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NOMENCLATURE "

Amplitude of flow oscillations
Coefficients, [see Eq. (66)]
Fourier coefficients

Projected area per unit length
Acceleration

Coefficients, [see Eq. (66)]
Fourier coefficients

Fourier coefficients
Structural damping

Added mass coefficient

Drag coefficient

Average drag coefficient in steady flow
Force coefficient, [see Eq. (41)]
Lift coefficient

Inertia coefficient
Coefficients, [see Eq. (66)]
Radius of circular cylinder
Diameter of body

Water depth

Force

Calculated force

In-line force

Transverse or l1ift force

*Additional symbols are defined as they appear in

the text.




Fm Measured force
fv Vortex shedding frequency E
H Wave height .
K Keulegan-Carpenter number, K = 2nA/D = UmT/D = wH/D
- Ks Structural stiffness
k Mean roughness height
) L Wave length
A Lc Length of circular cylinder
: M Mass per unit length
‘ N An integer
é n An integer
P, Q Coordinates of a vortex
R Radius of sphere
Re Reynolds number, Re = UmD/v
St Strouhal number (also denoted as S), St = f D/U or va/V
s Displacement of fluid
T Period of flow oscillation
t Time
u Instantaneous velocity
Um Maximum velocity in a cycle
u x-component of velocity
\'} Velocity of mean flow
' X.¥s2 Coordinate axis

2 Distance along the cylinder




A
‘ '; a Yaw angle
8 Frequency parameter, B8 = Re/K = DZ/vT
; r Circulation of vortex
} AR Residue
% n A proportionality factor .
: o angle, 6 = 2nt/T
' A (C; - Cm)/(KCd) where c; is the ideal potential flow value of C
M Oynamic viscosity
‘ v Kinematic viscosity
s ‘ 0 Fluid density
{1' o Goodness-of-fit parameter, [see Eq.(71)]
¢ Phase angle
i ] Coherence-state factor
‘ u w Circu‘lar frequency
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1.0 INTRODUCTION

Unsteady motion is of great interest in the solutifon of many applied
technical problems in fluid mechanics, such as the motion of bodies through
fluids, fluid motion in or about bodies, free-surface phenomena, and others.
The variety and the complexity of the problems, particularly those fnvolving
separation, put their rigorous calculation beyond reach. In fact, a large
number of practical and practically-inspired basic time-dependent flow
problems exist for which ignorance reigns supreme. However, it will be
misleading to invoke the unsteadiness of the ambient flow as the sole cause
of all difficulties. In reality, the flow behind a bluff body, moving
steadily through a fluid, is accompanied by large-scale unsteadiness. Thus,
any type of unsteadiness of the ambient flow and/or of the motion of the
body introduce additional changes in the characteristics of the flow.

The formation of a wake gives rise not only to a form drag, as would be
the case if the motion were steady, but also to significant changes in the
inertial forces. The velocity-dependent form drag is not the same as that
for the steady flow of a viscous fluid, and the acceleration-dependent inertial
resistance is not the same as that for an unseparated unsteady flow of an
inviscid fluid. In other words, the drag and the inertial forces are inter-
dependent as well as time-dependent. Although indirect, the role of viscosity
is paramount in that its consequences are separation, vortex formation and
shedding, and resultant alterations in the added mass. The specification of
these various aspects provides a basis for the correlation of theoretically
predicted and observed forces. Evidently, the coefficients obtained for
unseparated unsteady flows are not applicable to occurrences in which the

duration of flow in one direction is long enough and the body form blunt




enough for separation to occur. It is necessary to determine the relation-
ships between various resistance components in terms of the unsteadiness of
the ambient flow, the geometry of the body, the degree of the upstream
turbulence, the roughness of the object, and the past history of the flow. .
Clearly, it will not be a meaningful exercise to interpret the
consequences of unsteadiness with preconceived notions or ideas carried
over from steady flows. For example, in a sinusoidally-oscillating flow
about a circular cylinder the periodic reversals of the flow inevitably lead
to the forward and backward motion of the vortices whereas in steady flow the
vortices shed (at a Strouhal frequency dependent on the Reynolds number)
and are convected downstream. Thus, one is tempted to attribute the changes
in drag to the vortex velocity fields and their 'unsteady' convection by the
periodic flow. This is an obvious but nevertheless too simplistic explanation
of the actual occurrences. Even for unidirectional time-dependent flows about
bluff bodies, there are significant differences between the steady and unsteady
flows in the levels of resistance experienced by the body. In general, it is
more appropriate to regard each time-dependent flow situation as a new
presence with all of its attendant consequences and not only in terms of its
most obvious features. The wave motion about bluff bodies is such a time-
dependent flow which demands quantitative analysis, ingenious experiments,
and qualitative descriptions for the purpose of explaining the underlying
causes of the physical effects and providing a model by which design can be

reasonably performed.




2.0 THE ORIGIN OF THE MOJS EQUATION AND ITS LIMITATIONS

In a paper(‘) submitted to the Petroleum Transactions of AIME on
23 October 1949, Morison, 0'Brien, Johnson, and Schaaf (referred to
hereafter as MOJS) wrote:

“The force exerted by unbroken surface waves on a cylindrical

object, such as a pile, which extends from the bottom upward above

the wave crest, is made up of two components, namely: (1) A drag

force proportional to the square of the velocity which may be

represented by a drag coefficient having substantially the same

value as for steady flow, and (2) A virtual mass force proportional

to the horizontal component of the accelerative force exerted on the

mass of water displaced by the pile. These relationships follow

directly from wave theory and have been confirmed by measurements..."
Thus was born the MOJS equation, often referred to as the Morison equation.
The authors also stated that "This paper is essentially a preliminary report
submitted at this time because of the current importance of wave forces in
the design of offshore structures(z)."

The MOJS equation was originally written as (retaining the nomenclature

originally used by the authors)

2
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where dF represents the force exerted on a differential section, dz,

(1) See Morison et al., (1950), citation p. 77

(2) It is of some interest to note that the work of MOJS has been
conducted under a contract with the U. S. Navy on a problem posed by the
Bureau of Yards and Docks, the predecessor of the Naval Facilities
Engineering Command.




in length; D, the pile diameter; p, water mass density; Sue coefficient of
mass; CD’ coefficient of drag; u, the horizontal component of .ne orbital
velocity; and %% , the acceleration (meaning local acceleration) of the
water particles.

MOJS went on to express Eq. (1) in a form suitable for waves of small
amplitude and carried out experiments in a wave flume with model piles hinged
at the bottom. The necessary restraining force was measured at a known moment
arm above the hinge. The coefficients CD and CM were obtained "by measuring
the force when cos6 or sin® are zero, respectively” (now known as the two-
point method). According to MOJS "The experimental values of CM and CD
showed some scattering but no trend as a function of d/L (still water depth/
wave length), H/L (wave height/wave length) or Reynolds number. The average
values obtained for runs with the pile on a horizontal bottom and without
impulsive forces, were CM = 1.508+0.197, CD = 1.626 £+ 0.414. The Reynolds
number, corresponding to the maximum surface orbital velocity, ranged from
0.22x104 to 1.11x104. The Reynolds number decreased from these maximum
values both downward along the pile and with time. The drag coefficient
of a cylinder varies not only with the Reynolds number but also with the
turbulence of the incident stream. Values of CD for cylinders in a steady
stream of air or water within this range of Reynolds numbers vary from 0.65
to 1.20."

The MOJS paper represents in many ways a rather remarkable piece of

engineering work. It is partly because of its historical importance and

partly because many later works employed similar experimental and evaluation
methods that the MOJS paper will be discussed in some detail.

1. MOJS recognized the importance of breaking waves and the impulsive




nature of the force exerted by breakers;

2. MOJS noted that “the orbit velocities are also unsymmetrical, the
forward velocity at the crest exceeding the backward velocity in the trough
by approximately 10 percent in a deep-water wave having a steepness ratio
(H/L) of 0.02 and approximately 25 percent for a steepness ratio of 0.10";

3. Analysis of the data has been based upon a sinusoidal variation in
velocity and, in effect, the asymmetrical velocity variation is represented
in the empirical coefficients;

4. Cyand Cy were based on the total force (or moment) acting on the

entire pile, evaluated as noted before. In view of this and in view of
items (2) and (3), it is rather surprising that MOJS reported Cp and C,

with such scientific precision (CM = 1,508 + 0.197 and C, = 1.626 + 0.414);

D
5. The force expression is assumed "to follow directly from wave
theory" and “confirmed by measurements." In fact, MOJS is stating that the
force on a vertical "cylindrical object" (a circular cylinder or any other
cylindrical object) is due to the horizontal component of the orbital velocity
and the horizontal component of the local acceleration. Implications of this
assumption are that (a) vertical components of the velocity and acceleration
are of no importance; (b) the convective accelerations (horizontal and
vertical) do not contribute to the force; (c) the horizontal force must be
comprised of a velocity-dependent drag and an acceleration-dependent inertial
force since the simple wave theory yields a velocity and an acceleration.
It is not clear as to why the convective acceleration has been ignored, i.e.,
why did MOJS use only the local acceleration instead of total acceleration.
Clearly, every unsteady fluid motion has a time-dependent ambient

velocity and ambient acceleration. Thus, it does not automatically follow

that the instantaneous force is decomposable into a velocity-square dependent

drag force and an acceleration-dependent inertial force. Even if such a




“separation of forces" were to be assumed, it does not follow that the

forces should be added linearly, resulting in a simple linear-quadratic

sum. One can state with hindsight that the choice of the particular form

of the force expression seems to have been governed by the following criteria:
(a) tangential velocities and accelerations cannot influence the flow
appreciably; (b) the wave theory (small amplitude) yields normal velocities

and local accelerations each of which must be separately and additively

responsible for part of the force; (c) heuristic reasoning of the applicability

of the force expression when applied to conditions of steady flow alone or

SEm e

accelerating flow alone (added mass concept in inviscid fluids); (d) ana-
lytical simplicity of the force expression (1inear-quadratic sum); and (e)
experimental justification of the results (within the range of parameters

4

tested: 0.22x10" < Re < 1.11x10%, 4.14 < K = wH/D<14.82). For example,

the assumption of constant CD and CM along the pile was justified by the
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results that "the experimental values of CD and CM showed some scattering
but no trend as a function of d/L, H/L or Reynolds number." One can state,
on the basis of current studies, that MOJS could have found variations in

CD and CM with H/D had they measured the sectional forces on small segments
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of the pile rather than the total moment acting on the pile. However, even
then they could not have found a systematic variation with the Reynolds

number. MOJS did recognize the approximate nature of their equation and

i experimental results and certainly implied that an approximate equation
} was being calibrated with two empirical constants: "The force coefficients
CD and CM reported here are regarded as sufficiently accurate for design
purposes, provided that they are re-inserted in the equations from which

they have been derived."




Further examination of the MOJS paper leads to a few other important
facts. The sample oscillograph trace of MOJS (their Fig. 4), for wH/D =
9.24 and Re = 4.85x103, shows that the moment trace exhibits cycle-to-

cycle variations (in shape if not in maximum amplitudes). The paper does
not contain the words "vortex", "boundary layer", "wake", "transverse force", !
"1ift force", "spanwise coherence", "wave scatter", "diffraction", "direct
measurement of velocities", etc. It follows that the MOJS equation does
not deal with the causes of the in-l1ine and transverse forces. The test

pile was restrained at the top by two lateral springs. It is not known as

to whether the pile underwent lateral oscillations. There is no discussion
of the merits or shortcomings of the use of calculated velocities and
accelerations. No attempt was made to measure the velocities directly.
MOJS used very small piles where the diameter to wave length ratio (D/L)
was much smaller than 0.2. Even though the wave scatter and diffraction
effects were negligible, no mention of this fact was made. Clearly, the
MOJS work was practically inspired, there was some urgency in obtaining
some data ("The current importance of wave force in the design of offshore
structures makes it desirable that the results to date be made available
now"), and the investigation was carried out in an engineering spirit.

The impact of the MOJS equation has been profound. It established a
blind trust for many years in the MOJS equation (in spite of the warnings
of its originators). Many years had to pass by before the limits and
capabilities of the MOJS equation were recognized. There was an awareness
of the fact that what works in the laboratory may not work in the ocean
environment. But this awareness was not translated into a clear assessment

of the differences between the laboratory conditions and the environmental




conditions (e.g., wave nonlinearity and directionality, currents, natural
roughness, etc.). Only during the past few years that the practically-
inspired problems have been translated into important questions of basic
fluid mechanics (see e.g., Sarpkaya and Isaacson 1981). During the interim
period 1950 to 1975, design decisions were made about the flow conditions
and the non-fluid-flow constraints where even broad features of fluid
behavior are only vaguely perceived. The designs were based largely on
general concepts, speculative generalizations of the MOJS equation, some
reasoned arguments, proprietory coefficients, experience of the relevant
flows, intuitive generalizations from existing designs and data, and special
ad hoc experiments. Only during the last five years that extensive basic
research came to the world of offshore engineering, partly in response to the
demands and stimuli provided by the offshore engineering, partly by the
challenge of the problems encountered, and partly by the ever increasing
interest in time-dependent flows. Only the outstanding contribution of
Keulegan and Carpenter in 1956 has been an exception to the foregoing.
Scientific fluid mechanics had to shun away the enormously complex and
i11-defined problems of ocean engineering and searched for a well-posed
and yet sufficiently relevant flow situation (e.g., the standing waves of
Keulegan and Carpenter in a rectangular basin, sinusoidally-oscillating
planar flow of Sarpkaya (1976) in a U-shaped water tunnel, etc.). Such an
idealization of the flow is often an essential first step. Assuming the
idealized flow situation can be understood through experiments, quantitative
analysis, and qualitative descriptions, it must then be related back to the
complexity of the actual ocean environment. One must be warned, however,
that the search for well-posed oscillating flow situations and the new

insights gained therefrom do not necessarily lead to the exploitation of




the findings in a useful way in the modelling of wave forces on offshore
structures. If a more sophisticated MOJS equation brings no guarantee of
better predictions outside the range of parameters and geometries on which
the new mode]l is based, then it is of little value to the ultimate user.
Thus, it is important to emphasize that even though well-posed time-depen-
dent flow situations are extremely important in uncovering the degree of
importance of the parameters involved, in increasing our quantitative and
qualitative understanding of the various flow mechanisms, and helping us to
devise new models, there is definite need for data obtained and observations
made directly in the ocean environment through precise instrumentation and
appropriate data analysis. Ultimately, the design of offshore
structures will not be improved solely due to the knowledge gained through
the study of the well-posed problems, as if it were a one way approach, but
rather through the interaction and reasonable marriage of the two approaches:
basic studies and environmental measurements.

