
AD- A137 474 PEEP: A PASCAL ENVIRONMENT FOR EXPERIMENTS
ON 1/1

PROORAMMING(U) VIRGINIA POLYTECHNIC INST ANT STATE UNIV

BLACKSBUTRG COMPUTER S.. C S KU ET AL. SEP 82 CSIE-R2-9

UNCLASSIF EE N 0TO1 -81-K-T143
FIG 5/R N IL

mhmooohhhhhhm
smmhohhhhohmhE
LIIIIII

111.0
m

Ealim

Q
1.

LA__11111111=6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU Of STANDARDS 196 A

ITI
EI :-GM.f-
FE 31

'VrinaPlyehncIsttt
ltLAJ

an taeUnvrst
I~

CoptrIcec

io FEB0319840. AWa 4 2 S S-
I f-- @0 Esuai A

CSIE-82-9 September 1982I
I
I
I PEEP: A Pascal Environment for

Experiments on ProgrammingI
I Cyril S. Ku

I Timothy E. Lindquist

II

TECHNICAL REPORTI
Prepared for

Engineering Psychology Programs, Office of Naval Research
ONR Contract Number N00014-81-K-0143

Work Unit Number NR SRO-101

II ELECTE

IiApproved for Public Release; Distribution Unlimited E
Reproduction in whole or in part is permitted
for any purpose of the United States Government

'

StCUWITY CLASSIFICATION OF TIS PAGE (91mk104 f.1e004q

RE COSTRLTINS~REPORT DOCUMENTA.TION PAGE READ InSTrUCTIONS
. REPORT NUMBER 60VT ACCLSI B Is CATALOG uOIER

CSIE-82-9

4. TITLE (And'S&~fiffe) Ir TYPE OF REPORT S PERIOO COVEREO

PEEP: A Pascal Environment for Experiments Technical
On Programming 6. PERFORMIG 0O. REPORT NUMMER

7, AUTHO1je) 0. CONTRACT OR GRANT NUMBERI@)

j Cyril S. Ku
Timothy E. Lindquist N00014-81-K-0143

9 PERFORMING ORGANIZATION NAME ANO AOORESS I0. PROGRAM ELEMENT. PROJECT. TASKAREA & WORK UNIT NUMBERS
Computer Science 61153N42; RR04209;
Virginia Polytechnic Institute & State University RR0420901; NR SRO-101
Blacksburg, VA 24061
, ON -- OLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Office of Naval Research, Code 422 September 1982
800 North Quincy Street 1, NUMBER OF PAGES
Arlington, VA 22217 73
14 MONITORiNG AGL NCY N AME A AOORi SS(Il dillerent Iaf. Conlrlllng Oflre) IS. SECURITY CLASS. (0l this F*P6.)

Unclassified]: IS.-bCASiFic ATON OO.NGRAONG

SCHEOULE

It. OISTRiBUTION STATEMENT (at this Report)(Approved for public release; distribution unlimited

IT. DISTRIUTION STATEMENT (of the abstact entered In Block ". if dtiftrpet iroi Report)

I. I. SUPPL EMENTARY NOTES

9 KEY WOAOS (Conttinue on vvers@ ai. id flec laatry and (dontity by btork manbot)

if programming environment, binding strategy, level of interactiveness,human factors

j 20 ASIT RiACT (coniin...on (oonti. .11. CI @c*oeufoy USE #dese#1y by Sleek same.)
- This report describes the requirements, design, and implementation of a
software package that can be used to perform quantitative studies on certain
aspects of the programming task. Of specific interest will be experiments with
the level of interactiveness of the human-computer interface relating to
Identifier scope-rules.

The software package for the conduct of those experiments is an interactive
progranming-enviroment called PEEP. Its base language is Pascal and its

D ON 1473 Eo,,oN o INOV es IS OBSOLETE SAP •

SE[CURITY CL.ASSIFICATION Of THIS PAGE (Whe" Dots Cntoe*

$ S1CUfTY CLASSIFICATION OF tHIS PAGIL(IMd Dole Easee.)

i. 20. ABSTRACT (continued)

design in based on a semantic model of computation. Storage
representations and the implementation -f these semantic models
are described. The model depicts the compile-time structure,
run-time structure, and realization of the static and the
dynamic scoping-rules.

j ocession For

NTIS GRA&I
DTIC TAB
Unannounced
Just ificat io

By
Distribution/E
Availability Codes

I. DiAvail and/or
Dist Special

iC
t.

SItler, CI. &tSPICAtiOUl @7
r
9u*" PDA~gfWlbn Dee. En'..e0

Ll
[

ACKNOWLEDGMENT

This research was supported by the Office of Naval Research

iunder contract number N00014-81-K-0143 and work unit number
NR SRO-101. The effort was supported by the Engineering

Psychology Group, Office of Naval Research, under the

technical direction of Dr. John J. O'Hare. Reproduction in

whole or in part is permitted for any purpose of the United

I" States Government.

Ii

i

-Li

CONTENTS

page

1. INTRODUCTION . 1

1.1.1 The Need for Experiments 3
1.2 PEEP. ...3
1.3 Outline of Report. 4

2. THE USER INTERFACE TO PEEP.

2.1 Level of Interactiveness...............5
2.1.1 The Interactive Levels for Coding and

Translation in PEEP 7
2.1.1 The Interactive Levels for Execution Services

in PEEP. 7
2.2 Screen Layout. 9
2.3 Capabilities of PEEP 11
2.4 Program Development Example 12

3. DESIGN. 18

3.1 Overall Design 18
3.2 Text Storage 20
3.3 Program Skeleton. 23
3.3.1 Program Contour. 23
3.3.2 Declaration List 27
3.. Code List 31
3.3.4 Diagram of Program Skeleton. 37
3. Record Skeleton 40
3.4.1 Record Contour 40
3.4.2 Association List 41
3.4.3 Diagram of Record Skeleton 44
3.5i Binding Strategies 44
1.0 Virtual Processor. 49
3.7 Environments 49
3.7.1 Environment Binding Strategies (EBS)50
3.7.2 Identifier Binding Strategy. 51
3.7.3 Complete Binding Strategies (CBS).52
3.8 Examples 53

4. IMPLEMENTATION. 59

4.1 Command Dispatcher. 59
4.2 Editor 60
4.3 Translator 61

- v-

4.4 Interpreter. 64
4.5 State Examiner and Modifier 65
4.6 First Version of PEEP 65

5. REFERENCES. 67

1. INTRODUCTION

The trend toward developing systems with friendly human-

computer interfaces is well underway. Unfortunately, the

underlying criteria used to build user- friendliness into a

system are too often based on speculation rather than hard

data. To a large extent, the same objection can be made to

the design of programming languages and methodologies. With

the design goal to provide a usable tool to produce reliable

software, too often decisions are based on unsubstantiated

principles, or are based on implementation ease. Experimen-

tally validated human-variables and metrics that can be used

in making design decisions are difficult to establish, but

they are needed to guide the shift to user-friendly inter-

faces and when applied to programming language design will

* improve the software development process.

In this report we describe the requirements, specifica-

* tions, and design of a software package that can be used to

perform quantitative studies on the programming task as it

relates to the human-computer interface and language design.

The system we describe is a programming environment in the

software sense; that is, it is not the physical, managerial,

or social environment, but instead, it is the virtual lan-

guage computer that the programmer uses to convert software

designs into programs. Programming environments include all

types of software development tools whose histories date

back to the early years of computing. Among these tools are

assemblers, compilers, interpreters, linkers and loaders,

editors, programming languages, run-time libraries, utility

routines and documentation aids. In the software sense,

this collection makes up the environment in which the pro-

grammer must exist while composing software. Currently, re-

lated work is being done in such areas as generalized envi-

ronments, user-friendliness, and tool integration as it

relates to the programming environment [BRAN81, HUNK80,

RIDD80. And, we are seeing a healthy shift toward experi-

mental validation of much of the work in these areas. Many

successful programming environments have been constructed in

the past. Four of the more popular environments are UNIX*

(RITC781, INTERLISP (TEIT75I, Cornell Program Synthesizer

ITEIT81, and LISPEDIT 1ALBESI). Related works in progress

include GANDALF [HABE791 at Carnegie-Mellon University,

PASES [SHAP80 at Yale University, and CORE lARCH80 at Cor-

nell University. The Stoneman report of the U. S. Depart-

ment of Defense gives a comprehensive design specification

of APSE [STONSO. APSE is a programming support environment

for the Ada** language. It is now under development by the

Air Force and the Army.

