
ID-Ai37 413 BENCHMARKING RELATIONAL DATABASE MACHINES' CAPABILITIES i/i
IN SUPPORTING THE..(U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA C M RYDER SEP 83

UNCLASSIFIED F/G 5/2 NLlEEEEEllllllE
EEEEEEElhEEEEE
EEEEEllhEEEEEEE
mEElhEEEEElhEE
EElhEElhEEElhI
EElhEEEEEEEEEE
EEEEEEEEES!J _

le~m - rr477rn

L4A

II1.05 IA 1 1.8

ma'

MICROCOPY RESOLUTION TEST CHART
NA7O BUREAU OF STANDARDS-1- 3-A

Nd

',

,

.

4' "? P ' ' *.K ',. ,",: *",, ,. "--

*~~~~ .p 7.

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Oz FEB 3 1984*

THESIS <A

BENCUNARKING RELATIONAL DATABASE MACHINES'
CAPABILITIES IN SUPPORTING THE DATABASE ADMINISTRATORS'

FUNCTIONS AND RESPONSIBILITIES

by

Curtis M. Ryder

September 1983

Thesis Advisor: D. K. Hsiao

LLJ Approved for public release, distribution unlimited

84 0 2 O

7-i . - 5 -. 7-.7 ,-7- %7 77 77777

SECUUYY CLAISSUICATION OF T1011 PAGE (US. Do* hew.4______________

U~tY BUEMYYSAUREAD INSTRUCTIONS -DCMNAINPAGE BEFORE COMPLETING FORM

1.~ GOVT ACCESSION NO. 3. RECIPIENT "S CATALOG MUM@9R

4. TITILE (j slawde) S. TYPE OF REPORT A PERIOD COVERED

Benchmarking Relational Database Machines' Mstemr 1983i
Capabilities in Supporting the Database Spebr18

Administrators' Functions and Responsibilities S. PERFORMING OR. REPORT NUMBER

7. AUTHOr) I. CONTRACT 00 GRANT NUMUMER()

Curtis M. Ryder

IL 1116M. P(EPNG ONSANIZATION NINE AND A0001881 1. PROGRAM CLEMENT. PROJECT. TASK

Naval Postgraduate SchoolARAAWKUNTN§IS
Monterey, California 93943

It. CONT1111ILNG OFPICE NAME AND £00365 12. REPORT DATE

Naval Postgraduate School September 1983

Monterey, California 93943is UGROPAE
1111 OWISI@ AGECY MAMIE A AOORE=j'9 EMANrg Dm Cen&W.Jftg ?Mfe*) IS. SECURITY CLASS. (of this ,s tif)

lie. DEC~ kASSCI C ATIO0N i DOWN GR ADIN G-

Approved for public release, distribution unlimited

1" I. DIST111810101 ITAT2EMEMT W(di 46O bee ~ned Is Week 20, Of Efieheal bern Rapwl)

to. Key fm 00w 6005 femeMee "5a 008000 nd mi~0f by week Merbu)

Database Administrator (DBA), Relational Query Language (RQL), Benchmarking
a Relational Database Machine, Relational Database Machine, RDM 1100,

4 Relational Completeness, Fully Relational, Relational Operations, Database
Security, Database Schemas, Relational Database Performance

2LAUTRACT (10011111 sere e"We dhb Nee~n mE40 4011e 14M0 AV Week eMer06)

4This thesis describes the functions of the Database Administrator
(DIA) and how they are supported by the benchmarked relational database

support serviceis required, the performance issues involved, and the
secur-ity features employed is presented. The goal of this work is to

eO ,111001101110 OP I Nov sS OSSOLETE

S/H 002- F- 0 4- 601SECURITY CLASSPICATION4 OF THIS PAGE (When Dole 3ntesror

Uggam" LM PI-CAYSW or Tons F~aG fm *am goo-"

(Continuation of block 20)

develop general guidelines for DBA to follow in implementing and

operating an effective, responsive database system.3

-_ I....

S , N -12 -L 1 4"66 0 2

SgCURgv CLAMICATION OP II PA6EE9M Wee bm-Q

r l *%

Approved tor public release, distribution unlimited,

Benchmarking Relational Database Machines' Capabilities in
Supporting the Catabase Adristcators° Functions and

Resporsibilitles

by

Curtis 0. Ryder
Lieutenant Commander# United States Navy
8,5., Florence State University, 1972

Submitted In partial fulfillment of tte
requirements ter tne deqree o

MASTER CF SCIENCE IN CCMPTE SCIENCE

frot the

NAVAL P0SGRADUATE SCHUOL
September 1983

* AUTHOR:a

APPLOVED BY3 ~ upmm1i~Lmmi.u

Thesis Adviser

Second Reader

ChairMan, Ce;artment of Computer Science

.m.....,. ,aq...........

Dean of Inor -d Policy Sciences

3

AESTRACT

This thesis describes the functions of the Database

Administrator COSA) and how they are supported by the

benchmarked relational database macnine. An examilnation of

the relational query language providedp DBA suoport services

required, the performance issues Involved, and tne security

features employed is presented, The goal of this work is to

develop general guidelines tor CBA to follow in Implementing

and operating an effective, responsive database system.

4

TABLE CF CCN'IENT3

19 AN INTRODUCTION ... *..*,.**.... 10

lie THE BENCI4NARKING ENVIROPOMENT 12

A * THE HOST SYSTEM *eeeeeaoa.g.. 12

to The Hardware Intertace 12

2. The Software Intertace *......,, 12

S, THE BACKIND DATABASE MACHINE 12

I* A modular Design *....**.**** 12

2. Tbse System Cofilguration 14

1119 THE RELATIONAL QUERY LANGUAGE 16........ l

A. AN INTRODUCTION TO THE LANGUAGE 16

Be DATA DEFINJTICN CCNPANDS 0......... i

to To Create a Database .. ,..... 1

2. To Create a Relation .. ,....... 19

3. To Create an ndx... 20

4o* To Create a View *g*~......, 20

So To Cefine a Stored Command 00060000000 21

69 To Destroy a Database 22

7. To Cestroy an Object 22

So To Destroy an Index ,.... 22

C. DATA MANIPULATION COMPANDS 23

1,* To Retrieve Datae geeeebe.... 23

2. To Append New Tuples 24

3. To Replace Attribute Values *......... 24

49 To Delete TuVles 25

5. To Aggregate Attribute Values *... 25

be Aggregate Functions *. ... ,... 26

7. String-Manipuiaticn Functions *.... 27

- 6 System Supplied functions 6 20

Do EXPRESSING THE RELATICNAL OPERATIONS IN

THE QUERY LANGUAGE s.e.....e.... 29

1, The Selection Operation,...... 30

2. The Projection Cperation 30

3. The Join Operation 31

4. The DIlviuon*Cperation 32

S. The Union Operation ****.* *** 33

6. The Intersection Cperation 33

7. Tne, Cartesian-Product Operation 34

Be The Difference Operation 34

Ive THE DATABASE ADMIN13TRAICR 3b

As THE DATABASE SYSTEM ENVIRCNMENT 37

Be THE CATASASE DESIGN - THE PHYSICAL AND

CONCEPTUAL SCHEMAS *............ 37

1, Organizational Structure 39

2o Normalization .,...* .. ,,,. 40

3. Database System Arcbitecture .,09606... 40

4o Data Sharing and CwnerShip 41

So Recommendations 41

C. THE DATABASE DESIGN *THE EXTERNAL

SCHEMA *... 42

LM

6

Is Perwit/Deny Access 43

2. Create Physical Objects 45

3. Create Virtual Cbjeets *......., 46

4. Access Via stored CorMands ,stooge ease 46

5s* Recommendations .*** .. *.*** 47

Do SYSTEM SERVICES *0600 .g geu..0 49

1s System Backup *..** *. 49

2. Crash Recovery ... 00000060000 51

3s System Information 52

4. Translator *00000000066000 57

1o USER SERVICES 58

10 Help Facility *ooe5e........

2. Stored Commands Provided by DHA s...... 59

Fe* SECURITY o**................,.............. 60

I. Security Aspects of OALL 61

20 System messages 62

3e User Identification Numbers ****.** 62

4, Recommendations 62

Go FINE-TUNING PERFORMANCE ,... 63

1, Data Reorganization 0009.,.,,.,.....,.. 64

20 Indices *oeoo eeoo e0 0060 65

39 Data Placement *.00000000000 66

V. EVALUATION OF THE IIELATICNAL SYSTEM 449946.6660 67

A. THE FULLY RELATIONAL SYSTEM ... so......,e.. 67

1. The fully Relational Characteristics .. 67

2. Four Areas of Deficiency Go*..***. 6

7

3. The Relatlonal Copleteneus,.... 70

Be COMPARISCN OF TWO QUERY LANGUAGES ,,,,,.,,, 70

1, Equal Power ,,,,,., ,, 70

2, Ditterences In the Syntax Structure s,. 71

3, Other Difterences .,,,..,,,,,,,*.... 74

Vie CONCLUSIONS .*.**e eesessoegeeoeeeee*s, 76

APPENDIX A CEXAPPLES OF STORED COMMANUS) 79

LIST OF REFERENCES , * 89

INITIAL DISTRIBUTION LIST oo,.,*,*..........*, 90

I"S

I I I .. .I ' ' " ' ' ' ' " ; " " " " ' "

A CK NOhLE OGE Jk KdT

The contents at thIs thesis are the results of the

coordinated efforts of numerous individuals. Foremost among

these individuals Is certainly Ost Paula Strawser of the

Ohio State University and the Naval Postgraduate Schools

Pat Strawser's diligence, dedication, and guidance have

proven Invaluable In both the research prior to and

subsequent preparation of this thesis,

Appreciation must also be extended to Ore David K.

H8iao9 Dr. Hsiao's knowledge of database systems provided

Invaluable Insight and made the project a rewarding learning

experience.

Li1kewiser Ps. Coris Mleczko and her staff at the Data

Processing Service Center West at Point lMugup California#

have provided much assistance# and they have proven flexible

enough to accommodate our sometimes inflexible requirements.

Similarly, Commander Inamas Pigoski ot the tvaval

Security Group Command is offered a special thanks for his

continued support in providing the necessary assistance beth

to keep this project going and to enable the results of this

research to be presented at the International workshop on

Database Machines to be held September 1903 In Munich,

Last but .--,. last, gratitude Is extended to my wife,,

Charlotte# who put up with It all.

9V

-- W 4 % W- d- r. 4' *r :7 h'47 w r%

I, -AN INTRCDUCT1GN

Although the application of software database management

systems to user requirements is not new there are emerging

special-purpose hardware systems which will relieve the host

central processing unit (CPU) from the time consuring

processes ot accessing, updating, and modifying data.

Numerous# commercially-avallable software database

management systems for the host computers are currently

employed In application areas but there appears to be

associated performance degradation In the host machines.

These performance Issues must be Identified and perforrance

measured in order to provided some quantitative comparisons

between software systems, general-purpose hardware systems,

and special-purpose hardware systems. Historically this

informatIon has been collected for general-purpose computers

by the use of the instruction mix (Gibson or Flynn) to

measure performance In various categorles. This measurement

of a machine using an Instruction as a tool mix is called

benchmarking,

The task of benchmarking a database system has not been

developed In the literature. Consequently, a research

project has been undertaken by the haval Postgraduate School

to develop a set of benctmarking standards which can be

employed to obtain a performance Index of a particular

to

database machine/system and further used In a comrarative

analysis with respect to other datatase systems/machines.

The initial steps In the benchmark development have been

limited to a specific relational database macnine. In

addition to the measurements of specific database

operations, a question of the role and responsibilities of

the database administrator COSA) is posed. Pith each system

benchmarked, there is a need to establish the amount of

support provided to DBAs In this case an examination of the

facilities providedo query language employed, and amount o

additional DBA support required is conducted,

The objective of this thesis is to categorize the duties

and responsibilities of CBA and descrice how they are

supported by the benchmarked system. At the beginning, the

system environment is described, followed by a discussion O

the query language. An analysis of DOA functions is then

made and finally, the fully relational model is examined and

a comparison of this particular query language with another

well-known language Is made.

