # 1 #	Peal and they have subconnects of the for- pulse urrent distribution
{ ## \$,{# \$	Real and consistent supported to the term since writent distribution
ŧ#,ŧ*,ŧ;	Rectangular longonents of source the disc source pordinate system
ERMTI,ERITI	Real and imaginery omponents of patch source near fields or omponents
EXPANG	Phase argument of plane wave
E # 3	Angular Jependenie if Jipp elfan fin tie is
€¥₩71,€¥171	Rea and maginary imponents to patch source near freids y omponent
€Z#C.,€Z1(NA ENT CATANT CONTRACTOR CONTINUES AND A SUB-
670#,671#	deal and magiment movements to so the pulse unrent distribution

SOME CONTRACTOR

E785.E715	Real and characteristic restored to the second s
₩Z₩15,€261	Rea and Maşinary magements in jatin S(Sut e Near tents in tents
4 AB 4	contra component contra contra contra cetaren el porto atello potemi
• AP 6	Phillippenert to the spectrum of a second seco
6 1 6 4 6 6 2	Restangu er ombonent som
• •	Photo complements of patch manimum concerns source controlsmate system
M ¹	Theta components is patient waters in a second source of the system
1.J#	nterne varietie out et ou tret le f ntere toos ere out tope a leten
: #	GTO source type
1 PAT(H	Flag and atong it the source of patients. A write segment
, ₩₩ € ; [.	Elleg smolt atting underther mean the sc symblef.Delt or far freids 1980 si gen t De a watert
P H	Phase of plane wave at itselfation point
PHS	Phase of spherical wave at observation point
•	Source observation separation sistance. (wavelengths)
#] #	NATE TURDER TORONS A STAT POST PORT OF A STAT POST AND A STAT POST AND A STAT POST A STAT POST A STAT A STA
#14.5	# [& *#] #

.:0

5 7X 5

••		*:.		
	, * *			

- •
- et 1
- •
- nord the state of the state of

- 24

7 K

- a * ·
- and an an an ann an Anna an Ann Anna an Anna an
- M⊈P MALE State -
- and and an end of the second sec
- n var ∎ter som en s Ter som en so
- یې د و د مونو . مونو

, •	•
	n an e gene r en an e transfer en anter en a En anter en a
, W	nan an
s#i;►	χ∰
58.Hu	S∰ () €
NB 2	· · · · · · · · · · · · · · · · · · ·
\#24	,∎ ¹ e
\$# 24 0	.a. g
۶۶ [°]	and the second

a the second second

and the second second

2 By the second seco

 *Emm
 Phase and spread factor sphere a wave near fields

 *2.*2.*1.*4
 *emportary storage is consistent wave a score sphere as a score sphere is sphere as a score sphere as a sc

- 6

-

tion of an antiparticle of a second sec

. 4 + • en and a second s

1. 1. .

antan Zaginagina antan antang sinan Antan antan ŧ . ₹° •

n an strain an State an Strain Strain Strain an Strain

gen 1. A. Segua anti- 1. Second 2. Neg**ter** Marina anti- 1. Second 2. Second 1. Segua anti- 1. Second 2. Second 2. Second 2.

÷.

16 .

Ale -

-

- - - - **- - - - - - - - - - -**2

*

4 •

4 944

i 6 - 2

-

1 **-**

- - •
- -

CONTRACTOR OF THE OWNER

T,

A CONTRACT OF A CONTRACT OF

Contraction of the second

State States

 -

REFCYL	RPLSCL
REFPLA	SCLRPL
RPLDPL	SCTCYL
	REFCYL REFPLA RPLDPL

SOURCE

(GTD)

RCLDPL

1.7

ないいので、

シャンション

CALLED ROUTINES:

ASSIGN

ROMENT

STATIN

STATOT

WLKBCK

- 1. NAME: SOURCP (GTD)
- 2. PURPOSE: To compute the tangential components of the normal derivative, $\frac{\partial E}{\partial n}$, of the incident field pattern factor for a source ray incident on a given edge.
- 3. METHOD: A source is located and oriented according to figure 1 and emits a ray incident on a diffracting edge. The slope field is given by

$$\frac{\partial \vec{E}}{\partial n} = \frac{1}{s' \sin \beta_0} \frac{\partial \vec{E}}{\partial \phi_0}$$
(1)

where

$$\bar{E} = \bar{E}_{0}(\theta', \phi') \frac{e^{-jks'}}{s'}$$
(2)

 θ' and ϕ' are the spherical angles of the source ray in the source coordinate system. s' is the distance from the source to the edge.

Figure 1. Pertiment Geometry for Slope Diffraction. The Unit Vectors $\hat{\Theta}', \ \hat{\Phi}', \ \hat{\beta}_0', \ and \ \hat{\phi}_0$ Are Defined in the Standard Way.

The required derivative in (1) is computed from the spherical components of the source field and their derivatives (in the source coordinate system) by using the chain rule of taking derivatives:

(4)

$$\frac{\partial \bar{\mathbf{E}}}{\partial \phi_{O}} = \frac{\partial (\mathbf{E}_{\theta}, \hat{\theta}')}{\partial \phi_{O}} + \frac{\partial (\mathbf{E}_{\phi}, \hat{\phi}')}{\partial \phi_{O}}$$
(3)

$$\frac{\partial \mathbf{E}_{\theta'}}{\partial \phi_{0}} = \frac{\partial \mathbf{E}_{\theta'}}{\partial \theta'} \quad \frac{\partial \theta'}{\partial \phi_{0}} + \frac{\partial \mathbf{E}_{\theta'}}{\partial \phi'} \quad \frac{\partial \phi'}{\partial \phi_{0}} \tag{5}$$

$$\frac{\partial E_{\phi}}{\partial \phi_{O}} = \frac{\partial E_{\phi}}{\partial \theta_{O}} + \frac{\partial E_{\phi}}{\partial \phi_{O}} + \frac{\partial E_{\phi}}{\partial \phi_{O}}$$
(6)

The angular derivatives are given by

12.2.2

1.41.44

A STATES REPORTED

$$\frac{\partial \hat{\phi}^{\dagger}}{\partial \phi_{0}} = \frac{\sin \beta_{0}^{\dagger}}{\sin \theta^{\dagger}} \underbrace{(\hat{\phi}_{0} \cdot \hat{\phi}^{\dagger})}_{PPHO} \hat{\rho}^{\dagger}$$
(9)

$$\hat{\sigma}' = \underline{\sin \theta'} \underbrace{\hat{s}'}_{\text{STHP}} + \underbrace{\cos \theta' \hat{\theta}'}_{\text{CTHP}}$$
 (10)

 $\hat{\boldsymbol{\theta}}' = (\boldsymbol{X} \boldsymbol{T} \boldsymbol{H}, \boldsymbol{Y} \boldsymbol{T} \boldsymbol{H}, \boldsymbol{Z} \boldsymbol{T} \boldsymbol{H})$ (11)

)' = (XPH, YPH, ZPH) (12)

The above expressions may be combined to yield:

$$\frac{\partial \overline{E}}{\partial n} = \left\{ \begin{bmatrix} -\frac{\partial E_{\theta^{\dagger}}}{\partial \theta^{\dagger}} & (\hat{\phi}_{0} & \hat{\theta}^{\dagger}) & \hat{\theta}^{\dagger} & -\frac{\partial E_{\theta^{\dagger}}}{\partial \theta^{\dagger}} & (\hat{\phi}_{0} & \hat{\theta}^{\dagger}) & \hat{\phi}^{\dagger} \end{bmatrix} \right. \\ \left. + \frac{1}{\sin \theta^{\dagger}} \left[-\frac{\partial E_{\theta^{\dagger}}}{\partial \phi^{\dagger}} & (\hat{\phi}_{0} & \hat{\phi}^{\dagger}) & \hat{\theta}^{\dagger} & -\frac{\partial E_{\theta^{\dagger}}}{\partial \phi^{\dagger}} & (\hat{\phi}_{0} & \hat{\phi}^{\dagger}) & \hat{\phi}^{\dagger} \end{bmatrix} \right. \\ \left. + \cot \theta^{\dagger} \left[- E_{\theta^{\dagger}} & (\hat{\phi}_{0} & \hat{\phi}^{\dagger}) & \hat{\phi}^{\dagger} + E_{\phi^{\dagger}} & (\hat{\phi}_{0} & \hat{\phi}^{\dagger}) & \hat{\theta}^{\dagger} \end{bmatrix} \right\} \frac{e^{-jks^{\dagger}}}{s^{\dagger 2}}$$
(13)

Note that sin β_0^{\prime} is eliminated from the expression in (13). Also, only the tangential components are retained.

SOURCP returns the quantity within the brackets, as the term $\frac{e^{-jks'}}{s'^2}$ is added elsewhere in the code. The two field components EIPRP and EIPLP are given by:

$$\frac{\partial \vec{E}}{\partial n} = [EIPRP \hat{\phi}_{0} + EIPLP \hat{\beta}_{0}'] \frac{e^{-jks'}}{s'^{2}}$$
(14)

EIPRP is computed by taking the dot product of (13) with $\hat{\phi}_0$. ignoring the exponential term. EIPLP is obtained by dotting (13) with $\hat{\beta}_0$.

Since $E_{\Theta'}$ and $E_{\Phi'}$ for GTD and MOM sources are analytic in the far field, it is straightforward to obtain the necessary partial derivatives. For example, consider a wire segment with pulse current (IM=1):

 $\mathbf{ET} = \mathbf{E}_{\theta}, = \frac{jn}{2} \quad (\frac{\Delta \mathbf{k}}{\lambda}) \quad \sin \theta' \qquad \mathbf{EP} = \mathbf{E}_{\phi}, = 0$

ETT = $\frac{\partial E}{\partial \theta'} = \frac{in}{2} \left(\frac{\Delta E}{\lambda}\right) \cos \theta'$ EPT = $\frac{\partial E}{\partial \theta'} = 0$

 $ETP = \frac{\partial E_{\theta'}}{\partial \phi'} = 0 \qquad EPP = \frac{\partial E_{\phi'}}{\partial \phi'} = 0$ (15)

These terms are then substituted into the formulas for EIPRP and EIPLP at statement 100.

4. INTERNAL VARIABLES:

CTHP

AND AND AND

VARIABLE DEFINITION

ACTHPAbsolute value of the cosine of θ' (source
coordinate system)

BOP Rectangular components of the betacomponent of the incident field in RCS system

CCDK2 Cosine of CDK2

CDK2 Wave number times wire half-length times cosine of θ'

CNDK2 Cosine of DK2

CONST $jn(\frac{1}{2}\ell/\lambda)^*\lambda$ used in computing patch slope fields

CPHP Cosine of $\phi'($ source coordinate system)

Cosine of θ ' (source coordinate system)

1

にいい

1. 5 C. T. W. C.

DK2	Wave number times wire half-length
E1,E2	Temporary storage for terms used to compute slope fields of stiff dipole source
EA,EB	Temporary storage for terms used to compute slope fields of stiff dipole source
EFA	Partial derivative of dipole pattern factor with respect to theta
EFB	Dipole pattern factor divided by $sin(\theta')$
EIPLP	Parallel polarized component (soft) of normal derivative of incident fields (parallel to edge)
EIPRP	Perpendicularly polarized (hard) component of normal derivative of incident fields (perpendicular to edge)
EP	Phi polarized component of incident field (source coordinate system)
EPP	Partial derivative of EP with respect to phi
EPT	Partial derivative of EP with respect to theta
ET	Theta polarized component of incident field (source coordinate system)
ETP	Partial derivative of ET with respect to phi
ETT	Partial derivative of ET with respect to theta
IM	GTD source type
PHO	Rectangular components of the phi-component of the incident field in RCS
PP80	Dot product of phi polarization unit vector of source coordinate system and beta polar- ization unit vector of edge-centered coor- dinate system

PPHO Dot product of phi polarization unit vector of source coordinate system and phi polarization unit vector of edge-centered coordinate system RDX Projection of incident ray direction onto source x axis RDY Projection of incident ray direction onto source y axis SCDK2 Sine of CDK2 Sign of CTHP SN SNDK2 Sine of DK2 SP1 Source parameter one: wire radius (wavelengths) or patch area (square wavelengths) SP2 Source parameter two: wire length (wavelengths) SPHP Sine of ϕ' (source coordinate system) Sine of θ ' (source coordinate system) STHP **TPBO** Dot product of theta polarization unit vector of source coordinate system and the beta polarization unit vector of edge-centered coordinate system ТРНО Dot product of theta polarization unit vector of source coordinate system and the phi polarization unit vector of edge-centered coordinate system VAX Source axes direction cosines (RCS rectanqular component projections) VI Direction cosines of incident ray propagation direction XPH, YPH, ZPH Rectangular components of the phi unit polarization unit vector in the source coordinate system (RCS components) XTH.YTH.ZTH Rectangular components of the theta unit polarization unit vector in the source coordinate system (RCS components)

5. I/O VARIABLES:

Α.	INPUT	LOCATION
	BOP	F.P.
	CJ	/COMP/
	ETA	/AMPZIJ/
	IM	/SRC/
	рно	F.P.
	PI	/PIS/
	SP1	/SRC/
	SP2	/SRC/
	ΤΡΙ	/PIS/
	VAX	F.P.
	VI	F.P.
8.	OUTPUT	LOCATION
	EIPLP	F.P.
	EIPRP	F.P.

