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1. Introduction

This report summarizes research done on the KLAUS project from July 1981 to July

1983 
1

In July 1979 we began work on design and implementation of the first in a series of

LAUS systems. This initial effort, conducted as a subtask of the LADDER project and

continued under later funding, was intended primarily to demonstrate the feasibility of our ideas

regarding knowledge acquisition. This work culminated in a proof-of-concept system called -

NANOKLAUS (operational in March 1980) which was based on a semantic grammar (derived

from LIFER 142]) and a small natural-deduction theorem prover. The concepts underlying

NANOKLAUS are described in the technical literature (371 and in our reports to DARPA.
In July 1980 we began work on the second KLAUS system, called MICROKLAUS, and

on the technological base needed to support i The MICROKLAUS demonstration system was

onstructed in 1981. e major components of this system differed significantly from those

of NANOKLAUS. In particular, NANOKLAUS's simple language component was replaced by

DIALOGIC [36, a sophisticated linguistic-analysis system based on the DIAGRAM grammar

11101, and a nonclausal-resolution based theorem prover was developed to provide a major

expansion of the underlying representation and deductive capabilities of the system. These

more theoretically sound components were essential to moving beyond a proof-of-concept

system to provide a base for potentially useful and truly extendible ones.
-.

<- Our initial experience with MICROKLAUS led us to redesign the parsing and translation

system to provide for a declarative semantics that is easier both to extend and to maintain, and

to augment the deduction system along a number of dimensions. These development efforts

proceeded independently, with the natural-language-processing and deduction components be-

ing only recently rejoined. We have also made significant progress on several fundamental prob-

lems of natural-language semantics and on specifying the planning and reasoning capabilitities . ' '*-
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needed for generating adequate responses. Our systems have been moved from the DEC 2060

to the Symbolics 3600 LISP machine.

e expect these new components to provide the core of a new KLAUS system with

significantly more powerful capabilities for communication in natural language. The base they

provide also leaves us in a position to attack several fundamental research problems holding

back the development of advanced KLAUS systems and other types of advanced systems that

require high-quality natural-language capabilities.

The following outlines the contents of the remaining sections of this report.

1.1. MICROKLAUS Demonstration System

N In Section 2 we present an annotated transcript of a dialogue with the MICROKLAUS

demonstration system. The dialogue illustrates the natural-language processing capability of

the system, including the capacity to deal with unknown words, in the context of an assertional-

database application dealing with ships, commanders, etc. The types of assertions that can be

made and questions that can be asked transcend those allowed for an ordinary database; some

require nontrivial reasoning, such as reasoning by contradiction.

1.2. Natural-Language Processing

Section 3 describes the English translation system called PATR-I, our initial replacement

of DIALOGIC/DIAGRAM by a more declarative translation facility. It presents a scheme

for syntax-directed translation that mirrors compositional model-theoretic semantics and was

used to specify a semantically interesting fragment of English, including such constructs as

tense, aspect, modals, and various lexically controlled verb complement structures. PATR-l

was embedded in a question-answering system that replied appropriately to questions requiring

the computation of logical entailments.

The components of KLAUS that parse an input sentence and translate it into one or

more expressions in logical form were developed further and implemented under the name

2
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PATR-ll. While radically different in design and function, PATR-11 is a direct descendant

of DIALOGIC/DIAGRAM and PATR-I. Most of the PATR-I! research and development was

done in the context of the KLAUS project, but this work has also benefited from basic

research on metagrammatical formalisms, conducted under NSF grant number IST-8103550,

that influenced several decisions and led to some of the notations employed for encoding

linguistic generalizations.

After a period of relatively independent development of the formalism and initial test

implementations, work on the current implementation was begun with the goal of integrating

PATR-II with the other components of KLAUS. As a result, PATR-I! has become an experimen-

tal, expandable, state-of-the-art parsing and translation component for the KLAUS system.

The name PATR-II was first used to designate a powerful formalism for grammar writing.

The formalism was later equipped with a defined strategy of usage, together with a notation

supporting such usage. Several experimental grammars were written in this format, one of

which was selected for the latest KLAUS demonstration system. Section 4 describes the PATR-

I! system.

Section 5 discusses a parsing technique whose behavior resembles human behavior in

the intepretation of certain problematical types of sentences. Native speakers of English show

definite and consistent preferences for certain readings of syntactically ambiguous sentences.

A user of a natural-language-processing system would naturally expect it to reflect the same

preferences. Thus, such systems must model in some way the lingui8tic performance as well as

the linguitic competence of the native speaker. We have developed a variant of the LALR( 1)

shift-reduce algorithm that models the preference behavior of native speakers for a range of

syntactic-preference phenomena reported in the psycholinguistic literature, including the recent

data on lexical preferences. The algorithm yields the preferred parse deterministically, without

building multiple parse trees and choosing among them. As a side effect, it displays appropriate

behavior in processing the much discussed garden-path sentences. The parsing algorithm has

been implemented and has confirmed the feasibility of our approach to the modeling of these

phenomena.

3
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Section 6 discusses the necessity for a natural-language-processing system to be able to

infer a user's domain goals as well as his communicative goals in order to be useful. Detailed

examples of a hypothetical advice-giving program that is an expert on the MM mail system

are presented illustrating how the system could infer the domain goals of the user and respond

helpfully rather than literally to the user's questions.

1.3. Automated Deduction

Section 7 examines the role that formal logic ought to play in representing and reasoning

with commonsense knowledge and is part of the rationale for the logic-based approach we

employ for reasoning in KLAUS. We take issue with the commonly held view that the use

of representations based on formal logic is inappropriate in most applications of artificial

intelligence. We argue to the contrary that there is an important set of issues, involving

incomplete knowledge of a problem situation, that so far have been addressed only by systems

based on formal logic and deductive inference, and that, in some sense, probably can be dealt

with only by systems based on logic and deduction. We further show that the experiments

of the late 1060s on problem-solving by theorem-proving did not show that the use of logic

and deduction in Al systems was necessarily inefficient, but rather that what was needed was

better control of the deduction process, combined with more attention to the computational

properties of axioms.

Section 8 describes the KLAUS deduction system. It consists of a theorem-proving pro-

gram presently being developed and run on the Symbolics 300 LISP machines. Earlier versions

of the program running in INTERLISP on the DEC 2060 were used in the MICROKLAUS

demonstration system and in the PATR-i assertional-database example. The current version

of the program is used with the PATR-11 natural-language-processing component on the 3600.

The most important characteristics of the program are: nonclausal resolution is used as the

inference system, eliminating some of the redundancy and unreadability of clause-based sys-

tems; a connection graph is used to represent permitted resolution operations, restricting the

search space and facilitating the use of graph searching for efficient deduction; demodulation

4
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and special tunification are used for building in equational theories; heuristic search and special

logical connect ives are used for program control.

In Section 9 we present the theory-resolution procedures for substantially increasing the

power of automated-deduction systems by using more information in the basic matching opera-

tions. Theory resolution constitutes a set of complete procedures for building nonequational

theories into a resolution theorem-proving program so that axioms of the theory need never be

resolved upon. It is related to and extends the use of demodulation and special unification to

build in equational theories. Total theory resolution uses a decision procedure that is capable

of determining inconsistency of any set of clauses using predicates in the theory. Partial theory

resolution employs a weaker decision procedure that can determine potential inconsistency

of a pair of literals. Applications include the building in of both mathematical and special

decision procedures, such as for the taxonomic information furnished by a knowledge repre-

sentation system. Some partial theory resolution operations have been incorporated in the

KLAUS deduction system.

Section 10 provides details on another approach to automated deduction. An extension

of Prolog, based on the model elimination theorem-proving procedure, would permit produc-

tion of a logically complete Prolog technology theorem prover capable of performing inference

operations at a rate approaching that of Prolog itself. We have developed a prototype im-

plementation based on code written for the deduction system described in Section 9. This

represents a more "brute force" style of deduction than that discussed in Sections 9 and 10.

Two of the components developed for the KLAUS deduction system are special unification

for associativity and/or commutativity and demodulation. These components were debugged

and improved during the successful attempt to prove a difficult theorem by using the Knuth-

Bendix method that relies heavily on special unification and demodulation. The proof of this

theorem was posed as a challenge problem by W.W. Bledsoe in his 1977 article on non-resolution

theorem proving and was solved by only one other theorem prover, using a different approach.

The use of cancellation laws to simplify derived reductions was an important discovery made

in this effort. Section 11 describes the proof of this theorem. The Knuth-Bendix method may

serve as the basis for incorporation of additional equality reasoning capability in the KLAUS

deduction system.

%a
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2. MICROKLAUS Demonstration System

This section was written by Mark Stickel and Stanley Rosenschein.

2.1. General Description of MICROKLAUS

The MICROKLAUS system has four principal components whose effects are visible to

the user:

" The DIALOGIC natural-language-processing system -5

" A capability for dealing with unknown words

" The sort hierarchy

" The theorem prover.

The DIALOGIC natural-language-processing system is used to translate user-inputted

English-language sentences into logical form. Logical form is a formal language that unam-

biguously represents the logical content of English sentences. (If the sentence is ambiguous,

there will be more than one logical form.) Logical form is "close" to natural language. For

example, it has quantifiers other than the conventional universal (ALL) and existential (SOME)

quantifiers to conveniently express the semantic intent of English: e.g., a THE quantifier ex-

pressing uniqueness and a WH quantifier used to express "what." It also has special construc-

tions for specifying sets of objects, for expressing comparatives and superlatives, and so on.

The system is intended to be instructable in new domains, and must therefore be capable

of assimilating new vocabulary. In MICROKLAUS, this is done through conversation with the

user. Previously unknown words can be introduced to MICROKLAUS simply by including them

in a sentence inputted to MICROKLAUS. Upon encountering a new word, MICROKLAUS will

attempt to determine its part of speech from the linguistic context in which it appears and will

engage the user in further dialogue to elicit additional information about the word or concept,

7
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such as what type of object is named by a new noun or what type of object can be described
• -4

by a new adjective.

The sort hierarchy is a data structure in MICROKLAUS that contains information used

by both DIALOGIC and the theorem prover. The sort hierarchy is a taxonomy of objects and

certain relationships among them. The sort hierarchy stores information on subset ("every man

is a person"), spanning ("every person is a man, a woman, or a child"), and disjointness ("no

man is a woman, no woman is a child").

The theorem prover is the system component that enables MICROKLAUS to assimilate

facts entered by the user and to answer his queries. Sentences translated by DIALOGIC

into logical form are further processed into first-order predicate calculus formulas which are

stored (facts) or proved (queries). The theorem prover can be characterized approximately

as a nonclausal resolution theorem prover with set-of-support and ordering restrictions and a

depth-first search strategy. It is capable of doing nontrivial reasoning with negation (it can,

in effect, do reasoning by contradiction unlike input-resolution theorem provers) and permits

implications to be used selectively in either forward or backward reasoning.

2.2. Annotated Transcript of a MICROKLAUS Session

This section presents a transcript of an actual session with MICROKLAUS that displays

the system's ability to acquire information about a new domain and reason with it. First, we

present an abbreviated transcript highlighting the "flow" of the session. This is followed by a

more complete, annotated transcript that explains the interactions in more detail. User input

is shown in boldface, computer output in regular type, and commentary in italics. (Some

trace information has been omitted from the original transcript for the sake of brevity.)

1-every carrier is a ship
OK
2-is every carrier a ship
YES
3-every adams-class ship has a length of 500 feet
OK
4-the fox is an adams-c s car?'
OK

8
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5-the fox has a length of 500 feet
I ALREADY KNEW THAT
6--the hoel has a length of 600 feet
OK
7-what ships have a length of 500 feet
FOX
8-smith is the commander of the fox
OK
9-who does command the fox

I DON'T KNOW ANY
lO-(assert.fact '(all x (+commander+ x)

(all y (and (+ship+ y) (*of x y))
(new-v-command x y))))

OK
1 1--who commands the fox
SMITH
12-every defective carrier will require a thorough overhaul
OK
13-every ship that requires an overhaul is in the log
OK
14-the fox is not in the log
OK
15-is the fox defective
NO

We now review the transcript item by item:

every carrier is a ship

The user introduces the words and concepts of carrier and ship and states
a relationship between them.

[ASSERT (ALL +CARRIER+I (+CARRIER+ +CARRIER+l)
(SOME +SHIP+2 (+SHIP+ +SHIP+2)

(EQ +CARRIER+1 +SHIP+2]

MICROKLAUS accepts the statement and translates it into logical form.
The logical form states that "for every carrier there is some ship such that
the carrier is the ship."

TRYING TO REFUTE (NOT (IMPLY (+CARRIER+ (SK.1)) (+SHIP+ (SK.1))))

MICROKLAUS attempts to prove the statement from the information it
already has. Since a refutation procedure is used rather than an affirmation
procedure, an attempt to refute the statement that not every carrier is a
ship is made, rather than a direct attempt to prove the statement that every
carrier is a ship.

%
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The MICROKLAUS theorem prover is a theorem prover for the first order
predicate calculus. Logical forms are simplified, translated into first-order
predicate calculus, and skolemized (have ezistentially quantified variables
replaced by Skolem functions and all quantifiers removed) in preparation for
processing by the AICROKLA US theorem prover.

In the above instance, the theorem prover is asked to refute the assertion
that there is some carrier (referred to by the Skolem constant SK.1) that is
not a ship.

ASSERTING (IMPLY (+CARRIER+ +CARRIER+1) (+SHIP+ +CARRIER+I))

llaving failed to prove that every carrier is a ship from the information it

already had, AICROKLAUS adds that fact.

Since ship is a new concept to MICROKLA US, AICROKLA US initiates the
following dialogue with the user to determine what kind of object a ship

is and place it correctly in the sort hierarchy. MICROKLA US doesn't ask
about carriers because it already knows what it needs about carriers from the
statement that "every carrier is a ship."

\What is a SHIP! physical% object
You're saying that anything that is a SHIP is also a PHYSICAL OBJECT.
Is LIVING CREATURE a proper subclass of SHIP? no
Is LIVING CREATURE necessarily composed of entirely different members from SHIP! yes

Do LIVING CREATURE and SHIP span the set of all PHYSICAL OBJECTS? no

In the dialogue, the user is asked for information on (1) where is ship in the

sort hierarchy (it is told that ship is a physical object), (2) whether being a
ship is distinct from being something else that is also a physical object, and
(8) whether ship, in combination with other types of physical objects, covers
the complete range of all possible physical objects.

Although some of this information is used in DIALOGIC, at the present
time, the AIICROKLAUS theorem prover uses only (1). An assertion is
made to the theorem prover that every ship is a physical object:

ASSERTING (IMPLY (+SHIP+ X) (+PHYSICAL OBJECT+ X))
Ok, now I understand SHIP.

2-is every carrier a ship

That AICROKLA US understands the previous statement that "every carrier
is a ship" can be verified by asking "is every carrier a ship." The question
is translated into logical form:

(QUERY (ALL +CARRIER+l (+CARRIER+ +CARRIER+l)
(SOME +SHIP+2 (+SHIP+ +SHIP+2)

(EQ +CARRIER+1 +SHIP+21

The logical form is translated into a refutation attempt that succeeds. The
response to the question is "YES":

10
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TRYING TO REFUTE (NOT (IMPLY (+CARRIER+ (SK.2)) (+SHIP+ (SK.2))))j

3-every adams-class ship has a length of 500 feet

An assertion about Adams-class ships is made. Both Adams-class and length

are previously unknown words to MJCROKLA US.

The sentence is translated into logical form:

[ASSERT (ALL +SIP+1 (AND (+SHIP+ +SHIP+1)+S P1)
(*NEW-ADJ-ADAMS-CLASS +II+)

(SOME +LENGTH+2 (AND (+LENGTH+ +LENGTH+2)
(*OF +LENGTLI+2 (+FOOT+ 500)))

(*HAVE +SHIP+1 +LENGTH+2J

An attempt is made to prove the statement:

TRYING TO REFUTE (NOT (IMPLY (AND (+SHIIP+ (SK.3)) (*NEW-ADJ-ADAMS-CLASS (SK.3)))
(AND (+LENGTH+ +LENGTH+2)

(*OF +LENGTH+2 (+FOOT+ 500))
(*HAVE (SK.3) +LENGTH+2))))

The statement is asserted after the proof attempt fails:

ASSERTING (IMPLY (AND (+SHIP+ +SHIP+1) (*NEW-ADJ-ADAMS-CLASS +SHIP+1))
(AND (+LENGTH+ (SK.4 +SHIP+1))

(*OF (SK.4 +SHIP+i) (+FOOT+ 500))
(*HAVE +SHIP+1 (SK.4 +SHIP+I))))

A' ICROKLAUS then asks the user to further define the concept length.
His responses of "ph ysical%'v object" to the query about ships and "linear-
measure" to this query about length refer to already existing entries in the
sort hierarchy.

What. is a LENGTH? linear-measure
You're saying that anything that is a LENGTH is also a LINEAR-MEASURE.

ASSERTING (IMPLY (+LENGTH+ X) (+LINEAR-MEASURE+ X))
Ok, now I understand LENGTH.

AfICROKLAUS then asks what is the most general class of objects to which
the adjective "Adams-class can be applied. This information is used in the
parsing of later sentences in which the word "Adams-class" appears.

What is the most general class of thing which can be ADAMS-CLASS ? ship

4-the fox is an adams-class carrier

The Fox is identified as an Adams-class carrier. In this linguistic con-
.3 text, "the Fox" could refer either to a single object or a class of objects.

MICROKLAUS asks which interpretation is intended:

Is there just one thing called FOX (1)



or are you referring to one particular FOX of many (2)? 1

The sentence is translated into logical form, an attempt to prove the state-
mnent is made and fades, and the aseertione are made that Fox ie A dam8-cia..1 and Fox is a carrier:

(ASSERT (SOME +CARRIER+1 (AND (+CARRIER+ +CARRIER+1)
(*NEW-ADJ-ADAMS-CLASS +CARRIER+ 1))

(EQ +FOX+ +CARRIER+1)))

TRYING TO REFUTE (OR (NOT (+CARRIER+ (+FOX+))) -

(NOT (*NEW-ADJ-ADAMS-CLASS (+FOX+))))

ASSERTING (+CARRIER+ (+FOX+))

ASSERTING (* NEW-ADJ-ADAMS-CLASS (+FOX+))

o-the fox has a length of 500 feet

The user states that the Fox ha. a length of 500 feet. This fact is deducible
from the etatements. that Fox is an Adams-claae carrier, that every carrier is
a chip, and that every A dams-cia.. ship ha. a length of 500 feet. The attempt
to verify that the statement was already known eucceeds, and MICROKLA (IS
respond. "I ALREADY KNEW THAT":

(ASSERT (SOME +LENGTH+1 (AND (+LENGTH+ +LENGTH+1)
(*OF +LENGTH+1 (+FOOT+ 500)))

(*HAVE +FOX+ +LENGTH+1)))

TRYING TO REFUTE (NOT (AND (+LENGTH+ +LENGTH+1)
(*OF +LENGT-+1 (+FOOT+ 500))
(*HAVE (+FOX+) +LENGTH+ 1)))

SDONE ~4
I ALREADY KNEW THAT

&--the hoel has a length of 600 feet

Another chip and ite length are introduced by the user.

Is there just one thing called HOEL (1)
or are you referring to one particular HOEL of many (2) ? 1

(ASSERT (SOME +LENGTH+1 (AND (+LENGTH+ +LENGTH+i)
(*OF +LENGTH+1 (+FOOT+ 600)))

(*HAVE +HOEL+ +LENGTH+1)))

TRYING TO REFUTE (NOT (AND (+LENGTH+ +LENGTH+1)
(*OF +LENGTH+1 (+FOOT+ 800))
(*HAVE (+HOEL+) +LENGTH+1)))

ASSERTING (+LENGTH-+ (SK.5))

ASSERTING (*OF (SK.5) (+FOOT+ 800))

ASSERTING (*HAVE (+HOEL+) (SK.5))

What is HOEL an instance of? ship

12
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You're saying that HOEL is one instance of a SHIP.

ASSERTING (+SHIP+ (+HOEL+))
Ok, now I know about HOEL.

7-what ships have a length of 500 feet

The users asks what ships have a length of 500 feet. An attempt is made to
prove that some ship has a length of 500 feet. Every ship for which it can
be proved that it has a length of 500 feet is returned in the response to the
query.

[QUERY (WH +SIIIP+1 (+SHlIP+ +SHIP+I)
(SOME +LENGTH+2 (AND (+LENGTH+ +LENGTH+2)

(*OF +LENGTH+2 (+FOOT+ 500)))
(*HAVE +SHIP+1 +LENGTH+2]

TRYING TO REFUTE (NOT (AND (+SHIP+ +SHIP+I)
(+LENGTH+ +LENGTi+2)
(*OF +LENGTH+2 (+FOOT+ 500))
(*HAVE +SHIP+1 +LENGTH+2)
(ANSWER +SHIP+I)))

* (ANSWER (+FOX+)) *
FOX.

The Fox is the only ship MICROKLAUS knows about that has a length of
500 feet.

8-sm;th is the commander of the fox

The user states that "Smith is the commander of the Fox." "Smith"
and "commander" are both previously unknown words to MICROKLAUS.
MICROKLAUS asks the user whether "the commander" is a single object
or one of a class of objects:

Is there just one thing called COMMANDER (1)
or are you referring to one particular COMMANDER of many (2) ? 2

AHICROKLA US translates the statement into logicalform, attempts to prove
it from the information it already has, fails, and asserts it:

(ASSERT (THE +COMMANDER+1 (AND (+COMMANDER+ +COMMANDER+I)
(*OF +COMMANDER+1 +FOX+))

(EQ +SMITH+ +COMMANDER+I)))

TRYING TO REFUTE (OR (NOT (+COMMANDER+ (+SMITH+)))
(NOT (*OF (+SMITH+) (+FOX+))))

ASSERTING (+COMMANDER+ (+SMITH+))

ASSERTING (*OF (+SMITH+) (+FOX+))

MICROKLAUS then converses with the user to place commander in the sort
hierarchy:

13
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What is a COMMANDER? person
You're saying that anyone who is a COMMANDER is also a PERSON.
Which of the following, if any, are proper subclasses of COMMANDER: MAN, WOMAN, or
CHILD? none
Which of the following classes, if any, could never have any members in common with
COMMANDER: MAN, WOMAN, or CHILD? child

What combination of the following subclasses, if any, together with COMMANDER, span the
class of all PEOPLE (with or without overlapping): MAN, WOMAN, or CHILD? none

ASSERTING (IMPLY (+COMMANDER+ X) (+PERSON+ X))
Ok, now I understand COMMANDER.

9--who does command the fox

The user asks MICROKLAUS who commands the Fox. "Command" is a
previously unknown word to MICROKLAUS. It is deliberately introduced
in the form "does command" in this sentence, so that its first appearance
will be without any suffix (such as " in "commands"). In the future,
AI1CROKLAUS will handle unknown words even when their first appearance
is with a sufiz.

(QUERY (WH +PERSON+1 (+PERSON+ +PERSON+I)
(*NEW-V-COMMAND +PERSON+I +FOX+)))

TRYING TO REFUTE (NOT (AND (+PERSON+ +PERSON+I)

(*NEW-V-COMMAND +PERSON+1 (+FOX+))

(ANSWER +PERSON+1)))
I DON'T KNOW ANY

MICROKLAUS doesn't know any person who commands the Fox. The
reason is that, although it was asserted that Smith is the commander of
the Fox, no relationship between "commander" and 'command" has been
established. The assertion "the commander of a ship commands the ship"
is made directly to the MICROKLAUS theorem prover:

10-(assert.fact '(all x (+commander+ x)
(all y (and (+ship+ y) (*of x y))

(*new-v-command x
OK

ASSERTING (IMPLY (+COMMANDER+ X)
(IMPLY (AND (+SHIP+ Y) (*OF X Y)) (*NEW-V-COMMAND X Y)))

In the future, the DIALOGIC language system will handle anaphoric sen-

tences such as "the commander of a ship commands the ship" and this direct
assertion to the theorem prover will be unnecessary.

11-who commands the fox

The user again asks who commands the Fox. Now that the word command
is known to MICROKLAUS, it can appear with a suffiz in "commands."

(QUERY (WH +PERSON+l (+PERSON+ +PERSON+I) (*NEW-V-COMMAND

14
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+PERSON+I +FOX+)))

TRYING TO REFUTE (NOT (AND (+PERSON+ +PERSON+I)
(*NEW-V-COMMAND +PERSON+I (+FOX+))

(ANSWER (+SMITH+)) (ANSWER +PERSON+I)))

SMITH. ..

This time, MICROKLAUS succeeds in identifying Smith as the person who

commands the Foz.

12-every defective carrier will require a thorough overhaul

The user makes another statement to MICROKLAUS. This statement is
particularly interesting because of its high number of unknown words. The
words "defective", "require", "thorough", and "overhaul" are all previously
unknown to MJCROKLAUS and their correct part of speech must all be
determined from the sentence structure.

The sentence is translated into logical form, a proof attempt of it from
previous information fails, and the statement is asserted:

[ASSERT (ALL +CARRIER+1 (AND (+CARRIER+ +CARRIER+I)
(*NEW-ADJ-DEFECTIVE +CARRIER+l))

(SOME +OVERHAUL+2 (AND (+OVERHAUL+ +OVERHAUL+2)
(*NEW-ADJ-THOROUGH +OVERHAUL+2))

(*NEW-V-REQUIRE +CARRIER+I +OVERHAUL+2]"

TRYING TO REFUTE (NOT (IMPLY (AND (+CARRIER+ (SK.6))
(*NEW-ADJ-DEFECTIVE (SK.6)))

(AND (+OVERHAUL+ +OVERHAUL+2)
(*NEW-ADJ-THOROUGH +OVERHAUL+2)

(*NEW-V-REQUIRE (SK.6) +OVERHAUL+2))))

ASSERTING (IMPLY (AND (+CARRIER+ +CARRIER+l)
(* NEW-ADJ-DEFECTIVE +CARRIER+I))

(AND (+OVERHAUL+ (SK.7 +CARRIER+l))
(*NEW-ADJ-THOROUGH (SK.7 +CARRIER+I))
(*NEW-V-REQUIRE +CARRIER+1 (SK.7 +CARRIER+I))))

MICROKLAUS then asks what kind of object an overhaul is, and also asks
what kinds of objects the adjectives "defective" and "thorough" can modify:

What is an OVERHAUL? abstract% object

You're saying that anything that is an OVERHAUL is also an ABSTRACT OBJECT.
Which of the following, if any, are proper subclasses of OVERHAUL: NUMBER, MEASURE,
UNIT-OF-MEASURE, or LEGAL ABSTRACTION? none
Which of the following classes, if any, could never have any members in common with
OVERHAUL: NUMBER, MEASURE, UNIT-OF-MEASURE, or LEGAL ABSTRACTION ?
all

What combination of the following subclasses, if any, together with OVERHAUL, span the
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class of all ABSTRACT OBJECTS (with or without overlapping): NUMBER, MEASURE,
UNIT-OF-MEASURE, or LEGAL ABSTRACTION?! none

ASSERTING (IMPLY (+OVERHAUL+ X) (+ABSTRACT OBJECT+ X))
Ok, now I understand OVERHAUL.
WVhat is the most general class of thing which can be THOROUGH ? thing
What is the most general class of thing which can be DEFECTIVE?! thing

13-every ship that requires an overhaul is in the log

Is there just one thing called LOG (1)
or are you referring to one particular LOG of many (2) ? 1

(ASSERT (ALL +SHIP+1 (SOME +OVERHAUL+2 (+OVERIIAUL+ +OVERHAUL+2)
(AND (+SHIP+i +SHIP+i)

(*NEW-V-REQUIRE +SHIP+1 +OVERHAUL+2)))

(*IN +SHIP+1 +LOG+)))

TRYING TO REFUTE (NOT (IMPLY (AND (+OVERHAUL+ (SK.9))
(+SHIP+ (SK.8))
('NEW.V-REQUIRE (SK.8) (SK.9)))

(*IN (SK.8) (+LOG+))))

ASSERTING (IMPLY (AND (+OVERHAUL+ +OVERHAUL+2)
(+SHIP+ +SHIP+l)
(*NEW-V-REQUIRE +SIIIP+1 +OVERHAUL+2))

('IN +SHIP+1 (+LOG+))

WVhat is LOG an instance of? physical% object
You're saying that LOG is one instance of a PHYSICAL OBJECT.

ASSERTING (+PHYSICAL OBJECT+ (+LOG+))
Ok, now 1 know about LOG.
14-the fox is not in the log

(ASSERT (NOT ('IN +FOX+ +LOG+)))

TRYING TO REFUTE ('IN (+FOX+) (+LOG+))

ASSERTING (NOT (*IN (+FOX+) (+LOG+)))

15-is the fox defective

i the context of the preceding information given MICROKLA US, the user
asks whether the Fox is defective.

(QUERY ('NEW-ADJ-DEFECTIVE +FOX+))

MfICROKLAUS attempts to prove that the Fox ie defective (by refuting the
statement that it is not defective):

TRYING TO REFUTE (NOT ('NEW-ADJ-DEFECTIVE (+FOX+)))

16



This proof attempt fail.. So, MICROKLAUS tries to prove its negation, i.e.,
tries to prove that the Fox is not defective. (This approach is more secure
than just assuming that the Fox is not defective on the basis of failing to
find a proof that it is.)

TRYING TO REFUTE (*NEW-ADJ-DEFECTIVE (+FOX+))
* DONE *
NO

The attempt to prove that the Fox is not defective succeeds, and hence the
answer to the question "Is the Fox defective" is "NO."

This proof requires a form of reasoning by contradiction since the statement
that the Fox is not defective must be derived from the contradiction between
the Fox possibly being defective (implying its needing an overhaul and thus
being in the log) and the fact that the Fox is not in the log.

17
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.7.

3. Translating English into Logical Form

This section was written by Stanley Rosenschein and Stuart Shieber.

3.1. Introduction

When contemporary linguists and philosophers speak of 'semantics," they usually mean -.,.

model-theoretic semantics-mathematical devices for associating truth conditions with sen-

tences. Computational linguists, on the other hand, often use the term "semantics" to denote a

phase of processing in which a data structure (e.g., a formula or network) is constructed to rep-

resent the meaning of a sentence and serve as input to later phases of processing. (A better name

for this process might be "translation" or "transduction.") Whether one takes "semantics" to

be about model theory or translation, the fact remains that natural languages are marked by a

wealth of complex constructions-such as tense, aspect, moods, plurals, modality, adverbials,

degree terms, and sentential complements-that make semantic specification a complex and

challenging endeavor.

Computer scientists faced with the problem of managing software complexity have de-

veloped strict design disciplines in their programming methodologies. One might speculate that

a similar requirement for manageability has led linguists (since Montague, at least) to follow

a discipline of strict compositionality in semantic specification, even though model-theoretic

semantics per 8e does not demand it. Compositionality requires that the meaning of a phrase

be a function of the meanings of its immediate constituents, a property that allows the gram-

mar writer to correlate syntax and semantics on a rule-by-rule basis and keep the specification

modular. Clearly, the natural analogue to compositionality in the case of translation is .yntaz-

directed translation; it is this analogy that we seek to exploit.

We describe a syntax-directed translation scheme that bears a close resemblance to model-

theoretic approaches and achieves a level of perspicuity suitable for the development of large ""

and complex grammars by using a declarative format for specifying grammar rules. In our

18
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* formalism, translation types are associated with the phrasal categories of English in much

the way that logical-denotation types are associated with phrasal categories in model-theoretic

semantics. The translation types are classes of data objects rather than abstract denotation,

yet they play much the same role in the translation process that denotation types play in formal

semantics.

In addition to this parallel between logical types and translation types, we have inten-

tionally designed the language in which translation rules are stated to emphasize parallels be-

* tween the syntax-directed translation and corresponding model-theoretic interpretation rules

* found in, say, the OPSO literature [301. In the GPSG approach, each syntax rule has an as-

sociated semantic rule (typically involving functional application) that specifies how to compose

the meaning of a lp~rase from the meanings of its constituents. In an analogous fashion, we

provide for the translation of a phrase to be synthesized from the translations of its immediate

constituents according to a local rule, typically involving symbolic application and X-conversion.

* It should be noted in passing that doing translation, rather than model-theoretic inter-

pretation, offers the temptation to abuse the formalism by having the "meaning" (translation)

of a phrase depend on syntactic properties of the translations of its constituents-for instance,

on the order of conjuncts in a logical expression. There are several points to be made in this

regard. First, without severe a priori restrictions on what kinds of objects can be translations

(coupled with the associated strong theoretical claims that such restrictions would embody), it

seems impossible to prevent such abuses. Second, as in the case of programming languages, it

is reasonable to assume that there would emerge a set of stylistic practices that, for reasons

of manageability and esthetics, would govern the actual form of grammars. Third, it is still

an open question whether the model-theoretic program of strong compositionality will actually

succeed. Indeed, whether it succeeds or not is of little concern to the computational linguist.

whose systems, in any event, have no direct way of using the sort of abstract model being

proposed and must generally be based on deduction (and hence translation).

* The rest of this section discusses our work in more detail. Section 3.2 presents the

grammar formalism and describes PATR-l, an implemented parsing and translation system

that can accept a grammar in our formalism and use it to process sentences. Examples of the
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system's operation, including its application in a simple deductive question-answering system,

are found in Section 3.3. Section 3.4 describes further extensions of the formalism and the

parsing system. Section 3.5 contains sample grammar rules, meaning postulates (axioms) used a"

by the question-answering system, a sample dialogue session.

3.2. A Grammar Formalism

3.2.1 General Characterization

Our grammar formalism is best characterized as a specialized type of augmented context-

free grammar. That is, we take a grammar to be a set of context-free rules that define a

language and, in the usual way, associate structural descriptions (parse trees) for each sentence

in that language. Nodes in the parse tree are assumed to have a set of features that may assume

binary values (True or Fatse), and there is a distinguished attribute-the "translation"- whose

values range over a potentially infinite set of objects, i.e., the translations of English phrases.

Viewed more abstractly. we regard translation as a binary relation between word se-

quences and logical formulas. The use of a relation is intended to incorporate the fact, that

many word sequences have several logical forms, while some have none at all. Furthermore, we

view this relation as being composed (in the mathematical sense) of four simpler relations cor-

responding to the conceptual phases of analysis: (1) LEX (lexical analysis), (2) PARSE (parsing). "C

(3) ANNOTATE (assignment of attribute values, syntactic filtering), and (4) TRANSLATE

(translation proper, i.e., synthesis of logical form).

The domains and ranges of these relations are as follows:

Word Sequences -LEX-.
Morpheme Sequences -PARSE-.

Phrase Structure Trees -ANNOTATE-.
Annotated Trees -TRANSLATE-.

Logical Form

20
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RULES:
Constant COuP' = (X P (X Q (X X (P (Q X)))))
S - NP VP

Trans: VP'lNP']
VP - TENSE V

Anno: [ -Transitive(V) ]
Trans: { COP' (TENSE'] [VI I

LEXICON:
NP -- John

Anna: [ Proper(NP) ]
Trans: { John )

TENSE - &past
Trans: (X X (past X))

V - go
Anne: [ -Trangitive(Y) ]
Trans: ( CX X (go )) )

Figure 1: Sample specification of augmented phrase structure grammar

The relational composition of these four relations is the full translation relation associat-

ing word sequences with logical forms. The subphases too are viewed as relations to reflect the

inherent nondeterminism of each stage of the process. For example, the sentence "a hat by

every designer sent from Paris was felt" is easily seen to be nondeterministic in LEX ("felt"),

PARSE (postnominal modifier attachment), and TRANSLATE (quantifier scoping).

It should be emphasized that the correspondence between processing phases and these

concepttal phases is loose. The goal of the separation is to make specification of the process

perspicous and to allow simple, clean implementations. An actual system could achieve the

net effect of the various stages in many ways, and numerous optimizations could be envisioned

that would have the effect of folding back later phases to increase efficiency.

3.2.2 The Relations LEX, PARSE, and ANNOTATE

We now describe a characteristic form of specification appropriate to each phase, and

illustrate how the word sequence "John went" is analyzed by stages as standing in the trans-
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lation relation to "(past (go john))" according to the (trivial) grammar presented in Figure I
Lexical analysis is specified by giving a kernel relation between individual words and

morpheme sequences i (or equivalently, a mapping from words to sets of morpheme sequences),

for example:

John - (john);
went -- (*past go);
persuaded -- (kpast persuade).

(kppl persuade);

The kernel relation is extended in a standard fashion to the full LEX relation. For

example, "went" is mapped to the single morpheme sequence (&past go), and "John" is mapped

to (john). Thus, by extension, "John went" is transformed to (John &past go) by the lexical

analysis phase.

Parsing is specified in the usual manner by a context-free grammar. Through utilization

of the context-free rules presented in the sample system specification shown in Figure 1, (John

&past, go) is transformed into the parse tree

(S (HP john)
(VP (TENSE &past)

(V go))

Every node in the parse tree has a set of associated features. The purpose of ANNOTATE

is to relate the bare parse tree to one that has been enhanced with attribute values, filtering out

those that do not satisfy stated syntactic restrictions. These restrictions are given as Boolean . -

expressions associated with the context-free rules; a tree is properly annotated only if all the

Boolean expressions corresponding to the rules used in the analysis are simultaneously true.

Again, using the rules of Figure 1,

(S (NP john) IUVP (TENSE &kpast) " '

(V go)) M.

is transformed into

lof course, more sophisticated approaches to morphological analysis would seek to analyze the LEX relation
more fully. See, for example, 1581 and 1541.
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(S (UP: Proper
john)

(VP: - Tranitive
(TENSE kpast)

V: - Tranaitive
go)))

3.2.3 The Relation TRANSLATE

Logical-form synthesis rules are specified as augments to the context-free grammar. There

is a language whose expressions denote translations (syntactic formulas); an expression from

this language is attached to each context-free rule and serves to define the composite translation

at a node in terms of the translations of its immediate constituents. In the sample sentence,

TENSE' and V' (the translations of TENSE and V respectively) would denote the X-expressions

specified in their respective translation rules. VP' (the translation of the VP) is defined to be

the value of (SAP (SAP COMP' TENSE') V'), where COMP' is a constant X-expression and

SAP is the symbolic-application operator. This works out to be (X X (past (go X))). Finally,

the symbolic application of VP' to NP' yields (past (go John)). (For convenience we shall

henceforth use square brackets for SAP and designate (SAP a 0) by a[#].)

