
U'i LI ONW A1HJ1 TCANE INDNAMI SYTMS U)
MASCUET INTO TEC CAMBRDG LB FOR

INFORMNATION AND DCSON SYTMS A SWL YJN8

II SFEE IS 31 O01477-iiE E E /G121 1
E E E E E E E E E



~L6

11.25 11.4 11.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF SIANOARDS 963-A



January, 1984 LIDS-P-135 1

Detection of Abrupt Chanqvs in Dynamic Sy!;tems*

Alan S. Willsky

Dept. of Electrical Enqineering and Computer Science
~and

Laboratory for Information 
and Decision Systems

WMassachusetts Institute of Technology~Cambridge, Massachus etts USA

Abstract

'.4athis paper we present some of the basic ideas associated with the

detection of abrupt changes in dynamic systems. -Dof presentation focuses on

two classes of methods -- multiple filter-based techniques and residual-based

methods -- and in far more detail an the multiple model and generalized

likelihood ratio methods. Issues such as the effect of unknown onset time on

algorithm complexity and structure and robustness to model uncertainty are

discussed. .._
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1. Introduction

In recent years many techniques have been proposed for the detection of

abrupt chnages in dynamic systems. These efforts have been motivated by a

wide variety of applications includinq the detection of sensor and actuator

failures [1, 2, 4, 19, 26-35] the tracking of maneuvering vehicles [20, 21,

23, 25], and numerous signal analysis problems (electrocardiogram analysis

[5, 6], geophysical signal processing [71, edqe detection in images [8, 91,

freeway monitoring [10, 11),...). A key to the development of any technique

for the detection of abrupt chanqes is the modeling of how the abrupt change

affects the observed signals. In some applications the effect of the abrupt

change is direct and simple -- e.,!. a bias devloping in an output signal.

In such problems the primary focus of research is on the precise nature of

the decision rule (see, for example [8, 9, 261). In other applications (such

as those described in [1, 2, 4, 10, 11, 19, 211), the effect on the observ-

ables is described in a more complex, indirect way -- for example, in terms

of an abrupt change in the dynamics of a system. In such problems one is

presented in essence with two problems: the processing of the observed sig-

nals in order to accentuate (and simplify) the effect of the abrupt change

and the definition of decision statistics and rules in terms of the processed

outputs. The techniques described in this paper in principle address both

of these issues in that they produce sufficient statistics for

optimum detection. However, we will focus for the most part on the first

task of change detection, that is, the problem of producing signals which make

subsequent detection as easy as possible. As discussed here and in more

detail in (27-29), this is an exceedingly important perspective in the design

of detection methods which are robust to uncertain details of the dynamic

models on which they are based.

In [11 a variety of methods and structures are described for change



detection. In this paper we focus on two basic and extremely important

structures. The first of these is the multiple filter structure depicted

in Figure 1. Here the observations, y, are processed by a bank of filters

each of which is based on a particular hypothesis (e.g. Filter 01 asumes no

change has occurred, Filter #2 assumes a particular type of change has

occurred possibly at a particular time, etc.) The outputs of the filters, Y,

represent signals which should typically be small if the corresponding hypo-

theses are in fact correct, and thus the decision mechanism in essence is

based on determining which of the filters is doing the "best" job of keeping

the corresponding y's small. There are several methods that have been de-

veloped which fit the general form of Figure 1. In particular, hard (331

and soft (34) voting systems can be interpreted in this fashion. Another

example is the multiple observer desiqn described in (36). In the next

section we describe in detail a third technique of this general type, nosely

the multiple model method.