6. CALLING ROUTINES:

DIFPLT

DPLRPL

RPLDPL

7. CALLED ROUTINES:

ASSIGN

STATIN

STATOT

WLKBCK

1. NAME: SPWDRV (MOM)

- 2. PURPOSE: Generate the plane or spherical wave excitation on the structure.
- 3. METHOD: The coordinate system and parameters are illustrated in figure 1, where \overline{E} is the linear component and \overline{EP} is the polarization component of the incident electric field. The eccentricity ε specifies $|\overline{EP}|/|\overline{E}|$ and for positive ε , the wave vector \overline{k} has direction given by $\overline{E} \times \overline{EP}$ for negative ε , the wave vector \overline{k} has direction given by $\overline{E} \times \overline{EP}$ and for negative ε , \overline{k} has direction given by $\overline{E} \times \overline{EP}$ and for negative ε , \overline{k} has direction given by $\overline{E} \times \overline{EP}$ and for negative ε , \overline{k} has direction given by $\overline{E} \times \overline{EP}$ and for negative ε , \overline{k} has direction given by $\overline{EP} \times \overline{E}$. For plane wave excitation, \overline{k} is oriented toward the origin;

Figure 1. Geometry for Plane or Spherical Wave Excitation

whereas for spherical wave excitation, \bar{k} is oriented toward the observation point. The total field is given by

$$\bar{E}^{t} = \bar{E}^{I} + \bar{E}^{R}$$

 $\bar{E}^{I} = \bar{E} + j\bar{E}\bar{P}$

where \overline{E}^{R} is the reflected field. \overline{E}^{R} is given by:

$$\overline{\mathbf{E}}^{\mathbf{R}} = (\overline{\mathbf{E}}^{\mathbf{n}}_{\parallel} + \overline{\mathbf{E}}^{\mathbf{p}}_{\parallel}) \mathbf{R}_{\parallel} - \overline{\mathbf{E}}_{\perp} \mathbf{R}_{\perp}$$

where $\overline{E}_{\parallel}^{n}$ and $\overline{E}_{\parallel}^{P}$ are the components of the total field incident normal to (n) and parallel to (P) the reflective surface. \overline{E}_{\perp} is the total incident field perpendicular to the plane of reflection. R_{||} and R_{\perp} are the modified Fresnel reflection coefficients for the in-plane and out-of-plane components as described in the Engineering Manual.

The excitation for a segment located at \bar{R}_i oriented parallel to \bar{R}_i with length $|\bar{R}_i|$ is

$$\mathbf{E}_{i} = -\mathbf{\bar{R}}_{i} \cdot \mathbf{\bar{E}}^{\mathsf{T}} (\mathbf{R}_{i})$$

where

Contraction of the second

$$\bar{\mathbf{E}}^{t} (\mathbf{R}_{i}) = \bar{\mathbf{E}}^{I} e^{-j\bar{\mathbf{k}}_{i} \cdot \bar{\mathbf{R}}_{i}} + \bar{\mathbf{E}}^{R} e^{-j\bar{\mathbf{k}}_{r} \cdot \bar{\mathbf{R}}_{i}}$$
$$\bar{\mathbf{k}}_{i} = \frac{2\pi}{\lambda} \hat{\mathbf{k}}_{i}$$
$$\bar{\mathbf{k}}_{r} = \frac{2\pi}{\lambda} \hat{\mathbf{k}}_{r}$$

4. INTERNAL VARIABLES:

Ŗ

いていたけ

VARIABLE	DEFINITION
ARGI	$\frac{2\pi}{\lambda}$ $\vec{k}_i \cdot \vec{R}_i$
ARGR	$\frac{2\pi}{\lambda}$ $\vec{k}_{i} \cdot \vec{R}_{i}$
COSARG	-jk · R Real component of e
COSETA	(Ē · ∲)/ Ē
COSP	Cosine of ϕ
COST	Cosine of 0
DXSW	X component of source with respect to specular point
DYSW	Y component of source with respect to specular point
DZSW	Z component of source with respect to specular point
ECCN = ECCEN	Eccentricity (IEPI/IEI)
EM	Magnitude E
EPRX,EPRY,EPRZ	X,Y,Z components of reflected polarization component of incident wave
EPX,EPY,EPZ	X,Y,Z components of reflected linear component of incident wave
ERX, ERY, ERZ	X,Y,Z components of reflected linear component of incident wave
ESX,ESY,ESZ	X,Y,Z components of linear component of incident wave
ETAE	Angle between \overline{E} and $\widehat{\theta}$
ETAINV	1/377 (mho)
ETAP	Polarization angle
EXI	Total x component of incident wave

 $\sim \sim \sim$

1000

100

100

S. 4. 4.

1000

SALANS.

Constant of the second

	au 0
EXPARG	e e
EXR	Total x component of reflected wave
EXRI	In-plane reflected x component
EXS	Linear x component
EYI	Total y component of incident wave
EYR	Total y component of reflected wave
EYR1	In-plane reflected y component
EYS	Linear y component
EZI	Total z component of incident wave
EZR	Total z component of reflected wave
EZRI	In-plane reflected z component
F	Logical .FALSE.
GROUND	Logical .TRUE. if ground present
HCNVRT	Logical .TRUE. if convert to H-field for plane wave
HXI,HYI,HZI	X,Y,Z components of incident H-field for patches
HXR,HYR,HZR	X,Y,Z components of reflected H-field for patches
KIX	k _i · X
KIXSQ	(KIX) ²
KIY	κ _i · γ
KIYSQ	(KIY) ²
KIZ	k _i · Ź
KRX	$\bar{k}_{ij} + \hat{X}$
KRXSQ	(KRX) ²

SPWDRV (MC

2

N. VIN

1.2.2.V

N. S. S. W.

and the second

(MOM)

KRY	k _r · Ϋ
KRYSQ	(KRY) ²
KRZ	k _r · 2
KSYMP	1 = no ground 2 = ground
KXKY	KIX * KIY
LBLK	Block number containing subsection being considered
LINEAR	.TRUE. for ECC = 0 .FALSE. for ECC > 0
NAMEXC	Symbolic name of excitation data set
NDXBLK	Block number of current geometry data
NI	Index to TEMP array for imaginary component
NR	Index to TEMP array for real component
NUMYRS	Number of wire segments
NX,NY,NZ	Components of patch normal vector
PHI	Spherical angle 🔶 in radians
PHIS	Spherical angle 🔶 in degrees
PLNWAV	.TRUE. for plane wave excitation .FALSE. for spherical wave excitation
R	> 0 - location of spherical wave source < 0 = plane wave source
RF	Distance from source to specular point
RFI	I/RF
RHO	Reflection plane component of RF
RHOSQ	(RHO) ²
RI	Distance from source to field point

1121

RINP	In-plane reflection coefficient
ROUT	Out-of-plane reflection coefficient
RS	Location of wave excitation source
RSQ	R ²
SINARG	-JK · R _i Imaginary component of e
SINETA	$(1-\text{COSETA}^2)^{1/2}$
SINP	Sine (ф)
SINT	Sine (0)
т	Logical .TRUE.
T1X,T1Y,T1Z	Internal symbols for SEGTBL parameters
T2X,T2Y,T2Z	Internal symbols for SEGTBL parameters
THETA	θ (radians)
THETS	θ (degrees)
VI	Unused
VMAG	lĒ + jε ĒΡl
VOLTS	Total excitation
VR	Unused
WIRE	Logical .TRUE. if element is a wire
XC	X coordinate of field point
XR	X coordinate of specular point
XS	X coordinate of source point
XW	X component of $\bar{\mathfrak{L}}_{i}$
YC	Y coordinate of field point
YR	Y coordinate of specular point
YS	Y coordinate of source point

YWY component of \bar{k}_i ZCZ coordinate of field pointZRZ coordinate of specular pointZRSQRTIntermediate value in calculation of RINP
and ROUTZSZ coordinate of source pointZWZ component of \bar{k}_i

5. I/O VARIABLES:

A.

INPUT	LOCATION
DGTORD	/GEODAT/
ECCEN	F.P.
ETA	/AMPZIJ/
ΕΤΑΡ	F.P.
IPERF	/AMPZIJ/
ISGTBL	/SEGMNT/
ISOFF	/ADEBUG/
ISON	/ADEBUG/
KSYMP	/AMPZIJ/
MAXSEG	/SEGMNT/
NAMEXC	F.P.
NDXBLK	/SEGMNT/
NPATCH	/SEGMNT/
NWIRE	/SEGMNT/
PHIS	F.P.
RS	F.P.

くいいいい そう 日本 いい 日本 いい

		SEGTBL
	THETS	
		VI
		VMAG
		VR
		WAVNUM
		ZRATI
	8.	OUTPUT
		TEMP
		UPDBLK
6.	CALLING ROUTINE:	
	EXCORV	
7.	CALLED ROUTINES:	

ASSIGN

15000

GETSEG

STATIN

STATOT

WLKBCK

and the second

(MOM)

SPWDRV

/SEGMNT/

F.P.

F.P.

F.P.

F.P.

/AMPZIJ/

/AMPZIJ/

LOCATION

/TEMP01/

/SEGMNT/

(MOM)

6.33

1125

1.	NAME: STATFN	(GTD, INPUT, MOM, OUTPUT)
2.	PURPOSE: Subroutine to print the timing statistics compiled during code execution and to write the end-of-module checkpoint.	
3.	METHOD: The number of times a subroutine is entered, the total time to run the subroutine, and its percentage of the total code execution time are compiled and printed.	
4.	INTERNAL VARIABLES:	
	VARIABLE	DEFINITION
	IMDCHK	Flag indicating that an end-of-modul checkpoint is being written
	ITEMS	Dummy array used to store the subroutin times for sorting
	J	Pointer to the next subroutine statistic to be printed
	LOC	An order array used to indicate the sorte subroutine timing statistics
	MODCHK	End-of-module checkpoint file logical unit
	NITEMS	The number of entries for which there wil be timing statistics
	PCNT	The percentage of time spent in any on subroutine
	RITEMS	Real array equivalenced to ITEMS
	TOTAL	Total amount of GEMACS code computer tim accounted for in subroutines
5.	I/O VARIABLES:	
	A. INPUT	LOCATION
	CHKPNT	/SYSFIL/
	IERRF	/ADEBUG/
	IOCKPT	/SYSFIL/
	ISOFF	/ADEBUG/

A THE REAL SHIPS SHIPS

STATFN (GTD, INPUT, MOM, OUTPUT)

ISON	/ADEBUG/
LUPRNT	/ADEBUG/
MODCHK	/SYSFIL/
MODNAM	/MODULE/
NRNAMS	/ADEBUG/
NRSUBS	/ADEBUG/
NRTIMS	/ADEBUG/
RSUMS	/ADEBUG/
OUTPUT	LOCATION
COMPLT	/SYSFIL/
IMDCHK	/ADEBUG/
LSTMOD	/MODULE/
MODLST	/MODULE/
RSTRTA	/SYSFIL/

6. CALLING ROUTINES:

MAIN PROGRAM

ERROR

B.

50.00 (AN)

1.25

7. CALLED ROUTINES:

CLSFIL

OPNFIL

SHELL

WRTCHK

1	NAME + STATIN (61	
2.	DUDDOSE. To initialize timing statistics for all subroutines whic	
	call it.	
3.	METHOD: The current wall clock time is entered into the RTINS array. The NRTIMS array is incremented by 1 and the total time in the previous subroutine is loaded in the RSUMS array.	
4.	INTERNAL VARIABLES:	
	VARIABLE	DEFINITION
	MSAVE	Input array containing the statistics for the previous subroutine.
	N	Subroutine number of the previous subroutine to call this routine.
	NAME	Input argument, current subroutine name.
	NRTIMS	Array to accumulate the number of times given subroutine is entered.
	NUMSB	Subroutine number of calling subroutine.
	RSUMS	Total time accumulated in the previous subroutine to call this routine.
	RTINS	The current clock time for the current surrent surrent surrent surrent surrent surrent subroutine.
	TIMIN	Current clock time.
5.	I/O VARIABLES:	
	A. INPUT	LOCATION
	ISON	/ADEBUG/
	LTRACE	/ADEBUG/
	LUPRNT	/ADEBUG/
	MSAVE	F.P.
	NAME	F.P.
	NIMSR	F.P.