This thesis is one in a series of four describing the

current status of the benchmark development. The other

three topics are on generatinq the synthetic database [Refs

I]# selection and projection (Pef. 2], and join operations

(Refs. 33,

iu w - . . * - . , *- -. .* ~

II, THE BENCHMARKING ENVIRONMENT

As THE HOST SYSTEM

The host machine for the benchmark Is Univac 1100/42

located at Pacific missile lest Center, Point muqu,

California. In addition to on-site eouipmento a remcte

terlinal Is Installed at the Naval Postgraduate School.

1. The Hardware Intertace

The hardware Interface between the host and the

database machine Is through a Univac 1100/42 I/O channels

This Interface channel has a 200-thousand byte/second

capacity and the transpissior unit is either a byte or a

word,

2, The Software Interface

Te host software Is written by Amperit Corporation

of Chatsworth, California. This software consists of the

host-driver routines whose primary purpose is to Parse the

queries and to translate them into tne database machine

language. Finally, the host handles the communications

protocol between the database machine and itself,

Be THE BACKEND DATABASE MACHINE

1. A Modular CesLan

The database machine which Interfaces with the host

Is an IDM 500 manufactured by Britton-Lee Incorporated Of

12

r#r, . - % .- .. . ,... - .. _. .. ,. .. , . .. ,.

- - -. - o I. . :, % u :.,. -' "

Los Gatos* Californiao IDN 500 Is being marketed by Amcerif

Corporation as an RDM 1100. It is a modular, expandatle,

and microprocessor-based system orqanLzed around a central

high-speed bus, the separate modules are functionally

oriented. The RDM 1100 employs the relational database

model which will be discussed in detail in Section V.

The database processor (ZOOO-based microprocesscr)

supervises and manages all system resources. This processor

executes Post of the software in the system.

The database accelerator is an optional, high-speed

processor with an Instruction set specifically designed to

perform certain relational database functions. The

accelerator has a three-stage pipeline which executes

Instructions at up to 10 PIPS. This processor can Initiate

disk activity and can process data at disk transfer rates.

The accelerator and the RO 1100 software are so configured

that the most frequently occurring database work is

performed by the accelerator under the direction of the

database processor.

The cache memory (ie., main memory) of RCM 1100 is

composed of 64K-bit chips of dynamic RAP. It may be

expanded to a maximum of six megabytes. This cache Is

utilized for RD 1100 system code, disk caching, indices,

and user commands.

Disk Controller modules may be expanded from one to

four. Each controller can manage from one to four disk

13

drives. The disk controller moves data between the disks

and the cache memory, and Is aesigned to work with the

accelerator. An optional tape control module supports up to

4, eight tape drives which can be used for direct, disk-to-tape

backup, data, and software loading.

RDM 1100 and the host(s) communicate with each other

via RON 1100's host-interface module. This module accepts

commands from one or more hosts, and acts on those commands

accordingly. Each host-interface module can handle up to

eight hosts and a maximum of elgt host-interface modules

can be made available on RD# 1100. Hence, a maximum of 64

hosts can be accommodated by SCM 1100. In addition to

communications handshaking protocols, the Interface module

performs necessary error checks and causes the host to

retransmit any Information block in which an error is

detected. (Ref. 4]

2. The System Configuration

In the configuration described above (i.e., the

connection of the host and the database machine with an 1/0

channel), the database machine Is called a backend database

machine. The term, 'backendp Is used in this context to

refer to a special-purpose machine operating as a peripheral

device on one or more host systems. As previously

mentioned, the use of the backend macnine can siqnificantly

reduce the required CPU tine for data manipulation by the

host. Further advantages are realized through treelng disk

14

-.. < '--- -; € ,.. - : - -,.... ,
*% _ V% % : v r w: ? ,' I : ' ". d . ,) , . ,, ,.'., . , ,, -

space on the host and the reduction of 1/O cycles; thus

releasing the CPU to perform other functions necessary fcr

the proper operation of the system and execution of

applications programs.

The performance of ROM 1100 Is highly dependent on

the available hardware configuration. Other pertormance

Issues such as indexing and data positioning are dependent

on the software developed. The hardware configurations are

discussed below and the software Issues are discussed In

Section IV.

Four test configuratiqns are used during the course

of this research. The initial configuration Is of one-half

megabyte of cache Without the accelerator. This

configuration will not be marketed by AmPerlfp but Is tested

for the purpose of comparison. The next test configuration

Is of one-megabyte of cache with the accelerator. Following

it, a two-megabyte cache with the accelerator Is tested.

Finally# the accelerator Is removed from the configuration.

The configuration Is -tested with only the two-megabyte

cache. The standard commercial configuration Is with one-

megabyte of cache. The accelerator is an optional feature.

For specific Information on the performance measurements#

the reader Is directed to (Bef. 22 and (Ref. 3).

15

III. THE RELATIONAL QUERY LANGUAGE

A. AN INTRODUCTICN TC THE LANGUAGE

Zn addition to the hardware and software to support the

host/backend Interface# Arperif also provides a languaqe for

requesting information or operations on data from the

backend database machine. TPis language is called the

Relational Query Language CROL). The lanquage, beinq tne

only interface for the user and database administrator

CDIA)p Is the sole means by which the capabilities and

limitations of the backend are Known to the user and DBAe

Therefore* a discussion about tre facilities of ROL will be

presented,

This section defines two major command groups available

in ROL. The maetnotatlon used In tne command syntax

consists of the symbols described below,

C) used as delimiters in ROL

C I used to indicate anythino optional inside

the square brackets

used to denote a choice of the word eltner

before or after the bar

used to specify zero or more occurrences of

anything in the curly brackets

used as metasymbols to denote a construct In

16

.. . %

ROL with the nate of the construct betweer

the metasyrbols

All other words In ROL are key words and must apoear

literally Clef. 53. In the repairing sections key words are

caDitalized. In Sections explainlng the commands, an

abbreviated syntax of each Command followed by an

explanation of the command Is provided. This information Is

taken from (Ref. 5] and (Pet. 6J.

B. DATA DEFI#4TICN CCMMANOS

In ROL the commands are presented without regard to

function. Howevers, In most database cooks, (esq., Chef. 73

and (ef. 83). there is a distinction between the data

definition language and the data manipulation lanquage.

Although this distinction Is not made in RQG, It provides a

logical division of the majority of commands and facilitates

the understanding of the commands. The data definition

language consists of those coands which are used for the

description of database objects.

Data can be represented in seven different types In PDM

1100. The two-character specitcations available are for

the compressed (c) and uncompressed (uc) character string

with the user providing a maximum length, up to 255

characters. The difference Is that the compressed character

string is not stored with trailing blanks. Integers can be

declared with three different byte sizes namely, 1, 2, or 4.

17

The byte size of an attribute limits the precision which can

be accommodated In the attribute values. Finally,

floatlng-point numbers can also be expressed as compressed

Cf) or uncompressed Cuf). The range provided by these two

forms Is Identical and of 31 significant digits. As in

character strings the user must specify the number of

significant digits desired, Lhe difference vetween

compressed and uncompressed floating voint is the

suppression of leading and trailing zeros In the compressed

floating point. Compression is a feature designed to reduce

the storage requirement In the database, In. following

declaration is an example of the use of attribute types:

name a c25, salary a ut8, age a il, address a c200.

This example establishes four attributes: 'name' whose

values can each consist of up to 25 characters, *salary'

whose values are floating-point numbers each of which Is of

eight significant digits, 'age* whose values are one-byte

integers, and 'address' whose values are character strings

of up to 200 characters each. Notice *name' and 'address'

are designated as compressed and therefore trailing blanks

of their values are not stored.

1. To Create a Database

CREATE DATABASE <name> [wITH <options>]

19

This command Is used to establish a database which

will be referred to by the user-specitied name, The two

options provided are DISK ard CEMADe DISK allows the

specification of one or mere disks on which the database

will be stored Coe. DISK a "sysl), DEMAND specifies the

number of 2K-byte blocks to be allocated for the database,

If the database grows beyond the allocated clocks, it may ce

extended with the following command:

EXTEND DATABASE <nape> mIH <options>

The options are identical to the options of CREATE CATAeASE*

2. To Create a Relation

CREATE RELATION <ne*> (<attribute name) a <format>

4, <attribute name> a <format>)) (,ITH <options>]

The create command is used to establish the scheme

for a relation, An empty relation is set up in the database

when the command Is executed with the actual specification

of the attributes In parenthesis being given as depicted In

the example of data types above. Gne possible option whicn

may be declared Is LOGGING. This option causes every cnange

to the relation to be logged in the aatabase transaction

log* This feature Is extremely Important to maintain the

consistency and Integrity of the relation when system

recovery must be Initiated,

19

3. To Create an Index

CREATE [UNIGUE] (NONCLUSTERED I CLUSTERED] INDEX

(CNI (ooject nare (<attribute> (<attribute>))

An Index on an attribute of a relation provides a

direct access to the attribute values In the relation. A

unique Index on an attribute requires all attribute values

to be different. There are two primary aitierences between

clustered and nonclustered Indices. A clustered Index Is

nondense (ie.*, one entry/block) whereas the nonclustered

Index Is dense (i.e., one entry/tuple). The second

difference relates to the storage ot data. Althougn the

nonclustered Index does not affect the placement of data,

the clustered Index requires tne tuples ot the relation to

he stored In the order of the attrioute values.

Consequently, only one clustered Index may be created for a

relation whereas 250 nonclustered Indices may be defined for

the same relation. For Performanco data on oerational

enhancement provided by Indices, see (Refe 2) and (Ref' 3],

4. To Create a View

CREATE VIEb <view name> (<target list>)

(WHERE < ulification))

The CREATE VIEW command establishes a virtual

relation, 1e., there is no storage of tuples associated

with the view, A view Is a composite relation (without its

20

-~ 7 , V7 .j F . - -77

j own tuples) ot attributes from other relations or views.

The target list Is the list at attributes desired from" the

other relations or views. Finally, the oualification allows

thes user to restrict the quantity Of data in the view to a

particular category and to provide necessary linKages

between the relations or views,

5. To Define a Stored Command

DEFINE <stared command ramfe)

<command> 4<command>)

END MEINE

In ROL the DEFINE command provides a mechanism for

creating subroutines In tte database machine. Stored

commands may have Parametets or be parameterless. The

<command)p can be an APPEND, CELME0 REPLACEp RETRIEVE. etc.

Cto be discussed later). There are two advantages to stored

commands. One Is that It relieves the operator of retyping

a frequently employed command and allows the DBA to provide

a a simplified method for invoking comolex queries. The

second and perhaps most Iwpcrtant advantage is the

performance, enhancement. Since the stored command exists In

the database with all addresses of cited relations resolved#

the communications between the host and the backend machine

Is reduced to passing an EXEC taken and the command name,

Examples of stored commands are provided in Apoendix A,

21

69 To Destroy a Catabase

DESTRCY DATABASE <name)

The ODETRCY DATABASE Command eliminates the entire

database by removing all linkages trom RDm 1100 and freeing

the storage space.

7. To Destroy an Object

DESTRCY <object name>

This command eliminates existing relations,

established views or stored commands from the database. The

space freed by the command Is reusable by the database. As

Indicated Previously, views and stored commands depend on

existing relations or vlews. These underlying objects are

said to have dependencies. An object which has dependencies

cannot be destroyed without first destroying the dependent

object. This does not apply to Indices, wnicn are

automatically destroyed wher the relation Is destroyed.

e. To Destroy an Index

DESTROY [NChCLUSTERED I CLUSTERED] INDEX (ON]

<object name> (<attribute name>

Al <attribute nape)))

It an Index is unnecessary or the overhead

associated with Keeping an index is to high, the Index way

be deleted from a database by the DESTROY IhCEX command. In

22

°
"

"
" r : : ,.....

". -''. .'-.'..',
..

'.'..."
"." ". .'".

b.
a.

* * -* U * - \ -

addition to the object nice, tte user must also specify tte

exact attributes ot the Index for the purpose of avoiding

any ambiguity.

C. DATA ANIPULATXCN COMPANDS

The data manipulation language Is that subset of ROL

commands which allows the user to access, update, and

retrieve the data stored In the database.