A second general structure for the detection of abrupt changes is the

residual-based structure illustrated in Figure 2. In this case a filter is

designed based on the assumption that no abrupt change has occurred or will

occur. The filter produces a prediction ^ of the output signal y bsed on

this assumption and the past history of the output, and this prediction is

subtracted from the actual output to produce a residual signal Y. If no

abrupt change has occurred, Y should be small. Consequently deviations

from this behavior are indicative of failure, and it is on this fact that

the decision mechanism is based. Again there are a variety of techalq

of this general form. In (351 a variety of statistical tests (cii-squsred.

whiteness, etc.) are proposed for the detection of abrupt chanes when the

Y are the innovations from a Kalman filter. In (30-321 a mathod is described

for the choice of gain in an observer-like filter in order to guwa!fe thet

the decoupling of the steady-state effects on y of a given set of pos4ik
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abrupt changes. In Section 3 we discuss a third technique of this general

type, namely the generalized likelihood ratio method.

2. The Multiple Model (M) Method

The M'3 method was originally developed for problems of system identifi-

cation and adaptive control [12-17, 241. and in the initial part of this

sect. on we follow these early treatments. Subsequently we will look more

closely at the issues that arise and possible adaptations that mkay be

nece:;sary for the use of HK for the detection of abrupt events (see (1, 2f 5,

10, LB, 19, 22, 23] for further developments).

The basic M3 method deals with the following problem. We observe the

inputs u(k), k = 0.1,2.... and outputs y(k), k = 1,2.... of a system which

is assumed to obey one of a given finite set of linear stochastic models.

indexed by i -1,...,N

x.i (k~l) = A (kWx (k) + B.i (ku(k) + wi(k) + gi(k) (2.1)

y(k) = C.i Mkx. (W + v. (k) + b. (kW (2.2)

where wi W and vi (k) are independent, zero-mean Gaussian white noise pro-

cesses, with

E~w i(k)w i(j)'] Qi(k)6 jk (2.3)

EN iWkvi(W]' - Ri W 6
1  (2.4)

ThVntalsae, (0) is assumed to be Gaussian, independent of wi

1'and vi, with mean 0O) and covariance P 1 (010) (the meaning of this nata-

tion will become clear in a momnt). The matrices A i(k), 9 L(k), C 1 (k),

Qi W,. and R i(k) are assumed to be known. Also, b 1 (k) and g1 (k) are given

deterministic functions of time (corresponding to biases, linearizations

about different operating points, etc.). In addition, the state vectors

x i(k) may be of different dimensions for different values of i (correspond-

ing to assuming that the different hypothesized models represent differest

I 00A

AJ
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orders for the dynamics of the real system). There are a number of issues

that can be raised concerning this formulation, and we defer our critique of

the MM method until after we have developed its basic structure. We notec

here only one technical point which is that we will focus on a discrete-

time formulation of the MM method. Continuous-time versions can be found

in the literature (see 124)), and they differ from their discrete-time

counterparts only in a technical and not in a conceptual or structural

manner.

Assuming that one of these N models is correct, we now have a standard

multiple hypothesis testing problem. That is, let Hi denote the hypothesis

that the real system corresponds to the ith model, and let pi (0) denote the

a priori probability that Hi is true. Similarly, let Pi(k) denote the

probability that H. is true based on measurements through the kth measure-
1

ment, i.e. given Ik = {u(0),...,u(k-l), y(l),...,y(k)}. Then Bayes' rule

yields the following recursive formula for the pi (k)

p(y(k+l)lH i l k u(k))p i(k)
p~k~) = k 1(2.5)Pl~~l ) = Np(y(k+IllHjplkUlk))p (k)

Sj=l k J

Thus, the quantities that must be produced at each time are the conditional

probability densities p(y(k+l)ljHi#k#u(k)) for i=l.....N. However, con-

ditioned on Hi, this probability density is precisely the one step prediction

density produced by a Kalman filter based on the ith model.

