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ABSTRACT 

J. CHRISTOPHER MITCHELL. Multi-Item (s.S) Inventory Systems 
with a Service Objective (Under the direction of HARVEY WAGNER.) 

This paper considers a multi-item (s.S) inventory system. 

The model differs from standard treatments in that shortage costs 

are replaced by stockout probability constraints to be satisfied 

in every period. The value of such a model is that it is often 

easier to express service objectives in terms of stockout prob- 

ability constraints than it is to specify shortage costs. 

Specifically, system service is defined in terms of a weighted 

average of single-item stockout probabilities. An optimal 

policy minimizes system cost while satisfying a constraint on system 

service. Using standard single-item approximations, necessary 

and sufficient conditions for a policy to be optimal (for the 

approximate model) are derived, and a computationally efficient 

algorithm, the Generalized Knapsack Duality (GKD) Algorithm, is 

developed to find such a policy. Computational experience on 

inventory systems typical of many found in the real world 

indicates that operating costs can be reduced significantly when 

this model is used rather than the simpler uniform service model 

often used by managers. | 

Sensitivity experience on inventory systems with a struc- 

ture typical of many real-world inventory systems is reported. 



Specifically, the sensitivity of the GKD Algorithm to changes in 

the reorder quantities and lower bounds on feasible policies is 

reported. This experience suggests that, as in the single-item 

case, very accurate specifications of the reorder quantities are 

unnecessary. Recommendations are made to specify the lower bounds 

as high as possible while achieving significant cost savings below 

that of the Identical Service Approach. This recommendation is 

consistent with the objectives of many managers, and in certain 

cases improves algorithm performance. 

This paper also reports computational experience with sampling 

schemes of various sizes for large-scale inventory aggregation. 

This experience indicates that inventory systems typical of many 

found in the real world can be well-managed based on decisions made 

from a relatively small number of items from the systems. In 

particular, this experience suggests that a central uniform sample 

of about 32 items is sufficient to make accurate decisions for the 

entire inventory system. The paper concludes with a detailed im- 

plementation procedure using the GKD Algorithm with sampling to 

manage a large-scale inventory system. 
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I. INTRODUCTION 

This paper examines the problem of specifying single-item 

service objectives in a multi-item inventory system subject to an 

overall (or system-wide) service-level constraint. We develop a 

computationally efficient algorithm for doing so when the number of 

items in the inventory system is of moderate size. We also investi- 

gate methods of aggregating very large inventory system so that they 

are computationally more manageable. For both of these problems 

we show by extensive numerical investigations that our methods can 

result in a substantial total cost savings over methods which specify 

uniform service-level objectives for all items in the inventory system. 

This chapter is a non-technical survey of the literature on both 

exact and approximate methods for inventory management. Section 1 

describes the theoretical and computational difficulties involved in 

single-item inventory management as well as methods that have been 

used to deal with these difficulties. Certainly a multi-item in- 

ventory system will inherit these difficulties, and so we use such 

single-item methods in our model when appropriate. 

Section 2 discusses service-level constraints in single-item 

inventory systems in the same spirit as Section 1. We also survey 

the methods that have been used in multi-item inventory systems with 

service-level constraints (or similar models) in order to motivate 

the direction of our research. 



Section 3 surveys the literature on the problem of large-scale 

inventory aggregation. In particular, we discuss an empirically- 

observed structure that is typical for many real-world inventory systems. 

Chapter II contains the mathematical derivation of our algo- 

rithm to specify single-item service objectives in multi-item inventory 

systems with a system-wide service-level constraint. There are certain 

properties the items in the inventory system must satisfy in order 

to guarantee algorithm convergence. We illustrate algorithm performance 

on some two-item inventory systems which contain only items satisfying 

these properties. We also discuss our recommendations when there 

are items in the inventory system that do not satisfy all these proper- 

ties. 

Chapter III contains a numerical investigation of some 32-item 

inventory systems (with some items that do not satisfy the above- 

mentioned properties) which reflect a structure often observed in 

practice. We show that there is a significant cost decrease when 

using our algorithm to specify operating policies rather than using 

the popular method of specifying operating policies which give 

uniform service. • 

Chapter IV contains a numerical sensitivity investigation of 

32-item and 128-item inventory systems (with the same structure 

mentioned), and a numerical investigation of sampling schemes for 

inventory aggregation. ; 

Chapter V concludes this paper with a detailed implementation 

procedure of the 6KD Algorithm with sampling to manage a large- 



scale inventory system. We illustrate this procedure with a  512- 

item inventory system, and offer conclusions and directions for future 

research. 

1. INVENTORY THEORY WITH SHORTAGE COSTS 

1.1 Model Formulation and Optimal Policies 

We consider the periodic-review dynamic inventory model. We 

give a non-technical survey of the literature on this model, leaving 

relevant mathematical descriptions for the next chapter. 

At the beginning of each period n, n=l,2,..., the inventory 

position (stock on hand plus stock on order) is reviewed, at which 

time a positive order may be placed. An order placed in period n is 

received and paid for in period n+k, where k, the leadtime, is a 

fixed positive integer. There is charged a fixed ordering cost K plus 

a linear ordering cost c. After the inventory position is reviewed 

there is a random demand E , where ?i.?2  ^^^  independent and iden- 

tically distributed with cumulative distribution function (cdf) $, 

density 4), mean y, and finite standard deviation o. After demand 

realization, a linear holding cost h is assessed for each unit of 

inventory on hand. If demand exceeds the inventory on hand, the excess 

demand is completely backlogged, and a linear shortage cost p is 

assessed for each unit of backlogged demand. Then period n+1 is entered, 

repeating the process. Future costs are discounted at the single- 

period rategwith 0<3^1 (B=0 corresponds to a single-period model and 

3=1 corresponds to an undiscounted model), and the objective is to 

minimize the total expected cost of operating the system over a 

prescribed horizon. 



This model can be formulated as a dynamic program. Doing so and 

using induction, Scarf [1960] showed that under the assumptions of 

finite horizon length T and convex differentiable expected single- 

period holding costs, there is an optimal policy of the form (s^»S ), 

n=l,...,T. This policy requires that if the inventory position at 

the beginning of period n is less than s , an order is placed to raise 

it to S . Otherwise, no order is placed. Zabel [1962] extended this 

result to the case when the single-period holding and shortage costs 

are not differentiable. Earlier Karlin [1958a] showed the optimality 

of (s ,S ) policies under much stronger assumptions than Scarf; and 

Veinott [1966a] and Schal [1976] extended Scarf's result to models 

with more general cost functions. If, however, holding and shortage 

costs are linear, as in our model. Scarf's result is sufficient to 

guarantee the optimality of (s„,S ) policies. 

A basic difficulty in implementing these policies is that they 

usually vary from period to period and hence require tremendous 

computational effort. The situation becomes much simpler in the 

infinite horizon case. In this case, to minimize total expected cost 

we must impose B<1 or else for almost any policy this cost is infinite. 

One can consider an undiscounted model (3=1) if the objective criterion 

is changed to the average expected cost per period. If this is the 

criterion, Iglehart [1963a] and [1963b] proved that given the cost 

structure we have assumed, in both the discounted and undiscounted case, 

respectively, there is an optimal policy that is stationary (s,S). 

Such a policy requires that when the inventory position in any period 

falls below s, an order is placed to bring it up to S. Thus, there are 



only two numbers to be computed. One must, of course, assume that the 

true horizon length is of sufficient length to be reasonably approxim- 

ated by an infinite horizon model. i 

The computational procedures to find exact stationary (s,S) policies 

generally involve deriving a closed form expression for the expected 

infinite horizon average cost per period given that the policy (s,S) is 

being followed in every period, and then minimizing this cost over all 

(s,S) policies. There have been several methods used to derive this 

steady-state cost. Karl in [1958a] derived it using linear operator 

theory and in [1958b] using renewal theory, which was simplified by 

Sahin [1982]. We mention that in both references cited, Karl in also 

derived a closed form expression for the optimal policy when the demand 

distribution is exponential. Morse [1959] derived the expected average 

cost per period using Markov processes theory, and Leneman and Beutler 

[1969] used a stationary point process approach. The first general and 

exact computational procedure to find an optimal stationary (s,S) policy 

is found in Veinott and Wagner [1965]. Assuming that the demand distrib- 

ution is discrete, they derived the steady-state cost and then minimized 

it using finite difference calculus. This algorithm has been programmed 

in PL-1, and the documentation can be found in Kaufman [1976]. Bell 

[1970] has suggested an improvement to the Veinott-Wagner algorithm 

using optimal stopping rule theory, and recently Federgruen and Zipkin 

[1981] have described a completely different approach using a policy 

iteration technique for Markov decision processes. A method similar to 

this was suggested earlier by Johnson [1968]. In a somewhat different 

spirit, Sivazlian [1971] uses Gaussian quadrature methods to create 

graphs to compute optimal (s,S) policies.        , 



There are three significant difficulties involved in finding 

optimal (s,S) policies. We discuss these in order to introduce the 

various approximations to optimal (s,S) policies that have been 

suggested in the literature. 

First, the steady-state costs always involve the renewal function 

of the demand process. If the demand distribution is discrete, Veinott 

and Wagner [1965] showed that the renewal function can be evaluated 

recursively, although this can be computationally expensive when S is 

very large. If the demand distribution is continuous, there is no 

general computationally efficient method of even approximating the 

renewal function (the exception being the exponential distribution). 

Second, although the steady-state cost is, in general, convex in 

S, it is not even unimodal in D=S-s. Thus, local minima may not be 

global minima. Veinott and Wagner [1965] dealt with this by establish- 

ing bounds on the optimal (s,S) policy and examining all values of D 

among these policies to find a global minimum. Recently Sahin [1982] 

has shown that for a class of distributions the steady-state cost is 

pseudo-convex in D and S, so local minima are global minima. It is not 

clear, however, that this class contains distributions useful for inven- 

tory models. 

Third, exact algorithms require that the demand distribution be fully 

known. Many times in practice only a couple of moments will be known, 

and even these values may be statistical estimates. 



1.2 Approximations to Optimal Policies 

In light of the difficulties involved in finding optimal policies, 

numerous approximation procedures have been suggested. We describe the 

best of these. 

For an undiscounted infinite horizon inventory model the ordering 

cost c does not appear in the cost functions. Essentially this is 

because all demand must eventually be satisfied, and the cost of doing 

so is undiscounted. Thus, there are three components of total expected 

cost, one associated with each of the parameters K, h and p. They can 

be denoted, respectively, as the expected replenishment cost, expected 

holding cost and expected shortage cost. Another quantity of interest 

is the service-level, the frequency of periods without any backorder 

(roughly, the steady-state probability of meeting all demand in any 

given period). 

One of the earliest and best approximations is the Normal Approxi- 

mation of Wagner [1975, pp.831-836]. It is based on asymptotic renewal 

theory results of Roberts [1962], the empirically-based heuristic when 

D=S-s is small discussed in Wagner et_ al^ [1965], and the assumption 

that demand is well-enough approximated by a Normal distribution. 

There were extensive numerical investigations of this approximation 

done in MacCormick [1974], Estey and Kaufman [1975], MacCormick et al_ 

[1977], and MacCormick [1977] in which the actual underlying demand 

distribution was assumed to be Negative Binomial or Poisson. The Normal 

Approximation in general performed very well even when statistical 

estimates of the demand distribution mean and variance were used 

(although degradation was greater in this case). The greatest degrad- 



ation in performance was observed when the coefficient of variation 

- was large (in which case there is a non-negligible probability of 

_2 
negative demand for a Normal random variable), and when both — and 

?-   were large (the latter corresponds to a high service level). When 

2 
— and tr   were large, the expected shortage cost and service-level 

degraded much more than the expected replenishment and holding costs. 

Using the general approach of Norman and White [1968] of computing 

approximately optimal policies in Markov Decision processes by replacing 

the probability distributions by their moments, Porteus [1979] developed 

an algorithm to compute approximately optimal (s,S) policies. However, 

the empirical examination done in Freeland and Porteus [1980] showed 

that it was not much better than the Normal Approximation, and was a 

lot more work to compute. 

Using regression models suggested by both asymptotic analysis and 

empirical observations, Ehrhardt [1976] developed the Power Approximation. 

Extensive numerical investigations were performed by Ehrhardt [1976] 

(compare Ehrhardt [1978]) and Klincewicz [1976a] and [1976b]. These 

investigations showed that not only are the approximations especially easy 

to compute, require only the first two moments of the demand distribution 

and very useful for sensitivity analysis, but they are extremely accurate 

over a wide range of parameter settings. The Power Method's performance 

was always superior to the performance of the Normal Approximation. The 

only cases when the Power Approximation did not perform well occurred in 

the expected shortage cost and service-level when statistical demand 

momen ts were used and t was large (which implies a high service-level) 



Some technical improvements were made in the Power Approximation by 

Hosier [1981], and the regression approach was used by Ehrhardt [1977] 

(compare Ehrhardt [1981]) to approximate the expected costs and other 

quantities of interest when the (s,S) policy is given. 

