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INTRODUCT ION

This report is in four parts. The first part is an article presented

at the February 1983 meeting of the IRIS Specialty Group on Targets, Back-

grounds, and Discrimination. Since the text is classified CONFIDENTIAL,

it is not included here. Instead the article is represented by a page giving

the unclassified title, the authors, and a reference to the symposium

proceedings where the text can be found.

The work leading to the IRIS article uncovered deficiencies in the

methods of manipulating recotded clutter data to study the effect of

spatial resolution on clutter rejection and signal detection. The second

part of this [eport notes the deficiencies and indicates whether and how

they can be corrected. One of the correction techniques will be described

in a future article after it has been tested and proven by computations.

Part 3 is an article which reports the results of studies to elucidate

the operation of an adaptive threshold sensor and to determine how its size

*affects signal detection. This article has been submitted for publication

in the journal, Applied Optics.

Finally, part 4 summarizes work done to obtain data suitable for

simulating two-dimensional signal processing.
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PART 1

Simulation of Cloud Clutter Rejection by Spatial
Discrimination and Threshold Detection (U)

A. F. Milton, M. S. Longmire, and E. H. Takken

A classified article (CONFIDENTIAL) published in
Proceedings of the IRIS Specialty Group on Targets,
Backgrounds, and Discrimination, February 1983.
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PART 2

Problems Associated with Changing the Spatial Resolution
of Recorded Clutter Data

In the IRIS article of part 1, the spatial resolution of recorded

clutter data was degraded in order to study the role of spatial resolution

* in clutter rejection and signal detection. The procedures employed are.

indicated schematically in Figure 2.1. Degradation in the cross-scan

(vertical) direction requires only aligning the channels and adding sampled

values from them, effectively increasing the pixel (detector) height.

Degradation in the scan (horizontal) direction requires increasing the

detector width by summing adjacent pixels. It is usually desirable to

perform another summation which increases the blur circle size keeping it

matched to the detector width, since this is the way most optical sensors

are made.

These summations involve a number of difficulties. First, unless the

sampling rate is chosen very carefully, the channels cannot be aligned

exactly, and horizontal pixels overlap when added. Provided sampling is

instantaneous, these problems can be overcome by interpolating the data

C with a cardinal function and s'zmming the interpolated data. Seconc, the

detector noise (from photon fluctuations and the usual sources in the

detector and electronics) is increased by the pixel summations. Third,

detector elements in staggered columns may overlap vertically as in

Figure 2. 1 leading to areas of doubled sensitivity in the new pixels.

Neither of these problems can be corrected because clutter is a super-

position of two components, random detector noise and deterministic pure
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clutter noise from the non-uniform background radiance. One can think of

techniques for correcting either component at least partially, but the

methods are different for the two components and cannot be applied to them

separately. Finally, the summations which increase detector size and blur

circle size represent optical linear filtering. Figure 2.2 shows the

amplitude response of the optical degradation filter used in the IRIS

article of part 1 and, for comparison, the amplitude response of the

associated 1-D LMS filter. With recorded data the degradation filter acts

on bath the pure clutter and the detector noise altering the frequency

dependence of their power spectra, properly for the pure clutter, but

improperly for the detector noise since its frequency content cannot actually

be affected by optical filtering. This problem can be corrected approximately

by adding back the part of the detector noise improperly renoved by the

optical degradation filter. A method for doing this has been worked out

and will be published after it has been tested and proven~ by calculations.
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PART 3

Simulation of Mid-Infrared Clutter Rejection. 2: Threshold-sensor
Size-effects with LMS-filtered Noise

M. S. Longmire, F. D. Bryant, ,J. D. Wilkey, and A. F. Milton

(Submitted for publication in the journal, Applied Optics)
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Abstract

The relation between an adaptive threshold sensor's size and its perfor-

mance is analyzed numerically using LMS-filtered noise. The analysis links

signal detection to size through the threshold parameter, sampling variance,

and a "clutter-edge effect," with account taken of non-random sampling,

correlation, and non-stationarity of the noise. A principle is established

for determining whether a 2-D threshold sensor is advantageous; it is not

under the conditions of this simulation. Critical, optimum, and best sizes

are given for a 1-D threshold sensor following a I-D LMS filter with input

from an optical sensor having NEI (noise equivalent irradiance) = 1.5 x 10-13

W/cm2 and spatial resolution 0.15 x 0.36 milliradians.
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I. Introduction

This article, like the first one, discusses simulation of cloud clutter

rejection using recorded natural background noise and algorithms programmed

for a digital computer to represent components of a mid-IR surveillance set.