That is, let Ri(k+llk) be the one-step predicted estimate of xi (k li

based on Ik and u(k), assuming that Hi is true. Also let xi(k+llk+l) denote

the filtered estimate of xi(k+l) based on Ik+l-k ,u(k),y(k+l)} and the ith

model. Then these quantities are computed sequentially from the following

equations:

i li) Ai(k)^i(klk) + Bi(k)u(k) + gi(k) (2.6)

iI

,
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(ik+llk+l) = ik+llk) + K l k + l ) y i ( k + l )  (2.7)

ii

i (k+l) -y(k+l) - C i (k) .(k+llk) (2.8)

and K(k+l) is calculated off-line from the following set of equations:

Pi(k+llk) Ai(k)Pi(klk)A!(k) + Q M (2.9)

Vi(k+) = Ci(k)Pi(k+ljk)Cj(k) + Ri(k) (2.10)

Ki (k+l) = Pi(k+llk)c (k)V (k+l) (2.11)

Pi (k+llk+l) = Pi (k+lIk) - Ki(k + l)i(k)Pi (k+llk) (2.12)

Here P i (k+llk) denotes the estimattor error covarinace in the estimte

it i(k+llk) (assumning H i to be true), and P i(k+llk+l) is the covari~nce of

the error xi(k+l) - Ri(k+llk+L), again based on H.. Also under hypothesis

HiYi(k+l) is zero mean with covariance Vi(k+), and it is normally dis-

tributed (since we have assumed that all noises are Gaussian). Fuktheto re,

conditioned on Hi, Ik' and u(k), y(k+l) is Gaussian, has mean Ci (k)2(kI+llk)

and covariance Vi(k+l). Thus, from (2.8) we deduce that

p(y(k+l)IH.Iu(k)) - 1 1 -(k+l)Vi'(k+l,7 k (2n) m/2 /detV (k+l)l 21/ ek1

.y (k+l)) (2.13)

where a is the dimension of y.

j Fluations (2.5) - (2.8) and (2.13) define the NN algorithm. The inputs

to the procedure are the y(k) and u(k), and the outputs are the pi(k). The

implementation of the algorithm can be viewed as consisting of a bank of N

Kalman filters, one based on each of the N possible models. The OUtPut8 of

these Kalman filters are the innovations sequences Yi (k+l), which effecti-

vely measure how well each of the filters can track and predict the behbvior

of the observed data. Specifically, if the ith model iscorrect, then the

- -- - ... I - - m i



one-step prediction error y (k) should be a white sequence, resulting only

from the intrinsic uncertainty it, the ith model. However if the ith model

is not correct, then yi(k) will not be, white and will include errors due to

the fact that the prediction is based on an erroneous model. Thus the pro-

bability calculation (2.5), (2.13) basically provides a quantitative way in

which to assess which model is most likely to be correct by comparing the

performances of predictors based on these models.

Let us now address several of the most important questions that arise

in understanding how the MM algorithm should be used. Clearly a very

important question concerns the use of 4 in problems in which the real

system is nonlinear and/or the noises are non-Gaussian. The answer to this

problem is extremely application-dependent. The Gaussian assumption is

basically used in one place--i.e. in the evaluation of p(y(k+l)iHiIkU(k))

in (2.13). It has been our experience that using this formula, even when

Yi(k+l) is non-Gaussian, causes essentially no performance degradation. As

we have pointed out, what MM really attempts to do is to calculate a measure

of how well each of the Kalman filters is tracking by looking at the predic-

tion errors yi(k+l), and the pi (k) are simply measure of how well each of the

models are tracking relative to each other and to how well we would expect

/ "them to be tracking. The critical terr in (2.13) in general is

(Y (k+l)V (k+l)y. (k4l) (2.14)

which is the square of the tracking error normalized by the predicted co-

variance of these errors assuming Hi is true. Thus if this quantity is

large, we would tend to disregard the ith model, while if this is small, the

ith filter is tracking well. The pi(k) exhibit exactly this type of be-

havior, and thus we can expect M9 to be reasonably robust to non-Gaussian

statistics. Of course this depends upon the application, but we have had

good success in several applications 15, 101 in which the noises were

.A

, !



decidedly non-Gaussian.