There are other policies of a suboptimal form that have been 

used to control inventory systems, primarily because these policies 

are considerably easier to compute and analyze than are (s.S) policies. 

Two of the most popular are the (t,S) and (s,Q) policies (see Hadley 

and Whitin [1963, pp.235-295]). A (t.S) policy requires that every t 

periods an order be placed to raise the inventory position to S. An 

(s,Q) policy requires that whenever the inventory position falls below 

s, an order of size Q is to be placed. Using these policies Naddor 

[1975] developed rules for approximating the optimal (s,S) policy. 

These approximations were numerically compared in Kastner and Ehrhardt 

[1979] and in Ehrhardt and Kastner [1980]. The Power Approximation was 

always superior, although the Naddor Approximation did quite well for a 

large number of parameter settings. 

We conclude by summarizing how these approximately optimal policies 

deal with the three difficulties described in Section 1.1. Typically, 

the renewal function is approximated using standard results from asymp- 

totic renewal theory. Although we did not discuss it in detail in 

this section, the complicated total expected cost dependence on D is 

also dealt with using asymptotic renewal theory, with an empirically- 

based heuristic being implemented when D is small (in other words, the 

asymptotic assumptions are unreasonable). In order to have approxi- 

mations that depend upon only a few moments of the demand distribution 

rather than the entire density, the fonn of the demand distribution is 
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assumed to be given (typically Normal, Gamma, Poisson or Negative 

Binomial). The Power Approximation utilized a very general distribution 

form in which parameters were determined by a regression fit. 

2. INVENTORY THEORY WITH SERVICE-LEVEL CONSTRAINTS 

2.1 Model Formulation and Optimal Policies 

A significant practical difficulty inherent in all these approxi- 

mations (and exact algorithms) is the specification of shortage costs. 

These penalize backorders, but it can be very difficult to measure the 

cost impact of a backorder. It entails such things as "loss of goodwill" 

or "customer dissatisfaction", or equally difficult quantities to 

measure. One way to deal with this difficulty is to replace the short- 

age cost with a service-level constraint. For example, one can require 

that the frequency of backorders be no greater.than 15%. Such measures 

can often be easier to specify than shortage costs. 

A question of some interest is whether or not there is an optimal 

policy of the (s,S) form when a service-level constraint is used rather 

than a shortage cost. In general, there is not. Using a fairly general 

service-level constraint, Fromovitz [1965] showed that even in a single- 

period model the optimal policy may be randomized. He does show that 

if the service-level constraint is convex there is an optimal policy 

that is non-randomized, but most service-level constraints considered 

in the literature are not convex, Beesack [1957] has shown for the 

finite-horizon model (with the constraint that the expected number of 

stockouts be at most a prescribed fraction of expected demand) that 

(s ,S ) policies are still optimal. However, as most managers are un- 

willing to implement a policy more complicated than an (s,S) policy. 
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most of the research is aimed at finding the best (s.S) policy that 

meets a given service-level. 

2.2 Single-Item Models 

Roberts [1962] showed that asymptotically the optimal value for 

D=S-s is independent of the shortage cost p, so typically it is assumed 

that D is given, and then approximations for s are derived such that 

the resulting (s.S) policy satisfies a prescribed service-level. The 

two service-levels most often considered are the one we use (frequency 

of backorders) and the one Beesack considered (fraction of expected 

demand met). In the spirit of Robert's work, Greenberg [1964] and 

Schneider [1978] derived closed form expressions for these two service- 

levels as functions of s and D. Using asymptotic renewal theory and 

both a Normal and Gamma demand distribution, Schneider [1978] derived 

approximations to find an approximately optimal s given D for both 

service-level constraints. Only the approximation to the constraint 

used by Beesack was investigated numerically. The Gamma Approximation 

always performed well, and the Normal Approximation performed well as 

long as the coefficient of variation was not too large. Tijms and 

Groenevelt [1982] extended these results to the case when the leadtime 

is a random variable. 

2.3 Multi-Item Models 

We now discuss the model whose study is the object of this paper. 

We consider an N-item inventory system in which each item i is an 

inventory model described in Section 1.1 without shortage costs 

assigned. Thus, for each item i,i=l,...,N, we have a fixed leadtime 
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k., fixed ordering cost K. plus linear ordering cost c•, and linear 

holding cost h.. The demand realized for item 1 in any period has 

continuous cdf ^.,  density <>., mean y. and finite standard deviation 

0^. All demands for all items in all periods are assumed to be 

independent. The criterion of optimality is the minimum expected 

undiscounted cost per period over an infinite horizon, and the service- 

level constraint to be satisfied in every period is 

N 

y^ W.[frequency of periods item i is not backordered] i.  a. 

i=l N 

where W, ,...,Wj, > 0 and 0 < a < 1 are specified with y^ W.=l. 

i=l 

A feasible policy is a pair (s,S), where s=(s,,... .s^,) and 

S=(S^.....Sj,), and the stationary policy (s.,S.) is followed for item 

i in e\/ery  period. 

This model has not been examined in the literature, but several 

related (but much simpler) models have. We briefly survey the results. 

For a single-item inventory model with a shortage cost, if K=0 

there is an optimal policy of the form (S,S), a base-stock policy (see 

Veinott [1966b]). Iglehart and Jaquette [1969] showed that if the 

shortage cost is replaced by a service-level constraint, a base-stock 

policy is still optimal. Mitchell [1982] considered this model with 

all leadtimes k.=0 and exponential demands, and developed a computa- 

tionally efficient algorithm to find the optimal base-stock policy. 

Evans [1967] considered a finite-horizon base-stock model in which total 

costs were minimized subject to a linear resource constraint. Using 

induction on the dynamic progranining formulation, he derived the 
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(extremely complicated) optimal policy. 

In Section 1.2 we described suboptimal policy forms which, because 

of the relative ease in analyzing them, have been used In Inventory 

control when K.>0. Recall we described the (s,Q) policy (often called 

a (Q,r) policy in the literature), which requires that whenever the 

inventory position drops below s, an order of size Q is placed. There 

are several papers that consider our multi-item model (with perhaps a 

different constraint) governed by stationary (s,Q) rather than (s,S) 

policies. 

There are two approaches to solving such problems that have been 

used, both of which are discussed in Hadley and Whitin [1963, pp.213- 

219, 304-307, 323-226]. One is to treat the problem as a constrained 

nonlinear program and then solve the first-order Kuhn-Tucker conditions. 

The second is to formulate the model as a dynamic program (a generalized 

Knapsack Problem) and then solve it stage by stage. 

The method using the Kuhn-Tucker conditions is used in Winters 

[1962], Parker [1964], Gerson and Brown [1970], Presutti and Trepp 

[1970], Schrady and Choe [1971], and Schroeder [1974]. The method 

using dynamic programming is used in Kaplan [1978]. 

Winters [1962] minimized total expected cost subject to a product- 

ion smoothing constraint. Parker [1964] minimized total expected cost 

subject to a service-level constraint. Gerson and Brown [1970] mini- 

mized total expected cost subject to a service-level constraint and 

s=0. Presutti and Trepp [1970] also minimized total expected cost 

subject to a service-level constraint. Schrady and Choe [1971] maxi- 

mized a service-level criterion subject to investment budget constraints, 
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as did Schroeder [1974]. Kaplan [1972] considered a somewhat different 

model, a finite-horizon model with budget constraints that penalize 

dollars spent before the end of the horizon. It is a single-item 

model with s=0. We note that the models in Parker [1964] and Schroeder 

[1974] assume a continuous rather than periodic review of the inventory 

position. Such models tend to produce policies that give rather poor 

performance in a periodic-review setting (see Wagner et al_ [1965]). 

For two reasons, all of these studies are somewhat unsatisfactory. 

First, as mentioned, (s.Q) policies are not optimal. Second, in none 

of them are the policies produced compared with any other method, making 

it difficult to evaluate the performance of such policies in a multi-item 

inventory system. In our paper we use (s,S) policies and derive an algo- 

rithm, the GKD (Generalized Knapsack Duality) Algorithm to approximately 

solve our model, and then compare the (s,S) policies produced with an 

approach frequently used in practice by managers, the Identical Service 

Approach   (compare Mitchell [1982]). This approach sets shortage costs 

for each item in an inventory system so that the service-level for 

each item is the same, say a. Then each item is treated individually, 

with policies being computed by some existing method. We will show 

that using our model, which in effect varies the individual item service- 

levels while still maintaining an overall service-level of a (via our 

service-level constraint), total expected costs can be significantly 

reduced for many multi-item inventory systems. This is the first issue 

with which we deal. 

The second issue involves aggregating very large inventory systems 

in such a way that a representative fraction of them can be used to 

determine the policies for all of them, which we discuss next. 
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3. MULTI-ITEM INVENTORY SYSTEM AGGREGATION 

Many real-world inventory systems contain thousands of items. 

It would be cost prohibitive to try to include e'^ery  one of them in 

any model which is to be used to set inventory policies. Inventory 

aggregation is any method of partitioning such a system into blocks, 

each of which will be dealt with essentially the same. For example, 

a representative item could be chosen from each block to determine 

the policy that will be used for all items in the block. Thus the 

problem is reduced to more manageable proportions. The question is, 

of course, how to aggregate so that the resulting policies are as 

close as possible (in a total expected cost sense) to policies that 

would have been produced had every item in the inventory system been 

included in the model. 

Very little is known about this problem (see Bitran and Hax [1982], 

which deals with a finite horizon, deterministic demand inventory system) 

Hov;ever, extensive empirical investigations of many real-world inventory 

systems have suggested some remarkable similarities in the overall dis- 

tribution of items in inventory systems. These results are discussed in 

Brown [1959], [1963], [1967] and [1977], and Peterson and Silver [1979, 

pp. 30-37, 71-80]. We summarize the observations in Peterson and Silver. 

The annual dollar demand of an item is defined to be its annual 

expected demand times its value per unit. Of course, the "value" of 

an item may be difficult to determine exactly, but can often be taken 

to be its ordering or holding cost. Typically, five to ten percent of 

the items in an inventory system account for about fifty percent of 

the total annual dollar demand of the entire inventory. 
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These items tend to be very important, and are denoted Type A 

Items. On the other hand, typically about thirty to fifty percent 

of the items account for only five to ten percent of the total 

annual dollar demand. These are the relatively unimportant items, 

and are denoted Type C items. The rest of the items in the inventory 

system, the moderately important ones, are denoted Type B items. 

If the items in such an inventory system are ordered in descend- 

ing order by their annual dollar demand, and then the cumulative 

percent of the items is plotted against the corresponding cumulative 

percent of annual dollar demand, the graph would look something like 

Exhibit 1. Notice also that about twenty percent of the items account 

for about eighty percent of the total annual dollar demand. This also 

is typical for many real-world inventory systems. 
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Empirical observations have shown that this graph can very often 

be well-approximated by a iDgnormal cumulative distribution function. 

We address the second issue of this paper, large-scale Inventory 

aggregation, by showing that sampling techniques which stratify on the 

item types and which maintain the structure illustrated in Figure 1 can 

be used to accurately predict the (s,S) policies for all the items in 

the inventory system. We exploit the special structure of our inventory 

problem by using the sample to estimate the Lagrange constraint multi- 

plier of the inventory problem, from which we compute all (s,S) policies 



II. THE GENERALIZED KNAPSACK DUALITY (GKD) ALGORITHM 

1. INTRODUCTION 

We consider a multi-item inventory system and study the problem 

of specifying both system-wide and individual service objectives. 

Most theoretical models considered in the literature assume that hold- 

ing or shortage costs are applied to any excess inventory or unsatisfied 

demand, respectively. A major difficulty in applying such models in 

practice is the specification of shortage costs. Frequently, the 

manager sets shortage cost parameters based on an objective of satis- 

fying demand with at least some minimum probability. Such an approach 

may be preferred because subjective factors can more easily be expressed 

as a probability of satisfying demand than as a cost for each shortage 

incurred. 

A significant shortcoming of this approach is that it usually 

entails the setting of a probability of demand satisfaction that is 

applied uniformly to all items in the system. In this paper we raise 

the issue of specifying different service objectives for individual 

items while still satisfying some given system-wide objective. The 

value of this approach is that total system costs can be reduced below 

those of the method that requires identical service for all items. 

We are interested in the following multi-item inventory system. 