Before describing the symbolic-application operator in more detail, it is necessary to

explain the exact nature of the data objects serving as translations. At one level, it is convenient

to think of the translations as X-expressions, since X-expressions are a convenient, notation

for specifying how fragments of a translation are substituted into their appropriate operator-

operand positions in the formula being assembled---especially when the composition rules follow

the syntactic structure as encoded in the parse tree. There are several phenomena, however,

that require the storage of more information at a node than can be represented in a hare

X-expression. Two of the most conspicuous phenonema of this type are quantifier scoping and

unbounded dependencies ("gaps").

Our approach to quantifier scoping has been to take a version of Cooper's storage

technique, originally proposed in the context of model-theoretic semantics, [19] and adapt it

to the needs of translation. For the time being, let us take translations to be ordered pairs
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whose first component (the head) is an expression in the target language, characteristically

a X-expression. The second component of the pair is an object. called atorage, a structured

collection of sentential operators that can be applied to a sentence matrix in such a way as to

introduce a quantifier and "capture" a free variable occurring in that sentence matrix.2

For example, the translation of "a happy man" might be < m . (X S (some m (and (man

m)(happy i)) S)) >.H Here the head is m (simply a free variable), and storage consists of the

X-expression (X S ...). If the verb phrase "sleeps" were to receive the translation < (X X (sleep

X)), 0 > (i.e., a unary predicate as head and no storage), then the symbolic application or

the verb phrase translation to the noun phrase translation would compose the heads in the

usual way and take the "union" of the storage yielding < (sleep m), (X S (some m (and (man

mlhappy m)) S)) >.

We define an operation called "pull.s," which has the effect of "pulling" the sentence

operator out of storage and applying it to the head. There is another pull operation, pull.v,

whih operates on beads representing unary predicates rather than sentence matrices. When

pull.s is applied in our example, it yields < (some m (and (man m)(happy m)) (sleep m)), 0

>, corresponding to the translation of the clause "a happy man sleeps." Note that, in the

process, the free variable m has been "captured." In model-theoretic semantics this capture

would ordinarily be meaningless, although one can complicate the mathematical machinery to

achieve the same effect. Since translation is fundamentally a syntactic process, however, this

operation is well-defined and quite natural.

To handle gaps, we enriched the translations with a third component: a variable cor-

responding to the gapped position. For example, the translation of the relative clause

[that,] the man saw" would be a triple: < (past (see X Y)), Y, (X S (the X (man X) S))>, where

the second component,, Y, tracks the free variable corresponding to the gap. At the node at

which the gap was to be discharged, X-abstraction would occur (as specified in the grammar by

the operation "ungap"), thereby producing the unary predicate (X Y (past (see X Y))), which

2 1n the sample grammar presented in Section 3.5.1, the storage-forming operation is notated mk.mbd.
3 Following fol, a quantified expression is of the form (quantifier, variable, restriction, body) -
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would ultimately be applied to the variable corresponding to the head of the noun phrase.

It turns out that triples consisting of <head, var, storage> are adequate to serve as

translations of a large class of phrases, but that the application operator needs to distinguish

two subcases (which we call type A and type B objects). Until now we have been discussing

type A objects, whose application rule is given (roughly) as

<hd,var,sto>[<hd',var',sto'>] = <(hd hd'),var U var', sto U sto'>

where one of var or var' must be null. In the case of type B objects, which are assigned primarily

as translations of determiners, the rule is

<hd,var,sto>[<hd',var',sto'>] = <var, var', (hd hd') U sto U sto'>

For example, if the meaning of "every" is

every' = <(X P (X S (every X (P X) S))), X, O>

and the meaning of "man" is

man' < man, >, >

then the meaning of "every man" is

every'[man'] - < X , i, (X S (man X) S)>

as expected.

Nondeterminism arises in two ways. First, since pull operations can be invoked non-

deterministically at various nodes in the parse tree (as specified by the grammar), there exists

the possibility of computing multiple scopings for a single context-free parse tree. (See Section

3.3.2 for an example of this phenomenon.) In addition, the grammar writer can specify ex-

plicit nondeterminism by associating several distinct translation rules with a single context-free

production. In this case, he can control the application of a translation schema by specifying

for each schema a guard, i.e., a Boolean combination of features that the nodes analyzed by

the production must satisfy for the translation schema to be applicable.
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3.2.4 Implementation of a Translation System

The techniques presented in Sections 3.2.2 and 3.2.3 were implemented in a parsing

and translation system called PATR-l, which was used as a component in a dialogue system

discussed in Section 3.3.3. The input to the system is a sentence, which is preprocessed byj

a lexical analyzer. Parsing is performed by a simple recursive descent parser, aug-Mented to

add annotations to the nodes of the parse tree. Translation is then done in a separate pass

over the annotated parse tree. Thus, the four conceptual phases are implemented as three

actual processing phases. This folding of two phases into one was done purely for reasons of

efficiency and has no effect on the actual results obtained by the system. Functions to perform

testorage manipulation, gap handling, and the other features of translation presented earlier

have all been realized in the translation component of the running system. The next section

dlescribes an actual grammar that has been used in conjunction with this translation system. -

3.3. Experiments in Producing and Using Logical Form

3.3.1 A Working Grammar

To illustrate the ease with which diverse semantic features could be handled, a grammar

was written that defines a semantically interesting fragment of English along with its translation

into logical form [911. The grammar for the fragment illustrated in this dialogue is compact,

occupying only a few pages, yet it gives both syntax and semantics for modals, tense, aspect,

passives, and lexically controlled infinitival complements. (A portion of the grammar is included

4as Section 3.5.1).4 The full test grammar, loosely based on DIAG RAM [110] but restricted and

modified to reflect changes in approach, was the grammar usedl to specify the translations of

the sentences in the sample dialogue of Section 3.5.3.

4Since this is just a small portion of the actual grammar selected for expo'zitory purposes, many of the phrasal
categories and annotations will seem unmotivated and needlessly complex. These categories and annotations
are utilized elsewhere in the test grammar.
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3.3.2 An Example of the System's Operation

The grammar presented in Section 3.5.1 encodes a relation between sentences and logical-

form expressions. We now present a sample of this relation, as well as its derivation, with a

sample sentence: "Every man persuaded a woman to go."

Lexical analysis relates the sample sentence to two morpheme streams:

" every man &ppl persuade a woman to go

" every man &past persuade a woman to go.

The first is immediately eliminated because there is no context-free parse for it in the grammar.

The second, however, is parsed as

[S (SDEC (NP (DETP (DDET (DET every)))
(NOM (NOUND (NOUN (N man)))))

(PREDICATE (AUXP (TENSE &past))
(VPP (VP (VPT (V persuade)))

(NP (DETP (A a))
.(NON (NOMUD (NOUN (N woman)))))

(INFINITIVE (TO to)
(VPP (VP (VPT (V go]

While parsing is being done, annotations are added to each node of the parse tree.

For instance, the NP -- DETP NOM rule includes the annotation rule AGREE( NP, DETP,

Definite ). AGREE is one of a set of macros defined for the convenience of the grammar

writer. This particular macro invocation is equivalent to the Boolean expression Definite(NP)

t-* Definite(DETP). Since the DETP node itself has the annotation Definite as a result of the

preceding annotation process, the NP node now acquires the annotation Definite as well. At the

bottom level, the Definite annotation was derived from the lexical entry for the word "every." 5

4' The whole parse tree receives the following annotation:

[S (SDEC (NP: Definite
(DETP: Definite

(DDET: Definite
(DET: Definite

every)))

.Note that, although the annotation phase was described and is implemented procedurally, the process actually
used guarantees that the resulting annotation is exactly the one specified declaratively by the annotation rules.
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(NOM (NOMBlD (NOUN (N man)))))
(PREDICATE (AUXP (TENSE *past))

(VPP (VP: Active
(VPT: Active, Transitive, Takeslnf

(V: Active, Transitive, Takesnf•
persuade)))

(NP (DETP (A a))
(NOM (NOMHD (NOUN (N woman)))))

(INFINITIVE (TO to)
(VPP (VP: Active

(VPT: Active

(V: Active
go]

Finally, the entire annotated parse tree is traversed to assign translations to the nodes

through a direct implementation of the process described in Section 3.2.3. (Type A and B"

objects in the following examples are marked with a prefix 'A:' or 'B:'.) For instance, the VP

node covering (persuade a woman to go), has the translation rule VPT'[NP'I[INFINITIVE'].

When this is applied to the translations of the node's constituents, we have

<A: (X X (X P (X Y (persuade Y I (P I)))>
[<A: 12, 0. (X S (some 12 (woman X2) S))>]

[A: (X X (go X))>]

which, after the appropriate applications are performed, yields

<A: (X P C\ Y (persuade Y X2 (P 12)))). #.
(X S (some X2 (woman X2) S))>

[<A: (X X (go X))>]

<A: (X Y (persuade Y X2 (go X2))). S. ( S (some X2 (woman X2) S))>

After the past operator has been applied, we have

<A: (X Y (past (persuade Y 12 (go X2)))). 0, (X S (some X2 (woman X2) S))>

At this point, the pull operator (pull.v) can be used to bring the quantifier out of storage,

yielding.

<A: (X Y (sone 12 (woman X2) (past (persuade Y X2 (go X2))))), . 0>

This will ultimately result in "a woman" getting narrow scope. The other alternative is for the

6 For convenience, when a final constituent of a translation is 0 it is often not written. Thus we could have --
written <A: (X Y (some ...) ... )> in this cae.
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quantifier to remain in storage, to be pulled only at the full sentence level, thus resulting in tie

other scoping. In Figure 2 we have added the ranslations to all the nodes of the parse tree.

Nodes with the same translations as their parents were left unmarked. After examination of

the S node translations, the original sentence is given the fully scoped translations

(every X2 (man X2)
(some Xl (wonan Xl) (past (persuade X2 Xl (go Xl)))))

and

(some Xl (woman Xl)

(every X2 (man X2) (past (persuade X2 Xl (go Xl)))))

3.3.3 A Simple Question-Answering System

As mentioned in Section 3.1, we were able to demonstrate the semantic capabilities of

our language system by assembling a small question-answering system. Our strategy was to

first translate English into logical formulas of the type discussed in [91], which were then

postprocessed into a form suitable for a first-order deduction system. We used a connection

graph theorem prover, described in Section 8 of this report. (Another possible approach would

have been to translate directly into first-order logic, or to develop direct proof procedures

for the non-first-order language.) Thus, we were able to integrate all the components into

a question-answering system by providing a simple control structure that accepted an input,

translated it into logical form, reduced the translation to first-order logic, and then either

asserted the translation in the case of declarative sentences or attempted to prove it in the case

of interrogatives. (Only yes/no questions have been implemented.)

The main point of interest is that our question-answering system was able to handle

complex semantic entailments involving tense, modality, etc.-and that, moreover, it was not.

restricted to extensional evaluation in a database, as with conventional question-answering

systems. For example, our system was able to handle the entailments of sentences like

* John could not have been persuaded to go.

(The transcript of a sample dialogue is included as Section 3.5.3.)
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-_. (S: <A: (past (persuade Xl X2 (go X2))). ,
(X S (every X1 (man Xl) S))
(X S (some 12 (worn X2) S))>.

<A: (some X2 (woan X2) (past (persuade Xl X2 (go X2)))). ,

CX S (every X1 (man Xl) S))>
<A: (every X2 (man X2)

(some X1 (woman Xl) (past (persuade X2 X1 (go X2)))))>
<A: (some X1 (woman X)

(every X2 (man X2) (past (persuade X2 X1 (go X2)))))>
(SDEC

(NP: <A: X1. 0. (X S (every Xl (man X1) S))>
(DETP: <B: (X P (X S (every X (P X) $))),

X>
(DDET (DET every)))

(NOW: <A: (X X (man ))>
(NOIHD (NOUN (N man)))))

(PREDICATE: (A: ( X (past (persuade Y X2 (go X2)))), 4,
(X S (some X2 (woman X2) S))>.

k: (X X (some 12 (woman X2)
(past (persuade Y X2 (go X2))))),

. 0>
(AUXP: (A: (X P (X X (past (P X))))>

(TENSE &past))
(VPP: <A: (X Y (persuade Y X2 (go X2))). 0.

(X S (some X2 (woman X2) S))>
(VP (VPT: <A: (X X

.9 (X P
(X Y (persuade Y X (P Y)))>

(V persuade)))
A (HP: <A: X2. 0. (X S (some X2 (woman X2) S))>

(DETP: <B: (X P (X S (some X (P X) S))).
X>

(A a))
4 (NON: <A: (X X (woman X)) >

(NOWD (NOUN (N woman)))))
(INFINITIVE (TO: none

to)
(VPP: <A: (X X (go X))>

(VP (VPT (V go]

Figure r1: Node-by-node translation of a sample sentence

The reduction of logical form to first-order logic (FOL) was parameterized by a set of

recursive expansions for the syntactic elements of logical form in a manner similar to Moore's

use of an axiomatization of a modal language of belief [90]. For example, (past P) is expanded,
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INPUT: every man must be happy
LF: (every X (man X)

(necessary (and (happy X)
(thing ))))

FOL: (every x0172
(implies (man REALORLD z0172)

(every .0173
(implies (poss REALWORLD .0173)

(and (happy v0173 z0172)
(thing w0173 z0172))))))

INPUT: bill persuaded John to go
LF: (past (persuade bill John (go John)))
FOL: (some v0175

(and (past v0175 REALWORLD)
(sons .0176

(and (persuade w0175 bill john w0176)
(go w0176 John)))))

Figure 9: Translation to LF and Reduction to FOL

with respect to a possible world w, as

(some w2 (and (past w2 w) <P,w2>))

where "<P,w2>" denotes the recursive FOL reduction of P relative to the world w2. The

logical form that was derived for the sample sentence "John went" therefore reduces to the

first-order sentence

(some w (and (past w REALWORLD) (go w John)))

More complicated illustrations of the results of translation and reduction are shown in Figure

3. Note, for example, the use of restricted quantification in LF and ordinary quantification in

FOL.

To compute the correct semantic entailments, the deduction system was preloaded with

a set of meaning postulates (axioms) giving inferential substance to the predicates associated

with lexical items (see Section 3.5.2).
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3.4. Further Extensions]

We are continuing to refine the grammar formalism and improve the implementation.

Some of the refinements are intended to make the annotations and translations easier to write.

Examples include

" Allowing nonbinary features, along with sets of values, in the annotations and guards

(extending the language to include equality and set operations).

" Generalizing the language used to specify synthesis of logical forms and developing a

more uniform treatment of translation types.

" Generalizing the "gap" variable feature to handle arbitrary collections of designated

variables by using an "environment" mechanism. This is useful in achieving a uniform

treatment of free word order in verb complements and modifiers.

In addition, we are working on extensions of the syntactic machinery, including phrase-

linking grammars to handle displacement phenomena 1100], and methods for generating the

augmented phrase-structure grammar through a metarule formalism similar to that of 161].

We have also experimented with alternative parsing algorithms, including a chart parser 18]

adapted to carry out annotation and translation in the manner described in this paper.

3.5. Example

°a,.

3.5.1 Sample Grammar Rules

The following is a portion of a test grammar for the PATR-l English translation system.

Only those portions of the grammar utilized in analyzing the sample sentences in the text

were included. The full grammar handles the following constructs: modals, adjectivals, tense,

predicative and nonpredicative copulatives, adverbials, quantified noun phrases, aspect, NP.

PP, and infinitival complements, relative clauses, yes/no questions, restricted wh-questions.

noun-noun compounds, passives, and prepositional phrases as predicates and adjectivals.
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-------------------------------- GraWAWa RIlS----- -------

Constant EQ' = curry (LAMBDA (X Y) (equal X Y))

Constant PASS' =
<A: (LAMBDA P (LAMBDA X ((P X) Y))). NIL.

(MA.MBD (QUOTE (LAMBDA S (some Y (thing Y) S)))) >

Constant PASSINF' =
<A: (LAMBDA P (LAMBDA I (LAMBDA X (((P X) I) Y)))). NIL,

(MK.MBD (QUOTE (LAMBDA S (some Y (thing Y) S)))) >

AUXP -> TENSE;
Translation:

TENSE'

DDET -> DET; '.

Annotation:
[ Definite(DDET) ]

Translation:
DET'

DETP -> A;

Annotation:
[ -Definite(DETP) ]

Translation:
A'

DETP -> DDET;
Annotation:

E AGREE(DETP, DDET. Definite) -
Translation:

. DDET'

INFINITIVE -> TO VPP;

Annotation:
[ AGREECINFINITIVE, VPP, Gappy, Wh) J

Translation:
pull.v(VPP')

NOV -> NOMVD;

Annotation:
[ AGREE(NOM. NOMED, Gappy) "

Translation:

NOVED'

NOMHD -) NOUN;

33
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Translation:

NOUN -> N;
Translation:

UP -> DETP MOM;
Annotation:

CACREE(NP. MOM, Gappy) I
CPredicative(NP) V -'Predicative(NP)]
E AGREE(NP, DETP. Definite) I

Translation:
-'Prodicative(NP): DETP'[NOMNJ
Del inite(NP) A Predicative(NP): EQ (DETP' (NON']]
-'Do!inite(NP) & Prodicative(NP): MOM'

PREDICATE -> AUXP VPP;
Annotation:

E AGREE(PREDICATE. VPP, Active, Gappy. Wh)J
Translation:

pull.v(AUXP' (VPP'J)

S -> SDEC;
Annotation:

C-Gappy(SDEC)
C-'Wh(SDEC)J

Translation:
SDEC'

SDEC -> NP PREDICATE;
Annotation:

C appy(NP) V Gappy (PREDICATE) Gappy(SDEC)
C-'Predicative(NP)
C h(NP) V Wh(PREDICATE) " Wh(SDEC)
C-(Gappy(NP) A Gappy(PREDICATE))I

Translation:
pull. s(PREDICATE'CIP'])

VP -,VPT;

Annotation:
E -Transitive(VPT)
C-Takes In!(VPT)
CActive(VPT)
CActive (VP)

Translation:
VPT'
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VP -> VPT NP INFINITIVE;
Annotation:

[ TakesInf (VPT) ]
[ Transitive(VPT) J
[ -Predicative(NP) '
[ AGREE(VP, VPT. Active) ]
[ Wh(NP) V Wh(INFINITIVE) t Wh(VP) ]
[ IF(Active(VPT).

((appy(NP) V Cappy(INFINITIVE)) t Gappy(VP)).
A -(Gappy(NP) A Gappy(INFINITIVE)).

(-Gappy(VPT) & Gappy(NP))) ]
Translation:

Active(VP): pull.v(VPT' ENP' [INFINITIVE'])
-Active(VP): pull.v(PASSINF' [VPT'J [INFINITIVE'])

VPP -> VP;
Annotation:

[ AGREE(VPP, VP, Gappy, Wh) ]
[ Active(VP) ]

Translation:
VP

VPT -> V;

Annotation:
[ AGREE(VPT, V. Active. Transitive. TakesInf) ]

Translation:
Vp

Lexicon

N -> man;
Translation:

<A: man, NIL, NIL >

N -> woman;
Translation:

<A: woman, NIL, NIL >

DET -> every;
Annotation:

[ Definite(DET) ]

Translation:

<B: (LAMBDA P (LAMBDA S (every X (P X) S))). X. NIL >

A -> a;
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" Translation:

-<B: (LAMBDA P (LAMBDA S (some X (P X) S))). X. NIL >

V -> persuade;

Annotation:
[ Transitive(V) ]

[ Active(V) V -Active(V) "
[ Takeslnf (V) ]

Translation:
curry (LAMBDA (X P Y) (persuade Y X (P X)))

V -) go;

Annotation:
C -'Transitive(V) ]
[ -Takeslnf(V) I
( Active(V) ]

Translation:
<A: go, NIL, NIL >

TENSE -> kpast;
Translation:

curry (LAMBDA (P X) (past (P X)))

3.5.2 Meaning Postulates

[every w (every u (iff (past w u)
(not (past u w3

(every w (some u (past w u)))
[every w (every x (every y (every z (implies (promise w x y z)

(past w z]
[every w (every x (every y (every z (implies (persuade w x y z)

(past w z'
(every w (every x (thing w x)))
[every w (every x (every z (implies (want w x z)

(past w z]
(every w (poss w w))
[every w (every u (implies (past v u)

(poss ul
[every w (every u (every v (implies (and (past1 w u)

(past1 u v))
(past2 w v]

[every w (every z (implies (past2 w z)

(past • z]
[every w (every z (iff (past w z)
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(past1 w z]

3.5.3 Transcript of Sample Dialogue

>> john is happy
OK.

>> is john happy
Yes.

>> is john a happy man
I don't know.

>> john is a man
OK.

>> is john a happy man
Yes.

>> no man could have hidden a book
OK.

>> did john hide a book
No.

>> bill hid a book
OK.

>> is bill a man
No.

>> was john a man
I don't know.

>> every man will be a man
.5.°

OK.

>> will john be a man
Yes.

>> bill persuaded john to go
OK.

>> could john have been persuaded to go
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Yes.

>> will john be persuaded to go
I don't know.
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4. The Formalism and Implementation of PATR-II

N.

This section was written by Stuart Shieber, Hans Uszkoreit, Fernando Pereira, Jane Robinson,

and Mabry Tyson.

4.1. The PATR-II Formalism

4.1.1 Motivation for the Formalism

The goal of natural-language processing is simple: to enable computers to participate

in dialogues with humans in their language in order to make the computers more useful to

their creators. The pursuit of this objective, however, has been a difficult task for at least two

reasons: first, the phenomenon of human language is not as well understood as is popularly

supposed; second, the tools for teaching computers what we do know about human language

are still quite primitive. The solution of these problems falls into the research domains of

linguistics and computer science, respectively.

Similar problems have previously arisen in the field of computer science. With the advent

of digital computers, the need for effective ways of communicating with computers, other
than by means of patch panels, became quickly evident. The "black art" of programming-

language design has improved greatly over the years and much is now known about effective

rommunication with compil.ers. In particular, the criteria for good programming languages are

their power, utility, and, in the case of research languages, simplicity and mathematical well-

foundedness. Note that only the first of these can be measured objectively; in fact, the power of

most current programming languages is equivalent to that of a Turing machine. However, the

basic fact is that more power is considered better. On the other hand, the other two criteria

are inherently subjective, which is why programming language design is an art rather than a

science. Utility, in fact, is usually a relative measure, relative to the purposes the language is
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designed for. SNOBOL is a useful language for string manipulation, but awkward at best for,

say, matrix manipulation. This is because the primitives supplied by SNOBOL do not match

the common underlying operations of matrix handling.

Among the evaluation criteria for programming languages that have been assiduously

promoted in the recent past is the aforementioned criterion of simplicity. Other trends have

been in the direction of declarative languages, languages emphasizing structured programming

and modularity, and the like. The design of a grammar formalism embodies the same problems

as the design of a programming language simply because it aspires to the same goal, i.e.,

effective communication of information to a computer. Thus, the same criteria can be applied:

the formalism should be as powerful as possible, should incorporate the types of primitives that

* natural-language grammar writers find they need, should be simple and mathematically well-

* founded. Trends from programming-language design, such as declarativeness and modularity,

can also be applied to the problem of designing grammar formalisms for computers.

. Theoretical linguists have been concerned with designing grammatical formalisms that

provide the tools for expressing universal and language-specific generalizations in a concise and

transparent fashion. One of their main objectives in this task is to constrain the power of

-: their formalisms in concurrence with the cross-linguistic set of constraints upon syntactic and

semantic phenomena that are found in natural language.

A radical but widespread opinion regarding the choice of an appropriate formalism is

that. it, should embody all nonaccidental regularities that, are observed in all languages, i.e.,

those that belong to universal grammar. For instance. if all languages are thought, to possess

coordination, this fact should derive from the formalism. If, on the other hand, no language

in the world has the word "famakupa," which would be phonologically well-formed in many

languages, we can then regard this observation as an accidental fact that will be represented

in the set of particular grammars.

The PATR-II formalism as a tool for grammar writing does not attempt to encode most of

the statements of universal grammar. It is based on the generally accepted view that sentences

have structure, and it provides for structures that are more complex than phrase structure
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trees. Not only do the regularities of specific languages have to be encoded by the user of the

formalism-either in the proposed rules or in stipulations with regard to usage constraints-

but so do most cross-linguistic generalizations, including constraints on generative power. The

cross-linguistic generalization and constraints can be reflected in a selected implementation or

usage notation. We shall discuss an example of such a notation later.

4.1.2 Design of the Formalism

We now describe the formalism that underlies the implementations of PATR-II. In some

sense, this is the "operational semantics" of a PATR-Il grammar. Certain implementations may

make use of certain abbreviations or conventions, but the operation of such implementations

is defined in terms of this simple underlying formalism. Thus, the formalism bears the same

relation to PATR-II implementations as, say, pure LISP does to MACLISP.

* -.A The basic operation in PATR-II is unification, an extended pattern-matching technique

that was first used in logic and theorem-proving research and has been arousing considerable

interest of late in the linpiistics community. Rather than unifying logic terms, however, PATR

unification operates on directed acyclic graphs (DAG).' DAGs can be atomic symbols or sets of

label/value pairs whose labels (also called attributes or features) are atomic symbols or other

* DAGs (i.e., subDAGs). Since two labels can point to the same DAG, the term graph is used

rather than tree. DAGs are notated either by drawing the labeled graph structure itself or,

as in this paper, notating the sets of label/value pairs in square brackets ([), with the labels

separated from their values by a colon (:), e.g.,

[cat: v
head: [aux: false

form: nonf iite
voice: active
trans: [pred: eat

argl: <f1134>

arg2: <f1138>

ITechnically, these are rooted, unordered, directed, acyclic graphs with labeled arcs. See Appendix A for a
more formal definition of PATR-fl grammars and accompanying notions.
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syncat: (first: [cat: np
head: (trans: <f1134>]]

rest: [first: [cat: np
head: [trans: 0f1138>]]

rest: (01140> "'
lambda]

'I. tail: (11140>]]

Note that the re-entrant structure, where two arcs point to the same node, is notated by

*labeling the DAG with an arbitrary label (in angle brackets (< >))and then using that label

for future references to the DAG.

Associated with each lexical entry in the lexicon is a set of DAGs.2 The root of each DAG

will have an arc labeled cat whose value will be the category of the associated lexical entry.
4, '

Other arcs may encode information about the syntactic features, translation, or syntactic

subcategorization of the entry.

PATR-11 grammars consist of rules with a context-free phrase structure portion and a

series of unifications on the DAGs associated with the constituents taking part in the use of the

rule. The grammar rules notate how constituents can be built up to form new constituents with

associated DAGs. The right side of the rule lists the cat values of the DAGs associated with the

child constituents; the left side, the cat of the parent. Other unifications specify equivalences

that must exist among the various DAGs and subDAGs of the parent and children. Thus, the

formalism uses only one representation (DAGs) for lexical, syntactic, and semantic information,

and just one operation (unification) on this representation.

By way of example, we present a small grammar for a fragment of English, accompanied

by a lexicon associating words with DAGs.

S NP VP

<VP agr> = <NP agr>

VP-. V NP

<VP agr> <V agr>

2 We shall postpone until later any discussion as to how this association is encoded or implemented.
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Uther:

<cat> = np
<agr number> = singular
<agr person.> = third

Arthur:

<cat> -- np

<agr number> = singular

<agr person> = third

knights:

<cat> =- V

<agr number> = singular
<agr person> = third

This grammar (plus lexicon) admits the two sentences "Uther knights Arthur" and "Arthur

knights Uther." The phrase structure associated with the first of these is

IS [NP Uther] [Vp iV knights] [NP Arthur]]]

The VP rule requires that the agr feature of the DAG associated with the VP be the

same as (unified with) the agr of the V. Thus the VP's agr feature will have as its value the

same node as the V's agr and, hence, the same values for the person and number features.

Similarly, by the unification associated with the S rule, the NP will have the same agr value

as the VP and, consequently, the V. We have thus encoded a form of subject-verb agreement.

4.1.3 Power of the Formalism

PATR-ll grammars, as just presented, are extremely powerful; in fact, they are equivalent

to Turing machines. We therefore present a straightforward constraint upon their power that

guarantees decidability, a constraint Pereira [98] calls off-line parsability. Off-line parsability

requires that there be no nonproductive recursive chains of rules in the grammar, i.e., chains

that can consume no input. Recursive chains of unary rules, or chains of rules in which all

* but one nonterminal in each rule can derive the empty string, are thus eliminated. In the case

of context-free grammars, removing such rules does not change the power of the formalism.
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PATR-ll grammars, however, are restricted by this constraint-the specific effect of which is

to render the parsing problem decidable.

Nonetheless, the power of PATR-11 grammars remains great. Appendix B presents gram-

mars for the non-context-free triple-counting language a'b'c" and the non-indexed language

a22 . It remains an open question whether there are interesting further constraints on PATR-II

and other unification-based formalisms that reduce the parsing problem significantly without

unduly constricting generative capacity. We should keep in mind that evaluation of such con-

straints requires aesthetic judgments, not scientific ones.

4.1.4 Future Research to Improve the Formalism

_J
The formalism is broad and powerful enough to handle most-indeed, probably all--

phenomena in the syntax and semantics of natural language. It has also turned out to be well

suited for the classes of phenomena considered so far. Most of the research will have to be done

in the area of choosing appropriate strategies for application of the formalism. However, there

is a class of phenomena that might justify some extension or modification of the formalism:

the phenomena of free or variable word order.

Although the formalism is powerful enough to deal with word order variability, there is

a strong feeling on our side that it should be possible to express free variation more directly.

We plan to work out. the necessary modifications in the near future and, to this end, we hope

to be able to use results of a proposed parallel research project for studying such word order

variation.

One direction in which the formalism might be extended to allow for word order

variability is the relaxation of constraints on possible feature values. Let us assume that these

values can be nonatomic, i.e., that they can be sets or sequences. Let us furthermore regard

the permutations of verb complements as an example of order variation. By allowing structure

in the feature system, we can encode much more information about possible VP structures. -. .

One example follows, but the possibilities are endless (literally so, since, by doing this. we move

from the realm of context-free languages to the realm of Turing computability). Suppose the
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range R of the Syncat [see Section 4.3.4.1.] feature included atomic symbols and all sets and

sequences of elements of R. Also suppose that we define an operation e acting on compound

elements of R such that

< a,, ,.,, > e'-,---< c, e o', :..,on >
(a,B:.. e Y =< a o -,{ ...l, . >

Now we can write a grammar as follows:

VP - VP COMP

Syncat(VPj) = Syncat( VP2) e Form(COMP)

VP-V

Syncat(VP) Syncat(V)

This structuring allows us a way of expressing free word order in the subcategorizations. Thus,

if a verb subcategorizes for (< a/g > -y), it allows argument structures of Q#/- and "yai but

not 3a-y or a'yo. Using similar techniques, ID/LP could be encoded in a E operator working

on complex structures. In fact, this is basically how the ID/LP direct parsing algorithm of

Shieber [117] works.

4.2. Some Uses of the Formalism: The Current PATR-II Grammar Design

In this section we present some ideas concerning different uses of the formalism and

describe our own current usage. Although most of the techniques presented here represent

our current use of the basic formalism, they should not be identified with the formalism itself,

which allows for quite different strategies of grammar writing.

It should be mentioned that many syntactic constructs not discussed in this introduction

to the formalism are currently handled by existing grammars for our implemented system.

Among these are S complements, active, passive, "there" insertion, extraposition, raising and

equi constructions, etc. (See Appendix D for a more complete PATR-I grammar, Appendix E

for a transcript of the parsing system using the grammar.)

Before we start explaining our use of the formalism let us emphasize once more the con-

siderable freedom it allows for writing a grammar. The only label with any special significance
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in the formalism is the arc label cat. This is a consequence of the decision to use traditional

context-free phrase structure rules to create part of the syntactic and semantic structure.

Everything else, including the appropriate category symbols, has to be designed by the gram-

mar writer. Part of the process of writing a grammar, therefore, involves deciding on a set of arc

labels (attributes, features) that are used to encode pertinent information about constituents.

4.2.1 Feature Percolation

Linguistic formalisms often provide a technique for percolating a large set of feat ure.

from a given child to its parent, for instance, by means of the head feature convention in GPSG-.

or the 1=1 equation in LFG. Grouping of features in this way can be accomplished in PATt-ll-

by placing the features on a subDAG of the DAG of the child under a special attribute, say

head, and then unifying the head attribute of parent and child with a unification of the form

<parent head> = <child head>. Agreement features and case, are examples of features that

could be percolated in this way. Thus, the previous sample grammar might be extended to

allow head feature percolation as follows:

S - NP VP

<S head> = <VP head>
<NP head agr> < <S head agr>

VP - V NP

<VP head> = <V head>

1.ther: .-

<cat> -np
<head agr number> = singular
<head agr person> - third

i.

Arthur:

<cat> = np
<head agr number> = singular
<head agr person> = third

knights:

<cat> = v
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<head agr number> = aingular
<head agr person> = third

4.2.2 Semantics

The meaning of a constituent, a segment of logical form, needs to be recorded somewhere

in the DAG associated with it. For reasons of modularity, we would like this encoding to

be separable from the other portions of the DAG that encode syntactic information. To

encode meanings with no extra apparatus, we shall use the following encoding of logical-form

fragments. A predicate applied to several arguments, for instance-f(a, b, c)-will be encoded

with the arcs pred and argi, respectively. A constant will be notated with the feature ref. Thus,

the fragment above would be encoded as

[pred: f
argl: [ref: a]
arg2: [ref: b]
arg3: [ref: c] I

More evocative names for the argument positions could be used, e.g., agent, patient, goal,

though we will not use them here.

Note that the translation of a parent constituent is often associated with the translation

of a specific child constituent (with other child translations adding further information). For

instance, the translation of a VP will be identical to that of the child V, with complements

supplying translations assigned to the arguments. We can therefore make trans a head fea-

ture and allow the standard head feature mechanism to distribute it appropriately. Adding

translations to our small grammar, we get:

S - NP VP

<S head> = <VP head>
<NP head agr> = <S head agr>

<S head trana argl> = <NP head trans>

VP- V NP
<VP head> - <V head>

<VP head trans arg2> - <NP head trana>
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Uther:

<cat> = np
<head agr number> = singular
<head agr person> third

<head trans 4-f> = uther'
Arthur:

<cat> = np
<head agr number> = singular
<head agr person> = third

<head trans ref> = arthur'

knights:

<cat> = v
<head agr number> = singular
<head agr person> = third I.

<head trans pred> = knight'

This grammar will admit the same sentences as previously, yielding the translations (in

prefix notation) knight'(uther', arthur'), and knight'(arthur', uther') respectively.

4.2.3 Coordinating Syntax and Semantics

The previous grammar performs a de facto coordination of syntax and semantics by

requiring that the (syntactically) preverbal NP play the (semantic) role of first argument, and

that the postverbal complement play the role of second argument. Such a direct one-time

mapping is difficult to maintain, and various theories have solved this problem in different

ways. In general, the solution requires adding one more degree of freedom in the mapping.

GPSG obtains this degree of freedom because intensional-logic operators are able to act as

combinators, reordering arguments. These operators are introduced through met arules (though

they could have been introduced by lexical rules). LFG uses an intermediate representation

to provide the additional degree of freedom, mapping syntactic objects onto a set of arbitrary

labels-SUBJ, OBJ, OBJ2, etc.-and then mapping these in turn to argument positions.

Either of these solutions could be modeled in PATR-ll, though our actual technique

(which will be presented after subcategorization is discussed) is slightly different from both.
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We offer an example of the LFG style solution at this juncture. An LFG grammar unifies the

preverbal and postverbal NPs as the values of subject and object, respectively. If one declares

these to be head features, they will be unified with the subject and object features of the V

itself. The lexical entry for the V will then perform the second half of the mapping, i.e., from

grammatical function to argument position. j!i S - NP VP

<S head> = <VP head>
<NP head agr> = <S head agr>

<S head subject> = <NP head>

VP - V NP

<VP head> = <V head>
<VP head object> = <NP head>

Uther:

<cat> = np
<head agr number> = singular
<head agr person> =third

<head trans ref> = uther'

Arthur:

<cat> = np
.. < <head agr number> = singular

<head agr person> = third
<head trans ref> = arthur'

knights:

<cat> = v
<head agr number> = singular
<head agr person> = third
<head trans pred> = knight'

* <head trans argl> = <subject trans>
<head trans arg2> = <object trans>

: 4

It is now clear how a lexical rule might be written for passivization: it merely changes the

roles of subject and object in the lexical entry in the appropriate way. The ability to perform

such redirection of grammatical and semantic functions provides the requisite extra degree of

freedom. Before presenting an alternative solution to the degree-of-freedom problem, we must

discuss the related problems of verb phrase structure and subcategorization.
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4.2.4 Verb Phrase Structure and Subcategorization

4.2.4.1 Nested versus Flat Structure

Various alternatives have been suggested for handling verb phrase structures in a gram-

mar for English. The proposed methods fall into two main categories: flat structure and nested

structure. The flat structure is epitomized by the treatment in GPSG. We shall start with this

technique.

Suppose we have a GPSG of the form

< I, VP --I. V 011'"..,am > "

< 2, VP-V, • . , >

etc.

This grammar generates flat verb-phrase structures in which the verb and all of its complements

are siblings. In GPSG we get appropriate subcategorization by associating with the rule some

distinguishing feature (in the nontechnical sense) then associating that feature with any verbs

that subcategorize for the rule. (This association acts like a virtual pointer between verbs and

rules.) The feature in the case of GPSG is the rule number.

Two points deserve mention. First, the rule number technique in GPSG is outside the

feature system. 3 But, since there is presumably only a finite number of verb phrase rules, there

is no reason that the rule number could not have status as a normal feature (in the technical

sense). A PATR-11 grammar using this technique would look like this:

VP V al...Ckm

<V ayncat> 1

VP - Vol---

<V 8yncat> =

and so on.

3 Actually, the most recent versions of GPSG have abandoned the distinction between rule numbers and features.

0 50
• .'

. . .~ ~ - . * *. .. -\ %.% ..... . . -L.L _.. ,,,,,,. .......... . ,'. .. . t.

%*~a. . . ...
A4..*-...$-, .



Second, rule numbers are only one way of distinguishing rules. Any other distinguishing

feature of rules could be used. In particular, if no two rules share the same right-hand side,

the right-hand sides could themselves be used as the subcategorization, as in the following

grammar:

IP Val'".. 1

<Vsyncat> = [ai,... ,am]

VP -. v ... "*,

<Vayncat> =

Of course, we have introduced notation here that is not found in the PATR-11 formalism,

namely, lists. Before explaining this, let us be even more free with notation. We could make
the grammar still more concise by taking advantage of the fact that DAGs carry their category

"on their sleeve," so to speak.

VP - Va-

<V ,yncat> = @(D < a, cat >]

IT:.. <V syncat> =~ -l lict>

where ED denotes the repeated use of the list concatenation operator 6T,.