DAVA DAVACA

22222222

Restriction and Anti- and Anti- and Anti-

(Sec.

PREVIOUS PAGE IS BLANK

OUTPUT	LOCATION
NRTIMS	/ADEBUG/
RSUMS	/ADEBUG/
RTINS	/ADEBUG/
	OUTPUT NRTIMS RSUMS RTINS

6. CALLING ROUTINES:

All major routines.

7. CALLED ROUTINES:

NONE

1133

10.0

- NAME: STATOT (GTD, INPUT, MOM, OUTPUT)
 PURPOSE: To close the timing statistic upon exit from a subroutine.
 METHOD: The index of the calling subroutine is retrieved. The wall clock time is then determined, and the accumulated time for the current subroutine is determined. Then the clock is restarted for the subroutine which called the calling subroutine.
- 4. INTERNAL VARIABLES:

INTERNAL VARIABLES:	
VARIABLE	DEFINITION
MSAVE	Input argument array containing the sub- routine which called the calling subroutine
N	The subroutine number of the subroutine which called the calling subroutine
NAME	Input argument containing the name of the subroutine for which the statistic is being accumulated
NUMSB	The subroutine number of the subroutine for which the statistic is being accumulated
RSUMS	The accumulated time spent in the subrou- tine for which the statistic is being accumulated
RTINS	The current time reset for the subroutine which called the calling subroutine
TIMOUT	Current wall clock time

5. I/O VARIABLES:

Α.	INPUT	LOCATION
	ISON	/ADEBUG/
	LTRACE	/ADEBUG/
	LUPRNT	/ADEBUG/
	MSAVE	F.P.
	NAME	F.P.
	NUMSB	F.P.

STATOT (GTD, INPUT, MOM, OUTPUT)

B. OUTPUT LOCATION RSUMS /ADEBUG/ RTINS /ADEBUG/

6. CALLING ROUTINES:

All major routines.

7. CALLED ROUTINES:

None.

1. NAME: STRTUP (GTD, MOM, OUTPUT)

- 2. PURPOSE: Initalize commons and reset data files to begin module execution.
- 3. METHOD: The last checkpoint on module checkpoint file MODCHK is read to initialize commons and read in data files. If the RSTART flag is on, the module name requested in the RESTRT command is compared to the name of this module. If they do not match, execution stops so that this same checkpoint can be used by a subsequent module for restarting. If a match occurs, the routine returns to GEMACS, which invokes TSKXQT to continue execution.

For standard module start-up (no RSTART flag), the error flag is first checked. If an error occurred in a previous module, execution is terminated with an appropriate warning message. Otherwise, parameters are reset to their default values and data sets rewound to just before the first word of their first editions.

4. INTERNAL VARIABLES:

VARIABLE	DESCRIPTION
I	Loop index pointing to symbol table entry
ІСНКРТ	Maximum number of checkpoints on tape
ICKLOP	Loop index over number of checkpoints read
IEOF	Flag indicating end-of-file on LUFILE
IOSTOR	Logical unit number of data set
IRSAV	Internal variable to save value of IRSTRT
J	Loop index over module names
KCODE	Array of keyword numbers describing module names
LOCNOW	Present position of data file
LUFILE	Internal variable set to MODCHK
MOD	Array of Hollerith format module names
MODNOW	Internal variable equal to MODNAM
NREAD	Flag set to ISOFF so that commons and files are read from MODCHK

- STRTUP (GTD, MON, OUTPUT)
- 5. I/O VARIABLES:

SUBSIS DECIDE CONDE CONCERS SUBSICES FRANCES

255.257

A.	INPUT	LOCATION
	IERRF	/ADEBUG/
	IOFILE	/IOFLES/
	IRSTRT	/ADEBUG/
	ISOFF	/ADEBUG/
	ISON	/ADEBUG/
	KOLAST	/PARTAB/
	KOLFST	/PARTAB/
	KOLLOC	/PARTAB/
	LSTMOD	/MODULE/
	LSTSYS	/SYSFIL/
	LUPRNT	/ADEBUG/
	MODCHK	/SYSFIL/
	MODLST	/MODULE/
	MODNAM	/MODULE/
	NDATBL	/PARTAB/
	NPDATA	/PARTAB/
B.	OUTPUT	LOCATION
	CHKWRT	/SYSFIL/
	DBGPRT	/ADEBUG/
	FRQMHZ	/AMPZIJ/
	IMDCHK	/ADEBUG/
	IRSTRT	/ADEBUG/
	KJFLD	/INTMAT/

STRTUP (GTD, MOM, OUTPUT)

KJGTD	/INTMAT/
KJMOM	/INTMAT/
NDATBL	/PARTAB/
NOSTAT	/ADEBUG/
RSTART	/SYSFIL/

6. CALLING ROUTINE:

GEMACS

7. CALLED ROUTINES:

ASSIGN

GETSYM

MOVFIL

PUTSYM

RDEFIL

RWCOMS

RWFILS

STATIN

STATOT

WLKBCK

1600

No.

(GTD, MOM, OUTPUT)

MARCH 1

- 1. NAME: SUBPAT (INPUT)
- 2. PURPOSE: Augments the segment table when a wire-patch connection is found.
- 3. METHOD: First, the subroutine SUBPAT determines the maximum number of entries and the maximum number of data bocks that will result from all wire-patch connections. Then, the segment table is searched for the first patch that is connected to a wire segment. This patch is divided into four smaller patches of equal area and oriented with respect to the surface vectors \hat{t}_1 and \hat{t}_2 as shown in figure 1.

Figure 1. Orientation of Subpatches Connected to a Wire Segment

Also, the unit vector of each of the smaller patches is the same as that of the original patch. The geometry data of the four subpatches are stored in a temporary array along with all succeeding patch data and any patches augmented by a connection to a wire. After all patches have been searched, the data in the temporary array are stored in the segment table starting at the point where the first wire-patch connection was found. Finally, all wire segments are checked for a connection to a patch. If such a connection is found, the connection data are corrected to reflect the new patch number which has resulted from the increase in the number of patches due to a wire-to-patch connection.

4. INTERNAL VARIABLES:

VARIABLEDEFINITIONAREASurface area of patchIBLKIndex for wire segment data blocks

SUBPAT (INPUT)

- ANALON SEALANS SUCCESS ANALAN

のないないのないで

21.22 S. 22 C.S

IBLKSV	The index to the data block which locates the first patch connected to a wire segment
ICOL	Number of columns in the connection array
ICOLSV	Saved value of ICOL
ICON	Connection data for wire segment
ICON1	Connection data for end 1 of wire segment
ICON2	Connection data for end 2 of wire segment
ICONT	Flag indicating whether a wire segment connected to patch has been found
IFILE	Logical unit on which symbol is stored
ILIM	The number of segments in requested data block
INBLKS	The data block with the first wire segment- to-patch connection
INPBLK	Index to data block containing the initial patch data
IOFILE	An array containing current position pointer for the search file
IOSCR2	Scratch file for temporary storage of SEGTBL data
IPCN1	Integer identifying which patch is connected to end 1 of wire segment
IPCN2	Integer identifying which patch is connected to end 2 of wire segment
IPLIM	The number of patches in requested data block
IPLOW	The location of first patch in requested data block
IROW	Number of rows in connection data array
ISEGSV	Location within data block of first patch with connection to a wire segment

200

SUBPAT (INPUT)

12122

20202000

ADALADAR ANANANA RAADARA BERASER AREADAR

ITAG	Tag identifier
IWORDS	Equivalenced to WORDS
JBIAS3	Integer to bias connection data to a patch
JMAX	The number of connections in each column of connection array
MAXBLK	Total number of data blocks
MAXSEG	Maximum number of segments per data block
MBLK	The total number of data blocks after accounting for wire segment-to-patch connections
MXBLKW	The total number of data blocks containing wire segments
NCON	An array containing the old and new patch numbers for a wire segment-to-patch connection
NCONT	The number of wire segment-to-patch connections
NDXBLK	Index to current data block
NELMNT	The original number of wires and patches before augmenting for wire segment-to-patch connections
NN	Counter for a new location of patches in SEGTBL
NNCON	Maximum length of array containing old and new patch numbers for wire segment-to-patch connections
NOGOFG	No go flag
NOLD	Original patch number before patches were divided
NPATCH	The total number of patches
NPRSEG	The number of data items for each SEGTBL entry

(INPUT) SUBPAT

NUMSEG	The total number of wire segments and patches adjusted for wire-to-patch connections	
NUMMP	Number of wire segments and patches in geometry	
NWIRE	The total number of wire segments	
NXTBLK	Index to the next data block	
RH	$\sqrt{(XNPA * XNPA + YNPA * YNPA)}$	
SIDE	The x or y dimension for the distance from the center point of the patch to the center point of a subpatch	
T1X,T1Y,T1Z	The x,y, and z components of \hat{t}_1	
T2X,T2Y,T2Z	The x,y, and z components of \hat{t}_2	
WORDS	- Temporary storage array	
XNPA,YNPA,ZNPA	X,Y, and Z components of patch normal vector	
XPC,YPC,ZPC	X,Y, and Z components of the center point of the patch	
XSUBPA	The x coordinate of the subpatch with respect to the patch center (= SIDE)	
YSUBPA	The y coordinate of the subpatch with respect to the patch center (= SIDE)	
I/O VARIABLES:		
A. INPUT	LOCATION	
IOFILE	/IOFLES/	

5. I,

sector increase another

,	INPUT	LOCATION
	IOFILE	/IOFLES/
	IOSCR2	/SYSFIL/
	IP217	/GEODAT/
	ISGTBL	/SEGMNT/
	ISOFF	/ADEBUG/

SUBPAT - (INPUT)

ISON	/ADEBUG/
JBIAS3	/SEGMNT/
KBREAL	/PARTAB/
KOLCOL	/PARTAB/
KOLLOC	/PARTAB/
KOLNAM	/PARTAB/
LUPRNT	/ADEBUG/
MAXBLK	/SEGMNT/
MAXSEG	/SEGMNT/
NAMSEG	/SEGMNT/
NCONT	F.P.
NDATBL	/PARTAB/
NDXBLK	/SEGMNT/
NOPCOD	/ADEBUG/
NPATCH	/SEGMNT/
NPDATA	/PARTAB/
NPRSEG	/SEGMNT/
NUMGTD	/GTDDAT/
NUMSEG	/SEGMNT/
NWIRE	/SEGMNT/
SEGTBL	/SEGMNT/
ZERO	/ADEBUG/
OUTPUT	LOCATION
ISGTBL	/SEGMNT/
MAXBLK	/SEGMNT/

Č

Z

B.

SUBPAT (INPUT)

NDATBL	/PARTAB/
NOGOFG	/ADEBUG/
NPATCH	/SEGMNT/
NUMSEG	/SEGMNT/
SEGTBL	/SEGMNT/
UPDBLK	/SEGMNT/

6. CALLING ROUTINE:

GEODRV

7. CALLED ROUTINES:

ASSIGN	MOVFIL	STATIN	SYMDEF
CLSFIL	OPNFIL	STATOT	WLKBCK
GETSEG	PUTSYM	SYMDEF	WRTFIL
GETSYM	RDEFIL	SYMUPD	

and and an and a substance and a

γ.

۰.,

all a contract of the second

() e (

чî. \overline{x}

1. NAME: SYMDEF (GTD, INPUT, MOM, OUTPUT)

2. PURPOSE: To define or redefine a symbol during program execution.

3. METHOD: The symbol name is searched for in the NDATBL array and if located the warning message is printed out to the user that the symbol is being redefined. If the attributes of the symbol as defined match the attributes in the call to SYMDEF, only a new edition of the symbol is created, not a completely new file. Otherwise, the present symbol is purged from the symbol table, its data file closed, and an entry made in the symbol table with new attributes as specified in the call. Data on the file are lost.

If not located, the symbol name is added to the end of NDATBL, and the next file available for storage is assigned to the symbol. The file is opened, and the NDATBL pointers are reset. Should there not be a file available, a fatal error is generated. If the addition of this symbol would overflow the NDATBL array, a fatal error is generated.