* UNIX is a trademark of Bell Laboratories.
* Ada is a trademark of the U. S. Department of Defense

(Ada Joint Program Office).

-2-

1.1 THE NEED FOR EXPERIMENTS

I As far as human-factors are concerned, the design of

user-friendly human-computer interfaces should start with

the user. That is, experimental data should be gathered on

I. system use. These data are very valuable for the design of
human-computer interfaces because decisions can be oriented

[toward specific user traits. After a system has been imple-

mented, experimental studies should be performed and the

I. data obtained from the studies should be used to guide fu-

ture modifications and designs.

All of the programming environments mentioned above have

j the same purpose - - making the programming task a simple and

user-friendly activity. Inasmuch as each of these systems

I serve the purpose, they are successful environments. Howev-
er, a need exists for experimental studies that can be used

j. to guide future designs of user-friendly systems.

11.2 PEEP

A different approach is being taken at Virginia Tech to

achieve the goal of a programming environmient. This envi-

ronment is called PEEP (Pascal Environment for Experiments

on Programming). The name of this programming environment

reflects its unique feature, i.e., it is a programming envi-

ronment to conduct experiments. PEEP is designed as an en-

I vironisent solely for research on programming environment ar-

* chitecture and for conducting experiments.

-3-

The language Ada and its associated support environment

APSE (Ada Programming Support Environment) ISTON801 of the

Department of Defense provide another motivation for the

development of PEEP. APSE, an integrated software develop-

ment environment, indicates that the current trend (f software

systems Is to have tightly -coupled tools. This, together with

the fact that Ada recognizes programming as a human activity,

motivates both experimentation in program-development activ-

ities and research into software architectures for highly-

integrated development environments.

1.3 OUTLINE OF REPORT

Section 2 of this report gives an overview of what PEEP

looks like to a user focusing on the external features of

the programming environment while Section 3 details the in-

ternal structures of the system. The final section is de-

voted to a discussion of the algorithms used to implement

the design.

-4-

2. THE USER INTERFACE TO PEEP

2.1 LEVEL OF INTERACTIVENESS

One of the requirements of PEEP is to provide a flexible

human-computer interface for evaluation of the programming

task. For example, the learnability of PEEP and the effi-

ciency-of-use of PEEP may be compared to the level of inter-

activeness being used.

A level of interactiveness is defined based on the unit

of communication among coding, translation, and execution

services. There are two levels of interactiveness in PEEP.

The first level is the program level, level 0, which is the

same as batch mode of operation. The second level is called

level 1. It is at the statement level and it uses the pro-

gramming language statement as a unit of communication be-

tween the software tools.

For an example of program development at level 0, consid-

er an interactive system which has an editor that allows a

user to prepare a program, a language processor to compile

the program, and an executor to execute the program. One

first uses the editor to prepare a program, then this pro-

gram is entered into the language processor to obtain execu-

table code. The unit of communication between the editor

and the language processor is at the program level, what we

call level 0 of interactiveness. When the internal repre-

sentation of the program is executed, the level of interac-

-5-

tiveness is also at level 0 because the unit of communica-

tion is the entire program's executable code. Currently,

most data-processing activities use an interactive mode of

operation. But from the above example, the argument can be

made that most of today's time-sharing systems are used as

if they were batched (i.e., at level 0 of interactiveness).

To more usefully employ the power of the computer in the

construction of a program, a higher level of interactiveness

is needed. The second level of interactiveness, level 1,

uses the statement as a unit of communication. The user may

enter a program statement by statement, and the translator

compiles each line as it is entered. Further, the executor

is able to compute each statement immediately. If the above

mentioned interactive system has interactive level I capa-

bility instead of level 0, the procedures for preparing,

compiling, and executing a program look like the following:

first, the editor is used to create a program statement.

This line is communicated to the compiler for immediate

translation. Errors are reported and the user can then in-

voke the editor to correct the line. At level 1, execution

can begin even though a program has not been completely en-

tered. This is true since level 1 of interactiveness pro-

vides communication of individual statements to the execu-

tor. As seen from this scenario, integration of tools is

necessary at level 1.

-6-

2.1.1 The Interactive Levels for Coding and Translation in

At level 0, PEEP enters a program into a source file

without communicating with the translator. After the source

program has been prepared, the translator compiles the whole

program as in the batch system described in Sub Section 2.1.

When PEEP is operating at level 1, the translator com-

piles each line immediately after it is entered. At this

level, syntax errors are checked and reported whenever a

statement is entered. As the coding continues, other errors

such as multiple declaration, non-declared types, and as-

signment or operation of wrong types are reported. Current-

ly, PEEP assumes that at level 1 of interactiveness for cod-

ing and translation one statement is entered for each text

line.

2.1.2 The Interactive Levels for Execution Services in

PEEP

Execution at level 0 is just like the batch-mode opera-

tion. The whole program is executed and results will be

printed if there is an output statement in the program. There

are two major debugging facilities in PEEP at level 0:

snapshot dumps and trace facilities. These facilities are

taken from the ten levels of source debugging described for

the Ada Programming Support Environment (APSE) [FAIRBO].

The debuggers in APSE provide comprehensive and extensive

debugging -features both in batch and in interactive style.

-7-

Level 0 debugging -facilities in PEEP are now briefly de-

scribed.

A snapshot dump is a source-level representation of the

state of a program. It is a listing of the values of all

the variables involved. A programmer can use it before and

after a program or certain statements to see the changes.

However, it is a programmer's responsibility to interpret

the output of the dumps.

A trace facility provides snapshots of changes to select-

ed variables. It permits output of changes in data values

after each statement is executed. The advantage of a trace

facility over snapshot dumps is its selectivity. Snapshot

dumps may produce a lot of irrelevant information and the

cause of an error may not be apparent.

At level 1, the user can cause execution of an operation

within a statement*, an entire statement, or a compound

statement. Therefore, execution of a partially completed pro-

gram is possible. In the debugging process, a break-point

assertion in the form of an assert statement can be set at

different program units. An assert statement such as:

assert(c > 9

can be placed before a statement, a compound statement, a

*The execution of an operation within a statement is appar-
ently at a higher level, i.e. level 2. But the execution
services use the statement as a unit to execute an opera-
tion, so the interactive level is still at level 1. (An
operation cannot be executed without all the information
in a statement.)

-8-

procedure, or the entire program. The scope of this assert

* statement is the program unit in which the assert statement

is placed. If a program element violates the assertion, the

program will stop where the violation occurs and the pro-

grammer can specify different actions to continue execution,

modify the program, or alter data.

2.2 SCREEN LAYOUT

We now describe what PEEP (in its current version), at

level 1 of interactiveness, looks like to a user. Figure

2.1 shows the screen format on the terminal when using the

programming environment. (Figure is not drawn to scale.)

The first version of PEEP has been implemented on a

VAX-11/780 computer under the VMS operating system. PEEP is

terminal -dependent, working on a VT100 terminal with Ad-

vanced Video [VT1079]. PEEP changes the screen from the

normal 80 characters per line to 132 characters per line,

and divides the screen into three regions by drawing two

vertical lines. These regions have special meanings in de-

veloping programs and are now discussed.

All commands are entered when the cursor is in column 1,

which is the command region. The commands are all immediate

and are not echoed on the screen; that is, when a legal com-

mand is typed in column 1, the action is taken immediately

and no carriage return is needed. The commands for PEEP at

level 1 are all one-character commands that provide program-

entry and execution facilities.

-9-

COLU)U COUUUM
2 a3

IE80 celima. 49
co1ums

PROGRAK flhOUAXIR
3.EGIONT IXCIOW

REGION

Figure 2.1: Screen format

- 10-

J Columns 3 to 82 constitute the program region in which

the user enters the text of a program. After a line of pro-

gram is typed into this region, the cursor goes back to the

command region (first column).

* The third region has 49 columns that make up the right

side of the screen. This is the information region, and it

is used for displaying information and messages from the

programming environment to the user. For example, syntax

errors appear in this region.

2.3 CAPABILITIES OF PEEP

The translator of PEEP recognizes a subset of Pascal con-

sisting of all the features of a full Pascal language except

the GOTO statement, input and output statements, and the

declarations and usages of records and sets. The following

commands are recognized at interactive level 1:

1. D -- moves the cursor down one line, the cursor will

not move if it is at the last line of a program.