The background data, the algorithms, and the method of simulation ate

described in the first article, which compares the performance of two

threshold sensors - one fixed, the other adaptive - following several I-D

linear filters.1  The combination of a l-D adaptive threshold sensor and a

1-D LMS spatial filter suppresses extreme cloud clutter effectively and

detects simlulated signals almost as well in clutter as in uniform sky. It

was noted in the first article that the performance of an adaptive threshold

sensor depends on its size (its spatial extent or the number of background

data used to estimate the local noise statistics), but only one size was

studied previously. Here we report results of further work to determine how

changing the size of a I-D threshold sensor following a I-D LMS filter affects

signal detection. We also present a numerical analysis of the threshold

sensor's sampling performance, taking account of non-random sampling,

correlation, and non-stationarity of the LMS-filtered noise. This leads to

some useful experimental generalizations and to a principle for determining

whether a 2-D threshold sensor is advantageous. The method of analysis is

applicable wherever recorded background data are available and should be

useful for developing threshold sensors to operate under conditions different

from the ones in this simulation.

Non



11. Results and Discussion

The quality of signal detection achieved with an adaptive threshold

sensor depends on the average threshold K, where K is a threshold parameter

and n is the average magnitude of the filtered noise. The average noise level

n probably influences signal detection more than the threshold parameter

because its values for different optical sensors and electronic filters can

differ by as much as 20 dB. The threshold parameter's range is smaller unless

the clutter-edge effect described in section IIB is extreme. If n is fixed by

specifying the optical sensor and electronic filter, the quality of signal

detection then depends on the threshold parameter and the excursions of the

filtered noise magnitude about its average. These excursions ate due to ordin-

ary statistical variations and to non-stationarity. A 1-D adaptive threshold

sensor samples the filter output and averages the magnitudes of 2n sampled

values xf which lie equally about a single value xw whose signal content is

to be tested. The average <Ixfl> is multiplied by a threshold parameter K,

and the tested value is declared to be a signal if it exceeds the local

threshold K<Ixfl>. K is chosen to provide a specified false alarm rate. For

zero-mean filter output, the average of the 2n magnitudes is a statistical

estimate - <lxfl> of the mean absolute deviation ) = <lxl> of the local

noise. The estimate n and the threshold l0 vary as the sampled filter output

A
passes stepwise through the threshold sensor. The distribution of n about n

is known as the sampling distribution; its standard deviation (s.d.) is called

the standard error of the mean, but we will use the simpler names, sampling

s.d. and sampling variance. The part of the threshold sensor containing the

tested value will be called the signal window, and the part containing the

2n averaged magnitudes will be called the frame.

10
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This summary of the adaptive threshold sensor's operation implies

certain effects which occur as the frame size is increased. When the

frame is small some estimates of n are much too small, others much to great.

A
Large n degrade signal detection locally by causing the local threshold to

be larger than necessary to prevent false alarms. Small n degrade signal

detection globally since the threshold parameter, which is the same through-

out the scene, must be large to prevent false alarms where n is small. As

the frame size is increased the estimates of n become more accurate, the

sampling variance and the threshold parameter decrease, and signal detection

improves, provided the noise is stationary. If the noise is non-stationary

the sampling variance may still decrease with increasing frame size, but the

threshold parameter may decrease or increase, and signal detection may

improve or deteriorate depending on other factors. To transform this

qualitative description into a semi-quantitative one, we analyzed the

threshold sensor's sampling performance, related that to the threshold

parameter required for a given false alarm rate, and finally linked the

thteshold parameter to signal detection.

