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;Lln/Zhis paper we presentssome of the basic ideas associated with the
— .. [
detection of abrupt changes in dynamic systems. {é;f);gggégtation focuses on
two classes of methods -- multiple filter-based techniques and residual-based
methods -- and in far more detail on the multiple model and generalized
likelihood ratio methods. Issues such as the effect of unknown onset time on

algorithm complexity and structure and robustness to model uncertainty are

discussed. o e
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1. Introduction

In recent years many techniques have been proposed for the detection of
abrupt chnages in dynamic systems. Thesc cfforts have been motivated by a
wide variety of applications including the detection of sensor and actuator
failures [1, 2, 4, 19, 26-35]) the tracking of maneuvering vehicles [20, 21,
23, 25}, and numerous signal analysis problems (electrocardiogram analysis
[S, 6], geophysical signal processing [7], edge detection in images [8, 9],
freeway monitoring [10, 11},...). A kev to the development of any technique
for the detection of abrupt changes is the modeling of how the abrupt change
affects the observed signals. In some applications the effect of the abrupt
change is direct and simple -- e.c. a bias devcloping in an output signal.

In such problems the primary focus of research is on the precise nature of
the decision rule (see, for example [8, 9, 26]). In other applications (such
as those described in [1, 2, 4, 10, 11, 19, 21]), the cffect on the observ-
ables is described in a more complex, indirect way -- for example, in terms
of an abrupt change in the dynamics of a system. In such problems one is
presented in essence with two problems: the processing of the observed sig-
ﬁals.in order to accentuate (and simplify) the effect of the abrupt change
and the definition of decision statistics and rules in terms of the processed
outputs. The techniques described in this paper in principle address both

of these issues in that they produce sufficient statistics for

optimum detection. However, we will focus for the most part on the first
task of change detection, that is, tﬁe problem of producing signals which make
subsequent detection as easy as possible. As discussed here and in more
deiail in (27-29), this is an exceedingly important perspective in the design
of detection methods which are robust to uncertain details of the dynamic

models on which they are based.

In (1] a variety of methods and structures are described for change
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detection, In this paper we focus oh two basic and extremely important
structures. The first of these is thc multiple filter structure depicted
in Figure 1. Here the observations, y, are processed by a bank of filters
each of which is based on a particular hypothesis (e.qg. Filter #1 assumes no
change has occurred, Filter #2 assumes a particular type of change has
occurred possibly at a particular time, etc.) The outputs of the filters, Y,
represent signals which should typically be small if the corresponding hypo-
theses are in fact correct, and thus the decision mechanism in esgence is
based on determining which of the filters is doing the "best” job of keeping
the corresponding y's small. There are several methodé that have been de-
veloped which fit the general form of Figure 1. In particular, hard [33])
and soft [34] voting systems can be interpreted in this fashion. Another
example is the multiple observer design described in (36}. In the next
section we describe in detail a third technique of this general type, namely
the multiple model method.

A second general structure for the detection of abrupt changes is the

residual-based structure illustrated in Figuare 2. In this case a filter is

designed based on the assumption that no abrupt change has occurred or will

occur. The filter produces a prediction § of the output signal y based on
this assumption and the past history of the output, and this prediction is
subtracted from the actual output to produce a residual signaly. If no
abrupt change has occurred, Y should be small. Consequently deviations

from this behavior are indicative of failure, and it is on this fact that

the decision mechanism is based. Again there are a variety of techniques

of this general form. In (35] a variety of statistical tests (chi-squared,
whiteness, etc.) are proposed for the detection of abrupt changes when the

Y are the innovations from a Kalman filter. In (30-32] a method is described

for the choice of gain in an observer-like filter in order to guarantee that

the decoupling of the steady-state effects ony of a given set of possible
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abrupt changes. In Section 3 we discuss a third technique of this general
type, namely the generalized likelihood ratio method.
2. The Multiple Model (MM) Method

The MM method was originally developed for problems of system identifi-
cation and adaptive control [12-17, 24], and in the initial part of this
sect. on we follow these early treatments. Subsequently we will look more
closcly at the issues that arise and possible adaptations that may be
nece:;sary for the use of MM for the detection of abrupt events (see (1, 2, 5,
10, 18, 19, 22, 23] for further developments).

