
AD-7 , N 743 MONISON' EUATIN AND TEWAE FOCE ONU OFHRE /

NCASI E N/ NM3 NN

NN m omoNNNNONO

N 0mmmmmm



IL5 u5

IA .I



PHOTOGRAPH THIS SHEET

LEVEL IVENTORY

Cv| - Ett+. N. CR 8a. 008
-i sact&oyTuvlowt

B DOCUMENT IDENIFICATION
S23os- W-C -OO.3

SDWRI ON STATEMENT A
Approved for public releasq

I Distribution Unlimited

DISTRIBUTION STATEMENT

ACCESSION FOR
NTIS GRA-

UTiC TAB 0 D T IC
UNANNOUNE

JU SIC AON ELECTE
IFEB 2 Wg4

DY

YDITIDUrTION/ D
AVAILABILITY CODES

r AVAIL AND/OR SPECIAL ___ _________

ID V M A O M L0 1 DATE A CCESIONED

DISTUrUTION STAMP

DATE RETURNED

84 02 02 013

DATE RECEIVED IN DTIC REGISTERED OR CERTIFIED NO.

PHOTOGRAPH THS SHEET AND RETURN TO DTIC.DDAC "

DTI , - m DOCUIMENT PROCESSING SHEET XPOUS" DI AY M USED UNTILOTX T! 0



tr

CR 82.008

0. (NAVAL CIVIL ENGINEERING LABORATORY
Port Hueneme, California

I SS' Sponsored by
NAVAL FACILITIES ENGINEERING COMMAND

MOIRISON'S EQUATION AND THE WAVE FORCES ON
OFFSHORE STRUCTURES

December 1981

An Investigation Conducted by
Dr. Turgut Sarpkaya
25330 Vista del Pinos
Carmel, California

N68305-80-C-0053

Approved for public release; distribution unlimited



SEC ITV CLASUICATSON Of TKwIS PAGE rMfle PnJa _ _ _ __ _ _

READ 1345TRUCTMOSREPORT DOCUMENTATION PAGE OuRZ COMPLETPNG POWM
N .. RGOV •=111600" NO 1. RECIPINT'S CATALOG NUMBER

CR 82.008
*. TITLE (0" SwA.lit) l- TVW9 OP 4PORT A PERIOD COVENO

Morison's Equation and the Wave Forces Final
on Offshore Structures St. UDR

V. AUN"WOJ S. CONTQ&CT OR GaANT NUUEWeJ

Turgut Sarpkaya N68305-80-C-0053

9. WCAPONMMNG ONGAMIQATIOI MAME AND AOORESS Is. PROGRAM EL MENr PROJ [CT. TASKAii& g~l UIT "jriH[E

Dr. Turgut Sarpkaya AREA WORK UN Sa

25330 Vista del Pinos, Carmel, CA 93923 62759N
______________________________Y759. 556.091.01.501

V" 1 11 vi " '-- -e-r -°'-taboratorynaa na]tmbp In~e Qn ,.,.To,

Port Hueneme, CA 93043 is. UNEof, PACS

14 MONITORING AGENCT NAME 6 AOORESS(## dAil-fe / Cemw .m#M Offte) II. SECURITY CL ASS. (.( oe P1m,)

Unclassified
I 

r- •
lIICATION 

O O
WN GAOINGW

1 IS • DSTIUUTION STATEMENT (.f Chi. fp..rIn

Approved for public release; distribution unlimited.

I?. OISTRIUION STATEMENt (elm* Sh a # 9*.e IA D h stko . it alf ll m n )

Of. SUPPLEMENTARY NOTES

1W I ws~n e0qua" n, dceanflwaves, W4"oks Drag coefficient,
Inertia coefficient, Surface roughness, Transverse or 1 ft
force, Research needs

80. ABSTRACT (C.Nmo,e Wrvin *04 W 11scoea. iW fI t a t lAC 6 epN

The ori gin and limitations of the Iorison-O'Brien-Johnson-
Schaff (WO0S? equation, the nature and decomposition of the
tim-dependent in-line force, the speculative generalizations of
the MOJS equation to body shapes other than circular cylinders,
to yawed cylinders, to wave-current combination, and to dynamic
response of structures are discussed in detail. The background

DDO?' OI o$i OSOLETEa 47) m~o~ #ovs~soS..T



.11 Unclassified

and the limitations of the existing data are reviewed and the
data from sinusoidally-oscillating planar flow about smooth and
rough circular cylinders are chosen to critically assess the
MDJS equation. Six methods are examined to delineate thelimitations of the HOJS equation and to devise a new forceexpression. The final method used (the Fourier analysis of the I
residues) led to the formulation of a three-term and a four-ten

ODJS equation. It is shown through numerous examples that the
new N dS equation reduces the residue significantly for both
smooth and rough circular cylinders, particularly in the drag-
inertia dominated regime. Finally, the applicability of the
new equation to the ocean conditions and the effect of spanwise
coherence are discussed and numerous research projects are
recommended for consideration. The suggestion is made that
further improvement and understanding of the NOS equation rest
not only with carefully conducted laboratory investigations but
also with additional ocean tests designed to shed light on
several complicating influences such as the spanwise coherence
of vortices and vortex interactions.

00 14 £OT10 v 6 iS OLEVE Unclassified
SICuRITY CLASI Ici oTI Of rtts P'A*G[ (o en D" w

t
~!



ACKNOWLEDGMIENT

This investigation has been sponsored by the Naval Civil Engineering

Laboratory under contract No. N68305-80-C-0053.F

The support and encouragement of Mr. Thomas MI. Ward, the technical
representative for the contract, are sincerely appreciated.

VA

Ma -- #A-".AI



TABLE OF CONTENTS

1.0 INTRODUCTION .. .. .... . .... . ... .. ...... 1

2.0 THE ORIGIN OF THE MOJS EQUATION AND ITS LIMITATIONS . . . 3

3.0 THE NATURE AND DECOMPOSITION OF THE TIME-DEPENDENT
IN-LINE FORCE. .. ... ... .. ... .. ... ..... 11

3.1 Basic Background. .. .. .. .. ... .. ..... 11
3.2 The Fourier Analysis of Keulegan and Carpenter . . . 13

*3.3 Additional Considerations .. .. .. ... .. .... 16

4.0 SPECULATIVE GENERALIZATIONS OF THE MDJS EQUATION . . . . 23

4.1 General Commients. .. .. .. .. . .. .... ... 23
4.2 Yaw Effects. .. . .. . .. .... . ... . ... 26
4.3 Waves and Currents .. .. ... . . ... . ...... 29
4.4 Effects of Dynamic Response .. .. . . ... . ... 31

5.0 THE SEARCH FOR A NEW 74035 EQUATION .. .. ... . . ..... 34
5.1 Background and an Assessment of the Existing Data 34
5.2 Ocean Test Structure Data .. .. .. ... ...... 35
5.3 Christchurch Bay Tower Data .. .. ..... .... 38
5.4 Sinusoldally Oscillating Planar Flow. .. .. ..... 43

6.0 METHODS OF ANALYSIS .. .. .. ... .. ... ....... 46

6.1 Introduction .. . ... .. ... ..... .... 46
6.2 Methods 1 and 2: Instantaneous and Relative

Displacement Analysis Of Cd and Cm........4
6.3 Method No. 3: Discrete Vortex Analss......48
6.4 Method No. 4: Instantaneous Force Analysis......51
6.5 Method No. 5: Analysis of the Effect of Lift Force

on In-Line force. .. .. .. .. ... .. ..... 51
6.6 Method No. 6: Analysis of the Residues. .. .. .... 55

6.6.1 The Predictions of the New 74035 Equation . . 60
6.6.2 A Critical Assessment of the New 74035 Equation

[Eq. (68)]J.. .. .. ... .. ... .... 63

7.0 CONCLUSIONS .. .. .. ... .. ... .. ... ...... 69

8.0 RECOMMIENDATIONS. .. . .. ... .. ... .... . .... 74

9.0 REFERENCES. .. ... .. ... .. ... .... . .... 76

FIGURES. .. ... . .. .. . .. .. . .. .... ... 79-241

TABLES. .. . .. .. . .. .. . .. .. . .. ...... 242-251

-11b~l bum



LIST OF FIGURES

Fig. 1 Comparison of measured and calculated forces, K *9.41 79

Fig. 2 011 K -10.62 80

Fig. 3 IifK =11.43 81

Fig. 4 Is K =12.73 82

Fig. 5 " K =13.45 83

Fig. 6 " K =14.29 84

Fig. 7 I'" K =1 5.21 85

Fig. 8 " K =16.34 8

Fig. 9 III I" K =19.33 87

Fig. 10 " K =20.62 88

Fig. 11 Simulation of the lift coefficient for K - 5 89

Fig. 12 K -10O 90

Fig. 13 'K =12.5 91

Fig. 14 11HK -15 92

Fig. 15 itg K =18.5 93

Fig. 16 K K=20 94

Fig. 17 K -=22 95

Fig. 18 "K =30 96

Fig. 19 K -40 97

Fig. 20 1411i K-100 98

Fig. 21 Comparison of measured and calculated forces (Method No. 5)
(K = 13.45, C1L' 0.7, N = 1, S -0.27, * - 45 deg.) 99

Fig. 22 Comparison of measured and calculated forces (Method No. 5)
(K=-16.04, C '0.5, N -1. S -. 27, f r 50deg.) 100

Fig. 23 The coefficient C3 versus K, (averaged over each K) 101

Fig. 24 The coefficient C 5 versus K, (averaged over each K) 102

-iIowa



Fig. 25 The variation of C3v'A with K (experimental data and analytical
model 103

Fig. 26 The variation of 434 with K (experimental data and analytical
model 104

Fig. 27 The variation of C 5/ with K (experimental data and analytical
model 105

Fig. 28 The variation of fKwith K (experimental data and analytical
model 106

Fig. 29a Comparison of measured and calculated forces (Two-term NOJS Eq.)
K - 6.47 107

Fig. 29b " (Three-term MOJS Eq.)
K a 6.47 108

Fig. 29c 1~' (Four-term NOJS Eq.)
K - 6.47 109

Fig. 30a 6~" (Two-term IIOJS Eq.)
K -8.64 110

Fig. 30b " (Three-tem MOJS Eq.)
K a 8.6411

Fig. 30c " (Four-term MOJS Eq.)
K - 8.64 112

Fig. 31a (Two-term NOJS Eq.)
K - 9.41 113

Fig. 31b " (Three-term t4OJS Eq.)
K - 9.41 114

Fig. 31c 14 (Four-term MOJS Eq.)
K = 9.41 115

Fig. 32a of it (Two-term IIOJS Eq.)
K - 10.45 116

Fig. 32b H ~(Three-term MOJS Eq.)
*K - 10.45 117

Fig. 32c HH (Four-term MOJS Eq.)
*K -10.45 118

Fig. 33a H H (Two-term MOJS Eq.)
K - 0.62 119

Fig. 33b U ' (Three-term MOJS Eq.)
K a 10.62 120

- iv-



* Fig. 33c Comparison of measured and calculated forces (Four-term MOJS Eq.)
K - 10.62 121

Fig. 34a U U' (Two-term 140JS Eq.)
K a 10.86 122

Fig. 34b UH '" (Three-term MOJS Eq.)
K a 10.86 123

Fig. 34c "NU ' (Four-term MOJS Eq.)
K = 10.86 124

Fig. 35a " '" (Two-term MOJS Eq.)
K - 11 .12 125

Fig. 35b U'U ' (Three-term MOJS Eq.)
K - 11.12 126

Fig. 35c "t is (Four-term ?4OJS Eq.)
K z; 11.12 127

Fig. 36a is H'U'U (Two-term MOJS Eq.)
K -11.43 128

Fig. 36b U ' (Three-term M0JS Eq.)
K -11.43 129

Fig. 36c U ' (Four-term 1403S Eq.)
K = 11.43 130

Fig. 37a " (Two-term MOJS Eq.)
K - 11.54 131

Fig. 37b U'N (Three-term 140JS Eq.)
K - 11.54 132

Fig. 37c U'U ' (Four-term MOJS Eq.)
K - 11.54 133

Fig. 38a U'"U ' (Two-term MOJS Eq.)
*K -12.31 134

Fig. 38b It %I IS U (Three-term 1403S Eq.)
K = 12.31 135

*Fig. 38c U (Four-term 140JS Eq.)
K - 12.31 136

Fig. 39a U ''U (Two-term MOJS Eq.)
K - 12.43 137

Fig. 39b U ''U (Three-term MMJ Eq.)
K *12.43 138



Fig. 39c Comparison of measured and calculated forces (Four-term MOJS Eq.)
K - 12.43 139

Fig. 40a " (Two-term MOJS Eq.)
K o 12.55 140

Fig. 40b If (Three-term MOJS Eq.)
K g 12.55 141

Fig. 40c S If I (Four-term MOJS Eq.)
K g 12.55 142

Fig. 41a (Two-term I4OJS Eq.)
K = 12.73 143

Fig. 41b If (Three-term tOJS Eq.)
K = 12.73 144

Fig. 41c (Four-term MOJS Eq.)
K = 12.73 145

Fig. 42a (Two-term MOJS Eq.)
K = 13.09 146

Fig. 42b (Three-term MOJS Eq.)
K = 13.09 147

Fig. 42c (Four-term MOJS Eq.)
K = 13.09 148

Fig. 43a (Two-term MOJS Eq.)
K = 13.45 149

Fig. 43b (Three-term MOJS Eq.)
K = 13.45 150

Fig. 43c Of It (Four-term MOJS Eq.)
K = 13.45 151

Fig. 44a If (Two-term MOJS Eq.)
K = 13.57 152

Fig. 44b (Three-term MOJS Eq.)
K g 13.57 153

Fig. 44c o o (Four-term MOJS Eq.)
K o 13.57 154

Fig. 45a (Two-term NOJS Eq.)
K = 13.59 155

Fig. 45b " " " (Three-term MOJS Eq.)
K o 13.59 156

-vM-



Fig. 45c Comparison of measured and calculated forces (Four-term ?4OJS Eq.)
K x; 13.59 157

Fig. 46a U'(Two-term MOJS Eq.)
K = 13.99 158

Fig. 46b ii (Three-term MOJS Eq.)
K = 13.99 159

Fig. 46c """(Four-term MOJS Eq.)
K = 13.99 160

Fig. 47a I' toofi (Two-term MOJS Eq.)
K = 14.08 161

Fig. 47b "' (Three-term MOJS Eq.)
K = 14.08 162

Fig. 47c "f of" (Four-term MOJS Eq.)
K = 14.08 163

Fig. 48a " a" (Two-term NOJS Eq.)
K -14.19 164

Fig. 48b " " (Three-term MOJS Eq.)
K = 14.19 165

Fig. 48c f of (Four-tem MOJS Eq.)
K = 14.19 166

Fig. 49a go 11 I (Two-term MOJS Eq.)
K = 14.26, Re=22680 167

Fig. 49b "ft tg (Three-term NOJS Eq.)
K = 14.26, Re=22680 168

Fig. 49c '"" (Four-term MOJS Eq.)
K = 14.26, Re=22680 169

Fig. 50a " " (Two-term NOJS Eq.)
K = 14.26, Re=22910 170

Fig. 50b If if" (Three-term MOJS Eq.)
K = 14.26, Re=22910 171

Fig. 5OC "" (Four-term NOJS Eq.)
K = 14.26, Reo:22910 172

Fig. 51a of of (Two-term NOJS Eq.)
K = 14.28 173

Fig. Sib "f toA (Three-term MOJS Eq.)
K *14.28 174



Fig. 51c Comparison of measured and calculated forces (Four-term' MOJS Eq.)
K = 14.28 175

Fig. 52a ofI fI (Two-term t4OJS Eq.)
K -14.37 176

Fig. 52b " (Three-teri MOJS Eq.-)
K =14.37 177

Fig. 52c (Four-term MOJS Eq.)
K =14.37 178

Fig. 53a " (Two-term MOJS Eq.)
K = 14.85 179

Fig. 53b " (Three-term MOJS Eq.)
K = 14.85 180

Fig. 53c " (Four-term' MOJS Eq.)
K = 14.85 181

Fig. 54a " (Two-term MOJS Eq.)
K = 15.13 182

Fig. 54b "fI (Three-term MOJS Eq.)
K = 15.13 183

Fig. 54c is (Four-term NOJS Eq.)
K = 15.13 184

Fig. 55a "1 (Two-term MOJS Eq.)
K = 15.21 185

Fig. 55b " (Three-term' MOJS Eq.)
K =15.21 186

Fig. 55c " (Four-term MOJS Eq.)
K sm 15.21 187

Fig. 56a " (Two-term MOJS Eq.)
K = 15.97 188

Fig. 56b "fofo (Three-term MOdS Eq.)
K = 15.97 189

Fig. 56c "fI (Four-term N40JS Eq.)
K = 15.97 190

Fig. 57a " (Two-term NOJS Eq.)
K so 16.01 191

Fig. 57b of It (Three-term MOJS Eq.)
K - 16.01 192

-viii-



Fig. 57c Comparison of measured and calculated forces (Four-term MOJS Eq.)
K = 16.01 193