In summary, the MOJS equation was proposed as an approximate solution to
a complex problem. Its justification is strictly pragmatic and rests with
experimental confirmation. Some of the often repeated limitations of the
MOJS equation are that it applies only to the prediction of in-line forces
for D/L smaller than about 0.2; it does not apply uniformly well to all
ranges of Re and K values; with average Cd and Cm (henceforth the subscripts
will be denoted by lower case alphabets), the unsteadiness of the force
resides only in the variation of u and du/dt with time; three-dimensional
effects (e.g., spanwise correlation, flow shear, etc.) are ignored; the effect
of the axial pressure gradient is ignored; the transverse force is not
accounted for; it does not apply equally well to all cylinder shapes or bluff
bodies; it cannot deal with the effects of orbital motion, yaw, body- or free-

surface proximity, omnidirectionality of the waves and/or currents; in certain




ranges of K, (8 < K < 25), the MOJS equation yields relatively large residues

even for a circular cylinder in sinusoidally oscillating planar flow

(one must bear in mind the possibility that the large residue may be because
of the said nature of the particular flow and the perfect spanwise coherence!);
it has no provisions to deal with vortex and wake-return effects (history of
the motion) which have been found in most experiments to cause cycle-to-cycle
variations in the in-line force and non-stationary oscillations in the
transverse force, and so on.

Both the form of the equation and the uncertainties that go into the
characterization of the ocean environment are thought to be responsible for
the differences between the measured and calculated forces. Clearly, it is
not a meaningful exercise to relegate the errors only to one or the other.
Thus, as far as the ocean environment is concerned, the MOJS equation, with
calibrated coefficients, is tolerated in light of all other uncertainties
and hidden and intentional safety factors that go into the design.

The MOJS equation may be examined more systematically through experiments
with relatively more manageable flows where kinematics do not require the
use of intermediate theories. In addition, many other difficulties arising
from the change of kinematics with space, orbital motion, etc. may be avoided.
The physical insight and the data acquired through observations and measurements
may help to formulate an equation with, hopefully, fewer Timitations and
greater degree of power of prediction. In the final analysis it must meet
the needs of the designer and not just the research needs of the fluid

dynamicist.
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3.0 THE NATURE AND DECOMPOSITION OF THE TIME-DEPENDENT IN-LINE FORCE

3.1 Basic Background

The most serious difficulty with the time-dependent flows lies in the
description of the time-dependent force itself. Some insight may be gleaned
into the nature and decomposition of this force from a remarkable paper by
Stokes (1851) on the motion of pendulums. Stokes has shown that the force
acting on a sphere oscillating in a 1iquid with the velocity U = -Aw coswt

is given by
gan’l _9_ 2u \dU 1 pwD
Fy==~ (2+2V'_pun=)7{+3”“w(“3v—z'ﬁ') (2)

This force is composed of two parts: an inertial force and a drag force,
linearly-dependent on acceleration and velocity, respectively. Evidently,
the fluid motion is assumed to be unseparated. Both components of the force
depend on viscosity.

The decomposition of the time-dependent force into the two said components
is somewhat arbitrary. The same force may be decomposed into three or four
parts and each part may be given a separate meaning. For example, one may

write
1 pﬂD’) du 9 (ans) 2u dU 3 pwD?
2 e | —— ) ¢ — | — ——— — -_— ——————
FO 2( s Jat VU T Ve @ 2™V 2, (3)

in which the first term on the right-hand side represents the added-mass
(its ideal value) times acceleration; the second term, the linear viscous
resistance to the steady motion of a sphere at very low Reynolds numbers
(say Re < 1); the third term, either the effect of history or the motion

on the inertial force or simply the viscous effects in harmonic motion on

n




the acceleration-dependent forces; and the last term, the history effect
on the linear drag or the increase in skin friction and pressure drag due
to oscillations. Also, one may combine the last two terms and regard them
as history-dependent modifications to the ideal and the instantaneous steady-
state values of the inertia and drag forces.
In Stokes sphere problem where the Reynolds number is very smalil,

drag is proportional to the first power of velocity. In the MOJS equation
dF = [0.50DC,|U]U + oC_(vD?/4)dU/dt]dz (4)

where u’ is now changed to |U|U and 3u/3t to dU/dt, drag is proportional to
the square of the velocity since the flow is separated and the drag is
primarily due to pressure rather than the skin friction. Thus, one may regard
the MOJS equation as an heuristic extension to separated time-dependent flows
of the solution obtained by Stokes, with the understanding that the validity
of the extension and the limits of its application wiill have to be determined
experimentally.

The fact that the drag and inertia coefficients in the MOJS form of the
resistance equation depend on both the Reynolds number (Re = UmD/v where
Um = Aw) and the relative amplitude A/D or K = 27A/D may be demonstrated by
writing the MOJS equation and the Stokes solution for a sinusoidally oscillating

flow (U = -0, coswt) about a sphere at rest as

F 8n 1 .
l Z_.:m s-Cdlcoswtlcmwt+—5-l—(Cmnnug (5)
2P ¢ e
and
_‘j_—"ﬁ(li'-‘- ﬂ-—e-)coswti‘-s—?-(é- 42 E.) wt (6)
1 Mm% s Rel 27K K\2 T2V Re/™
2 ¢4 ™
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Equation (6) yields

2y B 2 ) »
3,2 N K_3 .9 /1
m=3* Ve 22V (8)

where B = Re/K = Dz/vT and 7 = 21/w.

and

Cd and Cm for the Stokes force depend on both K and Re. However,

there is a unique relationship between Cd and Cm’ dependent only on Re, i.e.,

(‘;;%: ) ’)(C-- ) %)“'% (9)
where 24/Re is the steady-flow drag coefficient for a sphere in the Stokes
regime and the constant 3/2 is the ideal value of Cm for a sphere. Thus,
in unseparated flow the oscillations increase both the drag and the inertia
coefficient above their corresponding steady-state values. Experiments show
that only for small values of K and 8 does Cm exceed its potential flow value

(Sarpkaya 1976a).

3.2 The Fourier Analysis of Keulegan and Carpenter

The first systematic evaluation of the drag and inertia coefficients
was made by Keulegan and Carpenter (1958) at relatively low Reynolds
numbers through measurements on submerged horizontal cylinders and plates
placed in the node of a standing wave. In this study, the theoretically
derived rather than measured values of velocities and accelerations were used.
Keulegan and Carpenter expressed the force in terms of a Fourier series

assuming the force to be an odd-harmonic function of 8 = 2nt/T as
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2F/(pDU:.)=:[A| sinO*A; sm30+A, sinS@+---
By cos8 + B, cos 30 +Bs cos SO + - - °] (10)

Keulegan and Carpenter were able to reconcile Eq. (10) with that

1 proposed by MOJS by writing Eq. (10) in the following form

2
2F/(pDU,’,.)=~"IZ Cm sin 8 +2[Ay 5in 30 + A sin 50 4 - -]
-Cg lcos 6] cos 8 + 2[By cos 36 + B cos 56 + -+ ) (m

in which U is assumed to be given by U = -U cosé. Evidently, Eq. (11)

reduces to the M0JS equation, i.e., to
., m
2F/(9DU7,) = < Cpy sin 0 - Cg lcos ] cos 8 (12)

provided that the coefficients Cm and Cd are independent of 8, i.e., each
term has the same constant value (dependent on K and Re) and An and Bn are
zero for n equal to greater than 3.

The Fourier averages of Cd and cm are obtained by multiplying both sides
of Eq. (12) once with cos8 and once with sind and integrating between the

Timits 6=0 and 6=2n. This procedure yields,

pDUz, (13)

_2UnT (" Fsing "
*D J, pDU? (14)

The drag and inertia coefficients may also be obtained through the use :
of the method of least squares, two-point values, least-squares for higher
order parameters, etc. (see Sarpkaya and Isaacson 1981). The details of
these methods will not be presented here since they are not of particular

relevance to the discussion on hand.




One can show through the use of Eq. (12) that the rate of change of

force with time is zero at the time of maximum acceleration and is propor-

tional to Cm/KT at the time of maximum velocity. Thus, the determination

of Cm. in particular through the use of force at the time of maximum accel-

eration, depends on the particular values of Cm, K, and T, and may not be

quite accurate. In general, it is recommended that either the Fourier-
averaged or the least-squares averaged force-transfer coefficients be used
for sinusoidally oscillating flows.

Keulegan and Carpenter's pioneering efforts to reconcile the Fourier

decomposition of the in-line force with that proposed by M0OJS gave rise to
numerous questions ,i.e. (a) Does the MOJS equation with two time-invariant

Fourier-averaged coefficients represent the time-dependent in-line force

with sufficient accuracy for all values of the governing parameters? (b)
Could the time-dependence of the force be relegated only to the time
dependence of the flow kinematics? (c) What are the governing parameters?
(d) How could the difference between the measured and calculated forces be

accounted for? (e) Should one use time-dependent force coefficients assuming

that the nature of the 2-term MOJS equation permits a meaningful correlation
between the variable coefficients and the governing parameters (no history
effects)? (f) Could one use time-invariant coefficients and account for the
disparities between the measured and calculated forces through the use of
additional terms (Ansin né , B cos ne)? (g) What are the reasons for the
observed differences between the measured and calculated forces (for circular
cylinders as well as other body shapes)? (h) Could the in-line as well as
transverse forces be predicted through the use of the fundamental equations

of motion and proper numerical techniques? (i) What is the effect of additional

varfables and conditions such as roughness, yaw, proximity, orbital motion, etc.?
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These questions, formulated with 30 years of hindsight, remained
unresolved. However, they have helped to replace the blind trust in the
MOJS equation with a recognition of its limits as well as capabilities.
Keulegan and Carpenter have demonstrated that the 2-term MOJS equation
{ with constant coefficients does not accurately represent the measured force
for all values of K = U T/D (now known as the Keulegan-Carpenter number).
They have attempted to explain the role played by K and the vortices on the .
variation of the force and the force coefficients. The relatively low range
of Reynolds numbers encountered in their experiments did not permit them to
detect the effect of the Reynolds number (Re = UmD/v) on the drag and inertia
coefficients. Much later Sarpkaya (1976) re-examined the Keulegan-Carpenter

data and has shown conclusively that the force-transfer coefficients (Cd, Cm’

CL’ etc.) depend not only on the Keulegan-Carpenter number but also on the

Reynolds number, relative roughness, etc.

3.3 Additional Considerations

The experiments of Keulegan and Carpenter as well as some others
conducted subsequently have demonstrated clearly that even the motion of a
relatively more manageable time-dependent flow (sinusoidally-oscillating
planar flow) is extremely complex and the simplicity of the ambient flow
helps to alleviate only the uncertainties associated with the kinematics of
the flow (relative to the ocean environment) but not the complexities of the

phenomenon associated with the motion of the vortices. Thus, even the use of

a planar oscillating flow did not resolve all of the problems associated with
the nature of the MOJS equation.
In 1963 Sarpkaya has shown through the use of the generalized Lagally's

theorem and the discrete vortex model that the total resistance for a circular




cylinder in a flow with unidirectional constant acceleration may be written
as

F = 0.50U%D G(s/D) + 0.25mpD2(dU/dt) H(s/D) (15)

where U is the instantaneous velocity; s, the displacement of the ambient

flow (s = 0.5Ut); and G(s/D) and H(s/D) are two functions dependent on the
relative displacement s/D. Equation (15) suggested that the total force,

for at least this particular flow, may be written as

2

F = 0.500C U° + pCm(nDZ/4)(dU/dt) (16)

d
The dependence of Cd and Cm on the Reynolds number does not appear in Eq. (16)
because Eq. (16) has been developed through the use of the inviscid flow
assumption.

Equation (16) strongly suggests that Cq and C for the in-Tine force
and CL for the 1ift force (or transverse force) may be related to the relative
displacement s/D, Reynolds number, and the relative roughness. This possibil-
ity has not been explored so far. Such a method will make Cd and Cm, and cL
functions of time. Hence, the time-dependence of the force will not reside
only in the variation of U and dU/dt with time but also in the variation of
the force coefficients with time or relative displacement (measured, say,
from the time when U = 0). The variability of the force coefficients will
be discussed more later.

Subsequent to Stokes studies, the forces on a sphere moving in a viscous

fluid in an arbitrary manner were investigated by Boussinesq (1885) and also

by Basset (1888). They found that the force experienced by a sphere at a
given time depends, in general, on the entire history of its acceleration as
well as the instantaneous velocity and acceleration. To a first order of

approximation, this is given by
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F = 6muRU + 0.5(47R°/3)p(dUsdt) + 6RZ(mup) /2 [ U/t 44 (17)
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where the last term represents the history effect. It should be stressed

that Eq. (17) only has qualitative relevance to the MOJS egquation since

the entire analysis is based on the assumption of unseparated viscous flow

at very low Reynolds numbers. The history term gives an indication of how
the variation of acceleration influences the resistance in viscous unseparated
flow about a sphere undergoing arbitrary motions and what is important when
this effect is incorporarted into a mathematical model of the flow resistance.
For a strictly sinusoidal flow, the integration of the history term yields

two parts which may be combined with the first two terms of Eq. (17) to

yield Eq. (6). One may, therefore, conclude that for a strictly sirusoidal
motion of a sphere or cylinder, the two-term MOJS equation is well founded
provided that the flow is unseparated and the drag and inertia coefficients
are determined in terms of the Reynolds number and the Keulegan-Carpenter
number. However, it does not immediately follow from the foregoing that the
MOJS equation is well-founded for the case of separated simple harmonic flow
about a bluff body. To be sure, the effect of the history term may be
incorporated into the drag and inertia coefficients with no loss of generality
for the strictly sinusoidal motion. However, Cd and Cm cannot be taken as
time-invariant constants, dependent only on K and Re (for a smooth cylinder).
It is a well-known fact that the MOJS equation does not accurately represent
the measured force with time-invariant constants, particularly in the so-called
drag-inertia dominated regime (8 < K < 20). In other words, Cd and Cm must be
regarded as functions of time also.

A simple dimensional analysis of the flow under consideration shows that

18
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2y .
2F/ (DU ) = £(U T/D, U D/v, k/D, t/T) (18)

Equation (18) says nothing about the form of the functional relationship.
Thus, it is incorrect to state that the M0OJS equation is well founded for
separated sinusoidal flow about a circular cylinder if Cd and Cm are assumed
to be functions of K, Re, k/D, and t/T. Only when the MOJS equation is
assumed to be valid, one can combine Eq. (18) with the MOJS equation to

obtain

(g
]

f](K, Re, k/D, t/T) and (19)
fz(K, Re, k/D, t/T) (20)

(]
n

A closer examination of the instantaneous force records show that even
the Eqs. (19) and (20) are not sufficient to account for the non-stationary
nature of the 1ift force (chordwise and spanwise coherences) and the cycle-to-
cycle variations of the in-l1ine force, due to lack of two-dimensionality of
the separated flow. Thus, one must include at least the length-to-diameter
ratio of the cylinder among the parameters in Eqs. (19) and (20) to account
for the spanwise coherence, Other effects caused by the individual test
conditions (end effects, wall boundary layers, etc.) and the measurement tech-

niques are likely to affect the variations of Cd’ Cm’ CL’ etc.