4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
IBITI	Bit set attributes of present edition of symbol
IBITS	Input attribute containing the bit set attributes of the symbol being defined
INEW	Flag indicating new data set (INEW=1) or new edition of present data set (INEW=0)
IOSTOR	Logical unit designator of file for this symbol
LOCFST	Index to first data entry of this edition of symbol, either core storage or file storage.
LOCLST	Index to last data entry of this edition of symbol, either core storage or file storage.
NAME	User-assigned name of symbol to be defined or redefined

SYMDEF (GTD, INPUT, MOM, OUTPUT) Number of columns defined for present edition of symbol

NCOLS Number of columns required for symbol being defined or redefined

NEED Amount of in-core storage required to store data in FLTSYM

NEWSYM Internal variable for NAME

NPDASV Saved value of variable NPDATA upon entry to SYMDEF

NROW1 Number of rows defined for present edition of symbol

NROWS Number of rows required for symbol being defined or redefined

NSYMBL Number of active entries in the NDATBL array

5. I/O VARIABLES:

NCOL1

Α.	INPUT	LOCATION
	DBGPRT	/ADEBUG/
	IBITS	F.P.
	IOFILE	/IOFLES/
	IOSCR1	/SYSFIL/
	IOSCR2	/SYSFIL/
	IOSYMB	/SYSFIL/
	IPASS	/ARGCOM/
	ISON	/ADEBUG/
	KBCPLX	/PARTAB/
	KOLAST	/PARTAB/
	KOLBIT	/PARTAB/
	KOLCOL	/PARTAB/
	KOLFST	/PARTAB/

SYMDEF

(GTD, INPUT, MOM, OUTPUT)

E.

External Control of Co

		KOLLOC	/PARTAB/	
		KOLNAM	/PARTAB/	
		KOLROW	/PARTAB/	
		LUPRNT	/ADEBUG/	
		MAXSTR	/SYMSTR/	
		NAME	F.P.	
		NCOLS	F.P.	
		NDATBL	/PARTAB/	
		NDATMX	/PARTAB/	
		NFILES	/IOFLES/	
		NPDATA	/PARTAB/	
		NROWS	F.P.	
		NXTSYM	/SYMSTR/	
	Β.	OUTPUT	LOCATION	
		IERRF	/ADEBUG/	
		NDATBL	/PARTAB/	
		NPDATA	/PARTAB/	
		NXTSYM	/SYMSTR/	
6.	CALL	ING ROUTINES*:		
	BAND	IT (3)	GEODRV (1)	SOLDRV (3)
	DMPD	RV (1,2,3,4)	LODDRV (3)	SUBPAT (1)
	EGFM	AT (3)	LUDDRV (3)	TSKXQT (2,3,4)
	EXCD	RV (2,3)	PUTSYM (1,2,3,4)	ZIJDRV (2,3)
	FLDD	RV (2,3,4)	SETDRV (3)	

*1-INPUT 2-gtd 3-mom 4-output

(GTD, INPUT, MOM, OUTPUT)

7. CALLED ROUTINES:

ASSIGN	GETSYM	STATOT
CLSFIL	IBITCK	WLKBCK
CONVRT	OPNFIL	
ERROR	STATIN	

Page 1 of 2

SYMDEF

(GTD, INPUT, MOM, OUTPUT)

Salar Mary

0000000

SYMDEF

7

(GTD, INPUT, MOM, OUTPUT)

a ta ta

5

Page 2 of 2

ς.

.

NET STATES

1. NAME: SYMLIT (INPUT)

- 2. PURPOSE: Search the symbol and literal tables for the next entry in the scan table and, if found, load the index to the proper table into the next argument list table entry.
- 3. METHOD: If the next scan table entry is an alpha field, the subroutine SYMSCH is called to find the next scan table entry. If the entry is not found, an error condition is set; if it is found, the index to the symbol table is loaded into the argument list table. If the next scan table entry is not an alpha, subroutine LITSCH is called and the index is returned and loaded into the segment list table.
- 4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
INC	Inline function to position NPARGL
INDEX	Index to symbol table
INDEX1	Index to literal table

5. I/O VARIABLES:

A

•	INPUT	LOCATION
	ISOFF	/ADEBUG/
	NARGMX	/PARTAB/
	NCODE	/SCNPAR/
	NPARGL	/PARTAB/
	NPEARG	/INPERR/
	NPRSER	/SCNPAR/
	NTAB	/SCNPAR/
	NTALPH	/ADEBUG/
	NVAL	/SCNPAR/

			SYMLIT	(INPUT)	
	Β.	OUTPUT	LOCATION		
		NARGTB	/PARTAB/		
		NPARGL	/PARTAB/		
		NPRSER	/SCNPAR/		
		NUMWRD	/ADEBUG/		
6.	CALL	ING ROUTINES:			
	FNDA	NRG			
	PARS	SE			
7.	CALL	ED ROUTINES			
	ASSI	GN	STATIN		SYMSCH
	FABL	_02	STATOT		WLKBCK
	LITS	SCH			

1. 18 A. 19

- 2

ŝ

ANALYSIN XXXXXXX SANDAR

STATIST BODDELL SE

1. NAME: SYMMOD (MOM)

- 2. PURPOSE: This subroutine forms a symmetrical combination of an input matrix by using an input symmetry operator.
- 3. METHOD: If Z is a matrix containing N submatrices and S is the matrix representation of the symmetry operator, then the operation

[Z] = [S] [Z]

forms the symmetrical combinations of the submatrices Z.

4. INTERNAL VARIABLES:

1.1.1.1.1.1.1.1

DAADADZE ("DAADADZE") SOODADZE DAADADADZE

たい ちん ちんちょう し

VARIABLE	DEFINITION
D	Scratch array
DS	Scratch accumulation
IC	Number of columns in the input matri
IR	Number of rows in the input matrix
IS	Dimension of the symmetry operator
КА	Index pointer
SYMOP	S matrix
Z	Input matrix

5. I/O VARIABLES:

Α.	INPUT	LOCATION
	D	F.P.
	IC	F.P.
	IR	F.P.
	IS	F.P.
	SYMOP	F.P.
	Z	F.P.

PREVIOUS PAGE

			Symmod	(MOM)
	B.	OUTPUT	LOCATION	
		D	F.P.	
		Z	F.P.	
6.	CALI	LING ROUTINES:		
	SOL	DRV		
	ZIJ	DRV		
7.	CALI	ED ROUTINES:		
	ASSI	IGN	STATOT	
	STAI	TIN	WLKBCK	

SYMMOD

(MOM)

a fa is faire is a sub-

.

ĨS.

1

Car

1. NAME: SYMSCH (INPUT)

- 2. PURPOSE: Search the NDATBL array for the occurrence of the symbol name specified in the argument list.
- 3. METHOD: The symbol table is searched for the occurrence of the name specified in the subroutine argument list. If the name is found, and was not supposed to be previously entered, an error flag is set. If the name is not found, and was supposed to be previously entered, an error flag is set. If the name was not found and was not supposed to be previously entered, it is entered into the symbol table and the index is returned through the subroutine argument call.
- 4. INTERNAL VARIABLES:

VARIABLES	DEFINITION
IEND	Last entry in the symbol table
INDEX	Index to the symbol table
NAME	Symbol name

5. I/O VARIABLES:

Α.	INPUT	LOCA	ATION
	ISOFF	/ADI	EBUG/
	ISON	/ADI	EBUG/
	KOLNAM	/PAI	RTAB/
	MATCH	/SCI	NPAR/
	NAME	F.P.	•
	NDATBL	/PAI	RTAB/
	NDATMX	/PAI	RTAB/
	NOMTCH	/SCI	NPAR/
	NPDATA	/PA	RTAB/
	NPENOM	/IN	PERR/
	NPESEX	/IN	PERR/

		SYMSCH	(INPUT)
	NPESYM	/INDEDD/	
	NTAD	/ 107 LRR/	
	NIAD	/SUNPAR/	
8.	OUTPUT	LOCATION	
	INDEX	F.P.	
	NCODE	/SCNPAR/	
	NDATBL	/PARTAB/	
	NPDATA	/PARTAB/	
	NPRSER	/SCNPAR/	
	NTAB	/SCNPAR/	
	NUMWRD	/ADEBUG/	
CALL	ING ROUTINES:		
FNDA	RG		
PLIS	т		
SYML	IT		
CALL	ED ROUTINES:		
ASSI	GN	STATOT	
FABL	02	WLKBCK	

6.

7.

CONTRACTOR INVESTIG

STATIN

- 1. NAME: SYMUPD (GTD, INPUT, MOM, OUTPUT)
- 2. PURPOSE: Update attributes of entries in the NDATBL array.
- 3. METHOD: The attribute of the symbol to be updated is called through the argument list. The column to be changed in the NDATBL array is checked for validity and, if invalid, a fatal error is generated. If valid, the appropriate column is updated.
- 4. **INTERNAL VARIABLES:**

5.

VARIABLE	DEFINITION
IFILE	Logical unit on which the symbol is stored
KLM	Input argument designating column of NDATBL array to be changed
KOL	Internal variable for KLM
NAMSYM	Symbolic name for symbol to be updated
NEWDAT	Argument containing new data to be placed in NDATBL array
NEWNAM	Internal representation for argument NAMSYM
NS	Saved value of loop indexed while searching NDATBL array
NSYMBL	Number of entries in the NDATBL array
I/O VARIABLES:	
A. INPUT	LOCATION
DBGPRT	/ADEBUG/

- ISON /ADEBUG/
- F.P. KLM

KOLFST

- KOLAST /PARTAB/ KOLBIT /PARTAB/ KOLCOL
 - /PARTAB/
 - /PARTAB/

SYMUPD

(GTD, INPUT, MOM, OUTPUT)

KOLLNK	/PARTAB/
KOLLOC	/PARTAB/
KOLNAM	/PARTAB/
KOLROW	/PARTAB/
LUPRNT	/ADEBUG/
NATSYM	F.P.
NDATBL	/PARTAB/
NDFILE	/IOFLES/
NEWDAT	F.P.
NPDATA	/PARTAB/
OUTPUT	LOCATION

8. IERRF /ADEBUG/ NDATBL /PARTAB/

CALLING ROUTINES*: 6.

BANDIT	(3)	PUTSEG	(1,2,3)
EXCDRV	(2,3)	SOLDRV	(3)
FLDDRV	(2,3,4)	SUBPAT	(1)
GEODRV	(1)	TSKXQT	(1,2,3,4)
LODDRV	(3)	ZIJDRV	(2,3)
LUDDRV	(3)		

7. CALLED ROUTINES:

ASSIGN	STATIN
CONVRT	STATOT
ERROR	WLKBCK

*1-INPUT 2-gtd 3-mom 4-output

Sec. Sec.

2. PURPOSE: Determine if time for checkpoint has passed.

- 3. METHOD: The current time is retrieved and if less than the next checkpoint time, control is returned to the calling subroutine. If it is greater than the next checkpoint time, the checkpoint time is incremented and subroutine WRTCHK is called to write a checkpoint.
- 4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
DT	Delta time
ET	Elapsed time from last time check
ETIME	Total elapsed time from beginning of run
FLTINC	Time increment
TIMCHK	Internal variable for checking time elapsed
TLAST	Time of last time checkpoint
TNOW	Current clock time

5. I/O VARIABLES:

Α.	INPUT	LOCATION
	CHKPNT	/SYSFIL/
	COMPLT	/SYSFIL/
	INCCHK	/SYSFIL/
	ISON	/ADEBUG/
	LUPRNT	/ADEBUG/
	TIMTGO	/SYSFIL/
	ZERO	/ADEBUG/
Β.	OUTPUT	LOCATION
	COMPLT	/SYSFIL/
	IERRF	/ADEBUG/

SYSCHK (GTD, INPUT, MOM, OUTPUT)

6. CALLING ROUTINES*:

DECOMP (3)

FLDDRV (2)

TSKXQT (1,2,3,4)

ZIJDRV (2,3)

7. CALLED ROUTINES:

ASSIGN

ERROR

STATIN

STATOT

TICHEK

WLKBCK

WRTCHK

*1-INPUT 2-gtd 3-mom 4-output SYSCHK (GTD, INPUT, MOM, OUTPUT)

7,

Ċ,

Τ.

state in the

1177

1.	NAME: SYSRTN (GTD,	INPUT, MOM, OUTPUT)	
2.	PURPOSE: A system-depe information depending or	endent subroutine to return various auxiliary on local subroutine library capability.	
3.	METHOD: The quantity d and the quantity to be r	uantity desired is indicated by the input argument I, y to be returned is stored in argument variable J.	
4.	INTERNAL VARIABLES:		
	VARIABLE	DEFINITION	
	DJ = IJ	Time of day	
	Ι	Input argument indicating information desired	
	IDATE	Date of execution	
	ITIME	Intermediate value of time of day in minutes	
	J	Output argument containing information desired.	
	JHOURS	Intermediate value of time of day (hours)	
	JMINIT	Intermediate value of time of day (minutes)	
	TIME	Time of day	
	NOTE: Explicit form of subroutines avai	this subroutine depends on local library lable.	
5.	I/O VARIABLES:		
	A. INPUT	LOCATION	
	I	F.P.	
	B. OUTPUT	LOCATION	

6. CALLING ROUTINE:

J

GEMACS

٠.