Fig. 58a ' (Two-term MOJS Eq.)
K = 16.04 194

Fig. 58b (Three-tem MOJS Eq.)
K = 16.04 195

Fig. 58c (Four-term MOJS Eq.)
K = 16.04 196

Fig. 59a " " " (Two-term MOJS Eq.)
K = 16.27 197

Fig. 59b (Three-term MOJS Eq.)
K = 16.27 198

Fig. 59c (Four-term MOJS Eq.)
K = 16.27 199

Fig. 60a " (Two-term MOJS Eq.)
K = 16.34 200

Fig. 60b " (Three-term MOJS Eq.)
K = 16.34 201

Fig. 60c I (Four-term MOJS Eq.)
K = 16.34 202

Fig. 61a " (Two-term MOJS Eq.)
K = 18.30 203

Fig. 61b " (Three-term MOJS Eq.)
K = 18.30 204

Fig. 61c " (Four-term MOJS Eq.)
K = 18.30 205

Fig. 62a i" (iwo-term MOJS Eq.)
K = 19.33 206

Fig. 62b (Three-term MOJS Eq.)
K = 19.33 207

Fig. 62c (Four-term MOJS Eq.)
K = 19.33 208

Fig. 63a " (Two-term MOJS Eq.)
K = 20.62 209

Fig. 63b o (Three-term MOJS Eq.)
K =20.62 210

-ix-



Fig. 63c Comparison of measured and calculated forces (Four-term OJS Eq.)
K - 20.62 211

Fig. 64a (Two-term MOJS Eq.)
K - 22.42 212

Fig. 64b (Three-term NOJS Eq.)
K = 22.42 213

Fig. 64c It it (Four-term MOJS Eq.)
K = 22.42 214

Fig. 65a (Two-term MOJS Eq.)
K = 26.15 215

Fig. 65b (Three-term 4OJS Eq.)
K = 26.15 216

Fig. 65c (Four-term NOJS Eq.)
K = 26.15 217

Fig. 66a (Two-term 4OJS Eq.)
K = 31.41 218

Fig. 66b (Three-term MOJS Eq.)
K = 31.41 219

Fig. 66c It '4 (Four-term OJS Eq.)
K = 31.41 220

Fig. 67a (Two-term MOJS Eq.)
K = 35.27 221

Fig. 67b (Three-term OJS Eq.)
K = 35.27 222

Fig. 67c (Four-term 1OS Eq.)
K = 35.27 223

Fig. 68a (Two-term NOJS Eq.)
K = 39.91 224

Fig. 68b It (Three-term OJS Eq.)
K - 39.91 225

Fig. 68c (Four-term MOJS Eq.)
K = 39.91 226

Fig. 69a It (Two-term OJS Eq.)
K = 44.39 227

Fig. 69b t (Three-term OJS Eq.)
K * 44.39 228

-_X-



Fig. 69c Comparison of measured and calculated forces (Four-term MOJS Eq.)
K = 44.39 229

Fig. 70a N (Two-term MOJS Eq.)
K = 50.61 230

Fig. 70b It (Three-term MOJS Eq.)
K = 50.61 231

Fig. 70c It (Four-term MOJS Eq.)
K = 50.61 232

Fig. 71a It 11 (Two-term MOJS Eq.)
K = 65.94 233

Fig. 71b " (Three-term MOJS Eq.)
K = 65.94 234

Fig. 71c (Four-term MOJS Eq.)
K = 65.94 235

Fig. 72a Comparison of measured and calculated force (Two-term MOJS Eq.)
K = 13.53 236

Fig. 72b " (Three-term MOJS Eq.)
K = 13.53, V = 0.3 237

Fig. 72c " (Four-term MOJS Eq.)
K = 13.53, Y = 0.3 238

Fig. 73a of I" (Two-term MOJS Eq.)
K = 14.51 239

Fig. 73b " (Three-term MOJS Eq.)
K = 14.51, T = 0.3 240

Fig. 73c " (Four-term MOJS Eq.)
K =14.51, T = 0.3 241

-xi-



LIST OF TABLES

Table 1 Fourier Coefficients for K - 6.47, Re - 34763, k/D a 0.00 242

Table 2 " K - 8.64, Re - 14181, k/D - 0.01 243

Table 3 " K - 9.41, Re - 50442, k/D - 0.00 244

Table 4 " " K -10.45, Re - 55962, k/D - 0.00 245

Table 5 U " " K -11.43, Re - 61533, k/O - 0.00 246

Table 6 " K =12.43, Re - 20038, k/D - 0.00 247

Table 7 " K -13.59, Re - 78806, k/D - 1/150 248

Table 8 " " K -15.97, Re - 25659, k/D a 0.01 249

Table 9 N " K I16.34, Re - 40579, k/D - 0.01 250

Table 10 "" K -20.62, Re - 33031, k/D - 0.01 251

0!
-xli-



NOMENCLATURE

A Amplitude of flow oscillations

Amp Coefficients, [see Eq. (66)]

An  Fourier coefficients

A Projected area per unit length
p
a Acceleration

Bmp Coefficients, (see Eq. (66)]
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I

Bn Fourier coefficients
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Ca Added mass coefficient

Cd Drag coefficient

Cd Average drag coefficient in steady flow
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*Additional symbols are defined as they appear in the text.
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N An integer

n An integer
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Re Reynolds number, Re = UmD/V

St Strouhal number (also denoted as S), St = fvD/Um or f D/V

s Displacement of fluid

T Period of flow oscillation

t Time

U Instantaneous velocity

UM  Maximum velocity in a cycle

u x-component of velocity

V Velocity of mean flow

x,y,z Coordinate axis

z Distance along the cylinder
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V3

OL Yaw angle

8 Frequency parameter, B = Re/K - D2/vT

r Circulation of vortex

AR Residue

ni A proportionality factor

e angle, e = 2,t/T

A(C -Cm)/(KCd) where C* is the ideal potential flow value of CmA Cm

1O1Dynamic viscosity

v Kinematic viscosity

p Fluid density

a Goodness-of-fit parameter, [see Eq. (71)]
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1.0 INTRODUCTION

Unsteady motion is of great interest in the solution of many applied

technical problems in fluid mechanics, such as the motion of bodies through

fluids, fluid motion in or about bodies, free-surface phenomena, and others.

The variety and the complexity of the problems, particularly those involving

separation, put their rigorous calculation beyond reach. In fact, a large

number of practical and practically-inspired basic time-dependent flow

problems exist for which ignorance reigns supreme. However, it will be

misleading to invoke the unsteadiness of the ambient flow as the sole cause

of all difficulties. In reality, the flow behind a bluff body, moving

steadily through a fluid, is accompanied by large-scale unsteadiness. Thus,

any type of unsteadiness of the ambient flow and/or of the motion of the

body introduce additional changes in the characteristics of the flow.

The formation of a wake gives rise not only to a form drag, as would be

the case if the motion were steady, but also to significant changes in the

inertial forces. The velocity-dependent form drag is not the same as that

for the steady flow of a viscous fluid, and the acceleration-dependent inertial

resistance is not the same as that for an unseparated unsteady flow of an

inviscid fluid. In other words, the drag and the inertial forces are inter-

dependent as well as time-dependent. Although indirect, the role of viscosity

is paramount in that Its consequences are separation, vortex formation and

shedding, and resultant alterations in the added mass. The specification of

these various aspects provides a basis for the correlation of theoretically

predicted and observed forces. Evidently, the coefficients obtained for

unseparated unsteady flows are not applicable to occurrences in which the

duration of flow in one direction is long enough and the body form blunt

- ."A



enough for separation to occur. It is necessary to determine the relation-

ships between various resistance components in terms of the unsteadiness of

the ambient flow, the geometry of the body, the degree of the upstream

turbulence, the roughness of the object, and the past history of the flow.

Clearly, it will not be a meaningful exercise to interpret the

consequences of unsteadiness with preconceived notions or ideas carried

over from steady flows. For example, in a sinusoldally-oscillating flow

about a circular cylinder the periodic reversals of the flow inevitably lead

to the forward and backward motion of the vortices whereas in steady flow the

vortices shed (at a Strouhal frequency dependent on the Reynolds number)

and are convected downstream. Thus, one is tempted to attribute the changes

in drag to the vortex velocity fields and their 'unsteady' convection by the

periodic flow. This is an obvious but nevertheless too simplistic explanation

of the actual occurrences. Even for unidirectional time-dependent flows about

bluff bodies, there are significant differences between the steady and unsteady

flows in the levels of resistance experienced by the body. In general, it is

more appropriate to regard each time-dependent flow situation as a new

presence with all of its attendant consequences and not only in terms of its

most obvious features. The wave motion about bluff bodies is such a time-

dependent flow which demands quantitative analysis, ingenious experiments,

and qualitative descriptions for the purpose of explaining the underlying

causes of the physical effects and providing a model by which design can be

reasonably performed.

2



2.0 THE ORIGIN OF THE MOJS EQUATION AND ITS LIMITATIONS

In a paper~1 ) submitted to the Petroleum Transactions of AIME on

23 October 1949, Morison, O'Brien, Johnson, and Schaaf (referred to

hereafter as MOJS) wrote:

"The force exerted by unbroken surface waves on a cylindrical

object, such as a pile, which extends from the bottom upward above

the wave crest, is node up of two components, namely: (1) A drag

force proportional to the square of the velocity which may be

represented by a drag coefficient having substantially the same

value as for steady flow, and (2) A virtual mass force proportional

to the horizontal component of the accelerative force exerted on the

mass of water displaced by the pile. These relationships follow

directly from wave theory and have been confirmed by measurements..."

Thus was born the MOJS equation, often referred to as the Morison equation.

The authors also stated that "This paper is essentially a preliminary report

submitted at this time because of the current importance of wave forces in

the design of offshore structures (2),,1

The WMJS equation was originally written as (retaining the nomenclature

originally used by the authors)

dF = [CM(p~) 0 2 , u+c D u2] dz (1)

where dF represents the force exerted on a differential section, dz,

(1) See Morison et al., (1950), citation p. 77

(2) It is of some interest to note that the work of MOJS has been
conducted under a contract with the U. S. Navy on a problem posed by the
Bureau of Yards and Docks, the predecessor of the Naval Facilities
Engineering Conmand.
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in length; D, the pile diameter; p, water mass density; Ms coefficient of

mass; CD1 coefficient of drag; u, the horizontal component of .ne orbital

velocity; and 2U , the acceleration (meaning local acceleration) of the

water particles.

I'OJS went on to express Eq. (1) in a form suitable for waves of small

amplitude and carried out experiments in a wave flume with model piles hinged

at the bottom. The necessary restraining force was measured at a known moment

arm above the hinge. The coefficients C D and C M were obtained "by measuring

the force when cose or sinO are zero, respectively" (now known as the two-

point method). According to MOJS "The experimental values of C M and C D

showed some scattering but no trend as a function of d/L (still water depth/

wave length), H/I (wave height/wave length) or Reynolds number. The average

values obtained for runs with the pile on a horizontal bottom and without

impulsive forces, were C M = 1.508± 0.197, C0D = 1.626 ± 0.414. The Reynolds

number, corresponding to the maximum surface orbital velocity, ranged from

O.22x104 to l.11x104. The Reynolds number decreased from these maximum

values both downward along the pile and with time. The drag coefficient

of a cylinder varies not only with the Reynolds number but also with the

turbulence of the incident stream. Values of C D for cylinders in a steady

stream of air or water within this range of Reynolds numbers vary from 0.65

to 1.20."

The MOJS paper represents in many ways a rather remarkable piece of

engineering work. It is partly because of its historical importance and

partly because many later works employed similar experimental and evaluation

methods that the !4OJS paper will be discussed in some detail.

1. NOJS recognized the importance of breaking waves and the impulsive

4



nature of the force exerted by breakers;

2. MOJS noted that "the orbit velocities are also unsyimetrical, the

forward velocity at the crest exceeding the backward velocity in the trough

by approximately 10 percent in a deep-water wave having a steepness ratio

(H/I) of 0.02 and approximately 25 percent for a steepness ratio of 0.10";

3. Analysis of the data has been based upon a sinusoidal variation in

velocity and, in effect, the asyammetrical velocity variation is represented

in the empirical coefficients;

4. C D and C M were based on the total force (or moment) acting on the

entire pile, evaluated as noted before. In view of this and in view of

items (2) and (3), it is rather surprising that MOJS reported C D and C M

with such scientific precision (C M . 1.508 ± 0.197 and C D = 1.626 ± 0.414);

S. The force expression is assumed "to follow directly from wave

theory" and "confirmed by measurements." In fact, ?4OJS is stating that the

force on a vertical "cylindrical object" (a circular cylinder or any other

cylindrical object) is due to the horizontal component of the orbital velocity

and the horizontal component of the local acceleration. Implications of this

assumption are that (a) vertical components of the velocity and acceleration

are of no importance; (b) the convective accelerations (horizontal and

vertical) do not contribute to the force; (c) the horizontal force must be

comprised of a velocity-dependent drag and an acceleration-dependent inertial

force since the simple wave theory yields a velocity and an acceleration.

it is not clear as to why the convective acceleration has been ignored, i.e.,

why did MOJS use only the local acceleration instead of total acceleration.

Clearly, every unsteady fluid motion has a time-dependent ambient

velocity and ambient acceleration. Thus. it does not automatically follow

that the instantaneous force is decomposable into a velocity-square dependent

drag force and an acceleration-dependent inertial force. Even if such a
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"separation of forces" were to be assumed, it does not follow that the

forces should be added linearly, resulting in a simple linear-quadratic

sum. One can state with hindsight that the choice of the particular form

of the force expression seems to have been governed by the following criteria:

(a) tangential velocities and accelerations cannot influence the flow

appreciably; (b) the wave theory (small amplitude) yields normal velocities

and local accelerations each of which must be separately and additively

responsible for part of the force; (c) heuristic reasoning of the applicability

of the force expression when applied to conditions of steady flow alone or

accelerating flow alone (added mass concept in inviscid fluids); (d) ana-

lytical simplicity of the force expression (linear-quadratic sum); and (e)

experimental justification of the results (within the range of parameters

tested: O.22xi0 4 < Re < l.llxlO 4 , 4.14 < K = TH/D<14.82). For example,

the assumption of constant CD and CM along the pile was justified by the

results that "the experimental values of CD and CM showed some scattering

but no trend as a function of d/L, H/L or Reynolds number." One can state,

on the basis of current studies, that MOJS could have found variations in

CD and CM with H/D had they measured the sectional forces on small segments

of the pile rather than the total moment acting on the pile. However, even

then they could not have found a systematic variation with the Reynolds

number. MOJS did recognize the approximate nature of their equation and

experimental results and certainly implied that an approximate equation

was being calibrated with two empirical constants: "The force coefficients

CD and CM reported here are regarded as sufficiently accurate for design

purposes, provided that they are re-inserted in the equations from which

they have been derived."
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Further examination of the MOJS paper leads to a few other important

facts. The sample oscillograph trace of MOJS (their Fig. 4), for wH/D =

9.24 and Re = 4.85xl0 3 , shows that the moment trace exhibits cycle-to-

cycle variations (in shape if not in maximum amplitudes). The paper does

not contain the words "vortex", "boundary layer", "wake", "transverse force",

"lift force", "spanwise coherence", "wave scatter", "diffraction", "direct

measurement of velocities", etc. It follows that the MOJS equation does

not deal with the causes of the in-line and transverse forces. The test

pile was restrained at the top by two lateral springs. It is not known as

to whether the pile underwent lateral oscillations. There is no discussion

of the merits or shortcomings of the use of calculated velocities and

accelerations. No attempt was made to measure the velocities directly.

MOJS used very small piles where the diameter to wave length ratio (D/L)

was much smaller than 0.2. Even though the wave scatter and diffraction

effects were negligible, no mention of this fact was made. Clearly, the

MOJS work was practically inspired, there was some urgency in obtaining

some data ("The current importance of wave force in the design of offshore

structures makes it desirable that the results to date be made available

now"), and the investigation was carried out in an engineering spirit.

The impact of the MOJS equation has been profound. It established a

blind trust for many years in the MOJS equation (in spite of the warnings

of its originators). Many years had to pass by before the limits and

capabilities of the MOJS equation were recognized. There was an awareness

of the fact that what works in the laboratory may not work in the ocean

environment. But this awareness was not translated into a clear assessment

of the differences between the laboratory conditions and the environmental
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conditions (e.g., wave nonlinearity and directionality, currents, natural

roughness, etc.). Only during the past few years that the practically-

inspired problems have been translated into important questions of basic

fluid mechanics (see e.g., Sarpkaya and Isaacson 1981). During the interim

period 1950 to 1975, design decisions were made about the flow conditions

and the non-fluid-flow constraints where even broad features of fluid

behavior are only vaguely perceived. The designs were based largely on

general concepts, speculative generalizations of the MOJS equation, some

reasoned arguments, proprietory coefficients, experience of the relevant

flows, intuitive generalizations from existing designs and data, and special

ad hoc experiments. Only during the last five years that extensive basic

research came to the world of offshore engineering, partly in response to the

demands and stimuli provided by the offshore engineering, partly by the

challenge of the problems encountered, and partly by the ever increasing

interest in time-dependent flows, Only the outstanding contribution of

Keulegan and Carpenter in 1956 has been an exception to the foregoing.