Note that all the unifications of the rules in this sample VP grammar are of exactly the

same form. We can take advantage of that fact in a grammar in which there is only one VP

rule by making use of a regular expression notation for the right-hand side of the rule.

IP V{a Ua 2 U'"U/)*

<V ,yncat> = D,[< COMPi rat >1

where n is the number of constituents in the instantiation of the rule, and COMPi provides a

way of accessing the constituents.

We can now begin to clarify just how such a free-wheeling subcategorization scheme can

be implemented in strict PATR-lI. First of all, the method of getting the behavior of a Kleene

star in context-free grammars is to use a recursive category, i.e.. for each possible complement
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have w,,I

category cki, we have a rule:

VP, --- Vp2 a.-

<VP2 syncat> - <ai cat> ( <VP1 syncat>

Ve add a rule to start the recursion:

VP W V

<VP syncat> < <V syncat> 7,

\We merely require that a "full-fledged" VP is one whose synicat is the empty list A. It can
4- •

be easily proved that this grammar weakly generates the same language the previous one(s)

did. The difference, of course, is that the structure is now nested, not, fiat.

Finally, the question remains as to how lists and the Q operation can be encoded. Lists

can be encoded recursively as either a special symbol denoting the empty list, A, or pairs

containing a list element and a list. We shall call these two parts first and rest. The syncat arc

of a verb will then have a value something like

[first: a,
rest: [first: a2

rest: ...

Elirst: am
rest: A] ..

The previous grammar can now be expressed as

VP 1  - VP 2 01i

<VP2 syncat first> <ai cat>
<VPI syncat> <VP2 syncat rest>

VP- V

<VP syncat> <V syncat>

We have seen a smooth progression from flat. to nested structure to deal with the same

problem of subcategorization. The progression involved moving the information about con-

stituency from phrase structL_ rules to sabcategorization information in the lexicon. Indeed,

any context-free grammar can undergo such a transformation to yield an equivalent PATU-II -"

grammar that has only one nonunary rule and preserves the weak-generative character of the

language. (See Appendix C.) In effect, we just move all the syntactic information into the lexical
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- 2
entries, so that t he same PATR-II grammar skeleton can be used to model any CF grammar.

*'.. Because the construction is local, the two methods can be combined freely. It is this aspect j
that we take advantage of in the transformation of verb phrase rules.

4.2.4.2 Complex Subcategorization

By far the most important comparisons are the similarities rather than the differences

between the flat and the nested methods of handling VP structure. These are embodied in

the progression of grammars described above. The techniques encode the same information in

ways that reflect the direct isomorphisms between them. However, the nested technique for

subcategorization can be extended to allow verbs to subcategorize relative to any aspect. of the

DAG associated with a complement, not just the category. The grammar above can be rewritten

as shown below to allow arbitrary information about complements to be subcategorized for by

unifying the elements of the syncat list with the whole DAG associated with the complement,

not just the cat subDAG.

V'P - VP2 a i

<VP2 syncat first> <a>

<VP1 syncat> = <VP2 syncat rest>

VP-. V
%<VP syncat> = <V syncat>

4,,.

4.2.5 Coordinating Syntax and Semantics Revisited

We now return to our discussion of the coordination of syntactic complement structure

and semantic argument structure. Our grammar so far has the complement structure of the

verb recorded in the feature syncat and the semantic structure in the feature trans. Since all

of the information for the mapping is thus available in the lexical entry, we can perform the

mapping directly by unifying the translations of the various subcategorized elements with the

various argument positions. For symmetry, we add the preverbal NP to the syncat list so that

it too can be unified into the translation. Our grammar becomes

V.q
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S-i NP VP

<S head> =<VP head>
<NP head agr> =<S head agr>

< VP syn cat fi rat> =<NP>

* <VP syncat reet> =

VPI VP2 NP

< VP1 head> = <VP2 head>
< VP2 syncat first> = <NP>

<VP1 syncat> = <VP2 a&ncat rest>

1*P- V

<VP head> = <V head>
<VP syncat> = <V oyncat>

.4 tither:

<cat> = np
<head agr number> = singular
<head agr person> = third

<head trans ref> = uhr

Arthur:

<cat> = np
<head agr number> = singular
<head agr pers on> =third

<head trans ref> = arthur'

knights:

<cat> = v
<head agr number> = singular
<head agr person> = third
<head trans pred> = knight'
<head trans argi> = <syncat reat first head trans> 1.
<head trans arg2> =<ayncat first head trans> 4
<ayncat first cat> =np

<syncat rest first cat> =np

-' <8yncat reat real> =A

* 4.2.6 Auxiliaries

Handling auxiliary verbs is a related question. It seems that here a nested structure (as
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in GPSG or PSG) is relatively well agreed upon. Thus, a rule of the form
i VP1 - V VP2

< <VP head> = <V head>

<V head au > = +
<V ynat =< VP2 >

<VP syncat> = <VP2 ayncat>
<VP syncat re8l> = Aiii

would suffice to handle auxiliaries for the nested-structure grammar. llere the syncat of the V

will require certain features to be obtained on the sibling VP (VP 2 ), say that its form feature

be nonfinite. By making form a head feature, we guarantee that the form of a VP comes from

its first auxiliary, since the auxiliary is the head of its VP ancestor (VP 1 ). Finally, all the

complements of VP 2 must be attached before permitting auxiliaries, and the eyncat feature-

now possessing information only about the preverbal constituent-passes from lower to upper

VP, that is, from VP 2 to VPI.

Note that the verb is required to have a + value for the auz feature. The VP -- V rule

presented earlier must be augmented by the restriction that the aux feature be -.

4.2.7 Adverbial Modifiers and the Generalized Wasow Effect

Modifiers can be easily dealt with in the nested-structure framework by a single rule,

e.g.,

VP - VP2 ADVP

<VP syncat> = <VP2 eyncat>

This rule allows adverbials to occur freely among the complements of a verb, embodying

the so-called Generalized Waeow Effect4 , which is evident in such sentences as

1) Uther gave Lancelot on Thursday a sword.

Questions about how semantics would be affected and what head features should be

percolated are as yet unresolved.

4The phenomenon and its name were brought to our attention by Ivan Sag.
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4.2.8 An Implementation Notation for Grammar Writing

The PATR-I formalism can be viewed as a formal language for defining natural-language

grammars. Unfortunately, as with many formal languages, the notation we have described

so far is somewhat clumsy and verbose. Furthermore, there is no way to capture certain

generalizations about the lexicon that a user might want to encode. We shall now describe a

specific implementation of a natural-language-processing system whose underlying formalism is

PATR-II and whose users are able to tailor the notation to their intended use of the formalism.

As before, the intention is not to impose any particular usage, but to allow users to design

their own mode of operation. The utilization of the formalism that has been described in this

section has benefited from the notation, but so would many other implementations based on

different strategies. The current PATR-II implementation supports the notation. Without it,

our lexicon would be much more redundant.

4.2.8.1 Templates

Lexical items often share a great deal of structure because of their intended application

or similarities in the way they function. We would like to define template DAGs that can be

combined to form the lexical items in such cases. For instance, many verbs in English will

share certain subcategorization information, such as a single noun-phrase complement that

comprises the second argument of the predicate/argument. structure. We can define a template

called Transitive to encode this information:

Let Transitive be

<syncat first cat> =- np
<syncat reat first cat> np

<syncat rest rest> = A
<head trans argl> = <syncat rest first head trans>

<head trans arg2> = <syncat first head trans.>
<head auz> - false

Templates for V and 8sing, respectively, can encode the fact that the word is a verb and that

it is in the third person singular form.

Let V be
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<cat> =V

Let 8sing be

<head agr number> = singular '

<head agr person> = third

The lexical entry for knights then becomes

knights:

V Transitive 3sing
<head trans pred> = knight'

4.2.8.2 Path Abbreviations

Like DAGs, path specifications can be abbreviated by using the same syntax. For

example, the path abbreviation

Let Pred be

<head trans pred>

allows the same lexical item, knights, to be encoded

knights:

V Transitive 8sing
Pred . knight'

In summary, the use of templates and path abbreviations to tailor an implementation of

PATR-I to a particular intended usage allows the grammar writer to capture the generalizations

pertinent to that usage, at the same time facilitating the task of grammar writing and debugging

by partitioning the grammar writing process into modules. Lexical rules provide a similar tool

for accomplishing these objectives.

4.2.8.3 Lexical Rules

To encode the relationships among various lexical items-for instance, between the

passive and active forms of a verb-we need a notion of a lexical rule. A lexical rule takes
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as input a single DAG and generates an output DAG by means of unifications. Those DA(;s

are denoted by the metavariables in and out, respectively.

As an example, we first discuss the active-passive dichotomy. Rather than generate the

active from the passive or vice versa, we generate both of them from a protoentry for the verb

whose syncat feature is exactly like the syncats presented previously, except that the final node

is not marked with a A and an arc <ayncat tail> is added pointing to the final node in the

syncat list. The Transitive template now looks like the following:

Let Transitive be

<8yncat first cat> = np
<syncat rest first cat> = np

<syncat rest real> = <syncat tail>
<head trans argl> = <syncat first head trans>
<head trans argO> = <syncat first rest head trans>

<head auz> = fale

A lexical rule active is now defined to take a protoentry whose syncat was generated in this
-"S

form as input and to generate an entry whose <syncat tail> is A. Passive, on the other hand,

takes the same protoentry and moves the first element of the syncat list to the end of the list

(the tail), thus making it a postverbal complement and making the previous leftmost postverbal

complement the subject. Formally, expressed, we have

Define Active as

<out cat> = <in cat>
<out head> = <in head>

<out head voice> = active
<out syncat> = <in syncat>

<out syncat tail> = A

Define AgentlesaPassive as

<out cat> = <in cat>
<out head> = <in head>

<out head voice> = passive
<out syncat> = <in syncat rest>

<out eyncat tail> = A

Define AgentivePaosive as

<out cat> = <in cat>
<out head> <in head>
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<out head toice> = passive
<out syncat> <in syncat rest>

<out syncat tail first cat> = pp
<out syncat tail first fez> = by

<out syncat tail first head trans> = <in syncat first head trans>

The operation of the three lexical rules on the protoentry for the verb knight is shown as

an example. First the protoentry:

[cat: V
head: [aux: f alsoe

forn: nonfinite
trans: [prod: knight

argl: <f1134>

arg2: <f1138> C]]],

syncat: [first: [cat: np,

head: [trans: 011134>]]

rest: [first: [cat: np
head: [trans: (11138>]]

rest: <f1140>]

tail: (1140>]]

The active form is

[cat: v

head: (aui: false
form: nonfinite
voice: active

trans: [pred: knight
argi: (11134)

[]

arg2: (11138>(]]]

syncat: [first: (cat: np

head: (trans: (11134)]]

rest: [first: [cat: np.

head: [trans: (11138>]]

rest: (11140)
A]

tail: (11140>]]

0 The agentless passive form is

[cat: v

head: aux: false
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form: nonfinite
voice: passive

trans: (prod: knight

argl: (3I arg2: <f 1138>
syncat: (first: (cat: up

head: [trans: 0f1138>JJ
rest: 0f1140>

A]
tail: 0f1140>JJ

* Finally, the agentive passive:

(cat: v
head: (aux: false

form: nonfinite
voice: passive
trans: [pred: knight

argi: 0f1134>

arg2: 0f1138>

syncat: (first: (cat: up
head: [trans: 0f1138>]J

rest: (first: (cat: pp
lox: by
head: [trans: 0f1130>]]

rest: 0f1140
A]

tail: 0f1140>11

4.2.8.4 Advantages of the Notation

It has been mentioned already that the notation we have introduced, and which isLA

used thbroughout the lexicon, allows convenient abbreviations. Let us exemplify this claim by

presenting a lexical entry in both its full and abbreviated forms. Here is an entry for the verb

seem V -TakeslntransSbar Monadic Extrapos

-Takeslnt RaisingtoS;
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This entry collapses two verb entries for seem. Both entries share the category, i.e., both

forms are verbs. The dashes indicate the start of each subentry. The following two sentences

provide examples of the different syntactic environments that distinguish the two forms:

It seems that Uther sleeps.

Uther seems to sleep.

What follows are the definitions for the templates that are contained in the complex entry.

Let be be

<cat> = v
<head auz> = false

<head trans pred> = <sense>

Let TakesIntransSbar be

<syncat first cat> = sbar
<syncat tail> = <syncat rest>

Let Monadic be

<head trans argl> = <syncat first head trans>

Let Takeslnf be

<syncat first cat> = np
<syncat rest first cat> = vp

<syncat rest first head form> = infinitival
<syncat rest rest> = <syncat tail>

Let RaisingtoS be

<head trans argl> = <syncat rest first head trans>
<syncat rest first syncatfirst>= <syncat first>

The first subentry also contains a name of a lexical rule, Extrapos. Here is the rule:

Define Eztrapos as

<out cat> = <in eat>
<out head> = <in head>

<out head auz> = false
<out head agr per> . pS

<out syncat first cat> = np
<out syncat first lez> = it

<out syncat rest> = <in syncat rest>a 6
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<out syncat tail> = <in syncat tail rest>
<in syncat tail first> = <in syncat first>

Without the notational tools introduced in this section we would have to write the following

two verb entrics for the two forms of seem:

seem I :

<cat> = v
<head auz> = false

<head trans pred> = <sense>
<syncat first cat> np

<syncat tail> = <syncat rest rest>
<head trans argl> = <syncat rest first head trans>
<syncat first lez> = it

<syncat rest first cat> = sbar
<head agr per> = pS

seem 2 :

<cat> = v
N <head aux> = false

<head trans pred> = <sense>
<syncat first cat> = np

<syncat rest first cat> = vp
<syncat rest first head form> = infinitival

<syncat rest rest> = <syncat tail>
<head trans argl> = <syncat rest first head trans>

<syncat rest first syncat first>= <syncat first>

In fact, these entries are the structures that, are built from the "short" lexical entry when the

word seem is encountered in an input sentence.

But our notation does not, only allow convenient abbreviations; it also plays an important

role in the linguist's use of the formalism. The actual format of the rules and lexical entries

written by the linguist can be detached from the formalism. The grammars look more like those

to which he is accustomed. Moreover, and perhaps most importantly, grammar writers can use

the notational tools to express generalizations they could not state in the "pure" unification

notation of the formalism. The fact that the DAGs associated with a syntactically motivated

verb class like raising-to-object share some structure can be expressed in a nonredundant way,

even if the amount of structure held im common cannot be encoded in a single unification
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statement. The linguistic observation that all English modals are finite is expressed by including

the template Finite in the definition of the template Modal.

The definition of the notational tools can also be used by the grammar writer to induce

constraints upon the form and power of the grammar. One could reserve lexical rules for certain

types of regularities such as relation-changing rules. It is quite conceivable that, at some point,

the rules and lexical entries of our grammars will contain nothing but justified abbreviations

of the kind introduced above.

4.2.9 Future Research on Uses of the Formalism

Clearly, the coverage of the grammar needs further expansion. But there are also more

basic questions that require closer attention than how to handle other grammatical phenomena.

The linguistic status of templates and lexical rules needs to be determined. One could adopt

a simple view and use lexical rules every time the power of pure unification with a template

does not suffice, i.e., whenever changing to the graph structure of lexical entries requires more

than the simple addition of arcs and nodes. It would be more gratifying, though, if one had

a clearer correspondence between the use of notational tools, on the one hand, and classes of
'.4

linguistic regularities, on the other.

Another set of problems arises with the planned integration of non-truth-conditional and

pragmatic information. If the truth-conditional part of the semantics of a phrase is incorporated

- "~ in the DAG, there is no obvious reason to exclude the presuppositional elements of its meaning.

The details of such a solution as well as of its interaction with discourse representations need

to be worked out in the course of further research.

4.3. The Current PATR-II Implementation

k ..

4.3.1 Overview

The development of the PATR-11 implementation took place on the SRI-AI DEC 2060
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time-sharing system operating under TOPS-20. The original implementation is written in

INTEISP-10. In order to integrate PATR-11 with the other components of KLAUS, the

prototype INTERLISP version needed to be transported to a LISP machine. This version now

runs on a SYMBOLICS 3600 in ZETALISP. A third version of PATR-II was programmed in

PROLOG. This implementation does not include all the components of the prototype. It served

nainly as a testbed for a structure-sharing unification algorithm.

The prototype implementation has five major program components: a set of top-level

functions; a component for building and handling the internal lexicon; the morphology corn- . .

ponent; a context-free parser; a set, of functions for structure unification. The grammar consists

of a set of syntactic rules, a lexicon for basic word forms, a set of affix lexicons, definitions of

lexical rules, templates and path names, and a set of finite state automata representing the

morphophonemic regularities of English.

4.3.2 Implementation of the Basic Formalism

4.3.2.1 Top Level and User Interface

The top-level component starts the program, initializes global variables, sets user

privileges, and runs the user interface. The main function for the user interface is

COMMANDS. It will prompt. the user with "command or sentence to parse." At this level, the

user can give commands that load and clear grammars, parse sentences, debug, trace, and edit

the grammar and lexicon, save any desired versions of the grammar, or save the whole system.

If the user input is enclosed in parentheses, the expression will be evaluated as an

INTERLISP S-expression. If a sentence is given instead of a command, PATR-ll will attempt

to parse it turning control over to the parser for this purpose. The parser activates lexical "-i

lookup, morphological analysis, phrase structure building, and graph unification. If parses are

found, the corresponding semantic translations will be printed out.
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4.3.2.2 The Lexicon Functions

PATR-lI actually has several lexicons: a stem (or root) lexicon and several small affix

lexicons. Lexicons written in the notation described in Section 4.2.8 are stored internally as

letter trees. The lexical information of an entry in these trees is associated with its last letter.

The trees arc used as discrimination networks for lexical lookup. There are functions that add,

(lelete, display, and change entries. Other functions build new internal lexicons from inlputtedl

A lexicon files or write out letter trees in the linguistic format.

4.3.2.3 Morphological Analysis

The lexicon for a language-processing system should not have to list the full morphological

paradigm for each entry when there are many indications of the productivity of morphological

rules for such processes as plural formation, conjugation, and English genitive inflection. On

the other hand, the regularities that govern these processes are quite different from those

entailed in syntactic processes and, moreever, it is impossible to separate morphological from

phonological rules. Therefore, one often speaks about the morphophonemic component of a

grammar. The design of PATR-11 takes the special status of morphophonemic processes into

account by assigning them to a separate component of the system: the morphological analyzer.

Our morphological analyzer is based on a recent implementation of Kimmo Koskenniemi's

.. r "bi-level model" for morphological analysis and synthesis [64]. This implementation was

developed in INTERLISP as a course project at the University of Texas under the direction of

Lauri Karttunen [57].

Two-level rules do not describe transformations of segment sequences in the same way

as (10 rules of generative phonology. They are simply descriptions of correspondences between

- . lexical and surface forms. In this respect the model resembles old-fashioned structural phonol-

ogy, although it also differs from the letter in several important ways. Just as in structural

phonology, in the two-level model there are no rule interactions, no relationships such as the

bleeding or feeding that result from the sequential application of rules, so that subsequent rules

apply to the output of earlier ones.

*L~ %A



Like the other parts of the IPATR-I1 processor, the morphological component is languag -

Independent.

Morphological rules are represented in the processor as automata- more specifically,

as finite-state transducers. There is a one-to-one correspondence between the rules and the

automata. The idea of compiling rules into finite-state machines comes originally from Mart in

Kay and Ronald Kaplan [55]. In addition to the functions that analyze morphological forms by

running the finite-state automata there are functions that compile and merge these automata

from sets of phonological rules.

4.3.2.4 The Parser

The parser of the INTFRLISP prototype PATR-II is a context-free, bottom-up chart

parser without lookahead. It was inspired by the Bear-Karttunen PSG parser , which in turn

is based on Dan Chester's implementation of the Cocke, Ka-sami, Younger algorithm (refer to

[6] for a description of the parser and algorithm).

Before a new constituent is added to the chart, the DAGs of parent and children nodes

are selectively unified by the graph unification component according to the unifications listed

in the body of the applied rule. The completed edges of the chart of the PATR-II parser include

pointers to the DAGs associated with the nodes.

The treatment of long-distance gap-filler dependencies is based on the opinion that the

phenomenon is so general that the processor and not the grammar should be responsible for

introducing and percolating gaps. Consequently, no grammar rules have to be duplicated to

account for gap production. The current solution resembles the one in the PSG parser: the

parser simply "assumes" a trace between every two adjacent words in the input. These traces

can stand for NPs or PPs. Their agreement features are carried up the tree and are unified in

the end with the filler's agreement features.

\e intend to replace the parser with a "smarter," more predictive one later, that will

recognize potential gaps only at places where they can really occur. We also want to investigate
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bow a phrase-linking solution of the type proposed by Peters and Ritchie [100] could be

implemented1 in the PATR-11 formalism.

-\ 4.3.2.5 Graph Unification

As described before, a PATR-lI grammar is a set of context-free rules annoted with D.XC

- ~ unifications. It is useful to approach the problem of constructing a parser for PATR-11 by

determining which extensions should be made of a context-free parser to enforce the constraints

specified by unifications. However, some parsing strategies that are reasonable for context-free

grammars are not applicable or are just too inefficient for the extended parser. This is especially

the case with parsers that require the context-free grammar to be rewritten into some normal

form, because, in general, an annoted grammar cannot be rewritten this way.

The prototype PATR-11 parser is a pure bottom-up context-free parser that applies all

* unifications associated with a rule when the latter is used to build a new phrase (parent) from its

subphrases (children). When unifications are applied, both the parent phrase and the children

may become more specified (more "instantiated"). Because of local or global ambiguities in the

grammar, a given phrase may appear as the child of more than one parent phrase by virtue of

rule applications that instantiate the child in different ways. For the parser to work properly,

these alternative instantiations of the DAG associated with a phrase must be segregated. The

.4,1 prototype achieves this segregation by copying all the child phrases and their DAGs before

trying to apply a rule (even if the rule application may eventually fail because of contradictory

unifications or values).

The copying method used in the prototype is easy to implement, which is the main reason

it was chosen. However, the wholesale copying of DAGs with each rule application requires far

more space (and time) than the "structure sharing" method we are now considering. A further

problem with the prototype parser is that the pure bottom-up strategy has difficulty in dealing

with missing constituents (gaps) in a general manner.

The structure-sharing method of DAG representation and unification is closely modeled

on the technique of the same name used in automatic theorem provers. This connection between
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PATI1-Il parsers and theorem provers is more than coincidental, as it derives from the very

close inherent relationship between PATR-11 grammars and first-order theories.

Using structure sharing, the DAG associated with a phrase is represented by a pair of

items: its "skeleto"-a DAG derived by compile-time application of all the unifications of a

single rule; its "index," a number identifying the particular rule application that created this

DAG. The index of a DAG is used to tag records ("bindings") that describe additions made

to the DAG through unification. Bindings are stored in "binding environments." Although

each alternative partial analysis of the input has its own binding environment, most of these

environments share information because they have been derived (through alternative rule

applications) from earlier partial analyses.

The standard structure-sharing technique, invented by Boyer and Moore [11], requires

an amount of searching for the bindings of a DAG that, at worst, can be proportional to

the size of the preceding analysis. Instead of this scheme, we have in our experiments with

structure sharing adopted a "logarithmic tree" representation of binding environments and a

parsing strategy that, make binding lookup at, worst logarithmic with respect to the size of

the analysis. The parsing strategy used, 'which is a variation of the Earley parsing technique,

has the further advantage of allowing gap-introducing rules with full generality. However,

to achieve the logarithmic time bound forces us to copy new complete phrases as they are

created, although partial analyses are still fully structure-shared. Since the trade-offs between

this method and the standard structure-sharing one are difficult to identify theoretically, we

*' plan to implement another version of the structure sharing PATR-I1 parser, using the standard

Boyer and Moore method.

The Prolog implementation of PATR-I1 is based on an experimental structure-sharing

parser of the kind described above.

L;.

4.3.3 PROLOG Implementation

Besides the INTERLISP and the LISP machine implementations of PATR-Il, there exists

also a PROLOG implementation of the basic formalism on the DEC-2060. It is based on the
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experimental structure-sharing PATR-II parser described in Section 4.3.2.5. The Prolog pro-

gram has run successfully with various PATR-II grammars, with an efficiency similar to that of

the copying parser. Prolog has been useful for rapid "throw away" testing of alternative parsing

mechanisms. The advantages of a structure-sharing parser are expected to dominate perfor-

mance for larger grammars than our current ones, at which point it will become worthwhile to

reimplement the parser using more efficient low-level coding on the LISP machines.

-1.3.4 LISP Machine Implementation

For the integration of PATR-1I with the other components of KLAUS, the prototype

PATR-II implementation that had been developed in INTERLISP on a DEC 2060 had to be

transported to a Symbolics 3600 LISP machine.

The transfer of PATR to the 3600 was done in such a fashion that further development

could be done on the 2060 and, at the same time, make it relatively easy to retransport to the

3600. An initial effort to translate the INTERLISP-10 code into ZETALISP code directly by

using the INTERLISP TRANSOR translator revealed a number of problems.

An alternative method was tried. Symbolics offers an INTERLISP Compatibility Package

(ILCP) consisting of a translator that runs under INTERLISP and a run time package that

runs on the 3600. The translator on the INTERLISP end mainly checks for upper/lower-

case problems, handles comments, and other syntactic features of INTERLISP. The run time

package on the 3600 provides a simulated INTERLISP environment. That is, many of the

INTERLISP functions are defined to work as they do in INTERLISP. For instance, MAP

takes its arguments in the order used by INTERLISP rather than the opposite order used by

ZETAIISP.

The disadvantage of this method is that the ILCP is a rather large set of software that

. is still being developed. It was necessary to rewrite all the INTERLISP I/O functions, as the

supplied definitions did not cover PATR's particular usage of those functions. At present, this

software package must be loaded each time the PATR code is loaded. However, it was decided
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that running with the ILCP was easier and more reliable than using a special translator for

the PATR code.

Some functions required by PATR, e.g., ASKUSER, were not, available. This function

was coded directly in ZETALISP to use normal mouse selection when possible.

When the PATR code was run on the 3600 under the ILCP, several coding problems were

discovered. Most of these were avoidable (i.e., taking the CAR of an atom) and a patch was

made on both the INTERLISP and ZETALISP versions of PATR.

The only serious difference between these two versions is in the treatment of case distinc-

tion. ZETALISP is indiscriminate; it translates all normal input into upper-case. INTERLISP-

10, on the other hand, leaves all input in its original case.

PATR made extensive use of the lower/upper-case distinction, but, fortunately, most of

this selectivity was aesthetic rather than essential. We were able to modify the code so that,

in almost all cases, the program works regardless of whether or not lower and upper case are

merged. In one or two places, where the difference could not be compensated for by coding,

the code had to be hand-patched when translated from INTERLISP-10 to ZETALISP.

The above describe the differences in the running code of the two systems. Other

differences are found in the user interface. Some of the utilities provided by the INTERLISP-

10 system are moot on the ZETALISP system, e.g., EXIT and SAVE. Others, such as EDIT,

were not, directly available on the ZETALISP system. EDIT was coded to be as much like

the INTERI,ISP-10 system as possible. DRIBBLE was a feature that could not be provided

without, a substantial coding effort.
.5-

The section of code for the user interface needed to be redone. As a result, a menu of

the available commands is now permanently displayed on the screen. To choose a command,

the user simply points the mouse and clicks one of the buttons (usually the left) on the mouse.

In a few cases, clicking the middle or right button provides for different options of the basic

command. For instance, clicking right on FASTLOAD allows the user to specify the system

name first.
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As PATR outputs text to the screen, it specifies to the 3600 for certain items of text

what type of item is being displayed. For instance, when it outputs the name of a DAG, it

* informs the 3600 that it is outputting a DAG. If PATR later asks for the name of a DAG, the

user may either type in a DAG or point the mouse to one of the printed DAG names. When

he points to this DAG, a box appears around it, indicating that it is a possible answer. If be

then clicks a button on the mouse, that DAG name is inputted.

Almost all of these user interface changes are in the top-level routine that takes commands

from the user. Therefore, it can be just loaded in place of the INTERLISP-10 command

interface. Any new commands can be easily added. A few changes were necessary in the body

of the system where output is done so that, for instance, the 3600 is told when a DAG name

is printed. These changes were also added to the INTERLISP-10 version.

The utilization of the display and user interface features of the 3600 have created a

N superior working environment. The menu-driven top-level functions, together with the multi-

window display improve grammar and program development. New debugging and editing
facilities that utilize the available ZETALISP function packages are still being added to the

system.

4.3.5 Future Research on the Implementation

Among the related projects we want to undertake next are the implementation of the
structure-sharing unification algorithm on the LISP machine, the development of a phrase

structure parser with more predictive power, and a phrase-linking solution to unbounded

dependencies (100].

4.4. Conclusion

1 Major parts of our implementation are a grammar formalism and an implementation

.2 notation designed to serve as a "programming language for linguists." That is, it is a powerful

grammar-writing system that allows the encoding of many analyses of linguistic phenomena.
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In the sense that the formalism does not attempt to characterize all and only the grammars of

natural languages (though a more constrained theory might use the formalism as its "semant ics"

so to speak), it does not embody a linguistic theory. Instead, it is a tool linguists can use to

express linguistic analyses formally; its implementation is a tool for testing such expressions.

The formalism and the notation for grammar writing proved to be adequate and con-

venient devices for writing grammars that cover the grammatical phenomena we have dealt

with so far. The notation has also shown itself to be useful as a conceptual aid in the formula-

tion of linguistic-research problems.

Our modular implementation, consisting of a top level, a parser, a unification component,

and a morphological analyzer, makes it easy to replace any individual component.

The current implementation was designed as a research tool. This means that the

advantages modularity and the convenience of modifying grammars as well as implementation

had priority over efficiency. Nevertheless, the process of parsing and translating sentences of

different, degrees of complexity is performed at reasonable speed.
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Appendix A. A Formal Definition of the Formalism

Definition 4.1. DAG:

A DAG defined over a finite set of labels A is either

* an atomic label I E A, or

* a possibly empty set s of pairs < 1, v > where I E A and v is a DAG and . does not
cover 8. (Covering is defined recursively as follows: for all < 1,v >E 8, a covers v and
a covers anything covered by v. The atomic label I covers only itself.)

I is called the attribute or feature and v the value of the attribute.

Definition 4.2. Path:

A path is a sequence < n, 1,, > > (hereafter notated without commas so as to avoid

confusion with other sequences) where n is a DAG and the li are atomic labels. Such a path

denotes the node nm where < 4i,ni >E ni-.

Definition 4.3. Grammar:

A PATR-11 grammar is a sextuple < N,T,A,R,L,S > where

" N is a finite nonempty set of nonterminals,
" T is a nonempty set of terminals,

" A is a finite set of labels, (usually a superset of N U T),

* R is a finite set of grammar rules (see below),

" L is a relation in T X D, where D is the set of DAGs definable over A, and

" S E D is the start DAG.

Definition 4.4. Grammar rule:

A grammar rule has two parts:

" a context-free phrase structure rule with uniquely identified nonterminals, notated, e.g.,
VP - VNPi NP2

" a set of unifications, notated as m = n where m and n are DAGs or path specifications
with nonterminal labels instead of DAGs as the first elements, e.g., < VP 11 12 > -
<V 13>.
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Definition 4.5. Admissibility:

A ruleo - 1 ..I.. with unifications U admits a sequence of DAGs < no,n ... ,n,, >

iff

* if liET,then < ii,ni >EL, and

0 if Ii E N, then the path < ni cat > denotes Ii (minus any subscripts), and

o for all p, = P2 in U the node denoted by p, is the same as that denoted by P2. A path
< Ii k, . kg > denotes a node n if and only if the path < n, k . k9 > denotes n.

Definition 4.6. Derivation:

A DAG no derives a sequence of DAGs < n .... ,nm > if there is a rule r E R such

that r admits < no,n 1 ,...,nm >. This is notated no n" nn. The symmetric transitive

closure of is notated =

Definition 4.7. Language:

The language of a PATR-I grammar G < N, T. R, L, S > is the set (w E T* I S =*"

Definition 4.8. Unification:

The unification of two DAGs n1 and n2 is a DAG n where
o -

* if n 1 1n2 , then n ni,

" if nj is atomic and "2 - {}, then n = ni, and similarly with nj and n2 interchanged,

" if neither n1 nor n2 is atomic, then for all I such that < I,v >E ni, and < I,t, >E

n2, < Iunify(v|,v2) >E n and for all I such that < ,t, >E (ni U n2 )- (n, l n2).

< ,,>E n.
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Appendix B. Some Grammars for Hard Languages

The following grammar accepts the non-context-free language a'b " c":

S-- As B8 C8

<As> = <B8>
<B8> = <C8>

A.1 - A82 A

<As succ> - <A82 >

<num> =0

<B81 succ> - <B82 >

<Bs> 0

C81 C82 C

<C81 succ> = <C82 >

<Cs> 0

-- <cat> - a

<cat> b

<cat> b

The following grammar accepts the non-indexed language a2 :

S - A

'. <Sm> - <A m>
<A n> = 0
<A p> = <A q>

A -B
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<A in> = 0
<A n> = <A p .ucc>

<A q> = <B m>

A, -~A 2 A3

<Aj m 8uec> = <A2 M>
<A, n> = <A2 n>

<A, q 8ucc> = <A 2 q>
<A, m *ucc> =<A 3 M>

<Aj p.> =<A 3 P.>
<A1I q 8ucc> = <A3 q>

<A2 P.> = <A3 P.>

a:

<cat> =B

=m> 0

B, ~B 2 B3

<B, m 8ucc> =<B2 m>

<B, m 8UCC> =<B3 m >
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Appendix C. Conversion to Normal-Form PATR-II Grammars

In Seclion 4.2.4.1 we state that any context-free grammar can be converted to a PATII-Il -

grammar with only one nonunary rule. The construction is as follows: Given a context-free

grammar < N, T, R, S >, we construct a PATR-II grammar with the following rules:

S"** S,

<S'syncat> = X

SI-. SI S 2

<S'8yneat> < 5 oy]8tncat rest.>
<S syncat first> < S cat>

For every rule a l /?i.l'"in E R, add the rule

eS fynat first> 1
<S syncat rest first> = 02

etc.,

and, for every , add the rule

1

,-'-. s -4
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Appendix D. Sample Rules of the PATP.-Il Grammar

The LISP machine screen below displays three editing windows with samples of defintillolls

(one template and one lexical rule) in the upper window, of syntactic rules in the middle winidow,.

and of lexical entries in the lower window.

(head trans arg2) (syncat rest rest f irst head trans>
<syncat rest rest first syncat first head)

(syricat rest first head>.

gt RaisingtoSi be
<head trans argi) (syncat rest first head trans>
<(,ricat rest first syncat first) (syncat first).

Define Passive as
(out head form>) = passprt
tOut cat> I (n Cat)
(out head) < in head>
(out sync) = in svncat rest)
(out syncat ta) I in ncat tail>

N (out syncat tail) = lambda.
DEtOGRRB.defs )patr 8:

S M P UP:
( (S head) = (P head)
(UP syncat first) =(<P>
(UP syncat rest) = lamqbda

* <S head aga- (NP head agr).

S. Sbar UP:
( S head) = NUP head)(UP sYncat first) = Sbar)
(UP syncat rest) = lambda
(S head formi) finite
<5 head agr) = Sbar head agr).

'DEfOGRRl1.gra: >Patr 
0:

as V TakesSfor Dyadic.

yie U (Past gave) (PastPrt given)
TakesNPWt Triadic,

persuade U TakesflPlnf Triadic fbjectControl.

promise U TakesNPlnf Triadic SubjectControl NoPass,

believe U - TaltesSlihat Dyadic
- TakesNPlnf RaisingtoC,

seen U - TakeslntransSbar Monadic Emtrapos
- Takeslnf Raisingtoli.

IDEMOGRAMACeu )Vatr B:
gNACS (PRTR) DEMOGRR-grar, )patr 071-1 r

1/2"113 11:54:11 PRExiiiii PRTR: Tyl Console Idle 5 minutes
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Appendix E. A Sample Dialog with IPATR-1I

The right-hand-side window (interaction window) of the following LISP machine freeze

frame contains a three-sentence sample dialog with KLAUS. The left-hand-side window can

be used for displaying the chart, DAGs, words, and rules (hat were built or used during the

parsing of a sentence. There is a mouse-operated menu window on top of this display window.

In the freeze frame, the DAG associated by the parser with the last sentence is displayed in

the display window. Display window and interaction window are seperated by another menu

window which represents the user's options at the top level of KLAUS.

For each of the sentences in the short dialog, the parser found exactly one parse but

multiple scopings of quantifiers and tense operators. The selection of the desired scoping was

performed in a temporary menu window using the mouse. Assertions as the first two sentences

are accepted by KLAUS if they do not contradict, with already known propositions. Possible

responses to alternative questions are "YES", "NO", or "I DON'T KNOW. The answer to the

third input sentence, which is an alternative question, is based on the knowledge the system

gained through the first two input sentences.

4.-'".. NOIJLEDGE 9EARNING 5?*ND ly SING S YSTEM1
Cart Word Fa Show (a KLIUSsOie kntght loveS uen

cp.e rse One parse found: arc hO1921

arc: M0935 rule number: SENTENCE V S Edit pres(Iovel(soe xS925 knight(x89625)>, 9wen))
%' ,, category: SENTENCE covers: DID SOME KNIGHT STORM A CASTLE

2 scopings found;
[INTERROGATIUE: TRUE Trace
CRT: SENTTENCE Ultrace soe(xBB25. knight(l@25), pres(lovel(x925, gwen)))
HERD: (RUX: TRUE

FORM: FINITE Lip Da
TRANS: EPRED: PAST L6 Tryin9 to prove assertion

ARI: [PRED: STORMI Trying to prove negated assertion
RRGI: [RESTRICT: (URR: (D852) OK.

PRED KNIGHT StMi KLRUS>every knight stormed a castle
RAG: [REF: <DS952>3 claiw

OURNT: SOME One parse found: arc M0931
REF: <D952>e

ARG2: (QUART: SOME Past(storm1(every xQQ35 knght(KQQ35) , <som x36 c
RESTRICT: (URR: <D9853> Profile astle(.0S36)))

M0946
PRED: CASTLE 6 scopings found:
RRGI: (REF: (19953>])

REF: (D053]]]] fWFF" 3 every(E35, knight(x935),3 past(so..e(Q9936. castle(xe
. 9036). storr.I(x9935, Q9036))))

Trying to prove assertion
PATR Trying to prove negated assertion

OK.