For more general time-dependent flows the effect of the history term
cannot be incorporated into the variations of Cd and Cm and the justification
for the MOJS equation is strictly pragmatic. For periodic non-sinusoidal
flows (e.g., Stokes waves), the use of the MOJS equation simply implies that
the history effects are accounted for by the variations of Cd and Cm. For ocean

waves of varying amplitude and period (if not direction also) the history

effects resulting from the cycle-to-cycle variation of the ambient flow
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kinematics cannot be taken into account by the two-term MOJS equation even if
Cd and Cm are assumed to depend on K, Re, k/D, and t/T. Thus, the use of the
MOJS equation together with the in-line wave forces measured in the ocean
environment to determine two time-invariant coefficients necessarily lead to
large scatter even if all sources of measurement errors were to be eliminated
or minimized. Suffice it to recapitulate that a cylinder subjected to variable
wave forces is like a cylinder experiencing an equally variable time-dependent
motion. Ocean data cannot be accurately analyzed with the two-term MOJS
equation alone (with time-invariant or time-dependent coefficients) without
taking into account the effect of the history of the motion, at least through
the use of a third term.

Two additional matters need to be discussed before concluding the
discussion of the nature and decomposition of the in-line force.

It has been stated that the assumption of the validity of the MOJS
equation for a planar sinusoidal flow about a bluff body leads to Cd = f](K,
Re, k/D, t/T) and Cm = fZ(K’ Re, k/D, t/T). There is no simple way to deal
with these expressions even for the most manageable time-dependent flows.
Another and perhaps the only other alternative is to eliminate time as an
independent variable and consider suitable time-invariant averages as given by

Eqs. (13) and (14). Thus, one has
[Cd, Cm’ CL’ eren.] = fi(K’ Re, k/D) (21)

For periodically oscillating flows the Reynolds number is not necessarily the
most suitable parameter. The primary reason for this is that Um appears in

both K and Re. Thus, replacing Re by 8 = Dz/vT = Re/K in Eq. (21), one has
Ci(a coefficient) = fi(K, 8, k/D) (22)

in which 8 is called the 'frequency parameter' introduced by Sarpkaya (1976a)
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who used it first to demonstrate the fact that the Keulegan-Carpenter data
depend on Re as well as on K, (see also Sarpkaya and Isaacson 1981).
Finally, it is of some importance to note that the time-dependent force

F for the most general case may be written as

F = flp, D, L, U, v, k, a, dU/dt, d2udt, ..... ) (23)

which may be reduced to

F/(0.500L U%) = £(UD/v, L /D, k/D, a, 2,39 0”__d"y, (24)
-Dc » Lo/ ,,[—Jm,'..,mﬁ

in which LC is the body length and a is the yaw angle. Obviously, there is

a giant step between Eq. (24) and the MOJS equation, written as,

2y _ UlU[ m D du
or as
2y . Uyl T D du
F(t)/(O.SpDLcUm) = Cd U2 + ?'Cm G? T (26)
m m

For a planar sinusoidal flow represented by U = -Um coso, Eq. (26) reduces to

F(t)/(O.SpDLcui) = —Cdlcoselcose + %— C,, sine (27)

A comparison of Eqs. (24) and (27) shows that the unknown effects of
L./D, k/D, a, and (D"/U"+])(d"U/dt") ar 2 all incorporated into the two time-
invariant coefficients. It is no surprise that the lTarge discrepancies among
studies with the prototype structures are attributed to factors such as random
nature of the ocean waves, wave theories used, currents, free-surface effects,
the sweeping back of the wake over one segment of the structure after being

generated at another segment under different flow conditions, etc. Evidently,

all of these factors are important and contribute to the observed discrepancies
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in Cd, Cm, CL’ etc. However, it is equally important to realize that the

form of the MOJS equation or the particular force decomposition assumed in
the determination of Cd, Cm, etc. is just as responsible for the said
discrepancies. There are no simple approaches to quantifying these effects
and to providing qualitative descriptions and none is 1ikely to appear in

the near future,
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4.0 SPECULATIVE GENERALIZATIONS OF THE MOJS EQUATION

4.1 General Comments

The MOJS equation was originally written as

dF = [Cm(np02/4)3U/8t £ € 4(o0U7/2) 1z (1)

and was intended for the determination of "the force exerted by unbroken surface

waves on a cylindrical object, such as a pile, which extends from the bottom

upward above the wave crest,..."” Shortly thereafter it became

dF = [C_(pD?/8)au/at + C(oDU|U]/2))dz (28)

The change from iUz to U|U| did not in any way require additional assumptions
beyond and above those already embodied in the original equation.

A further generalization was made by replacing D by a characteristic
cross-sectional area A per unit length, and v02/4 by volume ¥ per unit length
for structural elements other than circular cylinders. The local acceleration
has been occasionally replaced by the total acceleration dU/dt (with probably
little difference in the analysis of the ocean test data). Thus, the MOJS
equation became

dF = [C p¥ dU/dt + C,(pAU]U]|)/2]dz (29)

This modification implies that the MOJS equation is equally valid or no less
valid for other body shapes. This is rather conjectural for several reasons.
If the drag and inertia coefficients are determined in exactly the same manner
for each body through the use of one of the existing methods (e.g., Fourier
averaging, least-squares, etc.), Eq. (29) is relatively more applicable to

a circular cylinder than to a plate normal to the flow. In fact, Keulegan

and Carpenter (1958) have shown that"for the plate data the remainder (meaning

A3sin3e,...., BécosBB,...) may not be disregarded, in particular when the




period number (meaning K) is small." The reason for this is that the form

and character of the wake (wake width, strength of the vortices, etc.) and

hence the history effects depend on the body shape. Thus, the approximations

made regarding the constancy of Cd and Cm and the neqligibility of the

history effects are relatively more justified for streamlined bodies than

for bodies with sharp edges (bluffer bodies). Strong vortices in the near
wake give rise to large variations in all wake characteristics, to varying
degrees of importance, during their shedding and backward convection
(particularly ator near the times of maximum velocity). This, in turn,

increases the deviation of the instantaneous values of Cd and Cm from their

time-invariant values and gives rise to large errors in the predicted force.
Thus, for body shapes where the strength of the vortices and the manner in
which they interact with the body are such that higher harmonics of notable
energy are produced, the MQJS equation is likely to produce poorer results.
It is clear from _he foregoing that the simplicity of the generalization of
the MOJS equation from Eq. (28) to Eq. (29) is deceptive and invites a whole
host of new problems. Furthermore, it should be noted that both Eq. (28)

and Eq. (29) imply that the elemental force dF may be calculated for an
elemental length dz and integrated over the entire length of the cylinder
(either by assuming Cd and Cm remains constant, as in the original formulation
of the MOJS equation, or more appropriately by assuming Cd and Cm depend on
the local values of Re, X, and k/D). Even the use of the local values of Cd
and Cm is not without some additional assumptions. The nonuniformity of the
flow along the body (even without the effect of the orbital motion) may alter
the strength, shedding, and the spanwise coherence of vortices. Thus, the
local values of Cd and Cm may differ from those obtained with planar sinu-

soidal flow under identical Re, K, and k/D values.
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The MOJS equation was subsequently written in vectorial form (Borgman

1958) for a vertical cylinder as

a

F v

X X T2 X (30)
= 0.50C 4D ‘# VE + Vs + 700°C,

Fy Vy

3y

where vx and Vy are the velocity components in the x-y plane which is normal

to the cylinder axis. It is important to note that the velocity and acceler-

ation vectors are not collinear. Equation (30) does not require additional
assumptions beyond those required for Eq. (29) provided that it is applied
either to a vertical pile or more appropriately to a circular cylinder in
planar oscillatory flow. The form of the Eq. (30) may suggest incorrectly
that it may be applied to a horizontal cylinder in waves (wave crests parallel
to the cylinder axis) with Cd and Cm values identical to those for a vertical

pile.

For a horizontal cylinder in a uniform flow field with Vx= -mecose

and vy= -vyms1n9, Eq. (30) reduces to

2

2Fx/(pDV§m) (WZD/meT)Cmsine - Cd cosze-r(vymlvxm)zsin 8 coso (31)

and

2
2F / (oDVy, )

2

(-nzD/VymT)Cmsine ¢4 V(vxm/v )2cos?6+ sine sing  (32)

Equations (31) and (32) state that the instantaneous in-line force in the

x- and y-directions is equal to the sum of the projections, on the respective
axis, of the instantaneous values of the total-velocity-square dependent

drag force and the total-acceleration-dependent inertial force. This implies

that the flow over a cycle may be regarded as a juxtaposition of planar flows
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with instantaneous velocities and accelerations given by

2 2 2 2

q-= me cos“e + Vym sin @ (33a)
and
Y R N N
as= \/;:m sin“e + Vym cos o (33b)

The vortices do not move with the velocity of the ambient flow and the wake
does not rotate about the cylinder at the same rate as the ambient velocity
vector. In other words, one must be aware of the fact that the writing of
the MOJS equation in vectorial form does not necessarily imply that the
behavior of the wake can be correctly represented by it. The drag and the
inertia coefficients for a horizontal cylinder in waves are considerably
different from those for a vertical cylinder at the corresponding K, Re, and
k/D values.

Equations (31) and (32) cannot be written using only the x- or only the
y-component of the velocity in the MOJS equation. This will assume that the
drag component of the in-line force is proportional to the square of the
projected velocity rather than to the square of the instantaneous total
velocity. Finally, it is because of the assumptions noted above that the
drag components of the forces given by Eqs. (31) and (32) become linear for

v =

m vym (fluid particles undergoing circular orbits).

4.2 Yaw Effects

The need to predict the forces acting on yawed cylinders subjected to
wave motion gave rise to another speculative generalization of the MOJS
equation. The effect of the body orientation on resistance has been the
subject of extensive investigation in steady flows. It has not been possible
to correlate the in-plane normal force and the out-of-plane transverse force
with a single Reynolds number (see Sarpkaya and Isaacson 1981). Evidently,

for a zero angle of attack (flow parallel to the axis of the cylinder), the
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appropriate Reynolds number is based on the length measured along the body.
For a 90-degree angle of attack (flow normal to the axis of the body), the
appropriate Reynolds number is based on the diameter of the body. Between
the two situations, it is not possible to define a simple characteristic ;
length and hence a universal Reynolds number which will correlate the force-
transfer coefficients for all angles and flow regimes.

Hoerner (1965) proposed the independence- or crossflow-principle or the
'cosine law' which states that the normal pressure forces are independent of
the tangential velocity for subcritical values of Ren (based on the normal
component of velocity Un). The 'flow independence principle' has been 1

commonly accepted for subcritical flow conditions (laminar boundary layers),

but rejected for transcritical flows (Hoerner 1965). The recent wind tunnel
data by Norton et al. (1981) show that the flow-independence principle is
valid, at least for cylinder inclinations up to 50 degrees (the angle between
the cylinder axis and the ambient flow velocity), as long as the Reynolds
number Ren, based on the normal component of the velocity, remains entirely

within either the subcritical or postcritical flow regime (turbulent boundary

layers). However, should Ren drop from postcritical to transcritical as the
angle of inclination is decreased, one would expect the independence principle
to fail.

The time-dependent flows, in general, and the wave motion, in particular,

about oblique cylinders present even more complex problems. The use of the

independence principlie or the assumption that shedding frequency is proportional
to cosze may be a gross simplification of the behavior of flow in the near wake.
Under these circumstances only experiments can lead to some understanding of

the problem and to the evolution of appropriate calculation methods. At present

neither the method of decomposition of velocities and/or forces nor the drag
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and inertia coefficients appropriate to each method of force decomposition
are clear. Furthermore, there are not enough systematic experiments with
waves or with harmonic flows to guide the analysis or to justify the
generalization of the MOJS equation to yawed cylinders.

Wade and Dwyer (1976) examined four methods, generally accepted by the
industry, for calculating wave forces on normal and inclined tubular members.
Horizontal and vertical wave-induced water-particle kinematic vectors were
used in each of the wave force methods on two deep water platforms to compare
the horizontal base shear and overturning moments (for a detailed discussion
of these see Sarpkaya and Isaacson 1981). Such comparisons, however valuable,
are not sufficient to assess the validity of one method over the others since
Wade and Dwyer used identical but constant drag and inertia coefficients
(Cd = 0.6, C = 2 for one test structure and C;, = 0.6 and C_ = 1.4 for the
other test structure) and since the base shear and over-turning moment represent
the sum of the forces and moments over many members at various angles of
inclination, interference, etc, Thus, the generalization of the MOJS equation

to inclined members through

FX unx unx
F )} =0.5C,0[W |{u + Toc0? | (34)
y T n ny 4 "'m ny
FZ unz uﬂZ

together with the Cd and Cm values appropriate to the normal cylinder at the
corresponding Reynolds numbers (Re = Iwn]D/v) and Keulegan-Carpenter numbers
(K = |wn|T/D) is highly speculative. One must bear in mind that in oscillatory
and wavy flows the Reynolds number may vary from subcritical to postcritical

and one cannot expect the conclusions resulting from the steady flow tests
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(either at subcritical or postcritical Re) to hold true, particularly in the
drag-inertia dominated regime. Furthermore, it is not clear that a two-term
MOJS equation may be forced to represent the measured force on inclined

members, with Cd and Cm determined through some reasonable method. As in

the case of cylinders bluffer than a circular cylinder (e.g., a plate or square

cylinder) the effect of the history term or the magnitude of the residue

(the difference between the measured and calculated force) may be quite large.
The recent unpublished data by Sarpkaya (1982) have shown that the

independence principle is not valid for either smooth or rough inclined

cylinders in sinusoidally oscillating planar flows. Considerable additional

work is required in order to acquire some understanding of the wave forces on

oblique members and, hopefully, to establish uniformly accurate and acceptable

design criteria.

4.3 Waves and Currents

Another speculative generalization of the MOJS equation concerns the
combined waves and currents. It is ordinarily assumed (as recommended by
the American Petroleum Institute) that the MOJS equation applies equally
well to periodic flow with a mean velocity and that Cd and Cm have constant,
current-invariant, Fourier- or least-squares averaged values equal to those
applicable to rigid, stationary cylinders in wavy flows. This, in turn,
implies that Cd and Cm are independent of the biassed convection of vortices
and its attendant consequences. The fact that this is not necessarily so is
clearly evidenced by the measurements of Mercier (1973), Sarpkaya (1977) and
Verley and Moe (1979). Thus, the effect of the current-harmonic-flow
combination on the motion of vortices and on the force-transfer coefficients

must be carefully examined in 1ight of available data and the 1imfts of
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application of the MOJS equation to such flows must be assessed a new. The
latter is particularly important in view of the fact that the drag and inertia
coefficients in ocean tests (where there are always some currents and body
motion) are evaluated through the use of the MOJS equation (note that the
values of Cd and Cm may vary considerably from one half wave cycle to another
because of the current-induced biassing of the wake and vortex formation and
that neither set of coefficients may be identical with those obtained without
current).

