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1. Introduction

The possibility of using betatrons to accelerate high current electron

beam to high energy has generated renewed interest in these devices. If

successful, they will provide a source of high power beams which is much

more compact and economical than linear machines. In order to overcome the

space charge repulsion which limits current In the conventional betatron,1

a toroidal magnetic field is added. This combination, shown in Fig. 1, is

the Nodified Betatron Accelerator (1BA). Successful operation of the modi-

fied betatron requires (a) the ability to inject a high current (-10 kA)

of low energy (-2 HeV) electrons onto a cyclotron orbit in the presence

of a strong (1-5 kG) toroidal magnetic field; (b) a stable beam equilibrium

0 for the duration of the acceleration period, typically thousands of revolu-

tions; and (c) extraction of the beam, which has been accelerated to high

energy (-50 NaV), preferably in a time equal to one rotation period. If

Instabilities are present, their cumulative effect must be small enough

0 such that macroscopic disruption of the beam is minimal.

During the period of our contract with the Office of Naval Research

(ONR) (1 Sept 81 - 31 Oct 83), we concentrated primarily on requirement

* (b), with some work being done on (a). This choice was made after consid-

eration of what was of most relevance to the overall modified betatron pro-

gram and consideration of where we could make the greatest contributions.

The existence of a stable, or at any rate confined, state for the beam over

• many circulation periods is the minimal requirement for the NBA. In addi-

tion, this subject can be addressed with confidence using a combination of

analytical and numrical techniques which serve as a check on each other.

For the issue of injection, one must rely on three-dimensional numerical

simulations alone. A number of such simulations were performed under this

contract, but their expense was such that a detailed study of injection was

not feasible with the computing resources available. Concerning the issue

of bom extraction, it was felt that it would be premature to start work

eI
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on this subject, given the uncertainty relating to requirements (a) and

(b). Also, there are several uses for the modified betatron which would

not necessarily require extraction of the beam, e.g., microwave and free-

electron laser applications.

This report describes in detail the work we have done. In Chapter 11

we give the results obtained from one-turn injection simulations of the

scheme in which the diode is placed inside the torus. In Chapter III we

• describe investigations into different types of beam equilibria and how

these equilibria are affected by the addition of a spread in energy or

increased transverse emittance to the beam. In Chapter IV the results of

extensive analytic and numerical investigations into beam stability are

• presented. The main emphasis here is on the negative mass instability, but

we have also done calculations on resistive wall and beam breakup instabil-

ities. The latter occurs in devices in which the beam passes through

acceleration gaps. In the modified betatron, injection and extraction

* ports, and slots to enhance magnetic flux diffusion into the torus can give

rise to the same type of instability. Chapter V gives our main conclus-

ions.

* 3
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11. Beam Injection

SInjection of a high current beam into the modified betatron is compli-

G1 cated by the presence of the toroidal magnetic field. The simplest way to

overcome the problem is to place the diode inside the torus, and inject

along the toroidal field 11nes. 2  An alternative scheme is to have the
diode outside the torus and to inject along temporarily open field lines.3

~We have looked only at the first scheme.

]In the modified betatron the equilibrium radial posittion of the beam

~centrotd, rc , is determined by equating the centrifugal force to the

opposing force from the self and applied field, i.e., yV a2 /rc Z

Esel + ve (Bzx + Bz l), where y is the beam energy and Ve is the tor-

~otdal velocity. (We are using units in which m - c - 1.) As shown by

Kapetanakos et al. 2 there is a convenient cancellation of the space-charge
depression of the injection energy yt by the toroidal correction to the
self magnetic field .self As a result the equilibrium radwus ts given

samply by r - Yo/ fed , wher e  An (11/e2)1/2 This result was con-

nfemmed by a three-dimensional PIC simulation usong IVORY. In this study,

cpulse was intdected bnto a torus of major radius ro - c m. The coordin-
ate system used was cylindrical, r, f, z, where the z-axis coincided with

the major axis of the torus, and e was the toro-dal angle (Fig. 1). Two

cases weroctyde ae in whuch injection took place at r - ro, z -b,

0 (centered-injection case) and one on itn whch injection was at r a-

r + 4 cm, z - , e - 0 (offset-injection case). The cnjected pulse had

a radius of 2 cm and had a trapezoidal tme profile of current I and energy

-j y. Over the first 5 ns, the current rose from 1-0 to 10 kA, and energywent from y 2 to 5. Th erei0s followed)by . his "body" in whch I - 10

r m - 5 and ftinally by a 5 ns tail whtich was the mirror image of the

head. These values for y are the space-charge depressed values. The

Injection energy yt was larger: yi - 7 in the body of the pulse. The
alte te usd wa s Bz fields were mdeled by the required curl-free formswt

The oalues of Bz and the external faeld index n were chosen to ensure

tet the min 2 of the beam followed a stable orbt which d id not

4I



intersect the wall. The results of a centered-injection case in which the

beam was initially cold are shown in Fig. 2. In this simulation, we chose

n - 0.25, Bz (r - ro) - 114 kG and Be (r -ro) a 3 kG. When comn-

bined with the value of -y1, this yields a predicted equilibrium radius
of 100 cm. The body of the pulse in fact propagated quiescently through
the first turn (which is as far as the simulation ran) at exactly this rad-
ius. Figure 2 shows that the head of the pulse is drifted into the upper
wall at z - 8.9 cm. This is due to the fact that in the head (and tail) we
did not have radial force balance because of the lower value of y. As a
result, there was a net radial force Fr on the particles causing an Fr
x Be drift in the z-dlrectlon. The resulting deposition of energy on the
wall may create plasma leading to vacuum degradation and possibly an ion
resonance instability of the beam.6 However, serious damage to the wall is
not expected, since the point where the beam contacts the wall moves along
with v -c. The area of contact is about rote ar = 30x4.5 cm.

* In the offset injection case the centroid of the beam was injected 2t
r - 104 cm and the applied vertical field was 112 G. The injection energy
'was the same as before, so that the theoretically predicted equilib-

rium radius is rc - 105 cm. As seen in Fig. 3, the body of the pulse
* propagated around the torus at about this radius. We conclude that a large

radial offset in the injection does not adversely affect beam propagation

or beam quality.

0

0
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III. Beam Equilibrium

During a hypothetical 1 millisecond acceleration time in a 1 m radius

betatron, the beam circulates about 48,000 times. It is therefore essen-

tial to have accessible self-consistent equilibria for the beam. In

analytic and numerical work, such equilibria form the starting point for

the study of beam stability. The most detailed and exact calculations of

beam equilibria to date have been carried out by Finn and Manheimer,7 using

a cold-fluid model of the beam. Their results show that self-consistent

equilibria do in fact exist in the parameter regime of the proposed NRL

experiment (10 kA, 2 kG toroidal field, - 3). These equilibria are

analogous to the slow mode of rotation of a cylindrical laminar beam in an

axial guide field. In order to test the sensitivity of their equilibria to

the cold-fluid assumption, we used Finn's code EQUIL38 to initialize

IVORY for t = 14, 1 - 10 kA, Be - 1 kG. In IVORY, numerical noise

due to discrete particle effects causes deviations from the perfect lamin-

arity assumed in EQUIL3. The drift surfaces obtained from EQUIL3 are shown

in Fig. 4. The fact that these surfaces are closed in the region where the

beam indicates that an equilibrium exists. In the simulation, we propa-

gated the beam for twenty revolutions around the torus during which time

the beam rotated twice about its own axis. No drifting off center was

observed, and the beam minor radius remained constant. We conclude that

the EQUIL3 equilibria are not significantly affected by the addition of

small amounts of temperature.

The methods of Finn and Manheimer break down as the transition from

diamagnetic to paramagnetic rotation of the beam about its own axis is

approached. The transition occurs at the energy at which the self forces

of the beam are equal to the weak focusing force due to the external field

Index. For a uniform density beam with Budker's parameter v and beam rad-

ius rb, the transition occurs at

T " (4v r0
2/rb2 )1/3  

(1)

8
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Figur 4. Drift surfaces obtained from EQUIL3. Inside the separatrix, the
drift is dimiagnetic (anti-clockwise here). EOtside,it is para-
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For the parameters we have adhered to in all our simulations, namely rb =

2 cm, ro a I m, 1 10 kA, we have YT - 18. Above this energy, the

toroidal field is not needed for equilibrium. However, for reasons related
to beam stability, orbital resonances etc., the toroidal field will in

practice probably be maintained throughout the acceleration of the beam.

No detailed cold-fluid calculations of beam equilibria along the lines of

Ref. 7 have been carried out for y > YT" In our simulations we have

found that by using the same numerical presciption as for y < YT we can

find satisfactory equilibria above transition.

Since betatron equilibria analogous to the slow rotation mode in cold

cylindrical beams have been found, it is natural to ask whether other

cylindrical beam equilibria carry over to the betatron. We have looked at

both a "fast mode" and a Kapchinsky-Vladimirsky (K-V) distribution, but

neither appears to a modified betatron equilibrium, at least in the regime

we examined. In the "fast mode" the beam is again laminar, but rotates at

approximately the cyclotron frequency 29/y - eBe/mcy, where Be is the

toroidal magnetic field. When initialized in this manner at Be - 1 kG, y

- 12, the beam slowly expanded in minor radius, and 1/3 of the particles

were lost to the wall after 14 turns.

If a beam from a non-immersed cathode is propagated into a region with

an axial magnetic field, then a K-V distribution can result. The beam

rotates at half the cyclotron frequency, 9e/2y, and transverse emittance

supplies the additional radial force needed for equilibrium. With Be - 1

kG and y - 12, a beam with a K-V distribution expanded and lost over half

of its particles in 15 turns. At y a 20 the behavior was similar. When

the toroidal field was turned off at y - 20 (> YT), however, the K-V

distribution showed no significant increase in minor radius. At present we

do not have physical explanations for these observations.

An issue of particular importance with regard to beam stability is the

amount of energy spread and transverse emittance the equilibrium can toler-

ate.9 Lacking self-consistent models to initialize our simulations, we

10
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* decided simply to add these effects to the slow-mode equilibrium and see

how the beam evolved. Taking the equilibrium at y = 12, Be - 1 kG, we

added a small random component Al to the energy of each particle, drawing

from a Gaussian of the form e th , where the yth is the width.

* We find that the beam develops spiral arms, made up of particles" evaporat-

ing" from the beam, as shown in Fig. 5. These particles can end up on the

wall. If yth is large enough, the whole beam eventually disappears in

this manner. This behavior car be understood using results from EQUIL3.

* Fo the equilibrium shown in Fig. 4, one can compute the drift-surfaces of

test-particles with energies different from the equilibrium value. For Ly

-± 0.1 (less than 1% deviation from y - 12) there are closed diamagnetic

drift-surfaces only for particles less than 1 cm from the beam center, as

* shown in Fig. 6. For Ay - ± 0.2, the diamagnetic region is still smaller,

as shown in Fig. 7. Particles outside this region are on paramagnetic sur-

faces, which are distorted near the beam and give the spiraling effect.

Particles with energy greater than the equilibrium value form one arm and

those with less energy form the other (see Fig. 7). The arms do not

rotate. As current is lost from the beam through these arms, the diamag-

netic region shrinks. (In the low current limit all equilibria are para-

magnetic.) Thus, one can have an "instability" in which all of the beam

eventually migrates to paramagnetic surfaces, which may intersect the

wall. Choosing Yth - 0.5, Bj - 1 kG, we find that 2/3 of the part-

icles are lost to the wall after about four circulations. The remaining

particles rotate in the paramagnetic direction, and the energy spread is

greatly reduced. For Yth - 0.1 (Fig. 5), less than 10% of the part-

icles are lost through the "arms", and the remaining beam is cold. The

abi ity of the beam to sustain a temperature spread improves as one gets

further below the transition energy. For y - 4, for example, Ref. 7 esti-

metes that a low density tail with -y/y -50% can be confined in the

beam.

The effect of increasing the transverse emittance of the beam, leaving

everything else fixed, is what one would expect: the beam is mismatched

and expands and contracts with an average radius larger than the initial

111
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2 cm. Emittance was introduced by giving the particles random perpendic-

ular momenta PL drawn from the distribution e'Pl 2/2pth 2 where

Pth is the width. A picture of a beam withy * 12, Be * 1 kG, Pth/m

• - 0.28 is shown in Fig. 8. The beam expands and contracts between radii of

3 and 2 cm. The addition of emittance creates an energy spread, and the

formation of spiral arms is observed during the evolution of the beam.

These are not very pronounced, however, since the energy spread is small.

For a case with Pth/m - 0.4, the only difference noted was that the maxi-

mum beam radius was about 4 cm. No particle loss was observed in these

simulations. One would expect that one could obtain a matched state in the

presence of increased emittance by making the beam rotate faster about its

own axis. Recent work by Grossmann, Finn, and Manheimer1 ° confirms this.
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IV. Beam Stability

The circulating electron ring in the modified betatron possesses a

number of modes of oscillation which can be driven unstable through inter-

actions with each other, with a resistive wall, with gaps in the wall of

the device, etc. These instabilities have received a good deal of attent-

ion in connection with synchrotron accelerators and storage rings (low cur-

rent, high energy).11 It appears, however, that for the high-current

regime we are concerned with, some of these instabilities are qualitatively

different from what is found at low current. The self-fields and toroidal

magnetic field play important roles.

* The main emphasis in our work has been on the negative mass instabil-

ity, since it appears to have the largest growth rate. In addition, it is

the Instability most readily amenable to analytic and numerical treatment.

Our main tool in this study has been the 3-D PIC simulation code IVORY. In

* conjunction with running simulations, we have reanalyzed the theory of the

negative mass instability. The numerical and analytic approaches provide a

check on each other. For the resistive wall and beam breakup instabili-

ties, we have performed only analytic and semi-analytic studies owing to

the difficulty of performing numerical PIC simulations.

Since there Is a considerable amount of algebra associated with

derivations for the above instabilities, we have relegated the derivations

*- to the appendices. Only the relevant physical results will be described

here.