For each item i there is a set-up ordering cost K., a unit ordering 

cost c., and a fixed leadtime k. between placement and delivery of 

orders. These costs are assessed upon order delivery. There is a unit 

holding cost h. assessed at the end of each period, and the demand 
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realized for for item i in any period has absolutely continuous cumula- 

tive distribution function (cdf) 2^, density ^^,  mean y^, and finite 

standard deviation a-.    All demands for all Items in all periods are 

mutually independent. There are N items, and the criterion of 

optimality is the minimum expected undiscounted cost per period over 

an infinite horizon.  We do not include shortage costs to penalize 

back-orders. Rather we introduce the following service-level constraint 

to be satisfied in e^^ery  period: 

N 

[ 
1 = 1 

N 

V^W.[frequency of periods item i  is not backordered] > <, 

where 0<ot<l, W^,...,W|^>0 and Y^W.^l. 
1=1 

For such an inventory model, an (s.S) policy requires that whenever 

the inventory position (inventory on hand plus on order) drops below 

s, an order is placed bringing the inventory position up to S. An 

(s.S) policy is called stationary if it is applied in every period. We 

only consider stationary (s.S) policies because when shortage costs are 

included in the model, there is an optimal policy which is stationary 

and (s.S) (Iglehart [1963]). Any stationary (s.S) policy for our model 

gives rise to a unique and well-defined specification of shortage costs. 

If we denote by P.(s.,S.) the frequency of periods that item i is not 

backordered when following the policy (s^.S^), then, when t^ is contin- 

uous, 

where p. is the shortage cost under which the policy (s^.S^) is optimal 
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(Veinott and Wagner [1965]). We can solve this equation for p^ and thus 

determine the shortage costs associated with any stationary ($,S) policy. 

For our model a feasible policy is a set |(s,S)} , where 

s=(s,,... .Sij) and S=(S,,... .S^.). For item i we follow the policy 

(s.,S-) in every period. We define D, by D^=S^-s^, and denote by <D * 

the (k.+l)-fold convolution of ffi. with itself, and by (})^* its density. 

Also let p.* and o-* be the mean and standard deviation of a random 

variable with cdf-j.*. In Mitchell [1982] we considered this problen-, 

when K.=0 for all items 1, and developed a computationally efficient 

algorithm for the case when all k.=0 and all demands are exponentially 

distributed. We extend those results in this paper, dropping all three 

of these restrictions. 

Section 2 describes the formulation of our inventory problem as 

a non linear program. Using the Kuhn-Tucker conditions, we prove 

necessary and sufficient conditions for (possibly local) optimality. 

The main results are found in Theorems 1, 2, 6, 7 and 8 (the reader 

may choose to skip the proofs of these results). There is at the end 

of this chapter a list of the notation, a summary of frequently used 

relations, and a summary of the theorems and lemmas. 

Section 3 is a description of the algorithm. It is based on 

local duality theory of nonlinear programming, and the proof of con- 

vergence uses results from Section 2. Section 4 reports a numerical 

investigation. In Section 5 we discuss our recommendations when the 

sufficient conditions may not hold for some items in the inventory 

system. Finally, Section 6 contains some conclusions. 
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2. ANALYSIS 

If we denote by C.(S.,D.) the expected average undiscounted cost 

per period over an infinite horizon, and by P^(S^,D^) the frequency of 

periods that item i is not backordered, we have the following result. 

Theorem 1. For S.>D., 

1 
(i) C.(S..D.) =   

f   r Bi ?i-^ 
h. 

1 J   J  (^i">'"^)'^i*(^^'^i^>')^'^^y 
0 -°° 

^y(Si-x)$.* (x)dx 4K. 

1     i r' (ii) P.(S..D.) =  !   / I.*(S.-y)m.(y)dy +I.*(S.) 
^ ^ ^   1+M.(DJ h'  ■  ^   ^       ^  ^ .(^),o 

where M. is the renewal function of S^ and m.=M.'. 

Proof. See Roberts [1962], Greenberg [1964] and Ehrhardt [1981] Q. 

For two reasons we restrict attention to (s.,S.) policies with 

s^>0 (equivalently, S.>D.). First, the expressions given in Theorem 1 

do not hold when s.<0. One must replace with (0,S.) the limits of 

integration in the first integral of C. and the limits of integration 

in P^. Second, many managers consider policies with s.<0 to be unsat- 

isfactory for practical implementation. 

Thus we want to solve the following constrained nonlinear program 

(NLP) to obtain an optimal policy for our inventory system: 
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minimize C(S,D) =y^C^(S-,D.) 

N 

subject to P(S.D) = ^ W. [p. (S. ,D. )-a"] i 0 

i = l 
S.iD., i=l,...,N 

N ■  ' 

where 0<a<1, W.,..,,Wj.>0 and /^W^=1. 

i=l 

There are three serious difficulties in finding a solution. First, 

the renewal function M. generally does not have a closed-form expression, 

and usually is complicated when it does. Second, the functional depend- 

ence of C and P. on the variable D. is complicated, as is easily seen 

if one works out the partial derivatives. Third, the behavior of the 

functions depends heavily on the demand distributions J.. 

We deal with the first difficulty by using asymptotic approximations 

for the renewal functions. In particular. Smith [1954] has shown 

y  c2  ^ 
Mi(y) = — + —^- ^+ 0(1) as y-».        (2) 

We use the following approximations. 

D.        o?      , 

1      2u^ 

2—TTT = Pi- ^3) 
UM.(D.)      D. + (vij+o^/p.)/2 

We approximate m^(y)=M/{y) by a constant function, since M.(y) 

is asymptotically affine.  One could differentiate (2) and approxi- 
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mate fn.(y) by -, but we use the somewhat better approximation discussed 

in Ehrhardt [1981], namely, 

^(>') ' ^' yds^.s.). (4) 

(This approximation approaches - as D.-KO). 

For the complicated functional dependence on D., we approximate 

D- by a constant, and regard C- and P. as functions only of S.. 

Roberts [1962] proves that in the single-item case where a shortage 

cost p is specified, the optimal value D* of D is given by 

D*='y^ + constant + o(l 

as K-«o, p-K=o such that - remains constant. 

Since D* is asymptotically independent of the shortage cost 

p, and hence by (1) of the service-level a, it would seem reasonable 

2KL 
to approximate D* by the constant y^, the so called "economic order 

quantity." 

An extensive empirical comparison of approximately optimal 

inventory policies by Wagner, et al [1965], showed this to be a 

remarkably good approximation, even for K and p fairly small, 

although it seems to give better results wheny^ ^ 1.5^. Moreover, 

the total expected cost is typically quite flat near D*, so if S* is 

well-approximated, the approximation for D* does not need to be 

especially accurate to have a total cost close to the cost associated 

with the optimal policy. 
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Actually, we use the Power Approximation discussed in Hosier 

[1981] for the optimal D. He reports empirical investigations that 

indicate that this approximation is superior to the economic order 

quantity. As in the case of the economic order quantity, this approx- 

imation tends to be poor when it is smaller than 1.5\t. For the 

derivation of our algorithm, we assume D. is at least p., and thus 

use the approximation 

D. = max Vi^, 1.3y .-"&)"[■•« 
.116 

(5) 

K. 
We note that asymptotically (as ^r "^ ") this approximation differs 

i 

very little from the economic order quantity. 

To deal with the third difficulty, we intended to assume that 

the demand distribution in Normal, since Wagner, et al^ [1965], Wagner 

[1975, ch. 19], MacCormick [1974], Estey and Kauffman [1975], MacCormick 

et al [1977], and MacCormick [1977] all suggest that a Normal distribution 

gives good approximations to the optimal policies even when the true 

distribution is skewed  (By a good approximation we mean that the 

expected total cost of the approximation policy is nearly the same as 

for an optimal policy). But because the Normal cdf cannot be expressed 

in a closed form, we use a Logistic distribution to approximate the Koriual 

distribution. It is an especially simple and accurate approximation to 

the Normal distribution, as discussed in Johnson and Kotz [1970, ch. 22]. 
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They show that if C* is the cdf of a Normal random 

variable with mean \i*  and standard deviation o*. then 

1 
^*(^) '  V+exp(-YLx-y*J) (6) 

where 

y  = 
15 ^ 

iev5o^ 

This is the standard Logistic distribution with parameters 0 and - 

We introduce the chanae of variables 

.. = e-V5^^*) . 

where 

Y^   = 
15 JL. 

(7) 

'      16>/3o/ 

and reformulate the NLP using the approximations discussed. The 

result is given in Theorem 2 and (17). Since the transformation 

6  =  (9, » ... .Big) 

is one-to-one, infinitely differentiable,and invertible everywhere, 

the problem as formulated in 6 is equivalent to the problem as 

formulated in S. We note that e.>0 for any finite S.. It is clear 

from the formulation of the problem that the optimal S is finite, 

and so the optimal G is positive. Thus we do not need to add the 

constraint 9 .■^■O. 

Theorem 2. If the approximations (2) through (6) and the change of 

variables (7) are used in the expressions for C.{S^,D.) and P.(S-.D), 

and if we denote by C^(6^) and P^(6^) the resulting approximations 

(without policy-independent terms and afunction in C. that iso(l) as 
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S.-«>), we have 
1 

(i)      C,.{e.) = -ilog 

(ii)      P^{9.) = (l-f.) 

(ue.)Pi 

1 + ^ '°'(T3TJ Ke, • 

where <5i = e >i°v 

Proof.    We   suppress   the   subscript  i. 

(i)    If the approximations (2) through (5) are used in the expression 

for C(S,D), and C(S) denotes the resulting approximation   without policy- 
independent terms, then we have 

D S-y S 

C(S) -{if 
L o   -00 

{S-y-xH*{x)^ dxdy + h if (S-x)$*(x)dx 
.rr\ " 

-  (policy-independent terms). 

Nov 
D S-y 

f f (S-y-x)$*{x)dxdy 
Q      -OO U        00 

= y /(S-y-x)(f*(x)dxdy -yy (S-y-x)t*(x)dxdy, (8) 

D        00 

0 S-y 

provided these integrals exist. 

We show that they exist by evaluating them. First, 

/ /"(S-y-x)**(x)dxdy = J i^-y) J  i*(x)dx 

0 -OO 0        t'^ 

D       D 

u*dy 

dy 

Vr    " 

x4*(x)dx dy 

y (S-y)dy -Jv 

= DS - D 
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To evaluate the other integral in (8) we define 

e(S) - J    / {S-y-x)(^*{x)dxdy 

0 S-y 

(x+y-S)(})*(x)dxdy. 

0 5-y 

It is straightforward to verify that on the domain of integration 

0 < (x+y-S)(})*(x) < x(t>*(x), 

Since y* < '^^ and D < «>, we have 

|x4**{x) jdxdy < <», 

0  -00 
//■ 

and so the Dominated Convergence Theorem (Hoffman [1975,p. 331]) 

justifies taking the derivative of z  under the integral. This gives 

D  00 

'(S) = yy***(x)dxdy 

.S-y 

-Al-2*{S-y)]dy 

*     ' \ 
= -D [1-I*(S-D)]. 

Obviously c '(S)<0, so 

0 > Jim E'(S) s Jim {-D[1-T*{S-D)]} = 0, 

v^hich implies l;[m c'(S) = 0. Thus we have e(S) = a+o{l) as S ■♦ «■, for 

some constant a. 

By assumption v/e do not include the o{l) function In the approximate 

cost function, and so we have that 
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»t,p/ C(S) = h(l-p)Sthp/ {S-x)t«(x)dx, (9) 

where we have dropped all policy-independent terms. Using the 

approximation (6), we have that 

S S 
•Y(X-V*) 

/(S.x),.(x)dx -fi^^^Al^l^   dx. 

After the change of variables X=e'^^'^"^ , this 

becomes 

CS-y*) + llogX      i 
 4  dX, (10) 
(1+X)2 / 

where &  is given by (7). Then 

OO 

f    dX   .  1 .... 

e "*^' 

and 

/-^dX=^^ + loge - iDg(Ue). (12) 

e 

and so (7), (9), (10), (11), (12) and the definition of C(e) give 

C(e) = h(l-p)(y* - lloge) 

-^log   +^log(He) 

-  (policy-independent terms) 

= ylogd+e)  - ^loge 

5 log [11^] 
(ii)  If the approximations (2) through (5) are used in the expression 

for P(S,D), and P(S) denotes the resulting approximation, then we have 
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D 

P(S) « P j/l*(S-y) 1^ dy + I*(S) 

D 

= -^yi*(^y)dy+ p3E*(S). 

Using approximation (6) we have 

U V 

/a*(S-y)dy =/"— 
-Y(s-y-v*) • 

0 0 

Making the Change of variables Y = e'^^ ~^'^   , this be comes 

dY 

Then 

-Y(S-U*) 

-Y(S-y*) 

/-^ = Y - log(l+e^), 
J  1+e^ 

so (7), (13), (14), (15) and the definition of P(e) give 

P(e) =^ I YD+ logl 

(13) 

D. 

(14) 

(15) 

Let -Y-(D.-u.*) 
(16) 

so S.>D. is equivalent to Q^^e^ • Then we have formulated the 

following NLP, the solution to which gives an approximately optimal 

policy for our multi-item inventory system via the change of vari- 

ables (7): 
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minimize C(e) =^ C.(e.) 

1 = 1 
N 

subject to P(e) =^ W^[P^(e.)-a] > 0, 

e^-<e." ,i=i,...,N. 