Scientific fluid mechanics had to shun away the enormously complex and

ill-defined problems of ocean engineering and searched for a well-posed

and yet sufficiently relevant flow situation (e.g., the standing waves of

Keulegan and Carpenter in a rectangular basin, sinusoidally-oscillating

planar flow of Sarpkaya (1976) in a U-shaped water tunnel, etc.). Such an

idealization of the flow is often an essential first step. Assuming the

idealized flow situation can be understood through experiments, quantitative

analysis, and qualitative descriptions, it must then be related back to the

complexity of the actual ocean environment. One must be warned, however,

that the search for well-posed oscillating flow situations and the new

insights gained therefrom do not necessarily lead to the exploitation of
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the findings in a useful way in the modelling of wave forces on offshore

structures. If a more sophisticated MOJS equation brings no guarantee of

better predictions outside the range of parameters and geometries on which

the new model is based, then it is of little value to the ultimate user.

Thus, it is important to emphasize that even though well-posed time-depen-

dent flow situations are extremely important in uncovering the degree of

importance of the parameters involved, in increasing our quantitative and

qualitative understanding of the various flow mechanisms, and helping us to

devise new models, there is definite need for data obtained and observations

made directly in the ocean environment through precise instrumentation and

appropriate data analysis. Ultimately, the design of offshore

structures will not be improved solely due to the knowledge gained through

the study of the well-posed problems, as if it were a one way approach, but

rather through the interaction and reasonable marriage of the two approaches:

basic studies and environmental measurements.

In summnary, the MOJS equation was proposed as an approximate solution to

a complex problem. Its justification is strictly pragmatic and rests with

experimental confirmation. Some of the often repeated limitations of the

MOJS equation are that it applies only to the prediction of in-line forces

for D/L smaller than about 0.2; it does not apply uniformly well to all

ranges of Re and K values; with average C d and C m (henceforth the subscripts

will be denoted by lower case alphabets), the unsteadiness of the force

resides only in the variation of u and du/dt with time; three-dimensional

effects (e.g., spanwise correlation, flow shear, etc.) are ignored; the effect

of the axial pressure gradient is ignored; the transverse force is not

accounted for; it does not apply equally well to all cylinder shapes or bluff

bodies; it cannot deal with the effects of orbital motion, yaw, body- or free-

surface proximity, omnidirectionality of the waves and/or currents; in certain
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ranges of K, (8 < K < 25), the MOJS equation yields relatively large residues

even for a circular cylinder in sinusoidally oscillating planar flow

(one must bear in mind the possibility that the large residue may be because

of the said nature of the particular flow and the perfect spanwise coherence!);

it has no provisions to deal with vortex and wake-return effects (history of

the motion) which have been found in most experiments to cause cycle-to-cycle

variations in the in-line force and non-stationary oscillations in the

transverse force, and so on.

Both the form of the equation and the uncertainties that go into the

characterization of the ocean environment are thought to be responsible for

the differences between the measured and calculated forces. Clearly, it is

not a meaningful exercise to relegate the errors only to one or the other.

Thus, as far as the ocean environment is concerned, the MOJS equation, with

calibrated coefficients, is tolerated in light of all other uncertainties

and hidden and intentional safety factors that go into the design.

The MOJS equation may be examined more systematically through experiments

with relatively more manageable flows where kinematics do not require the

use of intermediate theories, In addition, many other difficulties arising

from the change of kinematics with space, orbital motion, etc. may be avoided.

The physical insight and the data acquired through observations and measurements

may help to formulate an equation with, hopefully, fewer limitations and

greater degree of power of prediction. In the final analysis it must meet

the needs of the designer and not just the research needs of the fluid

dynamicist.
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3.0 THE NATURE AND DECOMPOSITION OF THE TIME-DEPENDENT IN-LINE FORCE

3.1 Basic Background

The most serious difficulty with the time-dependent flows lies in the

description of the time-dependent force itself. Some insight may be gleaned

into the nature and decomposition of this force from a remarkable paper by

Stokes (1851) on the motion of pendulums. Stokes has shown that the force

acting on a sphere oscillating in a liquid with the velocity U = -Aw coswt

is given by

F(t) = e.!P I +92. TT dU+3rD +(2(\22 Vp~D2J) dt3''' 2'2 (2

This force is composed of two parts: an inertial force and a drag force,

linearly-dependent on acceleration and velocity, respectively. Evidently,

the fluid motion is assumed to be unseparated. Both components of the force

depend on viscosity.

The decomposition of the time-dependent force into the two said components

is somewhat arbitrary. The same force may be decomposed into three or four

parts and each part may be given a separate meaning. For example, one may

write

Fit) = pirD 3  + 3rDU + 9 prD3
N_ / dU + 3 cr#DU (3)

276)dt 2 6jYpD t2 Y-

in which the first term on the right-hand side represents the added-mass

(its ideal value) times acceleration; the second term, the linear viscous

resistance to the steady motion of a sphere at very low Reynolds numbers

(say Re < 1); the third term, either the effect of history or the motion

on the inertial force or simply the viscous effects in harmonic motion on
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the acceleration-dependent forces; and the last term, the history effect

on the linear drag or the increase in skin friction and pressure drag due

to oscillations. Also, one may combine the last two terms and regard them

as history-dependent modifications to the ideal and the instantaneous steady-

state values of the inertia and drag forces.

In Stokes sphere problem where the Reynolds number is very small,

drag is proportional to the first power of velocity. In the MOJS equation

dF = [0.5pDCdIUIU + PCm(D 2/4)dU/dt]dz (4)

where u2 is now changed to IUIU and 3u/Dt to dU/dt, drag is proportional to

the square of the velocity since the flow is separated and the drag is

primarily due to pressure rather than the skin friction. Thus, one may regard

the MOJS equation as an heuristic extension to separated time-dependent flows

of the solution obtained by Stokes, with the understanding that the validity

of the extension and the limits of its application will have to be determined

experimentally.

The fact that the drag and inertia coefficients in the MOJS form of the

resistance equation depend on both the Reynolds number (Re = UmD/v where

Um = Aw) and the relative amplitude A/D or K = 27A/D may be demonstrated by

writing the MOJS equation and the Stokes solution for a sinusoidally oscillating

flow (U -Um coswt) about a sphere at rest as

F 8CI1FD2  d-Cd cos wtIcoscOt +w-Cm sin wt (5)

and

- 4CsW (6)I D' Re 2 KA2 2R
-pU2
-4
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Equation (6) yields

=d L 1l - V (7)
Re(2 (7)Re

and

3r = +9 _I/ K .1+9! 11

2 2 Cir-R2 2 wo(8

where 0 = Re/K = D2/vT and T = 27/w.

Cd and Cm for the Stokes force depend on both K and Re. However,

there is a unique relationship between Cd and Cm, dependent only on Re, i.e.,

Cd - 1)C 2=

(4/Re4 (9)

where 24/Re is the steady-flow drag coefficient for a sphere in the Stokes

regime and the constant 3/2 is the ideal value of Cm for a sphere. Thus,

in unseparated flow the oscillations increase both the drag and the inertia

coefficient above their corresponding steady-state values. Experiments show

that only for small values of K and 0 does Cm exceed its potential flow value

(Sarpkaya 1976a).

3.2 The Fourier Analysis of Keulegan and Carpenter

The first systematic evaluation of the drag and inertia coefficients

was made by Keulegan and Carpenter (1958) at relatively low Reynolds

numbers through measurements on submerged horizontal cylinders and plates

placed in the node of a standing wave. In this study, the theoretically

derived rather than measured values of velocities and accelerations were used.

Keulegan and Carpenter expressed the force in terms of a Fourier series

assuming the force to be an odd-harmonic function of 6 = 2wt/T as
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2F/(pDJL.) = 2 [A, sin O + A3 sin 38 + As sin 50 + -

B, cos 0, B3 cos 30 + Bs cos 50 +.. (10)

Keulegan and Carpenter were able to reconcile Eq. (10) with that

proposed by MOJS by writing Eq. (10) in the following form

12
2F/(pDUnm) =-j C.sin O + 2[As in 30 + As sin 50 +...

-Cd cos 01 cos O + 2[B3 cos 30 + Bs cos 5+.. ( 11 )

in which U is assumed to be given by U = -UmCOSO. Evidently, Eq. (11)

reduces to the MOJS equation, i.e., to

2F/(pDU) Cm. in 8 -Cd Icos 81 cos a (12)

provided that the coefficients Cm and Cd are independent of 6, i.e., each

term has the same constant value (dependent on K and Re) and An and Bn are

zero for n equal to greater than 3.

The Fourier averages of Cd and Cm are obtained by multiplying both sides

of Eq. (12) once with cosO and once with sine and integrating between the

limits 0=0 and e=21. This procedure yields,

Cd = 4 2w -pD5 - dO (13)

2UmT 2w2 FsinO (14)
93 o pU (14)

The drag and inertia coefficients may also be obtained through the use

of the method of least squares, two-point values, least-squares for higher

order parameters, etc. (see Sarpkaya and Isaacson 1981). The details of

these methods will not be presented here since they are not of particular

relevance to the discussion on hand.
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One can show through the use of Eq. (12) that the rate of change of

force with time is zero at the time of maximum acceleration and is propor-

tional to C m/KT at the time of maximum velocity. Thus, the determination

of C m , in particular through the use of force at the time of maximum accel-

eration, depends on the particular values of C m, K, and T, and may not be

quite accurate. In general, it is recommended that either the Fourier-

averaged or the least-squares averaged force-transfer coefficients be used

for sinusoidally oscillating flows.

Keulegan and Carpenter's pioneering efforts to reconcile the Fourier

decomposition of the in-line force with that proposed by MOJS gave rise to

numerous questions ,i.e. (a) Does the MOJS equation with two time-invariant

Fourier-averaged coefficients represent the time-dependent in-line force

with sufficient accuracy for all values of the governing parameters? (b)

Could the time-dependence of the force be relegated only to the time

dependence of the flow kinematics? (c) What are the governing parameters?

(d How could the difference between the measured and calculated forces be

accounted for? (e) Should one use time-dependent force coefficients assuming

that the nature of the 2-term MOJS equation permits a meaningful correlation

between the variable coefficients and the governing parameters (no history

effects)? (f) Could one use time-invariant coefficients and account for the

disparities between the measured and calculated forces through the use of

additional terms (An sin ne , B ncos n6)? (g) What are the reasons for the

observed differences between the measured and calculated forces (for circular

cylinders as well as other body shapes)? (h) Could the in-line as well as

transverse forces be predicted through the use of the fundamental equations

of motion and proper numerical techniques? (i) What is the effect of additional

variables and conditions such as roughness, yaw, proximity, orbital motion, etc.?
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These questions, formulated with 30 years of hindsight, remained

unresolved. However, they have helped to replace the blind trust in the

MOJS equation with a recognition of its limits as well as capabilities.

Keulegan and Carpenter have demonstrated that the 2-term MOJS equation

with constant coefficients does not accurately represent the measured force

for all values of K = UmT/D (now known as the Keulegan-Carpenter number).

They have attempted to explain the role played by K and the vortices on the

variation of the force and the force coefficients. The relatively low range

of Reynolds numbers encountered in their experiments did not permit them to

detect the effect of the Reynolds number (Re = UmD/v) on the drag and inertiami

coefficients. Much later Sarpkaya (1976) re-examined the Keulegan-Carpenter

data and has shown conclusively that the force-transfer coefficients (Cd, Cm,

CL, etc.) depend not only on the Keulegan-Carpenter number but also on the

Reynolds number, relative roughness, etc.

3.3 Additional Considerations

The experiments of Keulegan and Carpenter as well as some others

conducted subsequently have demonstrated clearly that even the motion of a

relatively more manageable time-dependent flow (sinusoidally-oscillating

planar flow) is extremely complex and the simplicity of the ambient flow

helps to alleviate only the uncertainties associated with the kinematics of

the flow (relative to the ocean environment) but not the complexities of the

phenomenon associated with the motion of the vortices. Thus, even the use of

a planar oscillating flow did not resolve all of the problems associated with

the nature of the MOJS equation.

In 1963 Sarpkaya has shown through the use of the generalized Lagally's

theorem and the discrete vortex model that the total resistance for a circular
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cylinder in a flow with unidirectional constant acceleration may be written

as

F = 0.5pU 2D G(slD) + 0.25-1pD2(dU/dt) H(s/D) (15)

where U is the instantaneous velocity; s, the displacement of the ambient

flow (s = 0.5Ut); and G(s/D) and H(s/D) are two functions dependent on the

relative displacement s/D. Equation (15) suggested that the total force,

for at least this particular flow, may be written as

2 +P(*D 2
F = O.5pDCdU2 + PCm(WD /4)(dU/dt) (16)

The dependence of Cd and Cm on the Reynolds number does not appear in Eq. (16)

because Eq. (16) has been developed through the use of the inviscid flow

assumption.

Equation (16) strongly suggests that Cd and Cm for the in-line force

and CL for the lift force (or transverse force) may be related to the relative

displacement s/D, Reynolds number, and the relative roughness. This possibil-

ity has not been explored so far. Such a method will make Cd and Cm, and CL

functions of time. Hence, the time-dependence of the force will not reside

only in the variation of U and dU/dt with time but also in the variation of

the force coefficients with time or relative displacement (measured, say,

from the time when U = 0). The variability of the force coefficients will

be discussed more later.

Subsequent to Stokes studies, the forces on a sphere moving in a viscous

fluid in an arbitrary manner were investigated by Boussinesq (1885) and also

by Basset (1888). They found that the force experienced by a sphere at a

given time depends, in general, on the entire history of its acceleration as

well as the instantaneous velocity and acceleration. To a first order of

approximation, this is given by
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t
F = 6frVRU + 0.5(4iR 3/3)p(dU/dt) + 6R2(WVnp) I / 2f - dt' (17)

0 t - t

where the last term represents the history effect. It should be stressed

that Eq. (17) only has qualitative relevance to the MOJS equation since

the entire analysis is based on the assumption of unseparated viscous flow

at very low Reynolds numbers. The history term gives an indication of how

the variation of acceleration influences the resistance in viscous unseparated

flow about a sphere undergoing arbitrary motions and what is important when

this effect is incorporarted into a mathematical model of the flow resistance.

For a strictly sinusoidal flow, the integration of the history term yields

two parts which may be combined with the first two terms of Eq. (17) to

yield Eq. (6). One may, therefore, conclude that for a strictly sinusoidal

motion of a sphere or cylinder, the two-term MOJS equation is well founded

provided that the flow is unseparated and the drag and inertia coefficients

are determined in terms of the Reynolds number and the Keulegan-Carpenter

number. However, it does not immediately follow from the foregoing that the

MOJS equation is well-founded for the case of separated simple harmonic flow

about a bluff body. To be sure, the effect of the history term may be

incorporated into the drag and inertia coefficients with no loss of generality

for the strictly sinusoidal motion. However, Cd and Cm cannot be taken as

time-invariant constants, dependent only on K and Re (for a smooth cylinder).

It is a well-known fact that the MOJS equation does not accurately represent

the measured force with time-invariant constants, particularly in the so-called

drag-inertia dominated regime (8 < K < 20). In other words, Cd and Cm must be

regarded as functions of time also.

A simple dimensional analysis of the flow under consideration shows that

18



2F/(pDU) = f(UM T/D, U D/v, k/D, t/T) (18)

m m

Equation (18) says nothing about the form of the functional relationship.

Thus, it is incorrect to state that the MOJS equation is well founded for

separated sinusoidal flow about a circular cylinder if Cd and Cm are assumed

to be functions of K, Re, k/D, and t/T. Only when the MOJS equation is

assumed to be valid, one can combine Eq. (18) with the MOJS equation to

obtain

C = fl(K, Re, k/D, t/T) and (19)Cd

Cm = f2(K, Re, k/D, t/T) (20)

A closer examination of the instantaneous force records show that even

the Eqs. (19) and (20) are not sufficient to account for the non-stationary

nature of the lift force (chordwise and spanwise coherences) and the cycle-to-

cycle variations of the in-line force, due to lack of two-dimensionality of

the separated flow. Thus, one must include at least the length-to-diameter

ratio of the cylinder among the parameters in Eqs. (19) and (20) to account

for the spanwise coherence. Other effects caused by the individual test

conditions (end effects, wall boundary layers, etc.) and the measurement tech-

niques are likely to affect the variations of Cd, Cm, CL, etc.

For more general time-dependent flows the effect of the history term

cannot be incorporated into the variations of Cd and C and the justificationd m
for the MOJS equation is strictly pragmatic. For periodic non-sinusoidal

flows (e.g., Stokes waves), the use of the MOJS equation simply implies that

the history effects are accounted for by the variations of Cd and Cm. For ocean

waves of varying amplitude and period (if not direction also) the history

effects resulting from the cycle-to-cycle variation of the ambient flow
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kinematics cannot be taken into account by the two-term MOJS equation even if

Cd and Cm are assumed to depend on K, Re, k/D, and t/T. Thus, the use of the

MOJS equation together with the in-line wave forces measured in the ocean

environment to determine two time-invariant coefficients necessarily lead to

large scatter even if all sources of measurement errors were to be eliminated

or minimized. Suffice it to recapitulate that a cylinder subjected to variable

wave forces is like a cylinder experiencing an equally variable time-dependent

motion. Ocean data cannot be accurately analyzed with the two-term MOJS

equation alone (with time-invariant or time-dependent coefficients) without

taking into account the effect of the history of the motion, at least through

the use of a third term.