The basic MM method deals with the following prablem. We observe the
inputs u(k), k = 0,1,2,... and outputs y(k), k = 1,2,... of a system which
is assumed to obey one of a given finite set of linear stochastic models,

indexed by i = 1,...,N:
xi(k+1) = Ai(k)xi(k) + Bi(k)u(k) + "i(k) + gi(k) (2.1)
y(k) = Ci(k)xi(k) + vi(k) + bi (k) (2.2)

where v, (x) and \ (k) are independent, zero-mean Gaussian white noise pro-

cesses, with
E[wi(k)wi(j)'] = Qi(k)ij (2.3)

E[vi(k)vi(j)'l = Ri(k)é (2.4)

3k
The initial state xi(O) is assumed to be Gaussian, independent of v
and v,, with mean fti (0]0) and covariance P, (0)0) (the meaning of this nota-
tion will become clear in a moment). The matrices A, (k), B, (k), C, (Kk),
Qi(k)' and Ri(k) are assumed to be known. Also, b, (k) and gi(k) are given
deterministic functions of time (corresponding to biases, linearizations
about different operating points, etc.). In addition, the state vectors

"1"" may be of different dimensions for different values of i (correspond-

ing to assuming that the different hypothesized models represent different
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orders for the dynamics of the real system). There are a number of issues

that can be raised concerning this formulation, and we defer our critique of

the MM method until after we have developed its basic structure. We note

here only one technical point which is that we will focus on a discrete-
time formulation of the MM method. Continuous-time versions can be found
3 in the literature (see [24)), and they differ from their discrete-time

counterparts only in a technical and not in a conceptual or structural

i ’ manner.

Assuming that one of these N models is correct, we now have a standard

multiple hypothesis testing problem. That is, let Hi denote the hypothesis

that the real system corresponds to the ith model, and let pi(O) denote the
a priori probability that Hi is true. Similarly, let pi(k) denote the

L nrobability that Hi is true based on measurements through the kth measurc-
ment, i.e. given I = {u@),...,utk-1), y(1),...,y(k)}. Then Bayes' rule

yields the following recursive formula for the pilk)

p(y(k+1)IHi,Ik.u(k))pi(k)

pi(k+1) =N (2.5)
T ply(k+1) [H_, 1 ,u(k))p, (k)
i1 37k 3
J=
. ! ; Thus, the quantities that must be pioduced at each time are the conditional

probability densities P(Y(k+1)|Hi.1k,u(k)) for i=1,...,N. However, con-

et S

ditioned on Hi' this probability density is precisely the one step prediction
density produced by a Kalman filter based on the ith model.

That is, let ii(k+1|k) be the one-step predicted estimate of x, (k+1
based on 1

and u(k), assuming that H, is true. Also let ﬁi(k+1|k01) denote

k i
the filtered estimate of x, (k+1) based on Ik+1-{1k,u(k),y(k+1)} and the ith

model. Then these quantities are computed sequentially from the following

equations:

ﬁi(k+1|1) - Ai(k)xi(klk) + B (K)u(k) + g, (K) (2.6)




xi(k+1|k+1) = xi(k+1|k) + K, (k+1)Y, (k+1)

where Yi (k+1) is the measurement innovations process

Y; (k41) = y(k+l) - Ci(k)ﬁi(k+1|k) (2.8)

and K(k+l) is calculated off-line from the following set of equations:

Pi(k+1|k) = Ai(k)Pi(klk)Ai(k) + 0. (k) (2.9)

v, (kel) = Ci(k)Pi(k+1|k)Ci(k) + R, (k) (2.10)