2. E -- allows the entry of a new line of program text,

the cursor will go from the command region to the

first column of the program region.

3. 0 -- executes a single operation within an executable

statement, an error message will be shown in the in-

formation region if "0" is entered for an unexecuta-

ble statement. An executable statement is defined to

be a computional statement such an IF statement, it-

eration statement, assignment statement, or BEGIN

statement.

4. S -- executes a statement, an error message will be

shown if "S" is entered for an unexecutable state-

ment. If "S" is requested for a compound statement

then the entire statement will be executed.

5. U -- moves the cursor up one line, the cursor will

not move if it is at the top line of a program.

2.4 PROGRAM DEVELOPMENT EXAMPLE

The following is an illustration of the use of PEEP at

level 1. When PEEP is initiated, the cursor moves to the

upper left hand corner of the screen. The information re-

gion displays a message indicating that the system is ex-

pecting a new Pascal program to be entered (Figure 2.2).

The user can give the command "E" for entering a line of

Pascal program. If the command "E" is typed in column 1,

the cursor moves to the first column of the program region

and the user can enter a line of Pascal. Upon entering a

carriage return, any syntax errors that exist in the line of

code will appear in the information region and the cursor

returns to the command region. Every time the user wants to

enter a line of text, the "E" command must be used. Figure

2.3 shows that the user has entered six lines of code.

The user can start executing the program even though it

has not been completely entered. This is done by moving the

-12-

Figure 2.2: PEEP expecting a new Pascal program

-13-

xzb -FILE-
program toot (intPut, outPut);

war x. y integer;
begin

v .3' (x 9 3)

Figure 2.3: A partially-completed program in PEEP

-14-

cursor next to a particular statement by using the "D"

(down) or "U" (up) commands. Initially, the cursor should

be moved to the keyword BEGIN (the beginning of a block),

and the command "0" for operation should be entered. The

message, "the block prolog has been executed" will appear in

the information region (Figure 2.4) indicating that the in-

terpreter is ready to execute statements of the block. Now,

the user can execute the statements by moving the cursor to

* each statement and entering an "S" command for executing a

single statement. The resulting effects are shown in Figure

2.4.

If the "S" command is entered repeatedly on the state-

ment:

X :=x +1

the value of x will increment by 1 for each entry. Now, if

the cursor moves up to the statement:

y := 3 * x *(8 + 9 / 3

and "S"' is entered, the value of y will be changed because

the value of x has been changed in the statement:

x := x + 1

If the user wants the correct values as if statements are

executed sequentially for the first time, the BEGIN state-

ment should be executed again by entering the command "0" as

described above.

-15-

NE.w FILE
prosran test (input. output);

var x, 7 integer;
begin the block prolog has been executed

z :5 5; x assigned the value 5
y :3 * (8 + 9 3); y assigned the value 165

x :* x . 1; x assigned the value 6

Figure 2.4: Three statements executed in PEEP

- 16 -

The user can execute a statement operation by operation.

For example, the cursor can be moved to the statement:

Iy 3= 3 * (8 +9 /3)

and the user can enter the "0" command. Following is the

series of messages shown in the information region each time

an "0 command is entered. Each message will erase the pre-

- vious one.

-multiply yields 15

divide yields 3

plus yields 11

multiply yields 165

y assigned the value 16S

-17-

3. DESIGN

3.1 OVERALL DESIGN

PEEP consists of five main modules: a command dispatcher,

an editor, a translator, an interpreter, and a state examin-

er and modifier (Figure 3.1). Two data-structures in PEEP

store three different forms of the source program. The

first data-structure is the source file which contains the

textual representation of a program. The second is a common

storage for program representations that constitutes a snap-

shot of a program during execution. The snapshot consists

of a general list representing the static (compile-time)

structure of a program, and consists of a general list de-

picting the dynamic (run-time) structure of the program.

These compile-time and run-time storage structures are the

program and the record skeletons, respectively. The struc-

tures are based on the semantic models of computation de-

scribed in [JOHN73). In these models, a program's struc-

ture, instructions, and identifiers are kept in the program

skeleton. The record skeleton, similar to the functions of

an activation stack, keeps the current state of execution.

The semantic models of computation also give flexible imple-

mentations of different kinds of binding strategies.

The command dispatcher is responsible for the invocation

of the other four modules. When a module finishes its func-

tions, it always returns back to the command dispatcher.

is8

IW7

COMN
DIPTCE

Figure 3.1: overall design of PEEP

- 19-

The editor can create and modify a source program. The

translator is for the creation of the program skeleton. it

can be explicitly invoked by the command dispatcher, and can

also be implicitly invoked by the editor every time a line

of text is entered into the source file. In this way, the

lexical, syntactic, and semantic functions of the translator

can be carried out on each line of the program as soon as

the line is entered. The record skeleton is built by the

interpreter which carries out the execution and debugging

functions of PEEP. The last module, the state examiner and

modifier, uses the record skeleton, displays information re-

* garding the state of execution, and changes the information

)in the record skeleton for testing and debugging purposes.

The following subsections describe the representations of

* the three different forms (text storage, program skeleton,

record skeleton) of the source program in detail. Following

the description of these storage structures, different bind-

ing strategies and their realization by the contours are

presented.

3.2 TEXT STORAGE

The text storage is actually a disk file of the source

program. Associated with the disk file is a storage system

which has been developed at Virginia Tech for the experimen-

tal text-editor SAM JEHRI81], and adopted for use in PEEP.

The storage system is a virtual-storage system (Figure 3.2),

which is now briefly discussed.

-20-

STORAGE
PACK

ALtCATFD

FSOURCE

Figure 3.2: SAM's virtual-storage system

-21 -

The virtual-storage system consists of three data struc-

tures -- a queue, the page tables, and the working storage.

The queue is used for editing purposes which is not essen-

tial to the description here. The page table is a physical-

ly sequential list where each entry of the table contains

the numbers of the pages in working storage. (In SAM, there

are two page tables, one for the working storage of the pri-

mary file, and the other for the working storage of the sec-

ondary file. For simplicity and clarity, these are not dis-

cussed here). There are two separate parts in the page

table, one contains the currently- allocated pages, and the

other contains free pages. The working storage consists of

a number of pages of the source file. Each pageconsists of a

number of fragments which form a doubly-linked li st- structure.

A page has information about the length of each line, the

number of lines in the page, and the number of free f rag-

ments.

When a line of text is entered into PEEP, it is put into

a vector called the input buffer. Then, it is inserted into

the fragment of a page in the working storage. A line occu-

pies one or more fragments depending upon the line length.

The content of the working storage is stored on a disk when-

ever a file is permanently stored. When a file is needed

for editing, it is moved from the disk to the working stor-

age. The page table is responsible for all the retrievals

and insertions of the current working-page. When a line

-22-

is edited, the line should be transferred from the fragment

of a page in working storage to a vector. After being edit-

ed, the content of the vector is stored back into the f rag-

ment. Any changes in size of a line in the fragments can be

very easily adjusted via the doubly-linked list-structure of

the fragments.

3.3 PROGRAM4 SKELETON

Figure 3.3 shows a pseudo-Pascal program with nested pro-

cedures. A pseudo -program is used, so that the overall

structure can be seen without the details that might cloud

the whole picture. In the diagram, let, Dn, n>,l, represent

certain declarations; let Sn symbolize certain instructions;

and let Pn be the procedure names. If the procedure name

appears in the instructions of a procedure, it means the

call statement to a particular procedure. The nesting na-

ture of this Pascal program (Figure 3.3) can actually be

represented by the block structure shown in Figure 3.4.

Figure 3.4 shows that this nesting structure is hierarchi-

cal, so it can also be represented by a general tree (Figure

3.5).

3.3.1 Program Contour

Each node of the general tree is a compound cell called

the program contour. There are three subcells in the con-

tour: the environment link, the declaration link, and the

-23

PROGRAM PI;

09; 010;

PROCEDURE P2;

D8;

PROCEDURE P4;
D4; D5; D6;
BEGIN

S4
END;

PROCEDURE P5;
DI; D2; 03;
BEGIN
S5

END;

BEGIN
S2; P4; P5

END;

PROCEDURE P3;
D7;
BEGIN

S3; P2
END;

BEGIN
SI; P3

IND.