11



A. Numeiical Analysis of Sampling

Sampling of a time series by an adpative threshold sensor can be related

computationally to a simple statistical theorem. If random samples of 2n = N

values each are taken from a data set (population) of more than 20N

uncortelated values, the relation between the sampling s.d. o and the

standard deviation a of the population is

2 = 0 2/N or log (oA/a) - log IN. (1)

The latter equation is represented by the diagonals in Figure 1. The

sampling s.d. is divided by the population s.d. to facilitate comparison

of results from data sets with different variances. It is useful to think

of a one-sided threshold sensor and consider the limit of equation (1)

A
when N = 1. In that case n _ Jxfj so that a' - a by definition, and the

equation is an identity. Thus, we expect equation (1) to be nearly satisfied

when the sample size is small, regardless of other conditions. Except for

N = 1, however, the theorem is not applicable to the adaptive threshold

sensor and the recorded background noise because the thieshold sensor does

not take random samples and the recorded noise is correlated and non-

stationary. To relate the statistical theorem to the problem in hand, we

made computations in which we first approximated the conditions of the

theorem and then relaxed them by steps to arrive at the actual conditions.

Nine segments of uncorrelated, Gaussian, pseudo random noise were

generated by the method described in reference 2. This was done for two

segment lengths, 1900 values and 3200 values, which are the average lengths

of the segments of recorded uniform sky noise and of clutter used in the

first article. Sampling variances wete calculated by passing the segments

12
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through the adaptive threshold algorithm using ten frame sizes from 8 to 640

values. The results appear in Figures 1(A) and I(B), where the dots indicate

the sampling s.d.s for the whole data set, and the bars span the ranges of the

sampling s.d.s for the segments. (A population sampling variance is the

average of the associated segment sampling variances.) The sampling s.d.s

for the population are on or very near the diagonals showing that sampling

by the adaptive threshold sensor is equivalent to random sampling if the

noise is stationary and uncorrelated. The ranges of the sampling s.d.s

for the segments result from ordinary statistical differences between the

segments. They are larger for the shorter segments as expected.

Next the synthetic noise was passed through the 1-D LMS filter to

obtain Gaussian noise with the same correlation as the LMS-filtered uniform

sky noise. The correlated synthetic noise was then processed in the same

way as the uncorrelated noise; results are plotted in Figures I(C) and 1(D).

Correlation reduces the number of independent data in the segments and

the frame, so that the values and usually the ranges of the sampling

s.d.s are increased. For reasons already given the sampling s.d.s at a

frame size of eight data are closer to the diagonals than those at larger

frame sizes, which alone are of practical importance. At the larger frame

sizes correlation simply shifts the reference line rightward parallel to

itself, as illustrated by the lines with slope -1 drawn through the points

at frame sizes above eight.

Finally, sampling variances were calculated for ten segments of uniform

sky noise (each 1900 values long) and ten of clutter (each 3200 values long).

Comparing these results - Figures I(E) and I(F) - with those for correlated

synthetic noise, we see that non-random sampling and non-stationarity

increase the ranges of the sampling s.d.s and the slopes of the lines through

13



them, most obviously in the case of the clutter. The sampling s.d.s of

both the uniform sky noise and the LMS-filtered clutter can be described

empirically at the frame sizes of interest simply by extending equation

(1) to include the effects of non-random sampling, correlation, and non-

stationarity. The general equation for any line in Figure (1) is

log (o./o) - R + a log VN. (2)

The line through the uniform sky results is adequately fit by a - -0.909

and R = 0.0819, that through the clutter results by a = -0.530 and

= -0.0433.

The fact that a > -1 for the uniform sky results requires comment.

The uniform sky noise may not be strictly stationary because small gain

differences (< 8%) between the segments were not corrected. (Neither were

they corrected for the simulations here or in the first article.) On the

other hand, non-stationarity between segments should increase the ranges

of the sampling s.d.s primarily, whereas non-stationarity within the

segments should be the chief cause of increases in the slopes. The small

difference between -1 and a for the uniform sky results may, therefore,

be due to ordinary experimental uncertainty like that in Figures I(A) and

I(C), not to gain differences.

If the noise is stationary, ( can be related to the fraction f of the

data which are effectively independent. The lines through the sampling

s.d.s of the correlated Gaussian noise have a - -1 and P - 0.188. From

the latter we find f - 0.42. Calculations of correlation coefficients show

that the first and last of five sequential magnitudes in the 124S-filtered

synthetic noise are uncorrelated, giving f - 0.40. The theoretical

correlation length of LMS-filtered white noise 3 gives f - 0.5 approximately.

14
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Clearly the suggested interpretation of I is sound for correlated stationary

noise. If the noise is correlated and non-stationary, P is determined by

these two properties jointly, and a numerical analysis would require

calculations with synthetic noise having known amounts of each property.

