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---a the onvegence *s of iss c ro- at each time instmnce, on e adjustents of hs ec-

tuidnous distributed it-erative oa algorith.l , sions. So, iii sm sene, t.he synchronous model to-

tolezatg commnication 6elay. ocus on a gre- quires "a lot of commanications."
dient-type algorithm for aminizing an additive cost (2) A second drawback of synchronous algorithms is that

to un c on and present sufficient conditions for convex- comunication delays can introduce bottlenecks and s&Low
g- e 4ce. view such an algorithm aS a Model of adjust- down the algorithm. in particular, the time betee
= ,met of decisions of decision makers in an orqani- two consecutive updates has to be at least as large
ltn w ve sugest, that mr results can be iterpreted as the maximm conication delay between any Pair o

S ie~ s for designg the infomio~n flows in decision makers.
~ ~ (3) Finally, complete synchronization is certainly an

Unrealistic modal of humn organizations.
u~ 77 Intoducion or the above reason&, we choose to study aymbro-

nous distributed versions of iterative optimization
This5 pa=per concerns the convergTence propert-ies n algorithm, La whch decision makers do not used to

iI =£. algorithms, tolerating communi~cation instace. Such .lgoritbJas avoid commnication ever-

delays. !be results being presented may be interpreted loads, they are nor excessively slowed down by ciau-
as pertaining to the prfomance of potential parallel nication delays and therk is not even a requirnt
computing machines. A~ltern=atively, an approach whi.ch t.hat each decision maker updates his decision at each
we pursue in this paper. ou results ay be viewd as tie instance, whch makes the-- *va.n note reatics .

a description of the adjutment process i a distri-
buted organization, possibly involvinS human decision 2. General Properties and Convergence Conditions
maeres. moreover. it cou ld be aa.Lntied that t-he of Asynchronous Distributed Algjorithms
mathema-.ical models discussed bare. capture some as-
pects of -.he ever-present "bounded rationality' of We now discuss the main principle underlying the

human decision makers [Siman, 1980). class of asynchronous algorithms which we consider: as
ur motivation is the following: A boundedly ratio- we mentioned, in Section 1, for a synchronous algoritm,

naa decision maker solving an optimization problem each decision maker needs to be informed of the most
(ja-I ite ijx)), may be viewed as an iterative optini- recent value of the decisions of all other decision
t aon algorithm, whereby a tentative decision x(n) is makers. Suppose now that decision maker i, at time a.
mad* at imt n, and then the decision is updated, in a needs for his computations the current value x ()

proo:veent. For example, we my &,S~ of the J-th component of x, but he does not know this
j value. We then postulate that decision maker i will

x(rnl)'.- x(n) - € j- (x(n)), (1.1) carry out his coputations as in the synchronous a196-
2x rithm, except that (not knowing x (n)) he will use the

which corresponds to the well-known gradient algorithm, value of x. in the most recent measage he has received
by extending the above analogy to more complex settings. from decision maker J. Due to asynchror..ism mad cmu-
an organization (or, at least, some aspects of it) nication delays, decision maker i will, in general,
consisting of cooperative, boundedly rational decision use out-dated values of x to update his own decisions.
makers may be viewed as a distributed algorithm. For However, updates based on out-dated informatio may be
example, suppose that x is a decision vector and tht substantially better than not updating at al. the
the i-th decision maker is in charge of the i-th cow- rucia.1 uetion w ars au t -dateecial questi ons whicrh axis* are: Raw much out--datod
ponent xi of x, which be updates according to information may be tolerated? Bow frequent should

S(n) 1 (1(n)) (1.2) coomunications be. so that the distributed algorithm
xin+l) - ax operates in a 00sirable mLaner?

f Questions of this nature have been addressed by
f each decision maker was to update his part of t Dertsakas [1982,19633 for the distributed version of

decision (his own component), at each instance of tine the successive approximations algorithm for dynamic
according to (1.2). we would effectively a synchronous programming and the ditributed computation of fixed
distributed implementation of the centralized gradient poins. we have obta ed ds ner l copvet nce of lts
algorithm. Synchronous algorithms have been studied of  eated ha e r fo t e &e nclconverg ditresults
in a variety of contexts (Arrow and Buricz, 19601 versions of detensre the snchastin itetive
GaLlager, 19772 but they also have certain drawbacks: pseudr adint (Pofldk and Tsytkhi, 19731 ( r desome-
(1) Decision maker i, in order to update X In) accord- type) algorits. ome rearespntative lgorithms
Lng to (1.2). he needs to kmw xn), at " f. This coered by our Semer e reeults ert deteri itsc
requires that each decision maker informs all others, cvrdb u eea eut r eemnsi
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gadLent-tpe algorithms. as well as stochastic ap- which are under the authority of other decision makers.
proximat oes algorithms. Mus to space considarations, We way visualize the structure of the interactions
we only discuss here the mature of the results. Lxact by means of a directed graph G.(V,Z):
statements and the proofs may be found in ITsitsJrlis,
19833 and in forthcoming publications. Preliminary M The set V of nodes of G is
versions of these results appear in ITsitsiklis, (ii) The set of edges E of the graph is
bertsekses and Athans. 1 9S3). - iJ) dpnsQX)(32To discuss the nature of the convergence conditions.
we distinguish two cases& Since we are interested in the fine structure of the