(17) 

We use nonlinear programming techniques to solve (17). Specific- 

ally, we derive first-order necessary conditions for optimality using 

the familiar Kuhn-Tucker conditions. Although the objective function 

is convex, the feasible region in general is not. Therefore the 

necessary conditions'may not be sufficient to guarantee even local opti- 

mality (Luenberger [1973, Sections 6.4, 10.6]). We show that for D^ 

sufficiently large, however, the Kuhn-Tucker conditions are sufficient 

for (at least) local optimality. We also describe a computationally 

efficient algorithm for finding an optimal policy when It exists, and 

compare the performance of these policies with policies generated by an 

existing method. 

The following formulas are needed. 

Lemma 3.  For 1=1,...,N, 

(a) c.'(e.) 

(b) c."(e^) 

(c) P/(e.) 

h. 
1 

i+(i-p.)e. 

(UB^)e. j 

h. 
1 (l-p)B.' + 26. + 1 

(l+e.)^e7 

YiD.(ue.)2(U6.e.)    ~~ 
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Proof (a) Differentiating C^(e^) and suppressing i gives. 

riillifilel 
[ (He)e J 

(b)    Differentiating  (18)  gives 

C"(e) 

h 

.-(U6)^    e^J 

_ (1+0)^6^    J . 

(c)    Differentiating P^(9.)and supressing i  gives, 

^^ YD      [U9      U6eJ      ,^^^ (we)' 

(18) 

(19) 

-  (1-p)p-6) .   _Q         '• 
~  TD(Ue)(l+50) " (^^gj2 . 

= . (i-(>)(g-i)(ue) -^ DPY(H5e) 
YD(i+e)^(i+6e) 

= . [DPT ^  (i-e)(6-i)] ^ [DPY6 4 (1-p)(<-1)]ep^ 
YD(i+e)^(i+6e) 

Theorem 4. Suppose 

P(e") > 0. 

Then ^*=^  is globally optimal for (17) 

(20) 

Proof. It is straightforward to verify (since p^ is decreasing as a 

function of D.) that (making use of (5)) 

D. s u- implies 0< ^. < ^ .        (21) 
1     1 1   «5 

This with Lemma 3(a) implies that 

C.'(e-) < 0 whenever ft. ^ «.".      (22) 
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and so C(6) is decreasing in each argument for Q-^Q.^.    But by 

hypothesis ©=«" is feasible, so d=©^ is a global minimum of (17) 0, 

In order to investigate the case when P(5")<0, we make use of 

the Kuhn-Tucker necessary and sufficient conditions for optimality. 

To use these, however, one must verify that some constraint qualifi- 

cation holds at the optimal point. We show that if P(6^)<0, then every 

feasible point is a regular point, that is, the gradients of the active 

constraints at the point are linearly-independent. Luenberger [1973, 

223-227] shows that this constraint qualification is sufficient to 

guarantee that if the Kuhn-Tucker necessary and sufficient conditions 

hold at a point,then that point is an (at least local) optimum. 

Lemma 5. If P(6^)<0, then any 0 feasible for (17) is a regular point 

of (17), that is, the gradients (at e) of the constraints active at e 

are all linearly-independent. 

Proof. Let ? be feasible for (17). Without loss of generality, suppose 

that of the constraints e.i^e^'^, i=l,...,N, the first j are active and 

the last N-j are inactive. Since by assumption 6=6 is not feasible, we 

have N-j>l. Let T denote the matrix which has as its columns the grad- 

ients (at 6) of the constraints active at 9. If the constraint P(e):iO 

is inactive, then . 

T = 
J 

N-j 

1 0 
• 

0 • 1 

0 • • °. 
which certainly has linearly-independent columns. If the constraint 

P(d)iO is active, then 
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T = 

N-j 

1        0 

0   ■ 1 

0 ••• 0 

W2P2'(e2) 

VN'^^N) 

Certainly the first j columns of T are linearly-independent.     If the 

last column were a linear combination of the first j, then (since 

N-jil) W^P|^'(e|^)=0.    Now it is straightforward to verify that 

D.>0 implies 6.>1, 

so this with Lemma 3(c) and (?1) implies that P|.'(e^)>0. 

And since W., > 0, we have a contradiction, and so the 
n 

columns of T are linearly-independent, which implies that e is a 

regular point of (17) □. 

Theorem 6. Suppose P(e^)<0 and for i=l,...,N, let 

A^ = A.(Di) = D.h. 

B. B.(D.) = D 

^i = E^(D.) =    D 

'i- 
F.(D.) =    D 

^^- Gi(D.) =    W 

^  - H^(D.) =    W 

h.[2+6.-p.] 

hi[«^+(1-?i)(«i+l)] 

h^n-p^)*. 

[D-e-Yi + (i-p^)(«i-i)] 

[D.eiY,.<ri + (i-ei)(^i-i)] 

A.+B.e.+E.e.'^+F.«.^ 
> (6) = -L_LX_J_- J_i_ 

(23; 

Then the first-order Kuhn-Tucker necessary condition that 0* be a 

minimum of (17) is the following: 
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There exists a real number \*iO  such that 

(a) X.(e.*) = X* when P/<9i" 

X.(0.*) > X* when e.*=e." 

(b) P(e*) =0. 

Proof. As proved in Luenberger [1973, pp.232-234], given the 

constraint qualification guaranteed in Lemnia 5, a first-order 

necessary condition for e* to be a minimum of (17) is that e* be 

feasible for (17), and that there exists X*>0 and 

5* = (;^*,...,^^*) > 0 such that        ■  ,  ; 

VL(6*,AM*)EVC(e*) -X*VP(«*) - C*I = 0 

X*P(6*) =0 

;*^(e*-6'') =0, 

where I is the NxN identity matrix, and a superscript T denotes 

transpose. 

By assumption P(e")<0, and clearly 

(24) 

(25) 

P(0) =^W.(l-a) > 0; (26) 
i=l 

since it cannot cost less to give a higher service-level, we can 

assume that at optimality P(e*) = 0. Now Lemma 3(c), (21) and (23) 

imply that for all i, 

P.'(e-)-O whenever e.ie/, (27) 

and so by (22) we have that (25) is equivalent to the following 

condition: 

There exists X*jO such that for all i,  . 
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A* when 0^* < 6. 

Ci'(e.*) 
(28) 

(b) P(e*) = 0. 

We note that ;.* = C.'(e.*) - X*P.'(©>), for each i. To complete the 

proof, we need only to show 

c,'(e,*) 

S^^i"^ '- w7p'.'(e'.*) x,(e,*) 

We suppress the subscript i. By Lemma 3(a) and (c), 

c'(el 
WP' e = H)[TI^H [^^1^] 

After factoring (1+0) out of the numerator and denominator, the 

2 
numerator becomes Dh[l+(l-p)e][l+(^+l)©+tf0 ], which, when multiplied 

?  3 2 
out, is A+B6+Ee +F% , and the denominator is GB+Hfl . Thus we have 

c.'(e.) 
:'  w.p.'(e^) = ^(^i^» (29) 

as was to be shown C. 

Although the first-order Kuhn-Tucker condition is necessary for 

(at least local) optimality, in general it is not sufficient. In 

Theorem 7 we give a condition sufficient to guarantee that the Hessian 

of the Lagrangian of (17) is positive-definite, a strong second-order 

sufficient condition (see Luenberger [1973, p.235]). In Theorem 8 

we give conditions in terms of D- which guarantee that the hypotheses 

of Theorem 7 are satisfied. 

Theorem 7. Suppose P(e")<0 and that there exists X*>0 so that the 

necessary conditions (24) hold at 6*. If also A.{e.) is decreasing 
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for e.<e.", then the Hessian matrix V^L(e*,>>*,c*) is positive- 

definite, which implies that (24) is sufficient for (at least local) 

optimality. 

Proof. We first note that Lemma 3(b) and (21) imply that 

c."(e.) > 0. 

We have 

(30) 

VftaL(e*.x*,?*) = tr c(©*) - x*v^p(e*) 

Ci"(d.*) - x*w^p^"(e.*) 

V(V) - ^*VN"(V) 

Let Q. denote the i  diagonal entry of VL^L. We show that Q.>0 

for each i, as this implies that V-^L is positive-definite. If 

PT"(e.*)<0, (30) implies Q.>0, since X*, w.>0. If P."(e-*)>o, (24) 

implies Q.>C."(e.*) - [X.(e.*)] W.P."(e.*), which by (29) is 

c.'(ei*)      ' 
■  Qi * c."(e,*)-p^r^Pi"(ei*). 

or 
Pi'(e.*)c."(e.*) - c.'(e.*)P."(e.*) ^ 

' ' P,.'(e.*) 

By (27) the denominator is negative, so we can conclude the proof 

by showing that the numerator is negative. From (29) we have 

W.[P.'(©.*)]2 

By hypothesis 0>X.'(0.*), so the numerator of (31) is negative. 

Since W^>0, we have Q^>0, as was to-be shown. 

(31) 
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Luenberger [1973, p.235] proves that given the constraint quali- 

fications guaranteed in Lemma 5, the first-order necessary conditions 

(24) are sufficient for (at least local) optimality provided 

V L(e*,X*,;*) is positive-definite on the subspace tangent to the 

constraints tight at e*. We have shown that V^. L(e*,X*,c*) is positive- 

definite, which concludes the proof. We note that to prove this 

theorem for more general functions C. and P. it is sufficient that C- 

be convex, and P. and X. be decreasing Q. 

Theorem 8. For i=l,...,N, if D. is sufficiently large, then X.(e-) is 

convex and decreasing when ^^^6.^. 

Proof. As usual we suppress i. We write X(0) in partial fraction form 

making differentiation easier. We then show that for D large, the 

coefficients of X(0) are such that X'(e)<0 for e<e". By long 

division, 

e + A (BH^-G(EH-FG)Y 

.,.s _ re , EH-FG 
x(e) - -fp + —2- +        e(G+H0) 

P V        Xd+A      _   A    .     XG-AH 
hor any X,    g^g^HfiiT " Ge      GTG^H^y * 

and so 

liA)  =    ^+EHiFG      _A_+__J]  /„^ 
■^^' H 2 Gfl 2 ' (32 

^ H\       ^^      GH^(G+H^O 

where n = GBH^- G^(EH-FG)  -AH^  . .: 

By (21) and (23) we have 

A.  B,  E,  F,  G, H >  0. (33) 

so certainly X(e)>0 whenever e>0 (the change of variables (7) is 

such thate>0).    Differentiating (32) gives 
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■'*'=(^^) GH(G+H«) 
I 

and 

>."(0) = _2A +  2T^ 
>3 • 

G$"  G(G+H6)' 

We first show that A"(e) > 0 for D sufficiently large by showing 

11 > 0 for D sufficiently large (since (33) implies all other quantities 

are  positive). We use the following notation. 

f(x) '-g(x) if lim U^ =1. 
x-^- g(x) 

To examine the behavior of ■t\ for large D, we examine the behavior 

of A, B, E, F, G and H for large D. The following are easily inferred 

from their definitions: • 

lim 6 = c^^ 

lim p = 0 

lim Dp = L. 

(34) 
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They imply 

A ~ Dh ' 

B - Dh^ 

E ~ 2Dh^ 

F ~ Dh^ 

G - W5 

H ~ W(i*Y+l)fi , 

and so n ~ (W^)(Dh^)i/(pr+l )^6^ - W^6^[(2Dh6)(W(|«Y+1 )*) - (Dh<r)(W^)] 

- (Dh)(W^(py+l)V). 

The limiting behavior of n is determined by its highest order term, 

(35) 

which is D6 , so 

^ ~ [W'^h('j»yH)^-2W^h(^«Y+l) + W^h] D/ 

= W^h(jlY) D5 . 

Since W'^hhty)^ > 0, (3+) implies lim W^h(yy)^Df^ = c^, so Tim n = ^~ also. 

Thus, for D sufficiently large, n > 0, and so A"(e) > 0, as was to be 

shown. Hence >{e) is convex. To show that X'(e) < 0 for e < e", 

it is sufficient to show X'(9") < 0. We have 

.u 
X'{6") = ^  D . 

GH(G+He^) 

where 
^  G(9")2 

Since for ri>0 large D, we need only show that ^<0 for large D to 

conclude A'(e) < 0 for 6 t  o". Relations (35) imply that 

C ~ 
Dh^ Dh 

' "  U(yY+l)6 "  Q^-\V- 
W6 
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Dh /_!_   6 \ 

I 
Relations (34) imply the quantity in parentheses tends to -°° as D^, and so 

,. .  1.  Dh / 1    6 

3y? ■) 

Thus, t, < 0    for D sufficiently large, and so the proof is complete □, 

Thus, Theorems 7 and 8 imply that if D- is large enough that X- 

is decreasing, then the first-order conditions (24) are sufficient 

for (at least local) optimality. We exploit this in our algorithm, 

which is described in the next section. 