A. Description of Negative Mass Instability

The conventional negative mass instability causes a toroidal beam to

bunch in the toroidal direction.1 2 Experimentally, it was found to limit

the intensity of the beam by creating a spread in energy, which caused the
beam to spread out. 12  In our simulations of the high current betatron,

however, very little toroidal bunching is observed. The mode we see is a

primarily transverse, almost rigid kinking of the beam, as in Fig. 9.

17



.. . . . . . .* * A , . -*. o . . - .-- . • .-. , .

.1109

'-'"1 Two|

, .l 0  0 8.0 9 0 0

109 2________ -

b.

. , 4 -,i

'.10 IT IT=
-1b 'S.i. 0 ''•"Aa, :

-8.80 0 8.80 91 100 109

109 2 7r ~ '

Vb.

100,

.

6.008.80 091 100 109

ms intbiiy I.n.o the o- plt patce tal -oii

.0., 7•2 r .;.. 7S 3.

"' 100 - -- I....;. :.;

are -lte. .. nsi'..are.in cm

1 r

fig1ur 9. 11luwrstlon @f transverse kinking effect of negative mass Insta-
blity, ihn are plots (r vs. z and e vs, r) of the bem at
sccesive tims Airing the develomui of the t, * 1 negatIve
mass instability. In the i-z plot, partiles at all e-positiwis
are-plotted. Dimnsions are In w.,

18

| ~ ~ ~ .5 ~ -. . - . ', '% . -. % .% ,,- - - % -, - -- - - - - . .. .. . •



* Some description of our simulation scheme is necessary in order to under-
stand this figure. For stability simulations, IVORY uses a spatial grid to

resolve the minor cross-section of the beam. The toroidal dependence of

the fields is treated by a sum of Fourier modes. In most of our simula-

* tions to date, just three mode numbers are resolved, namely 0,±.t where i is

an integer. Thus, only a section of 2ir/x radians of the torus needs to be

modeled. The other i-1 sections are identical. The particles are pushed

in a three-dimensional, nonlinear manner. For the sake of economy in corn-

* puting, just nine groups of particles are used to resolve the wavelength we

are simulating. Initially, these groups are identical and equally spaced

(Fig. 9a), so that only equilibrium fields are produced. We then initiate

the instability by giving the particles a small-amplitude (less than 1% of

* the beam radius) sinusoidal displacement from their equilibrium position.

The instability then commences to grow at a well-defined linear growth

rate, with a real frequency approximately equal to nsz/y where siz is

the cyclotron frequency associated with the vertical field Bz. The per-

turbed fields generally grow about four decades in energy during the linear

growth regime. As their energy becomes comparable to the equilibrium field

energy the effect of the instability on the ring becomes visible, as seen

in Fig. 9b. Since the phase velocity of the unstable wave is almost equal

to the particle circulation velocity, the sideways displacement of each

particle increases monotonically in time. Particles moving to larger rad-

ius take longer to go around the torus, and so slip back relative to those

at the equilibrium radius. Conversely, particles moving to smaller radii

advance relative to those at the equilibrium radius. As a result, the beam

eventually breaks in the toroidal direction, as shown in Fig. 9c. Soon

after this, the beam strikes the wall and about 2/3 of the current is

lost. The remainder continues to circulate for some time as a diffuse

cloud. For our typical parameters (10 kA, 6 PMeV) and choosing z-1, this

* whole process takes about 20 circulation periods, or 0.4 Usec, to occur.

0J
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9.

B. Linear Growth Rates of Negative Mass Instability:
Theory and Simulations

The simulations we performed of the negative mass instability showed

substantially different growth rates from those predicted by existing

*" theories. 5'13 These theories neglected the toroidal corrections to

. Maxwell's equations without rigorous justification. By including these

effects to first order in the parameter E = a/ro = (minor radius/major

radius), we obtain good agreement with simulations over a wide range of

parameters. The details of this calculation are in Appendix A. A compar-

ison between the theory and IVORY simulations for different X-numbers is

.4 shown in Fig. 10. Here the beam parameters are y = 12, 1 = 10 kA, Be = 1

"* kG. The agreement is rather good even up to L = 20, where the long wave-

length approximation x/ro C 1/a, used in the theory, is starting to break

down. The growth rate scales approximately as il/2. It is noticeable

that the agreement for I = 1 is poorer than for £ = 2 to 8. We suspect

that some second order toroidal terms dropped from the theory may be

responsible. A derivation keeping these terms is planned (see Appendix

A).

The variation of growth rate r with y for X = 1 is shown in Fig. 11.

This figure contains results for both Be = 1 and 0 kG. At Be = 1 kG,

the theory predicts a sharp cutoff at about y = 21. Due to numerical noise

in IVORY, it is not possible to see zero growth rate. One can only put an

upper bound on r. At y = 25, r was reduced by a factor of four from the

value at y = 20. For Be = 0 no equilibrium is possible for y < 18 as we

saw in Chapter Ill. The theory predicts that for y > 12, there is no nega-

tive mass instability. A simulation for y = 20 tends to confirm this: we

find r/c < 2x1O- 5 cm-.
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C. Effects of Transverse Emittance and Energy Spread on Negative Mass
Instability

The growth rates computed for the negative mass instability in the

0 last section are very large In practical terms. It has been suggested 5,9

that Landau damping due to a spread in toroidal rotation frequencies can

contribute significantly to the stabilization of these modes. Since the

beams we are concerned with have V8 = c, a spread in rotation frequencies

* can come only from a spread Ar in the radii of the particle orbits. If the

particles were tied to the field-lines, then the toroidal frequency spread

ai would be

& A (2)7 - ' r0

For the general case, in which particles are not tied to the field lines,

Eq. (2) gives an upper bound on the toroidal frequency spread to first

* order in Ar/ro. "Betatron" oscillations of the particles across field

lines can add corrections of order (Ar/ro)2 to Eq. (2). For the Finn-

Manheimer equilibria, we have computed ail/r by direct measurement of part-

icle rotation frequencies in our simulations. One would expect to achieve

* the maximum value of AZ/si at the transition energy (YT = 18), since

poloidal rotation ceases and the particles follow the toroidal field

lines. Equation (2) then predicts aQ/9 - 4x10-2, since the beam diameter

is 4 cm and ro = 100 cm. At y = 20 and y a 12 we measured tr/ = 3x10 -2

and AA/Q - 640- 3 respectively. The deviations from Eq. (2) are due to

pol ol dal rotation.

To estimate the stabilizing effect of the frequency spread, we did

some simulations in which the spread was zero. This was accomplished by

replacing the particle beam with a ring made up of rigid disks. We find

that for y a 12, the growth rates obtained are not significantly different

from those of the particle equilibrium, as shown in Fig. 12. For L - 4,

the equations of Ref. 9 would predict a 10% reduction in the growth rate

due to the frequency spread which is not inconsistent with our results.
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Figure 12. Comparison of growth rates for a rigid beam model with growth
rates for self-consistent particle equilibrium, as a function of
toroidal mode-number. Also shown are reduced growth rates for a
beam with enhanced energy spread or enhanced transverse emit-
tance.
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A key question is whether the beam equilibria we are simulating can be

modified to obtain substantial reductions in growth rate. In Chapter 1II,
we looked at two ways of increasing the spread in frequencies; viz., by

introducing an energy spread on the beam, and by increasing the transverse

* emittance. The result of having a 1% energy spread is to decrease the

growth rate by 30%, as shown in Fig. 12. We saw in Chapter III however,

that further increases in energy spread lead to serious loss of confine-

ment. By increasing the transverse emittance from 30 mrad-cm to 90

* mrad-cm, the growth rate dropped by somewhat less than 30% (Fig. 12).

Again, larger decreases can be obtained only at the expense of beam

quality.

* 0. Resistive Wall Instability

The resistive wall instability is driven by the phase lag between the

electric and magnetic response of the wall image to perturbations of the

* beam. In this section, we summarize the results on this instability

obtained in Appendices B and C. There, we find that any slow mode on the

beam is driven unstable by a resistive wall. There are two transverse slow

modes with frequencies given by w - x$z/Y - Pez/Y for the cyclotron

• mode and w - .z/y - wB for the "ExB" or "space-charge" mode. Here

WB is the slow transverse bounce frequency of the beam.

For the slow cyclotron mode, the growth rate peaks at w - 0, which

* occurs for £ - Q6/Q z.  Since nz and -y increase during beam accelera-

tion, this constraint is satisfied only for a limited time period Lt which

corresponds to a band width

A dya•I "
-2
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Setting aw equal to the growth rate r, we obtain the expression for the

.- number of e-foldings as the beam goes through the resonance:

rat r (4

Equation (3) is maximized late in the acceleration cycle, when i is large

and the resonant value i is small.

After passing through w - 0, the instability transitions to a lower

growth rate regime which persists for the remainder of the acceleration

cycle. In this regime the number of e-foldings is given by

(rat)eff - J rdt (5)

where the integration is from the time when w > 0 to the end of the accel-

eration.

For the slow space-charge mode there is no w = 0 resonance, because
0 < wB/("ZZ/Y) < 1. Thus, one has only the regime of adiabatic growth

corresponding to Eq. (5). This regime covers the entire acceleration

cycle.

Besides the transverse slow modes, there is also a longitudinal slow

space-charge mode which is resistive-wall unstable. There is no resonance

associated with this mode.

We illustrate the relative importance of the various forms of the

resistive wall instability for the typical modified betatron parameters

shown in Table 1. A stainless steel wall with normalized conductivity

4wo * 5.24406 cm-1 is assumed. For the cyclotron mode with w - 0, we find
I26
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TABLE 1. TYPICAL MODIFIED BETATRON PARAMETERS USED IN EVALUATING

RESISTIVE WALL INSTABILITY GROWTH RATES

0Toroidal Magnetic Field Be6 2.5 kV

Vertical Magnetic Field (Initial) B z 115 g

Toroid Major Radius R 0100 cm

Toroid Minor Radius R 10 cm

Beam Radius a 1 cm

Beam Current v0.59

Beam Energy 7-100

Acceleration Time 3-107 cm
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a growth rate r - 4x -5 cm-1 . Equation (4) is maximized for y - 70, for

which I - 1. Total growth is rat - 3.6 near w -0. The contribution from

Eq. (5) is much larger, however, giving (rbt)eff - 51.

The growth rate of the transverse space-charge mode is comparable to

the cyclotron mode, but growth occurs over the whole acceleration cycle,

giving (rAt)eff - 150.

The preceding analysis ignores any thermal spread of beam energy,

which would tend to damp the instabilities. In Appendix C, we show that

for a spread of a few percent in the initial beam energy, damping should be

significant. We saw in Chapter III however, that attempting to stabilize

the instability in this way can seriously disrupt the beam if it is near

the transition energy.

Successful operation of the modified betatron requires cutting the

growth (rat)eff to about unity. Employing more highly conducting cavity

walls (e.g., copper) can reduce growth by a factor of six. Reducing the

acceleration time by an order of magnitude would then effectively eliminate

these instabilities. Alternatively, a spread of a few percent in the elec-

tron energy may be sufficient to damp out the modes.

E. Beam Breakup and Image Displacement Instabilities

Our work on the beam breakup and image displacement instabilities was

motivated mainly by the proposed racetrack induction accelerator.14 This

device, sketched in Fig. 13, is a recirculating accelerator like the modi-

fied betatron. However, It uses accelerating gaps instead of a betatron

field to increase the beam energy. In a linear device the beam breakup

instability arises from a resonant coupling between beam transverse oscil-

lations and m-1 (m - azimuthal mode number) electromagnetic cavity modes

localized to the acceleration gaps. This coupling can result in large

lateral displacements of the beam.15 The instability is not due to the

accelerating function of the gap. Any discontinuity in the wall can have a
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similar effect. Thus, beam injection and extraction ports in the racetrack

or modified betatron accelerators could excite beam breakup. Recirculating

devices differ from linear devices in that (1) the beam keeps passing the

.same gaps and (2) there could be a resonant interaction between the beam-

breakup and negative mass Instabilities. As we saw in Section D, there are

two transverse slow modes and one longitudinal slow mode on the beam.

These have negative energy and so can couple unstably to the gaps. Coup-

ling to the longitudinal mode occurs only due to toroidal curvature. To

model the effect of the gaps, we used a gap response function defined by
Z1  o3

F " - 0 3 2 (6)
W c+ iww/Q - W

where Zi is the transverse impedance of the gap, Q is the quality factor

and wo is the gap resonant frequency. Details of the calculations are

given in Appendices D and E.

In Appendix 0 toroidal terms are dropped so that the beam behaves as

if it were in a straight but periodic system. In this way we can study the

effect of passing by the same gaps repeatedly. The parameters we studied

are given in Table 2. The acceleration gap parameters are those of a lin-

ear induction accelerator developed by the National Bureau of Standards.