KLAUS>dld some knight storm a castle

One parse found: arc M1835

past(stornl(<some x@045 knight(xi945)). (some Ks46 ca
stle(m@946)))

6 scoplngs fond:

sone(8845, knight(K9945), past(aoe(m9 946, castle(.99

46), stor.6(,,945, .9046))))

S.Irying toprovw-quar -- -

- Yes.

nl'225*3 11:21:53 PEREIRA PAIR: I>.:
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5. Sentence Disambiguation by a Shift-Reduce Parsing Technique

This section was written by Stuart Shieber.

5.1. Introduction

For natural-language-processing systems to be useful, they must assign the same inter- .

"" pretation to a given sentence that a native speaker would, since that is precisely the behavior

*. users will expect. Consider, for example, the case of ambiguous sentences. Native speakers of

* English show definite and consistent preferences for certain readings of syntactically ambiguous

sentences [59, 28, 27]. A user of a natural-language-processing system would naturally expect

_*" it to reflect the same preferences. Thus, such systems must model in some way the linguistic

performance as well as the linguistic competence of the native speaker.

This idea is certainly not new in the artificial-intelligence literature. The pioneering

work of Marcus [831 is perhaps the best known example of linguistic-performance modeling

in Al. Starting from the hypothesis that "deterministic" parsing of English is possible, he

demonstrated that certain performance constraints, e.g., the difficulty of parsing garden-path .

sentences, could be modeled. His claim about deterministic parsing was quite strong. Not only

was the behavior of the parser required to be deterministic, but, as Marcus claimed,

The interpreter cannot use some general rule to take a nondeterministic
grammar specification and impose arbitrary constrain'., to convert it to a .
deterministic specification (unless, of course, there is a general rule which
will always lead to the correct decision in such a case). 183, p. 14]

We have developed and implemented a parsing system that, given a nondeterministic

grammar, forces disambiguation in just the manner Marcus rejected (i.e. through general

rules); it thereby exhibits the same preference behavior that psycholinguists have attributed

to native speakers of English for a certain range of ambiguities. These include structural - -

ambiguities [28, 29, 1301 and lexical preferences [27], as well as the garden-path sentences as
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a side effect. The parsing system is based on the shift-reduce scheduling technique of Pereira

Our parsing algorithm is a slight variant of LALR(1) parsing and, as such, exhibits the

three conditions postulated by Marcus for a deterministic mechanism: it is data-driven, reflects

expectations, and has look-ahead. Like Marcus's parser, our parsing system is deterministic.

Unlike Marcus's parser, the grammars used by ours can be ambiguous.

5.2. The Phenomena to be Modeled

The parsing system was designed to manifest preferences among structurally distinct

parses of ambiguous sentences. It does this by building just one parse tree-rather than building

multiple parse trees and choosing among them. Like the Marcus parsing system, ours does not

do disambiguation requiring "extensive semantic processing," but, in contrast to Marcus, it

does handle such phenomena as PP-attachment insofar as there exist a priori, preferences for

one attachment over another. By a priori we mean preferences that are exhibited in contexts

where pragmatic or plausibility considerations do not tend to favor one reading over the other.

[Rather than make such value judgments ourselves, we defer to the psycholinguistic literature

(specifically [28], 29, 27]) for our examples.

The parsing system models the following phenomena:

Right Association Native speakers of English tend to prefer readings in which con-
-~.'. stituents are "attached low." For instance, in the sentence

Joe bought the book that I had been trying
to obtain for Susan.

the preferred reading is one in which the prepositional phrase "for
Susan" is associated with "to obtain" rather than "bought."

Minimal Attachment On the other hand, higher attachment is preferred in certain cases
such as

Joe bought the book for Susan.

in which "for Susan" modifies "the book" rather than "bought."
Frazier and Fodor [28] note that these are cases in which the higher
attachment includes fewer nodes in the parse tree. Our analysis is
somewhat different.
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Lexical Preference Ford et al. [271 present evidence that attachment preferences depend

on lexical choice. Thus, the preferred reading for

The woman wanted the dress on that, rack.

has low attachment of the PP, whereas

The woman positioned the dress on that rack.

has high attachment.

Garden-Path Sentences
Grammatical sentences such as

The horse raced past, the barn fell.

seem actually to receive no parse by the native speaker until some sort
of "conscious parsing" is done. Following Marcus [83], we take this to
be a hard failure of the human sentence-processing mechanism.

It will be seen that all these phenomena are handled in our parser by the same general

rules. The simple context-free grammar used1 (see Appendix A) allows both parses of the

ambiguous sentences as well as one for the garden-path sentences. The parser disambiguates

the grammar and yields only the preferred structure. The actual output of the parsing system

can be found in Appendix B.

5.3. The Parsing System

The parsing system we use is a shift-reduce parser. Shift-reduce parsers [1] are a

very general class of bottom-up parsers characterized by the following architecture. They

incorporate a stack for holding constituents built up during the parse and a 8hift-reduce table

for guiding the parse. At each step in the parse, the table is used for deciding between two

basic types of operations: the shift operation, which adds the next word in the sentence (with

its preterminal category) to the top of the stack, and the reduce operation, which removes

several elements from the top of the stack and replaces them with a new element-for instance,

removing an NP and a VP from the top of the stack and replacing them with an S. The 8tate

of the parser is also updated in accordance with the shift-reduce table at each stage. The

'We make no claims as to the accuracy of the sample grammar, which is obviously a gross simplification of
English syntax. Its role is merely to show that the parsing system is able to disambiguate the sentences under
consideration correctly.
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combination of the stack, input, and state of the parser will be called a configuration and will

be notated as, for example,

Lstack: NP V _input: Mary state: 10

where the stack contains the nonterminals NP and V, the input contains the lexical item Mary, j
and the parser is in state 10.

By way of example, we demonstrate the operation of the parser (using the grammar of

Appendix A) on the oft-cited sentence "John loves Mary." Initially the stack is empty and no

input has been consumed. The parser begins in state 0.

-tark: input: John loves Mary

As elements are shifted to the stack, they are replaced by their preterminal category. 2 The

shift-reduce table for the grammar of Appendix A states that in state 0, with a proper noui as

:1 the next word in the input, the appropriate action is a shift. The new configuration, therefore,

is -"

I8tack: PNOUN input: loves Mary state: 4-

The next operation specified is a reduction of the proper noun to a noun phrase, yielding

stark: NP input: loves Mary state:2

The verb and second proper noun are now shifted, in accordance with the shift-reduce table,

thus exhausting the input, and the proper noun is then reduced to an NP.

,stark: NP V input: Mary ate: 10

;k: NP V PNOUN __ input: state: 4YakiP________________"_
stack: NP V NP ilnput. state: 14 .

Finally, the verb and noun phrase on the top of the stack are reduced to a VP

2But see Section 5.3.2 for an exception.
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Lstack NP VP ___ipu:___ sae6j

which is in turn reduced, together with the subject NP, to an S.

stack: S input: state: 1

This final configuration is an accepting configuration, since all the input has been consumed

and an S derived. Thus, the sentence is grammatical according to the grammar of Appendix

A, as expected.

5.3.1 Differences from the Standard LR Techniques

The shift-reduce table mentioned above is generated automatically from a context-free

grammar by the standard algorithm [1]. The parsing algorithm differs, however, from the

standard LALR(I) parsing algorithm in two ways. First, instead of assigning preterminal

symbols to words as they are shifted, the algorithm allows the assignment to be delayed if the

word is ambiguous among preterminals. When the word is used in a reduction, the appropriate

preterminal is assigned.

Second, and most importantly, since true LR parsers exist only for unambiguous gram-

mars, the normal algorithm for deriving LALR(1) shift-reduce tables yields a table that may

specify conflicting actions under certain configurations. It is through the choice made from the

options in a conflict that the preference behavior we desire is engendered.

5.3.2 Preterminal Delaying

One key advantage of shift-reduce parsing that is critical in our system is the fact that

decisions about the structure to be assigned to a phrase are postponed as long as possible.

In keeping with this general principle, we extend the algorithm to allow the assignment of

a preterminal category to a lexical item to be deferred until a decision is forced upon it. so

to speak, by an encompassing reduction. For instance, we would not want to decide on the
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preterminal category of the word "that," which can serve as either a determiner (DET) or

complementizer (THAT), until some further information is available. Consider the sentences

That problem is important.

That problems are difficult to solve is im-

portant.

Instead of assigning a preterminal to "that," we leave open the possibility of assigning either

DET or THAT until the first reduction that involves the word. In the first case, this reduction

will be by the rule NP -- DET NOM, thus forcing, once and for all, the assignment of DET as

preterminal. In the second case, the DET NOM analysis is disallowed on the basis of number

agreement, so that the first applicable reduction is the COMP S reduction to S, forcing the

assignment of THAT as preterminal.

Of course, the question arises as to what state the parser goes into after shifting the

lexical item "that." The answer is quite straightforward, though its interpretation vis a tis

the determinism hypothesis is subtle. The simple answer is that the parser enters into a state

corresponding to the union of the states entered upon shifting a DET and upon shifting a

THAT, respectively, in much the same way as the deterministic simulation of a nondeterministic

finite automaton enters a "union" state when faced with a nondeterministic choice. Are we

then merely simulating a nondeterministic machine here? The answer is equivocal. Although

the implementation acts as a simulator for a nondeterministic machine, the nondeterminism

is a priori bounded, given a particular grammar and lexicon. 3 Thus, the nondeterminism

could be traded in for a larger, albeit still finite, set of states, unlike the nondeterminism

found in other parsing algorithms. Another way of looking at the situation is to note that

there is no observable property of the algorithm that would distinguish the operation of the

parser from a deterministic one. In some s there is no interesting difference between the

limited nondeterminism of this parser and Marcus's notion of strict determinism. In fact, the

implementation of Marcus's parser also embodies a bounded nondeterminism in much the same

way this parser does.

3 The boundedness comes about because only a finite amount of information is kept per state (an integer) and

the nondeterminism stops at the preterminal level, so that the splitting of states does not propagate.
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The property that discriminates between this parser and that of Marcus is a slightly

different one, namely, the property of quasi-real-time operation.4 By quasi-real-time operation,

Marcus means that there exists a maximum interval of parser operation for which no output

canr be generated. If the parser operates for longer than this, it must generate some output. For

% instance, the parser might be guaranteed to produce output (i.e., structure) at least every three

words. Howeer, because preterminal assignment can be delayed indefinitely in pathological

grammars, there may exist sentences in such grammars for which arbitrary numbers of words

need to be read before output can be produced. It is not clear whether this is a real disadvantage

or not., and, if so, whether there are simple adjustments of the algorithm that would result in

quasi-real-time behavior. In fact, it is a property of bottom-up parsing in general that quasi-

real-time behavior is not guaranteed. Our parser has a less restrictive but similar property,

fairnes8-namely, our parser generates output that is linear in the input, though there is no

constant over which output is guaranteed. For a fuller discussion of these properties, see Pereira

and Shieber 197].

To summarize, preterminal delaying, as an intrinsic part of the algorithm, does not

actually change the basic properties of the algorithm in any observable way. Note, however,

that, preterminal assignments, like reductions, are irrevocable once they have been made (as a

by-product of the algorithm's determinism). Such decisions can therefore lead to garden paths,

as they do for the sentences presented in Section 5.3.6.

We now discuss the central feature of the algorithm, namely, the resolution of shift-reduce

conflicts.

,-5.3.3 The Disambiguation Rules

Conflicts arise in two ways: shift-reduce conflicts, in which the parser has the option

of either shifting a word onto the stack or reducing a set of elements on the stack to a new

element; reduce-reduce conflicts, in which reductions by several grammar rules are possible.

41 am indebted to Mitch Marcus tor this observation and the previous comparison with his parser.
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The parser uses two rules to resolve these conflicts: 5

(1) Resolve shift-reduce conflicts by shifting.

(2) Resolve reduce-reduce conflicts by performing the longer reduction.

These two rules suffice to engender the appropriate behavior in the parser for cases of

right association and minimal attachment. Though we demonstrate our system primarily with

PP-attachment examples, we claim that the rules are generally valid for the phenomena being

modeled [97].

5.3.4 Some Examples

Some examples demonstrate these principles. Consider the sentence

Joe took the book that I bought for Susan.

After a certain amount of parsing has been completed deterministically, the parser will be in

the following configuration:

s8tack: NP V NP that NP V input: for Susan state: 23-

with a shift-reduce conflict, since the V can be reduced to a VP/NP 6 or the P can be shifted.

The principles presented would solve the conflict in favor of the shift, thereby leading to the

following derivation:

[.8tack: NP V NP that NP V p input: Susan aFt ate: 12

[a8tack: NP V NP that, NP V P NP inutteate: 1

stack: NP V NP that NP V PP input: t ate: 24"

5The original notion of using a shift-reduce parser and general scheduling principles to handle right association
%s and minimal attachment, together with the following two rules, are due to Fernando Pereira 961. The
i6* formalization of preterminal delaying and the extensions to the lexical-preference cases and garden-path

behavior are due to the author.
6 The "slash-category" analysis of long-distance dependencies used here is loosely based on the work of Gazdar

131). The Appendix A grammar does not incorporate the full range of slashed rules, however, but merely a
representative selection for illustrative purposes.
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stack: NP V NP that NPFPN nu:a t-2

[8-aANP V NPl that S/N nput: ________ tate: 16

I[tak:NP V NP ~ ___ ipt __ eae

L stack: NP V NP input: state: 14

slack: N P VP input: eae

stack: S input: state: 1

which yields the structure

[s Joe [vp took [NP [Npthe bookJ[gthat I bought for Susan]]

The sentence

Joe bought the book for Susan.

demnstrates resolution of a reduce-reduce conflict. At some point in the parse, the parser is

in the following configuration:

stack: NP V NP PP inut:eat:2

with a reduce-reduce conflict. Either a more complex NP or a VP can be built. The conflict is

resolved in favor of the longer reduction, i.e., the VP reduction. The derivation continues:

aak: NP VP st_ npt _____eate: 6

LF ak input: elte: I

ending in an accepting state with the following generated structure:

[S Joe Ivp bought [Npthe book] [ppfor Susan]]]
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5.3.5 Lexical Preference

To handle the lexical-preference examples, we extend the second rule slightly.

Preterminal-word pairs can be stipulated as either weak or strong. The second rule becomes

(2) Resolve reduce-reduce conflicts by performing the longest reduction with the strongest

leftmost stack element.7

Therefore, if it is assumed that the lexicon encodes the information that the triadic form

of "want" (V2 in the sample grammar) and the dyadic form of "position" (VI) are both weak,

we can see the operation of the shift-reduce parser on the "dress on that rack" sentences of

Section 5.2. Both sentences are similar in form and will thus have a similar configuration

when the reduce-reduce conflict arises. For example, the first sentence will be in the following

configuration:

SNP wanted NP PP"pu: T state: 20

In this case, the longer reduction would require assignment of the preterminal category V2 to

"want," which is the weak form; thus, the shorter reduction will be preferred, leading to the

* i ~rderivation

stack: NP wanted NP input: state: 14

i I stack: NP VP input: state: 6
tack: S input: state: 1

4. and the underlying structure

[sthe woman[vpwanted[NP[Npthe dressl[ppon that rackll]

.. , In the case in which the verb is "positioned," however, the longer reduction does not yield the

.' weak form of the verb; it will therefore be invoked, resulting in the structure

7 Note that strength takes precedence over length.

*.p. 
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[sthe woman [vp positioned [Npthe dress][ppon that rack]]]

.5.3.6 Garden-Path Sentences

As a side effect of these conflict resolution rules, certain sentences in the language of

the grammar will receive no parse by the parsing system just discussed. These sentences are

apparently the ones classified as "garden-path" sentences, a class that humans also have great

difficulty parsing. Marcus's conjecture that such difficulty stems from a hard failure of the

normal sentence- processing mechanism is directly modeled by the parsing system presented

here.

For instance, the sentence

The horse raced past the barn fell.

exhibits a reduce-reduce conflict before the last word. If the participial form of "raced" is

weak, the finite verb form will be chosen; consequently, "raced past the barn" will be reduced

to a VP rather than a participial phrase. The parser will fail shortly, since the correct choice

of reduction was not, made.

-9 Similarly, the sentence

That scaly, deep-sea fish should be under-

water is important.

will fail, though grammatical. Before the word "should" is shiften, a reduce-reduce conflict

arises in forming an NP from either "Tbat scaly, deep-sea fish" or "scaly, deep-sea fish." The

longer (incorrect) reduction will be performed and the parser will fail.

Other examples, e.g., "the boy got fat melted," or 4the prime number few" would be

handled similarly by the parser, though the sample grammar of Appendix A does not parse

them [97].
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5.4. Conclusion

To be useful, natural-language systems must model the behavior, if not the method, of the

native speaker. We have demonstrated that a parser using simple general rules for disambiguat-

ing sentences can yield appropriate behavior for a large class of performance phenomena-right

association, minimal attachment, lexical preference, and garden-path sentences--and that,

morever, it can do so deterministically without generating all the parses and choosing among

them. The parsing system has been implemented and has confirmed the feasibility of our

approach to the modeling of these phenomena.

Appendix A. The Test Grammar

The following is the grammar used to test the parsing system descibed in the paper. Not

a robust grammar of English by any means, it is presented only for the purpose of establishing

that the preference rules yield the correct results.

S - NP VP VP -- AUX VP S/NP - that S/NP

S -. VP VP - VO S/NP -VP

NP DET NOM VP - VI NP S/NP NP VP/NP

NP NOM VP - V2 NP PP VP/NP - VI

NP PNOUN VP - V3 INF VP/NP - N2 PP

NP NP S/NP VP - V4 ADJ VP/NP - V3 INF/NP

NP NP PARTP VP - V5 PP VP/NP - AUX VP/NP

NP NP PP S that S INF/NP to VP/NP

DET -NP's INF- to VP

NOM - N PP - P NP

NOM -- ADJ NOM PARTP - VPART PP

Appendix B. Sample Runs

>> Joe bought the book that I had been trying to obtain for Susan

Accepted: [s
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(np (pnoun Joe))

(vp
(vl bought)
(np

(np (det the)
(nom (n book)))

(sbar/np
(that that)
(s/np
(np (pnoun I))
(vp/np

(aux had)
(vp/np (aux been)

(vp/np (v3 trying)
(inf/np (to to)

(vp/np (v2 obtain)
(pp (p for)

(rip (pnoun Susan]

>> .J,,e b,,ught the book for Susan

,.,:opted: [s (np (pnoun Joe))
(vp (v2 bought)

(np (det the)
(nom (n book)))

(pp (p for)
(np (pnoun Susan]

>> The woman wanted the dress on that rack

A,-,- pt d: [s (np (det The)
(nom (n woman)))

(vp (vl wanted)

(np (np (det the)
(nom (n dress)))

(pp (p on)
(np (det that)

(nom (n rack]

>> The woman positioned the dress on that rack

Accepted: [s (np (det The)
(nom (n woman)))

(vp (v2 positioned)

(np (det the)
(nom (n dress)))
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(pp (p on)
(np (det that)

(nom (n rack]

>> The horse raced past the barn fell

Parse failed. Current configuration: -i
state: (1)"'

stack: <(0)> [s (np (det The)
(nom (n horse)))

(vp (v5 raced)

(pp (p past)

(np (det the)

(nom (n barn]

input: (vO fell)
(end)

>> That scaly deep-sea fish should be underwater is important

Parse failed. Current configuration:
state: (1)

stack: <(O)> [s [np (det That)

(nom (adj scaly)

(nom (adj deep-sea)
(".ax (nom (n fish]
(vp (aux should)

(vp (v4 be)
(adj underwater]

:npu t : (v4 is)
(adj important)
(end)

4. .

9,,-.
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6. Generating Expert Answers through Goal Inference

This 3ection was written by Martha Pollack.

6.1. Introduction

Imagine that you're trying to use the mail system on the DEC-2060 computer, and that

partway through creating a message you accidently type a Control-Z, which has the pernicious

effect of ending your message creation and sending you to the prompt level. You turn to your

ever-ready expert and ask if there's some way to delete a control character from within the

mail system. Your expert tells you that there isn't, and so, feeling annoyed and frustrated,

you proceed to recreate your message from scratch. When you later discover that you could

indeed have entered an editor from the prompt level and added directly to the existing message

fragment, you begin to doubt your expert's expertise.

Now imagine that you've just inherited $120,000. You immediately call an investment ,

counselor to ask whether you'll earn more interest on Treasury-notes or on certificates of

deposit. The counselor asks you a few questions about your tax bracket and other investments,

and then informs you that T-notes are the better investment. What she doesn't tell you is

that, given her knowledge of your financial situation, municipal bonds would be a far better

investment than either of your expressed alternatives. When you later learn this fact, you're

very likely to find a new investment counselor.

In each of these instances, you've gone to an expert seeking advice about. some problem,

and in each of them the expert has failed to provide you with the most appropriate advice. The

failure resulted from the expert's assumption that you knew exactly what advice you needed.

and that you had accurately and literally expressed a request for that advice in your query.

That assumption leaves it up to you, the advice-seeker, like the classic traveler in \ermnt. t,,

know that ycu're in situation A and that you want to achieve situation B: the e\Iprt, r,.I,

simply to provide directions on "how to get there from here."
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It is this restricted view of expertise that automated expert systems have adopted.

Unfortunately, observation of dialogues between human experts and advice-seekers reveals

that this picture bears little resemblance to reality. People often need to consult with experts

precisely because they don't know what it is they need to know: they may have an incomplete

or partial notion of what their options are-or perhaps no clear notion at all. As a result, they

may intend doing something that is not actually the best thing they could do.

*It is a significant feature of human expertise to be able to deduce, from an incomplete

or inappropriate query, what advice is actually needed. The goal of this research is to develop

a framework that will allow automated experts to perform similar deductions and thereby

generate appropriate answers to queries made to them.

6.2. Overview and Related Research

The examples given in the introduction demonstrate that expert behavior necessarily

involves the ability to determine an advice-seeker's unstated goals. This claim is an instance

of the more general claim made by Pollack et al. [1041 that,-

Expert systems, if they are to satisfy the legitimate needs of their users, must

include dialogue capabilities as sophisticated as those proposed in current

natural-language research. (p. 1)

Although it is almost a truism in natural language research today that recognizing a speaker's

goals and intentions is prerequisite to understanding an utterance, the notion that goal detec-

tion is also a requirement for the successful provision of advice, e.g. by an expert system, is

not as widespread.

Evidence that experts must often deduce what advice is necessary comes from the

frequency with which they present indirect answers to the queries of those seeking advice.

Hobbs and Robinson [471 distinguish among three sorts of indirect answers that can occur in

discourse. The first, which they describe as indirect responses that nonetheless answer the

-~ question asked, is exemplified by responses to indirect speech acts. Thus, an expert answers

"Do you know how I can print my file on the Imagen?" not with "Yes," but rather with the
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more helpful "Use the im command." Indirect speech acts, first discussed by Gordon and

Lakoff 1341 and Searle [1151, are the subject of a growing body of linguistic literature. The

beginnings of a formal account that would enable a natural-language component to deal with

indirect, as well as direct, speech acts, is given in the work of Perrault, Allen, and Cohen,

discussed below. Hirschberg [461 is working on a formal account of a particular class of indirect

speech acts, which she terms scalar and hierarchical implicatures. These are typified by t ht

question/answer pair: "Should I give the patient his medication?" "Give him the penicillin."

The second type of indirect answer discussed by Hobbs and Robinson is exemplified by

responses that deny a pesupposition of the question asked. Kaplan [53] and Mays [84] both

present methods for generating helpful answers to database queries that contain invalid presup-

positions. Where those answers go beyond a simple statement of the invalid presupposition,

their systems implicitly assume the goal of the question.' However, neither system is obviously

extensible to a more general theory of question-answering.

4Hobbs and Robinson describe their third category of indirect answers as consisting or

those that address the higher goals of the question. In a sense this category subsumes the

other two, since any cooperative response to a query cannot be random, but must address

some goal of the speaker. Cohen, Perrault, and Allen (hereafter CPA) present an analysis [18,

99] of indirect speech acts that is explicitly tied to a process of inferring the plan, hence the

"higher goal," of the speaker. Their general method for responding to an utterance by first

inferring the speaker's goal and then cooperating in the achievement of that goal is similar to

the method presented in this work. However, CPA focus only on the inferring of illocutionary

goals, while in this work the inference of domain goals will be emphasized. To perceive the

difference, consider the mail user who asked "Do you know how to delete a Control-Z?" CPA's

theory would result in the hearer's inferring that this was an indirect request to be told the

command that results in deletion of a Control-Z; the theory to be presented in this work would

enable the hearer to infer that this indirect request is itself an indirect request for a method

lKaplan suggests that the query "is John a senior!" can be cooperatively answered by 'No, a junior." This
assertion assumes that the speaker's goal was to determine John's status. It would not be a cooperative
response it the speaker's goal were instead to find a senior.
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the user canf employ to add increments to a partial mail message.

Thiere are differences between the process of detecting and responding to an utterance's

communicative goals and that of detecting and responding to its domain goals. When a speaker

utters an indirect speech act, he is aware that it is indirect; futherniore, he expects his hearer

also to recognize that and, if possible, to respond to the indirect question. In fact, he would

consider rude a hearer who responded directly, e.g., by answering "Do you know how I can '

print my file on the Imagen?" with "Yes I do." Since the speaker knows that his hearer will

have to infer his goal, he makes it a point not to make the required inference obscure. The

tact that many indirect speech acts are conventionalized aids him in cooperative behavior and

makes the hearer's task easier.

In contrast, when someone utters a request best answered with a response that addresses

some domain goal not directly expressed by the query, he may well be unaware that this is

so. Often he believes that what he's asking about is precisely what he needs to know. As

we've already seen, it may not be; in that case, inferring what he really doe8 need to know-by

way of inferring what his domain goal actually is-may be quite complex. The speaker hasn't

planned his request so as to facilitate the inference of goal: how could he have, when he was

expecting a direct response?

While people all have roughly equivalent knowledge about communicative acts, there are

gross imbalances in their knowledge about actions in any domain.2 This imbalance is precisely

what defines expertise. We shall bypass the question of deducing communicative goals-in

fact, the illocutionary force of each utterance considered will be a request for information.

Instead we shall concentrate on showing how an expert can exploit her greater knowledge of

some domain to infer and respond to the domain goals of an utterance. However, it will be

interesting to compare the mechanisms that enable each type of inference.

In another paper, Allen and Perrault 12] do incorporate this second level of plan inference

2Knowledge about communicative acts may not be strictly equivalent, since some people do seem to be better
communicators than others, but the range of variation is probably much smaller: there aren't people who are a

experts at generating or understanding indirect speech acts, nor linguistically normal people who are unable
to use them.
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and, in fact, apply the same mechanisms in deducing both the communicative and doiuain

goals of an utterance. The difference between their approach and ours is that they restrict

themselves to answering questions in an extremely limited domain iLe, those that would he

asked at a train station information booth, in which people are assumed to always have one

of two simple goals. People attempting to achieve either of these goals are usually well aware

of what they need to do so. If you want to meet an arriving train, you need only go to its -

arrival gate at its arrival time, and to do that you need to know its gate niumber and expectedc

arrival time. Both the actions that attain the goal (of meeting the train) and the know ledge

necessary to perform those actions are generally known to the agent who wants to achieve

the goal, and so his questions to the expert will [accurately] ask for information he actually

needs. Allen and Perrault deduce the higher domain goal of the speaker in order to furnish

additional information that might be helpful to him: for example, if he asks for an expected 2

arrival time, they want to provide a gate number as well. However, their assumption that the

information the speaker requests is always what he truly needs to achieve his higher goal aids

them in inferring that goal.3

In contrast, the domain of expertise in this work-MM mail system-contains a greater

number of goals, which, significantly, can be structured in more complex ways. This by itself

necessitates more complex inference techniques and control strategies than those presented by

Allen and Perrault. Besides, in this domain people may not know what it is they need to know

to achieve them. The MM user introduced in an example in Section 8.1 believed that, to finish

creating his message, he had to delete the character that interrupted the creation process and,

to accomplish this, he had to find out how to delete that character. In fact, he was mistaken

3 0f course, this assumption may be incorrect even in the extremely simple domain considered by Allen and
Perrault. Someone might ask an information booth attendant 'What time does the Detroit train leave?"
although, unbeknownst to him, there is no train to Detroit. If, however, there is a train to Chicago and
a bus from Chicago to Detroit, the attendant should inform the advice-seeker of this fact. To do so, the
attendant would have to be aware that the information the advice-seeker requested is not the information
that will actually enabple him to achieve his goal. Allen and Perrault's system would be unable to handle this
case. Implicit in their heuristics for deciding among the possible goals of an advice-seeker is their assumption
that the advice-seeker knows what information he needs. For instance, one of their heuristics decrements
the probability that any plan containing an impossible referent is actually the advice-seeker's plan. In this
example, the plan that involves the action "take the Detroit train" would be so decremented, since there is no
referent for %the Detroit train." However this plan is precisely the one the expert needs to reason about to
determine that the advice-seeker's goal is to get to Detroit.
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about what actions would enable him to achieve his domain goal (of completing the message)

and, consequently, also mistaken about what he needed to know.

Plan recognition for more complex plans, such as those the MM user might formulate, bas

V..been studied (15, 114, 25, 321. However, all these works deal with ascertaining an agent's goal by

observing his actions (or reading about them, as in Bruce's work). This is a completely different

assumption from the one being made here, according to which the goal must be detected on

the basis of a dialogue with the agent. The difference in assumptions becomes important when

applications of this work are considered. For instance, if one wants to build an advice system

that a computer user can invoke whenever he encounters a problem, it may well be infeasible

to have that system constantly "watching over his shoulder." Moreover, if one wants to build

an expert system that provides advice on some other domain outside the computer, it is likely

to be impossible to have it watch over the advice-seeker's shoulder. Imagine an automated

financial expert to whom a person could come to ask for advice on investments, taxes, real-estate

purchases, and so forth-a computerized version of Dean Witter or Harry Gross, as it were.4

Such an expert could receive its information only from discussion with the person seeking

advice.

Appelt 141 presents a system for planning the generation of utterances and physical actions

that is based on a theory of speech acts and communicative cooperation. In the examples he

considers, the expert is always aware of the apprentice's goals and so does not have to do

extensive goal inference. However, his methods of planning to help achieve that goal do, in

many ways, parallel the methods presented here.

Also, both Carberry lie] and Litman 174] are concerned with tracking domain goals

in discourse; Carberry has focused on the relationships among domain goals, Litman on the -

interaction between domain goals and communicative goals. Neither work, though, accounts

for a speaker's requesting information that is not what he actually needs to achieve his goal.

Before developing the theory with which an expert can detect the possibly unexpressed

4Harry Gross is a financial expert who hosts a daily radio talk-show on WCAU in Philadelphia. Listeners call
in with financial questions, and he advises them as best he can. Tfranscripts of his show provided the basis for
an analysis of expert/advice-seeker interaction given by 11041.
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goals of a query and determine an appropriate answer, it is neces.ary set down an account ot

the process by which an expert determines the answer to a presumed direct query. To this endl

a model of the advice-giving process will be given in the next section. In Section 6.4, this mnodel

will be applied to the estnpk case of expert question- answering, in which the advice-seeker does

know what advice he needs, and moreover, makes a direct request for that advice. Then, ill

Section 6.5, we consider where and how this ideal behavior breaks down, and demonstrate a

method for actively inferring the goal behind a question-rather than making the assumption

that the question expresses it directly-and producing a response that addresses this goal.

Finally, in Section 6.6, we outline the work that remains to be done.

6.3. A Framework for Describing Expert Answer-Giving

Before a method for generating indirect answers can be proposed, a framework must

be adopted for describing the process by which an expert formulates and presents a direct

answer. In a sense, deciding upon such a framework amounts to honing a definition of "expert

system." The most obvious characteristics of expert systems are that they contain extensive

information about some domain and that they can answer questions about that -domain. While

these are necessary characteristics, they are not sufficient in themselves. Simple database

systems possess them, yet do not quality as expert systems, since all they can do is retrieve

specific facts requested by user. In some cases, database systems may also be able to perform

simple computations upon those facts, but such computations must be specified by the user.

For a system to be designated expert, it must have the capability to reason about its domain

of expertise, that is, it must contain deduction rules as well as atomic facts.

Many "intelligent" computer system can be said to demonstrate expert behavior. While

some have been called "expert system," other have instead been labeled "planning systems."

6.3.1 Expert Systems

Those programs that traditionally have been known as expert systems, e.g. MACSYMA

[80), Prospector [391, Digitalis Advisor [351, have modeled expert reasoning with rule-based
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deduction systems, typically using heuristically controlled backwards chaining to deduce a

conclusion. In these systems, knowledge about the domain of expertise is encoded in the

system's axioms. The advice-seeker presents the system with the facts that constitute the

problem description, often in response to questions asked by the system. What advice is to

be given-what question the system is to answer-may be determined in one of three ways.

The user may explicitly present the question he wants answered, as in the case of MACSYMA,

where he specifically asks for, say, the solution to some differential equation. Alternatively,

he may select the question he wants answered from a small set of questions proposed by the

system. In Prospector, for instance, after asking for and receiving preliminary information

* about a particular site, the system presents several alternative hypotheses about what minerals

might be present and then asks the user which hypothesis to pursue. Or, instead, the question

to be answered may be constant, as in the Digitalis Advisor, where the answer is always how

much much digitalis to give the patient.

6.3.2 Planning Systems

Other programs demonstrating expert behavior have been called planning programs, e.g.

[24, 113]. These programs solve problems of how to convert one world state to another. The

user of a planning system presents it with two descriptions: one of the initial state of the

world, the other of the goal state he wishes to achieve. The solution derived by the system

is a "plan" or sequence of actions to transform the problem state into the goal state. Special

planning representations have been developed for these systems: STRIPS and the many systems

modeled on it, for example, represent domain expertise in precondition- and add/delete-lists

associated with each possible action. Plan synthesis techniques have also been developed: one

notable extension of simple backwards chaining with precondition matching is the hierarchical

* expansion and criticism of NOAH.

6.3.3 Deduction or Planning?

A question that arises when attempting to construct a model of expert question-answering
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is whether the expert should do deduction or planning. The answer would seem to depend on I
the domain of expertise: certain domains involve reasoning about statements whose truth a"

some particular point in time is all that is of concern, while others involve reasoning about

the effects of actions on the truth of certain statements. That is, some problems are more

naturally modeled as deduction problems, others as planning problems. Problems presented

to the Prospector system about the probability of some mineral's being present in an area

according to facts known about that area, seem to be a case of the former, while those asked

an MM expert about sequences of commands needed to perform some electronic mail task seem

to exemplify the latter. It should be noted, though, that the very same expert may at certain

times appear to be doing deduction and at other times planning: a financial expert could answer

the question "Is there a limit on the amount I can deposit in an IRA!", which is most naturally

described as a deduction problem, and also "How can I minimize my losses on a bad investment

in silver that I made last year?", which is most naturally described as a planning problem.

Fortunately, a general model of expert problem-solving that does not force the

deduction/planning distinction is possible. Rosenschein [111] and Kowalski [67] have shown

separately that the distinction between deduction and planning systems is not intrinsic: plan-

ning systems can easily be embedded within inference systems. Kowalski demonstrates this by .:

developing a planning system within the clausal logic of Prolog [131]: he employs a situation

calculus that makes use of state variables to describe relations among states of the world.

Rosenschein takes a different approach: he makes use of the dynamic logic that Pratt [105,

originally developed to reason about program semantics. By using dynamic logic, Rosenschein

is able to suppress state variables and instead exploit a dynamic necessity operator for capturing

the effects of actions upon the world.

A brief description of Rosenschein's approach will demonstrate how planning is embedded

in logic. The logic Rosenschein describes is a propositional logic that contains two atomic

sets: the standard set of atomic propositions, and a set of atomic actions. The semantics of

an atomic proposition is the standard mapping from that proposition to worlds, while the

semantics of an atomic action is a mapping from that action to pairs of worlds. Intuitively

viewed, an action o is mapped to the set of all pairs (w1 , W2) such that if a is performed
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Figure 6.8-1: A Trivial Planning Problem

in wl, then W2 will result. Compound propositions are built up in the standard way, using

logical connectives, while compound actions are built up with connectives corresponding to

"follows" and "nondeterministic choice." There are also syntactic rules for combining actions %

and propositions; the most important of these for our purposes is the rule that builds compound

propositions, using the necessity operator '[ ] The compound proposition [alp is true in any

world w, such that performing action a in wv will result in p's holding.

Using this logic, Rosenschein is able to provide a formalization of planning. A planning

problem consists of three parts: (1) a set of primitive (or atomic) propositions and actions; (2) a

set of domain constraints representing the system's domain knowledge, where each constraint

is either nonmodal (i.e., does not contain the necessity operator) or is of the form p ) [alq, p

and q being arbitrary nonmodal wfis; and (3) a set of plan constraints representing the problem

to be solved, where these are also of the form p D [Xlq. A solution to a planning problem

therefore, is a [possibly compound) action P such that for each plan constraint, when X is

replaced by f, the resulting sentence is provable from the domain constraints.

Although Rosenschein limited his discussion to the propositional case, Shieber [1161 and

Kautz [58] have independently worked out the details of using predicate dynamic logic for

planning.

5Actually, in the formal syntax Rosenschein introduces the possibility operator *< >' to build a compound
proposition from an action and a proposition. The necessity operator is later introduced as its semantic dual.
However, both for Rosenschein's purposes and for mine, the necessity operator is more useful.
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As an example of Rosenschein's approach, consider a trivial blocks-world problem shown

in Figure 6.3-1. The start state for the example has two blocks, a and 6, with a stacked atop b

which is on a table; the goal state has b stacked atop a on the table. The primitive vocabulary6

is:

Atomic Propositions:
on(X, Y)
clear(X)

Atomic Actions:
transfer(X, Y, Z)

The domain constraints express the usual blocks-world constraints, namely, that there

are particular, named objects that are blocks; that there is another object, the table, which is

not a block, which has a clear spot, and which is not on anything; that no block can both have

something on it and be clear; and that you can transfer a block, provided it's clear, from one

location to any other clear location.

Domain Constraints:

static:
block(a)
bloc k(b)
table(t)
VXVY table(X) D -,block(X) A clear(X) and-,on(X, Y)
VXVY on(X, Y) A block(Y) D -,clear(Y)

dynamic:
VXVYYZ on(X, Y) A dcear(X) A block(X) A clear(Z) D

[trans(X, Y, Z)]on(X, Z) A clear(Y) A clear(X) .