Two additional matters need to be discussed before concluding the

discussion of the nature and decomposition of the in-line force

It has been stated that the assumption of the validity of the MOJS

equation for a planar sinusoidal flow about a bluff body leads to Cd = fl(K,

Re, k/D, t/T) and Cm = f2(K, Re, k/D, t/T). There is no simple way to deal

with these expressions even for the most manageable time-dependent flows.

Another and perhaps the only other alternative is to eliminate time as an

independent variable and consider suitable time-invariant averages as given by

Eqs. (13) and (14). Thus, one has

[Cd9 Cm' C L . . . . . ] = fi(K' Re, k/D) (21)

For periodically oscillating flows the Reynolds number is not necessarily the

most suitable parameter. The primary reason for this is that Um appears in

both K and Re. Thus, replacing Re by = D2/vT = Re/K in Eq. (21), one has

Ci(a coefficient) = fi(K, a, k/D) (22)

in which 0 is called the 'frequency parameter' introduced by Sarpkaya (1976a)
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who used it first to demonstrate the fact that the Keulegan-Carpenter data

depend on Re as well as on K, (see also Sarpkaya and Isaacson 1981).

Finally, it is of some importance to note that the time-dependent force

F for the most general case may be written as

2 2
F = f(p, D, Lc, U,v , k, a, dU/dt, d2U/dt. ..... ) (23)

which may be reduced to
2D dU D Dn  d n U

F/(O.5pDL cU2) f(UD/v, Lc/D, k/D, a, UTdU ,  n dn) (24)

c C dt

in which Lc is the body length and a is the yaw angle. Obviously, there is

a giant step between Eq. (24) and the MOJS equation, written as,

F(t)/(O.5pDLcU2) = Cd Ubul + I C D- d (25)

U U

or as

F(t)/(O.5PDLcU) Cd 21 + UCD (26)
Um m

For a planar sinusoidal flow represented by U = -Um cose, Eq. (26) reduces to

F(t)I(O'5pDLU " Cm sine (27)

A comparison of Eqs. (24) and (27) shows that the unknown effects of

LcfD, k/D, a, and (Dn/Un+l)(dnU/dtn) ai,. all incorporated into the two time-

invariant coefficients. It is no surprise that the large discrepancies among

studies with the prototype structures are attributed to factors such as random

nature of the ocean waves, wave theories used, currents, free-surface effects,

the sweeping back of the wake over one segment of the structure after being

generated at another segment under different flow conditions, etc. Evidently,

all of these factors are important and contribute to the observed discrepancies
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in C d. C m C L9 etc. However, it is equally important to realize that the

form of the MOJS equation or the particular force decomposition assumed in

the determination of C d. Cm , etc. is just as responsible for the said

discrepancies. There are no simple approaches to quantifying these effects

and to providing qualitative descriptions and none is likely to appear in

the near future.
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4.0 SPECULATIVE GENERALIZATIONS OF THE MOJS EQUATION

4.1 General Comments

The MOJS equation was originally written as

dF = [Cm(7rpD2/4)aU/at ± Cd(PDU 2/2)]dz (1)

and was intended for the determination of "the force exerted by unbroken surface

waves on a cylindrical object, such as a pile, which extends from the bottom

upward above the wave crest,..." Shortly thereafter it became

dF = [(iTP 2/4)aU/at + Cd(pDUIUI/2)]dz (28)

The change from ±U2 to UJU( did not in any way require additional assumptions

beyond and above those already embodied in the original equation.

A further generalization was made by replacing D by a characteristic

cross-sectional area A per unit length, and irD 2/4 by volume Y per unit length

for structural elements other than circular cylinders. The local acceleration

has been occasionally replaced by the total acceleration dU/dt (with probably

little difference in the analysis of the ocean test data). Thus, the MOJS

equation became

dF = [CmP* dU/dt + Cd(pAUIUJ)/2]dz (29)

This modification implies that the MOJS equation is equally valid or no less

valid for other body shapes. This is rather conjectural for several reasons.

If the drag and inertia coefficients are determined in exactly the same manner

for each body through the use of one of the existing methods (e.g., Fourier

averaging, least-squares, etc.), Eq. (29) is relatively more applicable to

a circular cylinder than to a plate normal to the flow. In fact, Keulegan

and Carpenter (1958) have shown that"for the plate data the remainder (meaning

A3sin3e ..... , B cos3e,...) may not be disregarded, in particular when the
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period number (meaning K) is small."I The reason for this is that the form

and character of the wake (wake width, strength of the vortices, etc.) and

hence the history effects depend on the body shape. Thus, the approximations

made regarding the constancy of Cd and Cm and the negligibility of the

history effects are relatively more justified for streamlined bodies than

for bodies with sharp edges (bluffer bodies). Strong vortices in the near

wake give rise to large variations in all wake characteristics, to varying

degrees of importance, during their shedding and backward convection

(particularly at or near the times of maximum velocity). This, in turn,

increases the deviation of the instantaneous values of C d and C m from their

time-invariant values and gives rise to large errors in the predicted force.

Thus, for body shapes where the strength of the vortices and the manner in

which they interact with the body are such that higher harmonics of notable

energy are produced, the MOJS equation is likely to produce poorer results.

It is clear from Lhe foregoing that the simplicity of the generalization of

the MOJS equation from Eq. (28) to Eq. (29) is deceptive and invites a whole

host of new problems. Furthermore, it should be noted that both Eq. (28)

and Eq. (29) imply that the elemental force dF may be calculated for an

elemental length dz and integrated over the entire length of the cylinder

(either by assuming C d and C m remains constant, as in the original formulation

of the MOJS equation, or more appropriately by assuming Cd and Cm depend on

the local values of Re, K, and kID). Even the use of the local values of Cd

and Cm is not without some additional assumptions. The nonuniformity of the

flow along the body (even without the effect of the orbital motion) may alter

the strength, shedding, and the spanwise coherence of vortices. Thus, the

local values of C d and C m may differ from those obtained with planar sinu-

soidal flow under identical Re, K, and k/D values.
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The MOJS equation was subsequently written in vectorial form (Borgman

1958) for a vertical cylinder as

F x Vx a
F = g(= 0"5pCdD x Vy +7r2CI (30)

Fy Vy ay

where V and Vy are the velocity components in the x-y plane which is normal

to the cylinder axis. It is important to note that the velocity and acceler-

ation vectors are not collinear. Equation (30) does not require additional

assumptions beyond those required for Eq. (29) provided that it is applied

either to a vertical pile or more appropriately to a circular cylinder in

planar oscillatory flow. The form of the Eq. (30) may suggest incorrectly

that it may be applied to a horizontal cylinder in waves (wave crests parallel

to the cylinder axis) with Cd and Cm values identical to those for a vertical

pile.

For a horizontal cylinder in a uniform flow field with Vx= VxmCose

and V y= -V ymsin, Eq. (30) reduces to

2F /(pDV2 ) = ( 2D/Vx T)Cmsine - Cd os28+ (Vy 2sin20 cos (31)
x xm xm m dVC s ym/xm/sn coe (1

and

2F /(pDV 2 ) = Or2D/VyT)C sine -C JVx/Vy) 2 cos 20+ sin 20 sinB (32)
y ym ym m d JVxnrym

Equations (31) and (32) state that the instantaneous in-line force in the

x- and y-dlrections is equal to the sum of the projections, on the respective

axis, of the instantaneous values of the total-velocity-square dependent

drag force and the total-acceleration-dependent inertial force. This implies

that the flow over a cycle may be regarded as a juxtaposition of planar flows
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with instantaneous velocities and accelerations given by

q o sin 2  (33a)4 cx s 2  + ym

and '
= V2  sin 2 + 2 cos26 

(33b)
a xm ym

The vortices do not move with the velocity of the ambient flow and the wake

does not rotate about the cylinder at the same rate as the ambient velocity

vector. In other words, one must be aware of the fact that the writing of

the MOJS equation in vectorial form does not necessarily imply that the

behavior of the wake can be correctly represented by it. The drag and the

inertia coefficients for a horizontal cylinder in waves are considerably

different from those for a vertical cylinder at the corresponding K, Re, and

k/D values.

Equations (31) and (32) cannot be written using only the x- or only the

y-component of the velocity in the MOJS equation. This will assume that the

drag component of the in-line force is proportional to the square of the

projected velocity rather than to the square of the instantaneous total

velocity. Finally, it is because of the assumptions noted above that the

drag components of the forces given by Eqs. (31) and (32) become linear for

V = V (fluid particles undergoing circular orbits).
xm ym

4.2 Yaw Effects

The need to predict the forces acting on yawed cylinders subjected to

wave motion gave rise to another speculative generalization of the MOJS

equation. The effect of the body orientation on resistance has been the

subject of extensive investigation in steady flows. It has not been possible

to correlate the in-plane normal force and the out-of-plane transverse force

with a single Reynolds number (see Sarpkaya and Isaacson 1981). Evidently,

for a zero angle of attack (flow parallel to the axis of the cylinder), the
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appropriate Reynolds number is based on the length measured along the body.

For a 90-degree angle of attack (flow normal to the axis of the body), the

appropriate Reynolds number is based on the diameter of the body. Between

the two situations, it is not possible to define a simple characteristic

length and hence a universal Reynolds number which will correlate the force-
transfer coefficients for all angles and flow regimes.

Hoerner (1965) proposed the independence- or crossflow-principle or the

'cosine law' which states that the normal pressure forces are independent of

the tangential velocity for subcritical values of Ren (based on the normal

component of velocity U ). The 'flow independence principle' has beenn

commonly accepted for subcritical flow conditions (laminar boundary layers),

but rejected for transcritical flows (Hoerner 1965). The recent wind tunnel

data by Norton et al. (1981) show that the flow-independence principle is

valid, at least for cylinder inclinations up to 50 degrees (the angle between

the cylinder axis and the ambient flow velocity), as long as the Reynolds

number Ren , based on the normal component of the velocity, remains entirely

within either the subcritical or postcritical flow regime (turbulent boundary

layers). However, should Ren drop from postcritical to transcritical as the

angle of inclination is decreased, one would expect the independence principle

to fail.

The time-dependent flows, in general, and the wave motion, in particular,

about oblique cylinders present even more complex problems. The use of the

independence principle or the assumption that shedding frequency is proportional

to cos 2e may be a gross simplification of the behavior of flow in the near wake.

Under these circumstances only experiments can lead to some understanding of

the problem and to the evolution of appropriate calculation methods. At present

neither the method of decomposition of velocities and/or forces nor the drag
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and inertia coefficients appropriate to each method of force decomposition

are clear. Furthermore, there are not enough systematic experiments with

waves or with harmonic flows to guide the analysis or to justify the

generalization of the MOJS equation to yawed cylinders.

Wade and Dwyer (1976) examined four methods, generally accepted by the

industry, for calculating wave forces on normal and inclined tubular members.

Horizontal and vertical wave-induced water-particle kinematic vectors were

used in each of the wave force methods on two deep water platforms to compare

the horizontal base shear and overturning moments (for a detailed discussion

of these see Sarpkaya and Isaacson 1981). Such comparisons, however valuable,

are not sufficient to assess the validity of one method over the others since

Wade and Dwyer used identical but constant drag and inertia coefficients

(Cd = 0.6, Cm = 2 for one test structure and Cd = 0.6 and Cm = 1.4 for the

other test structure) and since the base shear and over-turning moment represent

the sum of the forces and moments over many members at various angles of

inclination, interference, etc. Thus, the generalization of the MOJS equation

to inclined members through

Fx  U nx nx

Fy O.5pCDWn + pCmD2  n (34)

Fz n n 4 m n::
F z  U nz U nz

together with the Cd and Cm values appropriate to the normal cylinder at the

corresponding Reynolds numbers (Re = IWnID/v) and Keulegan-Carpenter numbers

(K = IWnIT/D) is highly speculative. One must bear in mind that in oscillatory

and wavy flows the Reynolds number may vary from subcritical to postcritical

and one cannot expect the conclusions resulting from the steady flow tests
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(either at subcritical or postcritical Re) to hold true, particularly in the

drag-inertia dominated regime. Furthermore, it is not clear that a two-term

MOJS equation may be forced to represent the measured force on inclined

members, with Cd and Cm determined through some reasonable method. As in

the case of cylinders bluffer than a circular cylinder (e.g., a plate or square

cylinder) the effect of the history term or the magnitude of the residue

(the difference between the measured and calculated force) may be quite large.

The recent unpublished data by Sarpkaya (1982) have shown that the

independence principle is not valid for either smooth or rough inclined

cylinders in sinusoidally oscillating planar flows. Considerable additional

work is required in order to acquire some understanding of the wave forces on

oblique members and, hopefully, to establish uniformly accurate and acceptable

design criteria.

4.3 Waves and Currents

Another speculative generalization of the MOJS equation concerns the

combined waves and currents. It is ordinarily assumed (as recommended by

the American Petroleum Institute) that the MOJS equation applies equally

well to periodic flow with a mean velocity and that Cd and C m have constant,

current-invariant, Fourier- or least-squares averaged values equal to those

applicable to rigid, stationary cylinders in wavy flows. This, in turn,

implies that Cd and Cm are independent of the biassed convection of vortices

and its attendant consequences. The fact that this is not necessarily so is

clearly evidenced by the measurements of Mercier (1973), Sarpkaya (1977) and

Verley and Moe (1979). Thus, the effect of the current-harmonic-flow

combination on the motion of vortices and on the force-transfer coefficients

must be carefully examined in light of available data and the limits of
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application of the MOJS equation to such flows must be assessed a new. The

latter is particularly important in view of the fact that the drag and inertia

coefficients in ocean tests (where there are always some currents and body

motion) are evaluated through the use of the MOJS equation (note that the

values of Cd and Cm may vary considerably from one half wave cycle to another

because of the current-induced biassing of the wake and vortex formation and

that neither set of coefficients may be identical with those obtained without

current).

It has been customary to express the in-line force either as

F = 0.5pCdc(V-Umcose)IV-UmcoseI + (rpCmc D2/4) dU/dt (35)

where V represents the current and U = -UmcosO, or more generally as

F = O.5pC dc(V+Uw)1V+UwI + (7rpC mcD2/4) dU w/dt (36)

where Uw is the wave velocity, added vectorially to the current velocity

(some designers use the projection of the current velocity on the wave

velocity and assume the sum of the two to be in the direction of wave).

The generalization of the MOJS equation to Eq. (35) or Eq. (36) is not

warranted and is not supported by experimental data. Clearly, extensive work

is needed to determine the role played by the current, the validity of the

MOJS equation, the appropriate force-transfer coefficients, etc., not only

for fluid mechanical and practical design purposes but also to ascertain the

validity of the method of analysis of the data obtained in the ocean tests

through the use of Eq. (35). The use of a speculative generalization, unproven

even under idealized circumstances, to analyze data so as to prove the validity

of the generalization itself is not very meaningful.
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In the foregoing the waves and currents were assumed to superpose

linearly. In general certain changes in wave characteristics arise from

the superposition of waves and currents (Longuet-Higgins and Stewart 1961).

When a wave train propagates into a region of local current, the wave

amplitude decreases and the wave length increases if the current and the

waves are in the same direction. However, if the current and the waves

are in opposing directions, the wave amplitude increases and wave length

decreases. A theoretically critical point is reached as the

current velocity becomes equal and opposite to one half of the local wave

group velocity. The wave energy at this critical velocity can no longer be

propagated against the current and the wave amplitude theoretically approaches

infinity. In fact, the waves break long before they reach such a limit.

The wave-current interaction problem has not been studied in sufficient

detail. Thus, even the proper kinematical inputs into the MOJS equation are

unknown when the waves and currents are combined.

4.4 Effects of Dynamic Response

The need to analyze the hydroelastic response of structures gave rise

to a further generalization of the MOJS equation.

Assuming a single member (normal to the wave direction) of mass M,

structural damping C, and stiffness K.,the equation of motion is written as

Mi + Ci + Ksx = pY6 + P(Cm-l)V(-R) + 0.5 PCdApU-I(-.)

= P.m 0 - p(Cm-l) + 0.5PCdApIIJ-I(U.x) (37)

In which U and U represent the velocity and acceleration of the fluid; and

x, i, 3X represent, respectively, the displacement, velocity, and acceleration

of the structural member in the direction of U. Equation (37) may also be
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written as

(M + PCa*)* + Ci + Ksx = pVCmU + 0. 5PCdApIU-iI(U-4) (38)

where Ca = Cm - 1, as usual, and (M + PCaV) now represents the structural mass,

water inside the pipe, and the added mass.

The approximations involved in the formulation of Eq. (37) are far more

than those relating to the wave-current combination because of the simple

fact that now both U and x are functions of time. In fact, there is no

experimental verification of Eq. (37) at any Reynolds number, Keulegan-

Carpenter number, and i/U ratio. It is based on a reasonable-sounding argument

and it reduces to the correct limiting forms for x = = 0 and for U = U = 0.

Perhaps the only other justification for the use of Eq. (37) is that there is

a need for it and yet there are no better alternatives to meet the demands of

this need. As far as the industrial applications are concerned the basic

research sees the need but a little late and always a little too idealized.