1. To Retrieve Data

RETRIEVE EUNIQUE] (<target list>) [ORDER EBY] <order

specification> NiA I DJ

(. <order specification> C0A I DM)

(WHERE <qualiication>J

The RETRZEVE command is the most commonly emoloyed

command In ROL. It Is the mears by which data Is extracted

from the database and returned to the user. The target list

provides the user with the facility to reduce the amount o

data by limiting the number of attribute values reouested.

The format for the target list is:

relation.name.attribute.name

E# relation.name.attribute.namel.

This list of attributes can be from one or more relatlons.

To reduce duplicate inforratlonp, UNIQUE can be erployed.

The order specification dictates the order (i.e.,

23

+ . + * t. * . * *t***** -. /

alphabetlc, numeric or alphanumeric order) in which tte data

Is to be sorted, Finally, the oualification allows tne user

to specify predicates which the data must satisfy and to

require linkages between relations. These predicates and

linkages reduce the number of tuples retrieved,

2. To Append mew Tuples

APPEND ETC] <relation name> (<value list>)

WHERE C(<qualification>)]

The APPEND command allows the user to add tuples to

a specific relation, The value list must specify the

attribute names and attribute values with an equality sign

In between, Unlisted attribute values In the value list are

assigned default values (i.e., blanks for characters and

zeros tor numerals).

3. To Replace Attribute Values

REPLACE <relation name> (<value list>)

(WHERE <qualification))

REPLACE provides the facilities tor updating values

stored In the database, Although it can only chanqe one

relation at a time, the number af attribute values Is not

limited. Further# more than one relation can be accessed to

calculate what Is to be updated, Althouqh a view name Ray

be used in place of the relaticn name in REPLACE and APPEND

commands, the numerous restrictions on the acceptability of

24

p% %

this procedure makes it almost impotent and at best

infeasible.

4. To Delete Tuples

DELETE <relation.iare)o (WHERE <qualification>]

This command Is used to remove one or more tuples

from a relation. If a aHERE clause 1s not specified then

all tuples will be deleted,

5. To Aggregate Attribute Values

There are six scalar aggregates supplied in ROL

which may be applied to one or more attribute values, These

aggregates return a single value, known as the scalar, to

the user, The results of mIN and PAX are the smallest ana

largest attribute values found for the attribute,

respectively. SUM and AVG provide the arithmetic total and

mean of the respective attribute values. COUNT returns the

number of occurrences of tte specific attribute value. ANY

is used to test for the existence of a soecific attribute

value* This Is accomplished by applyina ANY to a condition

(e.9.v ANY a (relatlon.name.attribute.name : value)). it

the condition Is true for at least one attribute value a 'I*

is returned, "01 otherwise. Any scalar agqregate can have a

predicate (qualification) and, since It returns a single

value, can be used anywhere a scalar value Is permisslle in

an expression or other predicate. UNIQUE can be used with

COUNT, SUP, and AVG to avoid including duplicate entries in

25

the computed scalar value, For example, COUNT UNIQUE can be

used on a personnel database to retrieve the number ot

different states (assuming birthplace is an attribute)

represented by the employees place of airth without regard

to the actual number of employees from each state, these

scaler aggregates are useful in providing statistics about

the database and In Isolating tuples Whose attribute values

are numeric. For example, a query can be composed to

provide a list o attribute values such that each value is

greater than the averaqe of the values.

6. Aaaregate Functions

The term 'function' is Risleading when used in this

context since the results of applying an agqregate function

Is a list of scalars. Although tlis is not the generally

accepted concept of a function (returnino a single valas) in

the literature, It will continue to be used In this thesis.

Aggregate functions are used in conjunction aln the 'group

by' (BY) clause. This clause provides a vartition of the

attribute values. The partitioned values can then oe used

as arguments of an aggregate function, Tnere can be more

than one aggregate function in a query, and agqreqate

functions may be nested. Additionally, aggreqates nay

appear In both the target list and qualification. An

example of the application of an aqgreqate function can be

found in Section V.

26

_ - .- , • - ., - ., ,-.. * ,-x~ . .

* - - - - .. . " ' ';' -- -- S . ;.. . - i
. ' . -

- ' ' - . • - -" -" . - -- . -- - ,.- -

The aggregate functions provide the comrutational

power ot ROL, Without the functions there would be no easy

method of dividing attribute values Into sets and performing

tests or computations on these value sets. Further, the use

of aggregate functions relieves the user from creating

numerous temporary relations and from manipulatinq them

Individually for the desired result. For example, in a

personnel relation with salaries and department numbers as

attributes, It may be desirable to compute the average

salary of each department. t7is Is easily accomplished by

the use of the aggregate functicn in the target list as

follows:

answer a AVG (salary BY dept.no)o

If this capability were not available, some other form of

partitioning would be required to support the query. Cne

might provide a separate retrieve for each department

nurbor, form a temporary relation for the retrieved salary

tigures, and average on the newly formed relation

separately.

7. -Strina-Paniulation Functions

In order to maintain the simple format of a

relational system and yet provide the caoability to obtain

data based on partial or combined attributes, RQL includes

three string manipulation functiors. The most useful of the

three for the user appears to be pattern matching. By using

27

1 ,

symbols to represent any number of characters, tuples having

a desired internal pattern in a specific attribute can te

selected. Again# consider a personnel relation with an

attribute of date o birth. The pattern matching function

could be used to provide a list ot all personnel born in a

particular month. Pattern matching applies only to

characters and is only used in predicates.

The other two functions are CO6CAT and SUBSTRING.

These functions can be used with character or binary

attributes. CCtCAT requires two string arguments, strips

all tralling blanks from both strings and concatenates the

second string to the first. The SUBSTRING function requires

a starting position In the string, a length to define the

number of characters desired, ard the attribute on which to

perform the operation. For an example of SUBSIRING

employment, see Appendix A.

B . System Supplied Functiors

There are three categories of system supplied

functions available in POLO These provide information about

the database and host# cross reference of system assigned

identificatlon numbers to associated character strings, and

data type conversions.

The first group of functions Is parameterless and

provide general Information about the host and database. For

example a user may request the name of the database

CDATABASENAM[(), the time or date CGETTIM C) or GETDATL

20

C)], the attached host [MOST)], the Identity of the CHA

CDBA)]# or who is executing a command CUSERID C)).

- The second group of functions is useful in providing

Information in a meaningful form to tne user. There are

three self-explanatory commands in this group (REL.ID

(relation name), REL.NAME (relation ID), and FIELD.NAM

(relation IC, attribute ID)). These translations are used

extensively In Appendix A.

The last group provides the capability to convert

expressions Cexp) from one data type to another. For

example, a user may convert an expression to a 1-, 2- or 4-

byte integer [fldT Cexp), INT2 (exp) or IN14 (exv)l, a

binary number (BIN (exp)], or a floating-point number CFLCAT

Clengthg exp)]. The expression can be any one ot the other

types listed as well as string and binary coded decimal in

there legal forms (e.g., compressed and uncompressed).

Do EXPRESSING THE RELATIONAL OPERATIONS IN THE QUERY

LANGUAGE

The power of a relational query language is usually

measured by its ability to perform the operations specified

in relational algeora or relational calculus. Since the

equivalence of the two has been demonstrated (Ref. 83, the

relational algebra will be used for comparative purposes

without loss of generality. It should be noted that ROL Is

29

probably best characterized as a domain-based relational

calculus.

The relational algebra supports tour traditional set

operations (Union, Intersectian, Difference, and Cartesian

Product) and four special relatlonal operations (Selecticn,

Projection, Join, and Divislcn), All eight operations will

be defined and an example of each in ROL will oe ;rovided,

In the examples the term# relation.name, will be abbreviated

to frel and the term, attribute.name, to "attr'.

1, The Selection Overaticn

The selection operation provides a subset ot tuales

in a relation which satisfy a given qualification, All

attribute values of every tuale satisfying the predicate are

Included In the subsets ROL provides an ALL keyword which

simplifies the selection oreration vy avoiding the

enumeration at every attribute in the target list,

RET IEVE UNIQUE (releALL) wmERE <qualification>

2. The Prolection Operation

Projection is used to reduce the number at attribute

values In the tuples which make up the selected subset. In

addition to limiting the nurcer of attribute values in a

tuple, the projection operation also deletes duplicate

tuples from the subset, Deleting duplicates can be enforced

by using the optional keyword UhIGUE, Projection in HL is

a function at the target list ir the retrieve command, A

30

4! " " e . " " " " ' ' .,. ' .. ' ,.' .% '. . . - . , , , . , . ,., . , - . . , ,

qualification Pay be used to reduce the number of tuples as

In selection. To reiterate, selection reduces the nUnber at

tuples whereas projection reduces the number ot attribute

values.6

RETRIEVE UNIQUE Creleattrl, releattr2o s.. attrn)

WHERE <qualification>

3. The Join Cperation

The join operation may be performed on any number of

relations whose attributes are defined over a common domain,

The result ot tthe join Is a new# higher-degree relation.

Each tupit, In the resultant relation, is formed Oy

concatenating tuples from the source relations whose

attribute values satisfy the qualification,

there are different qualifications and therefore

different Joins. The equi-lin Is formed over an equality

predicate. The Inequality join is formed over an Inequality

predicate with an operator such as <0 , <at >a or I=, The

following Is an example of an equiloin; the other loins can

be realized by manipulating the target list (natural Join)

or predicate (inequality join), accordinaly.

RETRIEVE UNIQUE Crell.ALLP rel2.ALL)

WHERE reltleinattr a rel2.joinattr

31

4. The Division Coeration

The division operation is defined for two relations

* in which the divisor relation has a degree less thar~ the

.1 degree of the dividend relation, The resultant relation has

a degree equal to the ditference of the degrees ot the two

relations, The division operation Is demonstrated using

relations roll and rel2 and dividing rell by rel2 where the

degrees of rell and rel2 are P and n respectively with m >z

no The resultant relation consists of the first (rn-n)

attribute, values for each tuple In the dividend , rell, such

that every tuple in the divisor. rol21 exists as the last n

attribute values of the uniquely determined partial tuples

[Identical first Cm-n) attribute valuesJ in rell. For

example If a relation X has tuples abed* abet, beedo and

abab, and relation Y has tuPles cd and ef then X divided cy

T would be the relation containing the tuple ab. The tuple

ab would exist In the resultant relation since abed and abet

are In X. However# the tuple be would not appear Since beef

Is not In Xe

RETRIEVE (rell~attrl, rell~attr2, * .rell.attr~u'-n))

WHERE COUNT Crel2oattri)

COUNT Crell~attrl by rell.attrl,

reli.attr2, 9,v* rell.attr(rn-n)

WHERE relleattr~m-n~l) u rel2,attrl

ANC relieattr(rn-n42) a rel2.attr2

32

ANC

ANC rell.attrm a rel2.attrn)

5. The Union Operation

Union Is the traditional set-theoretic definition of

union with the additional constraint of requiring the two

relations to be union-compatible. Union-compatioility

stipulates that the two relations must be of the same degree

and the corresponding attribute values must be taKen from

the same domain (e.g.. relloattrk and rel2,attrK must be

defined over the same domain). The union of two union-

compatible relations Is the set of all tuples belonging to

either relation or both relations, Note that duplicates are

not automatically eliminated but a RETRIEVE UNICUE

Cunion.rel.ALL) can be executed attar the following example

to display the union.

RETRIEVE INTO union.rel Creli.all)

WHERE <qualification>

APPEND TO union.rel (attrl a rel2.attr1,

attr2 a rel2.attr2p ... , attrlast a rel2.attrlast)

WHERE <qualification>

G. The Intersection Operation

Intersection Is only defined for union-compatible

relations. The resultant relation is comprisea of tuples

which exist Identically in both of the relations.

33

RETRIEVE UNIQUE (tell.all)

WhERE rell.attrl a rel2.eattrl

AND rell.attr2 a re12.attr2

AND see

ANC reli.attrlast a rel2.attrlast

7. The Carteslan-Product Creratlon

Given two relationsrell and rel 2 p ot deqree m and n

respectlvely, the Cartesian product Is the set of all tuples

of degree (m+n) formed by taking the first tuple in rell and

concatenating to it all tuples (one at a time) in rel2. This

process Is then repeated for the second tuple In rell until

all tuples In rell have been concatenated with every tuple

in rel2.