A. onastant step-Size Algorithms (e.g. gradient optimization problem, we quantify the interactions
ago itmJ between subproblms by assuming that the following

For such algorithms it has been shown that conver- b are available:

gine o he centralized optin is obtained, provided 2 2
thiat tAe time between consecutive comunications I 3k K 33 ~ ~ (3
between pairs of decision makers plus the comunica- a - ax. Axi i - i3
tin delay, is bounded by an appropriate constant.
nzrsover, the larger %he step-sio (i.e. the constant

in equation (1.2)). the small the above mentioned where (without loss of generality)

constant. The latter statement admits the appealing
ilterpretation that the 2arr the updates by each j 1 (3.4)
decision maker, the were frequent comunications are - k.1
reqired. A synchronous distributed gradjet-type algoarit for

a. Decreasing Step-Size Algaortai s (e.g. stochastic this problem could be:
apnoximation algorithms) 1. For each Ci.J)e E, decision maker j evaluats

in tAis case, the algorithm be9mea slower and
slower as the time index increases. This allows the a ___

process of cmuomicatons to become progzessively (n) - (x(a)) (3.5)
sloer. as we3. In particular, it has been shown tt
convergence to the centralized optim is obtaine 2. For each U. J)e E, decision maker j transmits NJ En)
even if the time between consecutive communications
between pirs of decision makers, plus comunaication to decision maker I.
delays, increase without bound. as the algorithm 3. Each decision maker I updates xi accdig
proceeds, provided t hat the rate of increase is not
ofa xA tn+l) - x1 (A) (a) (3.6,1

3. *A Dis tnutd radiet Algoritlm 4. Por each (i,J)e E, decision Maker i transmits

Zn this section we consider a rather simple distnzi- xi (n+l) to decision maker J.
buted algorithm for miniizing an additive cost func- We no consider the asynchronous version of the
tion. Due to the simplicity of the algorithm, we are i i I
able to derive convergence conditions which are gen- above algorithm, Let x (n)-(x 1n) ... denote a
erally tighter thaw the general conditions discussed decision vector el*mnt of 0 ) stored in he meor
in the pzevious sections. Zt vwill be seen shortly, of decision maker i at tine n. We also assm that
that these conditions admit appealing organizational each decision maker i stores in his wemory eaother vec-
interpretations. 1 es

The conceptual motivation behind cr approach is tar (Xi In).. ., I (n)) i h his estas of
based on the following statement: 33

1

if a opti xation problem consists of sub- 3x , . . Dlike the synchrnu algoritm, we
problems, each subproblem being assigned to
a difftr ent- decision maker, then the frequency do not require that a message be transmitted at each
of communications between a pair of decision tine stage And we allow ca==tcation delays. So le1:
makers should reflect the degree by which their the t that a assage with a vlu

p (n) th ieta asaewt ausubproblems are coupled, of Xk was sent from processor k to

The above statement is fairly hard to' capture m th- processor i, and this was the last
emetically. Th s is accoplished, however. to some such message received no later then
extent, by the model and the results of this section. time n.

Let 0: 3 P- be a cost function to be minifizedm q M - the time that a message with a value ofwith a special st.ructur-es 31 k
M i rx was sent f.ra processo k to processorI (x) - 3ixl..... xN) - 3 x ...x (3.1)

Jix) - A .. x01 , 1and this was the last such messge

where j : 1N t. So far, equation (3.1) does not in-
pose any restriction on 3: we will be interested, how- For consistency of notation we let
ever, in the case where, for each i, JA depends on xi p(n) - q in), YA ' n " (3.7)
and only a few mnoe cIments of xi consequently, the
Hessian smaz. of each 

J 
1,is spars. With the above definitions, we have:

We view .'as a cast directly faced by the i-th i k hi yk)
decision maker. 7hls decision maker Is free to fix xk (a) In)) ,

or pdate the component x , but his cost also depends k) k hi

on a few interaction variables (other components of x) (En) N (a (q (n))), y ,V(i.k)9 M. (3.9)



S
quations (3.8) (3.9) together with operaCtion but this is precisely the issue addressed

V_ by Theorem 3.1: the bounds K nay be thought as quecv-

bouns Pi. g describe the fre-uency of communicatima

ispecify hletely the asynches distrbuted 9o-r re e sp g b end te

rithi of Antaxeat. 3.1 inks aL11 t hese quanttes together and provide
lt us MW ass smeta t bete onsecutve some conditions for smooth operation, wherebccommunicatons and the cmmuniction deays are bounded. mnrtion rates are prescribed in ter-=* of the degre