1179

F.P.
- SYSRTN (GTD, INPUT, MOM, OUTPUT)
- 7. CALLED ROUTINES:

ASSIGN

STATIN

STATOT

WLKBCK

CALCENCE IN

ないたいという。

- 1. NAME: TANG (GTD)
- 2. PURPOSE: To compute vectors from a source that are tangent to the cylinder in the x-y plane.
- 3. METHOD: The unit tangent vectors are determined by solving a set of equations found by setting the incident vector from the source equal to the general unit tangent vector to the elliptic surface. Details are given in pages 90-93 in reference A. General tangents and tangent points are shown in figure 1.

TANG (GTD)

4. INTERNAL VARIABLES:

ſ

VARIABLE	DEFINITION		
A	Radius of cylinder along x axis		
AA	Distance from source to tangent point		
AL	Computational variable		
В	Radius of cylinder along y axis		
BB	Distance from origin to tangent point		
BEI	Computational variable		
ВТ	X and Y components of tangent unit vectors in reference coordinate system		
CV	Cosine of tangent point elliptical angle		
CVE	Cosine of VE		
DPR	Degrees per radian (=180./π)		
DT	Dot product of unit vectors of the two source rays tangent to the cylinder (2-D)		
DV1	Angle V1 in degrees		
DV2	Angle V2 in degrees		
E1	Error detection variable		
E2	Error detection variable		
RHOE	Distance from z axis to point where ray from origin to source intersects the cylinder		
RHOS	Distance from source to z axis		
SV	Sine of tangent point elliptical angle		
SVE	Sine of VE		
SX	X component of ray from tangent point to source		

TANG (GTD)

	SY		Y component of ray from tangent point to source
	T1X		X component of tangent ray unit vector (tangent point 1)
	T1Y		Y component of tangent ray unit vector (tangent point 1)
	T2X		X component of tangent ray unit vector (tangent point 2)
	T2Y		Y component of tangent ray unit vector (tangent point 2)
	V1		Elliptical angle defining tangent point 1
	٧2		Elliptical angle defining tangent point 2
	VE		Elliptical angle of ray from origin to source
VT			Elliptical angle defining tangent point location in RCS x-y plane
XS			Source location
	XT		X component of tangent point location
	XY		Computational variable
	ΥT		Y component of tangent point location
5.	I/0	VARIABLES:	
	Α.	INPUT	LOCATION
		Α	/GEOMEL/
		8	/GEOMEL/
		DPR	/PIS/
		LUPRNT	/ADEBUG/
		XS	F.P.

Β.	OUTPUT	LOCATION
	вт	F.P.
	DT	F.P.
	VT	F.P.

6. CALLING ROUTINES:

CYLINT

GEOMC

GEOMPC

RPLSCL

SCLRPL

SCTCYL

7. CALLED ROUTINE:

BTAN2

- 8. REFERENCE:
 - A. R. J. Marhefka, "Analysis of Aircraft Wing-Mounted Antenna Patterns," Report 2902-25, June 1976, The Ohio State University ElectroScience Laboratory, Department of Electrical Engineering; prepared under Grant No. NGL 36-008-138 for National Aeronautics and Space Administration.

(GTD)

TANG

1.	NAME: TICHEK (G	TD, INPUT, MOM, OUTPUT)
2.	PURPOSE: To obtain since the last call t	the current clock time and the time elapsed o the subroutine.
3.	METHOD: The time is called to retrieve th computed and the curr	initialized to zero and a library subroutine is ne current processor time. The elapsed time is ent time is saved for the next call.
4.	INTERNAL VARIABLES:	
	VARIABLE	DEFINITION
	DT	Output argument for elapsed time since last call
	Т	Output argument for current processor time
	TLAST	Saved value of current processor time to compute DT on next call
	TS	Current time in hours
5.	I/O VARIABLES:	
	A. INPUT	LOCATION
	None	
	B. OUTPUT	LOCATION
	DT	F.P.
	т	F.P.
6.	CALLING ROUTINES:*	
	DECOMP (3)	WRTCHK (1,2,3,4)
	SYSCHK (1,2,3,4)	ZGTDRV (2)
	TSKXQT (1,2,3,4)	ZIJSET (3)
7.	CALLED ROUTINES:	
	None.	
	*1 – INPUT 2 – GTD 3 – MOM	PREVIOUS PAGE IS BLANK

and the second second backses second

7.7

1190

1

1. NAME: TNEFLD (MOM)

- 2. PURPOSE: To compute the electric field at a point in space due to the current on a wire segment. The field is computed for three current distributions: sine, cosine, and constant functions of unit amplitude.
- 3. METHOD: The wire segment is considered to be located at the origin of a local cylindrical coordinate system with the point at which the field is computed being (ρ', ϕ', z') . The geometry for a filament of current of length Δ is shown in figure 1.

Figure 1. Geometry for Fields Due to a Filament of Current

For a sine or cosine current distribution the field can be written in closed form (see reference A). The ρ and z field components for a current

$$I_{o}\left\{\begin{array}{l}\sin kz\\\cos kz\end{array}\right\} \text{ are:}$$

$$E_{z}\left(\rho', z'\right) = I_{o}^{j}\frac{\eta}{2}\left[\frac{e^{-jkr_{2}}}{kr_{2}}\left\{\begin{array}{l}\cos k\Delta/2\\-\sin k\Delta/2\end{array}\right\} - \frac{e^{-jkr_{1}}}{kr_{1}}\left\{\begin{array}{l}\cos k\Delta/2\\\sin k\Delta/2\end{array}\right\}\right]$$

TNEFLD (MOM) $-\left(j+\frac{1}{kr_{2}}\right)\frac{e^{-jkr_{2}}}{(kr_{2})^{2}}(kz'-k\Delta/2)\left\{\begin{array}{l}\sin k\Delta/2\\\cos k\Delta/2\end{array}\right\}$ $+\left(j+\frac{1}{kr_{1}}\right)\frac{e^{-jkr_{1}}}{(kr_{1})^{2}}\left(kz'+k\Delta/2\right)\left\{\begin{array}{c}-\sin k\Delta/2\\\cos k\Delta/2\end{array}\right\}$ $E_{\rho}(\rho' z') = I_{\rho}\left(-j \frac{\eta}{2}\right) \frac{1}{k\rho'} \left[(kz' - k\Delta/2) \frac{e^{-jkr_2}}{kr_2} \right] \frac{\cos k\Delta/2}{-\sin k\Delta/2}$ - $(kz' + k\Delta/2) = \frac{e^{-jkr_1}}{kr_1} \left\{ \cos k\Delta/2 \\ \sin k\Delta/2 \\ \right\} + \frac{e^{-jkr_2}}{kr_2} \left\{ \sin k\Delta/2 \\ \cos k\Delta/2 \\ \right\}$ $- (kz' - k\Delta/2)^2 \left(j + \frac{1}{kr_2}\right) \frac{e^{-jkr_2}}{(kr_2)^2} \begin{cases} \sin k\Delta/2 \\ \cos k\Delta/2 \end{cases}$ $-\frac{e^{-jkr_1}}{kr_1} \begin{cases} -\sin k\Delta/2 \\ \cos k\Delta/2 \end{cases} + (kz' + k\Delta/2)^2 \left(j + \frac{1}{kr_1}\right)$ $\frac{e^{-jkr_1}}{(kr_1)^2} \cdot \begin{cases} -\sin k\Delta/2 \\ \cos k\Delta/2 \end{cases}$

The expression for the field of a constant current distribution involves an integral of exp (-jkr)/r which must be evaluated numerically. The field components for a current I_0 are:

$$\mathbf{E}_{\rho}(\rho', \mathbf{z}') = \mathbf{I}_{o}\left(-j \frac{\eta}{2}\right)(k\rho') \left[\left(j + \frac{1}{kr_{2}}\right) \frac{e^{-jkr_{2}}}{(kr_{2})^{2}}\right]$$

$$-\left(j+\frac{1}{kr_{1}}\right)\frac{e^{-jkr_{1}}}{\left(kr_{1}\right)^{2}}\right]$$

$$\left(\rho', z'\right) = I_{o}\left(-j\frac{\eta}{2}\right)\left[\int_{-\Delta/2}^{\Delta/2}\frac{e^{-jkr}}{r}dz + \left(j+\frac{1}{kr_{2}}\right)\right]$$

Êz

$$(kz' - k\Delta/2) \cdot \frac{e^{-jkr_2}}{(kr_2)^2} - (j + \frac{1}{kr_1})(kz' + k\Delta/2) \frac{e^{-jkr_1}}{(kr_1)^2}$$

These expressions are separated into real and imaginary parts for evaluation in the program. The coordinate ρ' for a wire segment is taken as the distance from the observation point to a point on the side of the segment as shown in figure 2.

 $\rho' = \left[\rho^2 + b^2\right]^{1/2}$

Figure 2. Geometry for the Determination of $\rho^{\,\prime}$

Also, the component E_{ρ} is multiplied by ρ/ρ^{\dagger} to account for the change in vector direction. The current, I_{0} , is set to one for evaluation in TNEFLD.

TNEFLD	
--------	--

(MOM)

4. INTERNAL VARIABLES:

(ŀ

VARIABLE	DEFINITION
в	Radius of wire segment
ВК	kb
CINT	$\int_{-\Delta/2}^{\Delta/2} \frac{\Delta}{2} (kr)/r dz$
COINC	p/p'
CR1	$(n/2) \cos (kr_1)/(kr_1), (n = \sqrt{\mu_0/\epsilon_0})$
CR1R	CR1/(kr1)
CR1RR	CR1/(kr ₁) ²
CR2	(n/2) cos (kr2)/(kr2)
CR2R	CR2/(kr ₂)
CR2RR	$CR2/(kr_2)^2$
CST	cos (k∆/2)
ERIC	Imaginary part of E _p for cosine current
ERIK	Imaginary part of E_{ρ} for constant current
ERIS	Imaginary part of E _p for sine current
ERRC	Real part of E_p for cosine current
ERRK	Real part of Ep for constant current
ERRS	Real part of Ep for sine current
ETA	$\eta = \sqrt{\mu_0/\epsilon_0}$
EZIÇ	Imaginary part of E _Z for cosine current
EZIK	Imaginary part of Ez for constant current
EZIS	Imaginary part of E _Z for sine current
EZRC	Real part of E _z for cosine current

of a color of the second to be a second of the second second second second second second second second second s

TNEFLD (MOM)

Pro Section Se

Secondary I

5.5.5. Car

EZRK	Real part of E _Z for constant current
EZRS	Real part of E _z for sine current
IJX	Flag for numerical integration
IPATCH	A flag indicating a patch observation point
RH	ρ
RHK	kρ
RKB	kρ'
RKB2	(kp') ²
R1K	kr1
R1KS	(kr1) ²
R2K	kr2
R2KS	(kr ₂) ²
S	Length of segment
SINT	$\int_{-\Delta/2}^{\Delta/2} \sin (kr)/r dz$
SKT	k∆/2
SR1	(n/2) sin (kr1)/(kr1)
SR1R	SR1/(kr1)
SR1RR	SR1/(kr1) ²
SR2	(n/2) sin (kr ₂)/(kr ₂)
SR2R	SR2/(kr ₂)
SR2RR	SR2/(kr ₂) ²
SST	sin (k∆/2)

		TNEFLD (MOM)
	T1 T1S T2 T2S T3 T3S T4 T4S	Temporary storage of terms in electric field expressions
	WAVLGH	λ
	WAVNUM	$k = 2\pi/\lambda$
	ZD1	kz' + k∆/2
	ZD2	kz' - k∆/2
	ZP	Ζ'
	ZPK	kz'
	ZZ	$\eta/2$, $(\eta = \sqrt{\mu_0/\epsilon_0})$
5.	I/O VARIABLES:	
	A. INPUT	LOCATION
	В	/AMPZIJ/
	ΕΤΑ	/AMPZIJ/
	IJX	F.P.
	ISOFF	/ADEBUG/
	RH	F.P.
	S	/AMPZIJ/
	WAVLGH	/AMPZIJ/
	WAVNUM	/AMPZIJ/
	7 P	F.P.