Finally, the single plan constraint is

plan constraint:
on(a, b) A on(b, t) A clear(a) D [X~on(b, a) A on(a, t) A clear(b)

A simple constructive proof, which will be left to the reader, leads to the not surprising

instantiation of X as

trans(a, b, t); trans(b, t, a),

OThroughout this example, we will adopt the Prolog convention of beginning variables with an upper case letter
and constants with a lower case letter.
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4 where ;"denotes temporal ordering. 7

Note that the solution the system would provide the user is the action 6i, i.e., the

* instantiation of the plan constraint's variable. This turns out to match Kowalski's approach

closely, since Prolog, upon successfully proving the theorem that represents the planning

problem, does precisely the same thing: it presents the user with the instantiations obtained

in the successful proof.

An understanding of the relationship between planning and deduction permits a uniform

treatment of expert systems, whether the problem being solved by them is most naturally cast

as one of deduction or of planning. Both activities consist in performing logical deduction;

however, while the theorem proved in the former case is static (nonmodal in Rosenschein's

terminology), that proved in the latter may contain dynamic information.

An initial formulation of expert behavior, then, in the ideal case-i.e., when the advice-

seeker knows and asks for what he needs-is as follows: expert advice-giving is a deductive

process that uses axioms about the world. These axioms may include static or dynamic

information. The advice-giving process is characterized by an advice-seeker who presents the

expert with a set of facts relevant to some problem, which is itself cast as a theorem to be

proved and which contains an uninstantiated variable. That theorem, which may or may not

contain dynamic information, is either explictly presented by the advice-seeker or is constant

and known to the expert. The latter attempts to prove the theorem from a combination of the

axioms she knows and any facts applied by the user. If successful, she provides as a solution

the instantiation she made of the variable in proving the theorem.

6.4. Providing Direct Responses

In the previous section, a model of the advice-giving process was presented. In this

section, that model is applied to two simple examples. Both of these could be handled by

71ea;#~ is defined to be true in all pairs of worlds (WI , W2 ) if! there is some wa such that a is true in pair
(W1, W3) and 0 is true in pair (w3, w2).
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existing expert or planning systems, since in each the advice-seeker does d'ircly ask for the

advice he actually needs. They are presented here to demonstrate the model just proposed. -

6.4.1 The Domain

Throughout the rest of this section, the domain of expertise modeled is the TOPS-20 mail

* system, MM. Explanations of the way this system works will be provided with the examples as

necessary. This domain is attractive because it permits several simplifications of the general

problem of providing an appropriate answer:

" There is only one agent operating, apart from the system. Interactions among multiple

agents' goals need not be considered.

" The effects of actions can be assumed to be certain. When a MM user types "SEND",

we can assume that this results in his current message being sent. No such assumptions

can be made about the effect, say, of investing money.

*There is a limited but nontrivial number of potential actions the MM user can perform.

J The number is small enough to make an axiomatization feasible. However, this small

set of actions can be combined and structured in interesting ways.

As an example of the last point, notice that goals may be hierarchical. One possible goal

might be described as "respond to Joe." A plan for achieving it could consist of finding and

rereading the most recent message from Joe, sending a response, and moving Joe's message from

your MM file into its own file in your directory. In turn, sending a response might consist of

* creating a response and sending it; creating a response might consist of typing part of message

"on the fly" and inserting an already created file that contains the rest of the message. This

plan is diagrammed in Figure 6.4-1.

The reader may have noticed that in the foregoing example the goal was described as an

action. Technically, a goal is a set of formulas, not an action. However it is often easier to

describe a goal in terms of an action that achieves it: in this example, for instance, it is easier
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Executable actions are capitalized.

Figure 6.4-1: Plan for "Respond to Joe's message"

to s y "respond to Joe" than to list the set of propostions that responding to ,Joe achieves--i.e.,

have a message labeled "response" in Joe's MM file, have Joe's message out of your MM file,

have Joe's message filed in its own file in your directory, and have nothing else changed. Hence,

when we speak loosely of a goal as an action it should be interpreted to be the formula that

that action achieves. Advice-seekers, for this reason inter alia, often describe their goal in

terms of an action that they believe will achieve it; in Section 0.5.2 we consider how an expert

can determine what someone's goal is-what formula he wants to hold-from a description of
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an action.
.'.

6.4.2 A Direct, Static Conclusion

Consider the following exchange between an advice-seeker, whose turn is labeled "A,"

and an expert whose turn is labeled "E":

A: "What is the abbreviation for TYPE?"

E: "TY"

This is an extremely simple case of advice-seeker/expert interaction. The advice-seeker

knows exactly what it is he needs to know, and the expert can quite easily determine the

necessary information for him. There are two alternative ways she might do so. The question

is so simple that it might match one of her axioms directly, making its proof vacuous: it

consists of a database lookup. In this example, the expert would have an explicitly encoded

axiom stating that the abbreviation of "TYPE" is "TY":

abbreviation("TYPE", "TY").

Alternatively, the expert may know a rule that states that "Any command can be abbreviated

to the shortest possible initial substring that is unique" and may have access to a list of all

possible commands to determine that substring for "TYPE." In either case, the expert's task

is to prove--using the axioms known to her-the following theorem:

abbreviation("TY PE", X),

where X is an uninstantiated variable. Note that the instantiation of X is what counts as the

solution.

It is interesting to see how our model of expert advice-giving handles a slight variation of

this example, in which the advice-seeker asks his query in a yes/no form: "Is TY an abbreviation

of TYPE?" This query, when translated in the obvious fashion into a theorem to be proved,

doesn't contain an uninstantiated variable, but is rather of the form

abbreviation("TYPE", "TY").
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There are two ways to fit this into our framework. The question is clearly about the truth-value

of some proposition, so that truth-value can be regarded as the uninstantiated variable. Hence

one solution is to imagine that the theorem to be proved is roughly of the form

truth-value(abbreviation("TYPE", "TY"), X)

and instantiate X as usual. Another, cleaner solution is to adopt the same approach as Prolog,

and answer any theorem that doesn't contain an uninstantiated variable with a statement as

to whether or not it is true.

6.4.3 A Direct, Dynamic Conclusion

Questions about how to achieve results seem to be naturally described in dynamic terms.

Many of the questions that one might ask an MM expert are about commands to the MM

system-e.g., "What does command C do!" or "What command should I use to achieve result

P?" Since commands alter states, they are naturally treated as atomic actions and questions

about them naturally regarded as planning problems. Consider this exchange:

A: "How do I get out of read mode?"

E: "If you've finished reading all the messages you said you wanted to read, a carriage return

will get you out. If you want to stop early, just type QUIT."

Recall that the MM expert's knowledge includes a set of dynamic axioms describing the effects

of commands on the state of the system. Among these axioms are the following:

(D) mode(read) D [QUITmode(command)
The QUIT command moves you from read mode to command mode.

(D2) mode(read) A all-msq-read D [< cr >]mode(command)
After all messages have been read, a carriage-return moves
you from read mode to command mode.

(D3) Vz[mode(z) D (Vy mode(y) D z-- v)]
Modes are mutually exclusive.

The theorem that the expert has to prove is

mode(read) D [X]-,mode(read)
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The expert is able to prove this in two ways, and so presents both instantiations of X.

Let's first examine the proof that results in the instantiation of X to QUIT:

1. mode(read) assump
2. mode(read) D [QUIT]Ymode(command) DI
3. [QUIT]mode(command) mp,1,2
4. Vx[mode(x) D (Vy mode(y) D z-- D3
5. mode(command) D (Vy mode(y) D command=V) V-inst.,4
6. mode(command) assump
7. Vu mode([) D command = y mp,5,6
8. mode(read) D command = read V-inst.,7-
9. -command = read fact
10. -mode(read) mt,8,9
11. mode(command) D -mode(read) disch 6
12. (QUIT]mode(command) J -'mode(read) necess..] 1
13. [QUIT]-mode(read) dist. D,12,3
14. mode(read) D [QUIT]-mode(read) disch I

The important lines in this proof are 1-3 and 14: the rest simple show that the command and

read modes are mutually exclusive. As a result of this proof, the expert determines that QUIT

suffices as a solution to the advice-seeker's query. If this were the only proof of the problem

theorem that the expert could construct, then her answer would probably have been simply

"Use QUIT." However, she does have another way to solve the problem: she can attempt to use

axiom D2 instead of DI at line 2. In doing this, she discovers that she doesn't know whether

or not the all-megs-read condition holds. She then has two options. She can ask the advice-

seeker-"Have you read all the messages you said to read?"-and then proceed according to

his answer. Alternatively, she can adopt the approach of the sample dialogue and present her

response as a conditional: "If you've finished reading all the messages you said to read, then

(the plan I'm giving will work]." Deciding when to ask whether some condition holds and when

to provide a conditional answer instead is a problem that goes beyond the scope of this work. 8

8 One other interesting aspect is the way in which the expert's determination that carrriage return is a possible
solution can affect her statement that QUIT is a solution. In fact, QUIT is alwaye a possible solution, but
she says "If you want to stop early, use QUIT." This may be because she has some notion that QUIT is a
more difficult solution than carriage return (four keystrokes more difficult). As a result, she conveys in her
answer the information that there is an optimal solution-carriage return-but that it will apply only if certain
conditions are met. When these conditions fail to hold-i.e., when the advice-seeker wants to stop early-then
the nonoptimal solution of QUIT should be used.
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6.5. Providing Indirect Answers

7. As was demonstrated by tbe examples in the introduction, an expert cannot assume

that the most appropriate response to a query is a direct one. Even a query with a direct

communicative goal may best be answered by a response that addresses some domain goal not

directly expressed by the query. This section, discussing the reasons an advice-seeker might,

ask a question that requires such an answer, develops a method that the expert can use to

generate one.

Section 6.5.1 explores two issues affecting expert answering that will not be central to

the following. The first of these issues disappears by virtue of our assumptions about expert

behavior. For the second, a sketch of a solution is proposed, although its details are left

a. to future research. The two main ways in which the ideal picture of advice-giving already

presented can fail to suffice comprise the topic of the next two sections: Section 6.5.2 discusses

the situation in which the advice-seeker's query is something other than a statement of the

goal formula; Section 6.5.3 discusses the situation in which the goal formula derived directly

from his query is not the most appropriate formula for which to plan.

Of importance in this section are its explanations as to the nature of deviations from

the ideal picture of advice-giving, and of the method the expert can apply to deal with such

deviations, for the purpose of inferring the advice-seeker's domain goal and providing an

appropriate answer. The specific inference rules, given by way of example, are preliminary:

their details are still being developed.

6.5.1 Two Deferred Issues

6.5.1.1 Requests for Information vs. Requests for Action

One can conceive of a mail system expert capable of handling two sorts of requests:

requests for information and requests for action. "How can I forward this message to Joe!"

4 is a request for information, while "Can you forward this message to Joe?" is a request for

N1



action--- at least when the latter is interpreted as an indirect question rather than a yes/no

query regarding the expert's abilities. In the model of expertise being developed in this work,

only requests for information will be handled.

The advice-seeker's goal, as inferred by the expert, describes the use to which he is likely

to put the information he requests. When he asks "Flow can I forward this message to Joe"' the

expert infers that his goal is roughly "this message is in Joe's mail file." If we were concerned

with distinguishing between the two sorts of requests, this goal would be reserved for requests

for action, while requests for information would be related to goals such as "knows how to

achieve: this message is in Joe's mail file." However, since the expert behavior being modeled

in this work is constrained to providing information (and not intervening actively on behalf

of the advice-seeker), the "knows how to achieve" clause can be assumed to be implicit, in the

goal formula.

6.5.1.2 A Static Theorem as the Presented Goal

In the ideal picture of expert/advice-seeker interaction described in Section 6.3, the

advice-seeker presents to the expert a theorem he wants proved. When the theorem is dynamic,

it represents both the formulas that hold in the current state and those that should hold in

the goal state; proving the theorem consists of constructing a plan that transforms the former*x

into the latter. The static case has not received as much attention in this work to date,

but it seems plausible that the expert transforms the static theorem into a dynamic one that

captures the use to which an advice-seeker might put. the information conveyed in the static

theorem. For example. when the expert is asked "What is the abbreviation of TYPE?", she

may reason that the advice-seeker wants to use that abbreviation; this deduction will enable

her to determine the domain goal of the query. Allen and Perrault (2, p. 155] suggest several

rules-the know-positive rule, the know-negative rule, and the know-value rule-that relate a

4 request for information to a potential goal. A useful area for further research is the manner in

which such rules as these apply in the model presented here.
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6.5.2 Linking the Query to Possible Wants

Life would be simpler for the expert if advice-seekers always provided her with the formula

they want to hold. Very often, though, the advice-seeker's utterance conveys something else.

This section discusses what that something may be and how the expert can use it, to deduce

the goal.

6.5.2.1 Advice-Seeker Describes an Action

In Section 6.4.1 we saw that it is often easier to describe a goal in terms of an action

that achieves it than in terms of the formula it comprises. This is partly a consequence of Lihe

frame problem: it is difficult to specify all and only the propositions whose truth will change

as a result of some action, as was seen with the example of "respond to Joe." But there is at

least one other reason goals are often most easily stated in terms of actions, namely, that a

cluster of actions often acquires a single, commonly known name. "Respond to X" is one such

cluster, where X is a parameter that may take the value "Joe," for instance. People have a

* general notion of what it means to respond to a message, and they expect the expert to share

that knowledge. Note that the details of what it means to "respond to Joe" may differ from

person to person-for instance, it may or may not include deleting Joe's message after the

responding message is sent. The expert who is aware of these variations will either have to

ask if the advice-seeker's notion of "responding to Joe" includes deleting Joe's message, or else

provide alternative plans, one of which does include this and one that does not; there is simply

no way for him to deduce which of them the advice-seeker wanits, since the cluster of actions

described by "respond to Joe" is indeterminate with respect to this.

If what the expert is going to provide is a plan that will achieve the advice-seeker's goal,

then why does the advice-seeker describe to the expert a plan whose effect will be that goal?

That is, if he already knows the action he wants to perform, why does he bother the expert at

% ~ all? The answer to this is that the advice-seeker does not know how to perform the action he

is describing: what he conveys to the expert is an action description, not an actual, executable

plan. To keep this distinction straight, the term action deacription is used in this work to refer
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t~o the description given by the advice-seeker in his query, while the term ezecutabic action is
used to refer to the action or cluster of executable actions that achieve corresponding resuilts.

As an example of this distinction, recall the trivial blocks-world problem presented ill

Section 6.4. The problem was stated there as an example of the ideal case of expert aid%-ice-

giving, and so the goal propositions were directly given. Imagine. however, that the question

to the blocks-world expert had instead been "How can I stack block b on top of block a'- This

question contains a description of an action that the advice-eeker wants performed: "sta:ck X

on Y," where X and Y are instantiated to a and 6 . "Stack" is not an executable action. The

advice-seeker knows that "stack X on Y" is a description of an action (or cluster of actions)

whose effect is commonly known; what he does not know :i what sequence of executable actions

will enable him to achieve that effect. The expert's task is to find an executable plan that

achieves the results of his action description.

Sometimes the action description may be extremely close to an executable sequence or

actions, particularly in a computer-system domain. This results in exchanges like the following:

A: "How do I delete a message?"

E: "Would you believe DELETE?"

Because the action description "delete a message' happens to be nearly identical to the NI

command DELETE, it is easy to confuse the two. However, this dialogue is no different from

the blocks-world one just described. In both cases, the advice-seeker gives a description of

an action that is generally known; it just happens that MM has a single executable action

whose name is nearly identical to the generally known action description that produces the

saeresults. In another mail system, deleting a message might require that you first read I he

message and then type "DESTROY," so that the exchange between expert and advice-seeker

instead looks like this:

A: "How do I delete a message?"

E: "Type READ n, where n is the number of the message you want to delete, and then type

DESTROY."
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Although the same action description is provided, the answer consists of a different executable

plan.

Recall that, in the initial formulation of advice-giving, the advice-seeker directly informs

the expert of the goal formula. When the advice-seeker presents something else in his query,

such as an action description, the expert needs rules to link the query to a goal. The first of

these rules, which will be called linking rules, applies when the advice-seeker presents an action

description:

Linking Rule 1 (LR1).

WantAction(A, a) A Beiaeve(A, achieves(a, p, wo)) D POS want(A, p)

This rule states that if some advice-seeker A describes an action a that he wants performed,

and if be believes that some arbitrary wff p is the result of performing that action in the current

world, then p may be his goal.9

There are several things to note regarding this rule. First, the condition is stated in terms

of the advice-seeker's beliefs. Remember that action descriptions, while commonly known, may

not be fully determined with respect to their results. For instance, certain people believe that

performing the action "respond to Joe" entails the result "Joe's last message is deleted," while

others do not believe this. Whether or not this proposition is part of the advice-seeker's goal

depends upon his beliefs. The Believes relation, in fact, is where the common knowledge about

action descriptions is stored. The examples in the next section will demonstrate how it is used.

Secondly, the goal formula has the modal possibility operator in front of it. This is -

because the most the expert can ever say is that an advice-seeker might want some goal. As

rules for goal inference are introduced, the set of formulas the expert can infer as possibly

deserved by the advice-seeker will grow. In certain cases, she may even infer that he might

want both p and -'p. This is not necessarily because the advice-seeker has inconsistent wants, 4,.

OThis entire linking rule is within the context of the expert's belief, i.e., a more precise statement of it would
be BelieveeIE, (Wan tAction(A, a) A Believe#(A, achieves(a, p, wo)))I D Believee(E, POS Want(A, p)).
Since all the deduction described in this work is within the context or the expert's belief, the outer predicate
will be assumed implicit to keep the formulas simpler.
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but because the expert lacks enough information to determine which he actually wants. The

possibility operator provides a way to model this situation correctly.

Also, the logic used is multisorted: variables may range over plans, formulas, or possible

worlds. To keep things straight, variables ranging over plans will be symbolized by Greek

letters, those over logical formulas will be (possibly subscripted) p's and q's, and those over

possible worlds will be (possibly subscripted) w's. The current world is denoted by wo. Wheli

z, y, and z appear as variables, they range over individual terms within the formulas denoted

by the p's and q's.

Although the second sort ranges over logical formulas, the use of a second-order logic

can be avoided by employing Moore's trick of doing deductions indirectly by using the first-

order formalization of the semantics (see [90] for details). This is important because automatic

methods for doing second-order deduction are not well understood. All operators whose

arguments can be formulas must be treated as abbreviations for their semantic expansion.

The expansion for POS and want is as follows:

POS(p) = 3wT(w, p)
T(w, want(A, p)) - VWv2 IWA(w, ') j T(u', p)],

where WA is the want accessibility relationship for agent A, and T(w,p) holds whenever p is

true in world w. (See [4, pp. 5-82] for more details of a possible worlds semantics for wanting.) .

By joining these two definitions, we derive

POS want(A, p) - wVw1 PIA(U', wu) D T(wl ,p)]

The expansion of achieves is

achieves(, p,tw) w 3wlv [R(o, ., n) A T(wl ,p)] A VwI [R(a,ww,twv) D T(wn ,p)].

R is the result relation: R(ca, v,v 2 ) holds if and only if performing o in wi can result in W2.

The reason both halves of the conclusion are necessary is that, without the existential clause,

an action might be said to achieve a result when in fact that action never terminates; without

r ¢,= :,:~~~~~~~~~~~~~~~~~~~~. ... ......,...... -.............-.-......-.•-...--.--,-..-.-..-...,-~. ......-.



the universal clause, an action might be said to achieve a result when in fact that result is

accidental and only happens sometimes when the action is performed.

The achieves relation is intended to capture the important effects of an action. After

an action has been performed, two types of propositions hold: (1) those that have been made

true by the performance of the action; (2) frame propositions that were true before the action

was performed. (Frame propo~itione are propositions are propositions whose truth-value is not

affected by the performance of the action.) In most analyses or planning and actions, all frame

propositions have equal status. However, when someone wants to perform an action, he will be

more concerned with some frame propositions than with others. The achievea relation explicitliy

mentions not only those propositions that an action changes, but also those that critically it

does not, change.' 0 If achieves(a,p,w) holds, then p is the conjunction of propositions whose

value changes as a result of a and the critical set of propositions whose values do not change.

Consider, for instance, the MM user who has finished his message and now wants to move

from create mode to send mode. Not only does he want the mode to change, but it is essential

t~o him that his message remain unchanged; after all, the reason he is shifting into send mode

is t~o send the message he's just created. On the other hand, it probably does not matter to

* him whether his terminal display remains similarly unaffected. A plan that enables him to get

A to send mode but changes his current message will be unsatisfactory to him, whereas one that

gets him to send mode but clears the display will suffice.

To use LRI (the linking rule just proposed) a restatement of the expert's top-level task is

needed. Although the earlier formulation assumed that she was given the goal formula, actually -

it is part of her job to deduce it. Only after that deduction can she produce a plan to achieve

the goal; as before this plan will serve as her answer. Expressed formally, the advice-giving

task can be described as follows:

Expert's Top-Level Teak:

From the domain axioms and the linking rules, prove

I0 This is oversimplified for the time being: which propositions critically cannot change may depend on why the
action is being performed. That is, at some times one proposition may be a critical frame proposition, and
at other times it may not be. This problem will need to be addressed in future work.
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F A T D 3a3pPOS ,ant(A, p) A achievcs(ap, wo)

where F -{ facts about the current world, wo)

T = (translation of the query /

and A = the advice seeker.

In constructing the proof, the expert instantiates two variables: p, representing a possible

goal of the advice-seeker, and ot, a plan that achieves that goal. It is the instantiation of

the latter that will become the expert's answer. The possible wants are deduced from the

translation of the query by using the linking rules, and the plans are deduced by using the

expert's domain knowledge.

We do not consider here how the query would be translated from English. Instead only a

few target translations are considered. An examination of transcripts of expert/advice-seeker

dialogues has shown that many queries can be paraphrased as "How can I have condition P

hold?" (where P may be some condition or a Boolean combination of conditions), "How can

I do action o?" (where a may be some action or a combination of actions), or "How can I

do action a but have condition P hold?" 11 These correspond, respectively, to the predicates

WantFormula(A,p), WantAction(A,a), and WantModifiedAction(Aa,p). The idea is to

leave the requisite semantic analysis unspecified: any mechanism for semantic analysis could

provide logical forms that could then be translated in a principled way into such a set of

predicates.

'iThe transcripts examined came from four sources: (1) a session between a user who was trying to learn MM
and an expert; (2) a session between a user who was trying to learn EMACS and an expert; (3) several sessions
between naive users who were trying to accomplish a task in EMACS and an expert who was advising them;
(4) dialogues between Harry Gross, the financial expert mentioned previously, and radio listeners who called
him for advice. In addition to the three types of questions mentioned above, there is a fourth category of
commonly asked questions: these occur when something has 'gone wrong," and the advice-seeker asks either
'How did I end up with condition X holding (when I wanted condition Y)!" or "I performed action A, what
conditions hold now?" Analysis of this last class has been deferred because it seems to require an additional

4 layer of reasoning. In the question types considered in this work, there are two states of interest to the
expert: the current state and the goal state. For queries falling into the fourth type, there is a third state of
interest: the one that held before the advice-seeker attempted to achieve his goal. The expert may need to
deduce what that state was or what the current state is (or both). She also must decide whether to tell the -.

advice-seeker how to achieve his goal directly from the current state, or how to return first to the previous
state and achieve his goal from there.
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8.5.2.2 Some Examples

We are ready to present some examples of expert advice-giving. Two such examples will

be given in this section. First, because it is simple, we shall repeat the example of Section 6.4.3,

in which the advice-seeker present a formula he wants to hold. We shall then follow with an

example in which the advice-seeker furnishes an action description.

The only linking rule provided so far relates a given action description to a possible goal.

The rule linking a given formula to a possible goal is even simpler:

Linking Rule 2 (LR2).

WantFormula(A, p) D POS wtant(A. p)

In other words, if an advice-seeker gives a formula that he wants to hold, that formula may

be his domain goal. (In Section 6.5.3 we shall see that it is not necessarily the correct domain

goal to which to address a response.) With this second linking rule, the expert can respond to

"How do I get out of read mode?"

A: "How do I get out of read mode!"

E: "If you finish reading all the messages you said to read, a carriage return will get you out.

If you want to stop early, just type QUIT."

Translation
(TI) WantFormula(A, -mode(read))

Facts about wo
(FI) T(wo,mode(read))

Linking Rules
(LR2) Vp[lVantFormula(A, p) D POS want(A, p)]

Domain Axioms
(DI) Vw[T(lw, mode(read)) D achieves(QUIT, mode(command), w)].

I

(D2) Vw[T(w, mode(read)Aall-msgs-read) D achieves(< CR >,mode(command), w)].

(D3) Vw[T(w, mode(command)) D T(w, -mode(read))]

DI and D2 are direct translations of axioms DI and D2 from the proof given in Section
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6.-4.3. D3 is actually a lemma. Since a proof that it follows from a more general statement of

the exclusiveness of modes was a subproof in Section 6.4.3, we'll use it as a lemma here so as

to shorten the proofs. In any case, it is secondary to the major concerns of this section.

Actually, in a complete planning system the expert would need to know the entire set of

frame properties, not just the critical ones expressed by achieves. To represent this, anot her

predicate, result, can be introduced. result is similar to achieves, except that it includes a

way of expressing the frame property. It is a four-place predicate, defined as follows:

result(a,p, f, u) _3wt[R(a, w,, wt) A T(wt,p) A (Vq(f(q) D [T(lu'.q) T(u,,q]J)] A

Vwt[R(a, vuy,) D [T('i,p) A [Vq(f(q) D [T(wt,q) T(u,.q]})1J.

This relation says that, if a is performed in world u,, it is guaranteed to terminate and tlhat.

in the resulting world wt, p will hold; furthermore, any proposition q that has the frame

property f will hold according to whether it held in w. As with achieves, p expresses hot h

those propositions that change and those that critically stay constant. The frame property f

is given formally as a X-expression: a proposition r is a frame proposition (i.e., its truth-vaue

is unaffected by the action a) if a true expression results when r is substituted for the bound

* variab~le in f

The complete specification of the actions QUIT and <CR> is then

(DI') Vu'[T(w, mode(read)) D
result(QUIT, mode(command), Xpf[-mode-incompat(command, p)], ui)]

'5 (D2') V'{T(w, wnode(read) A all-msgs-read) D
result( < CR >, mode(command). Xp-mode-inrompat(command, p)], u,)]

In addition, the following axioms specify the frame exceptions: t.

(D-I) mode-incompat(command, all-msgs-read)

(135) VxV v-(z = v) D mode-incompat(y. mode(z))]

mode-incompat is a two-place relation whose argument is a mode name and whose second

*. argument is a formula that is incompatible with the named mode. D4, for instance, says

that the proposition all-msgs-read does not make sense in command mode; D5 says that

two distinct instantiations of the mode relation cannot hold at once. The mode-incompat "
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relation is used in the frame clauses of D1' and D2' so that all propositions except those

satisfying mode-incompat(command, z) will continue to hold when the mode changes from

read to command.

Although the result relation would be needed in a complete planning system, achieves

will be sufficient for the examples given here, especially in light of the following lemma relating

the two, which follows directly from their expansions:

(R 1) VaVpVw[result(a, p, f, w) D achieves(a, p, w)].

A second lemma that will help shorten the proofs is

(R2) VaVpVw[[achives(a,p, w) A [T(w,p) D T(w,q)]J D achieves(a, q, w)).

This also follows directly from the expansion of achieves.

The constuctive proof of the top-level theorem, which corresponds to answering "l low

do I get out of read mode?" follows. Notice that, in lines I and 2, Ti and LRI are introduced

as assumptions that are then discharged in line 11 to prove the top-level implication.

l .lVantFormula(A, -,mode(read)) Ti
2.T(wo, mode(read)) F1
3. VpWantFormula(A, p) D POS want(A, p)] , I.t
4. POS want(A, -mode(read)) mp,l,3
5. Vu'[T(w, mode(read)) D achieves(QUIT, mode(command), w)] D1
6. T(wo, mode(read)) D achieves(QUIT, mode(command), wo) V-inst.,5
7. achieves(QUIT, mode(command), wo) mp,2,6
8. VUY[T(w, mode(command)) D T(w, -mode(read))] D3
9. achieves(QUIT, -mode(read), wo) R2,7,8

10. POS want(A, -mode(read)) A achieves(QUIT, -'mode(read), uo) 4,9
11. WantFormula(A, -'mode(read)) A T(wo, mode(read)) D

POS want(A, -mode(read)) A achieves(QUIT, -mode(read), wo) disch,1,2

lence the expert is able to find a plan, namely QUIT, that achieves a possible goal, namely

-'mode(read). As before, she could instead have chosen here to use rule D2 in line 5, and would

-. - then have faced the decision of how to deal with not knowing whether all-msgs-read holds in"

WO.

Now let's examine a more interesting case, in which the expert has to determine a possible
goal from an action description:

A: "How do I delete a Control-Z? I hit it by accident and now I'm in send mode."
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Translation
(TI) lVantAction(A, deletc(control-z))

Facts about wo
(FI) T(wo,modc(send))
(F2) T(wo,mag(xo))

Linking Rules
(LR 1) WantAction(A, a) A Believe8(A, achievcB(o, p, wo)) D POS want(A, p)

Domain Axioms
(DI) VwVx[T(w, mode(create)Am8g(X)) D achieve8(control-z, mode(send)Am8g(x), w)]

(D2) VwVzVV[T(w, mode(create)Amsg(x)) D achieve8(inscrt(y), mode(create)Am8g(Xoy), w)]
where "o" denotes concatenation

(D3) VwVzVy[T(w, mode(edit)Atezt(x)) D achieve(inacrt(y), mode(edit)AteXt(xoy), w)]
-..

(D4) VuVz[T(w, mode(edit)Atext(x)) D achievee(control-x; control-z, mode(send)Amsg(a), w)]"

(D5) Vu7Vz[T(w, mode(8end)Amag(z)) D achieve8(EDIT, mode(edit)Atezt(z), w)]

What does the expert know the advice-seeker believes about the action description

"delete?" In general, the problem of determining what clusters of actions have commonly

known descriptions is a difficult one to which further work should be devoted. The present

work offers only a preliminary solution to dealing with the "delete" description in this query.

One action description that is probably well formed defines the parameterized action

description undo(a) in terms of the action description a:

3p3q[Believe*(A, Vwj (T(w, p) D achievcs(a, q, wi)]) D

Believes(A, Vw 2 iT(w2, q) D aehieve8(undo(a), p, w2)1)]-

That, is, if the advice-seeker believes that a achieves q from a world in which p holds, then he '

believes that undoing a from a world in which q holds should result in p.
For the current example, we shall assume that the advice-seeker is equating "delete" and

"undo": in asking to "delete a Control-Z," he is asking to "undo a Control-Z" whose effect,

was to send him from create mode to send mode. There is an unfortunately large logical leap

required in making this assumption. "Delete" is actually closer to the inverse of "insert": the

action described by "deleting" is the action of removing a character that has been inserted

,- % %
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.'., effectively undoing the insert. Control characters are not characters that can be inserted,

though, so, if the expert stopped at this point, her response would be "You can't delete control

characters" because you can't even insert them. Instead a competent expert determines that

what the advice-seeker really wants is to undo the effect of typing Control-Z. Perhaps she

arrives at this conclusion by analogy: just as deleting the last noncontrol character restores

the state of the system to the one that immediately preceded the insertion, deleting a control

character may be thought of as restoring the system to the state it had been in before the

control character was typed.

Precisely how an expert can use methods such as analogy to deduce what it is an advice-

seeker believes about an action description is a question that must be addressed in the future.

This deduction is just the first step in the expert's inference process: after applyinng methods

such as analogy to ascertain the advice-seeker's beliefs about the action he's described, the

expert must next apply the linking rules to determine a possible goal. After this she may apply

alternative-goal rules, which will be introduced in Section 6.5.3, to expand the set of possible

goals. The following will focus on the linking rules and the alternative-goal rules; for now we

shall assume that, whether by anology or by some other means, the expert is able to relate an

action description to the set of propositions that A believes are its effects. In this example she

determines that A, in asking to "delete a Control-Z," is actually asking to "undo a Control-Z."

With this assumption the expert can deduce

"%'[:ii'",e Belietes(A, VwVVz[T(w, mode(8end)Amsg(z)) D achieve8(delete(control-z), mode(crea te)A{rnsg(x), ,1)])

from the instantiation of the "undo" action description with

Beliee.?(A, VwVx[T(iw, mode(create)Amsq(z)) D achieves(control-z, mode(8end)Amsg(z), U.)]).

She can then apply linking rule LRI and the fact that the advice-seeker knows that. mode(send)

holds in u'o to deduce that a possible goal of the advice-seeker is [mode(ereate) A msg(Xo).

Unfortunately, when she then attempts to complete the top-level proof and construct a plan
.9..

to achieve mode(create), she fails. There simply isn't any way in MM to return to create mode
from send mode. At this point, she needs to find some other possible goal of the advice-seeker.

Section 6.5.3 will discuss how she can do that.
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6.5.2.3 Advice-Seeker Gives Something More Complex

In all the examples discussed so far, the advice-seeker gave either a single proposition

or a single action description. In fact, he may present arbitrary Boolean combinations of

actions or propositions. To handle these, the expert needs additional linking rules. Their exact

formulation is largely a matter for future research, but a few such rules are discussed here to

show what issues are involved therein.

6.5.2.3.1. Disjunction of Action Descriptions

In one common form of query, advice-seekers present a disjunction of action descriptions.

An example of this appeared in our introduction, in which we described an advice-seeker who

wanted to invest in either Treasury-notes or certificates of deposit. What a competent expert

would have deduced from his request is that he wants to make some investment that will

provide him interest. This deduction arises because investing in T-notes and investing in

CDs both customarily achieve that result. 12 In general, whenever the expert is presented with

alternative action descriptions, a possible goal will consist of the intersection of the sets of

effects the advice-seeker believes those actions will achieve. The appropriate linking rule will

look something like the following:

Linking Rule 3 (LR3).

Want.'lrtion(A, OR(a, 0)) A Believce(A, achievee(a, pn, wo)) A Believes(A, achieve8(I/, P2, V'o))

D t)OS want(A, P)

where P represents the conjunction of all those propositions belonging both to p, and P2.

6.5.2.3.2. Conjunction of Propositions

A second common form of query involves giving a conjunction of propositions that fie

adv ice-seeker wants to hold. Linking rule 2, as it is now stated, will apply in this case. so thu .i

if an advice-seeker says he wants (p A q) to hold, the expert will deduce that (p A q) is a possible

121n fact, his goal is more than just to receive interest: what he wants is to receive maximum intre-t. The

expert is able to deduce this because of domain knowledge not accounted f-r here. In fact, such dnain
knowledge is necessary even to select the goal from among the common consequences of investing in T-not ,,
and investing in CDs.
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goal. A difficulty arises, however, since, in any system that reasons about wants, it is natural

for the following axiom to exist:

VpVq Want(A, p A q) D Want(A, p) A Want(A, q)

Starting with WantFormula(A,p A q), the expert, in constructing her top-level proof, might

apply this rule. As a consequence she would deduce that p is a possible goal of the advice-seeker,

and then might attempt to find a plan to achieve just p. If she succeeds at this and finds a plan

that achieves p but not q, the current formulation of the expert's task would regard this plan

as an appropriate answer, since it does achieve a possible want. In fact, it is inappropriate,

since the advice-seeker wants (p A q), not just p.
V.,

A possible solution to this problem is again to reformulate the statement of the expert's

top-level task. 13 Instead of inferring any possible goal of the advice-seeker, the expert will be

' required to find a possible goal that is "maximal" with respect to the set of possible goals. A

partial ordering of goals is defined by logical implication, so that p > q if and only if p D q.'onl-

Then a possible goal p is said to be maximal if and only if there is no other possible goal q,

such that q D p. Hence if (pi A q1) is a possible goal, pi will also be a possible goal, but it will

$ not be maximal, since (pi A q1) D pi. This restriction of acceptable solutions to those that

satisfy maximal goals also precludes the problem of attempting to plan for extra disjunctions:

if p, is known to be a possible goal, then, for arbitrary q1, (pi Vqi) will also be a possible goal.

However, (p, V qi) will not be maximal, and so the expert will not attempt to plan for it.

Formally, the restatement of the expert's top-level task is

Expert's Top-Level Task:

From the domain axioms, action descriptions, and linking rules, prove

SF A T D 3pM(p) A achieves(a, p, uo),

where F = {facts about the current world, wv0}

and T - {translation of the query}.
-."., .

13 This solution was suggested by Stan Rosenschein.
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To expand M(p), we need to define max, the standard predicate expressing maximal within a

partial order:

VzVsetVord[maz(z, set, ord) - in(x, set) A Vylin(y, set) D -,greater(y, z, ord)"

When ord is instantiated for implication, the definition of greater is

VzVy[greater(z, y, impl) Vw T(w, x) D T(w, y)J-

Finally, a formula p is in the set posowants of agent A if and only if it is a possible want:

Yp[in(p,posswantsA) 3::Vw [PA(w, u') D T(w1 , p)]]

i.e., Vp[in(p, po8wantSA) POS want(A, p 1.
*1%

,11(p) now expands as follows:

M(p) - max(p, posswantsA, impl)

in(p, posswantsA) A Vqjin(q, posswantBA) D -greater(q, p, impl)"

- POS want(A,p) A Vq[POS want(A, q) D -,V,[T(w, q) D T(w,p)]]

POS want(A, p) A Vq[POS want(A, q) D 3u,[T(w, q)A -,T(w. p)J-

So, for example, if (pi A qj) and p! are both possible wants, pi will fail to satisfy Al, since

there is no world in which (pt A qj) is true but p, is false.

Using this redefinition of the top-level goal is tricky, however, since it is impossible to • -

prove that a formula is completely maximal. Instead, the problem must be constrained to

specify that a formula is maximal with respect to the formulas that are provabli possible wants.

The constraint process is similar to McCarthy's circumscription process 1851, and can probably

be achieved by making all the linking rules biconditional. However, because this approach does

not. seem cleanly to capture intutive notions of the goal inference process, alternative soht ions

are being considered.

6.5.2.3.3. Action Description and Modifying Proposition

One other common form of query presents both an action description and a modifying

proposition (or possibly a Boolean combination of modifying propositions). This is exemplified

by the following interchange:
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A: "How can I move a mail message to another file but not have it deleted from the MM file?"

E: "Use COPY instead of MOVE."

These queries occur when an advice-seeker knows a common action description whose associated

effects are approximately what he wants. He presents that description and either the associated

effects he does not want or else some additional effects he does want.

Such requests can be translated to the target predicate Want ModifiedAction, which

gives both the desired action description and the modifying propositions. The linking rule to

handle this predicate is:

Linking Rule 4 (LR4).

Want Modi fiedAction(A, 0, p) A Believes(A, achieves(a, -'p A q, wo)) D POS want(A, p A q).