We find a beam breakup growth rate r = 1.3x10 -3 cm-', yielding 30 e-fold-

ings during the acceleration. This amplification can be cut by reducing

Q. If a value of Q = 6 can be attained, then only 5.5 e-foldings occur.

In order to do more exact calculations taking account of beam acceler-

ation and transients, we used the code BALTIC.1 6 Table 3 summarizes thir-

teen runs, varying N (the number of gaps), Q, wo , and y, but keeping

NZJ/Q fixed. Cases 1-4 show the effect of changing the gap resonant fre-

quency wo. The interaction Is greatest when wo is an integral multiple

of the beam circulation frequency oz/y, e.g., when wo = 0.17757 - 13

Qz/y. Cases 5 and 6 show the effect of dropping y. Case 7 shows that by

decreasing Q from 60 to 10, the growth rate drops significantly.
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TABLE 2. NOMINAL RACETRACK INDUCTION ACCELERATOR PARAMETERS

Path Lengths L - 460 cm

Drlfttube Radius R = 7 cm

Beam Radius a = 1 cm

Gui. Field Bz = 2 kg (wc = 1.173 cm- 1 )

0 Beam Current I = 1 kA (v = 0.0588)

Beam Energy U = 0.4- 40 MeV (y= 1.5 - 80)

Number of Revolutions 50

* Number of Gaps N = 4

Acceleration per Gap AU = 0.2 MeV = 0.4)

Gap Resonant Frequency 880 MHz

* Mode Quality Factor Q = 60

Gap Transverse Impedance 15 ohms (Z.L/Q = 0.5)

Gap Width = 5 cm

31
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TABLE 3. SUMMARY OF BEAM BREAKUP INSTABILITY CALCULATIONS WITH BALTIC

Case N 0 (cm-') y (I0" cm-')

1 1 60 0.18 80 8.3

2,. 2 1 60 0.1732 80 3.3

3 1 60 0.17757 80 8.9

4 1 60 0.1787 80 8.8

5 1 60 0.18 60 10.0

6 1 60 0.17757 60 12.3

7 1 10 0.18 80 3.4

8 2 60 0.18 80 9.6

9 2 60 0.18 1.5 12.0

10 4 60 0.18 1.5-80 9.8

11 4 10 0.18 1.5-80 2.6

12 4 6 0.18 1.5-80 1.2

d 13 4 6 0.17757 1.5-80 1.6
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Cases 8 and 9 treat two evenly spaced gaps, showing that the growth

rates are about the same as for a single gap (NZjI/Q is fixed). In cises

10-13 there are 4 gaps spaced 30 cm apart, and the beam is accelerated.

* The average growth rate is shown. From these we see that with Q = 6 growth

of the beam breakup instability is negligible (< 3 e-foldings occur).

The image displacement instability arises due to the interruption of

the beam image current at a discontinuity in the drift-tube wall. It is

the long wavelength limit of the beam-breakup instability. For our param-

eters, we compute a peak growth of 9x10 -5 cm-', and this occurs only over a

narrow range of parameters. Its effect is therefore negligible. No

evidence of coherent growth of this instability was seen in the BALTIC

runs.

In Appendix E, the effect of the accelerating gaps is put into the

full toroidal dispersion relation. In that way, the interaction between

the beam breakup and negative mass instabilities can be investigated. The

strongest interaction would be expected when the gap resonant frequency

matched a harmonic of the beam circulation frequency. For ro - 70 cm,

this occurs for I - 13. The main result of this work is that the coupling

between the two instabilities is weak. No strong hybridization occurs.

Figure 14 shows that the negative mass instability is dominant and its

growth rate is insensitive to the presence of the gaps (Q = 6 is assumed).
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V. Conclusions

Our work on the modified betatron accelerator has dealt with a range

of topics involving beam injection, equilibrium and stability. For the

problem of injection, we performed the first detailed particle simulations

of firing a beam into a torus. These showed that the body of the injected

pulse propagates in a well-behaved manner around the torus at the theo-

retically predicted radius. The head and tail of the pulse, which are

unmatched, drift rapidly in the vertical direction, striking the wall. No

serious wall damage is expected to result.

On the subject of beam equilibrium, we attempted to find in the beta-

tron the counterparts of beam equilibria found in linear devices. Follow-

ing the work of Manheimer and Finn, we sucessfully simulated the slow rota-

tion mode of the beam. We found that this type of equilibrium was rela-

tively insensitive to the addition of small amounts of transverse temper-

ature. For the fast mode of rotation and for a Kapchinsky-Vladimirsky

* distribution, no equilibrium could be found for the parameters we chose.

We emphasize that our search for these alternative equilibria was not

exhaustive.

* The addition of an energy spread or of increased transverse emittance

to the beam is commonly advocated in order to improve beam stability. We

investigated the effect these changes have on the slow-mode equilibrium.

We found that unless the beam energy is far removed from the diamagnetic-

• paramagnetic transition energy, the tolerance of the beam for an energy

spread is very limited. The beam tends to develop spiral arms, along which

the mismatched particles escape. Significant loss of particles can

result. The development of the arms is explained using the Finn-Manheimer

• model. By adding transverse emittance to the beam, large oscillations of

the minor beam radius could be produced. No significant loss of confine-
ment resulted.

3
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The bulk of our work concerned beam stability, and the negative mass

instability in particular. Analytic and numerical methods were used. A

new analytic dispersion relation was derived keeping toroidal corrections

to Maxwell's equations. The new theory overcomes some intrinsic deficien-

cies of previous theories. We have compared growth rates for the negative

mass instability obtained from the theory with 3-D numerical simulations

using IVORY. Good agreement is obtained over a wide range of parameters.
The growth rate of the negative mass instability is so large that it can

seriously disrupt the beam in a microsecond. Addition of an energy spread

and transverse emittance give reductions on the order of 30% in growth

rate. Much larger reductions clearly are needed. Based on our work to

date, we believe that this can be accomplished only by starting with a beam
< whose radius is comparable to the minor radius of the torus.

In addition to the negative mass instability we looked at resistive

wall, beam breakup and image displacement instabilities. In general, these

have growth rates substantially less than the negative mass instability.

The resistive wall instability can probably be eliminated by using a copper

lining for the torus and decreasing the acceleration time to hundreds of

microseconds. The beam breakup and image displacement instabilities were

considered for their relevance to recirculating devices which use accelera-

tion gaps. We found that by using low quality-factor gaps the growth can

be made negligible.

..
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1. INTRODUCTION

An accurate cold beam linear dispersion relation for the negative mass

Instability in high current conventional or modified betatrons is critical

for designing experiments, benchmarking computer simulations, and develop-

ing warm beam dispersion relations. In this report we derive a dispersion

relation correct to first order in the toroidal aspect ratio of the beta-

tron valid for small toroidal mode numbers. Limited comparisons with ear-

lier work are provided for reference.

The two earlier treatments of negative mass instability growth in high

current betatrons included toroidal curvature effects in the particle

0 dynamics but not in the electromagnetic field equations.1'2  In other

words, the dispersion relations were derived for beam motion in a toroidal

cavity but with fields computed for an off-center beam in a straight tube

of circular crossection. The first analysis, that of Sprangle and
• Vomvoridis, used an equation of continuity appropriate to a straight cyl-

inder, as well. In contrast, the second analysis, due to Hughes and

Godfrey, incorporated an equation of continuity correct for a toroidal

beam. Predicted growth rates from these two models often have been fc

* to disagree by factors of two for parameters corresponding to peak growth

and by even more at higher beam energies. More disturbingly, both models

systematically overestimate instability growth rates observed In three-

dimensional computer simulations.3 ,4 We attribute these discrepancies

• to incomplete treatment of toroidal curvature effects.

The dominant curvature correction to the field equations is easily

identified. Radial motion of an electron ring (see Fig. 1) gives rise to

* azimuthal bunching. This constitutes the difference between charge contin-

uity in cylindrical and toroidal geometry. Conversely, azimuthal bunching

gives rise to a radial electric field, which constitutes the (main) differ-

ence between electromagnetic fields in cylindrical and toroidal geometry.

0 " '' ' '' " ''',"""""""'" "°.' ':,'.
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The additional coupling between radial and azimuthal beam motion need not

be small. Indeed, for sufficiently large energies this coupling through

the fields must dominate coupling through the particle dynamics. The

latter falls off with energy, while the former does not.

The present paper includes these and other (lesser) curvature effects

to first order in the equilibrium and perturbed fields, producing what we

believe to be a more accurate dispersion relation. Like its predecessors,

this analysis ignores the internal dynamics of the beam, treating it as a

string of rigid disks. The assumption of long azimuthal wavelengths also

is implicit in our derivation. Relaxing the last constraint is conceptu-

ally straightforward but algebraically difficult.

In Section II we assemble the various particle and field equations

into a 5x5 self-adjoint matrix operator acting on the perturbed beam cen-

troid position and the electrostatic and electromagnetic potentials. The

differential equations are solved to first order in the toroidal aspect

* ratio in Section III, and the remaining algebraic equations collapsed to

the desired dispersion relation. When no toroidal magnetic field exists

(i.e., for a conventional betatron), an analytic growth rate expression for

the negative mass instability, valid over a wide parameter range, can be

* derived from the general dispersion relation, and this is done in Section

IV. We have not yet attempted to obtain a corresponding simple growth rate

expression for the modified betatron.

* Finally, Section V presents a reevaluation of negative mass growth for

the Office of Naval Research racetrack induction accelerator design,5 based

on the new dispersion relation. The average instability growth rate during

9 acceleration from a few to 50 MeV is reduced by a factor of two relative to

* an earlier prediction.6  With this improvement, the proposed accelerator

my be able to "outrun" the instability with only a modest beam thermal

energy spread.7

* Comparisons with computer simulation results, as applied to the Naval

Research Laboratory modified betatron design, are described elsewhere.
8
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I1. FORMULATION OF THE PROBLEM

We consider an electron ring circulating in an azimuthally symmetric

conducting cavity. Dimensions and coordinates are depicted in Figure 1.

For the present we assume only that the beam and cavity crossections are

symmetric about z-O. Otherwise, the crossections may assume any reasonable
shape. The characteristic minor radius of the beam must be much less than

that of the cavity so that the internal dynamics of the beam can be

ignored. A mirror magnetic field maintains the beam in a circular orbit,

and a toroidal field can be added to confine the beam against its self-

fields, which need not be small.--,
Linearized equations for small transverse displacements of the beam

centroid are easily obtained from the single particle equations of motion.

"y 6i" 6Ez - Ve a6Br + 8 6 + -" V e -- " 6z(

6 E6B z  - B - + V 1 )- r(r z(
yRFe 6 ar ear- 7

+ 2 + I + B )6V (2)

Perturbed quantities are preceded by a delta (e.g., 6z), while unperturbed

quantities are not. Total time derivatives of perturbed particle quanti-

ties are represented by dots above the quantities (e.g. 8i). Note that the

last term in Eq. (2) can be rearranged, if desired, by means of the

equilibrium radial force balance equation,

Er + VB 2 z  + 2 V2/R - 0 (3)

4
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Although the perturbed azimuthal velocity equation can be derived in

many ways, using the single particle energy formula seems simplest.
Er

S3 69e  6E9  + vr 6r (4)

The perturbed azimuthal angle 6e of a beam disk is related to 6Ve by

S6V 0  * R 66 + Vr 6r (5)

Perturbed beam currents resulting from the centroid displacements

described by Eq. (1), (2), (4), and (5) are

61r z p 6r, 6Jz  = p 6

and

0 6 a p 6Ve + Ve 6p (6)

Perturbed charge density is, in turn, derived by substituting the perturbed

currents Into the continuity equation and integrating the result in time.

-P + L p68 + - -L r p6r + - p6z • 0 (7)

Alternatively, Eq. (7) can be obtained by considering how the density of a

beam element changes as it is displaced infinitesimally in each direction.

As explained in the Introduction, we are limiting consideration to low

frequencies and long azimuthal wavelengths. In this limit we need only

determine the electrostatic and azimuthal electromagnetic potentials, which

satisfy

r6+ a ".. "

5



r + 6A 6,,(9)

Teelectric and magnetic field combinations appearing in Eq. (1), (2), and
(4) are expressed in terms of these potentials as

.'
6 EZ -Ve 6B 6t a V 6A (10)

rB az

6Er +~ v 6BZ 6 + V8  r 6A (11)ra rr ar

1 a 2  at

UL - r + 6$ - A at %

These equations complete our model.

'-

Let us now cast the equations in matrix form for compactness and to

emphasize their symmetry. In so doing we also Fourier transform the equa-

tions in time and azimuthal angle, i.e.,

-it at a

and eliminate 6V6 and the perturbed electric and magnetic fields.

.+6

5,,' . . . ' ' ' ' ". . . . , , . , , . , , ,., . . ; , , , , , . x , . . . , . .

..,,, , ¢ ,.,. . -: . .-,, +. . .. . .. , . , . . . ,



V 6z
az -eB8  0 e az 1 -

, t Be ar 8r - - r 6r

0 is9 2Y3 A r6or

a 1 aTr ar
rz a rr r 2 0

,7)

a ar

-V a p -V a p -iWp 0+ ar 6A
•a 2

*0 (13)

* Note that the matrix operator is self-adjoint, as one would hope. Certain

symbols appearing in Eq. (13) are defined as

Y aE aB V Br
z - "2 e 6,3

n+ a +VB + v - (3 T- + B (15)

0

V E
*3 v E r (16)

I "r (17)

* 7
", " " " 1-" ". " * % " ' "*> . . . .. . " ":.". " " " ""' "."" " " "" "" " " * " " *'
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Equation (13) can be solved numerically for beams and cavities of

arbitrary cross section. (Before doing so, it probably would be desirable

-. " to perform a conformal transformation on r,z to map the beam and cavity

:- boundaries onto coordinate surfaces.) In the next Section we instead

*assume the beam and cavity to be circular and concentric in cross section,

as illustrated in Fig. 1, in order to obtain an analytical dispersion

relation. We should bear in mind, however, that other configurations may

exhibit improved stability.

8
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1i1. DERIVATION OF THE DISPERSION RELATION

To develop a dispersion relation from Eq. (13), even for the simple

*) geometry explicitly represented by Fig. 1, is a long and involved process.

For the sake of brevity, we here restrict ourselves to outlining the pro-

cedure and citing pertinent results.

* Converting the partial differential operators in Eq. (13) to a set of

*: coupled ordinary differential operators is the first step. To do this we

carry out the coordinate transformation

z - x cos*, r = R + x sin*

and expand the potentials as Fourier series in poloidal angle i.

6o= 6em(x) e i m , 6A = 16Am(x) e i m 4

Next, we recast Eq. (13) as a variational integral, insert the 6¢ and 6A

expansions, explicitly integrate over *, and perform variations with

respect to 6*m and 6Am. This results in an infinite set of different-

ial equations in x coupling all the poloidal modes of the potentials.

e Expanding the differential equations in x with respect to the cavity

aspect ratio, b/R, leads to a natural truncation of the infinite system.