= ' -1
K, (k+1) = Pi(k+1|k)cl(k)vi (k+1) (2.11)

Pi(k+1|k+1) = Pi(k+1|k) - Ki(k+1)ci(k)Pi(k+1|k) (2.12)

Here P, (k+1|k) denotes the estimatior error covarinace in the estimate

%, (k+1|k) (assuming H, to be true), and P, (k+1|k+1) is the covariance of
the error x; (k+1) - ﬁi (k#llkﬂ) » again based on Hi. Also under hypothesis
He . Yg (k+1l) is zero mean with covariance \A (k+1), and it is normally dis-
tributed (since we have assumed that all noises are Gaussian). PFarthermore,
conditioned on H., I,, and u(k), y(k+1) is Gaussian, has mean ci(k)ﬁ£¢k+1|k)

and covariance Vv, (k+1). Thus, from (2.8) we deduce that

1
? (detv, (k1))

1 -1
Py (k+1) [H,, I, u(k)) = 75 &% (- 3 Y] (eDIV " (el

n/ i

(2m)
- Y e} (2.13)
where m is the dimension of y.

Equations (2.5) - (2.8) and (2.13) define the MM algorithm. The inputs
to the procedure are the y(k) and u(k), and the outputs are the pi(k). The
implementation of the algorithm can be viewed as consisting of a bank of N
Kalman filters, one based on each of the N possible models. The outputs of
these Kalman filters are the innovations sequences \ (kx+1), vhich effecti-
vely measure how well each of the filters can track and predict the behavior

of the observed data. Specifically, if the ith model iscorrect, then the




one-step prediction error Yi(k) should be a white sequence, resulting only

from the intrinsic uncertainty ir the ith model. However if the ith model
is not correct, then Y; (k) will not be white and will include errors due to
the fact that the prediction is based on an erroneous model. Thus the pro-
bability calculation (2.5), (2.13) basically provides a quantitative way in
which to assess which model is most likely to be correct by comparing the
performances of predictors based on these models.

Let us now address several of the most important questions that arise
in understanding how the MM algorithm should be used. Clearly a very
important question concerns the use of MM in problems in which the real
system is nonlinear and/or the noises are non-Gaussian. The answer to this
problem is extremely application-dependent. The Gaussian assumption is
basically used in one place--i.e. in the evaluation of p(y(k+1)|Hi,Ik,u(k))
in (2.13). It has been our experience that using this formula, even when
Yi(k+1) is non-Gaussian, causcs essentially no performance degradation. As
we have pointed out, what MM really attempts to do is to calculate a measure
of how well each of the Kalman filters is tracking by looking at the predic-
tion errors Yi(k+1). and the pi(k) are simply measure of how well each of the
models are tracking relative to each other and to how well we would expect

them to be tracking. The critical terr in (2.13) in general is

Y. (+1)V. L (ke 1)y, (K41) (2.10)
i i i

which is the square of the tracking error normalized by the predicted co-
variance of these errors assuming "1 is true. Thus if this quantity is
large, we would tend to disregard the ith model, while if this is small, the
ith filter is tracking well. The pi(k) exhibit exactly this type of be-
havior, and thus we can expect MM to be reasonably rcbust to non-Gaussian

statistics. Of course this depends upon the application, but we have had

good success in several applications (5, 10] in which the noises were




decidedly non-Gaussian.