Figure 3.3: A pseudo-Pascal program

- 24 -

P4

P2__ _ _ _ _

P 1 P5

P3

Figure 3.4: Nesting representation of the Pascal program

-25 -

P 1

P3 P 2

Figure 3.5: Tree representation of the Pascal program

-26-

I

antecedent link. It is the environment link of the program

j contour that realizes the tree structuring of a program.

The declaration link is a pointer which points to a circular

list of declarations, while the antecedent link points to a

general list called the code list representing the instruc-

tions in a program or in a procedure. There is a particular

program contour called the root which has null environment

and null antecedent links. Its declaration list consists of

the four standard declarations: integer, real, boolean, and

character. The program contour, with its environment link

pointing to the root, represents the main program. All the

other program contours, except the root contour, represent

procedures in a program. The program contours together with

their associated declaration list and code list, when linked

together by the environment links, constitute the program

skeleton. The different subcells of a program contour are

shown in Figure 3.6. As can be seen from the figure, the

program contour has an identification subcell named PROGRAM.

3.3.2 Declaration List

The declaration link of a program contour points to a

circular list of declaration nodes. Each declaration node

contains the declaration of an identifier in a particular

program or procedure with the exception of the declaration

nodes of the root contour. The declaration list of the root

contour always contains declaration nodes of the standard

- 27 -

PROGRAM

ENVIRONMENT
LINK

ANTECEDENT
LINK

DEC LA RAT ION
L- I--)KLINK

Figure 3.6: A program contour

-28 -

!

types in Pascal, namely, the integer type, the real type,

* the boolean type, and the character type. The occurrence of

an identifier in a declaration node is said to be a declara-

tion occurrence of that identifier. No two distinct decla-

ration nodes of a program contour can have the same identi-

fier. A declaration node contains three major fields: an

identification field, a link field, and an information

field. The identification field specifies what kind of dec-

laration that the declaration node indicates. The link

field contains a pointer to the next declaration node; since

the declaration list is circular, the link field of the last

declaration node points to its program contour. Whether the

information field has two or more subfields depends on the

different sorts of declarations. The subfields of an infor-

mation field have various data, one of them is a lexical-ta-

ble entry. A lexical table is simply a one-dimensional

array (with negative indexes), each element of the array is

called a lexical-table entry, which contains all the identi-

fiers except keywords in a Pascal program.

In figure 3.7, (a) shows the general format for a decla-

ration node, 3.7 (b), (c), (d), (e), and (f) show the diffe-

rent fields of the declarations of constant (c), type (t),

variable (v), procedure (p), and function (f), respectively.

For (c) declaration node, the information field consists of

one lexical-table entry (LTE) and one integer-subfield

(INT). The (t) declaration node has a lexical-table entry

- 29 -

INFORMATION
FIELD

IDENTIFICATION
FIELD

(a)

(b) Cc)

Cd) (e) !
LT P+lr , LTE

(f)

Figure 3.7: Declaration node formats

- 30

and two integer-subfields in the information field. The in-

formation field of variable, procedure, and function declar-

ations have similar formats. They all contain lexical-table

entries and a subfield for a pointer. The pointer field of

variable points to a declaration node which contains the type

of the variable, while the pointer field of procedure or

function points to a program contour which represents their

corresponding procedure or function. Some declarations in-

volve only one declaration node, others may involve more

than one declaration node. Figure 3.8 gives different exam-

ples of declarations and their node representations.

3.3.3 Code List

The code list is a general linked-list structure which

represents the instruction codes of a program or procedure.

An occurrence of an identifier in a code list is said to be

a reference occurrence of the identifier. There are two

general forms of a code list, one for the main program, and

the other for the procedure or function. The code list

which belongs to a main program has the keyword PROGRAM

which indicates that the list is for the main program. The

list also has a program name, a file-name sublist, and a

statement sublist. It has the following general structure:

(PROGRAM, program name, (file names), (statements))

- 31 -

CONST a - 3;

TYPE x - integer;

J LTE LTE of
ofxinteger

TYPE k 1. .3;

LE
of k 3

TYPE w- (x, y);

Figure 3.8: Examples of declaration nodes

- 32 -

1v

VAR t 1. .30;

VAR s (a, c);

IT TEo 0

Figure 3.8: cont'd

-33 -

Procedures and functions have different keywords, and the

file-name sublist is replaced by a formal-parameter sublist:

(PROCEDURE, procedure name, (formal parameters),
(statements))

(FUNCTION, function name, (formal parameters),

returnvariable, (statements))

The different kinds of statements in the statements sublist

are given below:

EXPRESSION:

(operator, left operand, right operand)

example:

x+ y

(+, x, y)

ASSERT STATEMENT:

(ASSERT, (expression))

example:

ASSERT(x > 3 - y)

(ASSERT, (>, x, (-, 3, y)))

ASSIGNMENT STATEMENT:

(:=, variable, (expression))

examples:

u := 8

(:=, u, 8)

a :p + m *c

(:, a, (+, p, (* m, C)))

- 34 -

CASE STATEMENT:

(CASE, (expression), (constant, (statement)) .

example:

CASE b OF
3 : x : y;
9 :x : y + 1

END

(CASE, b, (3, (:, x, y)), (9, (:, x, (+, y, 1))))

IF STATEMENT:

(IF, (expression), (thenstatement), (elsestatement))

example:

IF c > 5 THEN a : w * r
ELSE a : w

(IF, (>, c, 5), (:=, a, (*, w, r)), (:=, a, w))

REPEAT STATEMENT:

(REPEAT, (statement), (expression))

example:

REPEAT e := e + 1 UNTIL e > 99

(REPEAT, (:=, e, (+, e, 1)), (>, e, 99))

WHILE STATEMENT:

(WHILE, (expression), (statement))

examples:

WHILE t DO a := a + 1

(WHILE, t, (:=, a, (+, a, 1)))

WHILE t < 4 DO a : a + b

(WHILE, (<, t, 4), (:, a, (+, a, b)))

- 35 -

FOR STATEMENT:

(FOR, (expression), (expression), (statement))

example:

FOR i 100 DOWNTO 1 DO
q :h + 2

(FOR, 100, 1, (:=, g, (*, h, 2)))

PROCEDURE AND FUNCTION CALLS:

(CALL, procedurename, (actualparameters))

example:

p(a, j, k + 8)

(CALL, p, (a, j, (+, k, 8)))

COMPOUND STATEMENT:

(;, (statements), (statements))

example:

BEGIN
a : x + y;
b : f;
c :k k

END

(;, ;, :=, a, (+, x, y)), (:=, b, f)), (:=, c, k))

There are two kinds of nodes in a code list: elementary

and sublist nodes. All the elementary nodes have a field

for an integer and a pointer field to the next node. Howev-

er, elementary nodes for the parameters of procedures and

functions have an extra field to specify the passing mecha-

- 36 -

!
I

nism (by reference or by value) and one more pointer-field

to indicate the parameter type (i.e., the pointer field has

a pointer pointing to a declaration node which specifies the

type of a parameter). The integer field of an elementary

node either contains a lexical-table entry, or a keyword or

operator number. The lexical-table entries are represented

by negative numbers, while keywords and operators are repre-

sented by positive numbers, so that a virtual processor can

distinguish which is which. (The virtual processor is pre-

sented in Subsection 3.6). Figure 3.9 shows the three dif-

ferent kinds of nodes in a code list.

3.3.4 Diagram of Program Skeleton

Figure 3.10 shows the program skeleton of the pseudo-Pas-

cal program of Figure 3.3. This figure gives a general

structure of the program skeleton; the detail structures can

be easily figured out from the descriptions of the program

contour, declaration list, and the code list. Let Pn, n>,l,

represent the program contours; let Sn symbolize the code

lists; let Dn be the declaration nodes; and let DPn denote

the declarations for the procedures and functions. In the

root contour, the declaration nodes of I, R, B, and C corre-

spond to the Pascal types of integer, real, boolean, and

character, respectively. In Figure 3.10, the following dec-

larations are assumed: Dl is declared to be a constant; D2,

D4, and D9 are types; DS and D6 are variables of type D4; D3

- 37 -

(a) SUBLIST NODE

E INT

(b) ELEMENTARY NODE

E I NT PASSING

(c) ELEMENTARY NODE FOR PARAMETER

Figure 3.9: Code-list node formats

- 38 -

I

II
D9 DIO DP2 D I

P3 S3 2 D/

DS /P

D7 2
P 5_ PS

/ 5J

- 1/0
D2D

Figure 3.10: Program skeleton of Figure 3.3

-39 -

is a variable of type D2; D7 is a variable of type D9; DS is

a variable of type CHAR; and D10 is a variable of type REAL.