Basically, an expansion to order Iml in b/R is consistent with dropping all

higher poloidal mode numbers. Two orderings spring to mind. In the first

W, A/R and the electron oscillation frequencies all are taken to be of

order unity (or smaller), and the equations expanded to order b/R. In the

second, w and AIR are taken to be of order b/R, and the equations expanded

to b2/R2 . The first alternative is much simpler, seems to capture the

* essential physics, and agrees reasonably well with simulation results, so

we use it in the following calculations. We are, however, investigating

the consequences of the second ordering and will publish our findings at a

later date.

9



With the ordering selected, straightforward but tedious calculations
yield for x <a:

* (i .' pR68 +~ 1p6r) (x' - a2(i + 2t )

+ I ~ (X2(1 - a~ 2 2 tn)

+ .(i ~a ~p6r x sin*j

+ -2'b221

~pR60 a 2 (a b x sin)

+ a~ pz x cos*

4 6Am I iw pR6(x2 a 2 (1 +2xnt))

+ .' p6r (X2 (1 a 2 + 2a82 in

T- b!i.4 p6r x sin*J

+ I w pR6B X2 + a2 (34a 2 4 + 4.0n x sn

+ .! (I a) pxc s (19)

10



* The validity of these solutions to the truncated equations has been veri-

fied using the symbolic manipulation program MAXIMA.

Back substitution of the potentials into the variational integral

• allows the remaining integrations to be carried out explicitly. (For con-

sistency, the results are truncated to first order in b/R.) Again, MAXIMA

was used to check the manipulations. The resulting matrix equations for

the perturbed centroid location appear as Eq. (20). Its determinant is

• the sought-for dispersion relation.

- a iB 0 6z

2

i0B 0 CL (1 a2[wV(3 -3 a2 + 41n b 6

IT+1a + 4 1 n b)

i a + i Pa2  Q2 Y3 +

0P

(20)

S - , ,,

0 11 •a
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In evaluating the matrix elements, it is necessary to know the equi-

librium fields. They are 9

Er - (r-R) ( + 4 An (21)

P A~2 a 2 b

-2 a -Ve  (r-R) + ve  16R J + 4 + 4 /W

+ Bz° 0 l- n (22)

with similar expressions for Ez and Br. Eq. (3) determines the magni-

- tude of BzO, and Be* is arbitrary.

The dispersion relation is

(2 _2) (2 -bir ) 2- P2B 2 / Y2 .0 (23)

It represents two longitudinal (m 0 0) modes, described by the longitudinal

dielectric constant,

C S 2  v1 2in z 2) (24)

and four transverse (m - ±1) modes, described by Eq. (23) with x 0. The

• transverse oscillation frequencies wz and wr are,

l2 B 2v (25)

12
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0

Bz 0 ' Bz 2Er' Er.
r 2  - (-n) ve - - 2v - + - 2 (26)

Er and Bz in Eq. (26) are given by Eq. (21) and (22) with r-R and
8zO v-.tted. The last term in Eq. (26) is very small. Typically, the

external field Index n is chosen such that wr2 -z2 Note that v is

Budker's parameter, equal to pa2/4.

The key result of our analysis is the coupling coefficient between

longitudinal and transverse modes, which determines the negative mass

instability growth rate.

xE

2
ir 1 3  a2  b\ + a2 b\)

- E 2
Ve E (27)

For comparison, the dispersion relations from Ref. 1 and 2 also can be cast

in the form of Eq. (23) but with coupling coefficients, respectively,

( 2  c) (28)

13
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and

-f V6 Y
e g + + +2 in b )](2V!)2 (29)

It should be noted that there is a degree of arbitrariness in the

choice for the functional form of p(r,z). In the preceding analysis we

assumed p to be constant out to the beam minor radius a, where it drops

abruptly to zero. One might instead have chosen pr/R to be constant, for
1 Instance.9 Fortunately, such changes lead only to insignificant modifica-

tions of x wz2 , and wr 2

r14

..
4..-

.1
.4

14



IV. Be* 0 GROWTH RATE FORMULA

In the absence of a toroidal magnetic field, the negative mass insta-

bility dispersion relation reduces to

- W r- x/E - 0 (30)

I* A simple analytical growth rate expression can be derived from Eq. (30) in

a reasonably straightforward manner, if g2 is much less than Wr2 and can

be dropped from the equation. We address the validity of this assumption

at the end of this Section.

Solely for the sake of algebraic simplicity, we invoke four approxima-

tions.

* 11( 1

3 (1 + 21n .~ 1

a 2

b

Er Ve

All four are well satisfied for typical cases of Interest. Then,V
€ -n 2  Q + 21~n

" - V + 2Un) (31)

15
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b44

V 2

"4
.4- ~)C (32)

Significant cancellations occur when Eq. (32) is expanded.

Vet v + Ve2 12 v 'i 2t (33)

The term linear in n, in fact, only survives due to the difference in the

factors

b 1 21n2 U b

which appear in the first and second terms, respectively, of the definition

for X. Modifications to the expression for x discussed near the end of the

preceding Section, due to changing the functional form of p, are of higher

order than the terms In Eq. (33) and so drop out. Nonetheless, we should

not be surprised If more accurate dispersion relation derivations, perhaps

including high frequency electromagnetic effects, adjust the linear term

somewhat.

Substitution of Eq. (31) and (33) into

2
Wr C + X a 0

leads immediately to the desired growth rate formula.

1n v + 21n 2 1 (34)

16
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0

- In obtaining Eq. (34), we have taken

2 'Ve 2
S-(1-n) ,~

which is accurate for y2 not too small, an assumption we have already

made. Equation (34) reproduces the exact numerical solutions of the dis-

persion relation presented in the next Section to an accuracy of 10%.

Equation (34) predicts an Instability cutoff for

v-f >14(1 - n) (+ 2in (35)

At smaller values of vy, 'he negative mass instability reduces to the well

known expression
1o 11

r112

r [~ V ~+ 21n~ (36)

* We remark for completeness that Eq. (28), from Ref. 1, and Eq. (29), from

Ref. 2, also yield high vy cutoffs. In the case of Eq. (29) instability

ceases for
2 '12

vy > 4(1 - n)/(1 + n-) (37)

while Eq. (28) has the same limit without the factor of four. Both analy-

ses lead to Eq. (36) for sufficiently small vy.

Let us return to our initial assumption,

12  4.2
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Based on Eq. (34), this inequality becomes

(,)2 v + 2Ln ) 1 (38)
5a

or for typical parameters

We see that Eq. (34) is quite generally accurate for Be*= 0.

wd

5'

9A
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V. THE ONR RACETRACK INDUCTION ACCELERATOR

The Office of Naval Research together with the Naval Research Labora-

tory have developed the design for a racetrack induction accelerator

Intended to accelerate a 1 kA (v a 0.0588) electron beam to 40 MeV (y = 80)

In fifty revolutions. In an earlier report,6 we investigated the beam

breakup and negative mass instabilities for this design, concluding that

the beam breakup instability poses few problems for induction module O's of

order six, a realistic value. The negative mass instability was found to

be somewhat more threatening, although there was reason to hope that

thermal effects would reduce the predicted growth rates, especially for

large toroidal mode numebrs.7  Our work was based on the dispersion rela-

0 tion of Ref. 2. Here, we repeat the analysis using Eqs. (23) - (27).

We treat the racetrack cavity as a torus of major radius R = 70 cm.

(Straight sections of the racetrack are expected to have a favorable, but

* very small, effect on total negative mass Instability growth.) Varying the

assumed radius has little affect, because changes in the growth rate are

approximately balanced by changes in the path length. In accordance with

the accelerator design, the cavity and beam minor radii are taken to be b =

S7 cm and a = 1 cm. A Be = 2 kG (wc = 1.73) guide field is applied.

The numerically determined growth rate for these parameters and I =

13, a toroidal mode number near the upper end of the range for which the

* model is valid, is plotted as the solid curve in Fig. 2. The result from

Ref. 6 is shown as a dashed line. The average growth rate is reduced by

about a factor of two. Our more optimistic findings suggest a total nega-

tive mass instability amplification factor of fifteen e-foldings. This

* growth level probably can be reduced to an acceptable level (say, five e-

foldings) by thermal effects or design changes.

19
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Figure 3 illustrates the corresponding Be* 0 growth rates. Peak

values are reduced somewhat relative to the earlier results, but the high

energy cutoff is shifted up in energy by a factor of twenty. For y > 20,

Eq. (34) reproduces the solid curve well.
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I. INTRODUCTION

The modified betatron concept, 1-3 illustrated in Fig. 1, may

provide a compact means of accelerating intense electron beams to high

energies. A dispersion relation for the linear stability of the electron
ring in the device has been derived by Sprangle and Vomvoridis.4  In this

report, we show that some of the approximations in their derivation are not

well justified, and we obtain more accurate expressions. In Sec. II, the

approximation that the phase velocity of unstable waves is approximately

the same as the beam velocity,' V# Vb, is discarded. This signifi-

*I cantly alters the results obtained in two ways. Firstly, the growth rates

obtained are typically two to ten times larger. Secondly, we find that the

conventional negative mass instability does not exist in modified beta-

trons. Rather, the beam is subject to a predominantly transverse instabil-

ity at high energies. We have made a rough estimate of the effect of a

spread in beam energy on this mode. In Sec. III, we examine the effect of

a moderate spread in beam energy on the transverse resistive wall instabil-

ity. We find that in some cases, the effect is negligible because Vb -

V# is too large. For the most dangerous nonresistive and resistive

instabilities, however, significant damping is expected.
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II. LINEAR DISPERSION RELATION

A. Derivation

Our analysis follows th at of Ref. 4, except that we assume a

monoenergetic beam. The details of the derivation are given in the Append-

ix, and here we give only the main points. The beam is modeled as a circu-

lating ring of charge which can displace rigidly in the transverse direct-

ion and which can compress in the toroidal direction (see Fig. 1).

In equilibrium, the beam is positioned at the center of the

minor cross-section of the torus, and executes a cyclotron orbit in the

mirror Bz field. Toroidal corrections to the field equations are

dropped, so that the m - 0 and m - 1 fields are not directly coupled. They

are, however, coupled via the perturbed charge and current. Thus, the m =

0 component of the charge density p satisfies

kE + + t- L( . 0

at r 36 r

where r(e) is the radial location of the center of the beam, and Vr, Ve

are the beam velocity components. The second term in Eq. (1) shows that a

rigid transverse (m - 1) displacement contributes to the perturbed net

(m - 0) charge density. Contributions from perturbed m = 0 quantities to

the m - 1 charge density are second order in the beam transverse displace-

ment, and so do enter the linear dispersion relation. Consequently, the

perturbed m a I fields can be computed directly in terms of the transverse

displacements of the beam. The results are substituted into the m - 0

field equation for the perturbed toroidal electric field E6(0), namely

ii
,[ E.( j. 1, +

2 ()) -(1()

V~~ E0 a8

2 - 11.

2

I -. 4 -



" (see Appendix for definitions and normalizations.) Linearizing Eq. (1), we

v2 E (1) it 9o ( v (1) iVr(1 )  . 0 r(2
Le r 0  AW VO 0 7 1 +2--(2)

Solving this equation with appropriate conducting wall boundary conditions

yields the linear dispersion relation

-4 1 W= 21 Q/-o 2 2

zo/_ ID~o (W 2 2 ) (1 + 21n a/rb) (1 - (1 + i) )

This equation differs from the results of all earlier work in that the

approximation w a itZ°]VY has not been made. Also, the first term

on the second line is new.

B. Nonresistive Instabilities

Equation (3) has some unstable roots due to the coupling of

longitudinal and transverse modes of oscillation. The instabilities per-
sist when the wall conductivity is infinite. The instabilities are low
frequency in the sense the transverse component of their motion is associ-

ated with the slow rotation frequency wB - wrwz/(neo/Yo).

The u.am can also oscillate transversely at the fast rotation frequency,

aso/yo, but there are no nonresistive instabilities associated with

this resonance.

0
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We can clarify the origin of the nonresistive instabilities by

simplifying Eq. (3). We assume w2 2 o/Y O, 2 W2 and

obtain

2 1.-':-.b[- 2 3 2'""" 1 "/ro " )a (B 1. - L. Bz/Y o
p"' 0 r orb U1 + 21n a/r b) =2 42 142 2

whe e a =  2( - s  2/a2). The function P(Aw) has a dif- (3a)

-. ferent character depending on whether IwBl < wzo/yO3 or IwBJ
:-"> to ZO /yo, as shown in Fig. 2. For typical betatron parameters, the

point twBl * jazo/yo occurs approximately at YO- Ytran
2/

[4v ro2/a2)1/3 where v is Budker's parameter. When YO < Ytran'

the roots of the quartic P(,w) = 1 consist of two complex conjugate pairs.

For yo > Ytran , we have two real roots and a complex conjugate

pair. We note that the conventional negative mass instabilitys is not pre-

sent in typical modified betatrons. The derivation of the dispersion rela-

% tion for the latter instability involves the replacement of y0(12

W2 r02/12 )' by Ytb2 = (1 - Vb2 ) "l in the field equation. This proced-

ure is valid only if 2Vyo ( + 21n a/rb) < 1 which is not the case for

modified betatron parameters (cf. Table 1).

Frequencies and growth rates for the 1 1, 2, 3, and 4 nonre-

sistive modes obtained by solving Eq. (3) numerically for the parameters in
Table I are given in Figs. 3, 4, and 5. As we have seen, for Yo <

,tran there are two unstable modes, one with w > iQzo/y o , the

other with w < n zol/y o , and we term these modes "fast" and "slow"

accordingly. In Figs. 3 and 4, only the slow modes are depicted for clar-

ity. The maximum growth rates are for Yo > Ytran' and since most of

the acceleration period lies in this region, we shall examine the region

"2 more closely. For a a 2y02 ) 1, Eq. (3a) reduces to

? = l w2 - + v 1U + 2n a/rb) 3 b = 0 (3b)

44,., 4
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The condition for this cubic in aw to have complex roots is v(1 +

* ZJLna/rb) w/yo3 > 2 WB/(3/ ). This criterion yields the upper bound

on the unstable range of Yo, namely

Ymax (63vr0  (1 + 21n a/b) Bo ) 1/ 2

0 where we have assumed wB (tCtzo/yo. This expression gives ymax

- 153 for the parameters in Table 1(a). The exact numerical results give

Tmax = 156.