As far as the ronlinearity of th - real system is concerned, an obvious
approach is to linearize the system aliout a number of operating points for
each possible model and use these lincarizcd models to design extended Kal-
man filters which would be used in plice ot Kalman filters in the MM algor-
ithm. Again the utility of this approach depends very much on the particu-
lar application. Essentially the issue is whether the tracking error from
the extended Kalman filter corresponding to the linearized model “closest
to" the true, nonlinear system is markedly smaller than the errors from
filters based on "mcre distant®” models. This is basically a signal~to-noise
ratio problem, similar to that seen in the idealized MM algorithm in which
everything is linear. 1In that case the noise is measured by the V!(k+1)-
The larger these are, the harder it will be to distinguish the models (the
quantity in (2.14) tecomes smaller as Vi is increased, and this in %turn
tends to flatten out (as a function of i) the probabilities in (2.13)). 1In
the nonlinear case, the inaccuracies of the extended Kalman filters effecti-
vely increase the Vj(k+1) thus reducing their tracking capabilities and
making it more difficult to distinguish among them. Therefore, the perfor-
mance of MM in this case will depend upon how "far apart" the different
models are, as compcred to how well each of the trackers tracks. The farther
apart the models are¢, the more signal we have; the poorer the tracking
performance is, the more difficult it is to distinguish among the hypotheses.

Even if the trie system is linear, there is clearly the question of the
utility of MM given the inevitability of discrepancies between the actual
system and any of the N hypothesized models;. Again this is a question of
signal-to-noise ratio, but in the linear case a number of results and ap-

proaches have been developed for dealing with this problem. For example,

Bram [16] has developed a precise mathematical procedure for calculating
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the distance between different linear models, and he has shown that the MM
procedure will converge to the model closest to the real model (i.e. pi(k)*l
for the model nearest the true system). This can be viewed as a technique
for testing the robustness of MM or as a tool that enables us to decide what
models to choose. That is, if the real system is in some set of models that
may be infinite or may in fact represent a continuum of models (corresponding
to the precise values of certain parameters), then Baram's results can be
used to decide upon a finite set of these models that span the original set
and that are far enough apart so that MM can distinguish among them. For
example, in adaptive flight control (reference [17]) we may be interested
in determining the flight condition (operating point) of an aircraft, and
we can think of using MM by hypothesizing a set of linearized models that
span the flight envelope.

let us now turn explicitly to the problem of detecting abrupt changes.
In such problems one must deal with onc¢ key issue that we have not yet
discussed. Specifically, in change detection we are not simply attempting
to determine which of the models given in (2.1) - (2.4) is the correct one,
but rather we are trying to detect a shift from one model to another. That

is, in this case the actual system obeys a model of the form

x{k+1l) = A(k)x(k) + B(k)u(k) + w(k) + g(k) (2.15)

y(k) = C(k)x(k) + vik) + b(k) (2.16)

where for each k the parameters of the model correspond to one of the hy-

pothesized models in (2.1) - (2.4), but the model may change with time.

While this possibility is not directly taken into account in the MM method
as described to this point, this algorithm often does work well in detecting
shifts without any major modification to take this possiblity into account

(see. for example [5, 10). The important issue in this is the adaptability
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of MM and the purpose: of the particular application.

To elaborate on his, let us first note that MM will, theoretically,
eventually indicate a shift from one model to another. Two things, however,
must be taken into acount. In the first place, we see from (2.5) that if
pi(k) is small, the p'(k+1) wil grow only'slgwly at best. In fact, in
practice we have founi that nume rical roundoff often leads to pi(k) being
set to zero if the itli model is not valid up to time k. 1In this case pi(j)
will be zero for all ; > k. 1In order to avoid this drastic effect and also
the extremely sluggis: response of MM to a change in models, a lower bound
is usually set on the pi(k). In different appl-cations we have found bounds
from 10-3 down to 1o°'5 to be satisfactory, witl very little sensitivity to
the precise value of -he bound. As a second point we note that if a parti-
cular model is not co-rect up until time k the Kalman filter based on this
model may develop lar je errors. If then this model becomes correct at time
k, it may take a long time before the prediction errors (2.8) decrease to
reflect the validity >f the model. From (2.13) and (2.5) we see that this
in turn means that MM may not r«spond to this change for some time. In pra-
tice we have found that this is not a particularly bad problem if the errors
in all of the Kalman filters rer ain bounded even when the model on which they
are based is incorrect. If a p. rticular real system-mismatched Kalman fil-
ter combination is unstable, th:n there may be problems if the system switch-
es to the model corresponding t¢ this filter. What we have found is a
workable solution to this problem is to reset the estimates of potentiaily
divergent Kalman filtars to the estimate of the most probable model, and
this is done whenever the probability of possibly diverging filters falls
below a threshold (such as 10-2).