It has been customary to express the in-line force either as
= v v 2
F = O.SQCdc(V-Umcose)|V-Umcosel + (mpC D%/4) du/dt (35)
where V represents the current and U = -Umcose, or more generally as
= v . 2
F= o.spcdc(v+uw)|v+uw| + (ﬂpCmcD /4) du /dt (36)

where Uw is the wave velocity, added vectorially to the current velocity
(some designers use the projection of the current velocity on the wave
velocity and assume the sum of the two to be in the direction of wave).

The generalization of the MOJS equation to Eq. (35) or Eq. (36) is not
warranted and is not supported by experimental data. Clearly, extensive work
is needed to determine the role played by the current, the validity of the
MOJS equation, the appropriate force-transfer coefficients, etc., not only
for fluid mechanical and practical design purposes but also to ascertain the
validity of the method of analysis of the data obtained in the ocean tests
through the use of Eq. (35). The use of a speculative generalization, unproven
even under {dealized circumstances, to analyze data so as to prove the validity

of the generalization itself is not very meaningful.

30

e TR g Y Y O e NSRS

e v




In the foregoing the waves and currents were assumed to superpose

linearly. In general certain changes in wave characteristics arise from
the superposition of waves and currents (Longuet-Higgins and Stewart 1961).
When a wave train propagates into a region of local current, the wave |
amplitude decreases and the wave length increases if the current and the
waves are in the same direction., However, if the current and the waves
- are in opposing directions, the wave amplitude increases and wave length

decreases, A theoretically critical point is reached as the

current velocity becomes equal and opposite to one half of the local wave
group velocity. The wave energy at this critical velocity can no longer be
propagated against the current and the wave amplitude theoretically approaches
infinity. In fact, the waves break long before they reach such a limit.

The wave-current interaction problem has not been studied in sufficient
detail. Thus, even the preoper kinematical inputs into the MOJS equation are

unknown when the waves and currents are combined.

4.4 Effects of Dynamic Response

The need to analyze the hydroelastic response of structures gave rise

to a further generalization of the MOJS equation.
Assuming a single member (normal to the wave direction) of mass M,

structural damping C, and stiffness Ks,the equation of motion is written as

M + Cx +K.x = p¥ + o(C -1)¥U-X) + 0.5pchp|u-g|(u.g)

o¥C U - p(C -1)¥K + 0.50C4A | U-%] (U-%) (37)

in which U and U represent the velocity and acceleration of the fluid; and
X, X, X represent, respectively, the displacement, velocity, and acceleration

of the structural member in the direction of U. Equation (37) may also be
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written as

(M + pC W)X + Cx+K.x = p¥C U + o.spchplu-xI(u-x) (38)

where Ca = Cm - 1, as usual, and (M + pcau) now represents the structural mass,
water inside the pipe, and the added mass.

The approximations involved in the formulation of Eq. (37) are far more
than those relating to the wave-current combination because of the simple
fact that now both U and x are functions of time. In fact, there is no
experimental verification of Eq. (37) at any Reynolds number, Keulegan-
Carpenter number, and x/U ratio. It is based on a reasonable-sounding argument
and it reduces to the correct limiting forms for x = x = 0 and for U = U=0.
Perhaps the only other justification for the use of Eq. (37) is that there is
a need for it and yet there are no better alternatives to meet the demands of
this need. As far as the industrial applications are concerned the basic
research sees the need but a Tittle late and always a Tittle too idealized.

In spite of its uncertain limitations, Eq. (37) is further manipulated
to suit the needs of calculation. For example, in order to apply spectral
methods, the drag term is often linearized with an equivalent linearization
technique (for details see Sarpkaya and Isaacson 1981). The approximations
are further compounded, with ever increasing degree of uncertainty, by applying
Eq. (37) to the dynamic response of a number of normal and inclined members.
For example, the total force at a node of a structure is obtained by summing
the contributions of the members contained in the nodal tributary zone (the
region halfway above and below the node). The use of the projected area method
rather than the independence principle yields an expression for the force acting

on the j-th member in zone i as,
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Py(t) =2[°(Cm1'j'1)'40 ij iJ Uig=x X) pIDULiJ i

+ 0.5pC L

aiiPigteglYg e U] (39)

where cdij’ Cmij are the unknown drag and inertia coefficierts for the member

ij, and Dij and Lij are the diameter and the projected length of the tubular

members at node level i.

. The generalization of the MOJS equation to the form given by Eq. (39),
over a period of 30 years, is at best speculative and is not based on sound
data. It will take many years and much research either to verify it or to
devise a new equation to replace it. It is rather unfortunate that the urgent
needs of the industry and the passage of time rather than scientific data are
helping to consolidate the use of this most speculative generalization of the

MOJS equation.
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5.0 THE SEARCH FOR A NEW MOJS EQUATION

5.1 Background and an Assessment of the Existing Data

The extensive discussion of the original MOJS equation and its various
generalizations has shown that (i) a great deal of additional research is
needed, both in the laboratory and in the field, to assess critically the
validity or the limitations of each generalization; (ii) there is not, at
present enough meaningful analysis or data to attempt to improve every form
of the MOJS equation; and (iii) the understanding of the limitations and the
improvement of the MOJS equation for the simplest possible flow and body
combination should be the first step towards the development of an equation
of greater generality and hence towards the understanding, analysis, and
interpretation of the data obtained under more complex conditions.

The first step towards the search of a new MOJS equation began with the

selection of the most suitable flow situation and the body shape. It became

quickly apparent that there are essentially three types of flow situations for

which some data of varying degrees of quality, covering various ranges of the
governing parameters, exist. These are: (a) data obtained with vertical
cylinders in laboratory wave channels, often with small amplitude waves; (b)
data obtained in the ocean environment either through the instrumentation cf
the existing platforms or through the use of small scale platforms built
specifically for test purposes (e.g., Exxon's Ocean Test Structure, and NMIT's

Christchurch Bay Tower); and (c) data obtained with sinusoidally oscillatir

planar flow about smooth and rough circular cylinders (Sarpkaya 1976a, 1976b).

The data obtained with small amplitude laboratory waves were found to be
unsuitable for the purpose under consideration. The reasons for this are as

follows: (a) the range of Reynolds numbers and Keulegan-Carpenter numbers is
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quite limited; (b) both Re and K vary with depth (as well as with time); (c)

often the total in-line force acting on the entire pile, rather than that on
small segments, is measured; (d) the kinematics of the flow, calculated
through a suitable wave theory, is of questionable accuracy; and (e) the
orbital motion of the particles and the variation of K and Re along the pile,
in the range of K values where the original MOJS equation is least accurate,
complicates the problem considerably.

There are two major sources of data obtained in the ocean environment:
Ocean Test Structure of Exxon and the Christchurch Bay Tower of the National

Maritime Institute of England.

5.2 Ocean Test Structure Data

A large scale experiment was undertaken by Exxon Production Research
(EPR) Company to evaluate present wave force calculation procedures for fixed,
space~frame structures. This highly instrumented 20x40x120 ft platform was
installed in 66-ft water depth in the Gulf of Mexico. Data obtained include
local wave forces on clean and barnacle-covered sensors, local wave kinematics,
total base shear and over-turning moment on the structure, forces on a simulated
group of well conductors, and impact forces on a member above the mean water
level,

Heideman et al. (1979) used two methods to evaluate the drag and inertia
coefficients. The first was the least-squared-error procedure for each half-
wave cycle. The instantaneous in-line velocity in the MOJS equation included
both the wave velocity and the projection of the current velocity. The second
method consisted of the evaluation of Cd over short segments of waves in which

drag force was dominant and of Cm over short segments of waves in which inertia

force was dominant. The in-line force was taken as the projection of the




normal force on the velocity vector. The normal force was measured with
wave force transducers (WFT) of 16 inch 0.D. and 32 inch length, built into
the vertical legs at the four corners of the structure, at a depth of -15
ft. The normal water velocity was measured with an electromagnetic current :
meter (ECM) located 4,67 ft from the WFT axis, i.e., ECM was at 3.5 D from

the WFT axis. |

The force coefficients exhibited large scatter particutarly for K < 20, ) 3
The scatter decreased considerably in the range 20 < K < 45, It is not clear
whether this is a genuine reduction in scatter or whether it is a consequence
of the fewer data points in the drag-dominated regime.

Heideman et al., attributed the scatter in Cd and Cm to random wake

encounters, It is postulated that if the cylinder encounters its wake on the \

return half cycle but the current meter does not, then the actual incident
velocity will be greater than measured and the apparent Cd calculated from

the measured force and velocity will be higher than the true Cd. Conversely,

if the current meter encounters the wake on the return half cycle but the
cylinder does not, then the apparent Cd will be too low, Clearly, the
encounter of the wake with the current meter and the biassing of the wake by
the current are extremely important. This is evidenced by the fact that the
values of Cd and Cm vary considerably from one half wave cycle to another
even for the same wave., Thus, it is desirable to evaluate Cd and Cm with
due consideration to the effect of current, wave spreading, and the irregu-
larities superimposed on each wave.

Heideman et al. concluded that (a) the MOJS equation with constant . ﬁ
coefficients can be made to fit measured local forces and kinematics satisfac-

torily over individual half wave cycles; (b) most of the scatter in the Cd
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results can be explained by the random wake encounter concept; (c) Tocal

deviations in apparent Cd are not spatially correlated in any given wave;
(d) C4 results from Sarpkaya's experiments (1976) represent an upper band
to Cd values that may be expected in random three-dimensional oscillatory

flow; (e) for Re < 2x105

, the apparent Cd depends on surface roughness and,
for members that are nearly in the orbit plane, on K; (f) asymptotic Cd
results from the test data in random three-dimensional oscillatory flow
are consistent with steady flow data for the same relative roughness; and
(g) Cm is greater for smooth cylinders than for rough cylinders, while the
reverse is true for Cd.

The 0TS data of EPR are extremely valuable in assessing the combined
effect of the environmental conditions on the force-transfer coefficients
but not well-defined enough to assess the reasons for the deviation of the
measured forces from those predicted by the MOJS equation in the drag-
inertia dominated regime. This is primarily due to the existence of currents
and the omnidirectionality of the waves and currents. As noted eariier, the
first original version of the MOJS equation and not its speculative generali-
zations to the wave-current combination should be examined. Finally, it
should be noted that the 0TS signal conditioning units had four pole active
(Butterworth) filters with an upper cut-off frequency of 3 Hz. However, all
data had the same phase relationship due to input filters. Nevertheless, the
force components at frequencies higher than the cut-off frequency are lost.
Thus, the OTS data are not suitable either for the frequency domain analysis
or for the analysis of impact forces (wave slamming) acting on the horizontal
members of the structure. Primarily for the reasons cited above, and to a
lesser extent, because of the general unavailability of the said data, the

use of the OTS data has been precluded from further consideration.
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5.3 CHRISTCHURCH BAY TOWER DATA

The tower is located at about 12 miles from a maintenance base at
Lymington and the Marine Trials Base of the National Maritime Institute
(UK) at Hythe, on Southampton water. It consists of two steel vertical
columns, a platform, and an instrumentation module, supported by a rein-
forced concrete base. The main column is surrounded by five separate but
adjacent sleeves of 9.2 ft diameter which measure the horizontal loading
due to waves and currents as a function of depth. The wave staff is fitted
with four force sleeves of 1.6 ft diameter which are mounted at similar
heights to the lower force sleeves on the main column. In addition, the
pressure is measured at 24 positions around a circumference of the middle
sleeve and also at a single position on each of the other four force sleeves
on the main column. The wave staff also carried perforated ball instruments
for measuring wave particle motions, and a capacitance wire for measuring

the wave elevation. For additional details see Wheatley (1976).

The wave force data from the Christchurch Bay Tower have been analyzed
by Bishop (1978, 1979, 1980) and Standing (1980).
Starting from the MOJS equation, Bishop (1978) has shown that
] o 2(du/dt)? (40)

- (o.spm.cd)2 + (0.25pr02cm)

where the bars denote the mean values of the squares of the respective

measured quantities integrated over one or more discrete cycles or over a long
enough interval to include several cycles in an irregular sea., The coefficients
Cd and Cm are determined from any one or more pairs of equations set up from
different samples of the measurements. As would be expected, the variability

in the coefficients due to highly variable effects and irregularities in the
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incident wave train is averaged out by taking larger sampling times. Bishop

found that Cq and C [as defined by Eq. (40)] are quite stable for integration
intervals larger than about 4 minutes and show increasing variations as the
integration interval is reduced. The best fit values of Cd and Cm differed
between the two runs evaluated and also for the main column and the wave staff
of the test facility. For the wave staff, Cd was 0.73 and Cm = 1.22 for one
run and 1.66 for the other run. For the main column, Cd was forced to 1.0

and Cm was about 1.85. The Reynolds number ranged from 105 to 106 and the
Keulegan-Carpenter number from 2 to 30. There appeared to be significant
differences in the force coefficients due to current, for both the wave staff
and the main column. The difference was largest on the smaller wave staff,
Bishop noted that "the variations of the coefficients can be attributed to
genuine hydrodynamic effects but also to imperfections in the experimental

and analysis techniques. No attempt has been made to attribute the variations

to individual causes..."

In 1980 Bishop defined a new force coefficient Cra @s

;? (
Con = — 41)
P V(O.SpDL)Z[U4 + (n0/2)2(du7dt)?]
where ;? is defined by Eq. (40). In addition, Bishop (1980) defined K as
— 1/2
K, = (2n/0.8660)[U%/0%] (42)

and reduced Eq. (41) to

172
c2 + C:‘(WZ/O.BGGK*)Z

C = (43)
F* 1 + (2/0.866K,)

Clearly, for large values of K, (drag dominated regime) CF** Cd and for small
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values of K, (inertia dominated regime) Cea™ C,. It is seen that “Cpe Can be
derived from existing data which have been processed to give Cd and Cm values
but it cannot be obtained precisely from drag-based total force coefficients."
Bishop described an approximate conversion to overcome this difficulty. At
any rate, CF* requires first the evaluation of Cd and Cm and it is not clear
at this time as to what pur;ose CF* can serve in an appraisal of the M0OJS
equation, particularly in the drag-inertia dominated regime. Note that
Eqs.(40) through (43) already assume the validity of the MOJS equation with
constant coefficients.