For To2 ( ymax2 the complex roots of Eq. (3b) are given

approximately by

= CTov I(I + 2 in a/rb)/ (2r5 2BJ113 e/

where * = 2i/3 , 4i/3 . Thus, the growth rate scales as ti/3, B-2/3,

etc. For the parameters in Table 1(a), this expression yields w =6.81xi0 3

+ i 2.4x10-_ for yo = 50, compared to the exact answer w = 6.82x10-3 +

0 I 2.1xI0 "4 . Numerically we find that throughout most of the range of this

instability we have Aw wB, so that the mode is mostly transverse in

character. The conventional negative mass instability is longitudinal in

character, being associated with the &w = 0 resonance.

A comparison between our dispersion relation, Eq. (3) and that

in Ref. 4 is given in Fig. 6. The mathematical differences between the two

dispersion relations were described in Sec. IIA. Equation (3) gives growth

rates which are two to ten times larger than those from Ref. 4. We discuss

Uhe effect of a thermal spread in energy on these instabilities in subsec-

tion D below.

C. Resistive Wall Instabilities

The presence of resistive material in the walls of the betatron

gives rise to additional instabilities,4 and modifies the growth rates of

nonresist~ve instabilities. To illustrate this effect, we have chosen a

stainless steel wall, for which the conductivity a is 5.2x106 in normalized

, ,,,,m .-, ia ,,alb-a,&m, l, ' . , . . - . ,, , ., . . - . .. - - .. ..5-



units (see Appendix). The results for the i = 1 mode are shown in Fig. 7.

The resistive wall has little effect on the nonresistive instabilities.

However, some modes whose growth rates are zero for a = - are driven

unstable by the resistivity. They are, the fast mode in the region

Io < ftran and a slow mode in the region yo > Ytran denoted

by A and B respectively in Fig. 7(a). (In Fig. 7(b), branch A' is unstable

even for a - i.) Branch B Is due mainly to the term Ell in Eq. (3). The

- growth rates of this branch are much smaller, than those obtained by using
the approximate ell in Ref. 4. Since the resistive modes are driven by the

boundary condition at the wall, they are sensitive to the value of a, the

minor radius of the torus.6 This is why the resistive mode growth rate is

smaller in Fig. 7 than in Fig. 6 (cf. Table 1). The growth rate is approx-

imately independent of To.

The slow mode associated with the toroidal magnetic field cyclo-

tron resonance, w = inz o  - sleo/yo, is also driven

unstable by wall resistivity.6  As indicated in subsection B, none of the

modes associated with this resonance are unstable when a = a. With finite

wall conductivity the mode, which is primarily a transverse oscillation,

becomes unstable when w goes through zero and becomes positive. In a beta-

tron, azo 0 o during the acceleration, so that the instability

turns on when n zo = Qneo/A and continues for the remainder of the

acceleration period. This behavior is shown in Fig. 8. Again, the differ-

ence in growth rates between the two parts of the figure is due mainly to

the differences in the quantities a and Beo in Table 1. For large

o the growth rate is approximately Independent of yo.

D. Practical Implications for- Betatrons

For the sample parameters given in Table 1, it is clear that the

4-.i~i nonresistive instability in the region To > tran is the most import-

ant instability. Thus, for- the parameters in Table 1(a), the number- of e-

a 6
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foldings of the L=1 component during a 1 millisecond acceleration time is

about 4000. This result is for a monoenergetic beam, and gives an upper

bound on the growth. We can estimate the effect of a spread in beam energy

as follows. The thermal spread enters the model in the combination -

S(Qlzo /yo - kAPo), where &Po is the spread in canonical toroidal

momentum (cf. Eq. (4)). The instability for yo > Ytran is associated

with t -± resonance aw = w.. Therefore, a small-thermal-expansion for

this mode is an expansion in the parameter c2=(xktPo)/(Aw - WB) 2 .

If c2 4C 1, Landau damping is negligible, whereas if £2 > l, we expect sig-

nificant damping. As an example, we use the numerical results shown in

Fig. 3(a), and assume an initial spread in yo of 5%. Then, for the z=1

mode at yo = 50, we obtain £2 v 4, so that we can expect a significant

reduction in growth rate. A more rigorous treatment of thermal effects is

needed to confirm this result.

7
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III. THERMAL EFFECTS ON RESISTIVE INSTABILITIES

It has been suggested' that a moderate spread in beam particle

energies may reduce instability growth rates to acceptably low values
through Landau damping. Here we look at the effect of a thermal spread on

the transverse cyclotron resistive wall instability. We choose this case

because the dispersion relation, Eq. (4) is relatively simple and does not

require numerical solution.

A. High Frequency Limit: a/a << 1

From Ref. 4 the approximate dispersion relation for the cyclo-

tron mode including thermal effects is

1 + 2 g(AP) daP (4)
s- 2 W26°i -Wr so 0~i~ o~

where, in normalized units,

A W - t(nzo/ - kAP)

2(1 1"'k = " - " " " -n

SOO 0

r 222
n2 n( r 2/a2 a aY2Q+i -b 6 1

's -n s  b 0 /a0 1i -- a -
a" 

YO

6 (. )1/2

2 1 2 2
W r n 2 (n= 1/2 is assumed)r = s) zol o

g(aP) " distribution function of toroidal canonical momentum

*- spread. See Appendix for additional definitions.
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Write aw2 - Wr2 A o/-o Y (Aw + .kAP - al) (aw + LkAP - a2). Assuming

* IC21" >lol, the Instability comes from the following choice of roots,

2
Wr 

a

CL SlI = - L2 = - o Y o ( 5 )

For g, choose a flat-topped distribution function,

g(AP) 1 for 1AP1 < Apo
0

(6)
g(AP) = 0 for APl > Ap°

*0 Performing the integration in Eq. (4), we get

S1___ _ __ _ 2~ W tk&P 0  -W +2  x P al

1 + s n 0 - 0 " a2 0 0 k (7)
2kAP0(aI - c2) AwO + txk P 0 2 Awo " kAPo " oi

* -0,

where Ao = W - Lazo/yo . The mode we are concerned with has

"w a2. To do a small-thermal-spread expansion, we assume kAP 0" bw - a2 '

In what follows, we shall in essence be checking the consistency of these

two approximations. Expanding Eq. (7), we obtain

_ ns 2 (jkAPo 2)

-2 o" 02 (Awo - c2)

9
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Assuming 6/a << 1, the real part of the frequency, Awr, is

(kAPo)2

Awr gh - Ql /Ywa 1 (8)
800 r ( 2&

=~r c128

Our expansion parameter is thus

. kAPo t LkAP 0f 0/yI -Ar - 2  A 2
's

With AP ro, and o large enough such that ns  << 1, we have

2
n012oYo Yth

If e << 1 for a given choice of parameters, then our small-

thermal-spread expansion is valid. In this limit, there is no Landau damp-

ing from a flat-topped distribution. If c >> 1, on the other hand, the

phase velocity of the mode lies well within the distribution of particle

velocities. The mode is then highly damped. Putting in numbers from Table

1(a)with yo = 50, we obtain E - 3.3x10 3 (Yth/yo ). Assuming a

10% spread in y0 at the beginning of the acceleration period, we have

Yth ' 0.5. Thus E a 33 at yo = 50. Consequently, there will be

significant Landau damping of this mode.

B. Low Frequency Limit: w 0

When w, 0, the small-thermal-spread expansion of Eq. (7) leads

to

02
3/2 + so iW/4 1 0(- r2 e (I + -) 0(9

222 2 2 2 2, 2, 3 122where n = n(1 - r /a 2 ) zo/yo , and n o (rb/a )(2/ a . The

10
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unstable solutions to Eq. (9) are

a2 2/3

( 1 + I )e (10)

where v -/6, - 7v/6. In this case, we obtain

th a2  (%o 2/3 \1/3

* For the parameters in Table 1(a), we obtain c - 27(yth/o). Thus,

for an initial 10% spread in yo' there will be substantially less

Landau damping in this case than where 6/a << 1. For the parameters in

Table 1(b), c = 4(yth/Y) o. In this case, Landau damping will be

*0 negligible, and Eq. (10) shows that there will be a slight increase in the

growth rate due to thermal effects.

0
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IV. SUMMARY

We have rederived the dispersion relation for linear instabil-

ities in betatrons based on the simple model of Ref. 4. Our analysis shows

-that at high beam energies, the dispersion relation does not reduce to that

of the conventional negative mass instability. Instead, we find a mode

which is primarily transverse in nature. Furthermore, we obtain growth

rates which are from two to ten times larger than those obtained in pre-

vious calculations. We have estimated the effects of a moderate spread in

beam energy on nonresistive and resistive instabilities, and find that sig-

nificant damping is expected. A more rigorous calculation is needed to

prove this.
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APPENDIX

DERIVATION OF DISPERSION RELATION

Figure 1 illustrates the physical parameters of the system. The

beam is modeled as a line of charge. In equilibrium, it is situated at

r a ro z = 0, and executes a cyclotron orbit in the mirror Bz field.

As pointed out in Sec. IIA, only the transverse motion of the beam needs

to be considered when computing the perturbed transverse fields. When the

center of the beam is displaced rigidly to position (ro + ar, Az) it

experiences the following fields:
4

Applied fields: Bz  = Bzo (1 - nrkr/r o )

Br a -B n r/r , (Al)

Be  = B (1 - ar/r)

2

(1) no rb
z ~ a2

= "- 2 AZ

S n°0Vr0 r r b/a) )ArZ

r;1  - - -Ta - (b2
r a

nl0V8  rb 22
0 6 - ( 2 rb/)

r2 1/2

where E 1+ i) bT 2

a rb a'

13

..- k&.--- , - ,



In our normalization scheme, frequencies are normalized to w which is

defined by c/uw a 1 cm. Lengths are normalized to c/wo , velocities
02 2

to c, fields to mQwo/e, and densities to w m/4we , where m and e

are the electronic mass and charge respectively. Thus, for example,

Bzo and azo have the same normalized values. The conductivity is

normalized tow /4Aw. In Eqs. (Al) and (A2) above n is the external
0

field index, i.e., ro /ar in Bz(ro), no is the equilibrium beam

density and Veo is the equilibrium azimuthal beam velocity. A positive

beam charge is assumed. The equations of motion of a beam particle are,

V2  dp r  _
-Y + 7t- Er + VeBz" VzBe 

dpz - Ez + VB - VB

-d z r e e r

VV dp

Sr + d E zr rB z 
Y -F dt +V -YBr

where (Vr, Ve , Vz) and (Pr, Pe, Pz) are the velocity and momen-

tum components of a beam particle. Linearizing these equations, we obtain

+eo - 2 B zo V1)
r ly0 0  Y y0

B

Ai + (2z - T) Az a- A - 0 , (A3)

(i)z 0

dY E

-3,
Y0

14



where the superscript(') denotes perturbed quantities,
w2  n-n r2 a 2  2/a 2 b/a 2 /o 2' 2 (n-n 2a2,B2 . 2 ns n /(2yB 2

r - (-n- s rb/ )zo/o -z 16 (-n s b/ zo/o 0 0 0 zo

2 2 2 2 2 2and nsV( eo - rb/a )B zo/Y. Asiumlng Ar, &z - exp (-iwt + tLe),

we obtain the following solutions to Eqs. (A3),

V(1)Y 2  (A 2 - + E) o/ Y
ar = e zz

V(1) 2 
(A4)

AZ = 0Bz° D Be°/0°0

where Aw =w - V/r and D (a 2 2- +  2 _ 2+  _ B o/Yo"
60 0o -"r ~ z e) 0,

Using the third member of Eqs. (A3), V (1) can be expressed in terms

of E (1), the only unknown. To close the system, we obtain a field
equation for Ee(1). We assume that the beam excites only the m = 0

component of E (1). This is reasonable provided rb << a, since

higher m number components go to zero at the center of the minor cross

section of the torus. Further, we assume that only the lowest radial mode

is excited, so that the elgenfunction is approximately constant over the

beam cross section. This is valid provided I,/rol - IwI << 2w/a. Then

from Maxwell's equations we obtain

v 2 01) - iLp(1)/r - iwj 1) (AS)

* where "I" refers to the transverse direction, p(1) is the perturbed

charge density, and )8 ;is the perturbed azimuthal current. Since the

eigenfunction is assumed to be flat in the center, the perturbed charge

density p(1) is proportional to the perturbed line charge v(1). To

obtain an expression for v(1 ) we use the continuity equation for p,

15
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4 p/at+V. (pV) 0. (A6)

Put p v6(R - RO(e)) 6(* - Oo(e))/R, where R, t are local cylindrical

coordinates (r - ro = Rcos*, z = rsin#), and (Ro, to) is the

position of the displaced beam. Multiplying Eq. (A6) by fRdRdo, we obtain

av + -9. + L- (--) = 0 (A7)

Linearizing, and replacing v by p, we have

Up (1 V (1) /r. - yo(1)/rA

= c(rop(i) + r~l)PoW

where p0 is the unperturbed charge density . Equation (A5) becomes

2 1) p E 1 )  WB /Yo 2 r

2~E CO 0 + (o0 2~ 2 0-. e Z± Z"7 D z AW -2
*YAW r0  YO

W O o ~ O/ Y o ( W - A W 2 - T E

eAE''(8

To obtain the dispersion relation, we need to solve

~0 2 (1)(1

10O r b 'r <a

V2  (1 ) r O ~ 1 > a,
iV E o

....