6.5.2.3.4. Summary

In all, the five major types of queries to an expert that have been identified so far are those

that (1) describe an action, (2) describe a disjunction of actions, (3) present a goal proposition,

(4) present a conjunction of goal propositions, and (5) describe an action but also give modifying

formulas. There are almost certainly other types of queries that advice-seekers can direct to

experts; the identification of such additional types will be an objective of future research.

6.5.3 Linking Possible Goals to Other Goals

Recall the plight of the expert who, in the last section, was attempting to answer the

query "How can I delete a Control-Z?" Although she was able to deduce that what the advice-

seeker wanted was to return to create mode, she was unable to provide him with a plan to

achieve that goal. Her knowledge of the domain led her to answer him with merely "You can't

get there from here." The human expert who actually responded to this query, however, was

able to provide a much more appropriate answer. She told the advice-seeker 'Type EDIT

to enter the editor. Then you can finish building your message and, when you're done, type

Control-X Control-Z to return to send mode." To arrrive at this answer, the human expert had
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to deduce that the reason the advice-seeker wanted to be in create mode was to finish building

his message prior to sending it. He believed that being in create mode was prerequisite to being

in send mode with a completed message.

An expert often needs to make just this sort of deduction. It is not always sufficient for

her to determine the advice-seeker's possible goals directly from his query: often she will have

to determine why those goals are possible goals, and what other goals they are intended to

-~ support. The introduction of a set of rules called alternative goal rules will enable this type of

reasoning in the framework being proposed. Alternative goal rules add to the set of possible

goals: they are all of the form "if p is a possible goal, then q is also a possible goal."

Allen and Perrault [21 present a set of rules that interconnect an advice-seeker's possible

* wants. For example, they propose a rule stating that, if an advice-seeker wants some proposition

to hold and if that proposition is a precondition of some action, then the advice-seeker may

want to perform that action (Precondition-Action Rule). Another rule states that, if an advice-

* seeker wants to perform some action, then he may want the effect of that action (Action-Effect

Rule).

A major thrust of the continuation of this work will be to identify and formalize

alternative-goal rules such as these. This section presents just one such rule, corresponding to

S a combination of Precondition-Action rule and the Action-Effect rule, and shows how its use

results in the expert's answering the question "How can I delete a Control-Z?" appropriately.

The alternative goal rule needed by the expert is

Alternative Goal Rule 1 (AGI).

VpVq~a[[POS want(p) A Vw[T(w, p) D achievee(a, q, u,)]] D POS tvani(A, q)].

This rule asserts that, if p is a possible goal of the advice-seeker and p is a precondition of

some action a, then another possible goal of the advice-seeker is what ar achieves, namely q.

Notice that the implication in the second conjunct of the hypothesis goes in one direction only:

p need not be a necessary precondition of a for this rule to apply. Suppose there are several

alternative sets of preconditions of a; as long as one of them holds, ar can be performed. In
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this case, the advice-seeker may want any one of the sets of preconditions to hold if what lie

wants to do is perform a. Notice too that p need not be sufficient precondition of a for Y; I

to apply. There may be other preconditions in the set containing p that the advice-seeker,

since he already knows how to achieve them, does not ask about. These other preconditions

are represented by variable r in AGI. We allow r to be instantiated by the logical constant

"true" in the case that p is a sufficient precondition.

The reader has a right to be concerned at this point about the combinatorial explosion

that may ensue as a result of applying AGI. As it now stands, this rule can introduce into

the set of possible goals all the effects of any action that has on its precondition list any

proposition already inferred to be a possible goal. Human experts are not nearly so profligate

in hypothesizing possible goals of their advice-seekers. Instead they make extensive use of their

knowledge of the domain and of the goals people are likely to hold in it. Similary, the use of

rules such as AGI by an automated expert will have to be governed by a control strategy that

is expectation-driven. The development of such a control strategy is currently being studied.

We can now trace the expert's solution of "How do I delete a Control-Z?" The axioms

used are numbered as in Section 6.5.2. Recall that the expert's task is to prove constructively

the following theorem:

2 'NF A T D 3p3a[POS want(p) A achieves(a, p, Wo)],

where F' are the facts about wo and T is the translation of the query. There are many ways

to prove this theorem, and many starts at proofs that will fail. What is presented here is the

proof that results in the answer given by the human expert.

The proof will be presented in several -parts. First, as already described, the expert

deduces directly from the query that [mode(create) A mag(zo) is a possible goal of the advice-

seeker:

0. WantAction(A, dclete(control-z)) = WantAction(A, undo(control-z))
1. WantAction(A, undo(control-z)) Ti'
2. T(uWo, mode(send)) F1
3. T(wo, mag(xo)) F2
4. VpVq[Believea(A, Vwj [T(wt, p) D aehieves(a,q, w|)]) D

Believes(A, Vw 2[T(w2 , q) D achievea(undo(a), p, W2)1)1 undo des.

129

% .9 .. . . . . . . .- . . . -. . . .4 % % , ..
%



.5. Ielieves(A, VwVzIT(w, mode(create) A msg(x)) D
achieves(control-z, mode(send) A msg(z))]) given

6. Believes(A, Vw)Vx[T(w, mode(send) A mag(z)) D
achievea(undo(control-z), mode(create) A msg(z), u')]) mp,4,.5

7. fBelivesA, T(wo, mode(send) A msg(Xo)) given
8. Believes(A, achieves~undoeontro-z), mode(create) A insg& io), u'o)) mp,6,7" :'' ::',9. WantAetion{A, a) A Believes{A, achieves(a, p, wo)) D "

POS want(A, p) LR I
10. POS want(A, mode(create) A msg(zo)) emp,l,8.9

Line I substitutes the equality of line 0 into the query translation. Lines 2 and .3 are just F.

Lines 4-10 use the description of the action undo to conclude that the advice-seeker wants to

return to a state identical to the one that held just prior to his typing Control-Z. They are

self-explanatory, except for the origin of lines 5 and 7. Either these can come from a user

model that, unless there is reason to believe otherwise, assumes the advice-seeker understands

the effects of actions, or they can be considered as expressed in the advice-seeker's query. For

this particular example, the latter explanation is not farfetched.

Having determined that [mode(create) A msg(zo)] is one possible goal, the expert next

applies the alternative goal rule AGI to determine another possible goal. One advantage of

being in create mode is that the user can add to his current message:

I1. Vp~q a[IPOS want(p) A Vw[T(w, p) D achievce(ct, q, w)J D
POS want(A, q)] AG1

12. VwVZVuT(w, mode(create) A msg(z)) D
achieve(insert(y), mode(create) A msg(z o t), w)] D2

13. Vy POS want(A, mode(create) A msg(zo a V)) mp,10,12.11

The expert now knows many more possible goals of the advice-seeker: for each character be

could type, the advice-seeker may want to be in create mode with a current message consisting

of Zo and that character appended to the end of it.

The alternative-goal rule can apply iteratively to its own output. By instantiating V.

the expert can select one of the possible goals derivable from line 13, and then, instantiating

the second conjunct of its hypothesis with D2, apply AGI again. At the end of several such

applications, she knows that a possible goal of the advice-seeker is to be in create mode with the

current message consisting of zo appended with a string of characters, which will be denoted

by -1:
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14. POS want(A, mode(ereate) A msg(zo o l))-

15. VyPOS want(A, mode(create) A msg(z o y o y)) mp,14,12,11
... (several more applications of AGI and D2)

16. POS want(A, mode(create) A meg(zo o .y)) mp,12,11

Having determined that a possible goal is being in create mode with message zo a -1, the

expert again applies AGI, but this time instantiating the second conjunct of the hypothesis

with DI:

17. VwVz[T(w, mode(create) A msg(z)) D
achieves(control-z, mode(send) A msg(x), w)] DI

18. POS want(A, mode(send) A msg(zo o i) mp,16,17,11

The expert now knows that yet another possible goal of the advice-seeker is to be in send mode,

with the msg zo appended with some string of characters. She can then choose to accept this

instantiation of p, and attempt to find a plan ot to achieve it. The planning process makes use

of the definition of concatenation of actions, described in footnote 7:

19. VwVz[T(w, mode(send) A msg(z)) D
achieves(EDIT, mode(edit) A tezt(z), w)] D5

20. achieves(EDIT, mode(edit) A tezt(zo), wo) mp,2,3,19
21. VwVzVy T(, mod(dit) Atezt(x)) D

achicves(insert(y), mode(edit) A tezt(x o ), 01] D3
22. Vy4 achieves([EDIT; insert(y), mode(edit) A tezt(zo, V), wo) mp,20,21

... (several more applications of D3)~23. achievee(JEDIT; insert(y, );.; insert(y.,)], i
mode(send) A tezt(zo 0 Y), wo) mp,22,21

24. VwVz[T(w, node(edit) A tezt(z)) D
achieves(control-z; control-z, mode(send) A msg(z), w)] D4

25. achieves([EDIT; insert(-y); control-z; control-z],
mode(send) A tezt(zo 0 Y), Wo) 23,24

The expert has thus succeeded in her top-level proof: she has instantiated p to the

possible goal of being in send mode with the current message xo appended with some string

of characters, and she has instantiated a to a plan that achieves that goal, namely typing

EDIT, inserting the string of characters (which, through knowledge not accounted for here,

she describe to describe as "the rest of your message"), and then finally typing Control-X

Control-Z. This instantiation of a is what she presents as an answer.
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6.6. Summary and the Work Ahead

The principal claim of this work is that goal inference is as critical to an autoinia~(d

system that provides expert advice as it is to an automated system that comrnunicales III

natural language. Providing expert advice is not a one-stage process in which the expert simuply

attempts to find a solution to the advice-seeker's stated problem. Rather she must first deduce

'.4 what the problem might be, and only then look for a solution.

In the framework presented here, the advice-seeker's "problem" is cast as a goal formula

that, he wants to hold. To deduce that formula, the expert needs to do two things. First, unless

the advice-seeker directly expresses some goal formula in her query, the expert must relate the

query to a possible goal. Two types of rules were introduced to accomplish this: linking rules

and action descriptions. Linking rules are general rules that relate the form of a query to the %

form of a goal. 14 One example of a linking rule asserts that, if a query requests that some

action be performed, then a possible goal is what the advice-seeker believes to be the result of

that action. Action description definitions are specific rules that capture people's commonly

held beliefs about actions. It will be interesting to see, as this work continues, how much or the

expert's knowledge can be represented by linking rules and how much by action descriptions.

Once the expert has linked the query to a possible goal, she may then have to determine

how it, might, be related to other possible goals of the advice-seeker. Alternative-goal rule.s were

introduced for this: the one described asserts that if some formula is a possible goal and ir that

formula is a prerequisite for some action, then the result of that action may also be a goal.

Figure 6.8-1 diagrams the process an expert infers the set of possible goals and then

generates an answer.

Some first attempts at formulating the inference rules needed by the expert have been

presented. However, their specifics are not hard and fast. Refining and developing the linking

rules, action descriptions, and alternative goal rules will be a primary focus of the continuation

"4 The "form of a query* should be taken to refer not to a syntactic form, but rather to the answers to such
questions as: does it express an action or a formula?; a conjunction or disjunction?-
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translation I
procedures Itrau~iation of the query I

query -------------------->1 facts about tvoI

I linking rules

----------- I action descriptions

I V - - - - -V - - - - - - - -
alternative III
goal rules I ---------- I set of possible wants I

--------------------------- I

I domain knowledge

V I solutionI
--------------------------- I

Figure 6.6-1: Generating an Expert Answer

of this work. One idea that merits consideration is whether possible-world semantics is the best

representation to exploit. Alternative representations under consideration include the syntactic

approach that Konolige [621 uses in his treatment of belief and the "situation semantics" being

developed by Barwise and Perry f 5]. It will also be interesting to develop the notion of critical

fram e- propositions, which were discussed in reference to the achieves predicate.

-~ Finally, as was mentioned in Section 6.5.3 there has been no discussion in this work

about a control strategy for the deduction system. Without a control strategy, it would be

computationally infeasible for the expert to explore the extremely large number of inferrable

possible goals. Fortunately, goal inference is not done in a vacuum: experts have knowledge as

to what goals advice-seekers are likely to have. Allen and Perrault 12] term this knowledge the

expert's expectations. Their system reasons in two directions at once, working both forward

from what is expressed in the query, and backward from the expectations. It will be a major

aim, as this work continues, to incorporate into it an account of the expert's knowledge of

likely goals.
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Much work remains to develop a complete model of the use of goal inference to generatte

ap~propriate expert answers. This work has established the need for such a model and, at tile

saine time, has developed a framework for its construction.
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1 7. The Role of Logic in Knowledge Representation and Commonsense Reasoning
.4

This section was written by Robert Moore.

7.1. Introduction

In his AAA1 presidential address, Allen Newell presented his view of the role that logic

* ought to play in representing and reasoning with commonsense knowledge [951. Probably the

most concise summary of that view ib his proposition that "the role of logic [is] as a tool for the

analysis of knowledge, not for reasoning by intelligent agents" [95, p. 16]. What we understand .-

Newell to be saying is that, while logic provides an appropriate framework for analyzing the

meaning of expressions in representation formalisms and judging the validity of inferences,

logical languages are themselves not particularly good formalisms for representing knowledge,

nor is the application of rules of inference to logical formulas a particularly good method for

conmmonsense reasoning.

A As to the first part of this position, we could not agree more. Whatever else a formalism

may be, at least some of its expressions must have referential semantics if the formalism is

really to be a representation of knowledge. That is, there must be some sort of correspondence

between an expression and the world, such that it makes sense to ask whether the world is the

* way the expression claims it to be. To have knowledge at all is to have knowledge' that the

world is one way and not otherwise. If one's "knowledge" does not rule out any possibilities for

how the world might be, then one really does not know anything at all. Moreover, whatever

Al researchers may say, examination of their actual practice reveals that they do rely (at least

informally) on being able to provide referential semantics for their formalisms. Whether we are

dealing with conceptual dependencies, frames, semantic networks, or what have you, as soon

as we say that a particular piece of structure represents the assertion (or belief, or knowledge)

1or at least a belief; most people in AI don't seem overly concerned about truth in the actual world.
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7. 07

that John hit Mary, we have hold of something that is true if John did hit Mary and false if

he didn't.

Now, mathematical logic (especially model theory) is simply the branch of mathematics

A that (deals with this sort of relationship between expressions and the world. If one is going

to provide an analysis of the referential semantics of a representation formalism, then, a

fortiori, one is going to be engaged in logic. As Newell puts it (95, p. 171, "Just as talking

of programmerless programming violates truth in packaging, so does talking of a nonlogical

analysis of knowledge." It may be objected that we and Newell are overgeneralizing in definling

- logic so broadly as to include all possible methods for addressing this issue, but the fact remains

that the only existing tools for this kind of semantic analysis have come from logic. We know

this view is very controversial in Al, but will not argue the point any further for two reasons.

First, it, has already been argued quite eloquently by Pat Hayes [411, and, second, we want. to

go on to those areas where we disagree with Newell.

The main point on which we take issue with Newell is his conclusion that logical languages

and deductive inference are not very useful tools for implementing (as opposed to analyzing)

systems capable of commonsense reasoning. Newell does not present any real argument in

support of this position, but instead says (95, p. 17] "The lessons of the sixties taught us

something about, the limitations of using logics for this role." In my view, Newell has seriously

misread the lessons of the sixties with regard to this issue.

It appears t~o me that a number of important features of commonsense reasoning can be

implemented only within a logical framework. Consider the following problem, adapted from

Moore [89, p. 281. Three blocks, A, B, and C, are arranged as shown:

A] B] (7c
A is green, C is blue, and the color of B is unstated. In this arrangement of blocks, is there a

green block next to a block that is not green? It should be clear with no more than a moment's

reflect ion that the answer is "yes." If B is green, it is a green block next to the nongreen block

C; if B is not green then A is a green block next to the nongreen block B.
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flow is a person able to solve this problem? What sort of reasoning mechanisins are%

required? At least three distinctly "logical" factors seem to be involved: (1) the ability to see

that an existentially quantified proposition is true, without knowing exactly which object makes

it true, (2) the ability to recognize that, for a particular proposition, either it or its negation

must be true, and (3) the ability to reason by cases. So far as we know, none of these abilities

is possessed by any Al system not explicitly based on formal logic. Moreover, we would claim

that, in a strong sense, these issues can be addressed only by systems that are based on formal

To justify this claim we will need to examine what it means to say that a system uses a

logical representation or that it reasons by deductive inference. Then we will try to re-evaluate

what was actually shown by the disappointing results of the early experiments on problem-

solving by theorem-proving, which we must do if the arguments presented here are correct and

if there is to be any hope of creating systems with comnmonsense reasoning abilities comparable

to those possessed by human beings.

7.2. What is a Logical Representation?

The quest-ion of what it means to use a logic for representing knowledge in a computer

system is less straight forward than it might seem. In mathematics and philosophy, a logic is a

l-anguage--I.e., a set of formulas-with either a formal inference system or a formal semantics

-. *J(or both).2 To use a logic in a computer system, we have to encode those formulas somehow as

computer data structures. If the formulas are in "Cambridge Polish" notation, e.g.,

(EVERY X (IMPLIES (MAN X) (MORTAL X)))

we may be tempted to assume that the corresponding LISP S-expression must be the data

structure that represents the formula in the computer. This is in tact the case in m.any

systems, but using more sophisticated data structures certainly does not mean that we are

not implementing a logical representation. For example, Sickel [120] describes a theorem-

2 For example, for several decades there were formal inference systems for modal logic 1511, but no semantics;
Montague's intensional logic [881 has a formal semantics, but no inference system.
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proving system in which a collection of formulas is represented by a graph, where each node

represents a formula, and each link represents a possible unification (i.e., pattern match) or

two formulas, with the resulting substitution being stored on the link. Furthermore, Sickel

notes that the topology of the graph, plus the substitutions associated with the links, carries

all the information needed by the theorem-prover-so the actual structure of the formulas is

not explicitly represented at all!

This example suggests that deficiencies attributed to logical representations may be

artifacts of naive implementations and do not necessarily carry over when more sophisticated

techniques are used. For instance, one of the most frequently claimed advantages of semantic

nets over logic as a representation formalism is that the links in the semantic net make it

easier to retrieve information relevant to a particular problem. Sickel's system (along with

that of Kowalski [661) would seem to be at least as good as most semantic net formalisms in

this respect. In fact, it may even be better, since following a link in a semantic net usually does

not guarantee that the subsequently attempted pattern match will succeed, while in Sickel's

or Kowalski's system, it does.

Given that the relationship between a logical formula and its computer implementation

can be as abstract as it is in Sickel's system, it seems doubtful to me that we could give any clear

criteria for deciding whether a particular system really implements a logical representation. We

think that the best. way out of this dilemma is to give up trying to draw a line between logical

and nonlogical representations, and instead ask what logical features particular representation

formalisms possess. If we adopt this point of view, the next question to ask is what logical

features are needed in a general-purpose representation formalism. My answer is that, at a

minimum, we need all the features of first-order classical logic with equality.

Perhaps the most basic feature of first-order logic is that it describes the world in terms

of objects and their properties and relations. We doubt that anyone in Al could really complain

about this, as virtually all Al representation formalisms make use of these concepts. It might

be argued that one needs more than just objects, properties, and relations as primitive notions,

but it should be kept in mind that first-order logic places no limits on what can be regarded

as an object. Times, events, kinds, organizations, worlds, and sentences- not just. concrete
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physical objects-can all be treated as logical individuals. Furthermore, even if we decide

we need "nonstandard" features such as higher-order or intensional operators, we can still

incorporate them within a logical framework.

For me, however, it is not the basic "metaphysical" notions of object, property, and

relation that are the essential features of logic as a representation formalism, but rather the

kinds of assertions that logic lets us make about them. Most of the features of logic can be seen

as addressing the problem of how to describe an incompletely known situation. Specifically:

existential quantification allows us to say that something has a certain property without having

to know which thing has that property. Universal quantification allows us to say that everything

in a certain class has a certain property without having to know what everything in that class

is. Disjunction allows us to say that at least one of two statements is true without having

to know which statement is true. Negation allows us to distinguish between knowing that

a statement is not true and not knowing that it is true. Finally, logic lets us use different

referring expressions without knowing whether they refer to the same object, but provides us

with the equality predicate to assert explicitly whether or not they do.

One criticism of logic has been not that the above features are unnecessary or harmful,

but rather that logic lacks some other essential feature-for instance, the ability to express

control information. This was the basis of the early MIT-led criticism of theorem-proving

research (e.g., (133, Chapter 6]), which was, we believe, largely justified. This sort of problem,

however, can be addressed and, in fact, has been by Hayes [40], McDermott [86], Kowalski [67],

and Moore [89] by extending logic in various ways (see Section 7.3), rather than by throwing

it out and starting over. Moreover, the criticism quickly turned into a much more radical

attack on any use of logic or deduction at all in Al [44, 45], [87, Appendix]. That assault, in

my view, was tremendously detrimental to serious research on knowledge representation and

commonsense reasoning and represents the position we primarily want to argue against.

The major reason we regard the features of first-order logic as essential to any general-

purpose representation formalism is that they are applicable to expressing knowledge about

any domain. That is, it doesn't really matter what part of the world we are talking about; it-

always may be the case that we have only partial knowledge of a situation and we need some
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of these logical features to express or reason with that knowledge. This can be seen in the

example presented in Section 7.1. Reasoning about the position and color of blocks is certainly

no more inherently logical than reasoning about anything else. The logical complexity of the

problem comes from the fact that we are asked whether any blocks satisfy a given condition,

but not which ones, and that we don't know the color of the middle block. If we had a complete

description of the situation-if we were told the color of the middle block-we could just "read

off" the answer to the question from the problem description without doing any reasoning at

all.

Similar situations can easily arise in more practical domains as well. For instance, in

determining a course of treatment, a physician may not need to decide between two possible

dliagnoses, either because the treatment is the same in either case or because only one of theZ

two is treatable at all. Now, as far as we know, none of the inference methods currently being

* used in expert systems for medical diagnosis is capable of doing the sort of general reasoning by

cases that ultimately justifies the physician's actions in such situations. Some systems have ad

hoc riles or procedures for these special cases, but the creators of the systems have themselves

had t~o carry out the relevant instances of reasoning by cases, because the systems are unable

to. B~ut, this means that, in any situation the system designers failed to anticipate, the systems ,*-

will fail if reasoning by cases is needed. It seems, though, that the practical utility of systems

capable of handling only special cases has created a false impression that expert systems have

no need for this kind of logic.

To return to the main issue, we simply do not know what it would mean for a system

* to use a nonlogical representation of a disjunctive assertion or to use a nonlogical inference

-~ technique for reasoning by cases. It seems to me that, to the extent any representation

formalism has the logical features discussed above, it is a logic, and that to the extent a

* reasoning procedure takes account of those features, it reasons deductively. It is conceivable

tbat there might be a way of dealing with these issues that is radically different from current

logics, but it would still be some sort of logic and, in any event, at the present time none of

the systems that are even superficially different from standard logics has any way of dealing

with them at all.
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Furthermore, the idea that one can get by with only special-purpose deduction systems

doesn't seem very plausible to me either. No one in the world is an expert at reasoning about

a block whose color is unknown between two blocks whose color is known, yet anyone can see

the answer to the problem in Section 7.1. Intelligence entails being able to cope with novelty,

and sometimes what is novel about a situation is the logical structure of what we know about

it.

7.3. Why Did Early Experiments Fail?

Logic's bad reputation in Al circles for the past decade or so stems from attempts in

the late 1960s to use general-purpose theorem-proving algorithms as universal problem-solvers.

.e The idea was to axiomatize a problem situation in first-order logic and express the problem

to be solved as a theorem to be proved from the axioms, usually by applying the resolution

method developed by Robinson [1091. The results of these experiments were disappointing. The

difficulty was that, in the general case, the search space generated by the resolution method

grows exponentially (or worse) with the number of formulas used to describe a problem, so

that problems of even moderate complexity could not be solved in reasonable time. Several

domain-independent heuristics were proposed to try to deal with this issue, but they proved

too weak to produce satisfactory results.

The lesson that was generally drawn from this experience was that any attempt to use

logic or deduction in Al systems would be hopelessly inefficient. But, if the arguments made

here are correct, there are certain issues in commonsense reasoning that can be addressed only

by using logic and deduction, so we would seem to be at an impasse. A more careful analysis,

however, suggests that the failure of the early attempts to do commonsense reasoning and

problem-solving by theorem-proving had more specific causes that can be attacked without

discarding logic itself.

We believe that the earliest of the MIT criticisms was in fact the correct one: that there

is nothing particularly wrong with using logic or deduction per se, but that a system must have

some way of knowing which inferences it should make out of the many possible alternatives. A

01 ...
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very simple, but nonetheless important instance of this is deciding whether to use implicative

" assertions in a forward-chaining or backward-chaining manner. The deductive process call be

thought of as a bidirectional search, partly working forward from premises to conclusions,

partly working backward from goals to subgoals, and converging somewhere in the middle.

Thus, if we have an assertion of the form P D Q, we can use it to generate either the assertion

Q, given the assertion P, or the goal P, given the goal Q.

Some early theorem-proving systems utilized every implication both ways, leading to

highly redundant searches. Further research produced more sophisticated methods that avoid

some of these redundancies. Eliminating redundancies, however, creates choices as to which

way assertions are to be used. In the systems that attempted to use only domain-independent

control heuristics, a uniform strategy had to be imposed. Often the strategy was to use

all assertions only in a backward-chaining manner, on the grounds that this would at least

guarantee that all the inferences drawn would be relevant to the problem at hand.

The difficulty with this approach is that the question of whether it is more efficient to

use an assertion for forward or backward chaining can depend on the specific form of that

assertion. Consider, for instance, the schema

(Vx)P(f(x)) D P(x)

Instances of this schema include such things as:

-. (W,)Jcviah(mother(,)) D Jeiish(x)

(Vx)z' < V J X < Y j

That is, a person is Jewish if his or her mother is Jewish,3 and a number x is less than a number

y if the successor of z is less than v.

Suppose we were to try to use an assertion of this form for backward chaining, as most

"uniform" proof procedures would. It would apply to any goal of the form P(a) and produce

3 We are indebted to Richard Waldinger for suggesting this example.
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the subgoal P(f(a)). This expression, however, is also an instance of P(z), so the process would

be repeated, resulting in an infinite descending chain of subgoals:

GOAL: P(a)

GOAL: P(f(a))

GOAL: P(f(f(a)))

GOAL: P(f(f(f(a))))

If, on the other hand, we use the rule for forward chaining, the number of applications

is limited by the complexity of the assertion that originally triggers the inference:

ASSERT: P(f(f(a)))

ASSERT: P(f(a))

ASSERT: P(a)

*. IIt, turns out, then, that the efficent use of a particular assertion often depends on exactly

what that assertion is, as well as on the context of other assertions in which it is embedded.

Other examples illustrating this point are given by Kowalski [67] and Moore [89], involving not

only the forward/backward-chaining distinction, but other control decisions as well.

Since specific control information needs to be associated with particular assertions, the

question arises as to how to provide it. The simplest way is to embed it in the assertions

themselves. For instance, the forward/backward-chaining distinction can be encoded by having

two versions of implication-e.g., P -. Q to indicate forward chaining and Q ,- P to indicate

backward chaining. This approach originated in the distinction made in the programming

language PLANNER [43] between antecedent and consequent theorems. A more sophisticated

,, approach is to make decisions such as whether to use an assertion in the forward or backward

direction themselves questions for the deduction system to reason about using "metalevel"

knowledge. The first detailed proposal along these lines seems to have been made by Hayes

[40], while experimental systems have been built by McDermott [86] and de Kleer et al. [20],

among others.
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Another factor that can greatly influence the efficiency of deductive reasoning is the exact

way in which a body of knowledge is formalized. That is, logically equivalent formalizations can

have radically different behavior when used with standard deduction techniques. For example,

we could define above as the transitive closure of on in at least three ways: 4

(Vx, 1)abot'e(x, y) =-on(z, y) V (3z)[on(x, z) A above(z, y)]

(Vi, y)abotetx. y) -on(z, y)V (3z)Jon(z, y)A above(x, z))
(Vx. y)abote(x, y) =on(x, y) V (3z)[above(x, z) A above(z, y1)]

Each of these axioms will produce different behavior in a standard deduction system.

no matter how we make such local control decisions as whether to use forward or backward

chaining. The first axiom defines above in terms of on, in effect, by iterating upward from

the lower object, and would therefore be useful for enumerating all the objects that are above

a given object. The second axiom iterates downward from the upper object, and could be

used for enumerating all the objects that a given object is above. The third axiom, though, is

essentially a "middle out" definition, and is hard to control for any specific use.

The early systems for problem-solving by theorem-proving were often inefficient because

axioms were chosen for their simplicity and brevity, without regard to their computational

properties-a problem that also arises in conventional programming. To take a well-known

*' example, the simplest LISP program for computing the nth Fibonacci number is a doubly

recursive procedure that takes 0(2") steps to execute, while a sligthly more complicated and

less intuitively defined singly recursive procedure can compute the same function in O(n) steps.

Kowalski [65] was perhaps the first to note that choosing among alternatives such as

these involves very much the same sort of decisions as are made in conventional programming.

In fact, he observed that there are ways to formalize many functions and relations so that the

application of standard deduction methods will have the effect of executing them as efficient

computer programs. These observations have led to the development of the field of "logic

programming" [671 and the creation of new computer languages such as PROLOG [1311.

4 These formalizations are not quite equivalent, as they allow for different possible interpretati,,ns of abo, if
infinitely many objects are involved. They are equivalent, however, if only a finite set of objects is being

considered.
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7.4. Summary andCocuin

We have tried to argue that there is an important class of problems in knowledge

representation and commonsense reasoning, involving incomplete knowledge of a problem

sit uation, that so far have been addressed only by systems based on formal logic and deductive

* inference, and that, in some sense, probably can be dealt with only by systems based on logic

and deduction. We have further argued that, contrary to the conventional wisdom in Al, the

experiments of the late 1960s did not show that the use of logic and deduction in Al systems

was necessarily inefficient, but only that better control of the deduction process was needed,

along with more attention to the computational properties of axioms.

We would certainly not claim that all the problems of deductive inference can be solved

*simply by following the prescriptions given here. Further research will undoubtedly uncover as

yet. undiagnosed difficulties and, one hopes, their solutions. My objective here is to encourage

considerat ion of these problems, which have been ignored for a decade by most of the artificial-

intelligence community, so that at future conferences we may hear about their solution rat her

than just their existence.
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8. The KLAUS Deduction System

This section was written by Mark Stiekel.

The KLAUS deduction system is characterized by its use of nonclausal resolution as

the basic inference rule, use of a connection graph to encode possible inference operations.

demodulation and special unification for building-in equational theories, and heuristic search

and control annotation for control.

8.1. Nonclausal Resolution

One of the most widely criticized aspects of resolution theorem proving is its use of clause

form for wffs. The principal criticisms are

9 Conversion of a wff to clause form may eliminate pragmatically useful information

encoded in the choice of logical connectives (e.g., -P V Q may suggest case analysis

while the logically equivalent P D Q may suggest chaining).

e Use of clause form may result in a large number of clauses being needed to represent a

wff, as well as in substantial redundancy in the resolution search space.

* Clause form is difficult to read and not human-oriented.

The clausal resolution rule can be easily extended to general q||antifier-free wffs [93. 81].

Proofs of soundness and completeness are in [93]. Where clausal resolution resolves on clases

containing complementary literals, nonclausal resolution resolves on general quantifier-free wffs

containing atomic wffs (atoms) occurring with opposite polarity, which is determined by the

parity of the number of explicit or implicit negations in whose scope the atom appears (posit iV-

polarity if even, negative polarity if odd). In clausal resolution, resolved-on literals are deleted

and remaining literals disjoined to form the resolvent. In nonclausal resolution, all occurrences

of the resolved-on atom are replaced by false (true) in the wff in which it occurs positively

(negatively). The resulting wffs are disjoined and simplified by truth-functional reductions that
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eliminate embedded occurrences of true and false and optionally perform simplifications such-L

s A A -'A - false.

Definition 8.1. If A and 8 are ground wffs and C is an atom occurring positively in A and

negatively in B, then the result of simplifying A(C false) V B(C true), where X(Y - Z)

is the result of replacing every occurrence of Y/ in X by Z, is a ground nonclausal resol,cnt of

. and B.

It is clear that nonclausal resolution reduces to clausal resolution when the wffs are

restricted to be clauses. In the general case, however, nonclausal resolution has some novel

characteristics as compared with clausal resolution. It is possible to derive more than one
.4.

reso!vent from the same pair of wffs, even resolving on the same atom, if the atom occurs both

positively and negatively in both wffs (e.g., atoms within the scope of an equivalence occur

both positively and negatively). Likewise, it is possible to resolve a wff against itself.

The ground nonclausal resolution rule can be lifted to nonground wffs by renaming parent
wffs apart and unifying sets of atoms from each parent, one atom of each set occurring positively

in the first wif and negatively in the second. As with clausal resolution, only single atoms need

be resolved upon if the resolution operation is augmented by a factorization operation that

derives a new wff by instantiating a wff by a most general unifier of two or more distinct atoms

occurring in the wff (regardless of polarity).

Factorization has not yet been implemented in the program. When two wffs are resolved

upon a pair of atoms, all atoms instantiated to be the same as the instantiated resolved-on

atoms are replaced by false or true, but there is no effort to force additional atoms, by further

instantiation, to be the same as the resolved-on atoms. Thus, only "obvious" factors are used.

This is incomplete, but effective.

A nonclausal resolution derivation of false from a set of wffs demonstrates the

unsatisfiability of the set of wffs. Nonclausal resolution is thus, like clausal resolution, a refuta-

.. tion procedure. Variants of the procedure that attempt to affirm rather than refute a wff are

possible (e.g., see the variety of resolution rules in [81]), but are isomorphic to this procedure.

Although clause form is often criticized, use of nonclausal form has the disadvantage that
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most operations on nonclausal form are more complex than the same operations on clause form.

The result of a nonclausal resolution operation is less predictable than the result of a clausal

resolution operation. Clauses can be represented as lists of literals; sublists are appended to

form the resolvent. Pointers can be used to share lists of literals between parent and resolvent " -

[I. With many simplifications such as 4Atrue A4 and .A A--A false being applied during

the formation of a nonclausal resolvent, the appearance of a resolvent may differ substantially

from its parents, making structure sharing more difficult.

For most forms of clausal resolution, an atom does not occur more than once in a clause.

In nonclausal resolution, an atom may occur any number of times, with possibly differing

polarity. In clausal resolution, every literal in the clause must be resolved upon for the clause

to participate in a refutation. Thus if a clause contains a literal that is pure (cannot be resolved

with a literal in any other clause), the clause can be deleted. This is not the case with nonclausal .

resolution: not all atom occurrences are essential in the sense that they must be resolved upon

to participate in a refutation. For example, { P A Q, -Q } is a minimally inconsistent set of

wff-, one of which contains the pure atom P. A more complicated definition of purity involving

this notion of essential occurrences must be used. The subsumption operation must also be

redefined for nonclausal resolution to take account of such facts as the subsumption of A by

,A A B as well as the clausal subsumption of A V B by A.

[93, 81] suggest the extension of nonclausal resolution to resolving on nonatomic subwffs ,

of pairs of wffs. For example, PVQ and (PVQ) D R could be resolved to obtain R. Resolving

on nonatoms often permits significantly shorter and more readable refutations. However, there

are several reasons for not doing this:

e It may be difficult to recognize complementary wffs. For example, PVQ occurs positively

in td R VP and -P D Q.

* The effect of resolving a pair of wffs on nonatomic subwffs can be achieved by multiple

resolution operations on atoms. Resolution on both atomic and nonatomic subwffs could

result in redundant derivations.

a A connection-graph procedure would be complicated by the need to attach links to
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logical subwffs (e.g., PVQ in QVRVP) and link inheritance would be further complicated

since subwffs of a resolvent may have no parent subwffs (e.g., when P V Q and -P V R

are resolved, the resolvent Q V R is a subwff of neither parent). Similar complications

arise if equality inferences are used that introduce new structure into the result.

Although the nonclausal resolution rule in general seems adequate as compared with the

above proposed extension to matching on nonatomic subwffs, the handling of the equivalence

relation in [93] is inadequate. In resolving P =- Q and (P A R) V (-'P A S), it is possible

to derive Q V-S and -Q V R, but not the more natural result of simply replacing ) by Q.
It is questionable whether handling the equivalence relation in nonclausal resolution without

further extension is v.;orthwhile in comparison with the representational advantages of negation

normal form used in [3, 7]. Another difficulty with the equivalence relation is that it sometimes

needs to be removed during skolemization. [82] provides extensions to nonclausal resolution

that defer skolemization and permit equivalence relations to be retained longer.

8.2. Connection Graphs

Connection-graph resolution was introduced in [66]. It has the following advantages:

e The connection-graph refinement is quite restrictive. Many resolution operations per-

mitted by other resolution procedures are not permitted by connection-graph resolution.

a The links associated with each wff function partially as indexing of the wffs. Effort is

not wasted in the theorem prover examining the entire set of wffs for wffs that can be

resolved against newly derived wffs.

- e Links can be traversed by a graph-searching algorithm whereby each link traversal

denotes a resolution operation. This can be done to plan a deduction without actually

constructing it. This graph searching may resemble the searching performed for deduc-

tion in knowledge representation languages.

- - Connection-graph resolution is extended in a natural way to use the nonclausal resolution

inference rule.
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A connection graph is a set of wffs and a set of links that connect atoms occurring 

with positive polarity in one wff and negative polarity in the same or another wff. Performing

the nonclausal resolution operation indicated by the link results in the production of a new

connection graph with the resolved upon link eliminated and the nonclausal resolvent added.

Roughly speaking, atoms of the nonclausal resolvent are linked only to atoms to which atoms

of the parent wffs were linked.

Definition 8.2. Let S be a set of ground wffs. Let L be

{ (C, A, B) I A, B E S, atom C occurs positively in A and negatively in B }.

Then (S, L) is the full connection graph for S.

Definition 8.3. Let S be a set of ground wffs and L be its connection graph. Let g =

(C ,A,B) be an element of L and C be the nonclausal resolvent A(C' -- false) V B(C' ,- true).

Let S' be S U {C}. Let L' be

U ( (E, C, D) I atom E occurs positively in C and (E, A, D) E L or (E, B, D) E L"

U{ (E, D, C) atom E occurs negatively in C and (E, D, A) E L or (E, D, B) E L )
U ((E, C, C) jatom E occurs positively and negatively in C and

(E, A, A) EL,(E, B, B)EL,(E, A, B) E L,or(E, B,A) EL

'Then the connection graph (S', L') is derived from (S, L) by ground nonclausal connection-

graph resolution.