3. GKD ALGORITHM 

Our algorithm is based upon local duality theory of nonlinear 

programming (see Luenberger [1973, pp.312-320]). Suppose x* is a local 

minimum (at which the constraint qualification described in Lemma 5 

holds) of the nonlinear program " 

minimize f(x) 

subject to g(x)=0, 

with associated Kuhn-Tucker constraint multiplier A*. Writing the 

Lagrangian L(x,>,) = f(x)-Ag(x), the NLP dual to (36) is defined as 

maximize if{X), 

(36) 

where (37) 

A(X) = minimum L (x,X). 
X near x* 

(We mention that (36) and (37) can be written, respectively, as 

min max L(x,A) and max min L(x,?v), which illustrates their dual nature) 
x  X X  X 
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>'^' 

'-^ 

•UN 

If L(x,X*) is twice continuously-differentiable and convex at 

X* (and hence convex in a neighborhood of x*), then the fonowing can 

be shown to be true: 

(1) ^(A) is twice continuously-differentiable and convex at \*. 

(2) X* uniquely solves (37). 

(3) If we denote by x(X) the (unique) value of x minimizing the right- 

hand side of i|i(X) in (37), then x*=x(X*). 

Thus rather than solving (36) one could solve (37), and do this by 

solving 
^(X)=0, 

which can be shov;n to be equivalent to solving 

g(x(X))=0. (38) 

Generally this approach is not useful computationally because the 

function x(X) is often difficult to compute. This method may be quite 

efficient, however, if x(X) is reasonably easy to compute and the dimension 

of X is smaller than that of x. One problem with such structure is the 

"Generalized Knapsack Problem," which is 

► (39) 

N 

minimize f(x) = Z.^,-{x-) 
i=l ^ ^ 

subject to g(x) = £ 9A^^)  = 0- 
1=1 

Clearly (17) is a Generalized Knapsack Problem with upper-bounded variables. 

These bounds do not change the essential structure of the problem or its 

solution by solving its dual, and the details are left to Theorem 9. 

For (39), x(X) is found by solving the system of equations 

V^L(x,X)=0. 
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where 

>> = x,(e,"). 

For convenience, we assume that the items are reordered, if necessary, 

so that 

X^  > A^ >...- Xfj'-_ (41) 

Theorem 9. If either P(e") ^ 0 or all D. are sufficiently large so that 

the hypotheses of Theorem 8 hold, then the following algorithm 

is well-defined anc^ cf^nverges to a (possibly local) minimum of (17). 

GKD Algorithm. 

(1) If P(0") - 0 set i=N, and go to step (6). Otherwise set i=0. 

(2) Set >> = l.\^   {=  max|x.|;^,...,X^^},by (41)). 

(3) Define the function P. on [A ,-HC) by 

Vx) = p(e/,...,e.',t.^^(A),...,t|^(x)). 

(4) If P.(A*-) <  0, go to step (5). 

(5) 

m 

otherwise set i=i+l, go to step (2), 

Solve P.(A) = 0 for X*c[x'-, ~). 

Set e^* - 

t.(X*) 
1 s.* = v.* -^ 

0=1.....1 

J=i+1,...,N , 

logej* 

s.* = S.* 
J    J 

D.. 

Proof. Steps (1) and (2) are certainly well-defined. By definition of 

X , X 5. A is in the domain of t.^^(X),..., tj^(x), so these are all well- 

defined. Hence so is P(X), and so step (3) us well-defined. Step (4) is 

well-defined, except for the possibility that i may become larger than N. 

But if i=N, then we have P(e^",... ,e^") > 0, which is equivalent 

to P{9 )  > 0. But step (1) guarantees P(6 ) <0, so i will never exceed N. 
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Step (5) requires justification. We show that P.'(x)>0 on [X ,+«>) 

and P^.(+oo)>o. These with step (4) imply that there is a unique solution 

in [x'-.+co) to P.(X)=0. We have 

so    . 
N 

j = i+l 

by the chain rule. Relation (27) implies that P.'(e.)<0, and clearly 

t.'{X)<0, so indeed P.'(A)>0. Stage i is the first time that P.(X )<0. 

If i=0, then 

P^H  = P{t^H t^(co)) 

= P{0,..., 0) > 0, 

by (26). And if i > 1, then Pi_i(A'-) > 0, so 

0 < Pi.T(>>) = P(e^".....e.!;i,t.,...,t^) 

= P(e^ ,...,e^. ,t^^p...,t|^), 

since at stage i-1, X -A.^, and t(X.'") = e.'^. 

Hence, 0 < P(e^",... ,0.^t.^^,... ,tj^). 

We have 

P^H  = P(e1^....e.^t.^^{co).....tJ^(.^)) 

= P(o^"....,e.",o 0). 

By (27) P is decreasing in each argument, so P.(~) > P. -.{X )   >  0, as 
was to be shown. 

Step (6) and (7) are well-defined, so the entire algorithm is veri- 

fied. If P(e")^0 at step (1), then by Theorem 4, e*=0" is globally 

optimal for (17). If P(e")<0 at step (1), the fact that the functions 

^j ^"^ ^j ^^^  inverses with the fact that X.'-=X.(o.") imply that the 



45 

algorithm terminates with 0<e*<e^ and X*>0 satisfying 

(a) Xj.(ej*) = A>.  j = l.....i 

^j(ej*) = \*  ,  j = i+l N 

(b) P(e*) =0. 

But (41) implies X.(e.*) > A*" for j=l,...,i, and certainly X*" ^ X*. 

Moreover, since Pj*=©j". "for j = l,...,N, e* satisfies (24). By Theorems 

6, 7 and 8, these equations imply the local optimality of e* for (17). 

Recall that We reformulated the multi-item inventory problem using 

the one-to-one change of variables given by (7). Our GKD Algorithm 

finds an optimal 6* for (17), and this gives rise to an optimal S* 

via the inverse of the change of variables (17), which is 

S. = u.* -' 

as given in step (6) G-       = 

The algorithm is computationally efficient in that it only requires 

solving P^(X)=0, where P^(X) is a real-valued function of one real 

variable. The computation of the functions t.(X) must, however, be 

done numerically (the details are in the Appendix to this chapter). 

Moreover, the hypotheses of Theorem 8 are easy to verify and guarantee 

that the algorithm is well-defined and converges to a minimum of (17). 

The proof of Theorem 8 shows that is sufficient to check that 

X^'(e. ) < 0 for each i. The extension of the algorithm when 

X^'(e^") > 0 is discussed in Section 5. 
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4. POLICY PERFORriANCE 

In order to illustrate the performance of the (s.S) policies 

generated by our algorithm, we performed the following test. We exanined 

fifteen 2-item inventory systems with the parameter settings 

K^ = K^ = 32 

k^ = k^ = 0 

h ■ 

h^ = .05, IP = 1, 10, 25, 50, 100 

V*l  ^' Vi  3 

^  _   J,  _ 

We chose these parameter settings for three reasons 

1. Most of them give rise to large D (much larger than 1.5y). 

Since our approximations and theorems generally hold for large 

D, it should perform well on these systems. 

2. These parameters are realistic, in that they reflect costs 

associated with many actual inventory systems. 

3. As in Mitchell [1982], our algorithm should perform effectively 

when there are both "expensive" and "inexpensive" items 

in the system. This holds for those systems we considered 

^2 
with r— large. 

The comparison we used assumes the underlying distribution 

is Negative Binomial (the discrete version of a Gamma distribution, 

which is skewed for our parameter settings), specifies a service- 

level a, and uses the Veinott-Hagner exact algorithm (Veinott 
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and Wagner [1965]) to compute optimal policies for both items in each 

system using the same service-level a. We ran our algorithm using 

a. Then we compared the holding plus set-up costs generated by the 

Veinott-Wagner algorithm and our algorithm. The results are displayed 

in Table 1. ,    , 

We make the following observations. 

1. The service-level a is not the same for all runs, but varies from 

.89 to .97. The average service-level for the fifteen runs is .93. 

There are two reasons for this. First, for some of these items, 

the policy with the smallest service-level, (0,D), has a very 

high service-level, so that the system-wide service-level is high. 

For other items, the smallest service-level is small. It turns 

out that to specify a uniform service-level is to specify :Y=.97 

(since one of the systems has this as the smallest service-level 

for both items), which is unreasonably large. The second reason 

is that the logistic approximation we use in our algorithm does 

not always generate policies with service-level a when the actual 

distribution is Negative Binomial. However, preliminary tests 

on larger systems (32 items) seem to indicate that this problem 

is less severe for larger systems. 

2. Our approximation for D. is almost exact for every single 

item. This suggests that the asymptotic approximations we 

are using should be fairly accurate. For all items D^ is 

sufficiently large to guarantee that the hypotheses of 

Theorem 7 are satisfied, so all policies are(possibly local) 

minima (not saddle points). 
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3. Over half the systems had an item with s < 0 for the policy 

generated by the Veinott-Wagner algorithm. Our algorithm 

can only consider policies with s > 0, but its policies still 

compared very favorably against those generated by the Veinott- 

Wagner algorithm, 

4. As expected, there was a cost reduction for all systems, except 

the ones with identical holding costs. Moreover, the greatest 

h 
cost decreases were for those systems vn'th r— large. 

This initial investigation demonstrates that inventory-operating 

costs can be reduced significantly when a system-wide service level is 

specified, rather than specifying an identical service-level for each 

item. 
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TOO 40 33 31 

50 26 23 25 

25 14 19 

10 10 

T 
3 

Wi 

Table 1 

Percent decrease in holding + set-up costs 

Assumptions: 

K^=K2=32 , k^=k2=0 , h^=.05 

^1  °2 1 
^ ^ Y^^ ^  ' "l'^2" 2 ' ^r^ 

all demands Negative Binomial. 
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5. GKD ALGORITHM MODIFICATION WHEN D^IS SMALL 

Theorem 8 of Section 2 contains the most general condition under 

which we were able to prove (see Theorem 7) that the GKD Algorithm 

converges to a (possibly local) minimum of (17). This condition is 

that for all items i=l,...,N the functions X.(e.) are decreasing on 

(0, 0.'^). We give our recommendations when this condition may not 

hold for some iteri"; in the inventory system. 

Recall from the proof of Theorem 8 that A.(e.) is convex on (0, 6.^) 

when ri->0 and is decreasing on (0, 6. ) when both n^>0 and i-<^.    More- 

over, lim n-^"* and lim i-=-'^,  so X.(e.) is decreasing on (0, 6. ) when 

D. is sufficiently large. The GKD Algorithm (given in Theorem 9) exploits 

this property by assuming the existence of the inverse function of X., 

which is denoted by t.. 

The question is what to do when D. is not large enough to guarantee 

'n.>0 and C-<0- In either case it is impossible to guarantee that X^ is 

decreasing, and hence invertible, so step (3) of the GKD Algorithm 

may not be well-defined. The algorithm may converge, but there is 

no guarantee that it will converge to a local minimum. 

We recommend the following modifications when n^<0 or ^.>0. If 

^.>0 but n->0, then X. is still convex but not decreasing on (0, e^- ). 

It is always true (?nd easy to verify) that X'(0)=-°^, so this case is 

illustrated in Figure 1. 

In this case we recommend that the domain of X.(fl.) be shortened 

to (0, e-"), where 0." is the largest value of 9^ for which X^(e^) is 

decreasing. This has the effect of introducing the additional constraint 

S->S. , where S. il).. Since the S. are lower bounded anyway by D., 
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this constraint does not change the structure of the problem at all. 

In particular, the 6KD Algorithm will still converge to a (possibly 

local) minimun. 

Figure 1 

Computationally, ft. can be found by increasing the given lower 

bound D. on S.- a unit at a time until 0." is found. This procedure is 

described in detail at the end of this section, and computational 

experience on typical 32-item inventory systems is reported in the 

next chapter. 

Although we have in this case a recommendation that still assures 

that the GKD Algorithm will converge, the case when n-<0 poses greater 

difficulty. The \.  may not be convex, in which case we have been 

unable to find a nodification of the problem that guarantees convergence 

to a local minimum. Ve essentially ignore this case and use the algor- 

ithm as it is (makinn the recommended modification when f,.>0). Our 

computational experience reported in the next chapter seems to indicate 

that this is not a problem in many cases. Since n- is easy to compute 

prior to using the GKD Algorithm, we reconinend doing so in order to be 
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alerted to possible problems when n^<0. 

In light of all this, the only recomnended change involves the 

computation of©". The 6KD Algorithm is just as given In Theorem 9, 

with the following step inserted between steps (1) and (2): 

(1.1). For j=l....,N: 

(1,1.1). Set e," = e'^i'^j "^0*'. 

If X.'(0.")<O, go to step (1.1.2). 

Otherwise, set S.'■=$.*■+!. 
J    w 

Go to step (1.1.1). 

(1.1.2). Next j. 

6. CONCLUSIONS 

We have formulated a constrained NLP to solve an (s,S) inventory 

model with a service-level constraint rather than shortage costs. 

This model has the advantage that a manager can more easily specify 

service objectives than shortage costs. We derived necessary and suffi- 

cient conditions for an optimal (s,S) policy. Using asymptotic approxi- 

mations (where D=S-s is large) and assuming Logistically distributed 

demands, we derived a computationally efficient algorithm to find 

approximately optimal (s,S) policies. We showed that for some inventory 

systems there is a substantial cost savings when using this algorithm 

instead of the Independent and Identical Service approach that is often 

used in practice. K'e also gave recomiTiendations to modify our algorithm 

when D is not sufficiently large to guarantee its convergence. 