W.(' .**7

together with the following boundary conditions,

0 EM1  r continuous at r = rb

EM (. , ) + 1)_/8-a- at r a.2 - 2/r2
0

As a result, we obtain

*1 P Iprb2 (1 + 2xn a/rb [I - (1 + l)C111

+ W (2_ AW2  i) (A9)

% here 2 r2 /A2 (2/awa2)

l22 2 -2 2

( ro/0 )(I + 21 n a/rb)

9

* For a negatively charged beam, we let Bzo - Bzo.

S

0

0
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TABLE 1. SAMPLE PARAMETERS FOR MODIFIED BETATRON

The values for B80 are approximate practical upper and lower bounds.

*QUANTITY SYMBOL VALUES

(a) (b)

Major Radius r 0  150 cm 100 cm

Minor, Radius a 5 cm 10 cm

Beam Radius r b 1 cm 1 cm

Toroidal Magnetic Field B 80  6 (10 kG) 1.5 (2.5 kG)

*Beam Current v 0.59 0.59 (10 kA)

Beam y-factor Yo5-100

Transition Energy 'Itran 12.9 6.2

Acceleration Time Ta3 107 CM (1 millisec)

40
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Iz 0

(r,r2) Tr 3 ,r)
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(r3 ,r)
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Figure 2. Illustration of nonresistive instabilities in betatrons.
The dispersion relation is P-1. The roots are denoted by

r, r2 . etz., and brackets (,) denote complex conjugate
pairs. In (a) and (b), we depict two regimes of instabiitv
in the modified betatron. in (c). we show the origin of the
longitudinal negative mass instability, Which requires
A 2vr 0 (1 +2 in1 a/rb) <1
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Figure 7. Growth rates for the I a 1 Instability with perfectly conducting
walls (dashed lines) and stainless steel walls (solid lines).
Part (a) is for the parameters in Table 1(a), and part (b) is for
parmters in Table 1(b). Branches A and B are modes which have
become unstable due to the wall resistivity alone. In part (b)
the solid and dashed lines are indistinguishable (the growth rate
of Branch I is approximately 4x10-6 crl). Branch A' Is unstable
for even a mm.
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RESISTIVE WALL INSTABILITIES IN THE MODIFIED BETATRON
0

Brendan B. Godfrey and Thomas P. Hughes

* MISSION RESEARCH CORPORATION

* ABSTRACT

Resistive wall instabilities in modified betatrons are analyzed in

several limits. The moderate frequency, negative energy, mal spacecharge

* and cyclotron waves are found to be most dangerous, potentially capable of

disrupting acceleration for typical betatron parameters. A moderate spread

in electron energy can, however, stabilize these modes.
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Spacecharge limits the ci rculati ng current in a conventional betatron
to tens of amps, unless a very high initial electron energy is assumed.
Adding a strong toroidal magnetic field, however, Increases this limit by
some two orders of magnitude.1-3 The toroidal field also improves beam

stability,4  while a higher current has the opposite effect. This
report discusses resistive wall instabilities5 in a high current elec-

tron betatron with an applied toroidal magnetic field, referred to as a
-. modified betatron.

Resistive-wall-driven instability occurs for both slow spacecharge and

slow cyclotron beam modes, and over a wide range of frequencies.
6

Approximate analytical growth rate formulas are obtained in this report for
the various branches of the resistive wall instability on a cold beam. The
growth rate expressions are then evaluated for a typical set of modified

betatron parameters. We find the spacecharge and cyclotron wave instabil-
ities at frequencies comparable to the electron circulation frequency to be
the most dangerous. Although slowly growing, they persist through a large
fraction of the acceleration. If one can produce a spread of a few percent

in electron energy, however, the modes can be stabilized. Alternatively,
they can be avoided by limiting acceleration times to tens of micro-

seconds.

The structure of the resistive wall instability dispersion relation is

obtained for highly conducting cavity walls by a perturbation expansion
(formally, a Rayleigh-Ritz approximation) about the beam modes in a per-
fectly conducting cavity. This procedure yields

2(w-)U a P,(1)

2



where wo is the unperturbed wave frequency, U is the wave energy, and P
* is the outward Poynting flux at the cavity wall due to finite conductiv-

ity. P is evaluated easily in the long wavelength limit to be7

4"'I L 2 i /4P •e . (2)

Here, R is the minor radius of the toroidal cavity, B is the wave magnetic

field at the cavity wall, and 6 is the skin depth,

6 a /2/o (3)

Frequencies and conductivities are expressed in inverse cm; the speed of

light is unity. Also, a factor of 4w is absorbed into the conductivity a.

Solving Eq. (1)-(3) for the perturbed frequency yields

1/2W - = 2(U/w)' (W O2 6)RB2 ei! /4  (4)

The right side of Eq. (4) is approximately independent of frequency,

because U a w for beam modes.8 (This assertion is incorrect for m = 0

spacecharge waves. Nonetheless, the resulting dispersion relation has been

found numerically to apply reasonably well even then.7 ) Evaluating the

wave energy to complete the derivation is straightforward but tedious.

Instead, we extract the needed term from the recent work of Sprangle and

Vomvori dl s.

These authors determined the imaginary part of w (the growth rate) to

be 2 23
0r O- 2 (5)

0-
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wi th

.23 1 + 2(1- 2nsa2 /R2 ) 2/ 2  
(6)

for moderate frequency w- waves. The beam radius is a. Otherwise, sym-

bols are defined as in Ref. 9. Recasting Eq. (5) as

p 2 8 a2 /R 3
r -(7)

we see that toroidal corrections to the cylindrical drift tube dispersion

relation enter only through a. Comparison of Eqs. (4) and (7) yields

1/2 ( p a2/R3  e1i /4  (8)

0 1/2 f

a ea

For increased generality we have included a geometrical factor f by

analogy with cylindrical drift tube resul ts.7

(2+2R2/) I ± 1 ( a/R 0) (

0, (+2  + IR2/R2  1 m 1 ( R/R) 1

Ro is the major radius of the torus, I and K are modified Bessel

functions, and I amd m are the toroidal and poloidal wave numbers. With

a/R and tR/R both small, f is aproximately 1 for m - 1 and varies as

m2(a/R) 2(w'1  for m > 1. The instability is weaker for m = 0 where

f falls off as (U#/Ro),2 and for m < 0 (wave poloidal helicity opposite

that of the electrons), where f decreases as m(a/R)
2 (m+1)

For slow cyclotron waves, characterized by

i - aDn/Y -ge/y , (10)
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the peak growth rate from Eq. (8) occurs at wo - 0.

-1/3 rp 2&2/R3  1 2/3 w/6

I e
The constraint wo - 0 Implies I - Os/nz. During acceleration, the

vertic; magnetic field Oz (and the beam energy y, which is proportional

to nz) Increases adiabatically. Hence wo - 0 is satisfied for only a

limited time period,

w A At (12)

Equating the instability band width Aw to the growth rate r, replacing Qe

by toz , and solving for At, we obtain the total growth occurring as the

instability passes through resonance

r At r (13)
zY

Eq. (13) *s maximized late in the acceleration cycle, when y is large and

the resonant I value is small.

* After passing through wo - 0, the cyclotron resistive wall instabil-

ity for fixed t does not, of course, cease but instead transitions smoothly

to a lower growth rate regime.

W o + -1/2 -1/2 W  fa/ e1 /4 . (14)

Setting m = 1 recovers Eq. (5). Although the growth rate of Eq. (14) is

somewhat smaller than that of Eq. (11), the corresponding total growth of

the former,

(rat)eff " (201/2 w' f ffZ , (15)

5
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may exceed Eq. (13). The integration in Eq. (15) extends from the time at

which w0 is greater than a few times the w in Eq. (11) until the end of

the acceleration.

Parallel instabilities occur for slow spacecharge waves, characterized

by

W- a JWz/y - NU B  (16)

where wB Is the beam poloidal rotation frequency, a small quan-

tity.9 For growth to occur at the rate in Eq. (11), we must have m -

12z/YwB. Even for I as small as one (there is no L = m = 0 spacecharge

wave), m must be quite large. Consequently, f± always is small near wo

a 0 for spacecharge modes, and resistive wall growth is in this case neg-

ligible. On the other hand, for modest positive values of wo instability

of slow spacecharge waves is described by Eq. (14), with growth rates com-

parable to those of slow cyclotron waves.

Breizman and Ryutov have shown the existence of another, high fre-

quency branch of the resistive wall instability for spacecharge

modes.10,11 To second order in R/Ro , the growth rate for this insta-

bility is identical to that in a straight tube. Peak growth for the m = 0

mode occurs at i -yRo/R, with y the normalized electron energy.

R1 Z+n(Ria) ) (17)

Note that this expression is independent of the magnetic guide-field

strength. At long wavelengths the growth rate falls off as 11/2, until

it merges with the lower frequency branch. The growth rate decreases more

gradually at shorter wavelengths. Interestingly, the instability persists

for m 0 0, although with reduced growth rates.
7

6
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Numerical studies with the laminar beam stability code GRADR 12 ' 1 3

B confirm the absence of a corresponding high frequency cyclotron wave resis-

tive wall Instability.
7

We illustrate the relative importance of the various forms of the

0 resistive wall 'nstability for the typical modified betatron parameters

listed in Table 1. A stainless steel tube wall, with normalized conductiv-

ity a a 5.24 . 106 cm-1, is assumed. (The conductivity of copper is

about forty times larger.) Inserting these values into Eq (11), we find

r - 4.0 • 10-5 curl for m - 1 cyclotron waves at wo - 0. The corres-

ponding skin depth is 6 a 0.07 cm; the cavity wall must be at least this

thick for Eq. (11) to be valid. The growth rate value just given assumes

A a 1. The increase of A near the end of the acceleration period reduces r

by less than 25%. Equation (13) is maximized by y - 70, where the x

value for the wo " 0 resonance drops to one. Total growth is rat = 3.6

in this case. After passing through the o - 0 resonance, the L = M = 1

slow cyclotron mode continues to grow, at the rate in Eq. (14). Evaluating

0 this expression for the typical frequency wo w Qz/y yields r a 5.1 • 10- 6 cm"1.

Growth occurs over about 1/3 the acceleration period, or rat - 55 when the

wo a 0 contribution is included.

S As already discussed, growth of slow spacecharge waves near wo = 0

is negligible. At higher frequencies, the growth rate of the i - m = 1

spacecharge wave is comparable to that of the corresponding cyclotron

mode. Since growth occurs throughout the acceleration period, rat a 150.

At sti" higher frequencies m - 0 spacecharge waves grow at a maximum rate

of r a 1.3 * 10-6, or about 25% of the intermediate frequency growth

rate. It is important to bear in mind that these growth estimates probably

are uncertain by a factor of two, due to approximations made.

7
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'p.- TABLE 1

Typical odified Betatron Parameters Used in Evaluating Resistive Wall

Instability Growth Rates.
V.

Toroidal Magnetic Field Be  2.5 kg

Vertical Magnetic Field (Initial) BZ 115 g

Toroid Major Radius R0  100 cm

Toroid Minor Radius R 10 cm

Beam Radius a Icm

Beam Current 
0.59

Beam Energy y 7-100

Acceleration Time 
3.10 7 cm

B
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The preceding analysis ignores thermal spread in the beam electron

velocities. As a result of the toroidal geometry, a spread in electron
toroidal velocity can smear out the transverse resonances associated with
the resistive instabilities. In a companion paper we find that the

* required spreads in toroidal and transverse velocities are achievable from

a few percent spread in initial electron kinetic energy. 14  A similar
conclusion was drawn in Ref. 9, based on a Lorentzian distribution of ener-
gies. Of course, this damping of spacecharge and cyclotron wave instabil-

ities by a spread in electron velocities is ineffective for low frequency

modes. As we have already seen, however, these latter modes are not a ser-

ious problem.

* In summary, we find that the m - 1, low z spacecharge and cyclotron

wave instabilities are the most dangerous of the various resistive wall

phenomena identified for modified betatrons. Amplification factors of
e150 - 1065 and e55 - 1024, respectively, are predicted for

the parameters in Table 1. Successful operation of a modified betatron
requires cutting the growth exponent rat to about unity. (Computer simula-

tions suggest that initial perturbations may be quite large.15)

Employing more highly conducting cavity walls provides a factor of six.

Reducing the acceleration time by an order of magnitude would then effect-

ively eliminate these instabilities. Alternatively, an initial spread of a
few percent in the electron energy should be sufficient to damp out the

modes.

We are indebted to M. Campbell, M. Jones, D. Sullivan, and particu-

larly P. Sprangle for helpful discussions. This research is supported by

Office of Naval Research contract N00014-81-C-0647, monitored by C.

Roberson.
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I. INTRODUCTION

High current racetrack beam induction accelerators and modified beta-

trons are a subject of increasing interest as sources of high power elec-

tron beams for free electron lasers, flash radiography, and other applica-

tions. The racetrack induction accelerator geometry is illustrated in Fig-

ure 1. The beam is injected from a conventional pulsed diode beam genera-

tor into the drifttube, is progressively accelerated as it repetitively
• passes one or more induction modules, and then is extracted from the accel-

erator for its intended use. Beam extraction may even be unnecessary for
microwave applications, because a slow-wave or rippled-magnetic-field cav-

Ity can be inserted in a straight section of the drifttube.1

Most beam stability studies for high current recirculating devices
have dealt with negative mass and resistive wall instabilities. 2 - s  How-

ever, experience with linear induction accelerators suggests that beam

* breakup and image displacement instabilities due to beam interaction with

the induction modules and other discontinuities in the drifttube may be

significant.6 ,7  The beam breakup instability arises from a resonant

coupling between beam transverse oscillations and m=1 electromagnetic cay-

* ity modes localized to the acceleration gaps,8 while the image displacement

Instability is caused by interrupting the m- beam image current in the

drifttube wall. 9  Clearly, the two are interrelated; in some contexts the

image displacement instability can be viewed as the low frequency limit of

the beam breakup instability.