The effort did not seem worthwhile. In this case we simply regard equation

(2) as an empirical relation useful for interpreting and predicting the

effects of changing threshold-sensor size.

15
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B. Threshold Parameter, Critical Sample Size, and Clutter-edge Effect

The sampling s.d.s of the uniform sky an,! clutter populations are

replotted against frame size in Figure 2(A). Obviously in both cases the

sampling s.d. decreases at a decreasing rate with increasing frame size.

This is not surprising; the law of diminishing returns with respect to

sample size is well known. More important is the relation between the

sampling s.d. and the threshold parameter. To study this we calculated

threshold parameter ratios xW,/<IxfI> from the two data sets (containing 114

segments each) used in the first article, not from the restricted sets used

here to analyze sampling. The frame sizes employed were 2n -36, 80, 144,

240, and 340 data, the limit of 340 being necessary to avoid excessive loss

of ratios. This frame size is 23 percent of the smallest segment, which

means that 23 percent of the data in that segment cannot be used as window

values xw. If larger frame sizes were used with the segmented data,

the results would be unreliable because of the additional ratios lost.

Figure 2(B) shows threshold parameters which allow one false alarm

(f.a.) in all the data or one in the uniform sky. The one false alarm

permitted in all the data always occurs in the clutter. Except for a clutter-

edge effect discussed below, the threshold parameter behaves as the sampling

s.d. does. This means that there are certain "critical sample sizes"

beyond which the threshold parameter decreases and (looking ahead) signal

detection improves very slowly. The critical sample size depends on the

fractional rate of decrease of the sampling s.d., which is obtained by

differentiating equation (2).

16



= - (3)
(a/CF dN 2N

If P is the fractional rate of decrease at the critical sample size Nc,

then Nc = c/2F. From Figures 2(A) and 2(B) the critical sample size in

uniform sky appears to be about 250 data, so that F - 1.8 x 10- 3 per datum.

Owing to the clutter-edge effect, it is difficult to estimate the critical

sample size in clutter from Figure 2. However, if F has the same value in

clutter as in uniform sky, then Nc ~ 150 data (6 milliradians) in clutter,

which agrees well enough with the appearance of the curves. The critical

sample size is always greater in uniform sky than in clutter, provided F is

the same in the two regions, because Jal is always greater in uniform sky

than in clutter.

The plot of sampling s.d. in clutter suggests that the threshold

parameter for one f.a. in clutter should decrease slowly beyond Nc = 150

data. In fact, it passes through a broad, shallow minimum because of the

following "clutter-edge effect," which appears to begin at a frame size

between 8 and 10 milliradians (200 and 250 data). As the size of the

threshold sensor is increased, the frame includes larger and larger

proportions of the benign clutter which flanks severe clutter like that

in Figure 4(C) of the first article. This lowers the estimates n - <IxfI>

and raises the threshold ratios xw/l in the vicinity of the severe clutter,

thus increasing the threshold parameter. Ordinarily the increase will be

no more than a few decibels; only an extreme clutter-edge effect like the

hypothetical one described in section VB of the first article could change

17



the threshold parameter by 10-20 dB. (Partly for this reason, the threshold

sensor usually affects signal detection less than the optical sensor and

electronic filter, as noted earlier.) Here the increase - 2.3 percent

between frame sizes of 240 and 340 data - is within the experimental

uncertainty. However, the occurrence of a clutter-edge effect fits so well

into the pattern of the results that we do not doubt its actuality. With

that granted the dashed part of the top curve in Figure 2(B) indicates how

the threshold parameter might behave at larger frame sizes.

To verify or refute this behavior would require computations with

unsegmented data. Many frame size effects can be studied without separating

uniform sky noise from clutter, and in some respects it would be better not

to separate them. If the data were not segmented, much larger frame sizes

could be used before the loss of window values mentioned above became a

problem. This would be advantageous for frame size studies, but would hide

differences between performance in unifotm sky and cluttet. We chose to

emphasize the latter, realizing that frame size studies with separated data

are valid provided the clutter segments do not begin ot end at clutter edges,

a condition satisfied here.

(The clutter-edge effect has also been called the "cloud-edge" effect,

but bright cloud edges may not be its only cause. The term, "clutter-edge,"

is preferable since It accurately describes the origin of the effect in

the waveform but is noncommittal about its origin in the scene.)