RETRIEVE UNIQUE (rell.alle rel2.eall)

8. The Difference Operation

The difference of tvo union-compatible relations Is

the set of tuples In the first relation but not in the

second,

RETRIEVE UNIQUE Crell.ALL)

WHERE 0 a ANY Crell.attrl BY rell.attrt

WHERE rell.eattrl a re12.attrl

AND *

AND rell.eattrlast a rel2.attrlast)

34

J20

This query requires each tuple in rell to be

compared with every tuple in rel2a In the above examlple# it

Is assumed that relleattrl Is the key tor the relation, In

* the event a relation has a cuposite key, tne rell~attrl

tollowing the BY can be replaced by a linear list ot

attributes comprising the key.

35

IV, THE DATABASE ACIMNISTRATOR

The role of DIA Is to establish the database and to

ensure that the database system is responsive to the user's

performance requirements and Information needs. Although

the discussion ot DBA will use RDM 1100 as the target

system, the facilities described and DOA support required

should be applicable to any relational database management

system. In particular# the amount o DBA support recuired

does not depend on a particular system. It tne system does

not provide certain facilities, COA will be required to

reformat and/or extract the Information from the database to

satisfy the users information needs. Finally, DBA will be

referred to as an Individual; towever, the functions can be

the responsibility of a group of people.

This section will discuss the functions ana

qualLfceatLons of CIA in the areas of aatabase environment,

database design, system services, user services, security,

and performance enhancement, For each area, a generalized

statement concerning CBA functions and qualifications will

be provided; then a specific description of the function In

the RDN 1100 environment will follow. RDM 1100 feature

which supports it.

36

' , k, , . ". " "--. .--

A. THE DATABASE SYSTEM ENVIRCNMENT

A software database management system 1s designed to

support a single database on a general-ourpose computer,

The advantage of a backend relational database machine Is

the support which can be provided to multiple hosts and

Multiple databases. 7he existence of multiple databases on

a single machine creates two levels of management, Level

one, the system DEA, Is primarily concerneo with machine-

wide performance and establishing authorizations for the

database DBAsO Level two* the datatase DeAS, is concerned

with the operational data in the individual databases. DBA

and system DBA should be knowledgeable in the areas outlined

above to ensure efficient and reliaole database performance.

In RDP 1100 the system CBA has control of a datacase

called the system database. Certain commands such as

creating and destroying databases can be Issued only trom

the system database, when a new database is created the

individual issuing the CREATE DATASASE command will be CBA

for that database, In this thesis DBA will refer to the

level-two DBA unless otherwise indicated.

B. THE DATABASE DESIGN - THE PHYSICAG AND CONCEPTUAL

SCHEMAS

AS alluded to above# DBA has numerous areas of concern.

The second area to be addressed is the database design,

This topic describes the design of the physical schema and

37

the conceptual schema, A schema is simply a plan for a

particular level at the database, The third level, exterral

scheme, will be addressed in Section IV C.

The physical schema# also called the internal schema, is

a plan for the actual storage of data on the physical

devices available to the database@ In RDA 1100 each disk is

divided Into zones of 160 2K-byte blocks. The first block

In each zone Is reserved for a directory to the contents at

that block. The number of blocks required for a relation is

dependent on the number of tucles and the length of the

tuples, Since the physical schema is a function of the

database system, the major Issue from the OBA perspective is

whether the system allows the location of data and indices

to be explicitly specified.

The conceptual scheme iS the logical plan normally

associated with the entire 'organizational view* and

instituted by DBA. As the physical schema Is comprised at

the actual location and storage structure of the entire

database, the conceptual schema includes the names of all

relations, Indices, and data dictionary entries in the

database,

The primary query language subset used to define the

conceptual and physical schemas is the data definition

language. The rapping between the physical and conceptual

schema is performed by the database system. Tnis mapping is

built as the objects are made knoun to the database system.

38

In ROL the CREAIE <object> comands are the primary

commands employed to specify the conceptual and prysical

schemas, The database system will construct a data

dictionary for each object. This includes maKinq the object

known to the system# reserving appropriate storage, and

describing the appearance of the object (e.g., number, size,

and type of attributes). In order to design the physical

and conceptual schemes, CBA must Know the organizational

structure and must understand database normalization, the

database system architecture, and the concepts of data

sharing and ownership.

t. Organizational Structure

Since DBA is responsible for ensuring that the

database reflects the 'real world' of the organization It

supports, there Is ample justification for a good working

knowledge of the organization. The objective is'to develop

a plan which will accurately reflect the oroanizational

requirements without a need to continuously redesian the

database. Although it is tempting to limit the application

to one functicnal area like ;ersonnel, UA must be aware of

the relationships between tPe personnel and other entities

in the organization, wLthout a total orcanizational picture

DOA will ultimately be faced with redesign to meet the

orqanization's needs.

39

N.......................................

2. Normalization

In order to enhance database reliability and reduce

redundancy# a solid foundation In relational datatase design

principles is required. Cne extremely important aspect is

the DBA's understanding of normalization. Once a specific

normal form Is established for a database, LEA must realize

the possible implications of deviations from a tnis normal

form and should document the exceptions. Normal forms are

not specifically discussed in this thesis and the reader is

directed to (nef. 71 for more information,

The RDM 1100 system$ like most existing relational

systems, requires only tnat all relations be in first normal

form. This normal form stipulates that each attribute value

in a relation must be atomic. That is, the value is not
P

decomposable. Further, there is only a single-value

selected from the specific domain for an attribute. Higher

normal forms must be enforced oy CBA,

3. Database System Architecture

DBA must also understand the architecture of the

database system to exploit efficiencies or avoid

deficiencies. Since database users do not have static

applications and the data stored is also dynamic, DBA must

know how to monitor and enhance performance, if possiblet

when user requirements can no longer be satisfied.

requirements.

40

% ~ ~ ~ ~ ~ ' --- i., ,- . .. • - -. .. * .. . ,

4. Data Sharina and OwrersPti

One of the primary reasons for employing a database

management system is to snare the data among users. Itis

provides a reduction In the storacq o redundant data and

alleviates the possibility of anomalies associated With

redundancy* The concept of sharing data must be tempered

With the requirements of user needs and information

security. Therefore, a meas must be avalleole to provide

control over the data and to permit the controlling

authority to decide who will have access to the data he

controls,

In ROP 1100 the control of data Is a function of

ownership and access rights. The creator of an object is the

owner of that object. Objects wnich may be owned are

databases, relatlons, views and stored commands. The owner

of the object must explicitly perrit other users (less DBA)

to access the object or portions of an object (ee.ge

specific relation attribute values). For a more detailed

discussion of ownership and access rignts, see Section IV C.

S. Recommendations

In database design the first step is to develop a

strategy to Meet the organizational information

requirements, Since the conceptual schema is the

comprehensive data description of the organizational

Information structure, the second step would entail the

designing of the conceptual schema. By usinq this approach,

41

date Independence can be maintained which will prevent the

modification of applications programs due to changes in te

physical database, Further, the dependencies between the

conceptual schema and user requirements can be documented to

ensure changes at the conceptual level will not result in

changes to the applications programs.

It should be noted that DBA must control the

creation of relations and Indices in such a manner so that a

specific normal form can be maintained. In addition to

conforming to the lmposed-ncrral form constraints, each user

creating relations to satisfy his own needs must not violate

the relations of the database supporting other users, Such

violation will certainly contain excessive and redundant

information, and undermine the Initial database design.

Additionally, If Individuals sharing a database are

permitted to create objects at will, the sharing of aeta by

all users may be subverted and the database could rapidly

deteriorate to a user-deterrined tiling system.

C. THE DATABASE CESIGN - THE EXTERNAL SCHEMA

As Important as the physical and conceptual schemas are

to the Implementation at a single database, the

establishment of the external schema Is critical to the

userso In considering divergent user application

requirements, the external schema provides the means to

define precisely what will satisfy each users information

42

5 9;'%J - ; *.' 5. .".... .'. ,.*... .. "..;-..-.---...-... -..-. .-.

needs* The external schema ot the database is different for

each user or group of users. Tlese senemas are composed at

subsets of the conceptual schema. The definition of the

contents of a particular external schema Is normally

accomplished through access control at objects existing at

the conceptual level. By restricting the relations,

attributes, stored commands, and/or views available to a

user, a subset of the entire database is defined.

A user's access to the database is aetermined by the

user's access rights. The access rights of a user are

authorized by DBA and consequently CBA controls user access

to the database. In addition to the verification and

matching of host ID and host-user ID to the database

system-user ID# these access rights are the only means for

access control In the majority of database systems, In RQL

the PERMIT and DENY commands on physical objects, virtual

objects, and stared commands can be used to establish the

various external scnemas of the database.

I. Permit/Deny Access

There are two access rights which must be available

in a database system to provide a user vith the appropriate

level of Information. These access rights are read and

write. Execute privileges can be Considered a special case

of Indirect read/write just as create can be a special case

of write.

43

- _ ~~~~~~~~~~~..... ,..-..... ...- .. ',,. -. .o., ,, , ,.,

Trie two commands in RQL which assign the access

rights are PERMIT and DENY. The PERMIT command grants a

user a specified access right over an object or commana and

the DENY command revokes or removes such access rights*

DENY Is primarily employed to revoke a previously grantea

PERMIT,

The access rights available in ROL are READ, WRITE#

EXECUTE, and CREATE. PERMIT READ provides access to the

specified objects (relation, view or named attributes of a

relation or view). To modify or add data to existing

relations in the database a PERPIT *RITE for the user or

*group of users on the objects or portions ot objects must be

*explicitly authorized, The keyword ALL can be used to grant

read, write, and execute privileges to a user or group of

users. Only the owner of tte otject Is authorized to DENY

access to the objects

There are two cases of implicit access in RDO 1100.

DBA is authorized access to all objects in the database to

which he has not been explicitly denied access by the owner.

Even It access Is denied to DBA ty the owner, DBA may still

destroy the object by deleting all references to it in the

database relations (non-user). Additionally, the owner ot

any object is permitted access to that ocject. All other

accesses must be authorized by the oaner of the object.

This is the essence of the access control system.

44

- -. -- - -

.iID "!****J~ .**

2. Create Physical Otleets

The database management system must provide

facilities to create physical objects in tne database,

Initially, the database must be created with an assigned

DBA9 Following this, the physical objects in tne database

must be created. Although an index is not a physical object

which may be manipulated by the user, it is discussed In

this topic,

In ROL the right to execute the CREATE DATABASE

command must be explicitly granted by the system DFA, Once

a user has authorization to create a database, the execution

of the CREATE DATABASE compard makes him OBA of the namred

database, To add new users to the database, DBA employs the

database administrator utilities EDSAU) program. The DBAU

NEW..USERS command assigns the host-user ID and host ID and

places them In the HOSIIUSERS relation, The DESTROY

DATABASE command can only be executed by USA, (i4e., the

owner of the database).

CREATE <objects) is also controlled through the

PERMIT and DENY Commands, The permission Is similar to

CREATE DATABASE in that only COA for a particular database

may authorize the creation of objects, Relations and

Indices are the physical objects which a user may be

authorized to create. Only the owner ot a relation is

S allowed to create an Index on the relation using the CREATC

INDEX command. However, the DBA must authorize the owner

45

-- a a a . . * * . U - *P * . - _- "" . .- "

q

use of the CREATE INDEX Cormand. Each of the abcve

discussed commands has a counterpart for revocation, only

the owner or CSA may destroy relations and indices.

3. Create Virtual Oblects

Once the physical objects are created, It is

necessary to create the virtual objects In the conceptual

schema which will define the external schema for each user.

Views are the virtual objects wtich a user may be authorized

to create.

CREATE VIEW requires the user to have access to the

relations over which the view Is defined. Only the owner at

the view may destroy the view with the DESTROY <ooject>

commands

49 Access Via Stored Commands

Finallyr an indirect read/write (execute) access is

necessary to allow users to extract information fram the

database through the use of stored commands. Stored command

Is an ROL term for a user defined function or procedure.