This paper extends instability results developed for high current lin-

ear Induction accelerators to cyclic devices. The primary differences are

(1) that the beam passes the same few gaps again and again, and (2) that

the curved beam trajectory couples longitudinal to transverse motion, per-

haps leading to a hybridization of the negative mass and beam breakup

modes. Experience with interaction among instabilities in other situations

suggests that the latter item is the less important of the two.10
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Therefore, we consider only the former aspect, periodicity of the inter-

action, and omit curvature effects. As in earlier calculations, we assume

that the beam propagates at the speed of light, that lateral displacements

* of the beam are small and rigid, and that the gaps are narrow compared to

the beam oscillation wavelength. The consequences of relaxing these

approximations for the image displacement instability under different cir-

cumstances is discussed elsewhere.9  We expect the three approximations to

* be adequate for present purposes.

A general dispersion relation for a multiple gap racetrack induction

accelerator is derived in Section I. Because the resulting expression, a

determinant, is cumbersome, we then specialize to the case of identical,

uniformly spaced gaps, obtaining approximate analytical growth rate form-

ulas for the beam breakup and image displacement instabilities. Section

III illustrates instability growth for a I kA electron beam accelerated to

40 MeV through fifty cycles of a four gap device. (These parameters are

based on an induction linac developed by the National Bureau of Standards

and now being modified at the Naval Research Laboratory. 11 ) First, growth

rates are estimated based on the formulas of the preceding Section. Then,

more precise numerical values are obtained with the beam transport code

BALTIC, including the effects of acceleration and initial transients. Oui.

findings, summarized in Section IV, are encouraging: The image displace-

ment instability is negligible, and the beam breakup instability is manage-

able provided that the mode quality factor Q is kept low. A comparison

with the negative mass and resistive wall instability growth rates also is

provided.

II. DERIVATION OF GROWTH RATE EXPRESSIONS

In the long wavelength, paraxial approximation the linearized equation

of transverse motion for the beam centroid is given by9 ,1
0

3
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4.7

d + d N d +d

N:1 1,, a2

Here, C - x + iy is the (complex) transverse displacement of the beam

centroid, p Is the beam density, y Is the beam relativistic energy, a is

the beam radius, R is the drifttube radius, and wc is the cyclotron

frequency for the magnetic guide field. Time is normalized to the beam

axial velocity, which is in turn assumed to be equal to the speed of

light. The last term on the left side of Eq. (1) represents the combined

transverse forces on the beam from its image charge and current in the

smooth drifttube wall. Discontinuities in the wall are treated as

impulsive forces appearing on the right side of Eq. (1).

We begin the derivation of the dispersion matrix by assuming the beam

parameters to be constant in time and Fourier transforming Eq. (1).

(2)

2 E 1 6(z - z)E

As mentioned in the Introduction, we shall take account of time-varying y

in Sec. III by direct numerical integration of Eq. (1).

Next, Eq. (2) is solved for C, treating the right side of the equation

as a source term. This can be done using a Green's function or, equiva-

lently, by twice integrating the equation and imposing periodicity at z

L, the accelerator path length. The result is

4
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* y(k4 k_) C(z)

(3)

+2ikL2 Fj C(zj) exp[ik+(slgn[z. - z)L12 - (zj - z))]

-(2slnkL/2Y
1  F (z)episln. - z)L/2 - (z. - z)))

*where N is the number of acceleration gaps and Slgn(x) is the sign of x.

The wavenumbers kt characterize the beam cyclotron and spacecharge waves,

respectively, as determined by the left side of Eq. (2), i.e., between

gaps.

0~ a W + ("'c ± [W c 2 _ 2pa 2/-yR2)11/2 )/2-f (4)

For typical ind-tction linac parameters, k+ * w + wcf-y and k-.- w.

Although it may At be immnediately apparent, E(z) as expressed in Eq. (3)

is everywhere continuous; its first derivative is discontinuous at zj.

Evaluating Eq. (3) at each of the gaps yields the system of equations

* y(k+ - k_) E (z 1)

(2sink+L/2)- I Fj C(zj) exp[ik+(L/2 - Mod[zj - z,,L3)]
Jul

(2sinkL/2)- I j (zj) epiL2- Mo~j- ,Ll

jai

Here, Mod (x,L) is x modulo L, defined to lie between 0 and L. The deter-

minant of the coefficient matrix of Eq. (5) is the desired dispersion rela-

tion. In general, it must be solved numerically to obtain w. Additional

analytical progress can, however, be made when the gaps are spaced uni-

formly and all have the same response function F.

0
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-(k- k-) c (I/N)

(6)

N-i
(2sink+L/2) F jO (L/N) exp[ik+(L/2 - Mod[j - t,N)L/N)]

1  N-I
- (2sink.L/2)"  F I E(JL/N) exp[tik(L/2 - Modfj - t,N]L/N)]

imo

Since its right side is a discrete convolution, Eq. (6) is readily
solved by performing a finite Fourier transform. We find

Sy(k+ - k_) - iF { (1 - exp[2wim/N - ik+ L/N]) 1

- (1 - exp[2wim/N - ik. L/N]) I

or, more simply,

SF k+L/2 -tm] k 1/2 -urn

1 a 4(k+ F- k_) ctn[ k+2N - - ctn[ k -L * (8)

The transform index m ranges between 0 and N-i. Still another useful

representation, reminiscent of results for nonrecirculating devices,

cos[ (k+ + k.)L/2N - tm/N]

(9)
cos[(k+ - k.)L/2N] + F sn(k+ - k.)L/2N]

6



* For F/sc small these equation are approximately satisfied by k+ - kn or

k. w kn, with kn a 2wn/L. Correspondingly,

W a Wn  a kn[ - ± t 2p& 2/yR2)1/2 )/2Y . (10)

Instability may occur when w matches a resonant frequency of F or when the

right side of Eq. (9) exceeds unity away from a resonance. These two pos-

sibilities are realized in the beam breakup and image displacement insta-

* bilitles, respectively.

The beam breakup instability is caused by TMln 0 oscillatory elec-

tromagnetic fields localized to the acceleration gaps and adjacent drift-

tube regions. These cavity modes are conveniently represented by damped

harmonic oscillator equations for their normalized vector potentials.

d2  +W d +° 2 ) A1  w,-- opa 2 C(z) (11)

Q Is the cavity mode quality factor, while wo is its frequency. Coupling

between the beam and a cavity mode is given by its transverse impedance

ZJJQ. The transverse impedance is basically a geometrical factor, which

tends to scale linearly with the gap width.

Fourier transforming Eq. (11) in time, we obtain for F -A/

F *o 
2  WoZ:L a2 (12)• F- W + ioi Q . WO(

7I
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The beam breakup instability growth rate now can be approximated in the

usual manner by expanding Eq. (8) and (12) about wn, defined in Eq.

(10). The resulting quadratic in w - wn shows instability only for kn

S * k., with growth rate
!N• -o " 2  w_ o .2 1/ 2

'" W" fn a + "' 1 ['1" ) I 'Q i
n"-C W 0

n -(13)1 -i n° °

%J

Note that this derivation fails for sin[(k+ - k.)L/2] too small; see Eq.

(9). More precisely, the instability growth rate is reduced whenever

INkn - wc/yI is less than the absolute value of the right side of Eq.

(13) and finally vanishes when Nkn - wc/Y.

The image displacement instability arises due to interruption of the

beam image current at a discontinuity in the drifttube wall, such as occurs

at an acceleration gap. The analysis in Ref. 9 and 12 gives a force coef-

ficient

F , 1 a2(14)
R

The effective gap width z is given by the physical width when the latter is

small compared to the drifttube radius R. In the opposite limit, i < R.

As already noted, growth occurs whenever the right side of Eq. (9) exceeds

unity. For F/wc small this happens only in a narrow parameter region
centered on tan[(k+ - k.)L/2] a F/y(k+ - k.), for which the growth rate is

8
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In the next section we evaluate these two growth rates for possible

recirculating induction accelerator parameters and then generalize our num-

* erical results to include irregular gap spacing and beam acceleration by

computer solution of Eq. (1).

III. NUMERICAL EVALUATION OF GROWTH RATES

The four gap linear induction accelerator at the Naval Research Labor-

atory is an attractive candidate for a recirculating device. The accelera-

tion gaps are in pairs with the members separated by about 30 cm. The

0 distance between the two pairs is arbitrary within reasonable limits. Here

we take the distance to be 200 cm, giving a total round-trip path length of

L a 460 cm. (The specific value chosen does not strongly influence our

conclusions.) The principle wmi gap normal mode is at 880 MHz with a

transverse impedance of 15 ohms and a Q of 60. Each gap provides an accel-

eration of 0.2 MeV, resulting in an energy gain for the electron beam of 40

MeY after 50 passes. A beam current of I kA and guide field of 2 kg are

assumed. These parameters are summarized in Table 1. Note that y in the

table has been corrected for the spacecharge depression in the

drifttube and also that ZL/Q has been expressed in dimensionless form by

dividing the transverse impedance by 30 ohms.

Although the four gaps are not spaced uniformly, a reasonable upper

bound on beam breakup instability growth can nonetheless be obtained from

Eq. (13). We find r - 12.9.10 -4 cm-1 , corresponding to about 30

e-foldings during the course of acceleration. (We assume wo - wn.)

The most obvious way of cutting this amplification to an acceptable level

is by reducing Q. Recent work at Lawrence Livermore National Laboratory on

short pulse induction accelerators suggests that a quality factor as low as

9
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TABLE 1. NOMINAL RACETRACK INDUCTION ACCELERATOR PARAMETERS

Path Lengths L a 460 cm

Drifttube Radius R * 7 cm

B eam Radius a - 1 cm

Guide Field Bz * 2 kg (wc 1.173 cm-r1)

Beam Current I a 1 kA (v *0.0588)

Beam Energy U aO.4 - 40MeV (E1.5 -80)

Number of Revolutions 50

Number of Gaps N-= 4

Acceleration per Gap &U =0.2 MeV (y*0.4)

Gap Resonant Frequency 880 MHz

Mode Quality Factor Q - 60

Gap Transverse Impedance 15 ohms (Zj/Q -0.5)

Gap Width a .5cm

10



* six is achievable. 1 3  For Q-6, r 2.4.10-4 cm- 1 , or 5.5 e-foldings. As

many as eight e-foldings may be tolerable provided the gaps are not excited

appreciably a- their resonant frequency prior to beam injection.

* More precise growth rates can be obtained by numerically solving Eq.

(5) plus Eq. (12). and this is not difficult to do. Instead, we choose to

Integrate Eq. (1) plus Eq. (11) directly using the computer program

BALTIC. The code was exercised extensively in support of the RADLAC radial

* pulseline accelerator program and so is well tested. 1 0  BALTIC has the

advantage over a dispersion relation solver that it takes account of bea

acceleration and of transients. It is, of course, much slower.

* Table 2 summarizes thirteen runs of the BALTIC code. The quantities

N. Q, Wo, and y were varied, but with NZ1 /Q held fixed. Some calculations

involved an accelerating beam. Cases 1-4 illustrate the effect of changing

Wo - wn. Because kn - 0.014.n cm-1, the pattern of growth rate

variation with wo in these four cases repeats itself with the same 0.014

cm-1 periodicity in wo. It so happens that sin[(k+ - k.)L/2] is small

for y - 80, the value chosen in cases 1-4, which reduces the growth rate

some. Setting - - 60 avoids this situation, increasing r by 25%, as

illustrated in cases 5 and 6. The growth rate change caused by dropping Q

from 60 to 10, as in case 7, is consistent with Eq. (13).

The seven cases just discussed were for a single gap. Cases 8 and 9

treat two gaps evenly spaced. Growth rates are comparable to the single

gap runs, as expected. The enhancement of r for case 9 relative to case 8
again arises from adjusting sin[(k+ - k.L/2].

Finally, cases 10-13 treat four gaps spaced as described at the begin-

ning of this Section. Also, the beam is accelerating in these last four

runs. It is clear from the resulting growth rates that the gradual accel-

eration which occurred has little effect on stability except to average

11



TABLE 2. SUMMARY OF KAN BREAKUP INSTABILITY CALCULATIONS WITH BALTIC

N rCase N Q (cm-) (10- cm-I)

1 1 60 0.18 80 8.3

2 1 60 0.1732 80 3.3

3 1 60 0.17757 80 8.9

4 1 60 0.1787 80 8.8

5 1 60 0.18 60 10.0

6 1 60 0.17757 60 12.3

7 1 10 0.18 80 3.4

8 2 60 0.18 80 9.6

9 2 60 0.18 1.5 12.0

10 4 60 0.18 1.5-80 9.8

11 4 10 0.18 1.5-80 2.6

12 4 6 0.18 1.5-80 1.2

13 4 6 0.17757 1.5-80 1.6

'4 '4 12
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* over wo - a and sin[(k+ - k.L/2]. In case 13, wo was decreased

slightly to maximize growth at large y. Indeed, r increased by one-third

relative to case 12.

* Figure 2 depicts the maximum transverse displacement of the beam as a

function of time for case 13. It and the other runs were initiated with a

uniform transverse offset of unit magnitude for the beam. The cavity modes

were initially excited at an amplitude consistent with injection of the

* offset beam with zero risetime, a worst case assumption. The displacement

is seen to grow by a factor of about 3.6.

The image displacement instability turns out to be insignificant.

* From Eq. (15) its peak growth rate is 0.9.10-4 cm-1 . Since this occurs

only over a narrow range of parameters, however, we should expect a much

slowi r average growth during acceleration. Indeed, a four gap BALTIC run

gave no coherent growth whatsoever, and transient fluctuations amounted to

less than 15% of the initial displacement.

IV. CONCLUSIONS

In this report we have developed a simple theory of beam breakup and

image displacement instabilities in cyclic induction accelerators and

applied it to obtain growth rate estimates for a possible device. The

theoretical model takes recirculation into account primarily by enforcing

periodicity on the unstable transverse models. Drifttube curvature effects

were not considered. We find for the I kA, 40 MeV accelerator that neither

the beam breakup nor the image displacement instability should be serious.