Standing (1980) described a wave-by-wave analysis of some of the selected
portions of the Christchurch Bay data. 16-second samples of data were
judiciously selected for analysis from two runs recorded during a storm in
September 1976. The time histories of force and velocity were first Fourier-
transformed into the frequency domain, components above 0.5 Hz were removed,
and the time histories reconstituted by inverse transformation. The MOJS
equation was fitted to the measured in-line force through the use of a least-
squares fitting technique to derive Cd and Cm in a narrow range of Reynolds
numbers between 3x105 and 7x105.

The results obtained by Standing showed considerable scatter even though
the analyzed samples were chosen subjectively by visual inspection. As noted
by Standing "a much larger degree of scatter might be expected if samples had
been chosen entirely at random." Standing tentatively concluded that in many
cases the MOJS equation provided a good fit to the measured in-line force.

In general main column forces fitted less well than wave staff forces possibly
due to the "spatial separation between force sleeves on the main column and
the velocity sensors”, "spikes and rapid fluctuations on the acceleration

record...", "disturbances to the velocity field caused by structural components
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in the vicinity of the velocity sensor', "inadequacies of the MOJS equation,

particularly associated with vortex-shedding effects", etc. The force-
transfer coefficients showed no consistent variation with K in the range
appropriate to each individual column.

It appears from the foregoing that the Christchurch Bay data are in
need of further analysis which will bring into focus the effects of currents,

wave nonlinearity, vortex shedding, wake biassing, etc., on the force-trans-

fer coefficients. At present, there does not seem to be any possibility of
using the said data in a meaningful way for a critical assessment and
improvement of the MOJS equation.

The foregoing points out certain simple facts concerning the evaluation
of the force-transfer coefficients from laboratory and field tests. Firstly,
the collection of full-scale data fro" structures at sea is difficult and
involves considerable uncertainty. Secondly, the interpretation of the
results in terms of suitable parameters is subject to ambiguity. In fact, the
drag and inertia coefficients obtained through the use of one method should
not be compared with those obtained through the use of another one. Thirdly,
the flow is definitely three-dimensional and its consequences cannot be evaded
by measuring sectional forces rather than the total force on the entire pile.
Finally, the experimental conditions in the ocean environment cannot be

controlled or repeated. These facts coupled with equally complex human factors

entering into the acquisition, evaluation, and the style and degree of
completeness of the dissemination of the information generated lead to
considerable scatter in the drag, inertia, and 1ift coefficients. Apparently,
the appreciation of the facts leading to the scatter does not necessarily enable
one to quantify these factors or remedy the situation but it gives the designer

at least a sense of understanding and security within the scope of his overall
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design philosophy. Additional in situ measurements may help to calibrate the
MOJS equation for application to more or less similar conditions in a given
region but they are not likely to help to uncover the degree of importance of
the parameters involved. Evidently, the answer lies neither in the use of the
steady-flow drag coefficients with an inertia coefficient near its ideal value
nor in the use of the coefficients obtained with relatively idealized and
controlled experiments without an appreciation of the mitigating effects of
the ocean environment. It would be unreasonable to argue on the one hand that
steady-flow coefficients should be used at high K and Re values and on the
other hand to argue that even for relatively high K values, one must expect
significant differences between oscillatory and uniform incident flow.

It is a well-known fact that the flow conditions in the real environment
do not resemble either steady flow or harmonically oscillating flow or two-
dimensional wavy flow (orbital motion, sweeping of the wake to and fro over
the body, and the spectral nature of waves and currents).

The true purpose of relatively-idealized experiments (e.g., uniform
harmonic flow about circular cylinders) is not to provide coefficients for
immediate use in the design of offshore structures but rather, and more
importantly, to determine whether the linear combination of a Tinear inertial
force with a nonlinear drag force can predict, with sufficient accuracy, the
measured time-dependent forces. Should this prove to be the case, one can
then determine the role played by each controllable parameter in the evaluation
of the coefficients quantifying the drag and inertial forces. This by no means
ensures that the said two-term linear superposition will continue to hold true
for more complex flow kinematics and body shapes to the same degree of accuracy
as in idealized experiments in the flow regimes defined by K and Re.

It has already been pointed out that the MOJS equation does not correctly
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predict the measured force in the drag-inertia dominated regime even for a ]
|
|
|

harmonically oscillating planar flow (the possibility must be kept in mind

that this may be because of the harmonically oscillating nature of the flow).

It is not expected that it will hold better for more complex flows. However,
the reduced spanwise coherence of the vortices may give rise to a time-
dependent force which may resemble to that predicted by the MOJS equation
with two time-averaged coefficients.

The improvement of the MOJS equation is clearly desirable with the ]

addition of one or more terms. Even then the revised form of the equation

may be suitable only for the conditions on which the revision is based. It

appears that the comparison of the numerous drag and inertia coefficients

obtained from the ocean tests, particularly in the range 8 < K < 20, is not

a realistic and fluid-mechanically satisfying exercise. Clearly, both the
form of the MOJS equation and the uncertainties that go into the characteri-
zation of the ocean environment are jointly responsiblie for the differences

between the measured and calculated forces.

5.4 Sinusoidally Oscillating Planar Flow

The set of data finally chosen for a detailed study of the MOJS equation
was that obtained with a sinusoidally oscillating planar flow. In 1976
Sarpkaya (1976a, 1976b) reported the results of a comprehensive series of
experiments with a sinusoidally oscillating flow about smooth and rough

circular cylinders and demonstrated clearly the dependence of Cd’ Cm’ and CL

on the Reynolds number, Keulegan-Carpenter number, and the relative roughness.
During the past six years, these data have stimulated a great deal of research
activity and gave rise to a number of questions: Are these data applicable

to the design of offshore structures, what is the effect of the orbital motion
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of the particles, do the data apply to horizontal cylinders, why are the drag
coefficients for rough cylinders so large, are there blockage effects, do the
in-line and transverse forces vary significantly from cycle to cycle, does the
MOJS equation hold true for all values of K and Re, why is the added mass
coefficient sometimes negative, etc.? These questions were in general valid
and required a great deal of additional research for their clarification and
resolution. - ]
In view of the foregoing Sarpkaya (1981) repeated his 1976 experiments
in a larger U-shaped oscillating flow tunnel. The length of the U-shaped i
tunnel (Sarpkaya 1976) has been increased from 30 ft to 35 ft and its height Q

from 16 ft to 22 ft. The cross section of the 35 ft long test section has

been increased from 3 ft by 3 ft to 3 ft by 4.7 ft. Furthermore, the oscil-
lation mechanism has been completely modified so that mono-harmonic oscil~
lations can be generated and maintained indefinitely at the desired amplitude.

The velocity in the tunnel has been determined through the use of a
capacitance wire, hotfilm anemometer, perforated ball, magnetic flow meter,
an accelerometer (which measured the instantaneous acceleration of flow in
the test section), and by visual measurement of the water level at its highest
and lowest points in the legs of the tunnel, It is safe to state that the
velocity could not have been measured more accurately. The only other means
by which the velocity could have been measured was the use of a laser device.
In view of the fact that the other means of measurement yielded the ambient
velocity within 2 percent of each other it was decided to forsake the laser
system.

The signal from the force transducers was simultaneously recorded in

analog form and also fed to an HP scanner-voltmeter system which digitized

the analog signal at time intervals corresponding to 0.5 degrees. The data
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were stored in floppy discs and fed to an HP-9845B8 computer. The data were
then analyzed cycle~by-cycle, averaging two consecutive cycles, averaging
three consecutive cycles, etc., up to 50 cycles. It was firmly established
that the cycie-by-cycle analysis yielded drag coefficients whose maximum
and minimum were within 5 percent of the 50-cycie averaged values for all
K and Re values. These data have been reported by Sarpkaya (1981), Bakmis
(1981) and Raines (1981) and formed the basis of the present analysis together
with the data reported earlier by Sarpkaya (1976a, 1976b).

It should be noted in passing that Sarpkaya (1981) has shown that:
(a) the inroads towards the understanding of wave-induced forces and the
establishment of a fluid-mechanically sound wave-force methodology require
extremely careful experiments over a broad range of K, Re, and k/D values;
(b) the drag and inertia coefficients vary dramatically with time, particularly
in the drag-inertia dominated regime; (c) the averaged negative added mass is a
consequence of the averaging process and does not actually contradict reality;
(d) roughness can and does significantly increase the drag coefficient in
harmonic flow over circular cylinders; and that (e) the original MOJS equation
yields relatively large residues in the drag-inertia dominated regime (as
reflected by the mismatch between the measured and calculated forces, see
Figs. 1-10). In this regime, where the complex problems associated with the

motion of relatively few vortices are much pronounced, the MOJS equation tries
to reproduce the time-dependent force using constant, averaged, force-transfer

coefficients which do not account for the history of the motion or the rapid
changes in the flow which produce components at higher frequencies, mainly at

odd harmonics of the basic. Thus, it must be either modified or a new unified

force equation be developed.




6.0 METHODS OF ANALYSIS
6.1 Introduction

Six methods were considered for the representation or evaluation of the
time-dependent force in terms of appropriate parameters. These consisted of:
(1) evaluation of the instantaneous values of Cd and Cm; (2) evaluation of
Cd and Cm in terms of the relative displacement s/D and the Reynolds number;
(3) use of the discrete vortex model; (4) evaluation of the instantaneous
force; (5) evaluation of the effect of the instantaneous 1ift force on the
in-line force; and (6) the Fourier analysis of the residues., These methods

will now be described in some detail.

6.2 Methods 1 and 2: Instantaneous and Relative Displacement Analysis of C, and C_

Equation (15), rewritten here as,

L—l— G(s/p) + & -2
pDU2 U‘ t2 TJE

H(s/D) (44)

Q.lc

suggests that Cd and Cm in the MOJS equation may be evaluated as time-dependent

coefficients as functions of s/D where s is the displacement of the fluid i.e.,

C

d G(s/D) (45a)
H(s/D) (45b)

Cm

It is also thought that G and H will depend on the Reynolds number, relative
roughness, etc. This can be done in various ways each of which offer extremely
voluminous and at best difficult-to-use information. Furthermore, this method
already assumes the validity of the form of the MOJS equation and tries to fit
the measured force to it by properly choosing the appropriate values of Cd and

Cm at each instant. Strictly speaking, the use of the MOJS equation to determine

Cd(e) and Cm(e) is not quite correct for non-periodic flows because of the
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presence and variation with time of an additional history term., In sinusoida’
flows, as in the case under consideration, the effect of the history term can T
' be incorporarted into Cd and Cm without any loss of generality. Sarpkaya (1981) o
did in fact evaluate cd(e), cm(e), and cL(e) for a number of representative |
tests and showed that the said coefficients exhibit dramatic variations with 6.
Ideally, such calculations can be carried out for the available data and Cd(e),
. Cm(e), and CL(e) may be provided either in terms of the instantaneous values of
K and Re or in terms of K = UmT/D and Re = UmD/v. Evidently, this information
is difficult to use and provides no additional information about the form of |

the MOJS equation. In order to circumvent these difficulties, it was assumed

that Cd and Cm may be decomposed into two parts. One part representing their
Fourier averages and the other part representing the dependence on s/D of the
deviation of the instantaneous values of Cd and Cm from their Fourier-averaged j

values, i.e., l

Cq = Cqs * cd(s/o) (46a)

C

=+ C (s/D) (46b) |

For a sinusoidally oscillating flow represented by U = -Umcose, the
displacement s is given by s = -Asing. Noting that at 6 = 0, U = -Um and that
a fluid particle moved a distance of s = A from the instant of U = 0, the
displacement was written as s = A(1 - sing ). Then the MOJS equation was

written as

: 2F/(pDU$) - (nz/K)[Cmf+Cms(s/D)n]sin6 - [C4¢#Cyg(s/D)"cosblcose  (47)

where Cdf and cmf represent the usual Fourier averages as given by Egs. (13)

and (14); CdS and cms’ two new coefficients representing the variations in

Cd and Cm; s/D = (K/27)(1-sin8); and n, an unknown power of the relative

o e o g i AP A o
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displacement. It was hoped that n will be a constant, and the coefficients

CdS and cms will depend only on Re = UmD/v and K = UmT/D, and k/D. Thus,
knowing cmf’ Cdf’ cms’ and Cds in terms of K, Re, and k/D, one will be able

to calculate the variation of F with time with no additional coefficients.

It was further hoped that the additional terms containing Cds and Cms will
account for the dramatic effects brought about by the shedding of the vortices,
particularly in the drag-inertia dominated regime.

Numerous tests have been evaluated using n = 1, n =2, and n = 3 and the
appropriate values of CdS and Cms were determined. The results have shown that
CdS and CmS did not in any systematic manner correlate with Re, K, and k/D for
any value of n, and the residue did not significantly change relative to that
resulting from the original MOJS equation. This was particularly true for the
residues near 6 = n/2 and 3n/2, since at these angles or times 6 = 0, and
Eq. (47) is identical to the original MOJS equation. Subsequently, it was
throught that there should be a phase difference between the instantaneous
force and the instantaneous displacement, similar to that between the maximum
force and maximum velocity. Then sing in s/D was replaced by sin(e+¢). The

new form of the equation required the evaluation of Cds’ C _, and ¢, as a

ms
function of K, Re, and k/D for a given value of n. Calculations, too numerous
to mention here, have shown that the scatter in the variations of Cds’ cms’ and
¢ cannot be accounted for through this method. This unsuccessful approach was

finally discontinued.

6.3 Method No. 3: Discrete Vortex Analysis

The use of the discrete vortex model was seriously considered since this
method proved to be quite successful for steady flow about stationary and

transversely oscillating circular cylinders (Sarpkaya 1963, 1979, Sarpkaya and
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Shoaff 1979, Clements and Maull 1975). However, the use of the said method
for sinusoidally oscillating flow about a circular cylinder met with numerous
difficulties: (a) the position of the separation points; (b) the relationship
between the time-dependent boundary layer, separation points, and the near
wake; (c) the rate of decay of circulation; (d) Reynolds number effect; and
finally, (e) computer time.

No fluid-mechanically satisfactory method has been discovered to relate
the position of the mobile separation points to the evolution of the wake and
the boundary layers. The assumption of fixed separation points and a constant
rate of shedding of vorticity proved to be a useless exercise at best. The
use of discrete vortices with constant strength always yielded an inertia
coefficient of Cm = 2 (for a circular cylinder). This was clearly unsatis-
factory. It has been shown by Sarpkaya (1963) that the in-line and transverse
forces exerted on a circular cylinder immersed in a time-dependent ambient
flow with m number of growing and moving vortices arbitrarily situated outside

the cylinder are given by

m m T, 23U
Fip = =L AT (ve-vi) + F payy ¢ + 2moc” 5% (482)
k=1 k=1
and
m m BFk
FL= Bonlueu) - Tops —5¢ (480)

in which Pk represents the strength of the k-th vortex; Vi and Vi the y-
component of the velocities of the k-th vortex and its image; Uy and Upjs the
x-component of the k-th vortex and its image; Py and Qi » the x- and y-
coordinates of the image of the k-th vortex; t, time; ark/at, the rate of change

of circulation of the k-th vortex; ¢, the radius of cylinder (D = 2c); and 3U/at,
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the local acceleration of the ambient flow.