A nonclausal connection-graph resolution refutation of an input, set of wffs is a deriva-

tion of a set of wffs including false by nonclausal connection-graph resolution from the full

connection graph of the input set of wits.

Ground nonclausal connection-graph resolution can be extended to the nonground case

by including in the links the unifier of the atoms they connect, keeping wffs renamed apart,

an(i by including links between variants of the same wff (to allow a wff to directly or indirectly

resolve against a variant of itself). Factorization must also be included. Either factors with

appropriately inherited links must be added for each wff in the connection graph or special
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factor links can be used with link inheritance rules for both resolve and factor links after

resolution and factorization operations.

The nonclausal connection-graph resolution procedure is sound and there is reason to

believe it is complete. However, it has not yet been proved to be complete, and the history

of proving completeness of connection-graph procedures for the simpler clausal case (see [7])

suggests it may be difficult.

One reason it is difficult to prove the completeness of the connection-graph procedure is

that the link inheritance rules exclude some links that would be present if the connection graph

were merely an encoding of all permitted resolution operations for ordinary resolution. Exactly

which links are excluded depends on the order in which resolution operations are performed.

The effect of connection-graph resolution is to impose the following restriction: if a pair of

atoms in a pair of wffs is resolved upon, atoms derived (in later resolution operations) from the

resolved-on atoms cannot be resolved against each other. For example, if a set of wffs includes

P V Q and -P V -'Q, these two wffs can be resolved upon P and Q-resulting in tautologies

that are discarded; after that, neither wff can be resolved with an atom descended from the

other, even though doing so would not result in a tautology.
-4%"

Connection-graph resolution procedures can possibly be incomplete by succeeding in

finding refutations when links are resolved upon in some orders, but not others. For example,

consider the combination of linear resolution and connection-graph resolution for clauses. Each

is complete, but the combination is not. If linear connection-graph resolution is applied to

{ P V -Q, 'P V -Q,Q } with Q as top clause, depth-first search will find a refutation, but

breadth-first search will not. This contrasts with the usual situation in which breadth-first,

search is "safe", always guaranteed to find a refutation if there is one. To see that it fails in

this case, observe that after P and -'P are generated on the first level of breadth-first search,

Q and --Q have no links-and thus none of the three input clauses can be further resolved

upon to lead to a refutation. P and -'P are linked, but cannot be resolved without violating

the linear-resolution restriction.

A set of assertions in a connection graph can to some extent be regarded and treated as

151

'?Z
*o4, .........................................................................................................................

m) % . ., ° %. • , .•. • "° .• - . . " " ° " " • ,• .• • , -. .. *'°.



a semantic network-more so than the same set of assertions without the connection graph.

For example, the full connection graph for

elephant(Clyde)

elephant(x) D mammal(x)

elephant(y) D color(y, gray)

mammal(z) D animal(z)

4 would contain links between the following pairs of atoms

t. (elephant(Clyde), elephant(x))

t2. (elephant(Clyde), elephant(y))

13. (mammal(z), mammal(z)).

Answers to such queries as "What color is Clyde?" and "Is Clyde an animal?" can be found

by graph searching with minimal analysis of the assertions, by traversing the links in the

connection graph. Such searching can be made more efficient by labeling the links (e.g., isa for

(I and t, hascolor for 2). The semantic content of the set of assertions is still conveyed by

the assertions themselves, hut control information is provided to a graph-searching procedure

by the link labels.

Similar comments could be made regarding any logical representation. However, the use

of a connection graph in which all permissible remaining resolution operations are encoded in

explicit links can yield greater efficiency by eliminating traversal of multiple paths to the same

goal. For example, suppose t3 is resolved upon, resulting in the added assertion

elephant(w) D animal(w)

and the added link

"'" t4 . (elephant(C lylde),elephant(u)).

The link e3 is deleted. There is still only one path or proof that Clyde is an animal, since the

absence of t3 blocks the path or proof elephant(Clyde) - mammal(Clyde) -. ansmal(Clyde).

* Graph searching in the connection graph to determine taxonomic relations quickly is a

simple illustration of the more general notion, extensively explored in 13. 120], of using graph
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searching to determine the existence of refutations. The ideas and techniques developed there

are applicable to nonclausal connection-graph resolution. Connection-graph resolution appears

to offer the following advantages over these other schemes:

"Although graph searching can be done in the connection-graph resolution procedure, [3,

1201 do not allow for the actual formation of resolvents. If their techniques for graph

search were adopted as a device for planning or quick refutation, connection-graph

resolution could be regarded as a superset of these other methods.

" The actual formation of resolvents and the resulting change in the connection graph are

useful for retaining information during a refutation, as well as for conveying information

(about usage of wffs, etc.) from one refutation or assertion to the next. (Ihere it is

assumed that the theorem prover is being used with an assertional database to which

queries are posed and assertions occasionally added and deleted, as opposed to the usual

situation in theorem proving in which there is no persistent assertional database, all
axioms being presented anew for each proof.)

" Connection-graph resolution provides a convenient, albeit unsophisticated, means of

interleaving matching complementary literals and adding new instances of assertions (if

more than one ground instance of a wif is required), as compared with the separate

~' ~ processes of searching for a mating, and quantifier duplication if the search fails [31.

Of course, the argument in favor of performing only graph searching as in [3, 120] is

that forming resolvents is expensive compared to traversing links, and tbe cost of creating and

storing inherited links may be high.

A good system will probably have a mixture of resolution and graph searching, as in

[81 o clausal connection-graph resolution. Graph searching is used in that system for look-

ahead and to determine if a refutation exists within a certain number of steps. Simple graph

searching is used (e.g., not looking for refutations in which wffs occur more than once), with

the full complexity and completeness of connection-graph resolution in the background.

One problem with graph searching to find refutations is in assessing the effectiveness

of the procedure. In ordinary resolution theorem proving, effectiveness can be evaluated in
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part by examining the number of clauses generated, retained, used in the refutation, and so

forth. [8] states "Within this frame of reference it would be easy to design the 'perfect' proof

procedure: the supervisor and the look-ahead heuristics would find the proof and then guide

the system without any unnecessary steps through the search space." The amount of time used

is a good measure for such a program, but should not be used to compare programs as there

may be differences in the machines the programs run on and in the efficiency of the programs

themselves (as opposed to the algorithms). In general, as [8] states, a measure incorporating

both total time and space will be required, adding the further complication of evaluating time-

space trade-offs.

The unification indexing provided by maintaining explicit links is augmented by indexing

of all the atoms in the graph. This atom indexing is used in the process of integrating a new
..4,

(user inputted) wff into the connectin graph and is necessary for efficiency if there is a very

large number of wffs already in the graph for which it must be determined if the new wff can

be resolved with them; resolvents are linked according to the link inheritance rules which do

not rely on the atom indexing. The atom index is also used to identify potential subsuming

unit wffs although subsumption links [23] or demodulation could also be used for this purpose.

Variant elimination is used in addition to unit subsumption. Detection of variants

depends on hash coding all the wffs in the graph with a hashing function that computes a

hash code depending on all the symbols of the wff. The hashing function is insensitive to the

order of the arguments of commutative functions, predicates, and connectives and the indices

of variables in the wiTs (A V B and B V A hash to the same value as do P(x, y), P(yx). and

P(x,xr)), but ideally recognizes all other differences between wffs by assigning distinct hash

codes. When adding a wff to the connection graph, it is first hashed and compared with all

wiTs previously in the connection graph with the same hash code to (letermine if it is a variant

of one of them. If it is, the wff is not added to the graph.

8.3. Building-in Equational Theories

Building-in equational theories [103] can yield substantial improvements in the perfor-
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mance of a theorem-proving program by treating specially frequently recurring and costly

to reason about concepts such as associativity, commutativity, identity, and inverse. Two

mechanisms are presently employed to build-in equational theories: demodulation and special

unification.

8.3.1 Demodulation

Demodulation [135] is the powerful technique of keeping all terms simplified with respect

to a list of ordered equalities called demodulators. This reduces the size of the terms and,

because equivalent terms may be simplified to the same term, facilitates subsumption. (A

complete set of reductions [69, 69, 70, 50, 52] is essentially a list of demodulators that is .-

guaranteed to simplify equivalent terms to the same term.) Demodulation can also be used as

a programming mechanism for a variety of purposes [1321 such as counting symbol occurrences

in expressions, classifying expressions, etc.

Demodulation is extended beyond its conventional usage by permitting atomic formulas

as well as terms to be simplified. In principle, demodulators can be written to perform arbitrary

simplifications. term-term, atom--atom, and atom-.truth-value simplifications are allowed.

atom-term, etc. simplifications are illogical; atom--wff simplifications are useful (e.g., for

expanding definitions) but presently unimplemented; it is expensive to check the applicability of

wff-wff simplifications and the most useful cases can be anticipated and programmed directly

(e.g.,A A -'A -- false.)

atom-truth-value simplifications are particularly useful. For example, if A - true and
.i...

B -. false are demodulators, the clauses -'A V C and B V C can be simplified to C and

A V C and -'B V C can be simplified to true-the effect is either that of a mandatory unit

resolution operation plus subsumption of the parent clause or (using tautology elimination) of

subsumption of the clause by a unit.

Such immediate, mandatory resolution and subsumption operations without retention of

intermediate results accounts for much of the success of predicate calculus theorem proving
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using the Knuth-Bendix procedure 160, 69, 70, 50, 52] with a complete set of reductions for

Boolean algebra [48].

Demodulation also provides a mechanism for implementing procedural attachment: the

right-hand side of the demodulator specifies the compututation of a new expression for all

expressions matching the left-hand side. This can be used to incorporate numerical computa-

tions. ([132] also uses demodulation to perform arithmetic operations, notably in counting

demodulators.) It can also be used to attach code which imposes constraints, such as requiring

a set of variables to have distinct values.

8.3.2 Special Unification

The incorporation of concepts such as associativity, commutativity, and idempotence

into the unification algorithm has great potential for eliminating explicit equality reasoning,

facilitating subsumption by recognizing nonidentical but equivalent terms, and generally reduc-

ing the size of the search space. Among the many special unification algorithms developed [106],

the most pervasively useful special unification algorithms are those for associativity and/or

commutativity with/without identity [75, 76, 122, 123, 126, 127], and it is these that have so

far been implemented for this theorem prover. Building-in associativity and commutativity has
usefulness well beyond the obvious mathematical usages such as handling symmetry or equality

and associativity and commutativity of addition and mulltiplication.

A nonmathematical example of the usefulness of building associativity and comnmutativity

into the unification algorithm, motivated by use of the theorem prover in natural-language

understanding applications, is the use of -T(K(x, w, n), p) D -7'(K(Ker(x, y), u,, a ), p) written
-9-

as part of a formulation of mutual knowledge [4]. It roughly states that if proposition p is

not known by agent x, p is not common knowledge of agents x and y. If this implication is

applied in a forward direction, it generates an infinite sequence of results unless Ker is treated

as associative and commutative, in which case the first application of the axiom results in a

formula which subsumes all the rest, eliminating an infinite branch in the search space.
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Sets can be represented using the associative-commutative function 'et with identity:

a, b, c ) is represented by get(a, b, c). The idempotence of sets can be handled either by (I) use

of a demodulator set(xz, y) = set(z, Y) which eliminates redundant elements or (2) declaring-'I

iet to be idempotent. The former is easier and is preferable if in unifying { x, y } and ( a, b, c }
xr and y are to be assigned disjoint sets of elements. However, if x and y must be assigned all

sets of values such that their union is ( a, b, c ), then set should be declared to be idempotent
and use associative-cornmut ative-idempotent unification with identity [76].

It is often necessary to select a single element of a set rather than (as in unifying I X, y

and I a, b, c }) to decompose a set into two parts, neither of which is required to be a single

element. In Al programming languages [43, 112] this problem is solved by making a distinction

among variables: simple variables match single elements; fragment. variables can match zero or

more. If the set { a, b. c } is encoded as set(el(a), el(b), el(c)), this distinction is unnecessary. If

* variable is required to match a single element of the set, it is enclosed in el. For example,

* E { a, b. c } can be expressed by in(x, set(el(a), el(b), el(c))) and single element values for X can

be nondeterministically selected by unification with the axiom in(z, set(el(x), y)).

8.4. Control

Two mechanisms have been used so far to control the process of searching for a refutat ion:

heuristic search and control annotation. The heuristic search process assigns numerical scores

to possible inference operations giving them a preference order. Limited control annotation is

available to restrict ways in which specified assertions can be used. For example, special logical

connectives are used to specify required forward chaining or backward chaining applications

of implications.

8.4.1 Heuristic Search

4 "A link scheduler is used to specify a refutation search strategy. When an assertion is

added by the user, it is linked in the connection graph to all previous assertions. When a
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resolvent is added, it is linked to the other assertions according to the link inheritance rules.

Al1l such added links are examined by the link scheduler. Three outcomes are possible:

" The link is deleted. For example, analysis may show that resolving on the link would

create a tautology or pure wff that could not be used in a refutation, whereupon the

link can be deleted.

" The link is retained, but not scheduled. Thus the link can be inherited, but can-

not be resolved upon (though its descendants might be). This is done when combin-

ing connection-graph resolution with other refinements of resolution, such as ordering

restrictions and the special logical-connective restrictions described below.

9 The link is scheduled. It is given a numerical score and placed in the link schedule. The .-

theorem prover operates by repeatedly resolving on the best scored link in the schedule,

creating the resolvent, and scheduling the added links.

Scheduling of the links is done after all the new links have been added, so that the link

sciduler can act on such important facts as the number of links attached to an atom.

So far, only fairly simple evaluation functions have been used in the search control

process. They are similar to those used in [1251, being weighted sums of the deduction depth

of the wff (a measure of the effort required to derive the wff) and the number of atoms in the

wit (a measure of the additional effort that will be needed to complete a refutation using the

wiT). Performance is generally superior to that in [125]. In ordering restrictions, atoms are

also evaluated according to how many links are connected to them, so that atoms with fewer

links can be resolved upon preferentially. Not only is the immediate branching factor reduiced.

but there is also the prospect that the other atoms with more links will be instantiated and
Z.

inherit fewer links when the resolution operation is performed. Interestingly, as was also noted

in [125], there can be negative interactions among individually good ideas on search control.

For example, a strong length-preference strategy and the strategy of resolving on an atom

with the fewest links are somewhat inconsistent. When there are many assertions about some

predicate -- some short and specific, others long and general - the atom with the fewest links Is

likely to be linked only to long and general assertions. Resolving on it thus may result in long
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resolvents that would be given low preference by a strong-length preference strategy.

8.4.2 Control Annotation

Special logical connectives can be used to impose restrictions on the use of particular

assertions. As in 1891, the following connectives denote the following procedural interpretatiouis

of A D B:

" A -. B. If literal .4 is ever asserted, assert B (forward chaining).

" B - .4. To prove literal B, try to prove .4 (backward chaining). Since a refutation

procedure is being used, this is interpreted as "permit the resolution, on literal B,

between A D B and any wff having support.."

" A = B. If literal A is ever asserted, also assert B and, to prove -,A, try to prove -'B.

" B t 4. To prove literal B, try to prove 4 and, if -B is ever asserted, also assert -'A.

" A D B and -'A V B. Unrestricted and equivalent.

The use of both nonclausal resolution and these special logical connectives gives this

program some resemblance to natural deduction [9]. It represents an intermediate point between

clausal resolution and natural deduction, with advantages of each. It differs from natural

deduction, since, for example, a backward-chaining application of 4 D B to C would result in

-'A V C(B -- true) rather than C(B .- A) (with perhaps only a single instance of B replaced,

requiring additional operations to replace the other occurrences). The latter expression may

be more natural, but the former is more concise because all occurrences of B are eliminated

and only a single instance of .4 is added. Heuristic search is used in a manner similar to the

way it is employed in a clausal system [125] and in a natural-deduction system [128].
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9. Teor Resluton:Building in INonequational Tere

This section was written by Mark Stickel.

9.1. Introduction

Building theories into derived inference rules so that axioms of the theory are never

resolved upon has enormous potential for reducing the size of the exponential search space
V-

commonly encountered in resolution theorem proving [109, 17, 781. Plotkin's work on equa-

tional theories [103] was concerned 'with general methods for building in theories that are

* equational (i.e., theories that can be expressed as a set of either equalities or, by slight exten-

sion, equivalences of a pair of literals). This building in of equational theories consisted of

using special unificat ion algorithms and reducing terms to normal form. This work has been

extendled substantially, particularly in the area of development of special unification algorithms

for various equational theories [106].

.4 Not all theories that it would be useful to build in are equational. For example, reasoning

4 about orderings and other transitive relations is often necessary, but using ordinary resolution

for this is quite inefficient. It is possible to derive an infinite number of consequences from

a < band (x < y) A(y < z) D (x < z) despite the obvious fact that no refutation based

on just these two clauses is possible. A solution to this problem is to require that use of the

transitivity axiom be restricted to occasions when either there are matches for two of its literals

(partial theory resolution) or a complete refutation of the ordering part of the clauses to be

refuted can be found (total theory resolution).

* .Another important form of reasoning in artificial intelligence applications addressed by

knowledge representation systems 114] is reasoning about taxonomic information and property

inheritance. One of our goals is to be able take advantage of the efficient reasoning provided by-

knowledge representation systems in this area by using the knowledge representation system as

a taxonomy decision procedure in a larger deduction system. Combining such systems makes
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sense, since it relieves the general-purpose deduction sstem of the need to do taxonomic

.4 reasoning and, in addition, extends the power of the knowledge representation system toward-

* greater logical completeness. Other researchers have also cited advantages of integratiig 1

knowledge representation systems with more general deductive systems 113. 108]. IKRYPTON

112] represents an approach to constructing a knowledge representation system composed of

two parts: a terminological component (the TBox) and an assertional component (the ABox).

For such systems, theory resolution indicates in general how information can be provided to

the ABox by the TBox and how it can be used by the ABox.

Building in nonequational theories differs from building in equational theories. Because -'---

equational theories are defined by equalities or equivalences, a term or literal can always

be replaced by an equal term or equivalent literal. This is not the case for nonequational

theories that are expressed in terms of implication rather than equivalence. If we build in a

noneqiiational theory of taxonomic information that includes Aflan(z) D Person(z). we would

expect to be able to infer Person(John) from Afan(John), but not -Person(Afary) from

-Afan(Afary) (i.e., replacement, of Man(z) by Person(x) is permitted only in those cases in

which Man occurs unnegated).

Nonequational theories may express conditional inconsistency of a pair of literals. For

instance, (x < y) A (y < z) D (z < z) expresses the fact that y < z and -(x < z) are

inconsistent, only in the presence of z < y.

Theory resolution is a set of complete procedures for building in nonequational theories

using decision procedures as components of a more general deduction system. Two forms are

described. Total theory resolution employs a decision procedure that can determine inconsis-

tency of any set of clauses using predicates of the theory and is quite restricted as to what

inferences it will make. Partial theory resolution is less restricted as to what inferences it will

make but requires much less of the decision procedure-making it more feasible, for example,

to use knowledge representation systems as the decision procedure.

We will give definitions and completeness proofs for the ground case of theory resolution

and definitions for the general case. Completeness for the general case follows directly from
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ground case completevess. We consider only clausal resolution here. but these results sihoul,

be easily extendable to nonclausal resolution.

9.2. Total Theory ResolutiOn

In building in a theory T, we are interested in ascertaining whet her a set of clauses .1; is

T-inconsistent (i.e., whether S U T is inconsistent). If we have a decision 1)rocedure for T that

is capable of finding minimally T-inconsistent subsets of clauses from any set of clauses using

only predicates in T, then it can be applied to S with all literals having predicates not in '..

removed to create an inference rule (total theory resolution) that derives clauses containing ho

occurrrences of predicates that are referred to in T.

\ theorem justifying such a rule of inference follows. In it, P is the set of predicates in

7'.., corresponds to S U T above, and T is some subset of Sr,. The decision procedure for 7'

must determine T-inconsistency of sets of clauses from .S'p - T aid lp.

Theorem 9.1. Let S be a set of ground clauses and 1) be a set of predicates. Let Sp be t he

set of all clauses of S containing only predicate symbols in P. Let ., be the set of all clause,

of .S1 containing only predicate symbols not in P. Let It' be S - Sp - Sp. Let UP, be the list

of clauses Ci formed by restricting each clause in It' to just the predicates in P. Let W, be

the list of clauses Di formed by restricting each clause in It' to just the predicates not in 1'.

I1= I (' i VDi I < i < n}. Let X be the set of all clauses of the form Di, V V )i_ where ,

('i, ..... ,, are all the clauses of W in a minimally inconsistent set of clauses from , and 

IF'. 'hen S is inconsistent if and only if S5 U X is inconsistent.

Proof: If part. This proves the soundness of the rule. Assume .1, U-\ is inconsistent. For ee--r.

element of X, false is a logical consequence of St, and some (Ci, ... i, from iWP.. h'lherefore

Di, V ... V Di is a logical consequence of Sp and IV' (derived, for example, by imitating a . -
ground resolution derivation of false from Sp and (', Ci using . , V Di ...... ,V Di.

instead of Ci.... ,,). Because p C S and every element of X is a logical consequence of

.S'P U It' and Sp U It' C S, if Sp U X is inconsistent, then so is S. - -
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Only if part. This proves the completness of the rule. Assume S is inconsistent. Then -
either Sp is inconsistent, SP is inconsistent, or the incoasistency of S depends at least partia!ly

on W.

Case 1. Sp is inconsistent. Then fal8e E X and SP U X is inconsistent.

Case 2. SP is inconsistent. Then SP U X is inconsistent.

Case 3. Sp and Sp are consistent. Because they have disjoint sets of predicates, Sp, U ,'1

is also consistent. Then there is a minimally inconsistent set of clauses S' U S' U 11" such

that S'p C Sp, S' C Sy, and OCW' C W. By completeness of A-ordered resolution 1107,

123, 17, 78], there exists an A-ordered resolution refutation of this set with predicates in P

preceding predicates not in P in the A-ordering. Included in the refutation is a set of clauses

X' containing no predicates in P derived entirely from S, U 11". SLU X' is clearly inconsistent.

When we look at the A-ordered derivations, it is apparent that each element of X' is of the form
S1 V... V Di_ derived from S' U W' such that a subset of S, U { Ci ..... C }is inconsistent

where I C, V Di, } C W. If this subset is minimally inconsistent then Dil V ... V Di_ E X.

Otherwise Di, V... V Di, is still subsumed by (possibly identical to) an element of X. Because

X contains each element of X' or an element that subsumes it, the inconsistency of S,, U A

follows from the inconsistency of SL U X'. I
.. "

Definition 9.2. Let Cl,...,C m be nonempty clauses and Dl,...,Dm be clauses such that

each Ci V Di is in S and every predicate in Ci is in theory T and no predicate in Di is in theory
%'NT. l~et 7 - .... 0rri Y mn_ besubstitutions such that (Cl01l ... .

Cmtmi ..... Cmirmn } is minimally T-inconsistent. Then D1c 1Vt .- -VD07in, V "VDmami V

.' V D,,77 nn,,, is a total theory resolvent from S, using theory T.

Total theory resolution, plus ordinary resolution or some other semidecision procedure

for first-order predicate calculus operating on clauses that do not contain predicates in T, is

complete.

Example 9.3. Consider a theory of partial ordering ORD consisting of -(x < x) and (z <

Y) A (Y < z) D (x < z). A set of unit clauses in this theory is inconsistent if and only if it
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contains a chain of inequalities t, < < tn(n > 1) such that either ti = t, or -,(t, < t)

is one of the -lauses. Total theory resolvents would include F(b) from (z < b) V F(r) and

F(a) V G(c) from (x < b) V F(x), (b < y) V G(y), and either c < a or -(a < c).

Thus the types of reasoning that are employable in the decision procedure can be quite

different from and more effective (in its domain) than resolution.

There are limitations to the use of total theory resolution. The requirement that the

decision procedure for the theory be capable of determining inconsistency of any set of clauses

using predicates in the theory is quite strict. Reasoning about sets of clauses is probably an

unreasonable requirement for such purposes as using a knowledge representation system as a

decision procedure for taxonomic information, since such systems are often weak in handling

disjunction. This tends to limit total resolution's applicability to building in mathematical

decision procedures that handle disjunction. Incomplete restrictions of total theory resolution

could still be usefully employed. For example, it may be easy for a system to decide inconsis-

tency of sets of single literals (unit clauses), as above for ORD and maybe also in the case of

.'- taxonomic reasoning (note that taxonomic hierarchies can be expressed in the monadic predi- -

4 cate calculus for which there exists a decision procedure that could possibly be used in complete

or incomplete theory resolution). Total theory resolution could then be used to resolve on only

one literal from each clause.

Some care must be taken in deciding what theory T to build in so that the decison

procelure does not have to decide too much. The theory must be capable of deciding sets

of clauses that are constructed by using any predicates appearing in T. Thus, if we try to

use total theory resolution to build in the equality relation with equality substitutivity (i.e.,

Y D (P(" .x..) D P(. ") for each predicate P), the decision procedure will hatve to

decide all of S.

There may be a large number of T-inconsistencies that do not resultr in useful T-

resolvents. It would be a worthwhile refinement to monitor the finding of T-inconsistent sets of

clauses to verify that the substitutions applied do not preclude future use of the T-resolvent.

This is like applying a purity check in A-ordered resolution.
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A-ordered resolution slightly resembles total theory resolution. It permits resolution

operations oily on the atoms of each clause that occur earliest in a fixed ordering of predicates

(the A-ordering). The A-ordering could place predicates of T before all others. A-ordered

resolution differs from total theory resolution in that it assumes resolution (or hyperresolution)

is to be used as the inference operation. It is thus inflexible, since it does not permit T to

be built in except by resolution. Furthermore, total theory resolution creates a resolvent only

from inconsistent set of clauses using predicates of T. A-ordered resolution is not so restrictive.

There is probably a useful relationship to be discovered between total theory resolution

and the work on combining decision procedures [94, 119]. So far we have discussed only building

in a single decision procedure, though the procedure could be repeated as long as the sets of

predicates do not overlap. It is likely that we would want an extension of theory resolution

-, that, permits the sets of predicates to overlap at least in the case of the equality predicate.

A difference between total theory resolution and the work on combining decision procedures

is that the latter has been concerned primarily with decision procedures that do not have to

instantiate their inputs, unlike our requirements for finding substitutions to make a set of

clauses inconsistent.

9.3. Partial Theory Resolution

Partial theory resolution is a procedure for building in theories that requires a less

complex decision procedure than total theory resolution; all it needs is a dezision procedure

that determines for any pair of literals a complete set of substitutions and conditions for the

inconsistency of the literals.
Ptq

Partial theory resolution will first be defined and proved complete for ground clauses.

We will define a T-resolution operation that resolves on one or more literals from each input

clause, like ordinary resolution without a separate factoring operation. We will then extend it

" 'to the general case, showing how T-resolvents can be computed by using only one literal at a

time from each input clause.

There are two types of T-resolvents in partial theory resolution. If some set of literals
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of a clause is inconsistent with T, those literals can be removed from the clause to form a I
T-resolvent:

Definition 9.4. Let A be a nonempty ground clause and let C be a ground clause. Then ('

is a ground T-resolvent of A V C if and only if TI--A.

If, with T assumed, a set of literals of one clause is inconsistent with a set of literals of

another clause under certain conditions, then T-resolvents can be formed as the disjunction of

the other literals of the clauses and negated conditions for the inconsistency:

Definition 9.5. Let A and B be nonempty ground clauses and let C and D be ground clauses.

Then C V D V E where E is a ground clause is a ground T-resolvent of A V C and B V D if and

only if TI--'A V -,B V E but not TI--'Ai V E for any literal Ai in A or TH--Bj V E for any

literal Bj in B. E is called the residue of matching A and B.

The residue E is a negated condition for the inconsistency of A and B because T[---A V
-,B V E is equivalent to TI--"E D ((A A B) -false). The restriction that neither T ---'Ai V E

nor TF--,Bj V E assures us that all the literals of both of A and B are essential to the possible

T-inconsistency of A A B. T-resolution includes ordinary resolution because it is always the

case that T--A V -B V E if B is -A.

The soundness of ground T-resolution is obvious. T-semantic trees will be used to prove

its completeness.

Definition 9.6. Let S be a set of ground clauses with set of atoms {A .  Ak}. Then

a semantic tree for S is a binary tree with height k such that for each node n with depth

i (0 < i < k), n has two child nodes n1 and n2 at level i + 1. the arc to nI is labeled by (he

literal Ai+,, and the arc to n 2 is labeled by the literal -'Ai+I.

Each node n in a semantic tree provides a partial (or, in the case of terminal nodes, total)

interpretation I,, for the atoms of S, assigning true to each atom *1 that labels an arc on the

path from the root to n and assigning false to each atom A where -'A labels an arc on the

path from the root to n.
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Definition 9.7. Node n in a semantic tree for S falsifies clause C E S if and only if C is

false in interpretation f, .

Definition 9.8. A T-semantic tree is a semantic tree from which all nodes representing

T-inconsistent truth assignments are removed.

Definition 9.9. Node n in a T-semantic tree for S T-falific clause C E S if and only if C

is false in interpretation I,, taking account of T.

Definition 9.10. Node n is a failure node in a T-semantic tree for set of ground clauses S

if and only if n T-falsifies a clause in S and no ancestor of n is a failure node.

Definition 9.11. Node n is an inference node in a T-semantic tree for set of ground clauses

S if and only if both of n's child nodes are failure nodes.

Note that although in a T-semantic tree each nonterminal node may have either one or

two child nodes, an inference node will always have two. If node n has only a single child node

nj and nj T-falsifies a clause (and thus might be a failure node), then n also T-falsifies the

clause. Thus, a failure node will never be the single child node of its parent.

Theorem 9.12. A set of ground clauses S is T-inconsistent if and only if every branch of a

semantic tree 7 for S contains a failure node. Either the root node of 7' is a failure node or

there is at least one inference node in 7".

Theorem 9.13. Let S be a T-inconsistent set of ground clauses and let T be a T-semantic

tree for S. Then if the root node of 7' is not a failure node, there is a T-inconsistent set of

ground clauses S' derivable from S by ground T-resolution such that 7" is a semantic tree for

S' but has fewer failure nodes for S' than for S.

Proof: Since S is T-inconsistent and the root node of 7 is not a failure node, there must be

at least one inference node n in T. Then n's child nodes, n1 and n 2, are both failure nodes.

Let the clause T-falsified at nj be A V C where nonempty clause A consists of all the literals

not already T-falsified at n. Let the clause T-falsified at n.- be P V D where nonempty clause
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B consists of all the literals not already T-falsified at n. Then n, or an ancestor of n if n is

the single child node of its parent, is a failure node for S' =- S U (C V D V E ) where E is a

clause consisting of the negations of the literals labeling arcs above node n that were used in

T-falsifying A and B. Because T--E A -Ai D -A and T--E A Ai D -B where Ai and -'Ai

label the arcs to ni and n2 respectively, TI-"A V -B V E and C V D V E is a ground clause

T-resolvent of A V C and B V D. T' contains fewer failure nodes for S' than for S because n

(or an ancestor of n) is a failure node instead of n, and n2. 3

Theorem 9.14. Ground clause T-resolution is complete.

Proof: Let S be a T-inconsistent set of clauses. Let 7" be a T-semantic tree for S. Then

either the root node of 7" is a failure node, in which case the empty clause is derivable by

ground T-resolution from the clause T-falsified at the root, or 7 contains an inference node,

in which case completeness is assured by induction on the number of failure nodes, applying

the previous theorem that uses ground T-resolution to add a clause that makes the inference

node (or an ancestor of it) be a failure node. I

The ground T-resolution operation as defined above shares somewhat an undesirable

feature of total theory resolution, i.e., that it demands too much of the decision procedure-in

this case, requiring it to determine the possible inconsistency of two sets of literals (i.e., two

clauses) instead of just two literals. This is easily remedied.

In the definition of ground T-resolvents with two parent clauses, let A be A, V "" V Am

and let B be Bi V.. VB.. Then T -- AV-'BVE is equivalent to all of TH-'Al V-'B, VE.

and T"--'Am 'V -Bn V E being true. Therefore, in computing T-resolvents, it is sufficient to

determine possible T-inconsistency of single pairs of literals Ai and Bj with negated condition

(residue) Eij (i.e., TI--'Ai V -,Bj V Eij) and form T-resolvents of A V C and B V D as C V D V

EI V.. "VEo.. Eij is a groundT-matchof literals Ai and Bj. Note that this multiple pairwise

matching is a substitute for a separate factoring operation.

We now extend T-matches and T-resolvents to the general (nonground) case.
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Definition 9.15. Let A and B be two literals. Then (E,o') where E is a clause and a is a

substitution is a T-match of A and B if and only if TI---Aa' V -Ba V E but not TF---Ao' V E

or T-'Ba V E.

A T-match of literals A and B specifies a substitution a and condition -E that make A

and B be T-inconsistent.

We will give examples based on two theories:

* A taxonomic hierarchy theory TAX, including Man(x) D Person(x).

* The partial-ordering theory ORD (defined previously).

Example 9.16. (false, (w ,- John }) is a TAX-match of Man(John) and -,Peraon(w).

Example 9.17. (a < c, 0) is an ORD-match of a < b and b < c. But (-,(c < z) V (a <

x x), 0), (-(c < z) V -(z < y) V (a <y), 0),... are also ORD-matches of a < b and b < c. The

notion of minimal complete sets of T-matches is defined to exclude these additional T-matches.

Definition 9.18. Let M = { (Ej,a ),..., (E.,v,,) } (n > 0) be a set of T-matches of literals

A and B. Then M is a complete set of T-matchea of A and B if and only if for every T-match

(E, a') of A and B there is some T-match (Ei, 01) E M and substitution 0 such that a' = 0-

and Tl-Ei$ D E. M is a minimal complete set of T-matche8 of A and B if and only if M,

but no proper subset of M, is a complete set of T-matches of A and B.

Example 9.19. (a < c, 0) is a minimal complete set of ORD-matches of a < b and b <
'a.44

c. ORD-matches of the form (-'(c < x) V (a < x), 0),... have the property that ORDH(a <

r) D [-'(c < z) V (c < a)],..., and are therefore not in the minimal complete set of ORD-

matches.

As in the ground case, single-parent and double-parent T-resolution operations are

defined:

Definition 9.20. Let A be a literal and A V C be a clause and let a be a substitution such

that TH--Aa'. Then Ca is a T.resolvent of A V C.
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Example 9.21. Positive(l) is an ORD-resolvent of (x < 1) V Po8itive(x).

More than one T-inconsistent literal can be removed from a clause by performing single

parent T-resolution repeatedly.
-.-

Definition 9.22. Let A and B be the nonempty clauses A, V" V Am and B1 V ... V D, let

A V C and B V D be clauses, and let (Eij, oij) be T-matches of Ai and Bj. Then C0 V Do V Ea

is a T-resolvent of A V C and B V D where o is the most general combined substitution of

ll,. -. ,omn and E is Ei V V Emn.
'.4%

Example 9.23. -,Robot(John) is a TAX-resolvent of Man(John) and -'Peron(w) V

-Robot(tv).

Example 9.24. C(u) V D(u) V (a < €) is an ORD-resolvent of (a < u) V C(u) and (v <

c) V D(v).

Further constraints on what T-resolvents can be inferred may be required for partial

theory resolution to be really effective. For example, a < b and c < d, which have no terms

in common, have ORD-resolvents -'(b < e) V (a < d), -(b < c) V (b < d), -(b < c) V (a < c),

-'(d < a) V (c < b), etc. If the first of these is actually used in a refutation, there must exist

matches 6 < c and -'(a < d) for its literals. It would be preferable to T-resolve these literals

with a < b and c < d (e.g., T-resolve a < b and b < c deriving a < c, T-resolve a < c and

c < d deriving a < d, and resolve that with -'(a < d)) instead of directly T-resolving a < b

and c < d. We would impose the restriction that ORD-resolvents be derived only by resolving

on pairs of literals that have a term in common.

There are two previous resolution refinements that resemble partial theory resolution:

Z-resolution and U-generalized resolution.

Dixon's Z-resolution [21] is essentially partial theory resolution with the restriction that

T must consist of a finite deductively closed set of 2-clauses (clauses with length 2). This

restriction does not permit inclusion of assertions like -'Q(z) V Q(f(x)), -'(z < z), or (x <

V) A (Y < z) D (z < z), but does permit efficient computation of T-resolvents (even allowing

the possibility of compiling T to LISP code and thence to machine code).
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Harrison and Rubin's U-generalized resolution [38] is essentially partial theory resolution

restricted to sets of clauses that have a unit or input refutation. They apply it to building

in the equality relation, developing a procedure similar to Morris's E-resolution [92]. The

restriction to sets of clauses having unit or input. refutations eliminates the need for factoring

and simplifies the procedure (only a single literal of each parent must be used to create a T-

resolvent), but otherwise seriously limits its applicability. No effort was made in the definition

of U-generalized resolution to limit T-resolution by using minimal complete sets of T-matches.

Partial theory resolution is a procedure with substantial generality and power. Thus,

it, is not surprising that many specialized reasoning procedures can be viewed as instances of

partial theory resolution, perhaps with additional constraints governing which partial theory

resolvents can be inferred:

Where T consists of the equality axioms, T-resolution operations include paramodulat ion

[13,1] (e.g., P(b) V C V D can be inferred from P(a) V C and a = b V D) and E-resolution [92]

(e.g., -'a = b V C V D can be inferred from P(a) V C and -,P(b) V D).

Where T consists of ordering axioms, including axioms that show how ordering is

preserved (such as (z < y) D (P(x) D P(t)) and (z < y) D (z + z < y + z)), T-resolution

• .'operations include Manna and Waldinger's program-synthetic special relation substitution rule

(e.g., P(b)V C'V D can be inferred from P(a)V C and (a < b)V D) and relation matching rule

[821 (e.g.. -(a < 6)V C V D can be inferred from P(a)VC and -,P(b)V D), which are extensions

of parainodulation and E-resolution. T-resolution with ordering axioms is also similar to Slagle

and Norton's reasoning about partial ordering [12.11. Bledsoe and Hines's variable elimination

[10] is a very refined method for reasoning about inequalities that can be viewed partly as

partial theory resolution for inequality with added constraints on partial theory resolution

operations. The ORD-resolvent a < c of a < b and 6 < c is a variable-elimination-procedure

chain resolvent only if b is a shielding term (nonground term headed by an uninterpreted func-

tion symbol). The variable elimination rule allows inferring ORD-resolvent (a < 6) V C from

clause (a < x) V (x < b) V C' only if x does not occur in a, b, or C. The variable elimination

rule more generally allows replacement of multiple literals a, < x and x < bj in a clause by
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literals ai < bj. This result is obtainable by partial theory resolution if we include the axiul

-,(x < tnin(x, y)) and a rule to transform rnin(ai, ai2 ) < bj to (a 1 < bj) V (ai, < bj).