As far as the ronlinearity of tli. real system is concerned, an obvious

approach is to linearize the system about a number of operating points for

each possible model and use these lin.,arized models to design extended Kal-

man filters which would be used in pl]ice of Kalman filters in the 'I algor-

ithm. Again the utility of this approach depends very much on the particu-

lar application. Essentially the issue is whether the tracking error from

the extended Kalman filter corresponding to the linearized model "Closest

to" the true, nonlinear system is markedly smaller than the errors from

filters based on "mere distant" models. This is basically a signal-to-noise

ratio problem, similar to that seen in the idealized MM algorithtl in which

everything is lineax. In that case the noise is measured by the V. I(k+l).

The Larger these arf, the harder it will be to distinguish the models (the

quantity in (2.14) kecomes smaller as V. is increased, and this ifi turn1

tends to flatten out (as a function of i) the probabilities in (2.M )). In

the nonlinear case, the inaccuracies of the extended Kalman filters effecti-

vely increase the V. (k+l) thus reducing their tracking capabilities and

making it more difficult to distinguish among them. Therefore, the perfor-

mance of M in this case will denend upon how "far apart" the different

models are, as compared to how well each of the trackers tracks. The farther

apart the models are, the more signal we have; the poorer the tracking

performance is, the more difficult it is to distinguish among the hypotheses.

Even if the trte system is linear, there is clearly the question of the

utility of MN given the inevitability of discrepancies between the actual

system and any of tt.e N hypothesized modeli. Again this is a question of

signal-to-noise ratio, but in the linear case a number of results and ap-

proaches have been developed for dealing with this problem. For emple,

Bran [161 has developed a precise mathematical procedure for calculating
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the distance between different linear models, and he has shown that the MM

procedure will converge to the model closest to the real model (i.t . pi(k)4l

for the model nearest the true system). This can be viewed as a technique

for testing the robustness of MM or as a tool that enables us to decide what

models to choose. That is, if the real system is in some set of models that

may be infinite or may in fact represent a continuum of models (corresponding

to the precise values of certain parameters), then Baram's results can be

used to decide upon a finite set of these models that span the original set

and that are far enough apart so that MM can distinguish among them. For

example, in adaptive flight control (reference [17]) we may be interested

in determining the flight condition (operating point) of an aircraft, and

we can think of using MM by hypothesizinq a set of linearized models that

span the flight envelope.

Let us now turn explicitly to the problem of detecting abrupt changes.

In such problems one must deal with on(e key issue that we have not yet

discussed. Specifically, in change detection we are not simply attempting

to determine which of the models qiven in (2.1) - (2.4) is the correct one,

but rather we are trying to detect a shift from one model to another. That

4 -' is, in this case the actual system obeys a model of the form

x(k+l) - A(k)x(k) + B(k)u(k) + w(k) + g(k) (2.15)

y(k) C(k)x(k) + vtk) + 1(k) (2.16)

where for each k the parameters of the model correspond to one of the hy-

pothesized models in (2.1) - (2.4), but the model may change with time.

While this possibility is not diiectly taken into account in the M method

as described to this point, this algorithm often does work well in detectinq

shifts without any major modification to take this possiblity into account

(see. for example 15, 101. The important issue in this is the adaptability

, II I I 1, I-I " -
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of MM and the purpose; of the particular application.

To elaborate on his, let us first note that MM will, theoretically,

eventually indicate a shift from one model to another. Two things, however,

must be taken into ac-ount. In the first place, we see from (2.5) that if

Pi (k) is small, the p (k+l) wil grow only slowly at best. In fact, in

practice we have fount that numn rical roundoff often leads to pi(k) being

set to zero if the it]1 model is not valid urp to time k. In this case pi(j)

will be zero for all I > k. In order to avoid this drastic effect and also

the extremely sluggisi response of 4M to a change in models, a lower bound

is usually set on the pi(k). In different appl cations we have found bounds

frm1-3 dont 0 - 5
from 103 down to 10- 5to be satisfactory, wit, very little sensitivity to