Although this feature may not be available in every database

system, it is very useful and powerful when provided. In

addition to the efficiency issue of stored commands

discussed previously# it is mucn easier tor the user to

execute stored commands than to input long queries, in RQL

PERPIT EXECUTE allows a specified user or group of users to

execute stored commands.

46

" ,............" *
.. .. , , , " " , ,",",°, . , ',..,,, -".'.-. , .'

'4

5. Recommendflations

There are three methods for providing an external

schema to a user or group of users, The first method 1s

through restriction of access on the physical objects in the

database. The second method is to define virtual relations

which consist only of the necessary subset of data the user

Is required to access. Finally, the third method entails

the extraction of information tro the database through the

exclusive use of stored commands.

In ROL the major problems with the tirst two methods

are the addition and deletion of data and implementation ot

ALL9. As mentioned In Section III there are too many

restrictions on the use of views for updating database.

Additional problems can arise using the first method as a

result of the system assigning default values to attributes

which are not explicitly listed In an APPEND command. For

example# an insertion of a tuple with a blank key field

(employee number) for a new employees salary and name would

result in a tuple containing the employee's name and salary

with a blank key field. A separate insertion containing the

employee number and name would result in two tuples In the

same relation for a single employee.

The stored command can be executed without granting

the user access rights to the relation(s) which are accessed

by the command. However, exclusive use o stored commands

for Information retrieval Is not reasonable since

47

W% . v - - .*, , -. *.,*.- -. . , . .- . . , -

anticipation of every query which a user Could PossiIly

require Is not possible,

There Is a trade-off between access control,

performance, and relational perspective. Each of these

Issues requires the sacrifice of one of the trade-ctt

features. In order to resolve this probleme, a Combination

of the prescribed methods Is required, The use of stored

command; to Input and delete ddta in a well structured

database removes the restrictions on tne use of views.

Further, stored commands cao force the entry of all

mandatory attribute values tor a tuple through parameter-

argument matching which eliminates the duplicate tuple

problem described above. Combining stored commands for

updating with the use of views to define the external

schemas would provide the most logical approach, In order

to employ this strategy a major system change Is reouired In

the Implementation of ALL.

First, It should be obvious that the most logical

mechanism for producing an external schema is the view.

However# the major problem is the necessity to provide

access to the ATTRIBUTE relation to permit the use of ALL

with the view name. Therefore, ALL should be implemented

such that only the attributes or relations the users are

authorized to access are returned. Tnis should not carry an

implicit access to the ATTRIBUTE relation. Access to the

ATTRIBUTE relation can be restricted by Implicit use ot

48

user-id predicates on all queries on data dictionary

relations. The performance issue results from the

implementation of ALL in the host and the resultant

communications between the host and the backend to process a

query containing ALL. This performance degradation can be

rectified by Implementing ALL in the backend relational

database machine.

Do SYSTEP SERVICES

The third area is the services provided to DBA by the

system. DBA will use these services to facilitate system

backup$ crash recovery and provide information about the

database. The system services establish a nucleus ot

information and facilities which DdA may be required to

augment for his own personal preferences and needs.

. system Backup

Two areas of system backup must be provided to CBA

to ensure proper system functioning. The first area is the

necessity of providing a means to record the contents of the

database when It is In a consistent state. Tnis is employed

most frequently by the system CBA and is addressed further

In the next topic on crash recovery,

The second area is the need to return the database

to a previous consistent state as a result of aborting a

transaction, A transaction is a single command or a series

of commands which must te left uncommitteo until the final

49

command has finished. This situation can result from a user

decision to abort his transaction prior to completion or the

necessity of rolling a transaction back as a result of

deadloCk. Deadlock occurs in a multiple user system when

one user holds a resource (e.g., relations) another user

requires and the second user holds a resource tne first

requires. In this situation, the system Is said to be

deadlocked since neither user can complete his transaction.

To resolve deadlock only one of the transactions must be

rolled back. The solution to user aborts is to restore the

database to the state it was in prior to the abort.

In RDP 1100 the function of backing up transactions

is invisible to DBA. The TRANSACT relation (to be discussed

later) is used to maintain the before and after attribute

values affected by the transaction for relations created

with the logging option. The BATCH relation is used for the

other relations. A transaction is by default a single

command unless the explicit comuands BEGIN cefore and END

TRANSACTICN after a group of counands Is specified. ABCRT

TRAhSACTION can then be issued after BEGIh and before END to

cause rollback. RDM 1100 employs an optimistic concurrency

control algorithm which does not prevent deadlock from

occurring. The resolution of deaalock is completely

invisible to the user and DBA,

50

" mum~- V i -i iS i S M II :I
'

' . =" T , e,. -.

2. Crash Recoverv

Anotner facility which must be provided to C8A Is

the ability to recover from a system malfunction. This is

particularly important when tie data on the disk has been

lost or contaminated. To avoid excessive time delays,

periodic copies of the entire database must be made to

reduce the amount of updating. The frequency of copying the

database is dictated by the number of enanges in a period ot

time and the time demands of the applications programs. The

normal method of recovery requires the most recent copy ot

the database and the transactions whicn have occurred since

the copy was made. Once the copy of the database is loaded,

the transactions are rerun to bring the database up to date.

Since the chronological list of transactions is the key to

recovery, it must be copied from the database on a frequent

basis even though the copying of the entire database may be

less frequent due to the tire required, Of course, some

transaction which were in progress or not in a transaction

list must be reinitiated by tte user.

RDN 1100 provides DUMF CATABASE and LCAD DATABASE

commands in the DEAU facility. Additionally, DUMP

TRANSACTION is provided to make copies at the transaction

1o. The command which allows rerunning transactions after

a LOAD DATABASE command has been executed Is ROLLFORWARD,

:1!

3. System Information

The database system employed must provide a data

dictionary and statistical information on the database

configuration and performance. A data dictionary contains

descriptive information about tle database. It must include

all the various schemes (physical p conceptual, external) and

should include cross-reference information such as which

programs use what data and synonyms.

In POP 1100 there are 13 system-supplied database

relations which contain descriptive information about the

associated database. In addition, there are seven system

relations which provide a global description of the database

machine.

The system relaticns provide a cataloq of the

databases In PCM 1100, a list Cf diSKs known to the system,

status and types of locks in the system (used for concurrent

processing), and the configuration of the communicaticns

interface to the attached host(s). Another system relation

provides information concerning the activity currently

taking place in the database. Two additional relations are

used to provide performance date.

Perhaps more important for DBA are the 13 relations

associated with each database. Each relation is listed

below and a brief description of the type of information

contained Is provided. The first 11 are used to supply data

52

. ., .. .* .* .nS .0 .

dictionary Information and the last two provide information

related to transaction management.

RELATION NAM4E CESCRIFTICh

RELATION A single tuple is provided for each

object in the database. This tuple

includes, as appropriate, the namve of

the object, owner, relation identi-

ficatLn number, size, location,

number of tuples and their length,

type of object (user, system, trans-

action log, file, view or stored

command), and the number of

attributes.

ATTRIBUTE A tuple Is entered for every attribute

in the database. This tuple includes

the attribute identification number,

data type, maximum length, associated

relation IC, and attribute name.

INDICES Each index has a tuple In the rela-

tiono Ihe attributes Include the

Index Identification number, relation

ID, number of attributes in the Index,

location, and attriloute ID(s),

53

PROTECT Contains information associated Witn

the explicit access authorized on objects

for users In tne database.

QUERY Contains the stored commands and

views.

CROS8R[F Describes the dependencies amonq

relaticns, indices and stored

commands in the datacase. The depend-

encies are system defined and not user

specified.

USERS Describes the mappings between user

Identification numbers, names, and

user groups.

HOST.USERS Cetines the mapping between the nost

£0, host-user ID, and ROM 1100 user ID,

BLOCKALLOC Catalogs tte sector assignment within

a zone, Eact tuple represents a sector

and the assigned ooject.

DI3K.USAGE Describes database disk allocation.

DESCRIPTIONS ContaiLrs user-specified, textual

descriptions o objects and attributes

In the database,

54

111 , ..
- . , , -

.,._.. ,., . -. - , , , . ,.

BATCH Contains temporary loqging Lnformaticn

used by the system for transaction

managerent. This relation provides

information on transactions against

logged and non-logged relations so

they can be canceled if required.

The transaction information is held

until the transaction is committed.

TRANSACT Permanent logging information used

tor crash recovery.

All of the above relations provide the comprehensive

picture o the database. Although the Information is In the

relations, much of It Is rOt In a usable format. For

examplep only the RELATIGN relation contains the textual

name of a relation. Other relations use the internally

assigned relation XD. Further, some of the Information is

encoded. In order to translate this information into an

understandable format ODBA rust develop stored commands

(preferable to ad hoc queries). The number of stored

commands will be dependent on the desires of DOBA. However,

a minimum subset should include commands to list the

relations, attributes, indices, attributes in an index,

access list associated with an object, description of an

object, and dependencies.

55

If III II

The followinq stored coRmands are used to yield the

minimum subset. TABLES is used to provide a list ot objects

by type (CBA-supplied parameter to TABLES). For relations,

relation name, type# and the nuirber Of attributes and tuples

in the relation are provided. FIELDS provides the relation

name (parameter specified by CBA to FIELDS), attribute rare,

data type of the attribute (bin, char, int, etc.), and the

length of the attribute tor every attribute in the relation,

ALL.INDICES provides a list Of all Indices on user relations

in the database. The inforuation provided Includes the

relation name, Index identification number, number ot

attributes in the index, and a narrative description of the

type of index, An additional command, INDEA.LIST, is used

to. provide the same inforration as ALL.INDICES except a

* relation/view name Is passed as a parameter and only the

indices on that relation/view are returned. ATT.IN.INCXI

and ATT.XN.INDX2 are used to list tne attributes in an index

by name. These commands require two parameters; the index

ID and the relation name. The reason for the development of

two separate commands Is the readacility of the output.

PROTECTION provides the object nare, user name, and type of

access authorized for an object which is passed as a

parameter. Another command, ACCESS.LIST, is provided to

describe an object and the associated access list for a

particular object. WHATI provides a narrative explanation

ot Its parameter from the DESCRIPTION relation. DEPENDS is

56

used to provide a list of the dependencies on an object.

FLnally, another useful comirad Is *HOCREATES which provides

a list at users who have been granted create permission in

the database. ROL constructs tor the stored commands

described above are provided In Appendix A.

4. rranslator

Upon implementation of a relational database, it

w111 be necessary to load the data Into the system. Since

the data exists on some storage device (disk, tape, etc.)#

there should be a mechanism for presenting the data to the

system for immediate loading in a relational format.

In RDP 1100, assuming the data can be collated as a

sequence of records on a disk or tape, the 'translator' can

then be used to load the database on a relation-by-relation

basis. The *translator' will ask a series of ouestions to

ascertain the incoming data tormat and establish the

relation schema. The following questions must be answered

for a relation. The answers are parenthesized.

1. Output directly to the PRM? (y/n)

2o Input file (name)

3o Database (name)

4. Name of table (relation name)

S. Name of 1st field (nafre of first attribute)

6. Enter Input type and length (input tile format)

7. Enter output type and length (c12p Ill etc.)

57

9, starting position (input £11e)

(Questions 5 through a are repeated tor each

attribute.)

9. Record length (input file)

£ K USER SERVICES

The fourth area Is DIA support provided to the users of

the relation database system* OBA should provide

services/facilities to the users of the database depending

on their applications and experience level, A discussion of

user services In two general areas will be addressed. These

areas are providing a help facility and providinq stared

Commends.

1. HOLD Facility

As with any interactive system# a help facility is

required to preclude tiii*coniumingf trial-and-error

corrective procedures. For a relational database system the

help facility should Include# at a minimum, the syntax and

explanation of every language command and an explanation ot

the stored commands# relaticns, and views.

In ROL this can be accomplished by creating a help

relation with three attributes (object, line numfber, ana

text) and defining a stored command which given an object as

a parameter will explain its purpose or usee The storeo

command must contain appropriate preolcates in the WHERE

clause to ensure the user can only retrieve Information from

58

4UP;Y.

-J

the help relation about objects which he is authorized

access. An example of the help relation and stored commana

Is provided In Appendix A.