53 

k. 

a 

NOTATION 

Pasi 

K. 18 

C| 18 

18 

18 

19 

N ;^  ^ 19 

W. ■ 19 

19 

(s.S) 19 

D. 20 

I.* 20 

p.* 20 

o.* 20 

C^(S..D.) 21 

Pi(S,.D,) 21 

M. 21 

m. 21 

C{S,D) , 22 

P(S,D) 22 



Page 

54 

■s-r 

Pi 

c.(e.) 

c(e) 

p(e) 

^ 

^i 

x.(e^) 

L(e*,x*.!;*) 

22 

25 

25 

25 

25 

26 

29 

30 

30 

33 

33 

33 

33 

33 

33 

33 

34 

42 

42 

43 

P^M 43 



58 

its unit holding cost h).    This system is described in Figure 2, 

where the items are ordered in decreasing order by hg.    Essentially 

the first seven items are high-value items  (have a very high annual 

dollar demand), and the other twenty-five items are low-valued items. 

As a base-case, we specified inventory parameters as follows.    For 

i=l....,N, 

K.   = 24 

^•^  =12 

k.   = 4 
1 

0.2 
^    = 9 

and ^i 

^'l'^5''^9'■ ■ ■'     ''29 ~ 

^4' "8'''l 2'''" *  ^32 ~ 

Of course, h. is determined by y. from the value {hp).=h.y.. 

We are interested primarily in the algorithm performance at a 

service-level of 85'., one managers often prefer. Our criterion of 

comparison is to assume that the demand distribution is Negative Bincmial 

and compare the total expected cost associated with the (s,S) policies 

that the GKD Algorithm produces with the total expected cost of the 

policies given by optimally setting all the (s,S) policies so that 

every item has a service-level of 85^. We call this the Identical 

Service Approach, and it is an approach often used by managers. 

We intended to use the Veinott-Wagner [1965] Algorithm (also Kaufman 
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[1976]) to compute the optimal policies, but the amount of computation 

required was impractical because the optimal policies often had S. too 

large. 

Instead we used the Power Approximation of Ehrhardt [1976] and 

[1979] to compute approximately optimal policies. We chose this 

approximation because extensive numerical investigations in Ehrhardt 

[1976], and Klincewicz ri976al and [1976b] showed this to be both 

the most accurate and most easily computed approximately optimal 

policy available. We use the version of the Power Approximation 

given in Mosier [1981] because of the technical improvements made. 

The Power Approximation requires the specification of shortage costs 

rather than the service-level. Letting a denote the service-level speci- 

fied for the inventory system (using the Identical Service Approach), we 

specified the shortage costs p^. using the expression (see Ehrhardt [1977, p.8]) 

i'                                      p. + 0.0695h. 
« =  . 

Pi"^ 

This expression is an empirical improvement over the well-known 

relationship (see Veinott and Wagner [1965]) 

.. _  Pi 
-  p..h. • . 

Because both the GKD Algorithm and the Power Approximation are 

approximations, it was impossible to realize the exact service-level 

specified. We therefore specified various service-levels, and inter- 

polated intemiediate service-levels. Since we used the Power 

Approximation in the GKD Algorithm to compute the values for D, we 
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only compared the expected holding costs for this algorithm and the 

Power Approximation, the expected replenishment costs being identical 

(Typically the expected replenishment cost accounts for about half of 

the total expected cost). The result of this experiment is displayed in 

Figure 3. There is a significant decrease in expected holding costs at 

and near a service-level of 85%. 

In order to investigate the sensitivity of expected holding cost 

to the various parameters, we performed four additional experiments 

in which we modified one parameter (or parameter group) at a time in 

our base-case model. The same experimental dpsign was used for these 

exneriments as for the base-case. 

Figure 4 describes the result when the means were changed to 

^r^3'--"^3i " ^^ , 

As can be seen, there was a very slight degradation in the GKD 

Alaorithm performance. The cost savings are still substantial. 

Figure 5 describes the result when the base-case was altered so 

that 

k.=8, i=l,...,32. 

Again there was only a slight degradation in cost. 

Figure 6 is the base-case with 

2 

^i 

The cost degradation is greater than in previous experiments, but the 

cost savings remains substantial. 
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Figure 7 describes the change 

Uj .vi2»• • • .v-ig = 16  , 

VJi7,ii,g,...,vj32 = 8.     ; 

The cost savinns are still substantial, but not as great as in previous 

experiments. 

As a final experiment, we did a worst-ccsp type experiment, in 

which all of the following changes were made: 

k.  = B 

2 

Vi-.-Vie = 16 

>il7,....V32= 8. 

This experiment is described in Figure 8. The degradation is substan- 

tial, but the cost savings are still large. The behavior of the GKD 

Algorithm policies for service-levels larger than about 87%, where 

the total cost is greater, seem to be caused by the error in approximat- 

ing the Negative Binomial demand by a Logistic distribution (Section 2 

of the previous chapter). We address this issue at the end of this 

chapter. 

We make the following general observations concerning the perform- 

ance of the GKD Algorithm for these 32-item inventory systems. 

1. The total holding cost savings are substantial at and near a service 

level of 85%. The algorithm is an improvement over the Identical Service 

Approach often used by managers, and significantly reduces the overall 
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cost of maintaining an inventory system subject to a service-level 

constraint. 
, .    ■ i 

2. In most cases the policies produced by the GKD Algorithm 

degrade sharply around a service-level of 86^ or 87*, as is evidenced 

by the sudden sharp increase of the holding cost. This suggests that 

the GKD Algorithm may not produce substantial cost savings when a 

high overall service-level is specified. 

3. The GKD Algorithm seems to perform best when there is substan- 

tial variation in demands means, when the leadtime is not too large, 

and when the variance to mean is not too small. The degradation in 

performance is due to the error in approximating a Negative Binomial 

demand distribution by a Logistic distribution. This is especially a 

problem when there are certain patterns in the demand means and large 

leadtimes. This issue is discussed in detail in the next chapter. 

3. SINGLE-ITEM SERVICE-LEVELS 

For the six experiments described above, we also examined the 

single-item service-levels of the policies produced by the GKD Algorithm. 

For each inventory system we chose that experiment that had the average 

service-level closest to 85% and plotted the items (in decreasing order 

of their annual dollar demand, hyi) against their optimal service-level. 

The results are displayed in Figures 9, 10, 11, 12, 13 and 14. We make 

the following observations concerning them. 

1. Typically the items in the inventory system are skewed, in. 
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that the seven high-value items  (i=l,...,7) have a service-level 

considerably below 85%, and most of the twenty-five low-value Items 

have a service-level  considerably above 85X.    In some cases there 

are a few items with service-levels near 853f. 

2. There is an obvious negative correlation between the value 

h.u-  and the  service-level  for item i.    This  indicates  that low-value 
11 

items should be stocked high and high-value items should be stocked 

much lower,  rather than stocking all   items the same. 

3. There is an obvious cyclical pattern corresponding to the 

cyclical pattern of the means. For the high-value items, the service- 

levels are higher for those items with smaller means, and for the low- 

value items, the service-levels are lower for those items with the 

smaller means. This suggests that it may be possible to well-approxi- 

mate the ordering of the items by their service-levels using only h^-ji^ 

and p.. 

4.     ITEMS WITH D.  TOO SMALL 

The discussion in Section 5 of the previous chapter indicates 

that a sufficient,  but not necessary, condition that the GKD Algorithm 

converge to  a   (possibly local) minimum (17)  is  that £;.<0 and n->0. 

These are guaranteed if D.  is sufficiently large.    If D.  is not large 

enough to guarantee that [,.<0,  it is sufficient to in effect add the 

additional   constraint SiS.     in order to still   guarantee that  the 

algorithm will   converge   to   a   local  minimum.      If   ri->0,   no 

recommendation   could  be   given   to   guarantee   algorithm  convergence   to 

a   local  minimum.      In   this   chapter  we   report  on   those   items   in   the   six 
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inventory systems examined that violate either (i.<0  or T].>0. 

Interestingly enough, there is not a single item in any inventory 

system with n^<0, and so the GKD Algorithm converged to a (possibly 

local) minimum in every  experiment. Each system contained items with 

C.>0, however, necessitating adding constraints S.jS- , as discussed 

in the previous chapter. This is reported in Table 2. 
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5. CONCLUSIONS ", 

We have found that for inventory systems typical of ones found 

in the real-world, there is a significant cost savings when the GKD 

Algorithm is used rather than the Identical Service Approach often 

used by managers. There are two issues that still need to be addressed. 

First, the behavior observed in Figure 8 (the identical service 

approach performed better than the GKD Algorithm) needs to be better 

understood. This is especially necessary in order that practical 

recommendations may be given as to what types of inventory systems one 

can expect substantial cost reductions when using the GKD Algorithm rather 

than the identical-service approach. Moreover, insights into the behavior 

observed in Figure 8 may suggest modifications to the GKD Algorithm 

that would enable it to perform better in situations like those which 

prevail in Figure 8. This issue is addressed in the next chapter. 

Second, methods of large-scale inventory aggregation need to be 

explored so that the GKD Algorithm can be used in an inventory system 

with perhaps many thousands of items. Only then can the algorithm be 

of practical value. This issue is also addressed in the next chapter. 
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IV.  SENSITIVITY EXPERIENCE WITH THE GKD ALGORITHM 

1. INTRODUCTION 

In Chapter II we considered the problem of specifying single-item 

service objectives in a multi-item (s,S) inventory system subject to a 

system-wide service objective. We formulated this problem as a 

constrained NLP and developed the Generalized Knapsack Duality (GKD) 

Algorithm to solve it. In Chapter III we reported our computational 

experience with several 32-item inventory systems with a structure typical 

of many real-world inventory systems. In this chapter we report sensitiv- 

ity experience with the base-case and worst-case inventory systems used 

in Chapter III. The criterion of comparison is to compare the expected 

holding cost (computed exactly) associated with the (s,S) policies 

produced by the GKD Algorithm for a given system-wide service level a 

with the expected holding cost of the policies given by the Identical 

Service Method, in which all the (s,S) policies are set by the Power 

Approximation given in Hosier [1981] so that every item has a service- 

level a  (as discussed in Chapter III the exact algorithm of Veinott and 

Wagner [1965] is computationally unwieldy for our inventory system, 

and the Power Approximation is the most accurate approximation available). 

In computing the expected costs we assume the underlying demand distri- 

bution is Negative Binomial, and we are primarily interested in the sensi- 

tivity of the GKD Algorithm at service-levels of 85;tand88%. We 

are interested in 85% because this is a service-level managers often 



81 

prefer, and we are interested in 88,. because of the difficulties 

reported in Chapter III with the worst-case inventory system at this 

service-level. 

In Section 2 of this chapter we report sensitivity experience 

for D^=S^-s^, which is a constant input parameter to the 6KD Algorithm. 

In Section 3 we report sensitivity experience for the lower bounds on 

S^, which are input to the GKD Algorithm, but may be increased by the 

GKD Algorithm (Chapter II Section 5). In Section 4 we consider several 

sampling schemes for large-scale inventory aggregation, where a sample 

is used with the GKD Algorithm to specify (s,S) policies for every item 

in the inventory system. In Section 5 we investigate the sensitivity 

of these sampling schemes to the number of items in the scheme, and in 

Section 6 we offer conclusions and recommendations concerning specifying 

the D^, the lower bounds on S. and the size and type of inventory scheme 

to use for large-scale inventory aggregation. All figures are at the end 

of the chapter. 

2. SENSITIVITY EXPERIENCE FOR D^ 

Recall from Section 2 of Chapterll that D.=S.-s. is approximated 

by a constant (the Power Approximation of D.) which is input to the 

GKD Algorithm. This is justified because in the single-item case the 

optimal D^ is asymptotically independent of the service-level. For any 

given item i in the inventory system, however, the policy (s.,S.) 

produced by the GKD Algorithm with associated service-level a- may not 

be an optimal policy when the item i is considered as a single-item 
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inventory system. And for a non-optimal policy (s.,S.). D. is not 

necessarily independent of the service-level a-. 

Thus we investigated the impact of varying the input values of 

the D., to determine if the GKD Algorithm performance degraded (or 

perhaps even improved). As stated in the Introduction, we used the 

32-item base-case inventory system of Chapter III. This system has the 

structure that twenty percent of the items constitute eighty percent 

of the total value (where value is taken to be h^j) of the 

inventory system. The parameters are as follows for i=l,...,N: 

•^i = 24 

Wi = 
1 

32 

^r 4 

Oi^ 

^i 
= 9 

and 

P2'^6'^10*---' ^30 " ^ 

^3'^7*^n'"*"' ^31 ^ ^ 

The h- are determined through the value h.y.. Additional 

details are given in Chapter III. 