the precise value of :he bound. As a second point we note that if a parti-

cular model is not co-rect up until time k the Kalman filter based on this

model may develop larje errors. If then this model becomes correct at time

k, it may take a long time before the prediction errors (2.8) decrease to

reflect the validity )f the model. From (2.13) and (2.5) we see that this

in turn means that MM may not r( smond to this change for some time. In pra-

tice we have found thit this is not a particularly bad problem if the errors

in all of the Kalman filters rei ain bounded even when the model on which they

are based is incorrect. If a p. rticular real system-mismatched Kalman fil-

ter combination is unstable, tho n there may be problems if the system switch-

es to the model corre3ponding tc this filter. What we have found is a

workable solution to this problem is to reset the estimates of potentially

divergent Kalman filters to the estimate of the most probable model, and

this is done whenever the probability of possibly diverging filters falls

below a threshold (such as 10- 2).

With these modifications M will respond more quickly to model changes.

Whether this is adequate depends upon the application. In particular, if
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fast response is needed for control purposes or because additional model

shifts are possible, then one may wish to consider a problem formulation

that explicitly includes model switches. Furthermore, in some applications

the time at which a shift occurs is exceedinqly important, and in such a

caseone may again prefer to use such an explicit formulation, as one must

in applications such as multi-object trackinq [37] in which keeping track

of large numbers of possibilities is crucial.

In the next section we describe one such formulation, and in the

remainder of this section we indicate how the MM formulation can be modified

to incorporate model changes and what the cost is for this modification.

Specifically suppose that the real system does correspond to one of the

models (2.1) - (2.4) for each k but that the model may change from time to

time. Clearly there are several different constraints that we can place on

the possible sequences of models. For example, if there are no constraints,

Nk+l
then there are N possible sequences of models over the first k time steps

(any of N at k=O, any of N at t=I,.,.). Such a situation arises, for ex-

ample, if one assumes that the sciuence of models is governed by a finite-

state Markov processes. Such models have be.rn considered by several authors.

See for example [40-42] in which, in additio to considering the problem of

estimation, these authors also consider the problem of identifying the

transition probability matrix for the finite-state process.

On the other hand, in many problems one is interested in detecting

individual abrupt changes which are sufficiently separated in time so that

they can be detected and accounted for separately. In such a case it is

reasonable to allow only those sequences that start with one particular

model (the "normal" model) and have a single shift to any of the other

models. In this case there are (kN-k+l) possible sequences up to time k --

essentially we must account for all possible failure times.

I;-mu i'!i m



-13-

The MM solution for any such set of possible sequences of models is

conceptually identical to that discussed prviously, except here in principle

we must design a Kalman filter for each allowable sequence of models. The

residuals from these filters are then used e!xactly as described earlier to

compute the probabilities for all hypothesized sequences. Since the number

of possible sequences and thus filters grows in time, some method for prun-

ing the tree of hypotheses is needed. For .xample, we can think of throw-

ing away very unlikely models. A variety o!- techniques for handling such

MM trees have been considered in the litera ure [U8, 19, 371. While this

may at first glance appear to be a hopelessly complex solution to the change

detection problem, this approach is not without merit. Specifically, as in

[191 this afproach often provides a great deal of insight. Also, the imple-

mentation of Kalman filter trees is net only within the realm of feasibility

for implementation using high speed digital hardware, but it is also un-

avoidable in problems such as multi-object tracking.

3. The Generalized Likelihood Ratio (GLR) Method

The starting point for the GLR method is a model describing normal

operation of the observed sign.os or of the system which generated them.