.

TNEFLD (MOM)

Β.	OUTPUT	LOCATION
	ERIC,EZIC	F.P.
	ERIK,EZIK	F.P.
	ERIS,EZIS	F.P.
	ERRC,EZRC	F.P.
	ERRK,EZRK	F.P.
	ERRS,EZRS	F.P.
	IJ	/TMI/
	ІРАТСН	/TMI/
	RHK	/TMI/
	RKB2	/TMI/
	ZPK	/TMI/

6. CALLING ROUTINES:

NERFLD

1211222

55 S. S. S. J.

NTRPLT

7. CALLED ROUTINES:

ASSIGN

ROMBNT

STATIN

STATOT

WLKBCK

- 8. REFERENCE:
 - A. Stratton, J. A. <u>Electromagnetic Theory</u>, McGraw Hill Book Co., New York, 1941, p. 454.

.

1. NAME: TNHFLD (MOM)

- 2. PURPOSE: To compute the near magnetic field at a point in space due to the current on a wire segment. The field is computed for three current distributions: sine, cosine, and constant functions, each of unit amplitude.
- 3. METHOD: The wire segment is considered to be located at the origin of a local cylindrical coordinate system with the point at which the field is computed being (p', ϕ', z') . The geometry for a filament of current of length Δ is shown in figure 1.

Figure 1. Geometry for Fields Due to a Filament of Current

For a sine or cosine current distribution the field can be written in closed form. The ρ field component for a current

$$I_{o}$$
 $\begin{cases} \sin kz \\ \cos kz \end{cases}$ is:

TNHFLD

(MOM)

$$H_{\phi}(\rho', z') = \frac{-jI_{o}}{4\pi\rho'} \left\{ \exp(-jkr_{2}) \begin{bmatrix} \cos(k\Delta/2) \\ -\sin(k\Delta/2) \end{bmatrix} - \exp(-jkr_{1}) \begin{bmatrix} \cos(k\Delta/2) \\ \sin(k\Delta/2) \end{bmatrix} \right.$$
$$\left. - j(z' - \Delta/2) \frac{\exp(-jkr_{2})}{r_{2}} \begin{bmatrix} \sin(k\Delta/2) \\ \cos(k\Delta/2) \end{bmatrix} \right.$$
$$\left. + j(z' + \Delta/2) \frac{\exp(-jkr_{1})}{r_{1}} \begin{bmatrix} -\sin(k\Delta/2) \\ \cos(k\Delta/2) \end{bmatrix} \right\}$$

where $I_0 = 1$ is assumed in this routine.

For small values of ρ with $|z'| > \Delta/2$, this equation may produce large numerical errors due to cancellation of large terms. Hence, for z' > 0 and $\rho'/(z' \pm \Delta/2) < 10^{-3}$, a more stable approximation for small $\rho'/(z' \pm \Delta/2)$ is used:

$$H_{\phi}(\rho', z') = \frac{I_{o}\rho'}{8\pi} \exp(-jkz') \left\{ \left[\frac{k}{(z'+\Delta/2)} - \frac{k}{(z'-\Delta/2)} \right] \left[\begin{array}{c} 1\\ -j \end{array} \right] + \left[\frac{\exp(jk\Delta/2)}{(z'-\Delta/2)^{2}} \left(\frac{\sin(k\Delta/2)}{\cos(k\Delta/2)} \right) - \frac{\exp(-jk\Delta/2)}{(z'+\Delta/2)^{2}} \left(\frac{-\sin(k\Delta/2)}{\cos(k\Delta/2)} \right) \right] \right\}$$

For z' < 0, the above equation is evaluated for $H_{\varphi}(\rho', -z')$. The field of a sin kz current is multiplied by -1 in this case, since it is an odd function of z.

The field due to a constant current is obtained by numerical integration, which is performed by subroutine ROMBNT. If ρ' is zero, all field quantities are set to zero, since H_{Φ} is undefined.

1200

4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
CDHK	cos(k∆/2)
CONST	1/(4πρ')
CONST1	ρ'/8π
CONST2	ρ'k ² /4π

TNHFLD (MOM)

. . .

CR1K	cos(kr1)
CR2K	cos(kr2)
СZРК	cos(kz')
DH	Δ/2
DHK	kΔ/2
HPIC,HPRC	The imaginary and real parts of the φ component of the magnetic field due to a cosine current
HPIK,HPRK	The imaginary and real parts of the φ component of the magnetic field due to a constant current
HPIS, HPRS	The imaginary and real parts of the φ component of the magnetic field due to a sine current
HSS	The sign of z
ІРАТСН	A flag indicating that the magnetic field at a patch is to be computed
RH	ρ'
RHK	p'k
RHZ	ρ'/(z' - Δ/2)
R1	r ₁
R1K	kr1
R2	r2
R2K	kr2
S	Δ , the segment length
SDHK	sin (k Δ/2)
SR1K	sin (krl)
SR2K	sin (kr2)

			TNHFLD	(MOM)
	SZPK	(sin (kz')	
	T1	1		
	T1K			
т2				
	T2	\rangle	Temporary storage variables used in Ccomputing the magnetic field	
	T 2S			
	T3C			
	T3S	/		
	WAVN	UM	2π/λ	
	ZD1		z' + ∆/2	
	ZD2		z' - ∆/2	
	ZP		z'	
	ZPK		kz'	
	ZPSV		Save valu	e of z'
5.	I/0	VARIABLES		
	Α.	INPUT	LOCATION	
		ISON	/ADEBUG/	
		RH	F.P.	
		S	/AMPZIJ/	
		TWOPI	/AMPZIJ/	
		WAVNUM	/AMPZIJ/	
		ZP	F.P.	
	Β.	OUTPUT	LOCATION	
		HPIC,HPRC	F.P.	
		HPIK,HPRK	F.P.	

TNHFLD (MOM)

HPIS,HPRS	F.P.	
ІРАТСН	/TMI/	
RHK	/TMI/	
ZPK	/TMI/	

CALLING ROUTINE:

NTRPLT

R

CALLED ROUTINES:

ASSIGN

ROMBNT

STATIN

STATOT

WLKBCK

Ο.

MACHINE MARTINE CONTRACT DIMINIST

1000000000

Sec. 1

JAIN AND

- 1. NAME: TPNFLD (GTD)
- 2. PURPOSE: To calculate the theta and phi unit vectors for the near-field observation direction.
- 3. METHOD: Vector algebra is used to compute the two unit vectors. Figure 1 shows the geometry required.
- 4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
DP	Phi unit vector
DT	Theta unit vector
рн	Phi angle
тн	Theta angle

5. I/O VARIABLES:

Α.	INPUT	LOCATION
	РН	F.P.
	тн	F.P.
Β.	OUTPUT	LOCATION
	DP	F.P.
	ΩT	F.P.

5. CALLING ROUTINES:

DIFPLT	ENDIF	REFCYL
DPLRCL	RCLDPL	RPLDPL
DPLRPL	RCLRPL	RPLRCL
		SCLRPL

7. CALLED ROUTINE:

NONE

1205

A. LANCALLING

1.	NAM	ME: TRCEBK	(GTD, INPUT, MOM, OUTPUT)
2.	PUF for	RPOSE: To print r locating a fat	t out the table of subroutines generated by WLKBCI al error.
3.	MET err arr	THOD: Prints ou for which was o ray NAMRTN and i	It the table of subroutines called before the fata generated by WLKBCK. This table is contained in s indexed by INDXWB.
4.	INT	FERNAL VARIABLES	:
	VAR	RIABLE	DEFINITION
	11		Internal variable set to Hollerith name of subroutine for error output message
	12		Internal variable set to Hollerith name of subroutine for error output message
	NAM	SUB	Internal variable set to Hollerith name of subroutine
5.	I/0	VARIABLES:	
	Α.	INPUT	LOCATION
		INDXWB	/ADEBUG/
		LUPRNT	/ADEBUG/
		NAMRTN	/ADEBUG/
	8.	OUTPUT	LOCATION
		INDXWB	/ADEBUG/
6.	CALL	LING ROUTINES:	
	ERRC	DR	
	WLKB	ЗСК	
7.	CALL	ED ROUTINES:	
	NONE		

H

Ľ,

(l:

1. NAME: TRNLAT (INPUT)

- 2. PURPOSE: Translates a point to or from the origin of a coordinate system.
- 3. METHOD: The point is translated along its cartesian coordinate axes, and the operation code specifies whether it is a translation to or from the origin.
- 4. INTERNAL VARIABLES:

5.

VARIABLE	DEFINITION
DX	The amount of the translation along x axis
DY	The amount of the translation along y axis
DZ	The amount of the translation along z axis
NOP	Translation operation code. If greater than zero, a translation to origin. If less thar zero, a translation from the origin
X	Input/output of x coordinate
Y	Input/output of y coordinate
Z	Input/output of z coordinate
I/O VARIABLES:	
A. INPUT	LOCATION

•	INPUT	LOCATIO
	DX	F.P.
	DY	F.P.
	DZ	F.P.
	NOP	F.P.
	x	F.P.
	Y	F.P.
	Z	F.P.

TRNLAT (INPUT)

Β.	OUTPUT	LOCATION
X		F.P.
Y		F.P.
7		FD

6. CALLING ROUTINES:

COORDS

WYRDRV

7. CALLED ROUTINES:

ASSIGN

STATIN

STATOT

WLKBCK

1. NAME: TSKXQT (GTD)

- 2. PURPOSE: To read the task list and call the appropriate processors to execute the tasks.
- 3. METHOD: The task list is scanned twice: during the first scan the subroutines necessary to execute the tasks are called in order to initialize the required parameters. During the second pass the subroutines are called to perform the tasks as specified by the user.

Task execution normally begins with the first task in the task list and proceeds sequentially through the list unless a LABEL task is encountered. The LABEL task will redirect execution to its associated LOOP task until the required number of LOOP/LABEL loops has been fulfilled. Task execution terminates when an END command is encountered, the end of the task list is reached, or an error occurs in executing a task.

If the task list has been generated by a RSTART command, execution may not necessarily begin at the top of the task list. Normally, restart is begun from the task which wrote the checkpoint read in to generate the task list. In modules subsequent to the one which generated the checkpoint, execution can begin at the top of the task list (if the preceeding run did not complete its execution) or at the restart task (if execution was successfully completed).

The following tasks are active in the GTD module:

FORTRAN	TASK NAME	GTD MODULE FUNCTION
120	BACSUB	Link data set of solution vector to inter- action matrix data set and identify it as a solution data set
130	BAND	Link banded matrix data set to full matrix data set
150	СНКРМТ	Retrieve timed checkpoint parameters or write a command checkpoint
180	DEBUG	Turn off or on the debug flags
190	DECOMP	Link data sets of decomposed matrix to its parent data set
200	END	Terminate module execution

ANA KENTANG MANANANAN MANANANAN

C. C. C. C. C. C.

TSKXOT (GTD)

250

BMI

Link data set of solution vector to inter-

action matrix data set and identify it as a solution data set 260 LABEL Decrement loop counter and branch to LOOP if positive 270 LOOP Initialize loop counter 390 RESTRT Process RSTART command error 410 SOLVE Link solution to excitation and excitation to interaction matrices 440 WIPOUT Process WIPOUT command error 480 GMDATA Advance edition of geometry data set and reinitialize GTD geometry data 490 ZGEN Call ZIJDRV to generate GTD interactions 530 **EFIELD** Call FLDDRV to generate incident field matrix and scattered field Green's function matrix 540 DMP Call DMPDRV to process direct manipulations 550 ESRC,VSRC Call EXCDRV to generate GTD excitation 570 SETINT Call SET to select GTD, MOM, and incident field interactions **INTERNAL VARIABLES:** VARIABLE DEFINITION **CPFRWD** Checkpoint file rewind flag DBGPRT Debug print flag DT Time interval between calls to TICHEK IBIT Attribute word IBITS Attribute word for geometry data set INCCHK Checkpoint time increment

TSKXQT (GTD)