(For clarity, the pointers from VAR declaration nodes are

using dash arrows).

3.4 RECORD SKELETON

While the program skeleton of a Pascal program is fixed

during execution, the record skeleton depends on the program

-xecution. Record skeleton consists of record contours,

which are created whenever a program, a procedure, or a

function is invoked either recursively or non- recursively.

The record contours work like an activation stack.

3.4.1 Record Contour

Isomorphic to a program contour, a record contour has

three subcells: the environment link, the association link,

and the antecedent link. The environm~ent link which points

to another record contour, is determined by the binding

strategy employed. (The binding strategies will be dis-

cussed in Subsection 3.7). As described in (JOHN73J, each

activation record, A, is a record contour whose antecedent

link, points to some program contour, B; B is said to be the

antecedent of A while A is said to be a descendant of B.

The association link is a pointer to a circular list of as-

sociation nodes. The record contours, which consist of the

association lists and antecedent links, when linked together

-40-

I

by the environment links, constitute the record skeleton.

Figure 3.11 shows the subcells of a record contour. Similar

to the structure of a program contour, the record contour

has an identification subcell known as RECORD.

3.4.2 Association List

The association list, which is a circular list of associ-

ation nodes, is pointed to by the association-link subcell

of a record contour. Each association node corresponds to a

declaration occurrence, except there is no association node

for the type of a variable. An association node contains

the value of a variable; the value is encountered in the

reference occurrence and put into the value field of the as-

sociation node. Similar to the declaration node, an associ-

ation node contains four fields: a lexical- table entry

field, a type field, a value field, and a link field. The

lexical-table entry field contains the lexical-table entry

of the variable. The type of the variable is stored in the

type field, while the value of the variable, which depends

on its type, is in the value field. The link field has the

same function as the link field of a declaration node.

Thus, the link field points to the next association node or

points to a record contour. In figure 3.12, (a) shows the gen-

eral format of an association node, while (b), (c), (d),

and (e) show the specific examples.

-41-

ANECEDN

LINK

ASSOCIAETION
L I N K

F'igure 3.11: A record contour

- 42-

I
I

.I

(a)

LTE IINTEGERi REAL AL

VALUEVAU

(b) Cc)

7TE BOOLEAN BOOLE

(d) (e)

Figure 3.12: Association-node formats

- 43 -

3.4.3 Diagram of Record Skeleton

Figu.re 3. 13 shows the structure of record skeleton and

its relationship with the program skeleton. Again, let Rn,

n >,l, represent the record contours; and let ADn denote the

association node corresponding to the declaration node Dn in

the program skeleton (refer to Figure 3.10). In Figure

3.13, the environment links of the record contours are shown

with dash arrows, which are determined by the binding strat-

egy employed. L
The construction of the record skeleton is briefly de-

scribed here; further details are provided in Subsection 3.8.

When the main program P1 is executed, R1 is created with an

antecedent link pointing to the program contour Pl. P3 is

called from P1, so another record contour (R2) is created

with its antecedent link pointing to the program contour P3.

This process goes on for record contours R3, R4, and R5.

3.5 BINDING STRATEGIES

High-level programming -languages can be classified into

two major categories: compiled languages and interpreted

languages. One difference between them is the binding

strategies that they employ. Compiled languages use the static

binding-strategy. This means that the binding of most pro-

gram names to some particular characteristic (e.g. the rela-

tionship between the variables and their declarations) oc-

curs at compilation time. Interpreted languages use the

-44-

IDI

1
RI

Fiqur 3.1; Recrd ad itsassoiatedprogA7 kleo

- 4R 4

dynamic binding-strategy, in which most of the binding oc-

curs at execution time. With languages like FORTRAN, ALGOL,

COBOL, PL/I, and Pascal, execution efficiency is the main

concern; most of the bindings are performed during transla-

tion time. For languages such as APL, SNOBOL, and LISP,

flexibility is of prime consideration; bindings are delayed

until execution time.

ALGOL, PL/I, and Pascal, also called the block-structured

languages, employ the static scoping-rule. Based on the

block or procedure in which an identifier is used, a scoping

rule determines how an identifier reference is resolved to

its declaration. The static scoping-rule, or static binding-

strategy, can be stated as follows IGHEZ82]: if an identifi-

er is declared in a block or a procedure B, it is visible in

B, but not in blocks or procedures that enclose B. However,

the identifier is visible to all blocks or procedures that

are nested within B except when the same name is redeclared

in an enclosed block or procedure. In the exceptional case,

the local declaration masks the global declaration.

The dynamic scoping-rule, or dynamic binding -strategy,

uses the most recent association to resolve identifier ref-

erences. Since the binding of variables occurs at execution

time, languages that use the dynamic binding-strategy usual-

ly have no declarations for variables, because the type of a

variable is data dependent. EL1 is a language that allows

both strategies in one language [WEGB74). For experimental

- 46 -

1

purposes, PEEP also employs both strategies, although not

simultaneously.

PEEP uses Pascal as the base language; so, its scoping

rule is static. But the experimenter can specify either

static or dynamic scoping, so that the programmer can write two

identical programs with different binding- strategies. This

is used in analysis of program development and programmer

performance as it relates to the name-referencing environ-

ment [LIND81].

Figure 3.14 gives an example of a Pascal program which

shows the differences between the two scoping-rules. If the

static scoping-rule is used then the program operates as

follows: When procedure PROCI is executed, the reference to

X in the WRITEN statement is resolved using the static

scoping-rule to the X declared in the program BINDING. This

is true since PROCI has no locally-declared variable with

the same name. The value printed for X by this program us-

ing the static scoping-rule is zero because X was assigned

zero before PROC2 was called.

If the dynamic scoping- rule is used, the binding of a

variable uses the most recent association. In Figure 3.14,

procedure PROC1 is called from procedure PROC2. When PROC

is executed, the most recent association for the declaration

of variable X is in PROC2. The value of X printed by PROCI

in this case is one. This is true since the dynamic scoping-

rule binds the X in the WRITELN statement to the X declared

in PROC2.

- 47 -

program (outpu);
var K integer;

procedure PROCI.;
begin

WRITEL (X)
end;

procedure PROC2;
var X : integer;
begin

X :" 1;
PROCI

end;

begin
X :" 0;

PROC2
end.

Figure 3.14: A Pascal program demonstrating the scoping rules

- 48 -

I

3.6 VIRTUAL PROCESSOR

There is a virtual processor in the semantic models of

computation. The virtual processor is isomorphic to the

register structure of a hardware processing-unit; its func-

tion is to carry out the computation of the semantic models.

One of the important concepts of a virtual processor is the

label register which consists of an ordered pair:

<ip, ep>.

The ip is an instruction pointer which must point to an in-

struction in some code list, while the ep is an environment

pointer, which is either null or points to a record contour.

In a given snapshot, the ip of the virtual processor points

to the next instruction to be executed; the ep of that pro-

cessor determines the immediate access-environment for the

processor. The actions of the virtual processor are de-

scribed in Subsection 3.8.

3.7 ENVIRONMENTS

In IJOHN731, an environment is described to be either the

null sequence of contours, or consists of a sequence of con-

tours <C, , C,... Ct>, such that n >. 0, the environment

link of C. is null, and for 0<L< n, the environment link of

C- points to CA +j . The first member (C,) of a non-null en-

vironment is called the top member of that environment, and

the last (C,) is called the bottom member which is actually

the root of a tree.

- 49 -

3.7.1 Environment Binding-Strate ies (EBS)

Two mechanisms are discussed below, which produce point-

ers to record contours, are essential in defining various

identifier binding and environment-binding strategies:

Let E be the record environment, such that

E = <E O, E, Et>, where n*)O:

1. The Dynamic Environment-BindinA Strategy (DYN):

The inputs to DYN are a pointer to record contour

E i and record environment E. The output pointer is

null if and only if E is null. If E is non-null, the

output points to the top record contour of E.

Symbolically:

DYN(E, <E., E,,.... E,,>) -- > TE.

where 0 *An

(The svmbol "t " mean'. "a pointer to").

2. The Static Environment-Bindiny Strategy (STAT):

The inputs to STAT are a pointer to record-contour

E; and record-environment E. the output pointer is a

copy of Ej .