Abrupt changes are then modeled as additive disturbances to this model that

begin at unknown times. While there are strong similarities between the GLR

and MM formulations -- indeed in many cases one can use either approach dith

success -- the structure of the GLR algorithm is significantly different

than that for the MM technique. As just discussed for MM, we will look .it

the case of a single such change, the assumption being that abrupt changes

are sufficiently separated to allow for individual detection and compensa-

tion. The solution to the problem just described and applications of the

method can be found in 1, 3, 5, 10, 20, 21, 25]. In this section we outline

the basic ideas behind the technique and discuss some of its properties.
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We assume that the system under consideration can be modeled as

x(k+l) = A(k)x(k) + B(k)u(k) + w(k) + f (k,0)v (3.1)

y(k) = C(k)x(k) + v(k) + qi(k,O)\ (3.2)

where the normal model consists of these equations without the fi and gi

terms. These terms, f.(k,9)v and gi(k, 0)v, represent the presenneof the
1 1

ith type of abrupt change, i=l,...,N. Here n is the unknown time at which

the failure occurs (so f. (kO) = qi (k,O) = 0 for k < e), and f. and gi are
1 1 11

the specified dynamic profiles of the ith charge type. For example, if

f.=0 and gi=a vector whose components aro all zero except for the jth one

which equals 1 for k > 0, then this corresponds to the onset of a bias in

the jth component of y. Finally, the scalar denotes the magnitude of the

failure (e.g. the size of a bias) which we (an model as known (as in M4

and as in what is called .,implifi,,d GLR (SGLR)) or unknown.

Assume that we design a Kalmau filter base3 on normal operation, i.e.

by neglecting fi and Qi" From tht previous section we have that this filter

is given by

i(k+llk) = A(k)x(kjk + B(k)u(k) (3.3)

i(k+ljk+l) = i(k+llk' + K(k+l)y(k+l) (3.4)

y(k+l) = y(k.l) - C(k)i(k+ljk) (3.5)

where K, P, and V are calculated as in (2.9) - (2.12). Suppose now that a

type i change of size v occurs at time 0. Then, because of the linearity

of (!.1) - (3.5) we can write

x(k) - x(k) + a.(k, )\V (3.6)
N 1

X(klk) - N(kik) + ~.kO.(3.7)

R(k+lk) N (k+llk) + Pi(k+l,@)v (3.8)

y(k) - 'N (k) + P (k,O)v (3.9)

where xN, xN' and Y are the responses if no abrupt chanqe occurs, and the

I .. * $ ga,. . .... . .

I.,N
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other terms are the responses due sole ly to the abrupt change. Straight-

forward calculations yield recursive ekuations for theses quantities:

(I (k+l,0) = A(k)a.i(k,O) 4 fi(k, 0), i(0,0) = 0 (3.10)

8i(k+l,0) = [I-K(k+l)C(k+l)l.j (k+l,i)) + K(k+l).

•[C(k+l),:. (k+1,0) + qi (k+l,0)1 . (3.11)
11

Pi.(k+1,6) = A(k).i(k,O), .(0-1,0) = 0 (3.12)

Pi(k,O) = C(k)[Li(k,0) - 1. (k,O)] + gi(k,O) (3.13)

The important point about these quantities is that they can be pre-

computed. Furthermore, by its definition, N (k) is the innovations under

normal conditions, i.e. it is zero-mean, white, Gaussian with covariance

V(k). Thus we now have a standard detection problem in white noise: we

observe the filter residuals y(k), which can be modeled as in (3.9), and we

want to detect the presence of a change (i.e. that k > e) and perhaps de-

termine its identity i and estimate its time of occurrence 6 and size V,

if the latter is modeled as being unknown. The solution to this problem

involves matched filtering operations. First, define the precomputable

quantities

k
a(k,O,i) = Z P'(j,6)V- )pi010)~j.6

This has the interpretation as the amount of information present in

y(8),..,y(k) about a type i change occurring at time e.