18



C. Signal Detection, Optimum Sample Size, and Best Sample Size

Frequencies of detecting simulated signals were calculated using tile

threshold parameters in Figure 2(B) and the two data sets of 114 segments

each fLor uniform sky and from clutter. The results are plotted in Figure 3

except those for the fLame size )f 144 data, which are in the first aLticle.

From these curves we obtained data for Figure 4, where simulated signal

strengths required for detection frequencies of 0.50, 0.70, 0.90, and J.95 nre

plotted against frame size. The ordinates of curves in Figure 4 will be

called "equally detected signal strengths."

The curves of equally detected signal strengths are much like the top

threshold parameter curve in Figure 2(B), indicating that the threshold-

sensor size affects signal detection chiefly through its effect on the

threshold parameter. The minima of the curves occur, regardless of

detection frequency, at a frame size of about 10 milliradians (250 data),

the same as the minimum of the threshold parameter curve. This is the

optimum sample size for signal detection. Increasing the frame size to

14 or 15 milltradians increases equally detected signal strengths about

0.2 dB, the same as thle causative increase of the threshold parameter.

Because of the scales employed in Figure 4, signal detection appears to

deteriorate quickly below the optimum size, but actually it does not. Using

frtames of 36 or 144 data rather than the optimum size reduces signal

detection by only 2.4 dB or 0.2 dB respectively. Thus, with a 1-fl LMS

filter the best sample size is the critical sample size in clutter since

use of a larger frame risks a clutter-edge effect but improves signal detec-

tion very little in either clear sky or clutter. The frame must not be too

much less than the optimum size, however, because the curves in Figures 2(B)

and 4 are rising rapidly at 36 data, one-seventh the optimum size.

19



111.Sumaryand Conclusions

We first summarize results and state conclusions which are valid in

general for an adaptive threshold sensor following a spatial filter. Barring

an extreme clutter-edge effect, the quality of signal detection depends

primarily on the average magnitude of the filtered noise (set by the optical

sensor and spatial filter) and secondarily on the threshold parameter. The

threshold parameter required for a given false alarm rate is determined by

the threshold sensor's sampling variance and by a clutter-edge effect.

Sampling variance decreases at a decreasing rate with increasing threshold-

sensor (sample) size. The decrease is more rapid when the sampled

noise is stationary than when it is non-stationary. There are loosely

delimited critical sample sizes above which sampling variance decreases

very slowly. The critical sample size is larger for stationary than for

non-stationary noise. Above the critical sample size in clear sky, the

threshold parameter and equally detected signal strength also decrease very

slowly. They behave similarly in clutter, provided there is no clutter-edge

effect. If there is one the behavior depends on the relation between the

threshold-sensor size at which it begins and the critical sample size in

clutter. If the two sizes are about the same, the threshold parameter and

equally detected signal strength each have a narrow minimum. If the edge-

( effect onset is larger than the critical sample size, the minima are broad,

as in Figures 2(B) and 4. Whether the minima are shallow or deep depends

on the magnitudes of the sampling variance effect and the clutter-edge

effect. Ordinarily these factors change the threshold parameter and signal

detection no more than few decibels within the range of practical threshold-

sensor sizes. Only an extreme clutter-edge effect could result in changes

greater than 10 dB.

20



The foregoing summary makes the following useful principle self-

evident: If the onset of the clutter-edge effect with a 1-D threshold

sensor is less than the critical sample size in either clutter or clear

sky, a 2-D threshold sensor may be advantageous, otherwise it will not

be. To apply this principle, one must know the critical sample sizes and

the onset of the clutter-edge effect. The critical sample sizes can he

estimated from the sampling variance, the threshold parameter, or signal

detection. The sampling variance gives the least accurate estimates but

is by far the easiest method to use. A weak clutter-edge effect and its

onset can be found only from the threshold parameter or signal detection;

perhaps a stronger one could also be found from ttie sampling variance.

We next summarize less general results and conclusions. These are

valid only for a 1-D adaptive threshold sensor following a 1-D ILMS filter

0.3 mR (7 data) long when the filter input is from an optical sensor having

an NEI greater than 1.5 x 101 W/cm2 and a spatial resolution better

than 0.15 x 0.36 mR. Further restrictions are imposed by the man-made and

natural conditions under which the background data were recorded, sampled,

and digitized as described in the first article.