Normalizing Egs. (48a) and (48b) with o.spuui = pcui, where U is now a

characteristic velocity of the ambient flow, one has

m T, v P mq,. o(T /U ¢c) a(u/u )
Foo/oet?) = 3 okt ey S SO W)
k=1"m" “m m k=1 a(Umt/c) 3(Umt/c)
and : 2) ? Pk U U g Pri a(rk/umc) (asb)
£ /(ocU XKL Xy oy K K m 49b
LMt 2y Upe U Un ' ka1 © 3(u_t/c)

Equations (48a) through (49b) show that the evaiuation of the in-line and
transverse forces require the instantaneous strenath, position, and velocity

of the vortices, even if one were to ignore the rate of change of circulation
with time. Ordinarily, one can determine the above variables by starting

the flow impulsively from rest and performing calculations for a large number
of steps until one reaches a quasi-steady state. For a sinusoidally oscillating
flow about a circular cylinder this is not yet possible due to the deficiencies
of the mode) associated with the boundary layers, separation points, and their
interaction with the wake. More importantly, however, one has no experimental
information regarding the rate of change of circulation of the individual
vortices (see Sarpkaya and Shoaff 1979). It is clear from Eq. (48a) or Eg. (49a)
that the assumption of BFk/at = 0 leads, by virtue of the last terms in the

said equations, to Cm = 2 at all times. This is clearly unacceptable and shows
that ark/at is not to be ignored.

The fact that there are no means to model the rate of change of circulation
with time without making arbitrary assumptions or introducing ad-hoc circulation
decay functions, no direct means to relate the boundary layer, separation points,
and the wake in periodically reversing flows, no means to incorporate the effect

of viscosity (Reynolds number dependence), (save for the arbitrary assumption of
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a diffusing vortex core whose radius is assumed to be a function of the Reynolds

number), and no means to intelligently model the effect of roughness led to the

abandonment of the application of the discrete vortex model to the flow under

consideration.

6.4 Method No. 4: Instantaneous Force Analysis

This method is based on Eq. (24) which may be reduced to

hra

[
C(6) = 2F/(p0L V) = F[UD/v, L /D, K/D, a, (D/UZ)au/at] (50) |
|

if one ignores the effect of higher order derivatives of U and, of course,
the free-surface effects. For smooth, unyawed cylinders (ignoring the effect
of yaw), C(8) is seen to be a function of UD/v and (D/Uz)aU/at. Clearly, C(8) |
varies from zero to infinity; UD/v, from -UmD/v to +UmD/v; and (D/U2)8U/8t, if
from minus infinity to plus infinity for U = -Umcose.

The coefficient C(8) has been calculateu for numerous smooth-cylinder

tests, at A9 = 1 degree intervals, together with the corresponding values of

Ub/v and (D/UZ)BU/at. The purpose of the calculation was to prepare a three-
dimensional plot of the three variables involved. This proved to be a nearly
impossible task primarily because of the extreme variations of the limits of
the said parameters. In addition, such a plot offered nothing new about the

physics of the problem.

6.5 Method No. 5: Analysis of the Effect of Lift Force on In-Line Force

The fact that the variations in the in-line force may be related to the t
growth, shedding, and subsequent convection of the vortices may be used to
improve the MOJS equation. In steady flow past a circular cylinder, the drag
coefficient fluctuates with a frequency twice the vortex shedding frequency

and with an amplitude which may be related to the amplitude of the 1ift force
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by

Cd = Cd + nCLsin(4wth + ¢) (51)

where ta is the mean drag coefficient; n, a proportionality constant; CL, a
representative 1ift coefficient (maximum, rms, etc.); fv’ the vortex shedding
frequency; and ¢, the phase angle. It is of course recognized that fv is not
clearly definable at all Reynolds numbers and that the Strouhal number defined
by St = va/V'is about 0.2 at subcritical Reynolds numbers, and about 0.3 at
postcritical Reynolds numbers. In the critical and transcritical regimes, a
broad band of power spectral density is usually observed for a rigidly held
cylinder (see e.g., Sarpkaya and Shoaff 1981).

For sinusoidally oscillating flow, Sarpkaya (1976) suggested that a third

term may be added to the MOJS equation as
2F/(pDUi) = (vZ/K)Cmsine - Cdlcoselcose - nCLcos(3e - ¢) (52)

Sarpkaya (1976) has performed preliminary calculations with Eq. (52) to
demonstrate that the eddy-induced in-1ine force oscillations can account
for most of the error in the predictions of the MOJS equation in the range of
K values from about 10 to 20. The preliminary studies have been pursued
further with the impetus received from the exploratory studies of Verley (1981)
and Bearman et al. (1981) regarding the variation of the 1ift force, particularly
at large K values.

The 1ift force was written as

2

F, = 0.50DU CLsinwavt (53)

L
and it was assumed that the instantaneous Strouhal number St = va/U is nearly

constant, Then fv = SU/D, (St is replaced by S for sake of simplicity), and

Fo= 0.5pDCLU$ (sine)sin(2nSUit/D) (54)

L
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assuming now U = Umsine. Since Ut/D represents the relative displacement of

the fluid from the start (say t = 0), one may write
t
ut/D = f (Um/D) sin(2nt/T)dt = (UmT/ZWD)(l - cos6) (55)
0

or
c,(0) = 2FL/(pDu§) . CL(sinze)sin[KS(l - cos6)] (56)

where CL is a representative 1ift coefficient for a given K, Re, and k/D
(expressed either in terms of its maximum or rms value); and CL(e), the
amplitude and frequency-modulated instantaneous 1ift coefficient. The angle
0 starts from zero at each half cycle, i.e., 0 <9 <.

Equation (56) is expected to produce 1ift-force variations which resemble
those obtained experimentally only at relatively high K values where the quasi-
steady-state assumption may be valid for the purpose under consideration.
Comparisons have shown that even at high K values Eq. (56) produces CL(e)
values which resemble only occasionally those obtained experimentally, primarily
because of the random nature of the shedding of vortices and the strong effect
of this randomess on the transverse force. Figures 11 through 20 show the
resuits of sample calculations, carried out assuming CL =1and S = 0.2. These
calculations need to be pursued further in order to explore the characteristics
of the 1ift force, particularly at Tower K values.

The recagnition of the fact that the effect of the shedding and subsequent
convection of vortices on the fluctuations of the in-Tine force is somewhat less
pronounced, compared with the similar effect on the transverse force, it was
thought advisable to account for the residue in the in-line force through the

use of an expression similar to that given by Eq. (52), i.e.,

2 2 .
2F/(pDUm) = (m /K)Cms1ne - ¢4 cos@|cos8|+

+ 1€, sin(e-¢)|sin(0-¢) |sin[NKS{1 - cos(6-¢)}] (57)
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where ¢ is a phase angle and N, the frequency-modulation factor. Numerous

calculations have been performed to determine n, ¢, and N, particularly in
the range of K values from 10 to 20. The results were quite encouraging

(see Figs. 21 and 22) and it appeared that it would be possible to relate n,
¢, and N to K = UmT/D and Re = UmD/v in minimizing the residue between the
measured and calculated forces. The calculations have not been pursued
further partly because the coefficients CL (the rms value of the 1ift coeffi-
cient in terms of K, Re, and k/D) were not available for the desired range of
K and Re values and partly because of time constraints. This approach should
be pursued further through the use of the simultaneous records of the in-line
and transverse forces. In doing so, it might be desirable to carry out a

spectral analysis of the 1ift force and to write Eq. (57) as
2y _ .2 .
2F/(pDUm) = (n%/K) Csiné - Cdlcoselcose +

ig]niCLisin(e-¢)lsin(9-¢)lSin[NiKS{l-cos(e-¢)}] (58)
in order to include the contribution of the fundamental frequency and at least
its first harmonic. This will help to clarify not only the role played by the
1ift force on the in-line force but also the role played by the shedding and
convection of vortices on the evolution of the 1ift force itself. However,
the question of the randomness of vortex shedding remains open. One must
introduce either a coherence-state factor (perfect, partial, ocean conditions,
etc.) or a probability-function multiplier into the third term of Eq. (58).

As noted earlier, one of the mitigating effects of the ocean environment is

to reduce the coherence length of the vortices and hence the effect of the

shedding and convection of the vortices on the fluctuations of the in-l1ine force.

54




6.6 Method No. 6 - Analysis of the Residues

As noted earlier, Keulegan and Carpenter expressed the time-dependent

force as [see Eq. (11)],
2F/(pDU§) = (wz/K)Cmsine - Cdlcoselcose + AR (59)

where AR represents the residue given by

AR C3cos(3e - ¢3) + C5cos(59 - ¢5) S (60)

Keulegan and Carpenter considered only the first term in Eq. (60) in the form
AR = A3sin3e + Bc0s36 (61)

and evaluated A3 and 83, and showed that they are functions of K, within the
range of their K and Re values (3 < K < 120 and 5700 < Re < 29300). Keulegan
and Carpenter noted that "for period parameters, K, in the neighborhood of the
critical, UmT/D = 15, the representation of forces is more exact by using
Eq. (59)" together with Eq. (61). They did not pursue the matter further.

The obvious disadvantage of this expanded form of the MOJS equation
[Egs. (59) and (61)] is that it now requires the evaluation of four coefficients,
namely, Cd, Cm, and either C3 and $5 or A3 and B3. Even then the calculated
and measured forces do not always correspond partly due to the existence of
other harmonics and partly due to the pronounced effect of the randommess of
the shedding, spanwise coherence, and the motion of a few vortices, vice large
number of vortices. This, in turn, requires the addition of two more terms
involving c5 and ¢g. Clearly, the determination of the dependence of six
coefficients on the parameters characterizing the phenomenon is a nearly
impossible task and is not very practicable for the design of offshore struc-
tures, even if one were to confine his attention to smooth circular cylinders

alone! It is partly because of this reason and partly because of the
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uncertainties in the input parameters (velocities and accelerations) that the
two-term MOJS equation has been used over the past thirty years in spite of

its known limitations (at least under laboratory conditions). The inaccuracies
resulting from the use of the said equation have been compensated partly by
the mitigating effects of the ocean environment (reduced spanwise coherence,

omidirectionality of the waves and currents distribute the residue over a

broad band of frequencies, making the predictions of the MOJS equation come

closer to those measured) and partly by the designer through the use of hidden
and intentional safety factors.

In view of the foregoing it was decided to explore the possibility of
revising the MOJS equation with the following constraints: (a) the revision
should be fluid-mechanically meaningful; (b) the revised form of the equation
should contain no more than the two coefficients already in use, namely, Cd
and C_; (c) the coefficients of the additional terms should be related to Cq
and Cm (since they too are functions of K, Re, and k/D) through a careful
spectral and Fourier analysis of the residues; and (d) the revised form of
the equation should reduce to the MOJS equation in the drag and inertia
dominated regimes.

With the objectives cited above, the residues of the in-line forces acting
on 11 smooth and 11 rough circular cylinders, ranging from 2- to 7-inches in
diameter have been suybjected to extensive spectral analysis through the use of
standard techniques. The results have shown that all harmonics from 2 through
15 (the upper 1imit of the frequency considered) appear in the spectral analysis
of the residue, with varying degrees of importance (see Tables 1 through 10
where only the first 10 residues are listed). However, the third and fifth
harmonics are far more important than the remaining ones, at least for the

sinusoidally oscillating flow under laboratory conditions (see Figs. 23 and 24
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where the values of C3 and CS’ averaged over each K, are shown for all tests
for the purpose of illustrating the region of importance of each coefficient).
It is thus apparent that the MOJS equation must be modified to minimize l
the residue and that this modification should involve the third and the fifth
harmonics. It is with this realization that the MOJS equation was written as

a sum of Eqs. (59) and (60) as

|
2F/(pDU§) = (nz/K)cmsine - Cdlcoselcose + C3cos(3e - ¢3) %
i

+ Cgcos(56 - o) (62)

Then the attention has been concentrated on the determination of C3, $3 Cs»

and ¢ with the constraints cited earlier. This, in turn, required an extensive
search for a functional relationship between the said coefficients and the known
parameters'cd, Cq» K» Re, and k/D.

For relatively small smooth cylinders and Reynolds numbers, Keulegan and
Carpenter have already shown that A3 and B3 are functions of K, as were their
Cq and Cm values, according to their conclusions, [Sarpkaya (1976a) has shown
much later that the Cd and Cm values of Keulegan and Carpenter depend also on
Re]. A similar analysis of the A3 and B3 values of Keulegan and Carpenter
has shown that both A3 and B3 depend not only on K but also on Re.

The data used in the present analysis also have shown that C3, 3> C5, and
¢5 depend on K, Re, and k/D. Note that K, Re, and k/D are the same independent
parameters which determine the Fourier-averaged values of Cd and Cm, as shown
clearly by Sarpkaya (1976a, 1976b). Detailed study of the said four coefficients
have shown that it is preferable to explore their dependence on K, Cd, and Cm
rather than on K, Re, and k/D. Evidently, the two approaches are mathematically

identical. Thus, one has
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= C’I(K’ Cd’ Cm) , 1=3,5 (636)
¢i(Ki Cds cm) ’ is= 3,5 (63b)

i
5

By virtue of Eqs. (63a) and (63b), the residue is solely dependent on K,

C,, and Cm. Significant effort has been devoted to determining the form

d
of the above relationships by numerous correlations. Here only the final
result and not the year-long efforts will be described.

It is a well-known fact that in harmonic flow the ratio of the maximum
inertia force to the maximum drag force is given by the MOJS equation as

nzcm/KCd. Thus, the ratio of the deviation of the maximum inertial force

from its ideal value to the maximum drag force is proportional to
A= (2 - c)/(Key) (64)

It must be noted in passing that Cm exceeds its ideal potential-flow value

for small values of K and B, as noted earlier in connection with the discussion
of Stokes solution. However, in the region of K values from about 8 to 20,
this increase is not of special importance and the ideal value of Cm for a
circular cylinder may be taken equal to 2. For other shapes of bodies A may be
written as

A= (G, - C/(KEy) (65)

where C; is the ideal value of the inertia coefficient for the particular body.

