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. ABSTRACT
)ﬂr: A wment ¢ TeyTrea
Hemdésaues the convergence pro;
nous distributed iterative O] i algorithns,
tolerating cosmunication delays. focus on a gra~-
dient-type algoriths for minimizing an additive cost
function and present sufficient conditions for conver-

es of asynchro-

gance. view such an algoriths as a nodel of adjust-
sant of decigions of decision makers in an organiz—
tian we suggest that our yesults can be interpreted
as guidglines for designing the information flows in
an org cion. M

T2, 1. 1intzofuction

T™his pap ng the gence properties and

communication requiresants of asynchronous distributed
optimization algorithms, tolerating cosounication
delays. The Tesults being presented may be intexpretad
as pertaining to the performance of potential parallel
computing machines. Altermatively, an approach which
we pursue in this paper, our results may be viewed as
a description of the adjustment process in a distri-
buted organization, possidbly involving human decision
Dakers. Moreover, it could be maintained that the
mathenatical models discussed here, capture some as-
pects of the ever-present "dounded raticnality” of
human decision makers [Simon, 1980).

our motivation is the following: A boundedly zatio-
nal decision maker solving an optinization problem
(minimize J(x)), may be viewed as an iterative optimiza-
tion algoritim, whereby a tentative decision x(n) is
made at time n, and then the decision is updated, in a
direction of improvesent. For exazple, we may have

x(n+l).« x{n) - 3 :—i

(x(n))., (1.1)
which corresponds to the well-known gradient alooritim.
By extanding the above analogy to more complex settings,
an oroanization (or, at least, some aspects of it)
consisting of cocperative, boundedly rational decision
makers may be viewed as a distributed algorithm. For
axample, suppose that X is a decision vector and that
the i-th decision maker is in charge of the i-th com-
ponent a’ of x, which he updates according to
%, (oo1) = = tn) -3 %%1 (xta)) . (2.2)
1f each decision paker was to update his part of the
decision (his own componant), at each instance of time
according to (1.2), we would effectively a svnchronous
distsibuted implementation ©f the centralired gradient
algorithe, Synchronous algoritims have been studied
in & variety of contexts [Arrow and Burwicz, 1960;
Gallager, 1977) but they alsc have certain dravbacks:
(1) Decision maker i, in order to update x, (n) accoréd-
ing to (1.2), he needs o knov x(n), at n. ‘This
fequires that esch decision maker informs all others,
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at each time instance, on the adjustments of his deci-
sions. $0, in some sense, the synchronous model re-
quires "a lot of communicarions.®

(2) A second drawback of synchronous algorithms is that
comsunication delays can introduce bottlenecks and slow
down the algorithz. In pacticular, the time between
two consecutive updates has to be at least as large

as the maximup communication delay between any paix of
decision makers.

(3) Finally, complete synchroanization is certainly an
Unrealistic model of husan organizations.

Por the above reasons, we choose to study asynchro~
nous distributed versions of iterative optimization
algorithms, in wvhich decision makers do not need to
communicate to every other decision maker at sach time
instance. Such algoritims avoid communication over-
loads, they are not excessively slowed down by commu-
nication delays and therk is not even a requirement
that each decision maker updates his decision at each
time instance, which pakes them even more realistic.

2. General Properties and Convergence Conditicns
of Asynchronous Distributed Algorithms

We now discuss the main principle underlying the
class of asynchronous algoritims which we congider: as
we mentioned, in Section 1, Zor a synchronous algeritm,
eath decision maker needs to ba informed of the most
recent value of the decisions of all other decision
makers. Suppose now that decision maker i, at time n,
needs for his computations the current value x 5 (n)

of the j-th component of x, but he does not know this
value. We then postulate that decision paker i will
carry out his conputations as in the synchronous algé-~
rithz, except that (not knowing x_ (n)) he will use the
value of x. in the most recent uanqe he has received
from decision maker j. Due to asynchroniss and commu-
nication delays, decision paker i will, in general,

use ocut-dated values of xj to update his own decisions.