The on-line GLR calculations consist of the calculation of

k
d(k,B,i) - r P.0eV (j)Y (j) (3.15)

which are essentially correlations of the observed residuals with the

abrupt chanae signatures 0(J,e) for different hypothesized types, it and

times, e. If v is known (the SGLR case), then the likelihood of a type i

change having occurred at time I given data y(l),...,y(k) is
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z (k,e,i) = 2vd(k,O,i) - v 2a(k, 0,i) (3.16)

If 9 is unknown, then the generalized likelihood for th.s change is

Ik,O,i) = d2 (kOi)
a(k,O,i)

and the maximum likelihood estimate of assuminq a change of type i at

time 0 is

k, Pi) =_d(k,0i) (3.18)
a(k.',i)

Thus the GLR algorithm consists of the single Kalman filter (3.3) -

(3.5), the matched filter operations of (3.15), and the likelihood calcu-

lation of (3.16) or (3.17). The outputs of the method are these likeli-

hoods and the estimates of eq. (4.18) if v is modeled as unknown. The

basic idea behind GLR is that different types of abrupt changes produce

different kinds of effects on tht filter innovations -- i.e. different

signatures -- and GLR calculates the likelihood of each possible event by

correlating the innovations with the corresponding signature.

As with the M4 method a nwmner of issues can be raised about GLR.

Some of these, such as the effect of nonlinearities and robustness to model

errors, are very similar to the M case. Essentially it still can be viewed

as a signal-to-noise ratio problrn: in the nonlinear case the additive de-

composition of (3.9) is not precisely valid, but it may be approximately

correct. Also, different failure modes can be distinguished even in the pre-

sence of modelling errors if their signatures are different enough. Again

these issues depend very much on the particular application. We refer the

reader to (4, 6, 10, 11, 21, 251 for discussions of several applications of

GLR to applications in which these issues had to be add: essed.

GLR has been successfully afplied to a wide variet of applications,

such as failure detection [1, 4], geophysical signal anilysis (71, detecting

arrhythmias in electrocardiograms 161, freeway incident detection (10, 111,
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and maneuver detection [20, 21, 251. Note that the model used in (3.1),

(3.2) for such changes is an additive model. Thus it appears on the surface

that the types of abrupt changes that can bt detected by GLR are a special

subset of those that can be detected by MM, since (2.1), (2.2) allow para-

metric changes (in A, B, C, Q, R) as well as; additive ones. There are

several points, however, that must be taken into account in assessing and

comparing MM and GLR:

(1) The price one pays for allowing p~irametric changes in MM is the

necessity of implementing banks, of Kalman filters, and actually

trees of such filters to account 'or switches between models. GLR,

on the other hand, requires a sincle Kalman filter and a growing

number of correlation calculation:; as in (3.15), which in principle

must be calculated for i-l,... ,N and 0=1,... ,k. We will comment

shortly on the computational issue's concerned with these correla-

tions, but for now we simply point out that they are typically far

less involved than the calculatiois inherent in Kalman filters

(see 14, 6, 71 for examples of how simple these calculations can

be). Also, because it operates oir the outputs of a normal mode

filter, GLP can be easily implemetted and attached as a monitor to

an already existing system.

(2) Extensions to the GLP method can lie developed for the detection of

parametric changes (381. This extended GLR bears some similarity

to extended Kalman filterinq and Lterated extended Kalman filtering.

(3) It has been our experience that a GLR system based on the detection

of additive effects can often also detect parameter failures. For

example, a gain change in a sensor does look like a sensor bias#

albeit one that is modulated by the value of the variable being

sensed. That is, any detectable change will exhibit a Wysintic

9 " I , ,



deviation between what is obhr, ived and what is predicted to bu

observed. Obviously, the ability of GLR to detect a parametric

change when it is looking for additive ones is aqain a question

of robustness. If the effect of the parametric change is "close

enough" to that of the additive one, the system will work. This

has been the case in all of our expirience. In particular we

refer the reader to [41 for an additive-failure-based design that

has done extremely well in detectinq gain changes in sensors. Note

of course that in this mode GLR is essentially only indicating

an alarm -- i.e. the estimate ' of the "bias" is meaningless, out

in many detection problems our primary interest is in simply

identifying which of several types of changes has occurred.