It is clear that A approaches zero for both the small and large values of
K and is unique for a given K, Re, and k/D. Thus, unique relationships should
exist between the coefficients Ci» ¢ and A and K. Numerous attempts have
shown that C,/A, and ¢i/K are indeed unique functions of K for all smooth and
rough cylinders (within the range of data and the experimental scatter).

Figures 25 through 28 show the variations of C3/X, ¢3/K, CSJK, and ¢5/K as a
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function of K. The scatter in these figures is primarily due to the
sensitivity of the four coefficients (i.e., the sensitivity of the residue)
to spanwise coherence and the somewhat random shedding of the vortices in
the intermediate range of the Keulegan-Carpenter numbers. In spite of the
scatter of the data, the relationships are quite satisfactory.

Figures 25 through 28 show that C3/K, ¢3/K, CSJK, and ¢5/X reach their
extreme values at about K = 12.5. It must be noted that the relationships
between these parameters and K should have a probabilistic character because
of the complex motion of the vortices and the non-stationary nature of the
motion. The following simple distribution has been chosen to relate C3/K ,
cees ¢5/K and K

2
Cmp(K - 12.5)

M =A +B e (66)

P mp ~ “mp

in which M denotes either C or ¢; p, the index 3 or 5; and Amp’ Bmp’ and Cmp,
three constants for the relationships between MpJK and K. A parametric
analysis of these coefficients for the best fit of the predictions of Eq. (66)

to the experimental data has shown that

Ac3 = 0.0 Bc3 = 0.10 Cc3 = -0.08
A¢3 = 0.05 B¢3 = 0.35 C¢3 = -0.04 (67)
AcS = 0.0025 Bc5 = 0.053 Cc5 = -0.06
A¢5 = 0.25 8¢5 = 0.60 C¢5 = -0.02

These are considered as universal constants and are not dependent on K, Re,
and k/D for a circular cylinder.

The four-term MOJS equation may now be written as
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2F/(pDU£) = (nz/K)Cmsine - Cd[coselcose +

-1/2 2 172
A {A_*B_3explC_5(K-12.5) ]}cos{3e-A (A, 3B g3exP

$3

[c¢3(K-12.s)2]}} + A“/Z{Ac5+sc5exp[cc5(K-12.5)2]}

cosfs6- 17124, ¢ + B, cexplC s (K-12.5)203) (68)

It is clear from Eq. (68) as well as from Figs. 25 through 28 that the
residue, as represented by the last two terms in Eq. (68), diminishes

rapidly for K smaller than about 7 and larger than about 20. In other words,
Eq. (68) reduces to the two-term MOJS equation for all practical purposes
outside the drag-inertia dominated regime, The additional terms cause an
amplitude and frequency modulation in the in-line force, in a manner similar
to that provided by Eq. (58), and reflect the role played by the growth and

motion of vortices on the in-line force.

6.6.1 The Predictions of the New M0OJS Equation
Figures 29a through 71c¢ show the results obtained with the new MOJS

equation. Note that the original MOJS equation [Eq. (12)] is called "the
two-term MOJS equation.” The one obtained with the addition of only C3cos(39-¢3)
is called "the three-term MOJS equation®, i.e.,

172 -0.08(K-12.5)2}

2F/(pDUZ) = (n?/K)C sine- Cylcoselcoso + A7'/2{0.0140.10 e
2
cosf30- A1 /%(0.05+0.35 £70-04(K-12.5)7) (69)

Finally, the one obtained with the addition of [C3cos(3e-¢3) +C5cos(59-¢5)]
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is called “the four-term MOJS equation" [Eq. (68)] or more specifically,

2F/(pDU£) = (ﬁz/K)Cmsine - C4lcosB|cose +

-0.08(k-12.5)2 -0.04(k-12.5)°

200,01 + 0,10 e Teos{36- A" /2[0.05+0.35 e 1)

2 2
+ 17172100025+ 0,053 e~0-06(K=12.5)"3 0 vee _ n-1/210 254 0.60 e 0-02(K-12.5)"q;

(70) 4

The first figure in each set, such as Fig. 29a, shows a comparison of :

the normalized measured force with that predicted by the two-term MOJS equation.
In addition, the residue, i.e., the difference between the normalized measured
and calculated forces, is shown in each figure. The second figure in each set,
such as Fig. 29b, shows a comparison of the normalized measured force with that
predicted by the three-term MOJS equation together with the new residue (the
difference between the normalized measured force and the normalized calculated
force through the use of the three-term MOJS equation). Finally, the third
figure in each set, such as Fig. 29c¢c, shows a comparison of the normalized
measured force with that predicted by the four-term M0OJS equation together with
the corresponding residue. It should be noted that Figs. 29 through 71 are
arranged in the order of increasing Keulegan-Carpenter numbers. A detailed

study of the particulars of each figure shows that the results cover a wide

range of Keulegan-Carpenter numbers, Reynolds numbers, and relative roughnesses.
It is clear from Figs. 29 through 71 that the three-term MOJS equation

and in particular the four-term MOJS equation reduce the residue significantly. g

In some cases, the difference between the measured and calculated forces is

smaller than the experimental error,
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The reduction in residue may be quantified through the use of various
"goodness-of-fit" parameters (Sarpkaya 1976a). In the present study, the

following definition has been adopted and evaluated for each run:

—i|—

-

2
f(rm - F)f
0

T

1 2

Tl/rFm dt
0

in which Fm represents the measured force and Fc, the calculated force,

o =100

The results have shown that in the drag-inertia dominated regime the two-

term MNJS equation [Eq. (12)] yields o values ranging from about 10 to 25.

The three-term MOJS equation [Eq. (69)] reduces o by about 50 percent

(5 <o <10). Finally, the four-term M0JS equation [Eq. (68) or Eq. (70)]

reduces o by about 80 percent (1 < o < 5) relative to the two-term MOJS

equation. In fact, the results have shown that the predictions of Eq. (70)
are as good as those based on the actual values of the Fourier components
of the residue. 1In other words, Eq. (70) represents quite accurately the
behavior of the residue and in many cases as accurately as its Fourier com-
ponents. Clearly, no functional relationship, representing C3cos(36-¢3) and
C5c05(58-¢5), can provide a better correlation between the measured and
calculated forces than the one where the actual values of C3, ¢3, C5, and ¢5
are used in the third and fourth terms of Eq. (62), as determined from the
Fourier analysis of the residue,

The form of the residue suggests that all harmonics of the fundamental
play some role even though the third and fifth harmonics are predominant.
This fact is evidenced by the results shown in Tables 1 through 10.

It is clear from the foregoing that a perfect match between the measured
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and calculated force can be obtained only if one takes into account the
contributions of all harmonics. From a practical point of view this is
rather difficult and certainly not justified in view of the uncertainties
associated with the kinematics of the flow field, spanwise coherence of
the vortices, nonstationary nature of the occurrences, nonuniform surface
roughness, and the possible dynamic response of the body to the fluid
forces imposed on it. It is primarily because of these reasons that the
modified MOJS equation has been restricted to four terms.

The new version of the MOJS equation contains only the two coefficients
already in use, namely, Cd and Cm' Furthermore, the Fourier averages of
Cd and Cm are still given by Egs. (13) and (14). Thus, Eq. (68) satisfies

practically all the constraints imposed on its evaluation.

6.6.2 A Critical Assessment of the New MOJS Equation [Eq. (68)]

Equation (68) is based on the results obtained with a sinusoidally
oscillating flow about smooth and rough circular cylinders. The in-Tine
forces used in the analysis of the residues corresponded to the flow
conditions where the spanwise coherence of the vortices was as perfect as
possible, as reflected by the magnitude and periodicity of the corresponding
transverse forces. It is a well know fact that the vortices shed from a
cylinder is neither straight nor parallel to the axis of the cylinder even
in steady flow. Variation of the spanwise characteristics of vortices has
a profound effect on the instantaneous lToading of the cylinder. Relatively
poor correlation of the flow in the spanwise direction gives rise to a lift
force which is Tower than that resulting from a fully-correlated vortex
shedding. [t has been shown by Wilkinson (1981) that the lift acting on a

given length of cylinder is a function both of the aspect ratic of the
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body configuration and the aspect ratio of the portion of cylinder on

which the loads are being considered. 1In general, the three-dimensional
1ift coefficient (based on a finite length of cylinder) is smaller than
the two-dimensional 1ift coefficient (based on a small section of the
cylinder). Thus, the determination of a 1ift coefficient from the meas-
urement of forces acting on a finite length of a cylinder has only lTimited
value unless the spanwise coherence of the flow field is known in terms of
the governing parameters and the end conditions. It is because of this
reason that the in-line forces used in the development of Eq. (68)
corresponded to the flow conditions where the spanwise coherence of vortices
was as perfect as possible, as reflected by the magnitude and periodicity
of the corresponding transverse forces at both ends of the test cylinders.
In sinusoidally oscillating planar flow the coherence of the vortices
and the interaction between vortices from the two sides of the reciprocating
wake are much stronger than those in wave flows in the ocean environment.
Even then the occasional lack of coherence of vortex shedding in sinusoidally
pscillating planar flows gives rise to intermittent transverse forces
(Maull and Milliner 1978, Sarpkaya and Isaacson 1981). This is particularly
true for the drag-inertia dominated regime. In any case, however, the
intermittency of the transverse force in wave flows is much higher than
that in sinusoidally-oscillating planar flows.
The in-line force is certainly affected by the intermittent nature
of the transverse force and by the variations in the coherence length.
However, the dependence of the in-line force on the characteristics of
vortex shedding (intermittency, spanwise coherence, interaction between

vortices) is considerably less than that of the transverse force.
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The reduced spanwise coherence decreases the peak value of the in-line
force and the amplitude of secondary oscillations imposed on it by the
shedding, interaction, and convection of vortices. In other words, the
reduction of the spanwise cor-elation results in the distribution of the
energy of the secondary oscillations over a broader band of frequencies.
This results in smaller drag and inertia coefficients. The drag coeffi-
cient is more sensitive than the inertia coefficient since the force in
Eq. (13) is multiplied by cosé and since the largest effects of vortex
shedding and spanwise coherence occur near the times of maximum velocity,
i.e., when cos6 is near its maximum.

It is evident from the foregoing that additional research is needed
to quantify the effect of spanwise coherence on the in-line and transverse
forces and, in turn, on the drag, inertia, and 1ift coefficients. It is
also evident that the data obtained in the ocean environment must neces-
sarily reflect not only the consequences of currents, nonuniform roughness,
nonuniform waves, body inclination, dynamic response, proximity, etc., but
also the effect of the variation of the spanwise coherence. The scatter in
the ocean-data-based drag, inertia, and 1ift coefficients may be brought to
order by measuring the spanwise pressure distribution over the length of the
force sleeve and reporting the said coefficients together with the correspond-
ing coherence length, expressed suitably in terms of the fluctuating
pressures.

The effect of the reduced spanwise cohe~ence on the predictions of
Eq. (68) has been examined in detail by considering in-line forces for which
the transverse forces at the two ends of the test cylinder did not correlate

(either in phase and/or in magnitude). The results have shown that the
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predictions of the original MOJS equation are better than expected and
that £q. (68) holds true provided that Mp in Eq. (66) is replaced by
*

M = ¥M where ¥ is a factor expressing the influence of the reduced

p
spanwise correlation on the in-line force (0 < ¥ < 1), i.e.,

* 2
Mp = W[Amp + Bmpexp{Cmp(K - 12.5)°}] (69)

where the meaning and the numerical values of Amp’ Bmp’ and Cmp remain
unchanged and are given by Eq. (67). Clearly, the foregoing amounts to
the replacement of C3, ¢3, C5, and ¢5 by C; = WC3, ¢; = W¢3, C; = WCS,
and ¢; = W¢5.

Figures 72a through 73c show in-line force samples with reduced
spanwise coherence and their comparison with the predictions of the two-
term MOJS equation, three-term MOJS equation, and the four-term MOJS
equation, {¥ = 0.3 was used in Eqs. (68) and (69)]. Evidently, the reduction
of the spanwise coherence removes large scale oscillations from the in-line
force and thereby creates conditions to which the original MOJS equation is
more applicable. It is also evident that there is very little difference
between the predictions of the three-term MOJS equation and the four-term
MOJS equation. Thus, as far as the ocean-based data are concerned, the use
of the three-term MOJS equation with the appropriate spanwise-correlation
factor ¥ is more than adequate. At present, there is no ocean test data
with spanwise and chordwise pressure distributions to relate ¥ to the local
flow conditions. Suffice it to note that the reduction of the correlation
length, among other factors, smoothens the exacerbating effects of the vortex

induced forces, reduces the magnitude of the force-transfer coefficients, and

makes the predictions of the origiral MOJS equation more credible.
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It is evident from the foregqoinag that the better the spanwise coherence
of vortices, as in the case of planar oscillatory flows, the poorer the
predictions of the original MOJS equation, particularly in the drag-inertia
dominated reqime. This is because of the fact that the better the spanwise
coherence, the larger the transverse force and hence the larger the amplitude
of the lift-induced oscillations in the in-line force. Also, the more
reqular the transverse force, the narrower the band of frequencies at which
the enerqy of secondary oscillations and hence the residue are concentrated.
However, even in planar oscillatory flows the shedding and subsequent inter-
action of vortices are not perfectly deterministic. There are variations
not only from cycle to cycle but also in each half cycle. Consequently, the
in-line force in a given cycle is not representable by an odd-harmonic
function, i.e., by a function where F(8) = -F(6+r), (see e.q., Fiq. 34a
where the in-line force does not return to its initial value at the end of
the cycle). On the other hand, the mathematical models [Egs. (12), (69),
and (70)] are based on odd-harmonic functions (see e.g., the force traces
predicted by the three-term and four-term MOJS equation in Figs. 34b and 34c,
respectively). Thus, the residue, representing the difference between the
measured force (a non-odd-harmonic function) and the calculated force (an
odd-harmonic function), is a non-odd-harmonic function., In other words, the
residue does not ordinarily and necessarily return to its initial value at
the end of the cycle (see e.g., Fig. 38c). These observations point out
once again the exacerbating effects of the vortex motion in time-dependent
flows and the fact that as far as the vortices are concerned each encounter

is a new experience, however slight the differences may be.
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In concluding the assessment of the new MOJS equation, it must be
pointed out that Eq. (68) or Eq. (70) does not apply to yawed cylinders,
to wave-current combinations, to flexible cylinders, and to the flow con-
ditions involving free-surface and/or body-proximity effects. At present,
there is not enough data to critically assess the speculative generalizations
of the original MCJS equation and the improvements which must be made on

them.