25.5

ŝ

P

Sec. Co

INDXA,INDXB, INDXC INDXG, INDXX	Pointer to symbol table entry for a data set
IOCKPT	Logical unit number of checkpoint file
ITASK	Pointer to task in task list being executed
JTASK	Internal variable equal to ITASK
KOUNT	The number of times the loop terminating on the reference label has been executed
LINDX	Index to the loop table entry currently being executed
LINKA	Pointer to data set linked to data set pointed to by INDXA
LOCARG	Pointer to task argument in NARGTB
LOCNXT	Pointer to NARGTB for the next task to be executed
LOCTP1	Pointer to first argument for a given task
LOCTSK	Location of task parameter in NARGTB
LSTARG	Location in argument list
LSTTPF	Pointer to last task executed for a restart job
LTRACE	Trace flag for debug
N	Loop index
NAMDAT	User-assigned name of geometry data set
NAMEB, NAMEC, NAMEX	User-assigned names of INTARG data sets
NAMGEO	Pointer to default geometry data set name in NCODES
NDX	Index to NCODES array for the task name mnemonic
NOP	No operation flag
NOSTAT Logical flag set if statistics have not been requested NPRREC Number of words per geometry data set used NT Hollerith name of task Number of INTARG arguments for a task NUMARG NUMTSK Task identification number NXTTSK Pointer to the next task to be executed TNOW Current processor time Logical flag set if trace statistics are TRACST desired Logical flag set if statistics have been **YSSTAT** requested

5. I/O VARIABLES:

2 7 **- 1** - 1 - 1 - 1

A.	INPUT	LOCATION
	CHKPNT	/SYSFIL/
	CHKWRT	/SYSFIL/
	COMPLT	/SYSFIL/
	DBGPRT	/ADEBUG/
	ISOFF	/ADEBUG/
	ISON	/ADEBUG/
	KBGEOM	/PARTAB/
	KBREAL	/PARTAB/
	KBSOLN	/PARTAB/
	KOLBIT	/PARTAB/
	KOLCNT	/PARTAB/
	KOLCOL	/PARTAB/

KOLLNK	/PARTAB/
KOLNAM	/PARTAB/
KOLTIM	/PARTAB/
KOLTSK	/PARTAB/
KWOFF	/PARTAB/
KWON	/PARTAB/
KWSTAT	/PARTAB/
KWTRAC	/PARTAB/
LOOPMX	/PARTAB/
LSTTPF	/SYSFIL/
LUPRNT	/ADEBUG/
MAXBLK	/SEGMNT/
MAXSEG	/SEGMNT/
MXARGS	/ARGCOM/
NAMTSK	/PARTAB/
NARGTB	/PARTAB/
NCODES	/PARTAB/
NDATBL	/PARTAB/
NLOOPS	/PARTAB/
NOGOFG	/ADEBUG/
NOPCOD	/ADEBUG/
NOSTAT	/ADEBUG/
NPRSEG	/PARTAB/
NPTASK	/SEGMNT/
NTINT	/ADEBUG/

いていてい

Ş

•

NTSKTB	/PARTAB/
NXTTSK	/ADEBUG/
RSTART	/SYSFIL/
RSTRTA	/SYSFIL/
OUTPUT	LOCATION
CHKNPT	/SYSET1 /
	/3/3/12/
CPFRWD	/SYSFIL/
DBGPRT	/ADEBUG/
IERRF	/ADEBUG/
INCCHK	/SYSFIL/
INTARG	/ARGCOM/
IOCKPT	/SYSFIL/
IPASS	/ADEBUG/
LSTTPF	/SYSFIL/
MAXBLK	/SEGMNT/
NOGOFG	/ADEBUG/
NOSTAT	/ADEBUG/
NUMARG	/ARGCOM/
NXTTSK	/ADEBUG/
RSTART	/SYSFIL/

6. CALLING ROUTINE: GEMACS

ACCA REPORTED

S. S. M. M. M. Martin

San Star Barris

S. S. C. S. C. S. C. S.

ų 14

. . .

and the second secon

B.

7. CALLED ROUTINES:

Allers automic Alleria Park

X

ASSIGN	GETGEO	SYSCHK
CONVRT	GTDDRV	TICHEK
DMPDRV	SET	WLKBCK
ERROR	STATIN	WRTCHK
EXCDRV	STATOT	ZIJDRV
FLOORV	SYMDEF	
GETARG	SYMUPD	

Ľ,

5.061

1. NAME: TSKXQT (INPUT)

5 × 30 × 20 ×

11.22.2.2

- 2. PURPOSE: To read the task list and call the appropriate processors to execute the tasks.
- 3. METHOD: The task list is scanned twice: during the first scan the subroutines necessary to execute the tasks are called in order to initialize the required parameters. During the second pass the subroutines are called to perform the tasks as specified by the user.

Task execution normally begins with the first task in the task list and proceeds sequentially through the list unless a LABEL task is encountered. The LABEL task will redirect execution to its associated LOOP task until the required number of LOOP/LABEL loops has been fulfilled. Task execution terminates when an END command is encountered, the end of the task list is reached, or an error occurs in executing a task.

If the task list has been generated by a RSTART command, execution may not necessarily begin at the top of the task list. Normally, restart is begun from the task which wrote the checkpoint read in to generate the task list. In modules subsequent to the one which generated the checkpoint, execution can begin at the top of the task list (if the preceding run did not complete its execution) or at the restart task (if execution was successfully completed).

The following tasks are active in the INPUT module:

FORTRAN	TASK NAME	INPUT MODULE FUNCTION
120	BACSUB	Link data set of solution vector to data set of interaction matrix
130	BAND	Link banded matrix data set to full matrix data set
150	CHKPNT	Recover the checkpoint file rewind flag
180	DEBUG	Turn off or on the debug flags
190	DECOMP	Link data sets of decomposed matrix to its parent data set
200	END	Terminate module execution
230	INPUT	Call GEODRV to process input data

250	BMI	Link data set of solution vector to data set of interaction matrix
260	LABEL	Decrement loop counter and branch to LOOP if positive
270	LOOP	Initialize loop counter
390	RESTRT	Process RSTART command error
410	SOLVE	Link data set of solution vector to data set of interaction matrix
440	WIPOUT	Process WIPOUT command error
480	GIMDATA	Call GEODRV to process geometry input
49 0	ZGEN	Link data set of interaction matrix to geometry data set
530	EFIELD	Call EFDGEO to assure that EFIELD argument is linked to geometry data set
540	DMP	Call DMPDRV to process direct manipulations
550	ESRC,VSRC	Link data set of excitation vector to geom- etry data set

4. INTERNAL VARIABLES:

1

VARIABLE	DEFINITION
CPFRWD	Checkpoint file rewind flag
DBGPRT	Debug print flag
DT	Time interval between calls to TICHEK
INDEX	Pointer to geometry data set
INDXA, INDXB, INDXX	Pointer to symbol table entry for a data set
ІОСКРТ	Logical unit number of checkpoint file
ISAV2	Temporary storage for argument 2 of INTARG array

ISAV3	Temporary storage for argument 3 of INTARG array
ITASK	Pointer to task in task list being executed
KOUNT	The number of times the loop terminating on the reference label has been executed
LINDX	Index to the loop table entry currently being executed
LINKA	Pointer to data set linked to data set pointed to by INDXA
LOCARG	Pointer to task argument in NARGTB
LOCNXT	Pointer to NARGTB for the next task to be executed
LOCTP1	Pointer to first argument for a given task
LOCTSK	Location of task parameter in NARGTB
LSTARG	Location in argument list
LSTTPF	Pointer to last task executed for a restart job
LTRACE	Trace flag for debug
LTRACE N	Trace flag for debug Loop index
LTRACE N NAMEA,NAMEB,NAMEX	Trace flag for debug Loop index User-assigned names of INTARG data sets
LTRACE N NAMEA,NAMEB,NAMEX NAMGEO	Trace flag for debug Loop index User-assigned names of INTARG data sets Pointer to default geometry data set name in NCODES
LTRACE N NAMEA,NAMEB,NAMEX NAMGEO NDX	Trace flag for debug Loop index User-assigned names of INTARG data sets Pointer to default geometry data set name in NCODES Index to NCODES array for the task name mnemonic
LTRACE N NAMEA,NAMEB,NAMEX NAMGEO NDX NOP	Trace flag for debug Loop index User-assigned names of INTARG data sets Pointer to default geometry data set name in NCODES Index to NCODES array for the task name mnemonic No operation flag
LTRACE N NAMEA,NAMEB,NAMEX NAMGEO NDX NOP NOSTAT	Trace flag for debug Loop index User-assigned names of INTARG data sets Pointer to default geometry data set name in NCODES Index to NCODES array for the task name mnemonic No operation flag Logical flag set if statistics have not been requested
LTRACE N NAMEA,NAMEB,NAMEX NAMGEO NDX NOP NOSTAT NPRREC	Trace flag for debug Loop index User-assigned names of INTARG data sets Pointer to default geometry data set name in NCODES Index to NCODES array for the task name mnemonic No operation flag Logical flag set if statistics have not been requested Number of words per geometry data set record

NUMARG	Number of INTARG arguments for a task
NUMTSK	Task identification number
NXTTSK	Pointer to the next task to be executed
TNOW	Current processor time
TRACST	Logical flag set if trace statistics are desired
YSSTAT	Logical flag set if statistics have been requested

5. I/O VARIABLES:

A.

ALC: NO.

No. And And

S STATES

and a start of the

د چر مک^ر با ولار د

INPUT	LOCATION
CHKWRT	/SYSFIL/
COMPLT	/SYSFIL/
DBGPRT	/ADEBUG/
ISOFF	/ADEBUG/
ISON	/ADEBUG/
KOLCNT	/PARTAB/
KOLLNK	/PARTAB/
KOLNAM	/PARTAB/
KOLTIM	/PARTAB/
KOLTSK	/PARTAB/
KWGEOM	/PARTAB/
KWNAME	/PARTAB/
KWOFF	/PARTAB/
KWON	/PARTAB/
KWSTAT	/PARTAB/

KWTRAC	/PARTAB/
LOOPMX	/PARTAB/
LSTTPF	/SYSFIL/
LUPRNT	/ADEBUG/
MXARGS	/ARGCOM/
NAMTSK	/PARTAB/
NARGTB	/PARTAB/
NCODES	/PARTAB/
NDATBL	/PARTAB/
NLOOPS	/PARTAB/
NOGOFG	/ADEBUG/
NOPCOD	/ADEBUG/
NOSTAT	/ADEBUG/
NPTASK	/PARTAB/
NTSKTB	/PARTAB/
NXTTSK	/ADEBUG/
RSTART	/SYSFIL/
RSTRTA	/SYSFIL/
OUTPUT	LOCATION
CHKPNT	/SYSFIL/
CHKWRT	/SYSFIL/
CPFRWD	/SYSFIL/
DBGPRT	/ADEBUG/
IERRF	/ADEBUG/
INTARG	/ARGCOM/
IOCKPT	/SYSFIL/

12111111

A NUMBER OF STREET

1935-36A

2000

B.

IPASS	/ADEBUG/
LSTTPF	/SYSFIL/
LTRACE	/ADEBUG/
NOSTAT	/ADEBUG/
NUMARG	/ARGCOM/
RSTÁRT	/SYSFIL/
TRACST	/ADEBUG/

6. CALLING ROUTINE: GEMACS

222

C.C.S.S.

Starts "Haute

A Star Star

7. CALLED ROUTINES:

ASSIGN	STATIN
CONVRT	STATOT
DMPDRV	SYMUPD
EFDGEO	SYSCHK
ERROR	TICHEK
GEODRV	WLKBCK
	77X01M

1. NAME: TSKXQT (MOM)

100000 (1000) (1000)

- 2. PURPOSE: To read the task list and call the appropriate processor to execute the tasks.
- 3. METHOD: The task list is scanned twice: during the first scan the subroutines necessary to execute the tasks are called in order to initialize the required parameters. During the second pass the subroutines are called to perform the tasks as specified by the user.

Task execution normally begins with the first task in the task list and proceeds sequentially through the list unless a LABEL task is encountered. The LABEL task will redirect execution to its associated LOOP task until the required number of LOOP/LABEL loops has been fulfilled. Task execution terminates when an END command is encountered, the end of the task list is reached, or an error occurs in executing a task.

If the task list has been generated by a RSTART command, execution may not necessarily begin at the top of the task list. Normally, restart is begun from the task which wrote the checkpoint read in to generate the task list. In modules subsequent to the one which generated the checkpoint, execution can begin at the top of the task list (if the preceeding run did not complete its execution) or at the restart task (if execution was successfully completed).

The following tasks are active in the MOM module.