However, updates based on cui-dated information may be
substantially better than not updating at all. The
crucial guestions which arise are: Bow much out-dated
information may be tolerated? Bow frequent should
commpunications be, so that the distributed algerithm
operates in a desiradble manner?

Questions of this nature have been addressed by
Bertsekas [1982,1963) for the distributed version of
the successive approximations algorithm for dynamic
prograzming and the distriduted coxputation of fixed
points. Ve have obtained general convergence rasults
of a related nature for the asynchronous distriduted
versions of deterninistic and stochastic iterative
pseudo-gradient [Poljak and Tsypkin, 1973] (or "descet-~
type”) algorithms. Scne Ierresentative algorithms
covered by our ganeral results are deterministic
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¢ gradient-type algorithms, as well as stochastic ap-
proximations algorithms. Due to space considarastions,
/ we only discuss hars the nature of the results. Exact
statemants and the proofs may be found in [Tsitsiklis,
1983] and in forthcoming publications. Preliminary
versions of these results appear in [Tsitsiklis,
Bertsekas and Athans, 1983].
To discuss the nature of the convergence conditions.
we distinguish two cases:

A. COonstant Step-Siie Algorithms (e.q. gradient
algorithm)

For such algoritims it has been shown that conver-
gance to the centzalized optimm is cbtained, provided
that the time between consecutive communications
between pairs of decision makers, plus the communica-
tion delay., is bounded by an appropriate constant.
Morecver, the larger ths step—-size (i.e. the constant
d in equatien (1.2)), the sasller the above mentioned
constant. The latter statemsnt adaits the appealing
interpretation that the larger the updates by each
decision maker, the more frequent communications are
required.

B. Decreasing Step-Size uggiﬁ-s {e.g. stochastic
approximation algorithms
In this case, the algorithe becomes slower and

slower as the time index increases. This allows the
process of cemmunications to become progressively
slover, as well, 1In particular, it has been shown tiat
convergence to the cantralized optimm is obtained
‘even if the time betwean consecutive communications
' between pairs of decision makers, plus communicatiocn
delays, increass vithout bound, as the algoritha
proceeds, provided that the rate of increase is not
wo fast.

3. A Distributed Gradient Algorithm

In this section we consider a rather simple distri-
buted algorithm for minimizing an additive cost func~
tion. Due to the simplicity of the algorithm, we are
able to derive convergence conditions which are gen-
erally tighter than the general conditions discussed
in the pzevicus sactions. It will be seen shortly,
that these conditions admit appealing organizational
interpretations.

The cenceptual motivation behind our approach is
based on the following statesent:

If an optimization problem consists of sud-
problecs, each subproblenm being assigned to
a different decision maker, then the frequency
of cocmmunications betweed a pair of decision
. makers should reflect the degree by which their
’ subproblemas are coupled.

The above statesent is fairly hard to capture math-
ematically. This is accomplished, however, to some
extent, by the model and the results of this section.

tet J: R¥= R be a cost function to be mininizedm
with a special structure:

J(x) = J(: l---px VI IJ (x '---rxn) (3.1)

is)
i

vhezre J : n"-va. S0 far, equation (3.1) does not im-
pose any restriction on J: we will be interested, how-
ever, in the case vhere, for each i, J* depends on xg

and enly a fev more compenents of x; consequently, the

Hessian nmatrix of each J‘ is sparse.
we viev 34 as a cost directly faced by the i-th
decision maker. This decision maker is free to fix

- or update the component X but his cost also depends
on a fev intaraction variables (othar components of x)

vhich are under the suthority of other decision makers.
We may visualize the structure of the interactions
by msans of a éirected graph G=(V,E):

(1) The set V of nodes cf G is Ve{1,...,M)
The set of edges I of the graph is
e={(i,3): 2 depends on xi) (3.2)