In spite of its uncertain limitations, Eq. (37) is further manipulated

to suit the needs of calculation. For example, in order to apply spectral

methods, the drag term is often linearized with an equivalent linearization

technique (for details see Sarpkaya and Isaacson 1981). The approximations

are further compounded, with ever increasing degree of uncertainty, by applying

Eq. (37) to the dynamic response of a number of normal and inclined members.

For example, the total force at a node of a structure is obtained by summing

the contributions of the members contained in the nodal tributary zone (the

region halfway above and below the node). The use of the projected area method

rather than the independence principle yields an expression for the force acting

on the j-th member in zone i as,
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Pi t )  Cm l ij 3 Pi 3jLijij

+ 0.5pC di jDijLijUij-iI(Uij-i] (39)

where Cdii , Cmii are the unknown drag and inertia coefficierts for the member

ij, and Di. and Li are the diameter and the projected length of the tubular

members at node level i.

The generalization of the MOJS equation to the form given by Eq. (39),

over a period of 30 years, is at best speculative and is not based on sound

data. It will take many years and much research either to verify it or to

devise a new equation to replace it. It is rather unfortunate that the urgent

needs of the industry and the passage of time rather than scientific data are

helping to consolidate the use of this most speculative generalization of the

MOJS equation.

3
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5.0 THE SEARCH FOR A NEW MOJS EQUATION

5.1 Background and an Assessment of the Existing Data

The extensive discussion of the original MOJS equation and its various

generalizations has shown that (i) a great deal of additional research is

needed, both in the laboratory and in the field, to assess critically the

validity or the limitations of each generalization; (ii) there is not, at

present enough meaningful analysis or data to attempt to improve every form

of the MOJS equation; and (iii) the understanding of the limitations and the

improvement of the MOJS equation for the simplest possible flow and body

combination should be the first step towards the development of an equation

of greater generality and hence towards the understanding, analysis, and

interpretation of the data obtained under more complex conditions.

The first step towards the search of a new MOJS equation began with the

selection of the most suitable flow situation and the body shape. It became

quickly apparent that there are essentially three types of flow situations for

which some data of varying degrees of quality, covering various ranges of the

governing parameters, exist. These are: (a) data obtained with vertical

cylinders in laboratory wave channels, often with small amplitude waves; (b)

data obtained in the ocean environment either through the instrumentation cf

the existing platforms or through the use of small scale platforms built

specifically for test purposes (eog., Exxon's Ocean Test Structure, and NMT's

Christchurch Bay Tower); and (c) data obtained with sinusoidally oscillati

planar flow about smooth and rough circular cylinders (Sarpkaya 1976a, 1976b).

The data obtained with small amplitude laboratory waves were found to be

unsuitable for the purpose under consideration. The reasons for this are as

follows: (a) the range of Reynolds numbers and Keulegan-Carpenter numbers is
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quite limited; (b) both Re and K vary with depth (as well as with time); (c)

often the total in-line force acting on the entire pile, rather than that on

small segments, is measured; (d) the kinematics of the flow, calculated

through a suitable wave theory, is of questionable accuracy; and (e) the

orbital motion of the particles and the variation of K and Re along the pile,

in the range of K values where the original MOJS equation is least accurate,

complicates the problem considerably.

There are two major sources of data obtained in the ocean environment:

Ocean Test Structure of Exxon and the Christchurch Bay Tower of the National

Maritime Institute of England.

5.2 Ocean Test Structure Data

A large scale experiment was undertaken by Exxon Production Research

(EPR) Company to evaluate present wave force calculation procedures for fixed,

space-frame structures. This highly instrumented 20x4Oxl2O ft platform was

installed in 66-ft water depth in the Gulf of Mexico. Data obtained include

local wave forces on clean and barnacle-covered sensors, local wave kinematics,

total base shear and over-turning moment on the structure, forces on a simulated

group of well conductors, and impact forces on a member above the mean water

level.

Heideman et al. (1979) used two methods to evaluate the drag and inertia

coefficients. The first was the least-squared-error procedure for each half-

wave cycle. The instantaneous in-line velocity in the MOJS equation included

both the wave velocity and the projection of the current velocity. The second

method consisted of the evaluation of Cd over short segments of waves in which

drag force was dominant and of C m over short segments of waves in which inertia

force was dominant. The in-line force was taken as the projection of the
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normal force on the velocity vector. The normal force was measured with

wave force transducers (WFT) of 16 inch Q.D. and 32 inch length, built into

the vertical legs at the four corners of the structure, at a depth of -15

ft. The normal water velocity was measured with an electromagnetic current

meter (ECM) located 4.67 ft from the WFT axis, i~e., ECM was at 3.5 D from

the WFT axis.

The force coefficients exhibited large scatter particularly for K < 20,

The scatter decreased considerably in the range 20 < K < 45, It is not clear

whether this is a genuine reduction in scatter or whether it is a consequence

of the fewer data points in the drag-dominated regime .

Heideman et al., attributed the scatter in C d and C m to random wake

encounters. It is postulated that if the cylinder encounters its wake on the

return half cycle but the current meter does not, then the actual incident

velocity will be greater than measured and the apparent Cd calculated from

the measured force and velocity will be higher than the true C d' Conversely,

if the current meter encounters the wake on the return half cycle but the

cylinder does not, then the apparent Cd will be too low. Clearly, the

encounter of the wake with the current meter and the biassing of the wake by

the current are extremely important. This is evidenced by the fact that the

values of Cd and C m vary considerably from one half wave cycle to another

even for the same wave. Thus, it is desirable to evaluate Cd and C mwith

due consideration to the effect of current, wave spreading, and the irregu-

larities superimposed on each wave.

Heideman et al, concluded that (a) the MOJS equation with constant

coefficients can be made to fit measured local forces and kinematics satisfac-

torily over individual half wave cycles; (b) most of the scatter in the C d
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results can be explained by the random wake encounter concept; (c) local

deviations in apparent C d are not spatially correlated in any given wave;

(d) Cd results from Sarpkaya's experiments (1976) represent an upper band

to Cd values that may be expected in random three-dimensional oscillatory

5
flow; (e) for Re < Wx1 , the apparent C d depends on surface roughness and,

for members that are nearly in the orbit plane, on K; (f) asymptotic C d

* results from the test data in random three-dimensional oscillatory flow

are consistent with steady flow data for the same relative roughness; and

Cg) CM is greater for smooth cylinders than for rough cylinders, while the

reverse is true for Cd

The OTS data of EPR are extremely valuable in assessing the combined

effect of the environmental conditions on the force-transfer coefficients

but not well-defined enough to assess the reasons for the deviation of the

measured forces from those predicted by the MOJS equation in the drag-

inertia dominated regime. This is primarily due to the existence of currents

and the omnidirectionality of the waves and currents. As noted earlier, the

first original version of the MOJS equation and not its speculative generali-

zations to the wave-current combination should be examined. Finally, it

should be noted that the OTS signal conditioning units had four pole active

(Butterworth) filters with an upper cut-off frequency of 3 Hz. However, all

data had the same phase relationship due to input filters. Nevertheless, the

force components at frequencies higher than the cut-off frequency are lost.

Thus, the OTS data are not suitable either for the frequency domain analysis

or for the analysis of impact forces (wave slanmming) acting on the horizontal

members of the structure. Primarily for the reasons cited above, and to a

lesser extent, because of the general unavailability of the said data, the

use of the OTS data has been precluded from further consideration.
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5.3 CHRISTCHURCH BAY TOWER DATA

The tower is located at about 12 miles from a maintenance base at

Lyinington and the Marine Trials Base of the National Maritime Institute

(UK) at Hythe, on Southampton water. It consists of two steel vertical

columns, a platform, and an instrumentation module, supported by a rein-

forced concrete base. The main column is surrounded by five separate but

adjacent sleeves of 9.2 ft diameter which measure the horizontal loading

due to waves and currents as a function of depth. The wave staff is fitted

with four force sleeves of 1.6 ft diameter which are mounted at similar

heights to the lower force sleeves on the main column. In addition, the

pressure is measured at 24 positions around a circumference of the middle

sleeve and also at a single position on each of the other four force sleeves

on the main column. The wave staff also carried perforated ball instruments

for measuring wave particle motions, and a capacitance wire for measuring

the wave elevation. For additional details see Wheatley (1976).

The wave force data from the Christchurch Bay Tower have been analyzed

by Bishop (1978, 1979, 1980) and Standing (1980).

Starting from the MOJS equation, Bishop (1978) has shown that

F (0.5pDLC d) 2U T+ (0 .25irpLD 2Cm) (dU/dt)y(0

where the bars denote the mean values of the squares of the respective

measured quantities integrated over one or more discrete cycles or over a long

enough interval to include several cycles in an irregular sea. The coefficients

Cd and C m are determined from any one or more pairs of equations set up from

different samples of the measurements. As would be expected, the variability

in the coefficients due to highly variable effects and irregularities in the
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incident wave train is averaged out by taking larger sampling times. Bishop

found that Cd and Cm (as defined by Eq. (40)] are quite stable for integration

intervals larger than about 4 minutes and show increasing variations as the

integration interval is reduced. The best fit values of Cd and Cm differed

between the two runs evaluated and also for the main column and the wave staff

of the test facility. For the wave staff, Cd was 0.73 and Cm = 1.22 for onedm

run and 1.66 for the other run. For the main column, Cd was forced to 1.0

and Cm was about 1.85. The Reynolds number ranged from l05 to 1O6 and the

Keulegan-Carpenter number from 2 to 30. There appeared to be significant

differences in the force coefficients due to current, for both the wave staff

and the main column. The difference was largest on the smaller wave staff.

Bishop noted that "the variations of the coefficients can be attributed to

genuine hydrodynamic effects but also to imperfections in the experimental

and analysis techniques. No attempt has been made to attribute the variations

to individual causes..."

In 1980 Bishop defined a new force coefficient CF* as

c ___2__F(41)

(0.5pDL)[ 4 + (iD/2) 2(dU]dt)

where F is defined by Eq. (40). In addition, Bishop (1980) defined K as

=- -Il/2

K, = (2Tr/0.866D)[U /U (42)

and reduced Eq. (41) to

C2 2 T2/.6K 112[ Cd m (43)
CF* 1 + (r2 /0.866K,)

Clearly, for large values of K, (drag dominated regime) C F* Cd and for small
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values of K* (inertia dominated regime) CF~ Cm It is seen that "C can be

derived from existing data which have been processed to give C d and C mvalues

but it cannot be obtained precisely from drag-based total force coefficients."

Bishop described an approximate conversion to overcome this difficulty. At

any rate, C, requires first the evaluation of Cd and Cm and it is not clear

at this time as to what purpose CF* can serve in an appraisal of the MOJS

equation, particularly in the drag-inertia dominated regime. Note that

Eqs,(40) through (43) already assume the validity of the MOJS equation with

constant coefficients.

Standing (1980) described a wave-by-wave analysis of some of the selected

portions of the Christchurch Bay data. 16-second samples of data were

judiciously selected for analysis from two runs recorded during a storm in

September 1976. The time histories of force and velocity were first Fourier-

transformed into the frequency domain, components above 0.5 Hz were removed,

and the time histories reconstituted by inverse transformation. The MOJS

equation was fitted to the measured in-line force through the use of a least-

squares fitting technique to derive Cd and Cm in a narrow range of Reynolds

numbers between 3x105 and 70 5.

The results obtained by Standing showed considerable scatter even though

the analyzed samples were chosen subjectively by visual inspection. As noted

by Standing "a much larger degree of scatter might be expected if samples had

been chosen entirely at random." Standing tentatively concluded that in many

cases the MOJS equation provided a good fit to the measured in-line force.

In general main column forces fitted less well than wave staff forces possibly

due to the "spatial separation between force sleeves on the main column and

the velocity sensors"., "spikes and rapid fluctuations on the acceleration

record...", "disturbances to the velocity field caused by structural components
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in the vicinity of the velocity sensor"8, "inadequacies of the t4OJS equation,

particularly associated with vortex-shedding effects", etc. The force-

transfer coefficients showed no consistent variation with K in the range

appropriate to each individual column.

It appears fromi the foregoing that the Christchurch Bay data are in

need of further analysis which will bring into focus the effects of currents,

wave nonlinearity, vortex shedding, wake biassing, etc., on the force-trans-

fer coefficients. At present, there does not seem to be any possibility of

using the said data in a meaningful way for a critical assessment and

improvement of the MOJS equation.

The foregoing points out certain simple facts concerning the evaluation

of the force-transfer coefficients from laboratory and field tests. Firstly,

the collection of full-scale data fror' structures at sea is difficult and

involves considerable uncertainty. Secondly, the interpretation of the

results in terms of suitable parameters is subject to ambiguity. In fact, the

drag and inertia coefficients obtained through the use of one method should

not be compared with those obtained through the use of another one. Thirdly,

the flow is definitely three-dimensional and its consequences cannot be evaded

by measuring sectional forces rather than the total force on the entire pile.

Finally, the experimental conditions in the ocean environment cannot be

controlled or repeated. These facts coupled with equally complex human factors

entering into the acquisition, evaluation, and the style and degree of

completeness of the dissemination of the information generated lead to

considerable scatter in the drag, inertia, and lift coefficients. Apparently,

the appreciation of the facts leading to the scatter does not necessarily enable

one to quantify these factors or remedy the situation but it gives the designer

at least a sense of understanding and security within the scope of his overall
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design philosophy. Additional in situ measurements may help to calibrate the

MOJS equation for application to more or less similar conditions in a given

region but they are not likely to help to uncover the degree of importance of

the parameters involved. Evidently, the answer lies neither in the use of the

steady-flow drag coefficients with an inertia coefficient near its ideal value

nor in the use of the coefficients obtained with relatively idealized and

controlled experiments without an appreciation of the mitigating effects of

the ocean environment. It would be unreasonable to argue on the one hand that

steady-flow coefficients should be used at high K and Re values and on the

other hand to argue that even for relatively high K values, one must expect

significant differences between oscillatory and uniform incident flow.

It is a well-known fact that the flow conditions in the real environment

do not resemble either steady flow or harmonically oscillating flow or two-

dimensional wavy flow (orbital motion, sweeping of the wake to and fro over

the body, and the spectral nature of waves and currents).

The true purpose of relatively-idealized experiments (e.g., uniform

harmonic flow about circular cylinders) is not to provide coefficients for

immnediate use in the design of offshore structures but rather, and more

importantly, to determine whether the linear combination of a linear inertial

force with a nonlinear drag force can predict, with sufficient accuracy, the

measured time-dependent forces. Should this prove to be the case, one can

then determine the role played by each controllable parameter in the evaluation

of the coefficients quantifying the drag and inertial forces. This by no means

ensures that the said two-term linear superposition will continue to hold true

for more complex flow kinematics and body shapes to the same degree of accuracy

as in idealized experiments in the flow regimes defined by K and Re.

It has already been pointed out that the MOJS equation does not correctly
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predict the measured force in the drag-inertia dominated regime even for a

harmonically oscillating planar flow (the possibility must be kept in mind

that this may be because of the harmonically oscillating nature of the flow).

It is not expected that it will hold better for more complex flows. However,

the reduced spanwise coherence of the vortices may give rise to a time-

dependent force which may resemble to that predicted by the MOJS equation

with two time-averaged coefficients.

The improvement of the MOJS equation is clearly desirable with the

addition of one or more terms. Even then the revised form of the equation

may be suitable only for the conditions on which the revision is based. It

appears that the comparison of the numerous drag and inertia coefficients

obtained from the ocean tests, particularly in the range 8 < K < 20, is not

a realistic and fluid-mechanically satisfying exercise. Clearly, both the

form of the MOJS equation and the uncertainties that go into the characteri-

zation of the ocean environment are jointly responsible for the differences

between the measured and calculated forces.

5.4 Sinusoidally Oscillating Planar Flow

The set of data finally chosen for a detailed study of the MOJS equation

was that obtained with a sinusoidally oscillating planar flow. In 1976

Sarpkaya (1976a, 1976b) reported the results of a comprehensive series of

experiments with a sinusoidally oscillating flow about smooth and rough

circular cylinders and demonstrated clearly the dependence of Cd, Cm , and CL

on the Reynolds number, Keulegan-Carpenter number, and the relative roughness.

During the past six years, these data have stimulated a great deal of research

activity and gave rise to a number of questions: Are these data applicable

to the design of offshore structures, what is the effect of the orbital motion
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of the particles, do the data apply to horizontal cylinders, why are the drag

coefficients for rough cylinders so large, are there blockage effects, do the

in-line and transverse forces vary significantly from cycle to cycle, does the

MOJS equation hold true for all values of K and Re, why is the added mass

coefficient sometimes negative, etc.? These questions were in general valid

and required a great deal of additional research for their clarification and

resolution. *
In view of the foregoing Sarpkaya (1981) repeated his 1976 experiments

in a larger V-shaped oscillating flow tunnel. The length of the U-shaped

* tunnel (Sarpkaya 1976) has been increased from 30 ft to 35 ft and its height

from 16 ft to 22 ft. The cross section of the 35 ft long test section has

been increased from 3 ft by 3 ft to 3 ft by 4.7 ft. Furthermore, the oscil-

lation mechanism has been completely modified so that mono-harmonic oscil-

lations can be generated and maintained indefinitely at the desired amplitude. I
The velocity in the tunnel has been determined through the use of a

capacitance wire, hotfilm anemometer, perforated ball, magnetic flow meter,

an accelerometer (which measured the instantaneous acceleration of flow in

the test section), and by visual measurement of the water level at its highest

and lowest points in the legs of the tunnel. It is safe to state that the

velocity could not have been measured more accurately. The only other means

by which the velocity could have been measured was the use of a laser device.