2. Stored Commands Provided by OBA

OBA'must have an In-depth knowledqe of the query

language. It Is not reasonable to assume that the average

user will become proficient in tne use of the query

language. Both query lanquage complexity and performance

Issues must be considered. The examples in Sections III and

V demonstrate some of the corplexities In RQL. LBA will ce

required to assist the user Ir the proper formulation of

some queries. In addition, the users will look for

assistance when confronted with any perceived problem in the

database. Since DBA Is a database expert, the user will

naturally request his assistance.

In addition to applications oriented RQL stored

commands, which are not discussed, DBA should provide

commands similar to those described earlier In this section

for the user. Specifically, CEPENCS, *HATIS, PRCTECTICh,

ATT.IN.INDX1, ATT.Ift.INDX2, INOEX.LIST, FIELDS, TABLES, and

HELP Should be provided. The only difference between the

DBA commands and the user's stored commands Is the inclusion

of the necessary predicates in the *HERE clause to limit the

response to data which the user has been granted access.

Other minor modifications way also be desired. For example,

TABLES could be parameterless and return all relations,

59

views, and stored commands to which the user has access.

PROTECTION Could be modified to return only the accesses on

objects the user owns.

Fe SECURITY

The fifth area for DBA concern is the security of the

database. The security of a data ase system is plagued with

the same problems associated with computer security in

general. The normal mechanism for security Is access

control. Since a database system Is attached (backend) to a

host, the security measures provided by the host are the

first level of security afforded the data ase system. The

user ID-password logon procedure employed by general-purpose

computers can be used for database systems to provide the

same security checks, Additionally, a host ID check in

conjunction with the previously mentioned validation can be

performed when a backend system is used, Security Is also

afforded by the backend machine configuration since the

database machine Is separate from the host and uses Its own

disks for data storage.

The tirst security check performed by RDm 1100 is the

verification of the host and host-user ID. These JDs are

verified each time a request Is made from tne host to the

backend machine, Since the security of the database Is

closely associated with the security of the host, the use of

passwords on the host for Identification and verification is

60

..*** *** *

essential. The user ID-password logon procedure is not

employed in RON 1100 but Is taken tram the host which means

there Is not an additional IC-password required for the

backend machine. In addition to the veritication and

matching of host ID and host-user ID to the database

system-user ID, the access. control rights are the only

security mechanisms avallacle in ROM 1100.

There are two Implicit access rights In ROM 1100. The

owner (creator) of any object and DBA are permitted access

to that object unless explicitly denied by the owner. All

other accesses rust be authorized by the owner of the

object. This Is the essence of tte security system. The

remainder of this topic will discuss specific security

weaknesses In the RON 1100.

1. Security Aspects of 'ALL*

A crucial aspect for security Is the Implementation

of ALL. ALL Is used In a query as a synonym for every

attribute of the relation In the target list. As previously

discussed, there Is not a user ID qualification associated

with ALL. Therefore, the translation of ALL to Its

attribute equivalents Is based on the object (relation or

view). ALL does not work with a view or a relation unless

the user has READ access on the AITRIBUTE relation.

However, once this access Is authorized, the user can

examine the entire conceptual schema which Is certainly a

violation of security.

61

2. System Messages

The use of relation.attrlbute(s) or

view.attribute(s) In the target list returns two separate

error messages It read access to the object is rto

permitted. One error message (permission denied on ...)

Indicates the attribute name Is valid but access is not

authorized. The other error message (... not found) can be

interpreted as the attribute nare is non-existent. Althougn

extremely tedious, the error ressages can be used in a

trail-and-error method to obtain the conceptual schema.

3. Use.r Identification Numbers

Another serious weakness In the security of ROL is

the deletion ot a user frot a database. The easiest method

Is to delete the user from the HOST.USERS relation which

will prohibit him trom opening the database. However, if a

new user is added to the database from DSAU and the system

assigns him the UID which was previously assigned to a

deleted user, the new user will Inherit all the accesses

which were established by ODA and owners for that UID. This

Is not acceptable since there should not be any implicit

authorizations for a new users

4. Recommendations

The recommendations for correcting the

Implementation ot ALL are discussed in Section IV CS above.

Although not as informative, the return of a single error

message for both access denied and relation.attribute not

62

UAL , II i."

found would provide less Information about the conceptual

scheme ot the database. From a user's perspective It does

not appear to be significant whether access is denied or the

object is not In the database. The critical issue Is to

avoid divulgence of the conceptual schema to a user not

authorized this information.

The two methods for correcting the user ID problem

are the explicit deletion of all access rights in the

database (PRQTECT, USERS HCST.USERS) for the old user by

OBA# or providing a Command In the DBAU to delete a user

trom a specified database which will explicitly remove all

the accesses the user has been granted. The second metnod Is

preferable to the first since the system should orovide this

service to DOA.

G. FINE-TUNING PERFORMANCE

The last area of concern for OBA Is the performance

enhancement of an existing database. Given that a

relational database system has already been selected and the

overall performance factors have been established, CBA

nevertheless does have a few tools at his disposal which can

enhance performance. There are features in the query

lanquaqe implementation which are more efficient than

others. For example, a Join can run faster depending on

which relation is held in cache. One language uses the last

relation listed in the query if other factors are equal.

63

Thus, the order of the relations could be important.

Another example Is the use of parenthesis to resolve

ambiguity In a list of logical predicates. These features

ae highly Implementation-dependent and will not be

addressed further. The other three features are data

reorganization, Indices, and data placement.

In ROL DBA will be required to develop a performance

monitoring strategy which may include the periodic execution

of stored commands specifically designed to collect

performance data,

1. Date Reoroanization

As data is added to and deleted from the database,

there Is an associated fragmentation of relations in

physical storage. Even though many database systems provide

the capability to reserve extra space for relations, this

will result only In a delay of fragmentation. The extent of

traomentation must be monitored and fragmentation eliminated

when necessary,

DIA may specify the number of blocks for a database

and for a relation In RQL. Additionally, FILLrFACTORs can be

specified for clustered Indices on relations@ This

FZLLFACTOR determines the percentage of each disk block

which will be used tor the data In the relation when a

clustered Index is created, When the fraqmentation becomes

excesslve, the clustered Index can be destroyed, recreated,

and a new FILLFACTOR assigned. This procedure will resort

64

- ". ,

the data In the blocks available for the relation. A

relation will be allowed to grow until It uses all the

blocks It is authorized or all blocks in the database are

full. Since blocks are not re-used when data is deleted

from a relation, this will result in reacninq maximum block

capacity and fragmentation. C8A can monitor this activity

bY writing a stored command or the 8LOCAS relation. The

ability to eliminate fragmentation for a non-indexeo

relation will depend on the nurber of tree consecutive

blocks available In the database. It enough blocks are

avallable, the data can be retrieved Into a temporary

relation defined over the empty blocks, thne original

relation destroyed, and the temporary relation renamed.

This strategy can also be employed when reclustering does

not offer a satisfactory solution to fragmentation.

Indices can enhance the performance of a database

for data retrieval. CRef. 23 and (REf. 33 have documented

the actual enhancement In RCM 1100. Since Indices are

application-orlented, they are highly desiracle tor

databases where the majority of operations are retrieval o

data over large relations or relations Vnich are fairly

static can be identifled. If numerous uadate and append

transactions are envisioned, then a degradation in

performance could result due to the constant updating of the

Indices. Therefore, OBA should be aware ot the size at the

65

~' ~ YC*~%~<~. ~lei:>

F--

relations and types of operations performed on the

relations. For example Itf insertion is prevalent then

avoidance ot Indices on the relations which require numercus

APPEhDs, if possible, may reduce degradation.

3. Date Placement

Hypothetically, the placement of data on disks can

enhance performance. For example# if a join between two

relations is pertormed frequently, then placing the

relations an separate disks will reduce disk head movement

as data Is moved Into cache. Although this hypothesis has

not been verified due to the lack of facilities tor placing

data In ROLr the data placement strategy should re

considered when explicit assignment ot physical storage Is

available, This could be even more significant wsen

processing data on-the-fly is realized, considering the

speed discrepancy between reading data and moving disk

heads*

66

,.~~ .. s...

.I%-. ~ .~. :-*

V. EVALUATION Of THE RELATIONAL SYSTEM

A. THE FULLY RELATIONAL SYSTEM

1. The Fully Relational Characteristics

The definition o a Ofully relational" database

management syster Is given by Chris Date CRef. 73. Date

suggests that most existing systems are not fully

relational, The primary benefit of considering fully

relational as a standard and goal tar Implementation is in

the algebraic power ot the language and tne consistency of

system supplied functlons. If the system Is deficient in

any cnaracteristics which Cate describes, appropriate action

may be taken to provide a semblance of a fully relational

systems First, the concept of fully relational Is defined;

then a comparison of RDP 1100 and RUL to the definition is

addressed,

In order otr a database to be characterized as fully

relational it must support the following:

as *relational databases (including the concepts of

domain and key and the two integrity rules)W"

b. "a language that is as powerful as the relational

alqebra (and that would remain so even If all

facilities for loops and recursion were to be

deleted)," (Ret, 7]

67

II III I* M ** #* &**~-**..,* ****** '~
:
.. "" .''". "', ,, "" '" " '

.w - ~4 v.~...- 4 b 7 7 V7 a- I..

A relational database exhibits the tollowing

properties:

a. Relations are in first normal form.

b. Associations between relations are explicitly

connected through common attributes.

C. Every value appearing in a given attribute is taken

tram the domain for that attribute,

d. Every relation has a unique primary key which

distinguishes (identities) individual tuples.

In addition to the above properties, two integrity

rules are required. First# a null value is not permissible

as an attribute value at a prirary key. Second, it a

relation A has an attribute value which is also the primary

key of another relation 8, then at all times the attribute

values In relation A must exist in d. This rule prevents the

missing linkages among relations %hen attribute values are

added to relation A or removed from relation 8,

2. Four Areas at Oeticiency

There are tour areas In which ROM 1100 does not meet

the requirements for a tully relational system. First,

although specitication of the schema includes data types for

each attribute, no notion ot an underlying domain is

incorporated. Since attributes are defined by general

length and type comparisons o attributes are limited only

to similar types (e.g., character with character),

68

II II E i EM
l ' ; , d -

". A -
*- *',, . .,' . . , "-. .. , *.,

meaningless comparisons are allowed. Oithout the concepts of

sets, enumerated types, and ranges available in higher order

languages such as PASCAL or ACA, the support of domains will

always be questionable,

Second, the requirerent for a unique primary key Is

not enforced. The uniqueness of an attribute value can be

enforced by declaring a unique Index on one ot the candidate

keyso However, this associates an access path with the

concept of a key. These are twc logically separate issues

and as such should be dealt with separately, since the

existence of a candidate key does not imply the need for an

access path on that attribute.

Third, nulls are not Implemented In RDM 1100.

However, the default values for integers Czero) and

characters (blanks) are provided for unspecified attribute

values. Tuple(s) may be entered into a relation without

values for the key fields. Even If unique attribute values

are enforced through index specification, at least one tuple

with the default value in the key attribute will be

accepted.

Finally, relations are normally connected through

the repetition of some (or all) ot the key attribute values

In one relation A and in another relation Be However, there

Is no mechanism to ensure relation B does not contain a

value In the connecting attribute which does not exist in

relation A.

69

3. The Relational Coroleteness

RDM 1100 performs all the relational algetra

operations defined In Section III with one exception. This

exception deals with the elimination of duplicate tuples In

the results after applying certain operators (projection#

division, natural join, etc.). For example, although the

result relation may appear to satisfy a natural join, it is

obvious that duplicates are not a priori eliminated, since

the elimination is a ftnctlon of the associated projection.

Addltlonally, a projection of an attribute In a relation

with duplicate entries will return all the values In the

attribute without regard to duplicates. A join could be

simulated by forming a Cartesian product of the two

relations, applying the predicates to the product,

extracting the concatenated tuples which satisty the

predicates, and projecting the attributes from the target

list.

D. COMPARISON CF TWO QUERY LANGUAGES

This topic provides a comparison of RGL and SQL. The

selection of SL as the comparative languaqe Is based on the

relative familiarity of a large number of people with the

language and Its widespread use.