With these modifications MM will respond more quickly to model changes.

Whether this is adequate depends upon the application. In particular, if
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fast response is needed for control purposes or because additional model
shifts are possible, then one may wish to consider a problem formulation
that explicitly includes model switches. Furthermore, in some applications
the time at which a shift occurs is exccedingly important, and in such a
case one may again prefer to use such an explicit formulation, as one must
in applications such as multi-object tracking [37] in which keeping track
of large numbers of possibilities is crucial.

In the next section we describe one such formulation, and in the
remainder of this section we indicate how the MM formulation can be modified
to incorporate model changes and what the cost is for this modification.
Specifically suppose that the real system does correspond to one of the
models (2.1) - (2.4) for each k but that the model may change from time to
~ime. Clearly there are several different constraints that we can place on
the possible sequences of models. For examnle, if there are no constraints,
then there are N’H1 possible sequences of models over the first k time steps
(any of N at k=0, any of N at t=1,.,.). Such a situation arises, for ex-
ample, if one assumes that the sejuence of models is governed by a finite-
state Markov processes. Such models have bern considered by several authors.
See for example [40-42] in which, in additior to considering the problem of
estimation, these authors also consider the problem of identifying the
transition probability matrix for the finite-state process.

On the other hand, in many problems one is interested in detecting

individual abrupt changes which are sufficiently separated in time so that

they can be detected and accounted for separately. In such a case it is
reasonable to allow only those sequences that start with one particular
model (the “normal" model) and have a single shift to any of the other !
models. 1In this case there are (kN-k+1) possible sequences up to time k -~

¢ssentially we must account for all possible failure times.




The MM solution for any such set of possible sequences of models is

conceptually identical to that discussed previously, except here in principle

Lt L

we must design a Kalman filter for each allowable sequence of models. The
residuals from these filters arc then used cxactly as described earlier to
compute the probabilities for all hypothesized sequences. Since the number
of possible‘sequcnces and thus filters grows in time, some method for prun-

ing the tree of hypotheses is needed. For c«xample, we can think of throw-

ing away very unlikely models. A variety of techniques for handling such
MM trees have been considered in the litera ure {18, 19, 37]. While this

may at first glance appear to be a hopelessly complex solution to the change

detection problem, this approach is not without merit. Svecifically, as in
[19]) this approach often provides a great deal of insight. Also, the imple-
mentation of Kalman filter trees is nct only within the realm of feasibility
! for implementation using high speed digital hardware, but it is also un-

avoidable in problems such as multi-object tracking.

3. The Generalized Likelihood Ratio (GLR) Method
The starting point for the GLR method is a model describing normal
{ operation of thc observed signils or of the system which generated them.
Abrupt changes are then modeled as additive disturbances to this model that
begin at unknown times. While there are strong similarities between the GLR

and MM formulations -- indeed in many cases one can use either approach with

‘ success -- the structure of the GLR algorithm is significantly different
than that for the MM technique. As just discussed for MM, we will look at
the case of a single such change, the assumption being that abrupt changes
are sufficiently separated to allow for individual detection and compensa-