In view of the fact that the other means of measurement yielded the ambient

velocity within 2 percent of each other it was decided to forsake the laser

system.

The signal from the force transducers was simultaneously recorded in

analog form and also fed to an HP scanner-voltmeter system which digitized

the analog signal at time intervals corresponding to 0.5 degrees. The data
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were stored in floppy discs and fed to an HP-9845B computer. The data were

then analyzed cycle-by-cycle, averaging two consecutive cycles, averaging

three consecutive cycles, etc., up to 50 cycles. It was firmly established

that the cycle-by-cycle analysis yielded drag coefficients whose maximum

and minimum were within 5 percent of the 50-cycle averaged values for all

K and Re values. These data have been reported by Sarpkaya (1981), Bakmis

(1981) and Raines (1981) and formed the basis of the present analysis together

with the data reported earlier by Sarpkaya (1976a, 1976b).

It should be noted in passing that Sarpkaya (1981) has shown that:

(a) the inroads towards the understanding of wave-induced forces and the

establishment of a fluid-mechanically sound wave-force methodology require

extremely careful experiments over a broad range of K, Re, and k/D values;

(b) the drag and inertia coefficients vary dramatically with time, particularly

in the drag-inertia dominated regime; (c) the averaged negative added mass is a

consequence of the averaging process and does not actually contradict reality;

(d) roughness can and does significantly increase the drag coefficient in

harmonic flow over circular cylinders; and that (e) the original MOJS equation

yields relatively large residues in the drag-inertia dominated regime (as

reflected by the mismatch between the measured and calculated forces, see

Figs. 1-10). In this regime, where the complex problems associated with the

motion of relatively few vortices are much pronounced, the MOJS equation tries

to reproduce the time-dependent force using constant, averaged, force-transfer

coefficients which do not account for the history of the motion or the rapid

changes in the flow which produce components at higher frequencies, mainly at

odd harmonics of the basic. Thus, it must be either modified or a new unified

force equation be developed.
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6.0 METHODS OF ANALYSIS

6.1 Introduction

Six methods were considered for the representation or evaluation of the

time-dependent force in terms of appropriate parameters. These consisted of:

(1) evaluation of the instantaneous values of Cd and Cm; (2) evaluation of

Cd and Cm in terms of the relative displacement s/D and the Reynolds number;

(3) use of the discrete vortex model; (4) evaluation of the instantaneous

force; (5) evaluation of the effect of the instantaneous lift force on the

in-line force; and (6) the Fourier analysis of the residues. These methods

will now be described in some detail.

6.2 Methods 1 and 2: Instantaneous and Relative Displacement Analysis of Cd and Cm

Equation (15), rewritten here as,

2F JUJU_D dsU H(s/D) (44)
pDU2 U '2 7 dtm (H4
Pm m m

suggests that Cd and Cm in the MOJS equation may be evaluated as time-dependent

coefficients as functions of s/D where s is the displacement of the fluid i.e.,

Cd = G(s/D) (45a)

Cm = H(s/D) (45b)

It is also thought that G and H will depend on the Reynolds number, relative

roughness, etc. This can be done in various ways each of which offer extremely

voluminous and at best difficult-to-use information. Furthermore, this method

already assumes the validity of the form of the MOJS equation and tries to fit

the measured force to it by properly choosing the appropriate values of Cd and

Cm at each instant. Strictly speaking, the use of the MOJS equation to determine

Cd(e) and Cm(0) is not quite correct for non-periodic flows because of the
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presence and variation with time of an additional history term. In sinusoidal

flows, as in the case under consideration, the effect of the history term can

be incorporarted into Cd and Cm without any loss of generality. Sarpkaya (1981)

did in fact evaluate Cd(8), Cm(8), and CL(e) for a number of representative

tests and showed that the said coefficients exhibit dramatic variations with 8.

Ideally, such calculations can be carried out for the available data and Cd(e),

Cm(e), and CL(6) may be provided either in terms of the instantaneous values of

K and Re or in terms of K = UmT/D and Re = UmD/v. Evidently, this information

is difficult to use and provides no additional information about the form of

the MOJS equation. In order to circumvent these difficulties, it was assumed

that Cd and Cm may be decomposed into two parts. One part representing their

Fourier averages and the other part representing the dependence on s/D of the

deviation of the instantaneous values of Cd and Cm from their Fourier-averaged

values, i.e.,

Cd = Cdf + Cd(s/D) (46a)

Cm =Cf + C(s/D) (46b)

For a sinusoidally oscillating flow represented by U = -Umcose, the

displacement s is given by s = -Asine. Noting that at 8 = 0, U = -Um and that

a fluid particle moved a distance of s = A from the instant of U = 0, the

displacement was written as s = A(l - sine ). Then the MOJS equation was

written as

2F/(pDU ) 2 (7 2/K)[Cf+Cms(S/D)n]sine - [Cdf+Cds(s/D)n]cosolcose (47)

where Cdf and Cmf represent the usual Fourier averages as given by Eqs. (13)

and (14); Cds and Cms, two new coefficients representing the variations in

Cd and Cm; s/D = (K/27)(l-sine); and n, an unknown power of the relative
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displacement. It was hoped that n will be a constant, and the coefficients

Cds and Cms will depend only on Re = U mD/V and K = UmT/D, and k/D. Thus,

knowing Cmf, Cdf, Cms, and Cds in terms of K, Re, and k/D, one will be able

to calculate the variation of F with time with no additional coefficients.

It was further hoped that the additional terms containing Cds and Cms will

account for the dramatic effects brought about by the shedding of the vortices,

particularly in the drag-inertia dominated regime.

Numerous tests have been evaluated using n = 1, n = 2, and n = 3 and the

appropriate values of Cds and Cms were determined. The results have shown that

Cds and Cms did not in any systematic manner correlate with Re, K, and k/D for

any value of n, and the residue did not significantly change relative to that

resulting from the original MOJS equation. This was particularly true for the

residues near e = r/2 and 37r/2, since at these angles or times e = 0, and

Eq. (47) is identical to the original MOJS equation Subsequently, it was

throught that there should be a phase difference between the instantaneous

force and the instantaneous displacement, similar to that between the maximum

force and maximum velocity, Then sine in s/D was replaced by sin(e+p). The

new form of the equation required the evaluation of Cds, Cms, and *, as a

function of K, Re, and k/D for a given value of n. Calculations, too numerous

to mention here, have shown that the scatter in the variations of Cds, Cms, and

@ cannot be accounted for through this method, This unsuccessful approach was

finally discontinued,

6.3 Method No. 3: Discrete Vortex Analysis

The use of the discrete vortex model was seriously considered since this

method proved to be quite successful for steady flow about stationary and

transversely oscillating circular cylinders (Sarpkaya 1963, 1979, Sarpkaya and
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Shoaff 1979, Clements and Maull 1975). However, the use of the said method

for sinusoidally oscillating flow about a circular cylinder met with numerous

difficulties: (a) the position of the separation points; (b) the relationship

between the time-dependent boundary layer, separation points, and the near

wake; (c) the rate of decay of circulation; (d) Reynolds number effect; and

finally, (e) computer time.

No fluid-mechanically satisfactory method has been discovered to relate

the position of the mobile separation points to the evolution of the wake and

the boundary layers. The assumption of fixed separation points and a constant

rate of shedding of vorticity proved to be a useless exercise at best. The

use of discrete vortices with constant strength always yielded an inertia

coefficient of Cm = 2 (for a circular cylinder). This was clearly unsatis-

factory. It has been shown by Sarpkaya (1963) that the in-line and transverse

forces exerted on a circular cylinder immersed in a time-dependent ambient

flow with m number of growing and moving vortices arbitrarily situated outside

the cylinder are given by

m m ark
F. - pr (VkV) pq k + + 21pc 2 aU (48a)ilkrvkvk) ki -at ak=l k-1

and

m m ark (
L Prk(uk'uki) -kPPki at

in which rk represents the strength of the k-th vortex; vk and Vki, the y-

component of the velocities of the k-th vortex and its image; uk and uki, the

x-component of the k-th vortex and its image; Pki and qki' the x- and y-

coordinates of the image of the k-th vortex; t, time; ark/at, the rate of change

of circulation of the k-th vortex; c, the radius of cylinder (D = 2c); and aU/at,

49



the local acceleration of the ambient flow.

2 2Normalizing Eqs. (48a) and (48b) with 0.5pDU = pcUm, where Um is now am
characteristic velocity of the ambient flow, one has

2 m r k vk  Vki) mk 3(F klU mC)  3(U/U M)

Fil /(pcU ) = 1 ( _ qk + 27 (49a)
k=lUmCUm m k=l c (Umt/c) (Umt/c)

and 3r
F /(pcU ) = k(u _ ki) _- 2i k/mc (49b)L m U cU Ur kX c autc

Equations (48a) through (49b) show that the evaluation of the in-line and

transverse forces require the instantaneous strengzth, position, and velocity

of the vortices, even if one were to ignore the rate of change of circulation

with time. Ordinarily, one can determine the above variables by starting

the flow impulsively from rest and performing calculations for a large number

of steps until one reaches a quasi-steady state. For a sinusoidally oscillating

flow about a circular cylinder this is not yet possible due to the deficiencies

of the model associated with the boundary layers, separation points, and their

interaction with the wake. More importantly, however, one has no experimental

information regarding the rate of change of circulation of the individual

vortices (see Sarpkaya and Shoaff 1979). It is clear from Eq. (48a) or Eq. (49a)

that the assumption of ark/at = 0 leads, by virtue of the last terms in the

said equations, to Cm = 2 at all times. This is clearly unacceptable and shows

that rk/at is not to be ignored.

The fact that there are no means to model the rate of change of circulation

with time without making arbitrary assumptions or introducing ad-hoc circulation

decay functions, no direct means to relate the boundary layer, separation points,

and the wake in periodically reversing flows, no means to incorporate the effect

of viscosity (Reynolds number dependence), (save for the arbitrary assumption of
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a diffusing vortex core whose radius is assumed to be a function of the Reynolds

number), and no means to intelligently model the effect of roughness led to the

abandonment of the application of the discrete vortex model to the flow under

consideration.

6.4 Method No. 4: Instantaneous Force Analysis

This method is based on Eq. (24) which may be reduced to

C(e) = 2F/(pDLcU) = f[UD/, Lc/D, k/D, a, (D/U2 )aU/at (50)

if one ignores the effect of higher order derivatives of U and, of course,

the free-surface effects. For smooth, unyawed cylinders (ignoring the effect

of yaw),C(e) is seen to be a function of UD/v and (D/U2 )U/at. Clearly, C(e)

2varies from zero to infinity; UD/v, from -UmD/v to +UmD/v; and (D/U )aU/t,

from minus infinity to plus infinity for U = -Umcose.

The coefficient C(e) has been calculate6 for numerous smooth-cylinder

tests, at A8 = 1 degree intervals, together with the corresponding values of

UD/v and (D/U2 )U/3t. The purpose of the calculation was to prepare a three-

dimensional plot of the three variables involved. This proved to be a nearly

impossible task primarily because of the extreme variations of the limits of

the said parameters. In addition, such a plot offered nothing new about the

physics of the problem.

6.5 Method No. 5: Analysis of the Effect of Lift Force on In-Line Force

The fact that the variations in the in-line force may be related to the

growth, shedding, and subsequent convection of the vortices may be used to

improve the MOJS equation. In steady flow past a circular cylinder, the drag

coefficient fluctuates with a frequency twice the vortex shedding frequency

and with an amplitude which may be related to the amplitude of the lift force
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by

Cd = Cd + nCLsin(4wfvt + *) (51)

where Td is the mean drag coefficient; n, a proportionality constant; CL9 a

representative lift coefficient (maximum, rms, etc.); fv' the vortex shedding

frequency; and 0, the phase angle. It is of course recognized that fv is not

clearly definable at all Reynolds numbers and that the Strouhal number defined

by St = f vD/V is about 0.2 at subcritical Reynolds numbers, and about 0.3 at

postcritical Reynolds numbers. In the critical and transcritical regimes, a

broad band of power spectral density is usually observed for a rigidly held

cylinder (see e.g., Sarpkaya and Shoaff 1981).

For sinusoidally oscillating flow, Sarpkaya (1976) suggested that a third

term may be added to the MOJS equation as

2F/(pDU) O 2 /K)C sine - Cd(COSeicose - TCLCOS(30 - *) (52)

Sarpkaya (1976) has performed preliminary calculations with Eq. (52) to

demonstrate that the eddy-induced in-line force oscillations can account

for most of the error in the predictions of the MOJS equation in the range of

K values from about 10 to 20. The preliminary studies have been pursued

further with the impetus received from the exploratory studies of Verley (1981)

and Bearman et al. (1981) regarding the variation of the lift force, particularly

at large K values.

The lift force was written as

FL = 0.5pDU2CLsin2ifvft (53)

and it was assumed that the instantaneous Strouhal number St = fvD/U is nearly

constant. Then fv = SU/D, (St is replaced by S for sake of simplicity), and

FL = 0.5pDCLU2 (sin2 O)sin(2wSUt/D) (54)
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assuming now U =UmsinO. Since Ut/D represents the relative displacement of

the fluid from the start (say t = 0), one may write

t
Ut/D = f (Um/D) sin(2lrt/T)dt = (UmT/21rD)(l - cose) (55)

0

or

CL(0) 2FL/(pDU2) = CL(sin 2B)sin[KS(l - cose)] (56)

where CL is a representative lift coefficient for a given K, Re, and k/D

(expressed either in terms of its maximum or rms value); and CL(O), the

amplitude and frequency-modulated instantaneous lift coefficient. The angle

o starts from zero at each half cycle, i.e., 0 < B < n.

Equation (56) is expected to produce lift-force variations which resemble

those obtained experimentally only at relatively high K values where the quasi-

steady-state assumption may be valid for the purpose under consideration.

Comparisons have shown that even at high K values Eq. (56) produces CL(B)

values which resemble only occasionally those obtained experimentally, primarily

because of the random nature of the shedding of vortices and the strong effect

of this randomness on the transverse force. Figures 11 through 20 show the

results of sample calculations, carried out assuming CL = 1 and S = 0.2. These

calculations need to be pursued further in order to explore the characteristics

of the lift force, particularly at lower K values.

The recognition of the fact that the effect of the shedding and subsequent

convection of vortices on the fluctuations of the in-line force is somewhat less

pronounced, compared with the similar effect on the transverse force, it was

thought advisable to account for the residue in the in-line force through the

use of an expression similar to that given by Eq. (52), i.e.,

2F/(pDU 2) (r2/K)Cmsine - Cd cosolcosel+

+ rCLsin(e-¢)Isin(e-)Isin[NKS{l-cos(e-*)}] (57)
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where * is a phase angle and N, the frequency-modulation factor. Numerous

calculations have been performed to determine n, , and N, particularly in

the range of K values from 10 to 20. The results were quite encouraging

(see Figs. 21 and 22) and it appeared that it would be possible to relate n,

*, and N to K = UmT/D and Re = UmD/v in minimizing the residue between the

measured and calculated forces. The calculations have not been pursued

further partly because the coefficients CL (the rms value of the lift coeffi-

cient in terms of K, Re, and k/D) were not available for the desired range of

K and Re values and partly because of time constraints. This approach should

be pursued further through the use of the simultaneous records of the in-line

and transverse forces. In doing so, it might be desirable to carry out a

spectral analysis of the lift force and to write Eq. (57) as

2 22F/(pDU ) = (7r /K) C sine - C dcoselcose +

iiC sin(e-o)jsin(@-t)Isin[NiKS{l-cos(6-0))] (58)

in order to include the contribution of the fundamental frequency and at least

its first harmonic. This will help to clarify not only the role played by the

lift force on the in-line force but also the role played by the shedding and

convection of vortices on the evolution of the lift force itself. However,

the question of the randomness of vortex shedding remains open. One must

introduce either a coherence-state factor (perfect, partial, ocean conditions,

etc.) or a probability-function multiplier into the third term of Eq. (58).

As noted earlier, one of the mitigating effects of the ocean environment is

to reduce the coherence length of the vortices and hence the effect of the

shedding and convection of the vortices on the fluctuations of the in-line force.
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6.6 Method No. 6 - Analysis of the Residues

As noted earlier, Keulegan and Carpenter expressed the time-dependent

force as (see Eq. (11)],

2F/(pDU ) = (12/K)Cmsine - Cdlcoselcose + AR (59)

where AR represents the residue given by

AR = C3cos(3e - 03) + C5cos(50 - *5) + ..... (60)

Keulegan and Carpenter considered only the first term in Eq. (60) in the form

AR = A3sin3e + B3cos3e (61)

and evaluated A3 and B3, and showed that they are functions of K, within the

range of their K and Re values (3 < K < 120 and 5700 < Re < 29300). Keulegan

and Carpenter noted that "for period parameters, K, in the neighborhood of the

critical, UmT/D = 15, the representation of forces is more exact by using

Eq. (59)" together with Eq. (61). They did not pursue the matter further.