The power of the two query languages Is practically

Identical. Both languages are relationally complete which

70

p I •m•n []mu~m-*a .. . : : . , .. ". " j..'

impliesN

a, Any relation derivable from the database relations

-Iusing an expression in the relational algebra can te

retrieved using the language, and

be Any derivable relation can be retrieved using a

single statement In the languages

2. Differences In the SYntax Structure

The major difference between SL and ROL is the

syntactic structure. Using the database in Figure 1 from

Date, an example of the two query languaqes will be qiven,

This example is a query to list the names of all

suppliers who do not provide part .P2". As can seen from

inspection of figure I the answer would be one supplier,

ADA1S,

SOL$ SELECT SNAPE

FROM S

WHERE 'P2' la ALL

(SELECT PmNP

FROM SP

The query as stated In ROL is:

ROL RETRIEVE (S.SNAME) WHERE 0 a ANY (SP,P.NR BY

-,SNAME

WHERE SPP.NP z "P2"

ANC SS.NR a SP,S.NR) GO

71

~%0 ~ % ~ ~ ~ .,-**-,.**31.**,.

SEIENR SNP ST.ATUS CITYZ

51 SMITH 20 LONDON
62 JCN S 10 PARIS
63 BLAKE 30 PARIS
54 CLARK 20 LONDCN
85 ADAMS 30 AlnEMS

P.Nt P~mCOLcR IKIGHT1f

P1 NUT RED 12 LONDCN
P2 8CLT GREEN 17 PARZS
P3 SCREW BLUE 17 ROME
P4 SCREW RED 14 LONDCN
PS CAP BLUE 12 PARIS
P6 CCG RIO 19 LOC4DCN

a-No PUINR QTY

31 P1 300
31 P2 200
81 P3 400
S1 P4 200
Si P5 100
81 P6 100
82 P1 300
S2 P2 400
S3 P2 200
84 P2 200
S4 P4 300
S4 PS 400

Figure 1 The Supplier-Parts Catabase

72

without regard to Inplenentation the above queries

are resolved as follows:

a. In the SQL example the sets of suppliers and the

parts they supply Is formed by the nested select. Then

the outer select will return a supplier's name. if and

only It the set of parts sup;lied by that supplier dces

not contain "2".

b. In the ROL example the "by" clause establishes the

same set as the inner select of the SQL query, Then the

two boolean expressions are evaluated with the "and"

conjunction. If no tuples satisfy the conditions for a

given supplier, then the value of ANY (tuple) is O. If

ANY is 0, the qualification evaluates to true, and the

suppliers name is returned. 98,.NR • SP.S.NR Insures

that suppliers In the 5 relation but not In the SP

relation are not Ignored (i.e., that a sucplier who

supplies no parts will be Included as a tuple In the

answer to the query).

The syntactic structure of the example demonstrates

the major differences in the two languages. SQL Is highly

structured# with nested select. On the other hand, ROL

does not permit nesting of retrieves but allows nesting o

aggregate functions to Perform the sae operations,

Althouqh it would be purely subjective to favor one method

over the other, It appears that the structured approach of

SQL may be easier to learn Initially. However, once the

73

aggregate functions of ROL are mastered, the lack ct

redundancy may be more attractive.

3. Other Differences

RDM 1100 does not irPlement nulls9 but does supply

default values (zeros for nureric fields, blanks tor

character fields). Therefore, tne results of the scalar

aggregates and aggregate functiors (AVG, MIN, tAX, and SUP)

are not always predictable. this Implies the user must be

extremely knowledgeable about the database and use the

aggregates with caution (e.go, explicitly exclude zero

values from aggregation). In SOL queries can be constructed

with *no null" as a qualifier and the tuples with null

values in the attribute being aggregated will not be

included In the returned value.

SQL uses "ALL, *HAVING,# *N and others to

provide a more set-theoretic description of database

manipulation. ROL provides the same capability In the

aggregate functions but tte concept of set manipulation is

not explicit. ROL provides a IPC" function and some string

manipulation functions which are also available in SOQL The

string manipulation functions extend the power of RGL

particularly when working uith database relations (i.e.,

non-user defined relations) which have attributes encoded as

binary values,

The 'PNCP function is not correctly Implemented for

negative numbers In ROL or SOL. It returns the modulo class

74

I I I - - --- I -- * * . -- -
iHH~iill Pallia Ialill~iai***%* + i I '* :PP+ P "[,'']' .

of the argument as 1 the argument were a positive integer

and 'attaches" the original sign. For exampler -1 mod 8

-CI mad 8) a -1. To avoid this inconsistency and to

correctly Implement the mathematical detinition, the

following nested application of mod Is required for modUlo

mod (mod (ARGo 6) + 8 8).

The actual function Implemented appears to be a remainder

function which would be consistent since both query

languages are Implemented in the programming language C. C

has a remainder function but not a mod function.

75

1'. = l ;E ,% i .1*,i . ,b* 4.,., '.-'- '.

Vil CONCLUSIONS

There are three major areas in Which DSA Must be

* knowledgeable in order to ersure the successful manaqement

ot a database system, These areas are the user services.

performance *flhaflcementsp ard security factors* The

specific relational database management system or backend

machine employed will dictate the amount of DBA support

required in each area.

The user services Include the stored commands provided

by VIAO the loading of data into the system, the recovery of

the database as a result of system malfunction, and a help

facility, Although these are not comprehensive and the

exact amount of support will be discretionary on the part ot

DBA, they do form the nucleus for DBA's planning of user

support, This support Is critical to the acceptance and use

of the relational database system by the user community.

The basic tools DBA can use to enhance performance are

the Implementation of the language features# indices, and

data placement, The perforrance enhancement which can be

gained from the query language Is only achievable If OSA has

a solid understanding of the language and how It is

implemented. Certain features of the language will be

* executed faster than others and since there are numerous

ways to form a query to obtain the same information,

76

knowledge about these characteristics can achieve more rapid

responses from the database. Therefore, DBA should review

user commands In applications programs and provide guidance

to users for the purpose of exploiting the more raplo

features. Of course, the specitic features will vary

between languages.

Indices provide another performance tool in databases

where retrieval and joins are the primary operations. Even

It these operations are not the most prevalent, indices may

still be employed to enhance performance, If the database

has a large number of insertion operations, then avoiding

the placement of Indices on the relations which are changing

frequently will not result in serious degradation

attributable to the index updating* Additionally, If

relations in this type of database ohich are not subject to

frequent Insertions but are used In numerous retrieves and

joins can be Identified; then placement of Indices on these

relations over the appropriate attributes *111 enhance the

overall performance of the database system.

The ability to explicitly place oata In the database

should provide a more responsive system. In order to take

advantage of data placement CBA must know what relations

exist in the system and which ones are joined on a recurring

basis@

The security aspects on a relational database system

should be a critical Issue for DB,. Since a single database

77

will be used by various users in the organization, there

will be data which certain groups of users do not require to

perform their functions and wore importantly* they shoula

not be allowed to access. Although there is more to

security than access control, this appears to be the only

mechanism available to DBA to Irplement a security system in

the database. Consequently# access control should be

employed to restrict the data available to the users and

slmultaneously, provide a relational database perspective to

each user.

In RDN 1100 there Is a trade-ot between security,

performance, and relational perspective. There were three

methods discussed to provide a single external view of the

database to a user or group of user. Each of these methods

required the sacrifice of one of the traoe-off features and

In order to resolve this problem, a change in the

Implementation of ALL Is necessary,

The features and Issues discussed In this thesis should

provide OBA with some guidelines and topics to investicate

which will make his database system acceptable and

responsive to the users. Although the success or failure of

any system cannot be realistically placed on a single

Individual, It appears DBA will be more responsiole than any

other person connected with the system if It does not meet

the users perceived needs,

78

APPENDIX A

EXAMPLES OF STORED COMMANDS

DESTROY ACCESS.ILIST GO

DEFINE ACCESSIPLIST

RETRIEVE (RELATICNeNAMEt BELATICNeTYPEt

FIELDS a RELATIOtJ.AjTChTv RECORDS :RELATIONTUPS#

USER a USERSONAME)

WHERE RELATION,NAPE a SO

AND PROTECTeRELID a RELATZCNsPELID

AND P9OTECTsUSER a USEPSeZD

AND MOD (INTI (SUBSTRING Cl, le PROTECT.ATTMAP))p 4) *1

ASSOCIATE ACCESSIELIST WITH *RETURNS ACCES3 LIST FOR AN

OBJECT" GO

ALL..ItDICES

DESTROY 13TATUS GC

CREATE IATUS (STATUS a Ile CISC a C30) GO

APPEND TO 13TATUS (STATUS a 0,

DESC a NNONUNIG-NONCLUS-NO DEL SILENT")

APPEND TO 137ATU3 (STATUS a 1,

79

CESC : "UNIQ-NCNCLUS.NO DEL SILENT")

APPEND TO ISTATUS (STATUS a 2v

DESC a "NONUNIC-CLUS-NO DEL SILENT")

APPEND TO ISTATUS (STATUS a 3,

CESC a "UNIQ*CLUS-NO DEL SILENT")

APPEND TO ISTATUS (STATUS a 4v

CESC a "NONUNIC-NONCLUS-DEL SILENT")

APPEND TO ISTATUS (STATUS a 5,

DESC a "UNIQ-NCNCLUSoDEL SIL.NT")

APPEND TO ISTATUS (STATUS z 6,

DESC a "NONUNIO-CLUS-DEL SILENT")

APPEND TO ISTATUS (STATUS a 7v

CESC a "UNIO-CLUS-CEL SILENT")

PERMIT READ OF ISTATUS TO ALL

DENY WRITE OF ISTATUS TO ALL GC

DESTROY ALL.INDICES GO

DEFINE ALL.INDICES

RETRIEVE CREL a REL.NAME (INDICES.RILID), INCICES.INDID,

INCICES.ATTCNTp ISTATUSDESC)

ORDER BY REL.NAPE CINDICESRELID)

WHERE ISTATUS.STATUS a PCD (MOD (INDICESeSTAT, 8) + 8 8)

AND RELATICN.RELID a INDICES.RELID

AND RELATICNTYPE a "U"

END DEFINE GO

ASSOCIATE ALL.INDICES WITH "LIST ALL INDICES ON USER

RELATICNS" GO

so

e , . -." " , * . .- . ,o-- • ,-. *2-.*-2.- • . •. ~ ~

ATTIEIN.INCXI

DESTROY ATT.IN..INDX1 GO

DEFINE ATT.IIN.INDXI

RETRIEVE CINDICES.XNDIDe

ATTI a FIELD.NA14E (INCICES*RELIDP INTI (SUBSTRING

ATT2 a FIELD.NAIE (INCICESeRELID, INTI (SUBSTRING

(140 I, It4CICES.KEYS)))o

ATT3 u FIELC..NAI4E CINCICESRELIDP INTI (SUBSTRING

(240 It INDICES.KEYS)))o

ATT4 a FIELDUPNAME (INCICES.RELIDP INTI (SUBSTRING

(340 It INDCEcS.KEYS)))p

ATT5 a FIELD.MAPE CINDICESi'ELIU, INTI (SUBSTRING

(44, 1, INDICES.KEYS)))l

ATT6 a FIELD.NAME (INCICES.RELIDe INTI (SUBSTRING

(54p It INDICES.KEYS)))p

ATE? a FIELDIENAME CINCICESeRELIDe INTI (SUBSTRING

ATTO a FIELC.NrAME CINDICES.RELIDP INIl (SUBSTRING

(74o 1t INDICES.KEYS))))

WHERE INDICES.X'4ID a so

AND INDICESRELID a REL.ID C81)

Ewo DEFINE Go

A5SOCIATE ATTQINmINCXI WITH "LISTS NAMES OF ATTRIBUTES IN

INDEX" GC

ATTIIINmINCX2

DESTROY ATT.XN.EINVX2 GO

DEFINE ATT.IN.EINDX2

RETRIEVE (INDICESINDIDe

ATT9 a FIELDW.NAMEC(INDICES*RELIO, INTl (SUBSTRING

(94, 1t INCICES.KEYS)))o

ATTIO a FIELDmHNAME (INDICESRELID# INTI (SUBSTRING

(94, If INcICES.IKEYS)))#

ATTII a rlELD.NAME (INDICES*RELIDe INTI (SUBSTRING

(104v 1, IhDICES.I'EYS))),

ATT12 x FIELDE.NAPE (INOICES*RELID# INTI (SUBSTRING

(114, 1, INDICESa'EYS)))#

ATT13 a FIELDmNAME CINCICES*RELID# IhTl (SUPSTRING

(124s 1, INDICE5.KEYS)))