9.4. Conclusion
a°.,4-.

Theory resolution is a set of complete procedures for incorporating decision procedures

into resolution theorem proving in first-order predicate calculus. Theory resolution can greatlI

decrease the length of refutations and the size of the search space, for example, by hiiding

lengthy taxonomic derivations in single TAX-matches and by restricting use of ordering axioms

in ORD-matches. Total theory resolution can be used when there exists a decision procedure
for the theory that is capable of determining inconsistency of any set of clauses using predicates

of the theory. This may be a realistic requirement in some mathematical theorem proving. For

example. a decision procedure for Presburger arithmetic (integer addition and inequality) might

be adapted to meet the requirements for total theory resolution.

Partial theory resolution requires much less of the decision procedure. It requires only

that conditions and substitutions for inconsistency of a single pair of literals be determinable

by the decision proce(ire for the theory. This makes it feasible, for example, to consider use

of a knowledge representation system as the decision procedure for taxonomic information.

Partial theory resolution is also a generalization of several other approaches to building in

nonequational theories.

;.Y4
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.1 10. A Prolog Technology Theorem Prover

This, 8ection wa8 written by Mark Stickel.

10.1. Introduction

'1 Prolog 1131] is a powerful and versatile programming language based on theorem- provi ng

unification and resolution operations.

The best Prolog implementations perform inferences at a rate that is often at least two

orders of magnitude faster than theorem provers. Some of this disparity in speed can be

accountedl for by the fact that theorem provers often perform more complex inferences than

Prolog (such as keeping results in fully simplified form and checking for subsumption).

However, one important reason for the higher speed of Prolog, compared with theorem

provers, is the implementation. Given the present efficiency advantage of Prolog over theorem

* provers, and the fact that enormously more powerful Prolog machines are being contemplated

(uip to 10 ' logical inferences per second (lips) as opposed to the current best 104 _ 105 lips), it,

is worthwhile to examine the possibilities of adapting Prolog technology to theorem proving.

Prolog technology could be applied to theorem proving in a number of ways. To date, the

most frequently used method of applying Prolog technology to theorem-proving problems is to

substantially recode the problem in Prolog. Although performance may be high, this approach

has significant limitations resulting from such implementation features of Prolog as unification

without. the "occurs check" and unbounded depth-first search. Also, the recoding process itself

is time-consuming and error prone.

Prolog technology could be used in theorem proving by writing a theorem prover in

Prolog, but this offers uncertain advantages in comparison with writing a theorem prover in

any other language, such as LISP. Writing a theorem prover in Prolog would certainly result

in a theorem prover whose inference operations are performed at a markedly lower rate than
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Prolog's own, since several Prolog inference operations would have to be performed for eacl

theorem-proving inference operation.

Prolog, as it now exists, almost, meets the requirements for a complete theorem prover.

Thus, we propose implementation of a slight extension of Prolog that permits full theoremn

proving directly. Direct modification of a Prolog interpreter, rather than coding a thcorem "

prover in Prolog, preserves the speed of the Prolog interpreter by making extended iProlog

operations be theorem-proving operations.

We are taking a fairly conservative approach to the extension of Prolog implementations

for theorem proving. Simple additions to the Prolog interpreter should suffice to make the

complete theorem prover-thus making the theorem prover easy to implement and similar to

Prolog in its use. We retain such features of Prolog as the ordering of alternative inferences by

statically ordering assertions in the database, the ordering of subgoals by statically ordering

literals in assertions, and the cut operation. These features should be useful for programming

a theorem prover just as they are for logic programming. Depth-first search, though bounded.

will continue to be employed both for its comprehensibility and low storage requirements.

Prolog also provides a convention for procedural attachment (built-in predicates) that should

be useful in theorem proving as well.

We have two things in mind in presenting this design for a Prolog technology theorem

prover (PTTP). The first is that it employs highly efficient Prolog technology in its implemen-

tation. The second is that it, is a technology theorem prover in the same way that TECH was

a technology chess player[33]. It is a "brute force" theorem prover that relies less on detailed

analysis than on high-speed execution of small logical steps. The capability of a PTTP would

increase substantially as Prolog machine technology progresses.

We are currently experimenting with the concept of a PTTP that uses an extended

Prolog interpreter (without all the Prolog built-in predicates) written in LISP with the same

unification and substitution code employed in our other theorem-proving research. This allows

experimentation with extended unification algorithms, but means that we do not yet have the

efficiency of a true PTTP because the Prolog-style substitution representation is not being
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10.2. A Minimal Prolog Technology Theorem Prover

All hough Prolog uses unification and resolution for its matching and inference processes.

it cannot be regarded as a full-fledged theorem prover. The deficiencies i lie in three areas:

* Unification without the occurs check

Incomplete inference system

Unbounded depth-first search strategy.

We will examine each of these problems in more detail and offer minimal solutions to them.

The result will be the design of a minimal PTTP.

10.2.1 Unification

Prolog matching differs from the theorem-proving unification operation in only one

respect: the absence in the former of the occurs check. In the theorem-proving unification

operation, a variable is permitted to be instantiated to a term only if the variable does not occur

in the term. This restriction eliminates the creation of infinite terms. The logical importance

of this restriction is evident from the fact that without the occurs check it is possible to "prove"

that Vx3y.P(x,y) implies 3yVx.P(x,y). 2 To prove this invalid result in Prolog, we match the

skolemnized form P(sk2(y), y) of the goal 3yVx.P(x, y) and the skolemized form P(x, 8kl(x)) of

the assertion Vz3i.P(x, y). This match is successful without the occurs check.

It is clear that adding a straightforward occurs check to Prolog matching would impose
• J

unacceptable performance penalties on the operation of many logic programs. The lesser

deduction depth and term complexity in typical theorem-proving applications would probably

make it acceptable to add the occurs check. Furthermore, there are some easily verified

'While these are deficiencies from the standpoint of theorem proving, they are often assets in logic programming
because they increase efficiency or comprehensibility of Prolog programs.

21 am indebted to Bob Moore for this observation.
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circumstances in which the occurs check is unnecessary. When matching a goal with a cli,,

head, it is unnecessary to perform the occurs check for the first variable binding: it 1, ;,I1o

unnecessary if the goal or the clause head has no variable occurring more than once. 'se of

the occurs check could be controlled by a run-time or compile-time switch.

An alternative approach to using the occurs check in each matching operation iS a1

provision for checking at the completion of a proof to verify that no infinite term was cre,:tcd

in the course of that proof. 3 Note that. this approach requires that all bindings created (dirin'

the course of a proof be available for checking upon its completion. This may not be the c'se

for some Prolog implementations.

N.,l Fit her of these approaches should be easy to incorporate in an implementation of P'rolog.

,° -. iThere is a trade-off involved in the choice of approach. The first adds overhead to each

" unification but immediately blocks inferences using infinite terms. The second has little or 110

overhead for each unification but, may permit many inferences to be drawn after an infinite

term is created; these inferences could have been cut off by immediately using the occurs check.

10.2.2 Inference System

As is well known, the inference system used in Prolog is complete only for llorn ,ets of

clauses, i.e., sets of clauses in which there is no more than one positive literal in each claue.

\We preent a method of extending the Prolog inference system to a complete inference systemni

that retains most of the character and efficiency of Prolog deduction.

In developing a PTTP. we should consider only those means for extending Prolo"- ,

inference system that. permit highly efficient Prolog implementation techniques to be l,-.

We observe that one of the most important reasons for the high speed of well-engi'neered

Prolog implementations is the efficiency of their representation for variable substitutions. [Ihi"

representation is made possible both by the depth-first search strategy and by Prolog's u., of

a form of input resolution as its inference procedure.

31 first hcard this suggvtion from David Warren.
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Two methods for handling substitutions arc used in conventional resolution theorem

proving. The simple method is to fully form resolvents by applying the unifying substitution

to the parent clauses. This is far more expensive in both time and space than Prolog inference.

The second method is the structure-sharing approach [11], in which a resolvent is repre-

sented by the parents plus the unifying substitution. Whenever the resolvent must be examined

(e.g., for printing or resolution with another clause), it is traversed with variables being im-

plicitlv replaced by their substitution values. This method consumes far less space than the

simp~le method of fully forming the resolvents, but is still not very efficient in time, compared

with Prolog. The reason for this relative inefficiency is clear.

In general resolution, a variable of an input clause may have more than one value per

use of the clause in a deduction because the clause is implicitly reused whenever a descendant

clause is used more than once. For example, if we resolve P(x) and -'P(y) V Q(y), setting

to z, we obtain Q(z). This resolvent can now be used twice to derive the er, 'y clause

from -'Q(a) V -Q(b). But this means that two instances of P(x), P(a) and P(b), have been

implicitly used in the proof, even though P(x) was used explicitly only once. The substitution

representation must accommodate these multiple variable values, whereas in Prolog the variable

x can be implemented as a stack location containing [a pointer to] its single current value. The

problem of multiple variable values does not occur in input resolution because derived clauses

can only be used once. If it is assumed that each input clause is treated as a new clause as it,

is used, each variable will have only a single value in a single deduction.

'This suggests that a good approach to building a PTTP is to employ a complete inference

system that, is an input procedure. Probably the simplest is the model elimination procedure

[77. 78]. (Actually, what we are proposing here is more closely related to the problem-reduction-

oriented MESON procedure [79, 78], but we will use the term model elimination (ME) because

it is more familiar and the MESON procedure is derived from the ME procedure.)

The ME procedure requires only the addition of the following inference operation to

'rolog to constitute a complete inference system for the first-order predicate calculus:
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If the current goal matches the complement at one o its ancestor goals,

then apply the matching substitution and treat the current, goal as if it

were solved.

This added inference operation is the ME reduction operation. The normal Prolog

inference operation is the ME extension operation. The two together comprise a complete

inference system.

An important thing to note is that this is a complete inference system that does not

require the theorem-proving factoring operation. Basing an extension of Prolog on another form

of model elimination, equivalent to SL-resolution [68], would require an additional factoring

operation that would instantiate pairs of goals to be identical. Eder's Prolog-like interpreter

for non-Ilorn clauses [221 also requires factoring. (However, we have not yet addressed Eder s

concern regarding the type of search space redundancy that results in two proofs, not just one,

of 3x.P(.r) from P(a) V P(b).)

For several reasons we regard factoring as an undesirable operation to add. Adding
another inference operation requires further decision-making about how to order possible

inference operations. The factoring operation, unlike extension and reduction, must use goals

that, no attempt has yet been made to solve-i.e., so far unexamined subgoals of the current. or

ancestor goals. The factoring operation, though necessary for completeness of many inference

systems, has a tendency to instantiate goals excessively, thereby eliminating any possibility of

solution.

. The reduction operation is a form of reasoning by contradiction. If, in trying to prove

P, we discover that P is true i; Q is true (i.e.,Q D P) and also that Q is true if -P is true (i.e.,

-,P D Q), then P must be true. The rationale is that P is either true or false; if we assume

that P is false, then Q must be true and hence P must also be true, which is a contradiction;

therefore the hypothesis that P is false must be wrong and P must be true.

In Prolog, when a goal is entered, a choice point is established at which the alternatives

are matching the goal with the heads of all the clauses and executing the body of the clause if

the match is successful. In this extension of Prolog, we must also consider the additional
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".. alternatives of matching the entered goal with each of its ancestor goals. For each such

successful match, we proceed in the same manner as if we had matched the goal with the

head of a unit clause (a clause with an empty body).

In Prolog, when a goal is exited, the goal, instantiated by the current substitution, has

been proved. In this extension of Prolog, when a goal is exited, all that has been proved is

the instantiation of the goal disjoined with all the ancestor goals used in reduction operations

, in the process of "proving" the goal. Thus, in the example of proving P from Q D P and
--P D Q, expressed in Prolog by

p q.
q :--p.

?- P.

when goal q is exited, P V Q, not Q, has been proved. The top goal, when exited, has been

proved; there are no ancestor goals whose negation could have been assumed in trying to prove

the top goal.

One of the implementation requirements imposed by the addition of the reduction opera-

tion is that ancestor goals must be accessible. This precludes some optimizations such as a tail-

recursive-call optimization that reuses the top stack frame when the next step is determinate

,*A,-, and thus erases the current goal so that it cannot be used in a reduction operation.

There are two additional prerequisites for using this inference system. First, contraposi-

tives of the assertions must be furnished. For each assertion with n literals, n Prolog assertions

must be provided so that each literal is the head of one of the Prolog assertions. The order

-.e-. of the literals in the clause body can be freely specified by the user, as for ordinary Prolog

assertions.

The second additional prerequisite relates to a feature of theorem proving that is absent

in Prolog deduction: indefinite answers. Prolog, when provided with the goal P(x), will attempt

to generate all terms t such that P(t) is definitely known to be true. In non-Horn clause theorem

proving, there may be indefinite answers.

For example, consider proving 3z.P(x) from P(a)V P(b). In our extension to Prolog, this

can be expressed as

ell
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p(a) -p(b).
p(b) :-p(a).

?-P(X).

This set of assertions and the described inference procedure are still insufficient to solve

the problem because there is no term t for which it is definitely known that P(t) is true. To

solve problems with indefinite answers, it is necessary to add the negation of the query as

another assertion (n assertions if the query has n literals).

In this example, addition of the Prolog assertion -,p(Y) results in the finding of two

proofs (one in which p(X) is matched with p(a) and -'p(Y) is matched with -.p(b), one in which

p(X) matched with p(b) and -'p(Y) is matched with -'p(a)). The answer to the query is thus

Pta)VP(b), i.e., either P(a) or P(b) (or both) is true, but neither P(a) nor P(b) has been proved.

In general, indefinite answers are disjunctions of instances of the query. One instance of the

query is included for each use of the query in the deduction (the use of the query as the initial

list of goals and each use of the negation of the query).

10.2.3 Search Strategy

Even if the problems of unification without the occurs check and an incomplete inference

system are solved, or are irrelevant for a particular problem, Prolog is still unsatisfactory as a

theorem prover because of its unbounded depth-first search strategy.

Consider the not untypical problem of proving that, in a monoid, if x X z is the identity

element for every x, then X is commutative. This is often formulated in terms of the ternary

predicate P, where P(x, y, z) means z X Vg = z (this is quite consistent with Prolog relational

programming style). The problem can then be expressed in Prolog by the following assertions

and goal: '5

p(X,e,X). % right identity
p(e,X,X). % left identity

.. p .pp(X,X,e). % hypothesis that x X x = e
p(a,b,c). % hypothesis that a X b
p(U,Z,W) :- p(X,Y,U), p(Y,Z,V), p(X,V,W). % associativity rule I
p(X,V,W) :-p(X,Y,U), p(Y,Z,V), p(U,Z,W). %' associativity rule 2
?- p(b,a,c). % goal to prove that b X a c
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For this problem, Prolog's lack of the occurs check in unification and incomplete inference

system do not matter, because no nonconstant function symbols appear and the set of clauses is

a Horn set. However, Prolog will still fail to solve the problem because its unbounded depth-first

search strategy will cause infinite recursion using the first associativity rule.

The minimal solution to the problem is to use bounded rather than unbounded depth-

first search. Backtracking when reaching the depth bound will cause the entire search space,

up to a specified depth, to be searched completely.

Because the search space size grows exponentially as the depth bound increases, assigning

too large a depth bound for a particular problem may result in an enormous amount of wasted

effort, and the amount of effort expended before discovering a proof will be highly dependent

on the specified depth bound. The obvious solution to this problem is to run a PTTP with

increasing depth bounds-first one tries to find a proof with depth 1, then 2, etc. We will call

this the staged depth-first search strategy. Because of the exponential growth of the size of the

search space as the depth bound increases, the cost of searching all of levels 1,...,n before

first finding a proof at level n + 1 will probably not be unacceptably high relative to the cost

of just searching at level n + 1.4

Rather then make all inferences up to level n, we should make only those that have some

chance of resulting in a proof by level n. Because each as yet unsolved goal will require at

least one inference step to solve it, we should not perform any inference step that would result

in there being more unsolved goals than there are levels remaining before the depth bound is

reached.

This approach has some other consequences for logic programming. The use of depth-

bounded search changes the meaning of failure from "not provable" to "not provable within

depth bound", thus requiring rejection or modification of the treatment of failure as negation.

4Assuming that the search space has a uniform branching factor b, S(b, n) - b + b"'  + • • + b + b is the
number of inferences made in exhaustively searching through level n and SS(b, n) = b" + 2bn' + + (n -

l)b2+ nb is the cumulative number of inferences made in exhaustively searching through level 1,2 .. n. Then
S(b,n+ 1) b"+l + S(b, n) _ bn+n +SS(b,n)-SS(b,n-1) and S(b, n+ l)-SS(b,n) - b"+' -SS(b, n-1)

b"- ) implying that the cost of exhaustively searching through level n+ I usually greatly
exceeds the accumulated costs of exhaustively searching through all of the previous levels.
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The use of depth-bounded search with increasing depth bound also will cause side effects to be

repeated, because deduction steps occurring in the level n search will be repeated in the level

n + 1 search.

10.3. Refinements

10.3.1 Goal Acceptability

The ME procedure justifies the completeness of our extension of Prolog even if some goal

states are disallowed. Let us call a goal currently being solved (either it or one of its subgoals

is the current goal) an open goal. An unopened goal is a goal not, yet open in the current

deduction. A closed goal is a goal that has been exited in the current deduction.

Our extension of Prolog remains complete even if we allow the current goal to be failed

under any of the following circumstances:

o Two unopened goals from the same clause are complementary

* A goal is identical t~o an ancestor goal

* A goal extended upon is complementary to an ancestor goal.

The first rule is justified because, in that situation, a tautologous instance of the clause

*', is being used. Completeness is preserved if tautologous input clauses are not used. The second

rule requires a more detailed justification, but in essence states that it is unnecessary to attempt

to solve a goal while in the process of attempting to solve that same goal. The third rule merely

affirms that it is unnecessary to attempt to solve a goal that is complementary to an ancestor

goal by any means other than the reduction operation.

Because the search space in theorem proving is generally exponential, it is always worth

considering criteria for failing goals, so that the exponentially many derivative deductions can

be eliminated. However, the desire to cut off deductions must be balanced against the cost of

% applying the check to determine whether the present deduction is acceptable according to the

criteria. -
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The ME procedure applicability tests enumerated above are very expensive to apply in

a straightforward way. Because each inference operation is potentially capable of instantiating

any goal, one of the conditions for unacceptability may become true for a pair of goals after

any inference operation. Thus, after each inference operation we would have to check each pair

of unopened goals from the same clause for complementarity, and each goal and its ancestor

goals for identity and complementarity. The latter is 0(n 2 ), where n is the number of ancestor

goals.

TIere are two solutions to the high cost of these applicability tests. The first is to develop

an implementation that can perform these tests cheaply. One method would be to keep track of

which pairs of goals could conceivably be instantiated to identity or complementarity and check

only those pairs. However, this would result in a more substantial extension of Prolog than we

presently want and would make it more difficult to adapt present Prolog implementations to

be a PTTP.

The second solution is to restrict the applicability tests. First, we would eliminate the

test for complementarity of unopened goals from the same clause. Besides saving the effort of

performing the test, we eliminate the requirement for accessing unopened goals. Second, we

suggest that, the checking of a goal and its ancestor goals for identity and complementarity be

restricted to the case where the goal is the current goal; this is done after instantiation by the

substitution for the contemplated inference operation. Limited experience suggests that this

single check is still quite successful in cutting off search at far less cost (linear in the number

of ancestor goals) than the fuller check.

.\not her possible effort-saving restriction on the applicability tests would be to perform

then less frequently than after every inference operation.

The previous theorem prover that most closely resembles a PTTP (in operation but not

in implementation or speed) is an implementation of the ME procedure by Fleisig et al [26].

They concluded that ME was a competitive procedure; neither the ME theorem prover nor

*-., a unit preference and set-of-support resolution theorem prover they also developed strongly

.4' . dominated the other for their examples. Their ME theorem prover uses full accepability
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checking, that we consider likely to be too time-consuming, and a bounded depth-first search

strategy. Unlike our staged depth-first search strategy, a single depth bound is given by the

user. making performance very sensitive to the depth bound.

The Fleisig theorem prover also provides for cutoffs by allowing restrictions to be placed

on the depth of function nesting, the number of open goals (or number of ancestor goals) in

a deduction, the number of uses of particular clauses in a deduction, and the number of uses

of clauses of specified length in a deduction. Such cutoffs can also be employed in a PTTP.

Although they may ultimately be necessary to reduce the size of the exponential search space for

difficult, problems, we are somewhat wary of such cutoffs because they are sensitive parameters

whose values are difficult to assign. To be useful, the cutoffs must be assigned small values.

but not, so small as to preclude all proofs. When there are many such parameters, there may

he little guidance on which parameter values to alter to admit more inferences when no proof

is found Nith one set of parameter valuei.

10.3.2 l'xtended Inification

It is sometimes quite useful to extend the unification algorithm. For example, buildiug "

associativity and/or commutativity into the unification algorithm can result in significantly

improved performance. Extended unification can also be used for helping to produce systems

that reason effectively with equality, taxonomies, ordering, etc. (see Section 9). Kornfeld's work

on building uses of equality into Prolog to support object-oriented programming is a further

exa,,ple [631. Unlike his work however, full support for extended unification must accomriod:Ite

the possible presence of multiple unifiers. This means additional alternatives at each choice

point- -alternative unifiers as well as alternative inferences. The clearest implementation of this

would require that all alternative unifiers for an inference be tried before the next alternative

inference is tried. It would also be useful to have an additional cut operation that cuts off

alternative unifiers but not alternative inferences.
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10.3.3 Operation OrderingI

We retain the operation ordering of Prolog (solving subgoals from left to right; using

clauses in order from the database) for familiarity, comprehensibility, and programmability.

However, the addition of the reduction operation means that the reduction operation must

be fitted in somewhere among the other operations. It must be decided whether reduction

operations should be performed before, after, or interleaved with extension operations (e.g.,

after all extensions by unit clauses). This can be specified a priori or, perhaps, for each

predicate P by including a clause "p :- reduce." in the procedure for P at the point where we

wish redluction operations to be attempted (which could also make reduction optional). The

order of reduction operations among themselves must also be decided-for example, whether

to reduce by the shallowest or deepest ancestor goals first.

It is also worth pointing out that it is unnecessary to consider alternative inference

operations if a reduIct-ion operation is possible where the two goals are already complementary

(the empty substitution unifies their atoms) or if an extension operation by a unit clause

instantiates only the clause and not the goal. Discarding alternative inference operations in

these situations can save substantial effort.

Trhe fullest possible benefit of this would be obtained if all reduction and unit extension

operations were checked first to determine whether the current goal can be solved immediately

without further instantiation before performing any inference operation that either further in-

stantiates the current, goal or adds subgoals. This suggests a two-pass procedure for attempting

to solve a goal: checking ancestor goals for exact complementarity and for subsuming unit

clauses; then, if that, fails, performing the normal inference operations.

10.3.4 Additional Inference Operations

it is pnssible to consider adding more inference operations to a PTTP beyond the

extension and reduction operations it minimally requires. We have already considered and

rejected the idea of including a factoring operation.
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A more useful operation to add may be the graph construction procedure C-reduction

operation [118]. If the current goal matches a closed goal in the curreti deduction, the

substitution can be applied and the current goal considered as solved, provided that all the

ancestor goals used in reduction operations to solve the closed goal are also ancestors of the

current. goal. One difficulty in using this inference rule is that it adds redundancy to the search

space. If the current goal can be solved by the C-reduction operation, it can also be solved by

the same sequence of inference operations that, was used to solve the C-reducing goal.

A strategy for using the C-reduction operation that is guaranteed not to increase the size

of the search space is to apply the C-reduction operation only if the current goal is identical to

the solved goal, so that no instantiation is required. Then all alternative inference operations

that could be used to solve the current goal can be cut off, in the same way as was suggested

for reduction by identical ancestor goals and extension by subsuming unit clauses.

10.4. Conclusion

Ve have presented the design of a minimal Prolog technology theorem prover and

numerous possible refinements. Further experimentation will determine how worthwhile t:.'

concept is. Numerous questions, of course, remain. We have based our design on the Nl';

procedure because that appears to be the procedure best suited to the use of present Prolog-

style implementation. Is this the most effective procedure for us? How useful is it when viewed

as a logic programming language? Will the lack of subsumption, equality reasoning, or other -

features impose too great a limit on its effectiveness? If necessary, how can we add such features

while retaining the speed advantage? f

In any case, production of a PTTP would result in a theorem prover capable of performing '"

inferences at a far greater speed than before and offering prospects of even greater speed as

Prolog machine technology progresses. It is surely a concept that is worth exploring.
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11. Knuth-Bendix-Method Theorem-Proving Example

This section was written by Mark Stickel.

11.1. Introduction

We present here the solution of a challenge problem using the Knuth-Bendix complete

sets of reductions method. The problem-to prove that, if x3  x £ in a ring, then the ring is

commutative -- was offered as a challenge for theorem-proving programs by W.W. Bledsoe in

1977 [9]. The proof has the novel feature that, all reasoning was forward reasoning with the

program never having been told that the objective was proving x X y = y X z.

This is a substantial success for the Knuth-Bendix completion method that had already

shown promise in solving less difficult problems such as completing sets of reductions for various

algebras like free groups and rings. It further suggests that the Knuth-Bendix completion

method is a very effective method for deriving consequences from equational theories whose

equations can be treated as reductions. That a 21 step proof (not counting reduction steps) for

this difficult problem could be found after generating only 135 reductions is quite impressive.

The technique used was the Knuth-Bendix completion method using associative-

commutative unification for addition and incomplete associative unification for multiplication.

The program attempted to find a complete set of reductions beginning with a complete set

of reductions for free rings plus the reduction z X z X x - x. The program predictably 7

failed to complete the set. of reductions. Commutativity of mutiplication, a consequence of

Xr3 = x, prevents there being a complete set of reductions unless commutativity of multiplica-

tion is assumed. However, the program did discover the commutative equality x X y = y X x.

in the attempt, thus proving the theorem. The program also later succeeded in proving the

same result with comparable effort by using ordinary, rather than associative, unification for

multiplication and building associativity in with the reduction (x X y) X Z x X (y X z).
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We will not review here the Knuth-Bendix method or its extension using associative-

and/or commutative unification. The Knuth-Bendix method is described by Knuth and Bendix

[601, Lankford [69, 70]. and Iluet [50, 49], among others. Associative and/or commutatiMe

unification are treated by Siekmann [121. 122], Livesey and Siekmann [75, 76], and Stickel

[126. 127] and extension of the Knuth-Bendix method to incorporate associativity and/or

commutativity is treated by Lankford and Ballantyne [71. 72, 73] and Peterson and tickcl

[101. 102]. In addition to the publications cited above, Ilullot [521 presents numerous exaniplc

of the use of the Knuth-Bendix method with and without special treatment of associativity

and/or commut ativity.

The two most important differences in the use of the Knuth-Bendix method for thi-

problem, as compared to previous work by Peterson and Stickel [101. 102]. are the iie of

cancellation laws to simplify reductions and a better pair-evaluation function to order mnLtcll"g

reductions. These changes are described below.

11.2. Cancellation Laws

The most significant addition to the Knuth-Bendix method using awociat 111d nIr

commutative unification that we made to solve the x3 = x ring problen is the use of crmi,, II rii

laws to simplify derived equations. This addition made the solution feasible: me h:o,- f-ir

failed to solve the xa = Y ring problem without the cancellation law . It is certai hat i r

required to (do so would greatly exceed that used with the cancellation laws. \%e e\P,', I 11 o%

cancellation laws can be widely used in the Knuth-Bendix met hod in the fut ure to rUk n! i:tl;

accelerate convergence of complete sets of reductions.

To use the cancellation laws, we add the reductions .r + y = x - y = 0 and x + =

xr+ z -. y that may be applicable to the entire derived equality, not just one of its ,ublerm-

as is the case for all the other reductions.

With the single exception of the additive identity reduction .+O x that the cancellation

laws are not permitted to reduce the cancellation laws never reduce an equality of nonidentical

terms to an equality of identical terms. Thus, any critical pair from which a reduction can be
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derived can lead instead to a simpler reduction if a cancellation law is applicable. This simpler

reduction is more powerful than the original because it, plus x +0 -0, can reduce the original

reduction to an identity.

Besides being more powerful, the simpler reduction has the further advantage that

matching its left-hand side with the left-hand side of other reductions to generate new critical

pairs will result in fewer, less complex equalities and thus create less work for the progralm.

11.3. Pair-Evaluation Function

In the Knuth-Bendix method, it is necessary to select which pair of reductions to mlatch

next to derive new critical pairs. If the selection algorithm is poor, the completion process

may diverge, even though a complete set of reductions exists. There is no way of insuring that

the completion process will not diverge unnecessarily, but selecting pairs with small combined

left-hand sides works well in practice in preventing this difficulty.

Our implementation of the pair-selection process involves maintaining a list of all pending

pairs sorted in ascending order according to an evaluation function. The evaluation function

we have used in the past is simply the sum of the number of symbols in the two left-hand sides.

I lowever, t he .r-l = . ring problem is much more difficult than previous problems to which the

- IKn uth-lRendix method has been applied, and this simple evaluation function was not adequate

for easily oing it. An attempt to solve the x = x ring problem managed to get within one

step of discovering X X y = y X x. but 'ailed to select, the right pair of reductions to match

next after several days of computing.

.''The problem was t lie discovery of large numbers of reductions like z 2 yxy 2 ya- . y.r.

Such reductions have few symbols on the left-hand side and hence were given preference for

matching. However, matching these reductions with other reductions (such as the distributivity

re(uctions) often resulted in a large number equations that were slow to simplify. Simply

counting symboli in the left-hand side of the reduction did not reflect the greater complexity

(after simplification to sum-of-products form) of products when a variable is instantiated to a
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iisuii compared to the complexity of sums when a variable is instantiated. The solution is to

use an evaluation function that, ,&ves less preference to products.

-The evaluation function adopted to remedy this problem is V(X) + V(X ) where X, and

X,, are the left-hand sides of the two reductions to be matched and V is defined over all variables

x and terms t,.t.. J1as

V(0) = 2,
, , lx) - 2.

v(-t) ~ 1- ×t(t),

+itl +'+tn)-w l (t) + + I (tn,

l(t, X " X t,): l1 )(t ) x x it,,).

This is a natural evaluation function for ring theory problems because the value of a ring

sum is simply the integer sum of the values and the value of a ring product is simply the integer

product of the values. The value 2 used for constants and variables is the smallest positive

integer that is not the additive or multiplicative identity.

The only part of the definition of V that seems contrived for the purpose of the .r

ring problem is the definition of (-0) as 5 X V(t). This value reflects the fact that -t = ; is

a consequence of of .r3 = x a fact discovered in the earlier attempt to solve the problem. The

• "% choice of 1'(-t) = 5 X V(t) as opposed to other reasonable definitions for V is inconsequential

because the reduction -. r 5Y is discovered quite eaily in the completion process. All other

occurrences of - are then eliminated, and the evaluation function for negated terms plays no

Further role.

11 .1. The Proof

The appendix lists the proof of ring commutativty from x3 - x. The proof has
been cleaned up slightly and unused inferences are not shown. The program did not use

exponent iat ion or multiplication by a constant, so 3xv" is our shorthand for the programs

4(X X I X v)+ (x X r X v)+(.r X I X r).
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Ring axioms were provided as reductions 1-11. These reductions, plus the assumptions
of associativity and commutativity for +4 and associativity for X, constitute a complete set of

reductions for free rings. We did not allow matching pairs of ring axiom reductions because

this is a complete set of reductions and no new reductions could be created. Reduction (12),

not shown, invoked the cancellation laws allowing the derivation of z = y from X + z = y + z

and z = o from z + z = z or z = z + z. Reduction (13) is the hypothesis that z3 - z.

Each of the intermediate steps in the derivation is a derived reduction. In effect, reduc-

tions are created by forming an expression to which both parent reductions are applicable.

The results of applying the two reductions are set equal and fully simplified. If the result is

not an identity, it is saved as a new reduction. After each reduction, there may be a line

simplifying x by y (when there is not, it means the reduction is exactly an equation formed

from matching the parent reduction left-hand sides) where x is the equation formed from the

two parent reductions and y is the list of simplifiers used to simplify it (cancel and distrib refer

to use of the cancellation and distributivity laws).

A useful perspective is to consider, for example, the derivation of (14) as the simplification

of x3 - X with z instantiated by y + z (i.e., (y + z) - y + z) by applying distributivity to

(Y +z)'.

At the completion of the proof, only 135 reductions had been created of which 53

were retained. The economy of the Knuth-Bendix procedure in number of retained results

is demonstrable from the fact that these 135 reductions were the result of simplifying 9,013

equations derived from matching 988 pairs of reductions. Most of the remaining equations were

simplified to identities and discarded; a few were simplified to equalities like 3zV 3 yz that

.*' could not be converted into reductions and were also discarded. Total time was about 14.3 hours

(including garbage-collection time) on a Symbolics LM-2 LISP Machine. This reflects slowness

of the simplification procedure on numerous lengthy terms and could be greatly reduced.

After the discovery that multiplication is commutative, the problem can be run again to

really derive a complete set of reductions for rings with z 3 - z. Assuming the associativity and

commutativity of addition and multiplication, reductions 1, 2, 3, 5, 6, 7, 9, and 10 comprise
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a complete set of reductions for free commutative rings. Attempting to complete the set of
reductions consisting of these reductions plus z X z X z -. z resulted in the discovery that-

the reductions marked by * in the proof comprise a complete set of reductions for rings with

X 3 = z. During this computation, 120 pairs of reductions were matched and 2121 equations

simplified; this resulted in 18 reductions, 8 of which were retained to form the complete set of
reductions. The cancellation laws were necessary for deriving this result as well.

The only previous computer proof of the z3 - z problem was done by Robert Veroff in

1981 using the Argonne National Laboratory - Northern Illinois University theorem-proving

program [129]. His solution required an impressive 2+ minutes on an IBM 3033. It is inter-

esting to compare the approaches taken in these two proofs. Both rely heavily on equality

reasoning. The process of fully simplifying equations with respect to a set of reductions is just

demodulation. The Knuth-Bendix method's means for deriving equations from pairs of reduc-

tions is similar to the paramodulation operation used in the ANL-NIU prover. Cancellation

laws were also used by the ANL-NIU prover. Despite such similarities in approach, solution by

the Knuth-Bendix method required less preparation of the problem. The Knuth-Bendix pro-

gram was given only the 11 reductions for free rings, the reduction z X z X z -- z, declarations

of associativity and commutativ'qy, and a reduction for the cancellation laws. The ANL-NIU

program was provided with a total of 60+ clauses, including the negation of the theorem

(their proof was goal-directed, with proving the theorem being a specific objective, whereas

our program derived ring commutativity as a result of pure forward reasoning, attempting

to complete a set of reductions). Some clauses expressed information about associativity and

commutativity, which are handled by declarations in the Knuth-Bendix program. A large

number were present to support a polynomial subtraction inference operation-e.g., to derive

a + (-c) - 0 from a + b = 0 and b + c = 0. Comparable operations are implicit in the Knuth-

Bendix method, which can infer a =-c by matching the reductions z + b -- z (the embedded

form of a +b-- 0) and 1+6+ e -- y (the embedded form of b + c -- 0).
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Appendix. Proof that z = z Implies Ring Commutativity
0(1) 0+z -z,

(2) (-z)+ z -. o,
e (3) x(y + z) -. y + zz,

(4) (z + y)z -zz + yz,
(5) -0-0,

e(7) O -. 0,
(8) o -. 0,
(9) -(: + Y) - (-) + (-Y),
(10) z(-) -
011) (---)y - -(Zy),
( 1 3 ) r 3 , Z ''

(14) zyz+yz 2 +2+ 2Y+ zy2 +yZ-0 from (3) and (13),
simplifying (y + Z)2Y + (y + z)2z = y + z by cancel, distrib, (13),

(18) Yzw + zYw + wyz + wzY + 1wz + zwy - 0 from (3) and (14),
simplifying w(y + Z)w + (Y + z)w' + (y + z)'w +
W(l + z) 2 + (y + z)w(y + z) + w'y + w'z =0 by distrib, (14),

e(21) 6z - 0 from (13) and (14),
simplifying 5zs + z =0 by (13),

(22) 3z 2 + 3z -. 0 from (13) and (14),
simplifying 3zo + 2zs + Z2 =0 by (13),

(24) 3yz + 3zy -- from (3) and (22),

simplifying 2 (y + + ( + z)z + 3y + 3z = 0 by distrib, (22),
o(28) -r - r from (2)' and (21)e,
*(29) 3v' - 3v from (21)' and (22)',
o(30) 3zv2 - 3zv from (3) and (29),

simplifying x(3v) = xv2 + z(20') by distrib,
(31) 3v2z - 3vz from (4) and (29),

simplifying (3v)z = (2v2 )z + vsz by distrib, .%
(33) 3zuz + 3uz - 0 from (13) " and (21),

simplifying 3zuz + 2uz 3 + uz -0 by (13), (31),
(40) 3zuz - 3uz from (21)' and (33)",
(48) YzY + zY 2 + 31z + 3yz - 0 from (18)0 and (21).

simplifying 0 = 4yzy + 4zy2 + 4p'z by (21), (30), (31), (40),
(60) yt + tY2 + t3-. 3yt from (21)' and (48)",
(66) 2pty + 2y1t - 3yt + tys2 from (21)' and (48),,

simplifying 3yt + t9 = 53ty + 5g't by (24), (31), (40),
(80) zuzr2 + :uz - 2uz from (13)0' and (60),

simplifying z'ux + uz + zuz2 - 3zuz by cancel, (40),
(82) y3uy1 + uy + YuY -. 3uY from (13) " and (60),

simplifying y up 4 + uy 2 + jUys _ 3yUyl by (13), (30), (40)-
(115) 2y~sy - y91 + a from (13),2 and (66),

simplifying 2p'e + p~. + yo = 3y a + ysy' by cancel, (13), (31),
(118) 31s*j s 

-. + y6 2 from (13) and (66),
simplifying 2yp'y + si + ss' - 3j'. + u4#jr by cancel, (13), (66),

(119) 2uy' + yuy - 3ay from (82),
simplifying it by (118),

(133) zux' -. uz from (13) " and (110),
simplifying Ua: + az + zuz s 

- 3vz' by cancel, (13), (30),
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(135) z uu from (80),
simplifying it by cancel, (133),

8Y =1 frmM11)
simplifying it by cancel, (133), (135).frm(5)
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