Under the stipulated conditions the critical sample size is 10 mR

(250 data) in uniform sky and 6 mR (150 data) in clutter. A clutter-edge

effect with an onset between 8 and 10 mR results in an optimum threshold-

sensor size of 10 mR, but increasing the size to 14-15 mR increases the

threshold parameter and equally detected signal strengths only 0.2 dB,

indicating a very weak clutter-edge effect. (The weakness is due to the

fact that the worst clutter in the filtered data is the same order of

magnitude as the NEI.) Similarly, the threshold sensor can be

21
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made smaller than the optimum size with very little loss of signal detec-

tion; fot example, the loss is only 0.2 dB at the ciitical sample size in

clutter. Consequently, the best 1-D threshold-sensor size is the critical

sample size in clutter because the larger optimum size risks a clutter-edge

effect but improves signal detection very little. Finally, a 2-D threshold

sensor probably would not be advantageous in this case since the critical

sample size can be reached with a I-D threshold sensor in both clutter and

uniform sky with no significant loss of signal detection owing to the clutter-

edge effect.

22
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Figure 1. Sampling standard deviation (s.d.) of average noise magnitude

estimates r as a function of threshold-sensor sample size,

noise type, and segment length. The sample sizes are 8, 18,

36, 80, 144, 240, 340, 440, 540, and 640 data. Noise data of

each type are divided into segments of the specified lengths.

There are 9 segments in each of the data sets (A)-(D), and 10

segments in each of the sets (E)-(F). Variances are calculated

about the average magnitude n of all data in a set. Bars show

the ranges of the sampling s.d.s of the segments; dots indicate

the sampling s.d. of the population (all segments of the set).

A population sampling variance is equal to the average of the

associated segment sampling variances. Sampling s.d.s oG are

divided by the associated population s.d. a to facilitate

comparison of results from different data sets. The diagonals

represent the logarithmic form of equation (1). The lines

through the dots of data sets (C)-(F) are drawn for best visual

fits.
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Figure 2. Sampling standard deviation (s.d.) and threshold parameter K

as functions of threshold-sensor sample size and noise type.

The sample sizes are 36, 80, 144, 240, and 340 data. (A) Pop-

ulation sampling s.d.s for the data sets of Figures I(E) and

I(F); each set contains 10 segments. (B) Threshold parameters

for one false alarm (f.a.) determined from the two data sets

in reference 1; each set contains 114 segments.
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Figure 3. Frequencies of detecting simulated Fignals in LHS-filtered

natural background noise with threshold sensors of different

sizes. These results are calculated from the two data sets

used in reference 1; each set contains 114 segments. Results

for a frame size of 144 data are in reference 1. The threshold

parameters for one false alarm (f.a.) are plotted in the top

curve of Figure 2(B).
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Figure 4. Equally detected signal strength as a function of threshold-

sensor size, noise type, and detection frequency. Simulated

signal strengths for these plots were read from the curves in

Figure 3. The curves here show simulated signal strengths

required to achieve the indicated detection frequencies with

threshold sensors of different sizes.
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PART 4

Data for Simulation of 2-D Signal Processing

The work reported in Parts 1 and 3 has shown that high spatial

resolution, one-dimensional (1-D) spatial filtering, and I-D adaptive

threshold sensing are an effective combination for suppressing extreme cloud

clutter and detecting signals from point sources in either clear sky or cloud

clutter when the NEI of the surveillance system is greater than 10 W/cm

At the same time it was found that, even with very good spatial resolution,

the worst clutter from backlit clouds passes a 1-D LMS spatial filter at a

level of 5-6 x 10 W/cm , which apparently is the clutter rejection limit

of 1-D signal processing techniques. If the system NEI were lower, this

leakage of extreme clutter would limit the expected improvement of signal

detection in clear sky and benign clutter. Further clutter rejection is thus

desirable; perhaps it could be obtained by two-dimensional (2-D) signal

processing -- that is, by processing inputs from several detector elements

(channels) to produce a single channel of output. Two-dimensional filtering

will reduce clutter leakage if the clutter outputs of 1-D LMS filters are

correlated in the cross-scan direction. Two-dimensional adaptive threshold

sensing will be advantageous if the residual clutter occurs in isolated small

patches several times larger than the optical blur circle.