{ii)

Since we are interested in the fine structure of the
optimization problem, we quantify the interactions
betveen subproblems by assuming that the following
bounds are available:

2 2

8 J 87 JK X

.| S xij' 3% 3% (< %5. Yxt R, (3.3)
i3 ity

where (without loss of generality)
H .

x.< ) &, . (3.4)

i} kel i)

A synchronous distributed gradient-type algorithm for
this problem could be:

1. For each (i.j)€ E. decision maker j evaluates

3tn) =
litn)

3
:—"; xta)) (3.5)

2. For each (i,j)€ E, decision maker j transmits Aih)
to decision maker i.

3. Each decision maker i updates x, according to

§
x, (ae1) = x, ) - 3, Iaim)
=)
4. For each (i,3j)€ E, decision maker { transaits
% (n+l) to decision maker j.
We now consider the uynchx‘m msioa of the
above algorithm. Llet x (n)-(x (n).....xk(n)) dsnote a

decision vector (elemant of R ) stored in the mamory
©f decision maker i at time n. We also assume that
each dccision maker i stores in his memory another vec-

tor (l (n),...,l {n)) with his estimates of
ast 2

ox, ' T'ex,
i i .
do not recuire that a message be transmitted at eash
tine stage and we allow coczunication delays. $o let:
pu (n) = the tize that a message with a value
of ‘k was sent f{roa processor k to
processor i, and this was the last

such message received no later than
tine n.
ki

97 (n) = the time that a message with a value of

X
. %;— was sant from processor x to processor
i

(3.6

Onlike the synchronous algorithm, we

1, and this was the last such message
received no later than time n.

For consistency of notation we let

i i
(n) » g i‘(n)-n. 1730 A 3.7)
With the above definitions, we have:
i
X = X, v, ke s, 0.8)
X 3:"
A n) = o* (q 2))). ¥, vii.K)e B, (3.9)




. Equations (3.8), (3.9) together with

; )

i i 3

x . (ned) @ x*¢(n) -~ @ I AY (n)

i i iey s
specify cospletely the asynchronous distributed algo-
riths ¢ intasest.

let us nowv assune that the time between consecutive
communications and the cosmsunication delays are bounded.
We allow, however, these bounds to be different for
each pair of processors and each type of message:

(3.10)

Assumdtion: Yor scme constants Pu ' Qu. .

e < ¥ myca,  vimer v, (3.11)

n-Qu < qn(n)s_ a, vix.i)e £, v .. (3.12)
m-m:uonyu:r“-ou-o.
The folloving result states that the algorithm con-

verges i¢ r”‘ and Q‘u are not too large compared to the

degree of coupling betwean different subprobleas.
[Tsitsidlis, 1983).

Theorea 3.1: Suppose that for each

] M ]
=1 r,+ 1 R il Sl S PR T
1 3= k=l je3 33
Let £(n)=(x:(n).x2(n) »(n)). Then
1 . 2 LA N ] H - .
(3.14)

Lim g (z({n))=0,
e 4

We close th.ts section with a few remarks:

1. 7The bounds provided by (3.13) are sufficient for

convergence but not necessary. 1t is known [Bertsekas,
1982b] that a decentralized algorithm of a similar type
may convargs in certain special cases, evan if the 31"

are held fixed, wvhile the bounds ’.Dt' Qu are allowed
to be arbitrarily large. So, the gap between the suf-
ficient conditions (3.13) and the necessary conditions
nay be substantial. ZFurther reseazch should narrow this
yap. .

2. The convergance rate of the distridbuted thor'ﬁha
should be expected to deteriorate as the bounds P™ ,

Q".k increase. A characterization of the convergence
rate, however, seeas to be a fairly hard problea.