‘ tion. The solution to the problem just described and applications of the
gi method can be found in [1, 3, 5, 10, 20, 21, 25]. 1In this section we outline

the basic ideas behind the technique and discuss some of its properties.
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We assume that the system under consideration can be modeled as

x(k+l) = A(k)x(k) + B(k)u(k) + w(k) + fi(k.G)V (3.1)

y(k) = C(k)x(k) + v(k) + qi(k,ﬂ)\ (3.2)

where the normal model consists of these equations without the fi and 9
terms. These terms, fi(k,ﬁ)v and qi(k,“)v, represent the presence of the
ith type of abrupt change, i=l,...,N. Here 0 is the unknown time at which
the failure occurs (so fi(k,G) = qi(k,ﬂ) = 0 for k <8), and fi and g; are

the specified dynamic profiles of the ith charge type. For example, if

fi=0 and g9;=a vector whose components are all zero excent for the jth one
which equals 1 for k > 6, then this corresponds to the onset of a bias in
the jth component of y. Finally, the scalar denotes the magnitude of the
failure (e.g. the size of a bias) which we can model as known (as in MM
and as in what is called :implified GLR (SGLR)) or unknown.

Assume that we design a Kalman filter based on normal operation, i.e.
by neglecting fi and a;- From the previous section we have that this filter

is given by

x(k+1|k) = A(K)R(k|k' + B(K)u(k) (3.3)
X(k+1|k+1) = R(k+1]k' + K(k+1)Y(k+1) (3.4)
Y(k+1) = y(k+1) - C(k)X(k+1]|k) (3.5)

where K, P, and V are calculated as in (2.9) - (2.12). Suppose now that a

type i change of size v occurs at time 6. Then, because of the linearity

of (2.1) - (3.5) we can write

x(k) = x (k) + ai(k,e)v (3.6)
%(k|x) = ﬁN(ka) +E k00 (3.7
R(k+1]k) = iN(k+1|k) + b, (k+1,0)v (3.8)
Y(k) = YN(k) + pi(k,e)v (3.9)

where x“, iN' and YN are the responses if no abrupt change occurs, and the
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other terms are the responses due solely to the abrupt change. Straight-

forward calculations yield recursive cquations for theses quantities:

al(k+1.0) = A(k)ai(k,G) + fi(k,ﬂ), mi(G,O) =0 (3.10)
Bi(k+1.0) = [I-K(k+1)C(k+D 1y (k+1,0) + K(k+1)-
1
-[<:(k+1mi (k+1,6) + g9, (k+1,0)) . (3.11)
ui(k+1.6) = A(k)Bi(k.O), Bi(e-l.f)) =0 (3.12)
i oi(k.ﬁ) = C(k) [ai(k,e) - Ui(k,e)] + gi(k.e) (3.13)

The important point about these quantities is that they can be pre-
computed. Furthermore, by its definition, YN(k) is the innovations under
normal conditions, i.e. it is zero-mean, white, Gaussian with covariance
V(k). Thus we now have a standard detection.problem in white noise: we
observe the filter residuals y(k), which can be modeled as in (3.9), and we
want to detect the presence of a change (i.e. that k > 8) and perhaps de-
termine its identity i and estimate its time of occurrence 6 and sige v,
if the latter is modeled as being unknown. The solution to this problem
involves matched filtering operations. First, define the precomputable

( quantities
. X N
alk,0,i) = X Di(j.e)v (j)oi(j,O) (3.14)
j=0
This has the interpretation as the amount of information present in

‘; y(0),..,y(k) about a type i change occurring at time 0.

The on-line GLR calculations consist of the calculation of

: k
' am,8,4) = I 013,00V ()Y (3.15)
3=0

which are essentially correlations of the observed residuals with the
abrupt change signatures pi(j,e) for different hypothesized types, i, and

i times, 6. If v is known (the SGLR case), then the likelihood of a type i

change having occurred at time O given data y(1l),...,y(k) is
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L_(k,0,1) = 2vd(k,0,i) - via(k,0,i) (3.16)
If v is unknown, then the generalized likelihood for th:.s change is

a®(k,8,1)

L(k,R,i) = NTICRA)

(3.17)

and the maximum likelihocd estimate of ' assuming a change of type i at

time 0 is

- o dik,0,1)
vik,f,i) = ET;fETIT (3.18)

Thus the GLR algorithm consists of the single Kalman filter (3.,3) -
(3.5), the matched filter operations of (3.15), and the likelihood calcu-
lation of (3.16) or (3.17). The outputs of the method are these likeli-
hoods and the estimates of eq. (!.18) if v is modeled as unknown. The
basic idea behind GLR is that different types of abrupt changes produce
different kinds of effects on the filter innovations -- i.e. different
signatures -- and GLR calculates the likelihood of each possible event by
correlating the innovations with the corresponding signature.