Symbolically:

STAT(tE i , <E9,. Ell 0 EI>) -- > fEi.

where Os 4n

- 50 -

I !
3.7.2 Identifier Binding-Strategy

As discussed in IJOHN73J, the purpose of identifier bind-

ing, and of the search mechanism which realizes it, is to

provide for each environment and each identifier an associa-

tion between a reference occurrence of that identifier and

some declaration occurrence of that identifier in some con-

tour of the environment. A binding may be regraded as a set

of pairs of the form:

<identifier, pointer>.

For every identifier in a program, the binding contains ex-

actly one such pair. The pointer in such a pair either is a

null pointer or points to a contour in the environment whose

declaration list or association list has an occurrence of

the identifier. If a pointer is null, that identifier is

free; otherwise, the identifier is bound to a contour point-

ed to by the pointer. In realizing this pair, a search

mechanism is needed. This is introduced below:

Absolute Highest Search Mechanism (AH_:

Let C be an environment and let I be an identifier. The

operational steps taken in locating a contour in C associat-

ed with I are as follows [JOHN73]:

1. If C is null, return a null pointer.

AH(I, <null>) -- > null

- 51 -

i

2. If C is non-null, conduct an iterative search to de-

termine the minimal index such that 04 n and C

has a declaration occurrence of I; if the search

fails, return a null pointer; otherwise, return a

pointer to the located contour of C

AH(I, <CO, C, C>) -- > null ortci

3.7.3 Complete Bindinq-Strategies (CBSJ_

Two complete binding-strategies are used in PEEP. A com-

plete binding-strategy, which consists of a search mechanism

and an environment binding strategy, determines the binding

method used in a language. Thus, CBS is a 2-tuple, consists

of:

(RS, EBS)

RS is the record-contour search-mechanism. The two CBS used

in PEEP are discussed in the following:

1. Dynamic Complete Binding-Strategy (DYN CBS)

The record-contour search-mechanism is the abso-

lute highest method, and the EBS is the dynamic envi-

ronment binding-strategy.

DYN_CBS = (AH, DYN)

- 52 -

IW
I

2. Static Complete Bindin -Strategy (STAT CBS)

The record-contour search-mechanism is the same as

DYNCBS, but the EBS is the static environment bind-

ing-strategy.

STATCBS = (AH, STAT)

3.8 EXAMPLES

The complete binding-strategy determines the environment

links of the record contours. Figure 3.14 gave an example

of a Pascal program which yielded different results with dif-

ferent binding-strategies. Let us use that example to dem-

onstrate how the actions of the virtual processor produce

the record skeleton, and to show the realization of binding

strategies using the environment links of the record skele-

ton.

Figure 3.15 shows the program skeleton of the Pascal

program. Now, the actions of the virtual processor which

builds the record contours are described. At first, the ip

of the virtual processor points to the PROGRAM code-list

while the ep is null. When this Pascal program is being ex-

ecuted, a record contour (Rl) is created for the main pro-

gram, and the antecedent link of this record contour points

- 53 -

(PROGRAM, BtINDING. (output). ;.(X. 0). (CALL. FROC2. OMf

(PRCEDU. RZ 0, ; T :,~) CLL R.0)

Figure 3.5crga kltno iue31

- 54 -2

BINDING

I
I

to the program contour BINDING (Figure 3.16(a)). When the

ip moves to the code list:

(:=0 X, 0)

ep points to RI; and based on the information from the code

list, the assocation list of this record contour has an as-

sociation node for the identifier X which has a value of

zero. When the call of PROC2 becomes the next code-list en-

countered by ip, another record contour (R2) is created, and

R2's antecedent link points to program-contour PROC2. Now,

assume the STAT CBS is used:

STATCBS = (AH, STAT)

The AH record-contour search-mechanism, with the identifier

PROC2 and the current environment <RI> as the parameters,

produces:

AH(PROC2, <Ri>) -->t RI

The STAT CBS will take the pointer produced by AH as one of

the parameters, and the current-record environment as the

other parameter, yields:

STAT(tRl. <Ri>) -- >tRI

-55-

BINDING R

BINDINGNG

x 0o

PROC2 R2
x I

PROC R2 PROCI R

PROCI R3 I R

(a) (b)

Figure 3.16: Record skeleton of Figure 3.14

-56-

I
i

Therefore, the environment link of R2 is pointing to RI. In

executing PROC2, the ip points to the the code list:

,X, 1)

and ep points to R2. After setting the association listI
based on the information of the code list and the declara-

tion list of the program-contour PROC2, the ip moves to the

code list:

(CALL, PROCI, U)

which calls the procedure PROCl. A new record-contour (R3)

is created and using the STAT CBS again:

AH(PROCl, <R2, RI>) -->tR

STAT(t Rl, <R2, Rl>) -->

Thus, the environment link of R3 points to RI also. When

PROCI is being executed, the ip moves to:

(WRITELN, X)

in the code list:

(PROCEDURE, PROCI, (), (WRITELN, X))

ep points to R3, since R3 does not have any association for

X, the virtual processor following the environment link of

R3 to RI. In Ri, X has the association node and the value

of zero in it, so the value printed is zero.

- 57 -

If DYNCBS is used in this Pascal program the record

skeleton is different (Figure 3.16 (b)). The following steps

show why this is so.

When ip is at the code list (CALL, PROC2, ()); ep is at

RI:

AH(PROC2, <Rl>) -->TRl

DYN(t RI, <RI>) -- >t R1

Thus, the environment link of R2 points to RI. When ip is

at the code list (CALL, PROC1, ()); ep is at R2:

AH(PROCl, <R2, Ri>) -- >IR

DYN(f R1, <R2, Rl>, R

Therefore, the environment link of R3 points to R2. When

the ip is at code list:

(WRITELN, X)

ep points to R3. Since R3 does not have any association for

X, ep follows the environment link to R2. The value of X is

associated with one and this is the value printed.

- 58 -

I

4. IMPLEMENTATION

The five modules described in the last section communi-

cate with each other to constitute an interactive program-

ming-environment. The communication among them can be im-

plemented in two ways. First, all the modules can be in one

process. That is, the modules communicate with each other

in one program using procedure calls. Second, the five mod-

ules can be five different processes. In this case, a disk

file should be used to store the program and the record

skeletons for the modules to access or modify the skeletons.

Since the five processes are in five different programs,

synchronization mechanisms should be established among the

processes. This can be accomplished by using event flags or

semaphores.

The first version of PEEP used the first method. The

following sections are a detailed description of how the

different modules of PEEP were implemented on a VAX-11/780

computer under VMS.

4.1 COMMAND DISPATCHER

The command dispatcher acts like a master module in PEEP.

It is responsible for the invocation of the editor, the

translator, and the interpreter. After invocation, those

modules return to the command dispatcher and await another

command from the user. In the current version, the normal

- 59 -

way to terminate PEEP is get into the edit mode of the edi-

tor, and to use the editor command FILE or QUIT. The pseudo-

code algorithm for the command dispatcher (CMDDSP) is given

below:

PROCEDURE CMDDSP;
BEGIN

loop := true;
WHILE loop DO

BEGIN
accept a character;
CASE character OF

E : BEGIN call INPUTMODE; loop false END;
S : call INTER(S);
0 : call INTER(O);
U : move cursor up one line;
D move cursor down one line;
CARRIAGE RETURN:

call EDITMODE
END Icasel

END 1while)
END; tCMDDSP}

4.2 EDITOR

SAM is a line-oriented text-editor. In programming envi-

ronments, structured editors or syntax-directed editors are

usually used, for example: [ALBE81, TEIT75, TEIT81, SHAP8O].

PEEP uses the text-editor SAM because of its file handling,

editing capabilities, and screen handling.

The detailed structure of SAM is not described in this

report interested readers should see [EHRI81]. In order to

use the editor SAM for this interactive programming-environ-

ment, SAM has been broken down into three separate subrou-

tines. They are:

- 60 -

I.

I

1. INITSAM -- contains all the initialization for the

3 SAM editor.

2. EDITMODE -- edit mode of SAM, carries out all the

editing abilities of the editor.

3. INPUTMODE -- input mode of SAM:

PROCEDURE INPUTMODE;
BEGIN

accept a line of Pascal program and
put it into an input buffer;

insert this line into the working
storage

END; {INPUTMODE}

4.3 TRANSLATOR

The components of the translator are shown in Figure 4.1.