. 4. Towards Organizational Design

Suppose that we have a divisionalized organization
and that the adbjective of the organization is to mini-
mize 8 cost J vhich is the sun of the costs Ji faced by
each divigion. 7To each division, these corresponds a
decision maker which is knowledgeadble enough adout the
structure of the prodblem he is facing, to the axtent
that ¢iven a tantative decision he is able to change his
decision in a dixection ¢of improvesent. MNoreover, sup-
pose that the divisiors are interacting in some way; that
is, the decision of one decision maker may affect the
costs ©f another division. Suppose, finally, that de-
cision makers regularly update their decisions taking
into account the detisiorsof other decision makers and
the effects of their own decisions on other divisions.
Messages are being exchanged froe time to time carrying
the required information. Clearly, the mathematical
nodel of Section 3 may De viewed as & model of the
above situatios.

A natural question raised by the above descrided
situation concerns the design of the information flows
within the organization, so as to guarantes smooth

Yi.3°

operation. But this is precisely the issve addressed
by Theorem 3.1: the bounds K’;j Ty be thought as Quar

tifying the degree of coupling between divisions: the

bouns ,13‘ QiJ describe the frequency of communications
andé 31 Tepresents the speed ©f adjustmant. Theorez

3.1 links all these quantities together and provides
some conditions for smooth Operation, wherady com-
sunication rates are prescridbed in terms of the degree
of coupling.

We pay conclude that the approach of Section ) may
forn the basis of a proceduse for designing an organiza-
tional structure, or -more precisely- the informatien
flows within an organization. O©f course, Theorem 3.1
does pot exhaust the subject. 1n particular, Theocrem
3.1 suggests a set of feasible organizational struc-
tures, with generally different convergeance rates,
There remains the problex ©f choosing a "best™ such
structure.

It is also conceivable that the structure of the
underlying optimization problex slowly changes with
ﬁm.mdwdothcbonndsx’i‘j.butiacthclcuc

slower than the time scale of the adjustment process.

In such a case, the bounds Pij. Q“j should alsc change.
This leads to a natural two-level organizational struc-
ture: At the lower level, we have a set ©f decision
makers continuously adjusting their decisions and
exchanging messages. At a higher level, wa have a
supervisor who monitors changes in R: 3 and accordingly

instructs the low-level decision makers to adjust their
communication rates. Note that the supervisor does not
need to know the details of the cost function; he only
needs to know the degree of coupling between divisions.
This seems to reflect the actual structure of existing
organizations. Low level decision makers are “experts®
on the problens facing them, while higher level decision
sakers only know certain structural prope-ties of the
ovezall problem and make certain global decision, e.9.
setting the communication rates.

Event-Driven Communications

We now discuss a slightly different “mode of opera-
tion® for the asynchronous algerithm, which has also
clear organizational implications. It should be clear
that coomunications are required by the Aistridbuted
algorithm 30 that decision makers are informed of
changes occuring elsewhere in the systez. Moreover,

the bounds "u. QU( of Section 3} effectively qmmu;
that a message is being sent whenever a substantial

change occurs. The same effect, however, could be ac-
complished without impozing bounds on the time Detween
consecutive message transmissions: each decision maker
could just monitor his decisions and inform the others
whenever & substantial change occurs. It seems that

the latter approach could result to significant savings
in the number of messages being exchanced, but further

 { rch is ded on this topic.
. S. Conclusions

A laxge class of deterzministic and stochastic iter-
ative optimization algorithms admit natural distribuced
asynchronous implementations. Such impledentations
{vhan compared to their synchronous counterparts) may
retain the desired convergence properties, while reduc-
ing compunication requirements and removing bottlenecks
caused by cosmunication delays.

Ve have focused on a deterministic gradient-type
algoriths for an additive cost function and we have
shown that the commnication requirements depend in a
natural vay on the degree of coupling betwean 4ifferent
components of the cost function. This approach addresses
the basic problen of designing the information flows




4 i ;
1 in & distriduted organization and may form the basis '
/ for a systematic approach to organizational design. ;
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