The obvious disadvantage of this expanded form of the MOJS equation

[Eqs. (59) and (61)] is that it now requires the evaluation of four coefficients,

namely, Cd, Cm, and either C3 and 03 or A3 and B3 . Even then the calculated

and measured forces do not always correspond partly due to the existence of

other harmonics and partly due to the pronounced effect of the randomness of

the shedding, spanwise coherence, and the motion of a few vortices, vice large

number of vortices. This, in turn, requires the addition of two more terms

involving C5 and *5" Clearly, the determination of the dependence of six

coefficients on the parameters characterizing the phenomenon is a nearly

impossible task and is not very practicable for the design of offshore struc-

tures, even if one were to confine his attention to smooth circular cylinders

alone! It is partly because of this reason and partly because of the
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uncertainties in the input parameters (velocities and accelerations) that the

two-term MOJS equation has been used over the past thirty years in spite of

its known limitations (at least under laboratory conditions). The inaccuracies

resulting from the use of the said equation have been compensated partly by

the mitigating effects of the ocean environment (reduced spanwise coherence,

onidirectionality of the waves and currents distribute the residue over a

broad band of frequencies, making the predictions of the MOJS equation come

closer to those measured) and partly by the designer through the use of hidden

and intentional safety factors.

In view of the foregoing it was decided to explore the possibility of

revising the MOJS equation with the following constraints: (a) the revision

should be fluid-mechanically meaningful; (b) the revised form of the equation

should contain no more than the two coefficients already in use, namely, C d

and CmIn; (c) the coefficients of the additional terms should be related to C d

and C m(since they too are functions of K, Re, and k/D) through a careful

spectral and Fourier analysis of the residues; and (d) the revised form of

the equation should reduce to the MOJS equation in the drag and inertia

dominated regimes.

With the objectives cited above, the residues of the in-line forces acting

on 11 smooth and 11 rough circular cylinders, ranging from 2- to 7-inches in

diameter have been subjected to extensive spectral analysis through the use of

standard techniques. The results have shown that all harmonics from 2 through

15 (the upper limit of the frequency considered) appear in the spectral analysis

of the residue, with varying degrees of importance (see Tables 1 through 10

where only the first 10 residues are listed). However, the third and fifth

harmonics are far more important than the remaining ones, at least for the

sinusoidally oscillating flow under laboratory conditions (see Figs. 23 and 24
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where the values of C3 and C5 , averaged over each K, are shown for all tests

for the purpose of illustrating the region of importance of each coefficient).

It is thus apparent that the MOJS equation must be modified to minimize

the residue and that this modification should involve the third and the fifth

harmonics. It is with this realization that the MOJS equation was written as

a sum of Eqs. (59) and (60) as

2F/(pDU2) = (2 /K)C sine - C+ - 3)
m m Cd~coselcose +C 3cos( 3 )

+ C5cos(5 - 45) (62)

Then the attention has been concentrated on the determination of C3, 03' C5 '

and *5 with the constraints cited earlier. This, in turn, required an extensive

search for a functional relationship between the said coefficients and the known

parameters Cd, Cm, K, Re, and k/D.

For relatively small smooth cylinders and Reynolds numbers, Keulegan and

Carpenter have already shown that A3 and B3 are functions of K, as were their

Cd and Cm values, according to their conclusions, [Sarpkaya (1976a) has shown

much later that the Cd and Cm values of Keulegan and Carpenter depend also on

Re]. A similar analysis of the A3 and B3 values of Keulegan and Carpenter

has shown that both A3 and B3 depend not only on K but also on Re.

The data used in the present analysis also have shown that C3, 03' C5 ' and

05 depend on K, Re, and k/D. Note that K, Re, and k/D are the same independent

parameters which determine the Fourier-averaged values of Cd and Cm, as shown

clearly by Sarpkaya (1976a, 1976b). Detailed study of the said four coefficients

have shown that it is preferable to explore their dependence on K, Cd, and Cm

rather than on K, Re, and k/D. Evidently, the two approaches are mathematically

identical. Thus, one has
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C. C i(K, Cd, C) , i = 3, 5 (63a)

€i : i(K, Cd' Cm) , i = 3, 5 (63b)

By virtue of Eqs. (63a) and (63b), the residue is solely dependent on K,

Cd' and Cm* Significant effort has been devoted to determining the form

of the above relationships by numerous correlations. Here only the final

result and not the year-long efforts will be described.

It is a well-known fact that in harmonic flow the ratio of the maximum

inertia force to the maximum drag force is given by the MOJS equation as

2 Cm/KCd. Thus, the ratio of the deviation of the maximum inertial force

from its ideal value to the maximum drag force is proportional to

A = (2 - Cm) /(KCd) (64)

It must be noted in passing that Cm exceeds its ideal potential-flow value

for small values of K and $, as noted earlier in connection with the discussion

of Stokes solution. However, in the region of K values from about 8 to 20,

this increase is not of special importance and the ideal value of Cm for a

circular cylinder may be taken equal to 2. For other shapes of bodies A may be

written as

A = (C* - C )/(KC (65)
M m)/Kd)

where Cm is the ideal value of the inertia coefficient for the particular body.

It is clear that A approaches zero for both the small and large values of

K and is unique for a given K, Re, and k/D. Thus, unique relationships should

exist between the coefficients Ci, Oi and A and K. Numerous attempts have

shown that CiW, and *ivA are indeed unique functions of K for all smooth and

rough cylinders (within the range of data and the experimental scatter).

Figures 25 through 28 show the variations of C/K, 03K. C5 /K, and as a
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function of K. The scatter in these figures is primarily due to the

sensitivity of the four coefficients (i.e., the sensitivity of the residue)

to spanwise coherence and the somewhat random shedding of the vortices in

the intermediate range of the Keulegan-Carpenter numbers. In spite of the

scatter of the data, the relationships are quite satisfactory.

Figures 25 through 28 show that C3vK, 03r, C5IA, and 5Jreach their

extreme values at about K = 12.5. It must be noted that the relationships

between these parameters and K should have a probabilistic character because

of the complex motion of the vortices and the non-stationary nature of the

motion. The following simple distribution has been chosen to relate C3

.5vrKand K

C (K - 12.5)2

Mp Amp BImp (66)

in which M denotes either C or 0; P, the index 3 or 5; and Amp, Bmp, and Cmp,

three constants for the relationships between M pA and K. A parametric
p

analysis of these coefficients for the best fit of the predictions of Eq. (66)

to the experimental data has shown that

Ac3 = 0.01 1c3 = 0.10  Cc3 = -0.08

A 3  = 0.05 B13 = 0.35 C3 = -0.04* *3 *~(67)
Ac5 = 0.0025 1c5 = 0.053 Cc5 = -0.06

A05 = 0.25 8 5 = 0.60 C05 = -0.02

These are considered as universal constants and are not dependent on K, Re,

and k/D for a circular cylinder.

The four-term MOJS equation may now be written as
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2 2

2F/(pDUM) = (I2/K)C msinO - Cdicoselcose +

A-I1/2 {Ac3+B c3 exp[Cc03(K_12.5) 2]}Cos i3eA'/12 {A 3 +B03 exp

[C 3(K-12.5)
2]}4 + A-11 2 A 5 +Bc5expCc 5(K-12.5)

2]D

cosJ56- A-I/ 2{A 5 + Bsexp[C 5(K-12.5)
2]}t (68)

It is clear from Eq. (68) as well as from Figs. 25 through 28 that the

residue, as represented by the last two terms in Eq. (68), diminishes

rapidly for K smaller than about 7 and larger than about 20. In other words,

Eq. (68) reduces to the two-term MOJS equation for all practical purposes

outside the drag-inertia dominated regime. The additional terms cause an

amplitude and frequency modulation in the in-line force, in a manner similar

to that provided by Eq. (58), and reflect the role played by the growth and

motion of vortices on the in-line force.

6.6.1 The Predictions of the New MOJS Equation

Figures 29a through 71c show the results obtained with the new MOJS

equation. Note that the original MOJS equation [Eq. (12)] is called "the

two-term MOJS equation." The one obtained with the addition of only C3cos(38-0 3)

is called "the three-term MOJS equation", i.e.,

2F/(pDU ) (Tr2 /K)Cmsin- Cdlcoslcoso + A-11 2{O 1 +O.1O e- 0 .08(K- 1 2.5) 2

cos{30- A/ 2 {0.05+ 0.35 e0.04(K12"5)2 4 (69)

Finally, the one obtained with the addition of [C3cos(36- 3)+C5cos(50- 5 )]
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is called "the four-term MOJS equation" [Eq. (68)] or more specifically,

2F/(pDU 2) (2 /K)C sinO - C+m m CdIcosOIcose

A-1 12 [0.01 + 0.10 e-0.08(K-12.5) 2]cos{3O Al/2 O5+0.35 e-0.04(Kl12.5) 2 D

+ A -112[0.0025 +0.053 e-O'O 6 (K'12.5)2 ]cos{5e - 1/2 [0.25+ 0.60 e-0 .02(K-1 2.5)2]D

(70)

The first figure in each set, such as Fig. 29a, shows a comparison of

the normalized measured force with that predicted by the two-term MOJS equation.

In addition, the residue, i.e., the difference between the normalized measured

and calculated forces, is shown in each figure. The second figure in each set,

such as Fig. 29b, shows a comparison of the normalized measured force with that

predicted by the three-term MOJS equation together with the new residue (the

difference between the normalized measured force and the normalized calculated

force through the use of the three-term MOJS equation). Finally, the third

figure in each set, such as Fig. 29c, shows a comparison of the normalized

measured force with that predicted by the four-term MOJS equation together with

the corresponding residue. It should be noted that Figs. 29 through 71 are

arranged in the order of increasing Keulegan-Carpenter numbers. A detailed

study of the particulars of each figure shows that the results cover a wide

range of Keulegan-Carpenter numbers, Reynolds numbers, and relative roughnesses.

It is clear from Figs. 29 through 71 that the three-term MOJS equation

and in particular the four-term MOJS equation reduce the residue significantly.

In some cases, the difference between the measured and calculated forces is

smaller than the experimental error.
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The reduction in residue may be quantified through the use of various

"goodness-of-fit" parameters (Sarpkaya 1976a). In the present study, the

following definition has been adopted and evaluated for each run:

T

f j(Fm - Fc ) dtm -

1:00 0 (71)
T

~fF' dt

0

in which Fm represents the measured force and Fc, the calculated force.

The results have shown that in the drag-inertia dominated regime the two-

term MOJS equation [Eq. (12)] yields a values ranging from about 10 to 25.

The three-term MOJS equation [Eq. (69)] reduces a by about 50 percent

(5 < a < 10). Finally, the four-term MOJS equation [Eq. (68) or Eq. (70)]

reduces a by about 80 percent (1 < a < 5) relative to the two-term MOJS

equation. In fact, the results have shown that the predictions of Eq. (70)

are as good as those based on the actual values of the Fourier components

of the residue. In other words, Eq. (70) represents quite accurately the

behavior of the residue and in many cases as accurately as its Fourier com-

ponents. Clearly, no functional relationship, representing C3cos(3e-¢3 ) and

C5cos(50-45 ), can provide a better correlation between the measured and

calculated forces than the one where the actual values of C3, 03 9 C5, and 05

are used in the third and fourth terms of Eq. (62), as determined from the

Fourier analysis of the residue.

The form of the residue suggests that all harmonics of the fundamental

play some role even though the third and fifth harmonics are predominant.

This fact is evidenced by the results shown in Tables 1 through 10.

It is clear from the foregoing that a perfect match between the measured
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and calculated force can be obtained only if one takes into account the

contributions of all harmonics. From a practical point of view this is

rather difficult and certainly not justified in view of the uncertainties

associated with the kinematics of the flow field, spanwise coherence of

the vortices, nonstationary nature of the occurrences, nonuniform surface

roughness, and the possible dynamic response of the body to the fluid

forces imposed on it. It is primarily because of these reasons that the

modified MOJS equation has been restricted to four terms.

The new version of the MOJS equation contains only the two coefficients

already in use, namely, Cd and Cm. Furthermore, the Fourier averages of

Cd and Cm are still given by Eqs. (13) and (14). Thus, Eq. (68) satisfies

practically all the constraints imposed on its evaluation.

6.6.2 A Critical Assessment of the New MOJS Equation [Eq. (68)]

Equation (68) is based on the results obtained with a sinusoidally

oscillating flow about smooth and rough circular cylinders. The in-line

forces used in the analysis of the residues corresponded to the flow

conditions where the spanwise coherence of the vortices was as perfect as

possible, as reflected by the magnitude and periodicity of the corresponding

transverse forces. It is a well know fact that the vortices shed from a

cylinder is neither straight nor parallel to the axis of the cylinder even

in steady flow. Variation of the spanwise characteristics of vortices has

a profound effect on the instantaneous loading of the cylinder. Relatively

poor correlation of the flow in the spanwise direction gives rise to a lift

force which is lower than that resulting from a fully-correlated vortex

shedding. It has been shown by Wilkinson (1981) that the lift acting on a

given length of cylinder is a function both of the aspect ratio of the
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body configuration and the aspect ratio of the portion of cylinder on

which the loads are being considered. In general, the three-dimensional

lift coefficient (based on a finite length of cylinder) is smaller than

the two-dimensional lift coefficient (based on a small section of the

cylinder). Thus, the determination of a lift coefficient from the meas-

urement of forces acting on a finite length of a cylinder has only limited

value unless the spanwise coherence of the flow field is known in terms of

the governing parameters and the end conditions. It is because of this

reason that the in-line forces used in the development of Eq. (68)

corresponded to the flow conditions where the spanwise coherence of vortices

was as perfect as possible, as reflected by the magnitude and periodicity

of the corresponding transverse forces at both ends of the test cylinders.

In sinusoidally oscillating planar flow the coherence of the vortices

and the interaction between vortices from the two sides of the reciprocating

wake are much stronger than those in wave flows in the ocean environment. r
Even then the occasional lack of coherence of vortex shedding in sinusoidally

oscillating planar flows gives rise to intermittent transverse forces

(Maull and Milliner 1978, Sarpkaya and Isaacson 1981). This is particularly

true for the drag-inertia dominated regime. In any case, however, the

intermittency of the transverse force in wave flows is much higher than

that in sinusoidally-oscillating planar flows.

The in-line force is certainly affected by the intermittent nature

of the transverse force and by the variations in the coherence length.

However, the dependence of the in-line force on the characteristics of

vortex shedding (intermittency, spanwise coherence, interaction between

vortices) is considerably less than that of the transverse force.
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The reduced spanwise coherence decreases the peak value of the in-line

force and the amplitude of secondary oscillations imposed on it by the

shedding, interaction, and convection of vortices. In other words, the

reduction of the spanwise correlation results in the distribution of the

energy of the secondary oscillations over a broader band of frequencies.

This results in smaller drag and inertia coefficients. The drag coeffi-

cient is more sensitive than the inertia coefficient since the force in

Eq. (13) is multiplied by cose and since the largest effects of vortex

shedding and spanwise coherence occur near the times of maximum velocity,

i.e., when cosO is near its maximum.

It is evident from the foregoing that additional research is needed

to quantify the effect of spanwise coherence on the in-line and transverse

forces and, in turn, on the drag, inertia, and lift coefficients. It is

also evident that the data obtained in the ocean environment must neces-

sarily reflect not only the consequences of currents, nonuniform roughness,

nonuniform waves, body inclination, dynamic response, proximity, etc., but

also the effect of the variation of the spanwise coherence. The scatter in

the ocean-data-based drag, inertia, and lift coefficients may be brought to

order by measuring the spanwise pressure distribution over the length of the

force sleeve and reporting the said coefficients together with the correspond-

ing coherence length, expressed suitably in terms of the fluctuating

pressures.

The effect of the reduced spanwise coherence on the predictions of

Eq. (68) has been examined in detail by considering in-line forces for which

the transverse forces at the two ends of the test cylinder did not correlate

(either in phase and/or in magnitude). The results have shown that the

65



predictions of the original MOJS equation are better than expected and

that Eq. (68) holds true provided that M in Eq. (66) is replaced by
P

M = YM where IF is a factor expressing the influence of the reduced
p p
spanwise correlation on the in-line force (0 < Y < 1), i.e.,

Mp = '[A + Bmpexp{C (K - 12.5)2}] (69)p MP m mp

where the meaning and the numerical values of Amps Bmp, and Cmp remain

unchanged and are given by Eq. (67). Clearly, the foregoing amounts to

the replacement of C3, @3. C5, and ¢5 by C3 = 'C3, ¢3 
= '€3, C5 =C

and 05 = 4 V5"

Figures 72a through 73c show in-line force samples with reduced

spanwise coherence and their comparison with the predictions of the two-

term MOJS equation, three-term MOJS equation, and the four-term MOJS

equation, JI' = 0.3 was used in Eqs. (68) and (69)]. Evidently, the reduction

of the spanwise coherence removes large scale oscillations from the in-line

force and thereby creates conditions to which the original MOJS equation is

more applicable. It is also evident that there is very little difference

between the predictions of the three-term MOJS equation and the four-term

MOJS equation. Thus, as far as the ocean-based data are concerned, the use

of the three-term MOJS equation with the appropriate spanwise-correlation

factor Y is more than adequate. At present, there is no ocean test data

with spanwise and chordwise pressure distributions to relate Y to the local

flow conditions. Suffice it to note that the reduction of the correlation

length, among other factors, smoothens the exacerbating effects of the vortex

induced forces, reduces the magnitude of the force-transfer coefficients, and

makes the predictions of the origiral MOJS equation more credible.
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It is evident from the foreqoina that the better the spanwise coherencE

of vortices, as in the case of planar oscillatory flows, the poorer the

predictions of the oriqinal MOJS equation, particularly in the draq-inertia

dominated reqime. This is because of the fact that the better the spanwise

coherence, the larqer the transverse force and hence the larqer the amplitude

of the lift-induced oscillations in the in-line force. Also, the more

reqular the transverse force, the narrower the band of frequencies at which

the enerqy of secondary oscillations and hence the residue are concentrated.