The compiler-compiler and the driver- routine LLDRV are

called LLPARS [MORS79], which are system programs supplied

by Digital Equipment Corporation using on the VAX-11/780 un-

der VMS. The LL(l) translation-grammar is a BNF-like gram-

mar-specification for the Pascal language. Since it is a

translation grammar, action-routine calls, together with

terminals and non-terminals, are embedded in the production

rules of the grammar, while the actual code of the action

routines are put into a separate file. The lexical analyz-

er, LLSCAN, is a scanner for the translator. LLSCAN works

with a lexical-string table which contains all the identifi-

ers except keywords in a Pascal program. Every time LLSCAN

- 61 -

L L(RAN SLAT I ON
GRAMMAR

MIL

COMPILER-
COMPI LER

PAR
SE

TAB

I~ VLLSCAN LLDRV ACT1ON
(LEXICAL 4 (DRIVER ACT-ON
ANALYZER) ROUTINE) ROUTINES

LEX ICAL PROGRAM
STR ING KELETON

TABLE

Figure 4.1: Components of the translator

- 62 -

I
I

is called by LLDRV, the scanner returns with a token to -he

driver. As described in [MORS79], the actions of the dif-

ferent components of the translator are given in the follow-

ing paragraph.

The compiler-compiler accepts the translation grammar as

input and produces a set of parse tables. The driver rou-

tine linked with these tables, forms a parser for the lan-

guage specified by the grammar. When a line of Pascal pro-

gram is entered, the parser carries out a top-down parse of

the input under control of the parse tables, calling the

scanner, whenever necessary, to supply the next token in the

input. Basically, LLDRV is a machine that executes a set of

"moves" which depend on the current "state" of the machine,

and the next token in the input. The state of the machine

is contained in a pushdown stack. This stack contains a

unique "bottom marker". Stacked on top of the bottom marker

may be either terminals, non-terminals, or action-routine

calls. The machine selects the move to execute next on the

basis of the symbol on top of the stack, and the next token,

as follows:

1. If top-of-stack is a terminal, it should match the

next token. If it does, pop the stack and scan for

the next input-token. If it doesn't, error.

2. If top-of-stack is an action routine, pop the stack

and call the routine which will build part of the

program skeleton.

- 63 -

3. If top-of-stack is a non-terminal, decide which pro-

duction rule applies using the table. Pop the non-

terminal off the stack, then push the selected right-

side onto the stack, symbol by symbol, so that its

first symbol becomes the new top-of-stack. If no

right-side can be applied for the next token, error.

4. If top-of-stack is the bottom marker, terminate with

success.

4.4 INTERPRETER

The interpreter is responsible for the building of the

record skeleton. It simulates the working of the virtual

processor described in Subsection 3.6. In the current im-

plementation, it recognizes the commands "S" and "0"; the

former executes a single statement, and the latter executes

each operation within a statement.

PROCEDURE INTER(opcode);
BEGIN

CASE opcode OF
S execute a statement;
0 IF cursor is at the BEGIN statement

THEN build the record skeleton based
on the pair <ip, ep>

ELSE execute a single operation
END Icase)

END; JINTER)

- 64 -

I
I

4.5 STATE EXAMINER AND MODIFIER

This module is responsible for the examination and modi-

fication of the state of the program. It is essential for

the debugging process as an aid to understanding program be-

havior.

4.6 FIRST VERSION OF PEEP

In addition to the algorithms described above, this subsec-

tion describes the rest of the generalized overall algor-

ithms for the first version of PEEP. The algorithms have

been greatly simplified to give an idea of how the first

version of PEEP was constructed.

The main program of PEEP initializes the command dis-

patcher, translator, interpreter and the SAM editor. Then

LLDRV, the system subroutine of the parser for the Pascal

language, is called.

PROGRAM PEEP;
BEGIN

initializes the command dispatcher;
initializes the translator;
initializes the interpreter;
initializes SAM editor;
call LLDRV

END; JPEEPJ

LLDRV, based on the parse tables produced by the compi-

ler-compiler, calls LLSCAN for a token. If a correct token

is found, then, LLDRV carries a top-down parse under control

of the parse tables. If an erroneous token is found messag-

- 65 -

es will be printed and LLDRV quits because error recovery

routines have not been embedded in the grammar specifica-

tion. The following algorithm is a simplified description

of how LLDRV works as supplied by Digital Equipment Corpora-

tion.

PROCEDURE LLDRV;
BEGIN

LOOP
call LLSCAN;
carries out a top-down parse of the token
under control of the parse table

FOREVER
END; {LLDRVJ

LLSCAN, the lexical scanner for the translator, looks at

the input buffer. If the input buffer is empty, LLSCAN

calls the command dispatcher; otherwise, it scans the input

buffer and returns one token from the input buffer to LLDRV.

PROCEDURE LLSCAN;
BEGIN

IF input buffer is empty OR the input
line has been scanned

THEN call CMDDSP;
scan the input buffer and returns a

token
END; {LLSCANJ

- 66 -

5. REFERENCES

[ALBE81 Alberga, C. M., Brown, A. L., Leeman, G. B. Jr.,
Mikelsons, M. and Wegman, M. N., "A Program De-
velopment Tool," Conference Record of the 8th An-
nual ACM Symposium on Principles of Pr_ gramminy
Languages_ Williamsburg, Virginia, January 26-28,
1981, pp.92-10 4 .

[ARCH80] Archer, J., Conway, R., Shore, A. and Silver, L.,
"The CORE user Interface," Technical Report,
TR80-437, Department of Computer Science, Cornell
University, Ithaca, New York, September 1980.

(BRAN81 Branstad, M. A. and Adrion, W. R. (Eds.), NBS Pro-
gramming Environment Workshop R!port, U. S. Gov-
ernment Printing Office, Washington, 1981.

[EHRI81] Ehrich R. W., "SAM -- A Configurable Experimental
Text Editor for Investigating Human Factors Issues
in Text Processing and Understanding," Technical
Report, CSIE-81-3, Department of Computer Science
and Department of Industrial Engineering and Oper-
ations Research, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia, Sep-
tember 1981.

[FAIR801 Fairley, R. E., "Ada Debugging and Testing Support
Environment," SIGPLAN Notices, Vol.15, No.11, No-
vember 1980, pp.16-25.

[GHEZ82J Ghezzi, C. and Jazayeri, M., Programming Language
Concepts John Wiley & Sons, Inc., 1982, p.44.

IHABE79] Habermann, A. N., "An Overview of the Gandalf Pro-
ject," Computer Science Research Review 1978-1979,
Carnegie-Mellon University, Pittsburg, Pennsylva-
nia, 1979.

IHUNK80 Hunke, H. (Ed.), Software Engineering Environ-
ments, North-Holland Publishing Company, 1980.

(JOHN731 Johnston, J. B., "Identifier Binding and Access in
Nested Declaration Computations," Proceedings of
the Seventh Annual Princeton Conference on Infor-
mation Sciences and Sy.stems March 22-23, 1973,
pp.306-312.

- 67 -

I

[LIND811 Lindquist, T. E. and Johnston, D. H., "An Empiri-
cal Evaluation of the Relationship between Pro-
grammer Performance and Scoping Strategies," Tech-
nical Report, Department of Computer Science,
Virginia Polytechnic Institute and State Universi-
ty, Blacksburg, Virginia, August 1981.

IMORS79j Morse, J. A., LLPARS Users Manual, Applied Re-
search and Development, Digital Equipment Corpora-
tion, Maynard, Massachusetts, September 23, 1979.

IRIDD801 Riddle, W. E. and Fairley, R. E. (Eds.), Software
Development Tools, Springer-Verlag, Germany, 1980.

[RITC781 Ritchie, D. M. and Thompson, K., "The UNIX Time-
Sharing System," The Bell System Technical Jour-
___l Vol.57, No.6, July-August 1978, pp.1905-1929.

ISHAP801 Shapiro, E., Collins, G., Johnson, L. and Rutten-
berg, J., "PASES: A Programming Environment for
Pascal," Computer Science Department, Yale Univer-
sity, April 1980.

ISTON80] "Stoneman," Requirements for Ada Programming Sup-
port Environment, U. S. Department of Defense,
February 1980.

ITEIT75 Teitelman, W., INTERLISP Reference Manual Xerox
Palo Alto Research Center, California, 1975.

ITEIT81] Teitelbaum, T. and Reps, T., "The Cornell Program
Synthesizer: A Syntax-Directed Programming Envi-
ronment," Communications of the ACM, Vol.24, No.9,
September 1981, pp.563-573.