The data employed for the work reported in Parts 1 and 3 are unsuitable

for studies of 2-D signal processing on two accounts. First, they show no

channel-to-channel correlation or isolated small clutter patches. Second,

they contain only six channels, too few for 2-D simulations. At least
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three -- more likely five -- channels of input are required for a single

channel of output from a 2-D filter or threshold sensor. If five channels of

input are required, about eight channels of data are needed to simulate the

performance of either a 2-D filter or a 2-D threshold sensor, and about

twelve channels are needed to simulate the performance of a 2-D threshold

sensor following a 2-D filter.

An effort was made to obtain suitable data through an exchange arranged

by the Naval Air Development Center, Warminster, PA, and the Canadian Defense

Research Establishment Valcartier, Quebec. Data gathered under sponsorship

of the Naval Research Laboratory were traded for data collected by French

workers. The terms of the exchange required all data to be supplied on

magnetic tape in a standard NATO format. Computer programs for reading and

writing the NATO-format tapes were developed by the Control Data Corporation

(CDC) with the assistance of the project director for this contract. The

FORTRAN V program which reads NATO tapes and reformats the contents for use

on the CDC Cybernet system is stored on tape A07739 at the Eastern Cybernet

Center in Rockville, MD. This tape also has the French data reformatted for

use on the Cybernet system.

Parameters characterizing the French data are given in Table 4.1, where

important missing information is also indicated. Certainly there are

sufficient channels for 2-D simulations, but examination of the table reveals

the following difficulties.

1. More information about the layout of the detector elements in the array

is needed before the spatial resolution of the data can be reduced to

simulate optical sensors with larger instantaneous fields of view.

2. Simulations with these data cannot be fully interpreted and related to

simulations with other data unless the NEI at the output of the data

collection filter is known.
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3. The sampled azimuthal field-of-view is barely large enough for simulating

adaptive threshold sensors. One twice as large would be better.

4. The point spread function (detector output from a point source) must be

known in order to derive weights for simulating matched filters and also

to reduce the spatial resolution of the data.

5. The high frequency cut-off of the data collection filter is less than

half that of the optical sensor's point source output. Consequently,

simulations with these data will be strongly affected by the properties

of the data collection filter. This means that the data cannot be used

to study processing of the optical sensor's output, which is the type of

study usually desired.

6. Recording the data should not affect its properties. For that reason it

would be reassuring to know the tape recorder's characteristics,

especially those listed, even though this information is not essential

for simulations.

7. The sample time (time to take a sample of the electrical filter output)

must be known in order to derive suitable weights for simulating digital

filters. This is especially important here since the number of samples

per dwell is small.

8. Eight bits do not provide enough range for extreme cloud-clutter data if

they are recorded and digitized on linear scales. If the scales are not

linear, they must be known before the data can be used.

Among these difficulties only one, the cut-off frequency of the

electrical filter, is necessarily fatal to the intended use of the data. The

choice of a filter cut-off less than the point-source cut-off is unusual for

data collection and invites inquiry about the reason for it. Perhaps the

data were not collected for general use in simulations but for development of
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a particular device having a cut-off (or scaled cut-off) the same as that

employed. Alternatively, the reported cut-off may be in error, although this

seems unlikely since it is given as both a temporal anc a spatial frequency,

and the two agree. Nevertheless, further inquiries about the electrical

filter cut-off should be made because the data cannot be used for general

simulations if the value in Table 4.1 is correct.
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Table 4.1. Parameters for Recording French Data

Spectral Bands 2.8-5.6 Pm and 7.2-11.2 vim

Detector Array 288 elements, 144 in each spectral
band. No more information presently
available.

NEI at Output of Data Collection
Filter

Field of View Each element (resolution):
0.25 mR (az) x 0.25 mR (el)

Total
3600 (az) x 20 (el) =

6283 mR (az) x 34.9 mR (el)
Sampled

81.8 mR (az) x 34.9 mR (el)

Detector Output from a
Point Source

Scan Rate: 3600/1.33 s = 4724 mR/s

Dwell time = 5.3 x 10- 5 s

Point source cut-off = 9450 Hz

Electrical filter 20-3800 Hz passband

Tape Recorder Bandwidth - ?
Dynamic range = ?
Noise level NEI = ?

Sampling Azimuthal sampling interval

0.16 mR or 3.4 x 10-5 s

Sampling rate

1.56/dwell or 29,500/s

Sample time ?

Digitization Sign bit and 7 numeric bits =
+ 128 full scale
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