ATT14 a FIELDUNAME (INCICES*RLLID# INTI (SUBS'IRING

(134, 1, INDICES.!EYS)))t

AT115 w FIELCISNAME CItCICESeRELIDo INTI (SUBSTRING

ATTIG a FIELDEINAME CINOICES.RELID* INTI (SUBSTRING

WHERE INDICESoINDID x $0

AND INDICES.RELID a REL.ID (81)

A - END DEFINE GO

ASSOCIATE AT'h!I.INNX2 WITH "LISTS NAMES CF ATTRIBUTES IN

INCEX" GO

62

a - -S . S 6 s&SK4 4 4 -i- -. A 4 A 4 S S

DESTROY DEPENDS GO

DESTROY OTYPE GO

CREATE OTYPE (TYPE z IJCIp OESC a UCIS) GO

APPEND TO OTYPE (TYPE a "Uwe CESC 2* USER TABLE "3GO

APPEND TO OTYPE (TYPE a "S* CESC a "SYSTEM TABLE 0) GO

APPEbD TO OTYPE (TYPE a "Two CESC a "TRANSACTION LOG*) GO

APPEND TO OTYPE (TYPE a O"# CE3C a "FILE "3Go

APPEND TO OTYPE (TYPE a "Vwo CESC z*"USLR VIEW " GO

APPEND TO OTYPE (TYPE a PC"# CESC a "STORED COMMAND ") GO

DENY WRITE OF OTYPE GO

DENY READ OF OTYPE GO

DEFINE DEPENDS

RETRIEVE (OBJECT a RELATIONqNAMEp WHICHBI8I.A

STRING (15t CTYPE.CESC)o DEPENDSUION $I8)

WHERE CROSSREFoRELIC a REL.IC ($I)

AND CROSSREFDRELID z RELATIONRELID

AND OTYPEOTYPE RELATICNTYPE

END DEFINE Go

ASSOCIATE DEPENDS WITH "LISTS DEPENDENCIE3 OF THE NAMED

OBJECT" GO

* FIELCS

DESTROY FIELDS GO

DESTROY FIELCI.EOUIV GO

-~~-.% - °. . . , .. .

CREATE FIELD.EQUIV (NAME a UC4, NUN : 11) GO

APPEND TO FIELD.EUIV CNAME a "FLT R, NUM a 35) GO

APPEND TO FIELC.EGUIV (NAME a "IN No NUM a 45) GC-

APPEND TO FIELD.EOUIV (NAME a 'CHARO, NUM a 47) GO

APPEND TO FIELD.EOUIV CNAME a RINI we NUM a 48) GC

APPEND TO FIELD.EGUIV (NAME a OINT me NUM a 52) GO

APPEND TO FIELO.EOUIV (NAME a "IN! u, NUM a 56) GC

DEFINE FIELDS

RETRIEVE (TABLE a RELATION.NAMEp FIELD a ATTRIBUTE.NAME,

TYPE a FZELD.EQUXV.NAMEo LEN a ATTRIBUTE.LEN)

WHERE ATTRIBUTERELID 2 RELATION.RbLID

AND RELATICN.NAAE a STABLE.NAME

AND FIELC.EGUIV.NUM m ATIRIBUTETYPE

END DEFINE GO

ASSOCIATE FIELDS WITH 'RETURNS ALL FIELDS IN THE NAPED

RELATION" GO

HELP

HELP.REL

OBJECT LINE.NO CESCRIPTION

ATT.IN.INDX1 1 THIS IS A STORED COMMAND WHICH HAS

2 TOC PARAPEIERS, THE FIRST PARA-

3 METER IS THE INDEX ID NO* AND THE

4 SECOND IS IHE RELATION NAME,

84

5 THESE PARAMETERS MUST BE SEPAR-

6 ATED BY COMMAS, THIS COMMAND

7 PRCVICES THE ATTRIBUTE NAMES OF

8 EACH ATTPISUTE IN THE INDEX FOR

9 THE GIVEN RELATION CR VIEW. TO

10 EXECUTE THIS COMMAND JUST TYPE

11 IN "HELP" FCLLOWED 2Y THE OBJECT

12 NAME AND "GO".

DESTROY HELP GO

DEFINE HELP

RETRIEVE (HELP.RELDESCRIPTION)

ORDER BY HELP.RELeLINE.NO : A

WHERE HELPwRELOBJECT 2 SOBJECTNAME

AND PROTECTRELID 8 REL.ID CHELPW.RELCBJECT)

AND PRGTECTsUSER a USERIC C)

AND (POD (INTl CSUBSIRING (1, 1, PROTECT,ATTMAP)),

4) a 1)

END DEFINE GO

PERMIT EXECUTE OF HELP TO ALL

ASSOCIATE HELP WITH "PROVIDES INFCRMATION ABCUT THE OBJECT

PASSED AS A PARAMETER" GO

INDEX-LIST

DESTROY tNOEXeSLIST GO

DEFINE INCEX.LIST

65

RETRIEVE (RELATIONoNANE, INDICES.INDIDt INDICES.ATTCNT,

ISTATUSDESC)

ORDER BY INDICESINDIC

WHERE INDICESRKLID a RELATICNRELIC

AND RELAIICNNAME a 80

AND ISTATUSmSIATUS a MCC (MOD (INCICESSTAT, 9)

S8, 8)

END DEFINE GO

ASSOCIATE INCEX.LIST WITH *LIST INDICES ON NAMED

RELATIOh/VIEd" GO

PRCTECTICN

DESTROY PTYPE GO

DESTROY ATYPE GO

CREATE PTYPE CACCESS 2 Ii, CSC a UCiS) GC

APPEND TO PTYPE (ACCESS a 1, CESC : "HEAD

APPEND TO PTYPE (ACCESS a 2o CESC a "*RITE

APPEND TO PTYPE (ACCESS a 3, DESC a "ALL ")

APPEND TO PTYPE (ACCESS a -32, CESC a "EXECUTE 4)

APPEND TO PTYPE (ACCESS * -53, C[SC a "CPEATE DATABASE")

APPEND TO PTYPE (ACCESS a -56v CESC U CREATE

APPEND TO PTYPE (ACCESS a -5d, CESC a "CREATE INDEX "3 GO

PERMIT READ OF PTYPE GO

DENY WRITE OF PTYPE GO

CREATE ATYPI (ACCESS x Ilt CESC a UCS) GO

APPEND TO ATYPE (ACCESS I DI CSC "PERPIT ")

SE

i • l l l l ll / S
i a~~~~~~-~ '.-.w- L

': '' " ,_ '* '' '' - -*

-I 1D v S S- Zv

APPEND TO APE (ACCESS a 2v DESC a "DENY "3

APPEND TO ATYPE CACCESS a 3, CESC a "BOTH 0) GO

PLRMIT READ OF ATYPE GO

DENY WRITE OF ATYPE GO

DESTROY PROTECTION GO

DEFINE PROTECTION

RETRIEVE (ACCESS a CONCAT (ATYPE.CESCr PTYPE.DESC),

OBJECT a RELA!ICNaNAMEV USER a USERSI&AAE)

WHERE ATYPEACCESS a MCD (IN7T (SUBSTRLNG (I, I,

PRUTECTATTMAP))p 4)

AND PTYPEACCESS a PROTECToACCESS

AND RELATICNeRELXD 2 PRCTECTRELID

AND RELATICN,NANE SO

AND PRCTECTeUSER * USERSoIC

END DEFINE GO

ASSOCIATE PROTECTION WITH "DISPLAY PROTECTION DATA ABOUT

?HE NAMED RELATION" GO

DESTROY TABLES GO

DEFINE TABLES GO

RETRIEVE (RELATION.oNANI, RELATICNTYPE, FIELDS a

RELATION,ATTCNT, RECORDS a RELATIONTUPS)

ORDER NY RELATIONAME : A

WHERE RELATICN.TYPE 8 10

END DEFINE Go

ASSOCIATE TABLES WITH *RETURNS LIST OF RELATIONSo VIEWS OR

STCREC CCMMANDS" GC

WHATIS

DESTROY WHATIS GO

DEFINE WI4ATIS

RETRIEVE (RELATION a RELIUNAME CCESCRIPT1Ot4SoRELID)v

EXPLANATICN a DESCRIPTIONS.TEXT)

WHERE DESCRIPTIOI45.RELID z RELUPID ($0)

END DEFINE GO

ASSOCIATE WHATIS WITH *EXPLAINS WHAI A STOREC

CCMPAND/RELATIO4 DOES/IS" GO

WNCEAE

DESTROY WHOCREATIS GO

DEFINE WHOCREATES

RETRIEVE CUSERS.NAMEr PTYPE,DESC)

WHERE PROTECToUSER a USER3,ID

AND CPRCTECT*ACCESS -53 OR PROTECTACCESS a -56 OR

PROTECTeACCESS a -58)

AND PROTECTeACCESS PTYPE.ACCESS

AND MOD (INTl CSUBS'IRING (Is It PROTECTATT?'AP))o

4) a I

END DEFINE Go

ASSOCIATE WHOCREATE WITH "LIST USERS WHO HAVE CREATE

PERMISSICNR GO

hmaw 89

LIST OF REFERENCES

1. Stone, Vs Co, Design of RelatLonal Database Benchmarks,
MS. Thesis, Naval Postgraduate acnoolf Monterey,
Celifornia, June 1983.

2, Bogdanowlczp P. A. BenchwarkIna the Selection and
Proleetion Operations. and Ordering Cacabilities fa
Relational Catabese Machines, M.S. Thesis, Naval
Postgraduate School, Monterey, California, September
1993.

3. Cracker# 0, D., Benchmarkino the Join Operations of a
Relational Database ac ine, m.S. Thesis* Naval
Postgraduate School, Monterey# California, June 1983.

4. Britton Lee, Inc., Intelligent Database Machine Product
Description# (no date).

5. Britton Lee, Inc., DM Software Reference Manual,
January 1903,

Go Ampert Corp., unpublished class notese (no date),

7, Date, C. J,, An IntroducSion to Database Systems, 3rd
ad., Addlson-Wesley* 1981,

U, Ulluan, J. D, Prlnciples o Catabase Systems, Computer
Science Press, 19V0,

89

- -, * * . P, 'a' .. :

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria. Virginia 22314

2. Library. Code 0142 2
Naval Postgraduate School
Monterey# California 93943

3. Department Chairman, Code 521
Department of Computer Science
Naval Postgraduate School
Monterey* California 93943

4. Curricular Officer, Code 37
Computer leChnology
Naval Postgraduate School
Monterey, California 93943

so Dr, Do K, IHsiac, Code 52
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

Go Ms. Paula 3. Strauier, Code 52
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

7o LT Michael Us Crockerp USN
PO Box 459
Demopolis* Alabama 36732

so Command Officer
Naval Air Station
ATTN: Me, Doris NleCZkOr CPSC west (Code 0340)
Point Mugu# California 93042

g. Commander,
Naval Security Group CONyand
ATTNs LCDR Curtis Me Ryder (G 300)

ei 3601 Nebraska Avenue, he 4,
Washingtonp Do C. 20390

90

10. LT Robert A, BoqdanowIcz, UShp Code 52 1
1208 Lois Street
Park RIdge, Illinois 60068

11. LCDR Vincent C, Stone, USN 1
1229 Sam Lions Trail
Martinsville, Virginia 24112

12. Commander, 2
Naval Security Group COMMand
ATTNI CDR T. N. PgoskI (CG 30D)
3601 Nebraska Avenue# he *,

Washington# C* C. 20390

13, L? Linda E. widmaler, USN
3016 Bromley Court
WoodbrIdge, Virginia 22192

91

. d - - - - - - - -.

A * A .

-..

"ITI

02P8
FILME

or *4