FORTRAN	TASK NAME	MOM MODULE FUNCTION
120	BACSUB	Call SOLDRV to back substitute to find solution vector
130	BAND	Call BANDIT to band a matrix
150	CHKPNT	Retrieve timed checkpoint parameters or write a command checkpoint
180	DEBUG	Turn off or on the debug flags
190	DECOMP	Call LUDDRV to decompose matrix into upper and lower triangular matrices
200	END	Terminate module execution
250	BMI	Call SOLDRV to perform banded matrix iteration

a data data manana da kata da kata da kata kata kata da kata da

للشخشي فيشخطها

260 LABEL Decrement loop counter and branch to LOOP if positive 270 LOOP Initialize loop counter 310 WRITE Call PRTSYM to write symbol data to output file 340 PRINT Call PRTSYM to write symbol data to output file 350 PURGE Purge symbol from NDATBL and close data file 390 RESTART Process RSTART command error 400 SET Call SETDRV to set data set entries 410 SOLVE Call LUDDRV and SOLDRV to obtain solution vector 440 WIPOUT Process WIPOUT command error 460 ZSET Call SETDRV 480 **GMDATA** Advance edition of geometry data set 490 ZGEN Call ZIJDRV to generate MOM interaction matrix 520 ZLOADS Call LODDRV to generate load vector 530 **EFIELD** Call FLDDRV to generate total field from incident and scattered fields 540 DMP Call DMPDRV to process direct manipulations 550 ESRC, VSRC Call EXCDRV to generate MOM excitation 570 SETINT Call SET to select GTD, MOM. and incident field interactions

(MOM)

TSKXQT

4. INTERNAL VARIABLES:

VARIABLE	DEFINITION
CPFRND	Checkpoint file rewind flag
DBGPRT	Debug print flag

ALLOND ANNALS STRATE

10000

DT	Time interval between calls to TICHEK
I	Loop index
IBITS	Attribute word for geometry data set
INCCHK	Checkpoint time increment
INDXG	Pointer to symbol table entry for a data set
IOCKPT	Logical unit number of checkpoint file
ISAV2	Temporary storage for argument 2 of INTARG array
ISAV3	Temporary storage for argument 3 of INTARG array
ITASK	Pointer to task in task list being executed
KOUNT	The number of times the loop terminating on the reference label has been executed
LINDX	Index to the loop table entry currently being executed
LOCARG	Pointer to task argument in NARGTB
LOCFIL	Logical file associated with symbol to be purged
LOCNXT	Pointer to NARGTB for the next task to be executed
LOCSYM	Location pointer for a symbol name
LOCTP1	Pointer to first argument for a given task
LOCTP2	Pointer to second argument for a given task
LOCTSK	Location of task parameters in NARGTB
LSTARG	Location in argument list
LSTTPF	Points to last task executed for a restart job
LTRACE	Trace flag for debug

这些这么就要找为为为这里的意义。

1

Sec. Sec. Sec.

6.4

N		Loop index
NAMDA	т	User-assigned name of geometry data set
NAMGE	0	Pointer to default geometry data set name in NCODES
NDX		Index to NCODES array for the task name mnemonic
NOP		No operation flag
NOSTA	λŢ	Logical flag set if statistics have not been requested
NPRRE	C	Number of words for geometry data set record
NT		Hollerith name of a task
NUMAF	RG	Number of INTARG arguments for a task
NUMTS	SK	Task identification number
NXTTS	SK	Pointer to the next task to be executed
TNOW		Current processor time
TRACS	ST	Locical flag set if trace statistics are desired
YSST/	AT	Logical flag set if statistics have been requested
I/0 \	ARIABLES:	
Α.	INPUT	LOCATION
	CHKWRT	/SYSFIL/
	COMPLT	/SYSFIL/
	DBGPRT	/ADEBUG/
	ISOFF	/ADEBUG/
	ISON	/ADEBUG/
	KBGEOM	/PARTAB/

KBREAL	/PARTAB/
KOLCNT	/PARTAB/
KOLCOL	/PARTAB/
KOLLOC	/PARTAB/
KOLNAM	/PARTAB/
KOLTIM	/PARTAB/
KOLTSK	/PARTAB/
KWOFF	/PARTAB/
KWON	/PARTAB/
KWSTAT	/PARTAB/
KWTRAC	/PARTAB/
LSTTPF	/SYSFIL/
LOOPMX	/PARTAB/
LUPRNT	/ADEBUG/
MAXBLK	/SEGMNT/
MAXSEG	/SEGMNT/
MXARGS	/ARGCOM/
NAMTSK	/PARTAB/
NARGTB	/PARTAB/
NCODES	/PARTAB/
NDATBL	/PARTAB/
NLOOPS	/PARTAB/
NOGOFG	/ADEBUG/
NOPCOD	/ADEBUG/
NOSTAT	/ADEBUG/

.

NPRSEG	/SEGMNT/
NPTASK	/PARTAB/
NTINT	/ADEBUG/
NTSKTB	/PARTAB/
NXTTSK	/ADEBUG/
RSTART	/SYSFIL/
RSTRTA	/SYSFIL/
OUTPUT	LOCATION
CHKPNT	/SYSFIL/
CHKWRT	/SYSFIL/
CPFRWD	/SYSFIL/
DBGPRT	/ADEBUG/
IERRF	/ADEBUG/
INCCHK	/SYSFIL/
INTARG	/ARGCOM/
IOCKPT	/SYSFIL/
IPASS	/ADEBUG/
LSTTPF	/SYSFIL/
LTRACE	/SYSFIL/
MAXBLK	/SEGMNT/
NOGOFG	/ADEBUG/
NOSTAT	/ADEBUG/
NUMARG	/ARGCOM/
NXTTSK	/ADEBUG/
RSTART	/SYSFIL/

B.

S. C. S. S.

TSKXQT	(MOM)
•	• •

6. CALLING ROUTINE:

GEMACS

and a subsection and a subsection in the subsection of the subsect

くとうとうとく

7. CALLED ROUTINES:

ASSIGN	EXCORV	OPNFIL	STATOT	WRTCHK
BANDIT	FLDDRV	PRTSYM	SYMDEF	ZCDRVR
CLSFIL	GETARG	SET	SYMUPD	ZIJDRV
CONVRT	GETGEO	SETDRV	SYSCHK	ZZXDUM
DMPDRV	LODDRV	SOLDRV	TICHEK	
ERROR	LUDDRV	STATIN	WLKBCK	

APROVING (CAN)

うちための

1238

1. NAME: TSKXQT (OUTPUT)

- 2. PURPOSE: To read the task list and call the appropriate processor to execute the tasks.
- 3. METHOD: The task list is scanned twice: during the first scan the subroutines necessary to execute the tasks are called in order to initialize the required parameters. During the second pass the subroutines are called to perform the tasks as specified by the user.

Task execution normally begins with the first task in the task list and proceeds sequentially through the list unless a LABEL task is encountered. The LABEL task will redirect execution to its associated LOOP task until the required number of LOOP/LABEL loops has been fulfilled. Task execution terminates when an END command is encountered, the end of the task list is reached, or an error occurs in executing a task.

If the task list has been generated by a RSTART command, execution may not necessarily begin at the top of the task list. Normally, restart is begun from the task which wrote the checkpoint read in to generate the task list. In modules subsequent to the one which generated the checkpoint, execution can begin at the top of the task list (if the preceeding run did not complete its execution) or at the restart task (if execution was successfully completed).

The following tasks are active in the OUTPUT module:

FORTRAN LABEL	TASK NAME	OUTPUT MODULE FUNCTION
150	CHKPNT	Retrieve timed checkpoint parameters or write a command checkpoint
180	DEBUG	Turn off or on the debug flags
200	END	Terminate module execution
260	LABEL	Decrement loop counter and branch to LOOP if positive
270	LOOP	Initialize loop counter
390	RESTART	Process RSTART command error
440	WIPOUT	Process WIPOUT command error
480	GMDATA	Advance edition of geometry data set

530	EFIELD	Call FLDDRV to print and plot scattered and incident fields
540	DMP	Call DMPDRV to process direct manipula- tions
570	SETINT	Call SET to select GTD, MOM, and incident field interactions

When the OUTPUT module execution is complete, the alternate restart flag is turned off and the pointer to the last task executed is set to the last task of the run.

分析 经济金的分割的分分分分数 医外外外外的 医内部分的 网络拉拉斯 化分子分子 医外外外外的 医外外外外的

4. INTERNAL VARIABLES:

VARIABLE	DESCRIPTION
CPFRWD	Checkpoint file rewind flag
DBGPRT	Debug print flag
DT	Time interval between calls to TICHEK
IBITS	Attribute word for geometry data set
INCCHK	Checkpoint time increment
INDXG	Pointer to symbol table entry for a data set
IOCKPT	Logical unit number of checkpoint file
ITASK	Pointer to task in task list being executed
KOUNT	The number of times the loop terminating on the reference label has been executed
LINDX	Index to the loop table entry currently being executed
LOCARG	Pointer to task argument in NARGTB
LOCNXT	Pointer to NARGTB for the next task to be executed
LOCTP1	Pointer to first argument for a given task
LOCTSK	Location of task parameters in NARGTB

シンゴーレッシュレント 「こうとうない」とはためでななながられたがいたがないが、「シンゴーレッシュン」がないがない。 マンマングランド

Ś

Alice to

5.

LSTARG	Location in argument list
LSTTPF	Pointer to last task executed for a restart job
LTRACE	Trace flag for debug
N	Loop index
NAMDAT	User-assigned name of geometry data set
NAMGEO	Pointer to default geometry data set name in NCODES
NDX	Index to NCODES array for the task name mnemonic
NOP	No operation flag
NPRREC	Number of words per geometry data set record
NOSTAT	Logical flag set if statistics have not been requested
NT	Hollerith name of a task
NUMARG	Number of INTARG arguments for a task
NUMTSK	Task identification number
NXTTSK	Pointer to the next task to be executed
TNOW	Current processor time
TRACST	Logical flag set if trace statistics are desired
YSSTAT	Logical flag set if statistics have been requested
I/O VARIABLES:	
A. INPUT	LOCATION
CHKWRT	/SYSFIL/

COMPLT /SYSFIL/ DBGPRT /ADEBUG/

ISOFF	/ADEBUG/
ISON	/ADEBUG/
KBGEOM	/PARTAB/
KBREAL	/PARTAB/
KOLCNT	/PARTAB/
KOLCOL	/PARTAB/
KOLNAM	/PARTAB/
KOLTIM	/PARTAB/
KOLTSK	/PARTAB/
KWOFF	/PARTAB/
KWON	/PARTAB/
KWSTAT	/PARTAB/
KWTRAC	/PARTAB/
LOOPMX	/PARTAB/
LSTTPF	/SYSFIL/
LUPRNT	/ADEBUG/
MAXBLK	/SEGMNT/
MAXSEG	/SEGMNT/
MXARGS	/ARGCOM/
NAMTSK	/PARTAB/
NARGTB	/PARTAB/
CODES	/PARTAB/
IDATBL	/PARTAB/
ILOOPS	/PARTAB/
OGOFG	/PARTAB/

111111111

Ś

TELEVISION STATE

22.2.2.2.2.2.2

なべた

B.

NOGOFG	/ADEBUG/
NOPCOD	/ADEBUG/
NOSTAT	/ADEBUG/
NPRSEG	/SEGMNT/
NPTASK	/PARTAB/
NTINT	/ADEBUG/
NTSKTB	/PARTAB/
NXTTSK	/ADEBUG/
RSTART	/SYSFIL/
RSTRTA	/SYSFIL/
OUTPUT	LOCATION
CHKPNT	/SYSFIL/
CHKWRT	/SYSFIL/
COMPLT	/SYSFIL/
CPFRWD	/SYSFIL/
DBGPRT	/ADEBUG/
IERRF	/ADEBUG/
INCCHK	/SYSFIL/
INTARG	/ARGCOM/
ІОСКРТ	/SYSFIL/
IPASS	/ADEBUG/
LSTTPF	/SYSFIL/
MAXBLK	/SEGMNT/
NOGOFG	/ADEBUG/
NOSTAT	/ADEBUG/

1 Ś

NUMARG	/ARGCOM/
NXTTSK	/ADEBUG/
RSTART	/SYSFIL/
RSTRTA	/SYSFIL/

6. CALLING ROUTINE:

GEMACS

7. CALLED ROUTINES:

ASSIGN

CONVRT

DMPDRV

ERROR

FLDDRV

GETARG

GETGEO

SET

STATIN

STATOT

SYMDEF

Î

خاليكم للمراسين

SYMUPD

SYSCHK

TICHEK

WLKBCK

WRTCHK

語語語ないた。

うちたちたかと

in School .

1. 2. 4 C. S. C. S.

KAKARANA **MISSION** of Rome Air Development Center RADC plans and executes research, development, test and selected acquisition programs in support of Command, Control Communications and Intelligence (C³I) activities. Technical and engineering support within areas of technical competence is provided to ESP Program Offices (POs) and other ESD elements. The principal technical mission areas are communications, electromagnetic guidance and control, sur-veillance of ground and aerospace objects, intelligence data collection and handling, information system technology, ionospheric propagation, solid state sciences, microwave physics and electronic reliability, maintainability and compatibility.

is de l