As with the MM method a number of issues can be raised about GLR.

Some of these, such as the effect of nonlinearities and robustness to model
errors, are very similar to the I'M case. Essentially it still can be viewed
as a signal-to-noise ratio problcm: in the nonlinear case the additive de-
composition of (3.9) is not precisely valid, but it may be approximately
correct. Also, different failure modes can be distinguished even in the pre-
sence of modelling errors if their signatures are different enough. Again
these issues depend very much on the particular application. We refer the
reader to (4, 6, 10, 11, 21, 25] for discussions of seviral applications of
GLR to applications in which these issues had to be add: essed.

GLR has been successfully ayplied to a wide variet) of applications,

such as failure detection (1, 4], geophysical signal analysis (7], detecting

arrhythmias in electrocardiograms [6), freeway incident detection (10, 11},
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and maneuver detection [20, 21, 25]. Note that the model used in (3.1),

(3.2) for such changes is an additive model. Thus it appears on the surface

that the types of abrupt changes that can be¢ detected by GLR are a special

subset of those that can be detected by MM, since (2.1), (2.2) allow para-

metric changes (in A, B, C, Q, R) as well as additive ones. There are

several points, however, that must be taken into account in assessing and

comparing MM and GLR:

(1)

(2)

(3)

The price one pays for allowing pirametric changes in MM is the
necessity of implementing banks of Kalman filters, and actually
trees of such filters to account ‘or switches between models. GLR,
on the other hand, requires a single Kalman filter and a growing
number of correlation calculation: as in (3.15), which in principle
must be calculated for i=1l,...,N and 0=1,...,k. We will comment
shortly on the computational issucs concerned with these correla-
tions, but for now we simply point out that they are typically far
less involved than the calculations inherent in Kalman filters

(see [4, 6, 7] for examples of how simple these calculations can
be). Also, because it overates on the outputs of a normal mode
filter, GLR can be easily implemernted and attached as a monitor to
an already existing system.

Extensions to the GLR method can he developed for the detection of
parametric changes (38]. This extended GLR bears some similarity
to extended Kalman filtering and tterated extended Kalman filtering.
It has been our experience that a GLR system based on the detection
of additive effects can often also detect parameter failures. For
example, a gain change in a sensor does look like a sensor bias,

albeit one that is modulated by the value of the variable being

sensed. That is, any detectable change will exhibit a systematic




deviation between what is obscrved and what is predicted to bw
observed. Obviously, the ability of GLR to detect a parametric
change when it is lookirq for additive ones is again a question
of robustness. If the cffect of the parametric change is "close
enough” to that of the additive one, the system will work. This

has been the case in all of our exp:rience. In particular we

refer the reader to (4] for an additive-failure-based design that
has done extremely well in detecting gain changes in sensors. Note
of course that in this mode GLR is essentially only indicating

an alarm -- i.e. the estimate v of the "bias" is meaningless, but
in many detection problems our primary interest is in simply
identifying which of several types of changes has occurred.

There are several final issues that should be mentioned in discussing

GLR. The first concerns the calculation of statistical measures of per-
formance of GLR. As mentioned in the preceding section, Baram (16] has
developed a method for measuring the distance hetween models and hence a
measure of the detectability and distinguishal ility of different failure
modes. Similar calculations can be performed for GLR, but in this case it is
actually simpler to do and interpret, as we can use standard detection-
theoretic ideas. Specifically, a direct measure of the detectability of a
particular type of change is the information .(k,0,i) defined in (3.14).
This quantity can be viewed as thr corrclation of pi(j,O) with itself at
zero lag. Similarly, we can determine the relative distinguishability of a
type i change at two times 61 and 92 as the correlation of the corresponding
signatures .