[VT10791
VT100 User Guide, Digital Equipment Corporation,
Maynard, Massachusetts, 1979.

[WEGB74] Wegbreit, B., "The Treatment of Data Types in
ELl," Communications of the AC_L Vol.17, No.5, May
1974, pp.251-264.

-68-

OFFICE OF NAVAL RESEARCH

Code 442EP

TECHNICAL REPORTS DISTRIBUTION LIST

OSD Department of the Navy

CAPT Paul R. Chatelier Commanding Officer

Office of the Deputy Under Secretary ONREAST Office

of Defense ATTN: Dr. J. Lester

OUSDRE (E&LS) Barnes Building

Pentagon, Room 3Dl29 495 Summer Street

Washington, DC 20301 Boston, MA 02210

Department of the Navy Commanding Officer

ONRWEST Office

Engineering Psychology Programs ATTN: Dr. E. Gloye

Code 442 1030 East Green Street

Office of Naval Research Pasadena, CA 91106

800 North Quincy Street
Arlington, VA 22217 Office of Naval Research

Scientific Liaison Group

Communication & Computer Technology American Embassy, Room A-407

Programs APO San Francisco, CA 96503
Code 240
Office of Naval Research Director

800 North Quincy Street Naval Research Laboratory

Arlington, VA 22217 Technical Information Division

Code 2627

Manpower, Personnel and Training Washington, DC 20375

Programs
Code 270 Dr. Michael Melich

Office of Naval Research Communications Sciences Division

800 North Quincy Street Code 7500

Arlington, VA 22217 Naval Research Laboratory
Washington, DC 20375

Information Sciences Division

Code 433 Dr. Louis Chmura

Office of Naval Research Code 7592

800 North Quincy Street Naval Research Laboratory

Arlington, VA 22217 Washington, DC 20375

Physiology & Neuro Biology Programs Dr. Robert G. Smith

Code 441B Office of the Chief of Naval

Office of Naval Research Operations. OP987H

Arlington, VA 22217 Personnel Logistics Plans
Washington, DC 20350

Special Assistant for Marine

Corps Matters Naval Training Equipment Center

Code lOOM ATTN: Technical Library

Office of Naval Research Orlando, FL 32813

800 North Quincy Street
Arlington, VA 22217

Department of the Navy Department of the Navy

Human Factors Department Dr. George Moeller
Code N-71 Human Factors Engineering Branch
Naval Training Equipment Center Submarine Medical Research Lab.
Orlando, FL 32813 Naval Submarine Base

Groton, CT 06340
Dr. Alfred F. Smode
Training Analysis and Evaluation lead

C:roup Aerospace Psycho 1 ogy Depart ment
Nawl1 Trai iiing Equipmemt Center Code ',
Code 'rAE(G Navwl Aerospace Medical Research ,aI.
Orlando, FL 32813 I'ensacola, FT. 32508

CDR Norman F. Lane Commanding Officer
Code N-7A Naval Health Research Center
Naval Training Equipment Center San Diego, CA 92152
Orlando, FL 32813

Dr. James McGrath
Dr. A. L. Slafkosky CINCLANT FLT HQS
Scientific Advisor Code 04E1
Commandant of the Marine Corps. Norfolk, VA 23511
Code RD-I
Washington, DC 20380 Navy Personnel Research and

Development Center
Naval Material Command Planning & Appraisal DIvision
NAVMAT 0722 - Rm. 508 San Diego, CA 92152
800 North Quincy Street
Arlington, VA 22217 Dr. Robert Blanchard

Navy Personnel Research and
Commander Development Center
Naval Air Systems Command Command and Support Systems
Human Factors Programs San Diego, CA 92152
NAVAIR 340F
Washington, DC 20361 Mr. Stephen Merriman

Human Factors Engineering Division
Commander Naval Air Development Center
Naval Air Systems Command Warminster, PA 18974
Crew Station Design,
NAVAIR 5313 Mr. Jeffrey Grossman
Washington, DC 20361 Human Factors Branch

Code 3152
Mr. Phillip Andrews Naval Weapons Center
Naval Sea Systems Command China Lake, CA 93555
NAVSEA 0341
Washington, DC 20362 Human Factors Engineering Branch

Code 1226
Commander Pacific Missile Test Center
Naval Electronics Systems Command Point Mugu, CA 93042
Human Factors Engineering Branch
Code 81323 Mr. J. Williams
Washington, DC 20360 Department of Environmental

Sciences
U.S. Naval Academy
Annapolis, MD 21402

Department of the Navy Foreign Addressees

Dean of the Academic Departments Dr. Kenneth Gardner
U.S. Naval Academy Applied Psychology Unit
Annapolis, MD 21402 Admiralty Marine Technology

Establishment
CDR C. Hutchins Teddington, Middlesex TWIl OLN
Code 55 England
Naval Postgraduate School
Monterey, CA 93940 Director, Human Factors Wing

Defence & Civil Institute of
Office of the Chief of Naval Environmental Medicine
Operations (OP-115) Post Office Box 2000
Washington, DC 20350 Downsview, Ontario M3M 3B9

Canada
Department of the Army

Dr. A. D. Baddeley
Mr. 1. Barber Director, Applied Psychology Unit
HQS, Department of the Army Medical Research Council
DAPE-MBR 15 Chaucer Road
Washington, DC 20310 Cambridge, MA CB2 2EF

England
Technical Director
U.S. Army Research Institute Prof. Brian Shackel
5001 Eisenhower Avenue Department of Human Science
Alexandria, VA 22333 Loughborough University

Loughborough, Leics, LEll 3TU
Director, Organizations and England
Systems Research Laboratory
U.S. Army Research Institute Other Government Agencies
5001 Eisenhower Avenue
Alexandria, VA 22333 Defense Technical Information Center

Cameron Station, Bldg. 5
Technical Director Alexandria, VA 22314 (12 copies)
U.S. Army Human Engineering Labs.
Aberdeen Proving Ground, MD 21005 Dr. Craig Fields

Director, System Sciences Office
Department of the Air Force Defense Advanced Research Projects

Agency
U.S. Air Force Office of Scientific 1400 Wilson Blvd.
Research Arlington, VA 22209

Life Sciences Directorate, NL
Bolling Air Force Base Other Organizations
Washington, DC 20332

Dr. Jesse Orlansky
Chief, Systems Engineering Branch Institute for Defense Analyses
Human Engineering Division 1801 N. Beauregard Street
USAF AMRL/HES Alexandria, VA 22311
Wright-Patterson AFB, OH 45433

Dr. Robert T. Hennessy
Dr. Earl Allulsi NAS - National Research Council (COHF)
Chief Scientist 2101 Constitution Ave., N.W.
AFHRL/CCN Washington, DC 20418
Brooks AFB, TX 78235

Other Organizations Other Organizations

Dr. Deborah Boehm-Davis Mr. John Impagliazzo
,eneral Electric Company Code 101
Information Systems Programs Newport Laboratory
1755 Jefferson Davis Highway Naval Underwater Systems Center
Arlington, VA 22202 Newport, RI 02840

Mr. Edward M. Connelly Dr. Mel C. Mov
Performance Measurement Code 302
Associates, Inc. Naval Personnel R&I) Center
410 Pine Street, S.E. San Diego, CA 92152
Suite 300
Vienna, VA 22180 Dr. Richard Neetz

Pacific Missile Test Center
Dr. Richard Pew Code 1226
Bolt Beranek & Newman, Inc. Pt. Mugu, CA 93042
50 Moulton Street
Cambridge, MA 02238 Mr. Larry Olmstead

NSWC
Mr. Richard Main Code N32
ONR Resident Representative Dahlgren, VA 22448
George Washington University
2110 G. Street, N.W. Mr. Rick Miller
Washington, DC 20037 NSWC

Code N32
LCDR Stephen Harris, USN Dahlgren, VA 22448
HF Engineering Division
Naval Air Development Center Dr. Arthur Fisk
Warminster, PA 18974 ATT Long Lines

12th Floor
Dr. J. Hopson 229 W. Seventh St.
HF Engineering Division Cincinnati, OH 45202
Naval Air Development Center
Warminster, PA 18974

Dr. A. Meyrowitz
Code 433
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217

Dr. Thomas McAndrew
Code 32
Naval Undersea Systems Center
New London, CT 06320

Mr. Walter P. Warner
Code KOZ
Strategic Systems Department
Naval Surface Weapons Center
Dahigren, VA 22448

I