There are several final issues that should be mentioned in discussing

GLR. The first concerns the calculation of statistical measures of per-

formance of GLR. As mentioned in the precedinq section, Baram (161 has

developed a method for measuring the distance etween models and hence a

measure of the detectability and distinquishat ility of different failure

modes. Similar calculations can be performed for GLR, but in this case it is

actually simpler to do and interpret, as we can use standard detection-

theoretic ideas. Specifically, a direct measure of the detectability of a

particular type of change is the information ,(k,B,i) defined in (3.14).

This quantity can be viewed as the correlation of pi(j,0) with itself at

zero lag. Similarly, we can determine the relative distinguishability of a

type i change at two times e1 and 02 as the correlation of the corresponding

signatures le k Pi( , I)V'I( 18

a(k, ,8 2,i) E 1 i,2

Jmmax () 1 , 2 )

, . , ,
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and the relative distinguishability of type i and m changes at times 61 and

2 similarly:

k
a(k,6 . i,m) = i.ll )v-(j)p ( (3.20)2' j--max(O 2 ) i2  1 (j,0 2)

These quantities provide us with extremely useful information. For example,

in some applications 16-91 the estimation of the time 0 at which the change

occurs is critical, and (3.19) provides information about how well one can

resolve the onset time. In failure detection applications these quantities

directly provide us with information about how systrnm redundancy is used to

detect and distinguish failures and can be used in deciding whether addition-

al redundancy (e.g. more sensors) are needed. Also, the quantities in (3.14).

(3.19), and (3.20) directly give the statistics of the likelihood measures

(3.16), (3.17). For the SGLR case of (3.16), E. is Gaussian, and its mean
s

under no failure is -V a(kO,i), while if a type m failure occurs at time C,

its mean is

E[ 2(k,0,i) (mO}] = V 2[2a(k,6,4,i,m) - a(k,6,i}] (3.21)

For example if (m,l) = (i,O) -- i.e. if the precise failure and time assumed

2in the calculation of E. (kOi) are true, then its mean is +v a(k,,i). In

the case of (3.17), under no failure 9(k,0,i) is a chi-squared random vari-

able with I degree of freedom, while if a failure (m,O) of size v occurs

(k,e,i) in non-central chi-squared with mean
v 2 a(k,6,Oti m) 22(3.22)

E[(k~e~i)l(o,)] = I + 'a(k,e,i)

Clearly these quantities can be very useful in evaluating the performance of

GLR detection algorithms and for determininq decision rules based on the

GLR outputs. If one were to follow the precise GLR philosophy (391 , the

decision rule one would use is to choose at each time k the largest of the

P.(k,P,i) or ,(k,O,i) over all possible chanqe types i and onset times 8.

i5

II

I , -
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This largest value would then be comiar,.d to a threshold for change detec-

tion, and if the threshold is exceeded th, corresponding maximizing values

of 0 and i are taken as the estimates of chanqe tye and time. While s'ach

a simple rule works in some cases [6. 211, it is worthwhile often to consider

C
more complex rules based on the 's. For exam!nie, persistance tests (i.e.

Z must exceed the threshold over some time per-od) are often used to cut

down on false alarms due to spurious and unmode led events. See 14, 7, 9, 261

for more discussion of decision rules.

A final issue to be mentioned is the pruning of the tree of possibi-

lities. As in the MM1 case in principle, we hay, a growing number of calcu-

lations to perform, as d(k,O,i) must be calculated for i=l,...,N and all

possible change times up to the present, i.e. =l,...,k. What is usually

done is to look only over a sliding window of possible times:

k-M 1 _ < k-M 2  (3.23)

where MI and M2 are chosen based on the a's -- i.e. on detectability and

distinguishability considerations. Basically after M2 times steps from the

onset of change we have collected enough information so that we may make

a detection with a reasonable amount of accuracy. Further, after N time

steps we will have collected a sufficient amount of information so that

detection performance is as good as it can be (i.e. there is no point in

waiting any longer). Clearly we want M1 1 M2 large to allow for maximum

information collection, but we want them small for fast response and for

computational simplicity. This is a typical tradeoff that arises in all

change detection problems.

.--
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