Specifically, with Q-6 and parameters otherwise as in Table 1 the beam

breakup growth rate is r - 1.6.10-4 cm-1 ; the image displacement growth is

negligible.

13
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For comparison, growth rates of the negative mass and resistive wall

(for stainless steel) instabilities for comparable parameters are of order

5-10- 4 cm- 1 and 0.2.10-4 cm- 1 , respectively. 3-5  Thus, the negative mass
instability is somewhat more serious than the gap-induced instabilities in

this Instance.

The accelerator path length L - 460 cm chosen for the numerical calcu-

lations is perhaps small for practical devices. Increasing L by lengthen-

ing the straight sections of the racetrack geometry would have little

impa-t on any but the resistive wall instability integrated growth: Growth

rates of the gap-induced instabilities decrease roughly as L-1 , so that
growth per pass remains fixed, while the negative mass instability grows

only in the curved sections of the drift tube. In fact, the negative mass

mode may decay in straight sections. Growth per cycle of the resistive
wall instability, of course, increases linearly with L. Its growth rate is

so slow, however, that the path length could be increased by an order of
magnitude or more before the resistive wall instability became competitive

with the other modes.

The important stabilizing influences of electron energy spread and

transverse oscillations have been omitted from our calculations. Recent

estimates for betatrons with comparable parameters suggest that a 100

spread in the injected beam electron energies is sufficient to suppress the

negative mass instability provided that the mean injection energy is

greater than about 3 MeV.2 -5  Additionally, research in support of the ATA

accelerator program predicts that employing occasional nonlinear focusing

elements to spread the electron transverse oscillation frequencies can

limit beam breakup instability growth.1 4 We remark also that varying the

resonant frequencies wo from gap to gap can cut the beam breakup growth
rate by N-1 , provided the relative shifts are greater than Q-1.15

15



Extensions to the present research naturally fall into two categories,

adding drifttube curvature and adding beam temperature. The former is rel-

atively easily accomplished by inserting the transport equations of Ref. 4

-or 16 into BALTIC. This also would allow us to determine the influence of

straight drifttube sections on the negative mass instability. Treating

,., beam temperature beyond what has already been done probably requires numer-

ical simulation.
1
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• SUMMARY

i Beam breakup and negative mass instability growth rates for a I kA, 40

,. MeV electron beam racetrack induction accelerator are computed. The device
ie  is taken to have four acceleration gaps, each with 0.2 MeV applied voltage

and 15 ohm transverse tmpedence; the guide field is 2 kg. We find that the

~total amplification of the beam breakup mode is limited to five e-foldings
provided that the cavity mode quality factor Q is 6. Thus, the negative

dQ mass instability, which grows several times faster, is the dominant con-

sideration. However, we also find that the energy range over which the
~negative mass instability occurs can be narrowed substantially by reducing

the guide field strength after the beam has been accelerated to about 12

N eV. This approach, coupled with beam thermal effects, not considered
here, probably is sufficient to imit negative mass growth to acceptable

levels in the racetrack accelerator.

INTRODUCTION

High current racetrack induction accelerators and modified betatrons

are a subject of increasing interest as sources of high power electron

beams for free electron lasers, flash radiography, and other applications.
SndThe racetrack induction accelerator geometry i is ustrated schematically

in Figure o. The beam is injected from a conventional pulsed diode bea

generator into the drifttube, is progressvely accelerated as it repeti-

tavely passes one or more induction modules, and then is extracted from the

accelerator for its intended use. Extraction may even be unnecessary for
microwave aplications, because a slow-wave or rppled-magnetc-field cav-

ity can be inserted in a straight section of the drifttube.1

n Most beam stability studies for high current recrculating devices
have dealt with the negaie mit neative g pwall instabilities. 2-

However, experience with inear induction accelerators suggests that beam

a #" -re a sbjec of... .incrasin intret.s ouresofhih.pwe.eecro
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* breakup due to interaction with the induction modules and other discontinu-

Ities In the drifttube may be significant.6.7  The beam breakup instabil-

Ity arises from a resonant coupling between beam transverse oscillations

and m-1 electromagnetic cavity modes localized to the acceleration gaps,

* resulting in large lateral displacements of the beam.8'9  In this pape-

we present a linear dispersion relation describing both beam breakup and

negative mass instabilities, including their possible interaction, and

evaluate it for parameters of the proposed racetrack induction accelerator

* designed by the Naval Research Laboratory.1

The NRL device is based on the four module linear induction acceler-

ator developed by the National Bureau of Standards.1" It is expected to

accelerate a I kA electron beam from 1 to 40 MeV in fifty cycles. The beam

and drifttube radii are 1 and 7 cm, respectively. The principle m-1 reson-

ance of the gaps has a frequency of 880 MHz, an impedence of 15 ohms, and

a quality factor (Q) of 60. Experience with the ETA linear induction

accelerator at Lawrence Livermore National Laboratory indicates that Q can

be greatly reduced, however, and we shall take Q-6 in our numerical work." 1

The NRL design includes a 2 kg axial magnetic field to maintain the beam

equilibrium and improve beam stability at low energies. Reducing or elim-

inating this guide field at higher energies is nonetheless an interesting

possibility. The stability analyses below consider both options.

DISPERSION RELATION

For sim~licity we represent the racetrack accelerator as a torus with

a single gap. These two approximations are conservative in that omitting

the straight sections of the racetrack and lumping the several gaps into

one overestimate negative mass and beam breakup growth, respectively. The

desired dispersion relation is

3
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(L2-Wr2 + Fr/YL + te2Y2X) (a 2 z2 + Fz/yL) (1)

- e/y)2 A2 - 0

with

2 ~22
.x a (WV8 - )/[nl , V 1 2.) ]  (2)

0 RT

v - (I + 2tn a/rb) v/- 3  (3)

Here, n - w-twe is the Doppler-shifted wave frequency, z is the toroidal

mode number, and we - ve/R is the toroidal rotation frequency of the

beam. (The poloidal rotation frequency is assumed negligible.) The radial

and vertical betatron frequencies are

Wr 
2  (- n - ns rb 2/a 2) we2

i 2 . (n ns rb2/a 2 ) W.2

ns = nb/(2w e2 3) (4)

with n the betatron index, nb the beam density, v = nbrb 2/2

Budker's parameter, and y the beam energy. The drifttube major radius is
R, the drifttube minor radius is a, and the beam minor radius is rb.

L-2,iR. The toroidal guide field strength is B9; the betatron field

strength enters as Bz -we .
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In a high current betatron wr2 and wz2 can be of either sign. The

beam is unstable, however, whenever

wB 
2 

. WJ 
2 

Wr 2/(Belh) 
2  (5)

is negative. To avoid this situation, as well as for simplicity, we take

n-l/2. The energy at which wB2 _ 0 typically is labeled the transition
* energy,

ene rg , (4 v R2/a2) /3  

(6 )
*ftr

The gap response function F is defined as
9

3

F z I o V (7)
W + iWow /Q --w2

where wo is the resonant frequency, ZI/Q is the transverse impedence, and

Q is the quality factor. Setting F=O in (1) recovers the high current bean

negative mass dispersion relation. The negative mass instability occurs

for all i over a broad range of energies when Y > ftr" For low x only,

one or two instability bands (often overlapping) also may exist when Y <

Ytr " Three of the six beam modes (m-O spacecharge, m=1 spacecharge,

and m-1 cyclotron; m is the poloidal mode number) have negative energy and

so can couple unstably to the gap fields. Note that coupling in the m=O

spacecharge mode occurs only due to toroidal curvature. Choosing R=70 cm,

we find maximum coupling at z-13.

5
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LARGE B ANALYSIS

For the parameters considered here and toroidal mode numbers in the

vicinity of 13, the negative mass Instability exists only beyond the trans-

ition energy ftr a 2.9. Just above the transition energy the insta-

bility is due solely to the interaction between the positive and negative

energy m-1 spacecharge modes, while at still higher energies the m=O space-

charge modes also are involved. This change is readily visible in the neg-

ative mass instability growth rate, the dashed curve in Figure 2. Which

portion grows faster depends on circumstances.

1I Although the peak growth rate at lower energy is not readily deter-

mined analytically, the higher energy peak i's easily shown to be

/3 2321/3

r - [2 1W W8 v 2/ (8)

Instability ceases for

y > [6/ IRB v ( + 2 in a/rb)]1/2  (9)

here about 62.

In the absense of curvature, the beam breakup growth rate also is

easily estimated. For Q not too large,
9

rv Z./Q (10)

Both m-1 negative energy modes grow at this rate when their frequencies

roughly match wo.

6
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The solid curves in Figure 2 show growth rates of the negative mass

and beam breakup instabilities combined. The negative mass results are

seen to be only weakly affected by the gap resonance. The m=1 cyclotron

and hybrid m-0/1 spacecharge modes have become unstable, however, with a
growth rate agreeing with (10) to within a factor of 1.5. These findings

b 
o are insensitive to small changes in the resonant frequency.

SMALL B ANALYSIS

Although modified betatron and racetrack induction accel *ator studies

usually assume a large toroidal guide field, large Be is in fact needed

" to provide a beam equilibrium only for y small. Reducing or perhaps elim-

. inating Be after the beam has been accelerated sufficiently has certain

advantages for stability, as we see below.

For B9=0, the negative mass growth rate is approximately

3 - 2 1/3
[r D e v (11

This expression exceeds (8) whenever Be/Y > we. However, the corres-

ponding high energy cutoff,
a

y > 3/6 xv (1+ 2 in aft (12)

here 27.5, typically is much lower than (9). See the dashed curve in

Figure 3.

The beam breakup instability maximum growth rate is again readily

estimated, this time giving

r -w o  v Z1 /Q

64.
8
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- Equation (13) exceeds (10) for Be/y > 2wz. The solid curves in Figure

3 show the effects of F*O. As in Figure 2, the negative mass instability

is only slightly modified by the gap; the beam breakup instability is des-

cribed reasonably well by (13).

=- I
A comparison of the two figures suggests that some reduction in total

Instability growth during acceleration can be achieved by rapidly decreas-

- ing the guide field as the beam energy exceeds about 12 MeV.

RECOVERING "CONVENTIONAL" NEGATIVE MASS INSTABILITY BEHAVIOR FROM THE
HIGH-CURRENT-BETATRON DISPERSION RELATION

The preceding small Be analysis predicts a high energy cutoff for

the negative mass instability in a high current betatron, while standard

derivations of negative mass growth, performed for a low current betatron,

lead to no such cutoff. 12 ,13The source of this apparent discrepancy,

namely the failure of the usual approximation

1 - W2R2/t2 R A -2 (14)

when vy' becomes large, has been noted previously. To emphasize this

point, we here recover the accepted low current growth rate and show that
it too exhibits a high energy cutoff, where (14) breaks down. Interest-

Ingly, a comparison of the new cutoff with (12), the high current limit,

indicates that practical betatron parameters exist for which the negative

mass instability does not occur at all at moderate toroidal mode numbers.
hI

We begin by setting Be (and F) to zero in (1).4

S 2 y 2 x " o (15)

Next, we drop 02 as !" %11 compared to wr2 ,valid for m-O spacecharge waves

in low current beams, and rearrange terms in the expression for x.

10
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a'

(+ v)+ -2P v 1 v (16)

The conventional negative mass growth rate is obtained immediately by omit-

ting terms linear in n from (16), an approximation equivalent to invoking
(14).

Alternatively, (16) can be solved exactly.

2

2(1 + V) 2 - _7 v' t2--- 2)
Wr

2 2 W2

" v (2'e _,2)2 - - 4 (I e 2 / (17)

,• Instability occurs whenever the argument of the square root is negative,
approximately

-4 me 2-(we) < (18)

Whe (18) is well satisfied, the criterion for (14) to be valid, the

desired growth rate is recovered.

i•112 1 we

r v R -W r (19)

11



This derivation shows clearly the the negative mass instability at low cur-

rents is associated only with the m-0 spacecharge waves. At higher cur-

rents, for which a and wr become comparable, the m=1 spacecharge waves

also are involved, and the complete quartic equation must be solved to give

, (11).

For the parameters of Table 1, the low current negative mass instabil-

Ity has a cutoff at y = 7.0. Since the equilibrium fails below y = 10.5,

we see that the low current instability does not arise. Figure 4, a numer-

ical solution of (1) for 350 A, illustrates growth in the low current

limit. The analytical result from (19) at y = 10.5 exceeds the numerical

by about 30%.

* Rewriting inequality (18) as

> 1 4(1 - n)(20)S1 + Zina

simplifies comparison with (12). Note that (20) predicts a narrow energy

Nbandwidth at high current, while (12) gives the opposite. A window, there-

fore, exists at moderate currents,

v 1 + 21n a/rb) - 0.5-1.0 (21)

for which the energy range of the negative mass instability is minimal.

For instance, a 750 A, 4.5 MeV electron beam injected into a betatron or

racetrack accelerator with dimensions as in Table 1 exhibits no negative

mass instability whatsoever for £ < 6. Higher toroidal modes are likely to

be stabilized by energy spread
2 ,4 or nonlinear effects.
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TABLE 1. NOMINAL RACETRACK INDUCTION ACCELERATOR PARAMETERS

Path Lengths L a 460 cm

Drlfttube Radius R = 7 cm

Beam Radius a = 1 cm

Guide Field Be - 2 kg (wc * 1.173 cm-1)

Beam Current I a 1 kA (v 0.0588)

Beam Energy U a 0.4 - 40 MeV (y 1.5 - 8 0 )

Number of Revolutions 50

Number of Gaps N a 4

Acceleration per Gap AU - 0.2 MeV (Ay * 0.4)

Gap Resonant Frequency 880 MHz

Mode Quality Factor 0 = 60, 6

Gap Transverse Impedance 15 ohms (Z.J/Q - 0.5)

Gap Width = 5 cm

14
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