We allow. hovr: these bo~rs to be dLffe4e, t for of coupling.
each Pai Of processors and each type of message: we may conclude that the approach of Section 3 may

A A tona the bdai of a procedure for designing an organz-Assumpti£ons rat sm onstansp tio, l structue, or -more precisely- the inform ation

flows withi an organzti on. Of course, Theorem 3.1

n-P A < p Lk c A, V(ikie Z, ya, .12) does not exhaust the subject. In particular, Theorem
3.1 suggests a set of feasible organizational struc-

n-k _ q a. v(ki)e K, in' (3.12) tures, with generally different convergence rates.=I<Z Vn There remains the problem of choosing & 'best" such

Note that we my let P - . 0. structure.
The :ollowing result states t hat the agorit.m n- .It is also conceivable that the structure of theTe f n runderlying 

optimization problem slowly changes with
verges i.f PA and gk are not too large compared to the time. and so do the bounds K , but in a time scale
degree of coupling between different subproblems. t i s the adjme prce
Iwsttstk.lhe tme scale of the adjustment pocess.ljitiI .n such a case. the bounds P J, gA5 should also change.
Theorem 3.1: Suppose that for each i This leads to a natural two-level organizational struc-

ture: At the lower level, we have a set of decision

2 N N M k ik?,Pkk makers continuously adjusting their decisions and
- ' Ki I -1 I I K3'P +pngk~iQh (3.13) exchanging messages. At a higher level, we have a

.1 kjl J1 supervisor who monitors changes in X- and accordingly
ij

* 'I 2 X instructs the low-level decision makers to adjust their
Let z(a)-(X1 (u),x 2 (n)...g(f]]" Te, comunication rates. Note that the supervisor does not

need to know the details of the cost function; be only
a(s(nlI-O, . (3.14) needs to know the degree of coupling between divisions.lipe Z;( )This seems to reflect the actual structure of existing

We close ths secn with a fey remarks: organizatio-s. Low level decision makers are expets.
oan the problems facing them, while higher level decision

1. The bounds provided by (3.13) are sufficient for makers only know certain structural properties of the
convergence but not necessary. It :s known tlertsekas, overall problem and make certain global decision, e.g.
1982b) that a decentralized algorithm of a similar type setting the comnication rates.
may converge im certain special cases, even if the as rent-Driven Counications

are held fixed, while the bounds P k , k are allowed
to be arbitrarily large. So. the gap between the s!f We now discuss a slightly different *mode of opera-
ficie nt conditions (3.13) and the necessary conditions tion" for the asynchronous algorithm. which has also
may be substantial. urthear research should narrow this clear organizational implications. It should be clear
gap. that comunications are required by the distributed
2. The convergence rate of the distributed algorlih algorithm so that decision makers are informed of
should be expected to deteriorate as the bounds P , changes occuring elsewhere in the s)stem. Horeover,
ik :Lk ikQ . increase: A characterization of the convergence the bounds 9k, Q of Section 3 effectively guarante

rate, hoever, eems to be a fairly hard problem. that a message is being sent whenever a substantial
change occurs. The same effect. however, could be ac-

4. Towards Organizational Design complished without imposing bounds on the time between
consecutive message tran issions: each decision maker

Suppose that we have a divisionalized organization could just monitor his decisions and inform the others
and that the Objective of the organization is to mini- whenever a substantial change occurs. It seems that
miss a cost i which is the gs of the costs J. faced by the latter approach could result to significant savings
each division. To each division. these corresponds a in the number of messages being exchanged, but further
decision maker which is knowledgeable enough about the research is needed on this topic.
structure of the problem he is facing, to the extent
that given a tenattve decision he is able to change his 5. Conclusions
decision in & direction of improvement. moreover, sup-
pose that the divisiom are interacting Ln s ways that A large class of deteraiistic and stochastic iter-
is. the decision of one decision Maker may affect the stive optimization algorithms admit natural distributad
costs of another division. Suppose, finally, that d#- asynchronous implementations. Such implementations
cision makers regularly update their decisions taking (when compared to their synchronous counterparts) may
into account the decisiomof other decision makers and retain the desired convergece Properties, while reduc-
the effects of their Own decisions On other divisions, ing coomnication requirements and remo ving bottlenecks
messages are being exchanged from time to time carrying caused by communication delays.
the required information. Clearly, the mathematical We have focused on a deterministic gradent-type
model of Section 3 may be viewed as a model of the algorithm for an additive cost function and we have
above aituatAes. shown that the comnication requirements depend In a

A natural questlon raised by the above described natural vay on the degree of Coupling between different
situation concerns the design of the iormatLon flows components of the cost function. This approach addresses
within the organization, so a to guarantee smooth the basic problem of designing the information flows

1M-



in a distributed organization and my form the b$is

/ og a systemaUc approach to orgaa- tional design.
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