Because of the structure of the inventory system, the items 1-25 are 

low-value items and items 26-32 are high-value items. Typically, as 

discussed in Section 3 of Chapter III, the GKD Algorithm produces policies 

so that the service-levels of the high-value items are very low and the 
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service-levels of the low-value items are very high. These observations 

suggest two experiments. 

In the first, we increased the value of D. (given by the Power 

Approximation) 25% for the low-value items and decreased the value of 

D. 25% for the high-value items. In the second experiment, we decreased 

the value of D^. by 25% for the low-value items and increased it 25% for 

the high-value items. 

These are severe tests of robustness. In the experiments in Chapter 

III we compared the expected holding costs of the GKD Algorithm policies 

and the Power Approximation policies (which give identical service to 

all items) because, since we used the Power Approximation D. in the GKD 

Algorithm, the expected replenishment costs are the same. Such is not the 

case in the experiments described in this section, so we compare the total 

expteced costs, namely, the expected holding plus replenishment costs. 

These experiments and their outcomes are summarized in Table 3 and Figures 

15, 16 and 17. In Experiment 2, for example, in which the Power 

Approximation D. is increased 25% for the low-value items and decreased 25% 

for the high-value items, the expected total cost for the GKD policies 

at a service-level of 85% is approximately 198, and the expected total 

costs for the Identical Service Method at that same service-level is 

approximately 276. This represents a 28% decrease in expected cost when 

using the GKD policies rather than the Identical Service policies. 
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Table 3. Sensitivity Experience for Di: Comparison of GKD Algorithm 
Policies with Identical Service Policies. 

% 4- in cost  % I in cost 
Low-Value   High-Value   at Service- at Service-  See 

Experiment Items (1-25) Items (26-32) Level 85%   Level 88'.   Figure 

1 No change No change 29 26 15 

2 D. i  25% D. i 25% 26 22 16 

3 D. 1 25% 
1 

D. i  25% 28 27 
17 

We make the following observations and conclusions: 

(1) The change   in the performance of the GKD Algorithm 

in Experiment 2 and 3 is slight, especially considering 

the severity of the test. This suggests that not only is an 

especially accurate specification of D unnecessary for a single- 

item inventory system, it is also unnecessary for a multi-item 

inventory system of the general structure of our base-case. Of 

course, additional experiments on variations of this base-case 

would help confirm or refute this conjecture. 

(2) Although it may be possible to specify the D. so that greater 

cost savings are realized than when using the Power Approximation 

D., we recommend using the Power Approximation, since obvious ways 

of changing D. do not improve the GKD Algorithm performance. 
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3. SENSITIVITY EXPERIENCE FOR LOWER BOUNDS ON S^ 

Recall from Chapter II that we required S^>D^ in the 6KD Algorithm 

with that lower bound on S. possibly being increased by the algorithm 

to guarantee convergence to a (possibly local) minimum (see Section 5). 

The main reason given to restrict attention to policies with S^>D^ is 

that (aside from the mathematical difficulties involved) many managers 

consider policies with S.<D. (equivalently, s^<0) unsatisfactory for 

practical implementation. There are two reasons, however, that even 

higher lower bounds on S. might be imposed. 

First, many managers prefer not only that s^>n, but that s^>p> = 

(k.+Djjf., so the safety stock (s^) is always at least large enough to 

cover the expected leadtime demand. 

Second, in Chapter III the Identical Service Approach performed better 

than the GKD Algorithm in the worst-case experiment at a service-level 

at and near 88%. 

We offer a conjecture to explain this behavior and show that by 

modifying the lower bounds on S. the GKD Algorithm will in the case 

just described perform considerably better than the Identical Service 

Approach at both service levels 85% and 88*. 

The worst-case inventory system has the same 80/20 structure 

(twenty percent of the items represent eighty percent of the total system 

value) with the following parameters for i=l,...,N: 

K. = 24 

1  32 

'<i 
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and     ■■' ""■ •-    ''  '   " ■      - -     ■  ^■■.   ■•'•■      ... ■ -^ 1 

Ui.Up'•••» ^15 " 1^ 

There is a notable difference in the single-item service levels 

determined by the GKD Algorithm at a service-level of only 85\ for both 

the base-case and the worst-case inventory systems, as reported in 

Figures 9 and 14 of Chapter III,respectively. For the high-value items 

(items 1-7) in both cases the (s,S) policies given by the GKD Algorithm 

have all the S. at their lower bounds. The service-levels associated 

with the high-value items for the worst-case are considerably lower than 

those for the base-case, and so the service-levels for the low-value 

items for the worst-case are considerably higher than those for the 

base-case. The GKD Algorithm assumes the demand distribution is Logistic, 

whereas in these experiments we assume the demand distribution is Negative 

Binomial. The approximation of a Negative Binomial distribution by a 

Logistic distribution is poorest in the tail, which corresponds to very 

high individual item service-levels. Thus we conjecture that the poor 

performance of the GKD Algorithm in the worst-case is due to the poorness 

of the Logistic demand approximation. We test this conjecture by 

imposing higher values of the lower bounds on the S.. This forces the 

high-value items to be stocked at a higher service-level, so the low- 

value items are stocked at a lower service level, as in the base-case. 

We note that Figures 9 and 14 indicate that the higher the demand mean, 

the lower the service-level of the {s,S) policy with S at its lower bound. 
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perform as well at a service-level of 88jt as it does at 91A» with r=l. 

These experiments and their outcomes for the base-case are sumnarized 

in Table 6. The results are similar to those in Experiments 2, 3, and 

4, and so we do not report the expected cost graphs. 

Table__6. Sensitivity Experience for Lower Bounds on Si: Base-Case*. 
Comparison of GKD Algorithm Policies with Identical Service 
Policies, 

Minimum % 4 in cost 
r, where         Overall at Service- 

Experiment      S.?D.+ru.*      Service-Level Level 88?. 

6 .8 .860 33 

1 .9 .885 

These experiments and their outcomes for the worst-case are 

summarized in Table 7 and Figure 22. Since theresults of these experi- 

ments are similar to each other we report the expected cost graph only 

for Experiment 6. 
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Table 7. Sensitivity Experience for Lower Bounds on S-: Worst-Case! 
Comparison of GKD Algorithm Policies with Identical Service 
Policies. 

Minimum %  4 in cost %  4- in cost 
r, where    Overall at Service- at Service-  See 

Experiment S.>D.+ry.* Service-Level Level 85% Level SB*  Figure 

6 .8       .811       26       -23       22 

7 .9       .878       —       20 

We make two additional observations: 

(5) The previous remarks for the base-case also hold for 

r=.8. .9. 

(6) For the worst-case system there is a dramatic improvement 

in algorithm performance when r=.8. In this case there is a 

substantial cost savings at both service-levels 85% and ZZ%. 

We offer the following conclusions. 

(1) The behavior at a service-level of 88% for the worst-case 

inventory system does seem to be caused (at least in part) by the 

poorness of approximating a Negative Binomial distribution by a 

Logistic distribution. 

(2) The algorithm performs best when there is a lower bound on S 

just large enough to prevent too many of the low-value items to be 

stocked extremely high. We recommend that a user experiment with 
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various lower bounds (in terms of the single input value r) to 

find the best one. 

(3) As most managers prefer as high a lower bound as possible on 

S (as long as average system service is not too large), we reco- 

mmend specifying r as large as possible to include the desired 

targeted service-level.Our experience with both the best and worst- 

case inventory systems suggests that this approach will yield a 

significant cost reduction over the identical service approach. 

4.  SENSITIVITY EXPERIENCE FOR SAMPLING SCHEMES FOR 

INVENTORY AGGREGATION 

Many real-world inventory systems contain tens of thousands of 

items. Although the GKD Algorithm is quite efficient, it could not 

handle inventory systems of this size. This is not a problem unique to 

our algorithm, and most managers deal with it using inventory aggregation. 

This is any method of partitioning an inventory system into groups of 

items so that every item in the group is controlled essentially the 

same. A representative item is chosen from each group and used to 

specify (s,S) policies for all items in its group. 

Our method of aggregation exploits the special structure of our 

problem (as formulated as an NLP) and of the GKD Algorithm, and certain 

empirical observations in Chapter III. Recall from Section 3 of Chapter II 

that the GKD Algorithm exploits the "Knapsack" structure of the NLP by 

solving its dual NLP. The dual has only one variable, X, and to find 

the optimal S*    of the original NLP it is sufficient to find the optimal 

dual variable X*. This is reflected in the GKD Algorithm (Chapter II 
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Section 3) by solving P(x)=0 for X*, from which S* is computed. Our 

method of aggregation is to use a subset of the inventory system to 

estimate X*, and then compute S* for all the items in the Inventory 

system from this estimate. 

The inventory system we constructed to test various aggregation 

schemes is a 126-item system with the same essential structure as the 

32-item base-case system described in Section 2. In particular, twenty 

percent of the items (items 101-128) constitute eighty percent of the 

total value of the inventory system, and the parameters are as follows, 

for i = l, 2,..., 128: 

h - 24 

"l = 
1 

128 

k. = 
1 4 

2 
°i 

= 9 

and , ■ ■ "'  ■: 

u^ •^5»*••' ^125 ~ ^^ 

^2''^6''**' ^126 ~ 

^2*^7*'''*  '^127 ~ 

_ o  -     i ■ 
^4'^8'•••» ^]28 ~ 

To examine the cost savings in using the GKD Algorithm rather than 

the Identical Service (Method (via the Power Approximation) described in 

Section 1, we ran the GKD Algorithm with the entire system. As described 

in Section 1, we compared the expected holding costs with those of the 

Identical Service Method, and the result is displayed in Figure 23. 
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divided by the total value of the sample from that strata. This was done for 

both strata, so each maintained its total value, thus preserving the 

80/20 structure. And to maintain the given constraint weights W., they 

were each recomputed as the total weight of the strata divided by the 

total weight of the sample from that strata. 

Initially we tested three central nonrandom stratified unifonri 

sampling schemes. If one wants to choose M items from a stratum consist- 

ing of the N items 1, 2,..., N by such a scheme, then the items 

■ A 3N 5N    (2K-1)N 
2M' 2K' 2M    2M 

are taken, where the fractions ^ are rounded to the nearest integer. 

For this sample, the 80/20 value structure and the constraint-weight structure 

is maintained by multiplying h.and K. by .1. h.y./ .1. ^.y., and V!. 

system   sample 
by N/M for each item in the sample.  The three schemes differed in the 

number of items taken from each of the two strata. They are described 

in Table 8. Notice that Scheme 1 is a nonstratified scheme that roughly 

takes every 4th item from the inventory system (since the means repeat 

themselves every four items, to take every 4th item would create an 

inventory system with every mean the same, which seemed objectionable). 

Scheme 2 creates an inventory subsystem of half high-value and half low- 

value items, and that Scheme 3 takes all the high-value items (it seems 

reasonable that X* is more sensitive to them than to the very low value 

items, and so this scheme seemed plausible). 
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Table 8. Central Nonrandom Stratified Uniform Sampling. 

Number Chosen from     Number Chosen from 
Scheme     Low-Value (1-100)    High-Value (101-128) 

V 24 8 

2 ;      16 16 

3 4 28 

The experiment v/e performed to test these schemes is as follows: 

For a variety of specified service-levels we ran the GKD Algorithm using 

the inventory subsystem (determined by the sampling scheme) to compute 

\*, the optimal multiplier for the subsystem. Each value of X* gives 

rise to a service-level for the subsystem (gt^o) ^"^ ^°^ ^^^  entire 

system (a,2o)» ^^^  to the expected holding cost at these service-levels 

(H.p and H,2o» respectively). The criterion of comparison is how close 

0^2 and 3,28 and ^^2  and H,28 (^or a given X) are. A "perfect" subsystem 

would give rise to OL22-^i2g*  ^32~^128' ^^^^ is,its optimal multiplier 

X*=>,*, the optimal multiplier for the entire system. The service-level 

graphs for the three schemes are given in Figures 24, 25 and 26, and the 

expected holding cost graphs are given in Figures 27, 28 and 29. 

We make the following observations concerning these sampling schenes: 

(1) They are all good. Although each one gives rise to a misspeci- 

fication of a^pg and H,2o. the total cost savings will still be 
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Substantial over the Identical Service Approach (compare Figure 23). 

(2) Scheme 2  seems to be superior to Schemes 1 and 3. Scheme 1 

has a preponderance of low-value items. Scheme 3 has a preponder- 

ance of high-value items, and Scheme 2 has the same number of each. 

It seems that the proportion of items that are high-value/low-value 

at least in part affects the performance of the scheme. 

The efficiency of Scheme 2 may have something to do with the fact that 

the demand means of our base-case inventory system follow the pattern 

2, 4, 8, 16,..., 2, 4, 8, 16. To investigate this, we used a central 

random stratified uniform sampling scheme with 16 expensive and 16 inex- 

pensive items (like Scheme 2). In other words, we chose 16 items uniformly 

randomly (using the IMSL Routine 6GUD) from both the high-value and lov.- 

value items. We performed six such tests, one with a different initial 

seed. The details of the subsystems chosen can be found in the Appendix 

to this chapter, and the scheme itself. Scheme 4, is described in Table 9. 