-1
.(k'e .9 'i) = Z p‘ (j.ﬁ )V (j)D. (jpe ) (3.19)
1772 j-max(ﬂl,ez) i 1 ' 2




st A

and the relative distinguishability of type i and m changes at times 61 and
02 similarly:

k
a(k,8,,6 ,i,m = I 1,0 v 50 (5.8.) (3.20)
12 j=max(9],92) t ! moT2

These quantities provide us with extremely useful information. For example,
in some applications [6-9) the estimation of the time 0 at which the change
occurs is critical, and (3.19) provides information about how well one can
resolve the onset time. In failure detection applications these quantities
directly provide us with information about how system redundancy is used to
detect and distinguish failures and can be used in deciding whether addition-
al redundancy (e.g. more sensors) are needed. Also, the quantities in (3.14),
(3.19), and (3.20) directly give the statistics of the likelihood measures
{3.16), (3.17). For the SGLR case of (3.16), Ks is Gaussian, and its mean

. X 2 oy . : .
under no failure is -v-a(k,0,i), while if a type m failure occurs at time ¢,

its mean is
E(L,(k,6,1) | (m,0)] = v2(2a(k,8.6,i,m - a(k,8,i)] (3.21)

For example if (m,%) = (i,8) -- i.e. if the precise failure and time assumed
( in the calculation of ls(k,e,i) are true, then its mean is +v2a(k,0,i). In
E - the case of (3.17), under no failure 2(k,0,i) is a chi-squared random vari-

. able with 1 degree of freedom, while if a failure (m,$) of size v occurs

{ _ 2(k,0,i) in non-central chi-squared with mean
2 2
. - valk,6,4,i,m)
E(L(k,8,i) | (m,4)) =1 + TR (3.22)

Clearly these quantities can be very useful in evaluating the performance of
GLR detection algorithms and for determining decision rules based on the

GLR outputs. 1If one were to follow the precise GLR philosophy (39], the +

decision rule one would use is to choose at cach time k the largest of the

l.(k,ﬂ,i) or %(x,0,i) over all possible change types i and onset times 6.
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This largest value would then be comparrd to a threshold for change detec-
tion, and if the threshold is exceeded the corresponding maximizing values
E of 6 and i are taken as the estimates of change tyre and time. while such

a simple rule works in some cases [6, 1], it is worthwhile often to consider

more complex rules based on the {'s. For examnle, persistance tests (i.e.

l £ must exceed the threshold over some time per.od) are often used to cut

down on false alarms due to spurious and unmodcled events.

for more discussion of decision rules.

[ waiting any longer). Clearly we want Ml' M2

See [4. 7, 9' 26]

A final issue to be mentioned is the pruning of the tree of possibi-
3 .lities. As in the MM case in principle we have a growing number of calcu-
lations to perform, as d(k,0,i) must be calculated for i=1,...,N and all

possible change times up to the present, i.e. H=1,...,k.

What is usually

done is to look only over a sliding window of possible times:

times steps from the

- < < k=
‘, k-M, < 6 < k-M,
E where Ml and M, are chosen based on the a's -- i.e. on detectability and
4 ( distinguishability considerations. Basically after M

= . onset of change we have collected enough information so that we may make
| a detection with a reasonable amount of accuracy. Further, after M, time
- : : steps we will have collected a sufficient amount of information so that

‘ _ detection performance is as good as it can be (i.e. there is no point in

large to allow for maximum

1 information collection, but we want them small for fast response and for

change detection problems.

computational simplicity. This is a typical tradeoff that arises in all
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