68




7.0 CONCLUSIONS

1. The origin of the MOJS equation and its limitations have been
discussed in detail and it has been concluded that the choice of the par-
ticular form of the force expression seems to have been governed by the
following criteria: (a) tangential velocities and accelerations cannot
influence the flow appreciably; (b) the wave theory yields normal veloc-
ities and accelerations each of which must be separately and additively
responsible for part of the force; (c) heuristic reasoning of the applica-
bility of the force expression when applied to conditions of steady flow

alone or accelerating flow alone; (d) analytical simplicity of the force

expression (linear-quadratic sum); and (e) experimental justification of
the then available results.

2. The MQJS equation is an approximate solution to a complex problem.
Its justification is strictly pragmatic and rests with experimental confir-
mation. It applies only to the prediction of in-line forces for D/L smaller
than about 0.2 (no diffraction effects); it does not apply uniformly well to
all ranges of Reynolds number and Keulegan-Carpenter number; with average Cd
and Cm, the unsteadiness of the force resides only in the variation of the
velocity and acceleration with time; three-dimensional effects are ignored;
the effect of the axial pressure gradient is disregarded; the transverse
force is not accounted for; it cannot deal with the effects of orbital motion,
yaw, body- and/or free-surface proximity effects, and the omnidirectionality
of the waves and currents; and in certain ranges of flow it gives rise to
relatively large residues. The magnitude of the residue (i.e., the difference

between the measured and calculated force) in the drag-inertia dominated

regime increases with increasing spanwise coherence of vortices.




3. A critical study of the nature and decomposition of the time-

dependent in-line force has shown that the M0OJS equation is not well-
founded even for a sinusoidally-oscillating planar flow. The effect of
the history of the motion must be represented by one or more additional
terms. For a strictly sinusoidal motion the effect of the history term
may be incorporated into the drag and inertia coefficients with no loss of 3
generality.

4, The speculative generalizations of the original MOJS equation has

been reviewed in detail and it has been concluded that (a) the MOJS equation

is not equally valid for all shapes of bodies and types of flows; (b) its

use to predict the forces acting on yawed cylinders through the use of the
"independence principle” has not been subjected to experimental verification;
(c) the generalization of the MOJS equation to predict the in-line forces due
to combined waves and currents is unproven and remains as a pure speculation;
and finally, (d) the generalization of the MOJS equation to the prediction

of the dynamic response of structures is not supported by experimental data.

5. The background of the existing data (from wave channels, ocean tests,
and oscillating planar flows) has been reviewed in detail and it has been

concluded that the inroads towards the understanding of the limitations of

the M0OJS equation require extremely careful experiments over a broad range
of Keulegan-Carpenter numbers, Reynolds numbers, and relative roughnesses.
Neither the Ocean Test Structure data of EPR nor the Christchurch Bay Tower
data of NMI are well-defined enough to assess the reasons for the deviation
of the measured forces from those predicted by the MOJS equation in the drag-
jnertia dominated regime. This is primarily due to the lack of information

regarding spanwise coherence. Furthermore, the existence of currents and
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the omnidirectionality of the waves and currents do not allow one to assess

critically the original version of the MOJS equation. The evaluation of
the OTS and CBT data require the use of the speculative generalization of
the original MOJS equation to the wave-current combination,

6. The MOJS equation should be revised with the following constraints:

(a) the revision should be fluid-mechanically meaningful; (b) the revised

AN A s e S it e

. form of the equation should contain no more than the two coefficients already
in use, namely, C4 and Cm; (c) the coefficients of the additional terms should
be related to Cd and Cm (since they too are functions of K, Re, and k/D)
through a careful spectral and Fourier analysis of the residues; and (d) the

revised form of the equation should reduce to the M0OJS equation in the drag

and inertia dominated regimes.
7. Six methods were considered for the representation or evaluation of
the time-dependent force in terms of appropriate parameters. These consisted E

of: (i) the evaluation of the instantaneous values of the drag and inertia

M M s ak

coefficients, (ii) evaluation of the drag and inertia coefficients in terms

AR, i

of the relative displacement of the fluid and the Reynolds number, (iii) use

of the discrete vortex model, (iv) evaluation of the instantaneous force,

(v) evaluation of the effect of the instantaneous 1ift force on the in-line

force, and finally, (vi) the Fourier analysis of the residues. Among these

S e S g A PN SPTT

two methods were found to be most promising, namely, the evaluation of the

o A

effect of the instantaneous 1ift force on the in-line force and the Fourier
analysis of the residues. It has been concluded that the available data
will not permit the further exploration of the former method at this time.

8. The residues have been analyzed in great detail. The results have
shown that all harmonics appear in the spectral analysis of the residue, with

varying degrees of importance. However, the third and fifth harmonics are
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far more important than the remaining ones, at least for the sinusoidally

osciliating flow about smooth and rough circular cylinders. The use of

the in-line forces corresponding to the flow conditions where the spanwise

coherence was as perfect as possible (as reflected by the magnitude and
phase of the corresponding transverse forces at both ends of the test
cylinders) resulted in the correlation of the coefficients of the third and
fifth harmonics of the residue with the Keulegan-Carpenter number and the
ratio of the deviation of the maximum inertial force from its ideal value

to the maximum drag force, i.e., A = (C; - Cm)/(KCd). This resulted in a
new MOJS equation [Eq. (68) or Eq. (70)] whose validity for swooth and rough
cylinders has been shown through numerous comparisons with the measured in-

line forces and through the calculation of new residues together with the

corresponding values of the "goodness-of-fit" parameter o [Eq. (71)]. The
results have shown that the three-term MOJS equation [Eq. (69)] reduces o

by about 50 percent and the four-term MOJS equation [Eq. (70)], by about 80

percent. In fact, the predictions of Eq. (70) are as good as those based on
the actual values of the Fourier components of the residue.
9. The new M0OJS equation has been critically assessed regarding its

applicability to ocean test data and it has been concluded that (a) the in-

line force is affected by the intermittent nature of the transverse force
and by the variations in the coherence length; (b) it is necessary to
introduce a spanwise correlation factor into the new MOJS equation in order
to compare its predictions with the data obtained from ocean tests; (c) the
reduction of the correlation length, among other factors, smoothens the
exacerbating effects of the vortex-induced forces, reduces the magnitude of

the force-coefficients, and makes the predictions of the original MOJS




B

equation more credible; (d) the better the spanwise coherence, the larger
the residue in the drag-inertia dominated regime; (e) the sinusoidally-
oscillating planar flow accentuates the failings of the original MOJS
equation whereas the wave flow tends to minimize them; (f) the scatter in
the drag, inertia, and 1ift coefficients derived from ocean experiments may
be brought to order by measuring the spanwise pressure distribution over the
length of the force sleeve and correlating the force-transfer coefficients
with the corresponding coherence length, expressed suitably in terms of the

fluctuating pressures.
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8.0 RECOMMENDATIONS

1. Extensive research is needed to justify each and every generalization
of the original MOJS equation. Specifically, laboratory and ocean experiments
are required to determine (a) the kinematics of the wave and current inter-
actions, (b) the wave and current induced forces on smooth and rough circular
cylinders, (c) the forces acting on yawed cylinders and the merits of the
“independence principle”, and {d) to examine critically the generalization of
the MOJS equation to the prediction of the dynamic response of structures.

2. The measurement of in-line and transverse forces alone is no longer
sufficient. Extensive research is needed to quantify the effect of spanwise
coherence on the in-line and transverse forces and, in turn, on the drag,
inertia, and 1ift coefficients. This will require the measurement of spanwise
and chordwise pressure distributions over cylinders.

3. The determination of the effect of lift-induced oscillations on the
in-line force is extremely important. The merits of Eq. (58) must be explored
through the use of the simuitaneous records of the in-line and transverse
forces not only for the improvement of the MOJS equation but also for the
assessment of the role played by the spanwise coherence of vortices.

4. The contributions of all harmonics of the residue cannot be taken
into consideration. From a practical point of view this is rather difficult
and certainly not justified in view of the uncertainties associated with the
kinematics of the flow field, spanwise coherence of vortices, nonstationary
nature of the occurrences, nonuniform surface roughness, and the possible
dynamic response of the body to the fluid forces imposed on it. It is because
of these reasons that the modified MOJS equation should be restricted to three

terms [Eq. (58) or Eq. (69)].
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5. Flow kinematics under storm driven seas are random and three-dimen-
sional. Experiments must be carried out both in the laboratory and in the

ocean environment to simulate all of the important features of storm driven
6

T

seas at Reynolds numbers larger than 107,

6. Basic research should be pursued to determine the role played by

the shedding and interaction of vortices in time-dependent flow about non-

- circular bluff bodies. Such studies will enhance our understanding of the

MOJS equation and the limitations of its generalizations.
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Table 1. Fourier Coefficients for K = 6.47,
Re = 34763, k/D = 0.00

_N__ __AN_ __B(N)_ Magnitude _Phase [Degl é
1 .0938 -.g288  .2038 -.78
2 8167 .8224 .8280 53.31 L
3 .28056 -.0286 . 2076 -7.92
4 .8182 .8123 .2163 5@.35 f
s  -.8@42 -.gla? .B8134 ~108.42 *
6 .2001 .9938 . 2038 88.17 f
7 .28854 . 2287 . 2854 7.60
8 .8@29 .2822 .@23s 36.26
9  -.g248 .2218  .2858 168.86
12 -.2809 .0283 .0018 161.11




Table 2. Fourier Coefficients for K = 8.64,
Re = 14181, k/D = 0.01

N AN) 0 BUN) . Magnitude  Phase [Degl
{ .0831 -.@@21 .8e3s -33.80
2 .B144 -.@128 .8193 -41.48
& 3 .8181 -.@972 .0978 -84,07
: 4 -.8241 . 2454 .P514 117.99 j
5 -.8935 -.0@99 .0940 -173.96 !
6 .9123 .8323 .0346 69.97 L
? -.08148 .0279 .0316 117.89 t
8 . 2284 .8122 .8148 55.5@
g -.2848 8177 .8183 185.14
18 .88s8 .0281 .0100 54.55
t .
4
:
|
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Fourier Coefficients for K = 9.41,

Re = 50442, k/D = 0.00

AN

VBOUONDU S WMN

—

.0181
~-.80s57?
.8329
.0esl1
-.1098
~.00891
-.8247
-.00883
-.0e83
-. 0026

.0101
. 8872
. 28595
. 2085
1572
.g101
. 8344
. 0099
.0186
. 80826

T
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Table 4. Fourier Coefficients for K = 10.45

Re = 55962, k/D = 0.00 i
. f‘
N A(N)_ __B(N)_  Magnitude _Phase [Degl

1 .2185 . 2800 .2185 .24 i
2 .B959 -.0518 . 1287 -28.01
3 .8476 -.4228 .4253 -83.58
| 4 .B658 -.B132 .2663 -11.5@
: 5 -.1281 -.1233 .1778 -136.11
i 6 .8119 . 2083 .8118 1.5@
8 . 0081 .8126 8126 89.40
g -.8184 -.08928 .81@8 ~164.43
18 ~.0022 .8856 - 111.68

tes Wt

N B IR At R A 1 0 Pt

245 3
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Fourier Coefficients for K = 11.43
Re = 61533, k/D = 0.00

BLQODNOWUME2WN -

[y

__ACN) B(N)_ Msgnitude _Phase [Degl
.8132  .ee@@  .@132
8115 -.@243  .B269 ~64.62
.8227 -.4839  .4844 ~87.32
.@392  -.@174  .@429 -23.9?
-.1634 -.1477  .22@2 -137.89
.2198 -.8166  .@258 -39.86
-.2294 -,8371 .8473 ~128.42
.8268 -.2051 . 8985 -37.85
-.g124¢ -.8129  .8179 -133.97
.2238  -.@@861 .2273 -57.38
246
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Table 6. Fourier Coefficients for K = 12.43,

R

9N 2y s T NPT S ) 702 R 1

Re = 20038, k/D = 0.00 i
) SN BN _BIN)_ Magnitude _Phase [Degl

1 .8226 .0901 .8228 .18

1 2 .8093 .B8128 .B8152 52.37
5 3 -.B962 -.4687 «.4773 -108.90
, 4 .B1586 .8051 .B186S 18.18
i 5 -.2741 -.0608 .2888 -167.48
6 .9188  -.9187 .8153 -44.35

7 -.0504 . 8295 .8584 149.62

8 .2218 .0872 0875 76.13

) -.8282 .2284 .9348 144,20

18 -.00842 .0056 .8878 127.32




Table 7. Fourier Coefficients for K = 13.59,
Re = 78806, k/D = 1/150

N __BIN) B(N) Magnitude _Phase [Degl i
1 .8246  -.@082 .8246 -.38 :
2  -.1787 .2198 .2831 129.14 1
3 -.1886 -.4483 .4531 ~103.61 ;
4 -.0726 .8727 . 1827 134,95 E
5 -.2832 -.8234 .2046 ~173.44
6 .8857  .8278  .@284 78.46 l
?  -~.8348  .@675  .B760 117.36 '
8 .8099 .0852 .8112 27.75 ¢
3  -.8143  .3411  .@435 189, 14 !
18 -.0042 .2063 .8076 123.98 f
£y
13
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Fourier Coefficients for K = 15,
Re = 25659, k/D = 0.01

.0149
~.2090
~.1244
--.8282
~.1366
. 0028
-.Bes?
-.B0eas
-.B245
-.0020

~. 08080
-.8456
-.2275
-.8290
~.8535
-.0060
-.8178
-. 2089

.BP54
-.00881

.B8149
.B465
.2593
.8353
. 1467
. 9866
.9198
. Bp8as
.B251
. 0083

——— s &= o o o




Table 9. Fourier Coefficients for K = 16.34,
Re = 40579, k/D = 0.01

N ACN) B(N) Magn{tude Phass_[Degl

1 8147 . 0000 .B147 .96

2 .8509 -.8418 .0658 -39.41

3 -.0513 ~.1432 . 1521 ~199,.69

4 .8428 -.8126 .B446 -16.48

5 -.1978 -.0835 . 10879 -1{78.12

] .82862 -.08232 .8358 -41,5?
¥ 7 ~.0041 -.0162 8187 -104.23

8 -.8228 -~-.@278 .8368 -128.54

9 -.8239 .2aLs .0240 176.42
4 10 -.0335 -.8185 .B351 -162.55




Table 10.

Fourier Coefficients for K = 20.62,
Re = 33031, k/D = 0.01

N A(N) B(N)_ Magnitude _Phase [Degl
1 .0100 .8ea1 .2100 .49
2 -.8134 . 8899 .8166 143.57
3 . 8854 . 00828 . 8855 1.9
4 .8288 -.0353 .8451 -51.58
S -.08281 . 88538 . 0288 168.12
6 -.9120 -.0285 . 8309 -112.85
? .80689 -.0823 .8873 -18.82
8 -.8281 -.9009 .8281 -178.14
9 -.887?5 -.0002 . 80?75 -178.39
19 -.08130 .8164 . 0209 1268.39
251