However, even in planar oscillatory flows the sheddinq and subsequent inter-

action of vortices are not perfectly deterministic. There are variations

not only from cycle to cycle but also in each half cycle, Consequently, the

in-line force in a qiven cycle is not representable by an odd-harmonic

function, i.e,, by a function where F(O) = -F(O+iT), (see e.g., Fiq. 34a

where the in-line force does not return to its initial value at the end of

the cycle). On the other hand, the mathematical models [Eqs. (12), (69),

and (70)] are based on odd-harmonic functions (see e.g., the force traces

predicted by the three-term and four-term MOJS equation in Figs. 34b and 34c,

respectively). Thus, the residue, representing the difference between the

measured force (a non-odd-harmonic function) and the calculated force (an

odd-harmonic function), is a non-odd-harmonic function, In other words, the

residue does not ordinarily and necessarily return to its initial value at

the end of the cycle (see eog., Fig. 38c), These observations point out

once again the exacerbating effects of the vortex motion in time-dependent

flows and the fact that as far as the vortices are concerned each encounter

is a new experience, however slight the differences may be.
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In concluding the assessment of the new MOJS equation, it must be

pointed out that Eq. (68) or Eq. (70) does not apply to yawed cylinders,

to wave-current combinations, to flexible cylinders, and to the flow con-

ditions involving free-surface and/or body-proximity effects. At present,

there is not enough data to critically assess the speculative generalizations

of the original MOJS equation and the improvements which must be made on

them.
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7.0 CONCLUSIONS

1. The origin of the MOJS equation and its limitations have been

discussed in detail and it has been concluded that the choice of the par-

ticular form of the force expression seems to have been governed by the

following criteria: (a) tangential velocities and accelerations cannot

influence the flow appreciably; (b) the wave theory yields normal veloc-

ities and accelerations each of which must be separately and additively

responsible for part of the force; (c) heuristic reasoning of the applica-

bility of the force expression when applied to conditions of steady flow

alone or accelerating flow alone; (d) analytical simplicity of the force

expression (linear-quadratic sum); and (e) experimental justification of

the then available results.

2. The MOJS equation is an approximate solution to a complex problem.

Its justification is strictly pragmatic and rests with experimental confir-

mation. It applies only to the prediction of in-line forces for D/L smaller

than about 0.2 (no diffraction effects); it does not apply uniformly well to

all ranges of Reynolds number and Keulegan-Carpenter number; with average Cd

and Cm , the unsteadiness of the force resides only in the variation of the

velocity and acceleration with time; three-dimensional effects are ignored;

the effect of the axial pressure gradient is disregarded; the transverse

force is not accounted for; it cannot deal with the effects of orbital motion,

yaw, body- and/or free-surface proximity effects, and the omnidirectionality

of the waves and currents; and in certain ranges of flow it gives rise to

relatively large residues. The magnitude of the residue (i.e., the difference

between the measured and calculated force) in the drag-inertia dominated

regime increases with increasing spanwise coherence of vortices.
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3. A critical study of the nature and decomposition of the time-

dependent in-line force has shown that the MOJS equation is not well-

founded even for a sinusoidally-oscillating planar flow. The effect of

the history of the motion must be represented by one or more additional

terms. For a strictly sinusoidal motion the effect of the history term

may be incorporated into the drag and inertia coefficients with no loss of

generality.

4. The speculative generalizations of the original MOJS equation has

been reviewed in detail and it has been concluded that (a) the MOJS equation

is not equally valid for all shapes of bodies and types of flows; (b) its

use to predict the forces acting on yawed cylinders through the use of the

"independence principle" has not been subjected to experimental verification;

(c) the generalization of the MOJS equation to predict the in-line forces due

to combined waves and currents is unproven and remains as a pure speculation;

and finally, (d) the generalization of the MOJS equation to the prediction

of the dynamic response of structures is not supported by experimental data.

5. The background of the existing data (from wave channels, ocean tests,

and oscillating planar flows) has been reviewed in detail and it has been

concluded that the inroads towards the understanding of the limitations of

the MOJS equation require extremely careful experiments over a broad range

of Keulegan-Carpenter numbers, Reynolds numbers, and relative roughnesses.

Neither the Ocean Test Structure data of EPR nor the Christchurch Bay Tower

data of NMI are well-defined enough to assess the reasons for the deviation

of the measured forces from those predicted by the MOJS equation in the drag-

inertia dominated regime. This is primarily due to the lack of information

regarding spanwise coherence. Furthermore, the existence of currents and
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the omnidirectionality of the waves and currents do not allow one to assess

critically the original version of the MOJS equation. The evaluation of

the OTS and CBT data require the use of the speculative generalization of

the original t4OJS equation to the wave-current combination.

6. The MOJS equation should be revised with the following constraints:

(a) the revision should be fluid-mechanically meaningful; (b) the revised

form of the equation should contain no more than the two coefficients already

in use, namely, Cd and C m; (c) the coefficients of the additional terms should

be related to Cd and C m (since they too are functions of K, Re, and kID)

through a careful spectral and Fourier analysis of the residues; and (d) the

revised form of the equation should reduce to the MOJS equation in the drag

and inertia dominated regimes.

7. Six methods were considered for the representation or evaluation of

the time-dependent force in terms of appropriate parameters. These consisted

of: (i) the evaluation of the instantaneous values of the drag and inertia

coefficients, (ii) evaluation of the drag and inertia coefficients in terms

of the relative displacement of the fluid and the Reynolds number, (iii) use

of the discrete vortex model, (iv) evaluation of the instantaneous force,

(v) evaluation of the effect of the instantaneous lift force on the in-line

force, and finally, (vi) the Fourier analysis of the residues. Among these

two methods were found to be most promising, namely, the evaluation of the

effect of the instantaneous lift force on the in-line force and the Fourier

analysis of the residues. It has been concluded that the available data

will not permit the further exploration of the former method at this time.

8. The residues have been analyzed in great detail. The results have

shown that all harmonics appear in the spectral analysis of the residue, with

varying degrees of importance. However, the third and fifth harmonics are
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far more important than the remaining ones, at least for the sinusoidally

oscillating flow about smooth and rough circular cylinders. The use of

the in-line forces corresponding to the flow conditions where the spanwise

coherence was as perfect as possible (as reflected by the magnitude and

phase of the corresponding transverse forces at both ends of the test

cylinders) resulted in the correlation of the coefficients of the third and

fifth harmonics of the residue with the Keulegan-Carpenter number and the

ratio of the deviation of the maximum inertial force from its ideal value

to the maximum drag force, i.e., A = (Cm - C m)/(KCd). This resulted in a

new MOJS equation [Eq. (68) or Eq. (70)] whose validity for swooth and rough

cylinders has been shown through numerous comparisons with the measured in-

line forces and through the calculation of new residues together with the

corresponding values of the "goodness-of-fit" parameter a [Eq. (71)]. The

results have shown that the three-term MOJS equation [Eq. (69)] reduces a

by about 50 percent and the four-term IOJS equation [Eq. (70)], by about 80

percent. In fact, the predictions of Eq. (70) are as good as those based on

the actual values of the Fourier components of the residue.

9. The new MOJS equation has been critically assessed regarding its

applicability to ocean test data and it has been concluded that (a) the in-

line force is affected by the intermittent nature of the transverse force

and by the variations in the coherence length; (b) it is necessary to

introduce a spanwise correlation factor into the new MOJS equation in order

to compare its predictions with the data obtained from ocean tests; (c) the

reduction of the correlation length, among other factors, smoothens the

exacerbating effects of the vortex-induced forces, reduces the magnitude of

the force-coefficients, and makes the predictions of the original MOJS
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equation more credible; (d) the better the spanwise coherence, the larger

the residue in the drag-inertia dominated regime; (e) the sinusoidally-

oscillating planar flow accentuates the failings of the original MOJS

equation whereas the wave flow tends to minimize them; (f) the scatter in
the drag, inertia, and lift coefficients derived from ocean experiments may

be brought to order by measuring the spanwise pressure distribution over the

length of the force sleeve and correlating the force-transfer coefficients

with the corresponding coherence length, expressed suitably in terms of the

fluctuating pressures.

I
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8.0 RECOMMENDATIONS

1. Extensive research is needed to justify each and every generalization

of the original MOJS equation. Specifically, laboratory and ocean experiments

are required to determine (a) the kinematics of the wave and current inter-

actions, (b) the wave and current induced forces on smooth and rough circular

cylinders, (c) the forces acting on yawed cylinders and the merits of the

"independence principle", and (d) to examine critically the generalization of

the MOJS equation to the prediction of the dynamic response of structures.

2. The measurement of in-line and transverse forces alone is no longer

sufficient. Extensive research is needed to quantify the effect of spanwise

coherence on the in-line and transverse forces and, in turn, on the drag,

inertia, and lift coefficients. This will require the measurement of spanwise

and chordwise pressure distributions over cylinders.

3. The determination of the effect of lift-induced oscillations on the

in-line force is extremely important. The merits of Eq. (58) must be explored

through the use of the simultaneous records of the in-line and transverse

forces not only for the improvement of the MOJS equation but also for the

assessment of the role played by the spanwise coherence of vortices.

4. The contributions of all harmonics of the residue cannot be taken

into consideration. From a practical point of view this is rather difficult

and certainly not justified in view of the uncertainties associated with the

kinematics of the flow field, spanwise coherence of vortices, nonstationary

nature of the occurrences, nonuniform surface roughness, and the possible

dynamic response of the body to the fluid forces imposed on it. It is because

of these reasons that the modified MOJS equation should be restricted to three

terms [Eq. (58) or Eq. (69)].
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5. Flow kinematics under storm driven seas are random and three-dimen-

sional. Experiments must be carried out both in the laboratory and in the

ocean environment to simulate all of the important features of storm driven

6
seas at Reynolds numbers larger than 10

6. Basic research should be pursued to determine the role played by

the shedding and interaction of vortices in time-dependent flow about non-

circular bluff bodies. Such studies will enhance our understanding of the

MOJS equation and the limitations of its generalizations.
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Table 1. Fourier Coefficients for K =6.47,

Re = 34763, kID =0.00

N A(N) B(N) Maqnfljt d -Phase rDe9 2

1 .8030 -.0000 .0030 -.78
2 .016? .0224 .0280 53.31
3 .2856 -.0286 .2076 -7.92
4 .0102 .0123 .0160 50.35
5 -.0042 -.8127 .8134 -188.42
S .0081 .0039 .0039 88.1?
7 .0054 .087 .0054 7.60
8 .0029 .0022 .0036 36.26
9 -.0049 .8010 .0050 168.86

18 -.0889 .0003 .0010 161.11
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Table 2. Fourier Coefficients for K = 8.64,

Re = 14181, kiD = 0.01

N R(N) B(N) Main !tude Phase [Deg

1 .0031 -.0021 .0038 -33.80
2 .8144 -.0128 .0193 -41.48
3 .0101 -.0972 .0978 -84.07
4 -.0241 .0454 .0514 117.99
5 -.0935 -.0099 .8940 -173.96
6 .0123 .0323 .0346 69.87
7 -.0148 .0279 .0316 117.89
8 .0084 .0122 .0148 55.509 -. 048 .0177 .8183 105.14
10 .0858 .081 .0180 54.55
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Table 3. Fourier Coefficients for K =9.41,

Re = 50442, kID = 0.00

N AMN -B(N)- Main I tud Phase [Deal

1 .0101 -.0001 .8101 -.39
2 -.005? -.0045 .0072 -142.00
3 .0329 -.2635 .2655 -82.89
4 .0091 -. 0028 .085 -19.93
5 -.1098 -.1125 .1572 -134.31
6 -.0091 .0044 .8181 154.36
7 -.024? -.0241 .0344 -135.69
a -.0083 .0054 .0099 146.82
9 -.0883 -.0065 et1as -141.68
10 -.8826 -.0804 .0826 -171.60
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Table 4. Fourier Coefficients for K =10.45

Re = 55962, k/D = 0.00

-N-- -- (N)- -B(N)- Magnitude -Phase EDaig)

1 .0105 .0883 .8185 .24
2 .0959 -.0510 .187 -28.01
3 .8476 -.4226 .4253 -83.58
4 .0650 -.0132 .0663 -11.58
5 -.1281 -.1233 .1778 -136.11
6 .0119 .0083 .8119 1.50
7 -.0211 -.8185 .8281 -139.86

8 .8881 .8126 .0126 89.48
9 -.8184 -.8029 .8188 -164.43
18 -.0022 .0056 .0060 111.60
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Table 5. Fourier Coefficients for K = 11.43

Re = 61533, k/D = 0.00

N R(N) B(N) Magnttude Phase Weill

1 .0132 .0880 .0132 .16
2 .0115 -.0243 .0269 -64.62
3 .e227 -.4839 .4844 -87.32
4 .1392 -.0174 .042S -23.9?
5 -.1634 -.1477 .2202 -137.89
6 .819e -.0166 .0258 -39.06
? -.0294 -.0371 .0473 -128.42
8 .8868 -. 8051 .8895 -37.05
9 -.0124 -.0129 .0179 -133.9?
10 .0039 -.0061 .8873 -57.30
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Table 6. Fourier Coefficients for K = 12.43,

Re = 20038, k/D = 0.00

N R(N) B(N) Magnitude Phase [De9 ]

1 .0226 .8881 .0226 .18
2 .0093 .8120 .8152 52.37
3 -.8982 -.4687 .4773 -188.90
4 .8156 .8051 .O165 18.18
5 -.2741 -.8688 .2808 -167.48
6 .8109 -.8107 .8153 -44.35
7 -.0584 .8295 .0584 149.62
8 .8018 .8072 .0075 76.13
9 -.8282 .8284 .0348 144.20
18 -.8042 .8856 .8878 127.32
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Table 7. Fourier Coefficients for K = 13.59,

Re = 78806, kiD = 1/150

N A(N) B(N) Maant tuds Phase EDe23

1 .0246 -.0002 .0246 -.38
2 -.1787 .2196 .2831 129.14
3 -.10866 -.4403 .4531 -103.61
4 -.0726 .0727 .1827 134.95
5 -.2032 -.8234 .2846 -173.44
6 .0057 .0278 .0284 79.46
7 -.0349 .0675 .0?60 117.36
8 .0099 .0852 .0112 27.75
9 -.0143 .0411 .0435 109.14
10 -.042 .0063 .0076 123.98
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Table 8. Fourier Coefficients for K =15.97,

Re = 25659, k/D = 0.01

N RN) B(N)_ MagrI tudeI Phase EBeaJ

1 .0149 -.0000 .0149 -.04
2 -.0090 -.0456 .0465 -101.22
3 -.1244 -.2275 .2593 -118.67
4 --. 0202 -.0290 .0353 -124.91
5 -.1366 -.0535 .1467 -159.61
6 .0028 -.0068 .0066 -65.19
7 -- .889?B -.01?0 .0198 -115.95
a -.0005 -.0089 .0889 -93.39
9 -.0245 .0054 .0251 167.66
18 --.0020 -.0081 .8083 -184.21
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Table 9. Fourier Coefficients for K =16.34,

Re = 40579, k/D = 0.01

N A-(N)- -B(N)- Msgn Itud. Phase [Uegj

1 .014? .008 .83147 .86
2 .8589 -.83418 .8658 -39.41
3 -.8513 -.1432 .1521 -189.69
4 .8428 -.0126 .13446 -16.48
5 -.1079 -.0035 .1879 -1?9.12
6 .8262 -.8232 .83518 -41.5?
7 -. 13041 -.8162 .016? -184.23
8 -.0229 -.0278 .8368 -129.54
9 -.8239 .0815 .0248 176.42
10 -.8335 -.0185 .0351 -162.55
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Table 10. Fourier Coefficients for K = 20.62,

Re = 33031, k/D = 0.01

N A(N)- -B(N)- Jiunitude Pha.. EWg)

1 .0100 .0001 .8100 .49
2 -.8134 .8099 .0166 143.57
3 .8854 .8028 .0855 1.90
4 .0268 -.8353 .0451 -51.58
5 -.8281 .0859 .0288 168.12
6 -.8120 -.8285 .0389 -112.85
7 .8869 -.8 23 .8073 -18.82
8 -.0281 -.0089 .0281 -178.14
9 -.8075 -.8002 .8875 -178.39
18 -.8130 .0164 .0209 128.39
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