Table 9. Central Random Stratified Uniform Sampling 

Number Chosen from Number Chosen from 
Scheme      Low-Value (1-100) High-Value (101-128) 

4            16 16 

We performed the same experiment as we did for the first three 

schemes, and the results of this experiment for the first seed is 
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reported in Figures 30 and 31 (results for all of the seeds were similar). 

We make the following observations. 

(1) As for the three nonrandom schemes, the random scheme is good. 

(2) The random scheme is not as good as Scheme 2, the nonrandom 

scheme with the same proportion of high-value/low-value items as 

this scheme. It would appear that the sequence of demand means is 

important, and that further research in stratifying not only on the 

value but on the demand means could give even better sampling 

schemes. 

(3) The method of sampling seems relatively unimportant as long as 

the 80/20 value structure of the inventory system is maintained. 

We recommend, therefore, that the scheme be chosen on the basis of 

its ease in implementation. Perhaps the nonrandom Scheme 1 is 

easiest, as it requires only one stratum (it represents a central 

sampling of every 4th item). 

As a final experiment we tested whether Scheme 4 with the seed of the 

first experiment was accurate when lower bounds are imposed on the S.. We 

chose Scheme 4 because it gave rise to neither the best nor the worst 

performance among the schemes. We chose lower bounds corresponding to 

r=.75 (see Section 3) because this v;as the largest value of r \\'hich alloved 

an overall service-level of at least 85%. This experinent is described 

in Table 10 and the outcome is reported in Figures 32, 33, and 34, where 

Figure 32 reports the expected cost when using all 128 items in the RKD 

Algorithm. 
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Table 10. Central Random Stratified Uniform Sampling: 
S.>D. + .75v..*. 

Number Chosen from     Number Chosen from 
Scheme      Low-Value (1-100)    High-Value (101-128) 

4 16 16 

We make the following observations: 

(1) There is a significant cost savings at service-levels BS% 

and BB%. 

(2) The sampling scheme is very accurate. It seems that our 

previous conclusions about the accuracy of these sampling schemes 

also hold true when lower bounds are imposed on the S^. 

5. SENSITIVITY EXPERIENCE FOR THE SAMPLE SIZE 

FOR INVENTORY AGGREGATION 

In order to investigate how the reliability of inventory sampling 

schemes depends on the size of the scheme, we constructed a 512-item 

base-case inventory system with the 80/20 value structure described in 

Section 2. Not only is this structure typical of many real-world inven- 

tory systems, but if the items in the system are ordered in descending 

order by their value {h.}*.) and the cumulative percent of the items is 

plotted against the corresponding cumulative value, then the resulting 

graph is frequently well-approximated by a Lognormal cumulative distribu- 

tion function (Peterson and Silver [1979, pp. 30-37]). We constructed 
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(Nonrandom) Uniform Sampling Scheme (compare Scheme 1 of the previous 

section). The last experiment (Scheme 4) of Section 4 suggests that 

the approach of using a sample to investigate the sensitivity of the 

system to r is a reliable procedure. We considered r=0, .6, .7, .8, 

.9, 1, with a targeted service-level of 85jt (a service-level popular 

with many managers), and we want to include for consideration service- 

levels 83X to 88;(. 

This experiment and its result is reported in Table 11 and Figure 

35. Since we want to include for consideration a service-level of 83'^ 

we chose r=.6. The cost savings forr = .6 at a service-level of 85' is 

about 51'., which is very signficant. 

Table 11. 12C-Item Central Nonrandom Uniform Sample from the 512- 
Item Base-Case System: Comparison of GKD Algorithm 
Policies with Identical Service Policies. 

Minimum % 4- in cost 
r, where Overall at Service- 

S^>D^+rij.* Service-Level Level 85% 

0 < .8100 50 

.6 .8140 51 

.7 .8439 47 

.8 .8719 

.9 .8951 

1 .9163 — 
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As an additional check of the reliability of using this sampling 

method to chose r, we repeated the experiment on the entire 512-item 

inventory system. The results are summarized in Table 12 and Figure 36. 

The sampling method of choosing r is seen to be very reliable, as was 

the case in Section 4. 

Table 12. 512-Item Base-Case System: Comparison of GKD Algorithm 
Policies with Identical Service Policies. 

Minimum % I in cost 
r, where Overall at Service- 

S^iiD. + ry^.* Service-Level Level 851- 

0 < .8100 49 

.6 .8138 50 

.7 ■ .8441 46 

.8 .8720 -- 

.f .8961 

1 .9165 

There were two sampling schemes considered in Section 4 which seemed to 

perform the best. The first is the recommended scheme, the Central 

Nonrandom Uniform Sampling Scheme. The second is the Central Nonrandom 
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Stratified Uniform Sampling Scheme (compare Scheme 2) in which half the 

sample is taken from the high-value items and the other half is taken 

from the low-value items. Because of the 80/20 value structure of our 

512-item base-case system, items 1-102 are high-value and items 103-512 

are low-value. The sensitivity experimental design is identical to 

that described in Section 4, here with r=.6. We chose sample sizes of 

32, 64 and 128 for both schemes described, and the six experiments are 

summarized in Table 13. For each sample size, the results of these exper- 

iments were similar for both the uniform and stratified uniform schemes, 

and so the comparative graphs are reported only for the Central Nonrandon 

Uniform Sampling Scheme (Figures 37 through 42). 

Table 13. Comparison of 6KD Algorithm Policies with Identical Service 
Policies. 

Central Nonrandom Uniform Sampling from 512-Item Base-Case System, 
S.>D. + .6u^.*. 

Experiment 
Sample 
Size 

Figure Reporti 
Service-Level 

ing 
s 

Figure Reporting 
Expected Costs 

1 32 37 40 

2 64 38 41 

3 128 39 42 

Central 
System, 

Nonran dom Strati 
.6p.*. 

ified Uniform Sampli ing from 512-Item Base-Case 

Experiment 
Number 

High-Value 
from 
Items 

Number from 
Low-Value Items 

4 16 16 

5 32 32 

6 64 64 
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We make the following observations: 

(1) All six schemes are reliable enough for practical implement- 

ation. The 128-item schemes are superior to the 64-item schemes 

which are superior to the 32-item schemes. 

(2) There does not seem to be any real difference betv/een the uni- 

form and stratified schemes. 

(3) An examination of the experiments in Section 5. in which 32- 

item samples were taken from a 128-item inventory system, indicates 

that the 32-item samples are just as reliable in the 512-item system 

as in the 128-item system. This is extremely significant because it 

strongly suggests that 32-item schemes are sufficiently reliable for 

practical implementation no matter how large the inventory system is, 

as long as it has the 80/20 value structure described. 

(4) We recomnend using the Central Uniform Sampling Scheme with 

around 32 items for any inventory system with an 80/20 value 

structure. Although larger samples may be more reliable, this 

scheme is reliable enough. Moreover, the computational work necess- 

ary to use the GKD Algorithm on such a sample is very small, making 

this scheme suitable for frequent use in a real-world setting. 

6. CONCLUSIONS 

In this chapter we performed sensitivity tests on the GKD Algorithm 

with inventory systems with a structure typical of real-world systems, 

that twenty percent of the items represent 80 percent of the value of the 

system. We concluded the following: 
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(1) The total cost savings are not affected very much by changes 

in D.. 

(2) Increasing the lower bounds on S. may improve the algorithm 

performance, especially when the high-value items also tend to have 

high expected demands. Even when increasing these lower bounds 

degrades the performance, however, the cost savings are substantial. 

We recommend increasing these lower bounds as high as possible 

(while still maintaining a cost savings below that of the Identical 

Service Method) as this appraoch is most consistent with managerial 

goals. 

(3) Uniform sampling with about 32 items is a reliable and computa- 

tionally efficient method of inventory aggregation, giving accurate 

predictions via the GKD Algorithm of overall inventory service and 

expected operating costs. 
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APPENDIX TO CHAPTER IV 

This appendix reports the seeds used in the IMSL Routine GGUD 

to create the six random samples of Scheme 4 of Section 4, and a 

listing of the 512-item inventory system of Section 5. The seed 

used in the IMSL Routine GGUD to generate the y. for this system is 

872245376. 

Table 14. Seeds for Six Tests of Central Random 
Stratified Uniform Sampling Scheme 4. 

Test Seed 

1 96665107 

t 227164307 

3 929811759 

4 2058317624 

5 75813808 

6 1743717576 

NOTE: Experiment for Test 1 reported in Figures 29 and 30. 
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512-Item Inventory System of Chapter IV 

For all items i = 1,2,....512; 

K. = 24 

k, =4 

^i 
■ 

h. y* CJ,- D,- D,/u. 
i 1 ^1 1 1 1 1 

1 i.ei45 9.0000 9.0000 17.5010 1.9446 
2 2.0363 8.0000 8.4853 15.7557 1.9695 
3 2.7002 6.0000 7.3485 12.1972 2.0329 
4 1.2363 13.0000 10.8167 24.6235 1.8941 
5 2.6514 6.0000 7,3485 12.3104 2.0517 
€ 1.2090 13.0000 10.8167 24.9025 1.9156 
7 0.9691 16.0000 12.0000 30.3035 1.8940 
6 3.8186 4.0000 6.0000 8.7403 2.1851 
9 1.0020 15.0000 11.6190 29.0211 1.9347 
10 1.eu69 8.0000 8.4853 16.5535 2.0692 
11 1. 1163 13.0000 10.8167 25.9282 1,9945 
12 1.C957 13.0000 10.8167 26.1746 2.0134 
13 1.0747 13.0000 10.8167 26.4318 2.0332 
Mi 1. 5218 9.0000 9.0000 19.1301 2.1256 
15 0.8388 16.0000 12.0000 32.6002 2.0375 
16 2.6290 5.0000 6.7082 11.5135 2.3027 
17 0.9193 14.0000 11.2250 29.4759 2.1054 
18 2. C997 6.0000 7.3485 13.8526 2.3088 
19 1.5411 8.0000 8.4853 18. 1413 2.2677 
20 1.2063 10.0000 9.4868 22.4390 2.2439 
21 0.9077 13.0000 10.8167 28.7900 2.2146 
22 0.9618 12.0000 10.3923 27.0711 2.2559 
23 2.2574 5.0000 6.7082 12.4364 2.4873 
24 2.7593 4.0000 6.0000 10.3021 2.5755 
25 1.0792 10.0000 9.4868 23.7387 2.3739 
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26 0.8793 12.0000 10.3923 28.3268 2.3606 
27 0.8597 12.0000 10.3923 28.6517 2.3876 
28 3.3623 3.0000 5.1962 8.3412 2.7804 
29 1.4088 7.0000 7.9373 18.0101 2.5729 
30 0.8035 12.0000 10.3923 29.6504 2.4709 
31 4.7132 2.0000 4.2426 6.0171 3.0085 
32 0.7680 12.0000 10.3923 30.3348 2.5279 
33 3.0037 3.0000 5.1962 8.8310 2.9437 
34 0.8811 10.0000 9.4868 26.3044 2.6304 
35 2.8719 3.0000 5.1962 9.0338 3.0113 
36 0.5266 16.0000 12.0000 41.2601 2.5788 
37 0.9155 9.0000 9.0000 24.7401 2.7489 
38 0.6715 12.0000 10.3923 32.4664 2.7057 
39 0.4926 16.0000 12.0000 42.6775 2.6673 
«0 1.9272 4.0000 6.0000 12.3539 3.08 85 
ftl 0.6855 11.0000 9.9499 31.0273 2.8207 
«2 0.5269 14.0000 11.2250 39.0649 2.7904 
a3 0.4511 16.0000 12.0000 44.6212 2.7888 
«tl 0.7846 9.0000 9.0000 26.7486 2.9721 
H5 1.7274 4.0000 6.0000 13.0572 3.2643 
Ub 1.3523 5.0000 6.7082 16.1173 3.2235 
til 2.2058 3.0000 5.1962 10.3242 3.4414 
UB 6.4770 1.0000 3.0000 3.9324 3.9324 
H9 0.7925 8.0000 8.4853 25.3993 3.1749 
50 0.6206 10.0000 9.4668 31.4075 3.1407 
51 0.5064 12.0000 10.3923 37.4529 3.1211 
52 0.3718 16.0000 12.0000 49.2023 3.0751 
53 1.1651 5.0000 6.7082 17.3793 3.4759 
5a 1. 1410 5.0000 6.7082 17.5642 3.5128 
55 0.3492 16.0000 12.0000 50.7896 3. 1744 
56 0.4975 11.0000 9.9499 36.4898 3.3173 
57 0.4874 11.0000 9.9499 36.8728 3.3521 
58 1.7507 3.0000 5. 1962 11.6048 3.8683 
59 0.6432 8.0000 8.4853 28.2280 3.5285 
60 0.4584 11.0000 9.9499 38.0353 3.4578 
61 0.4492 11.0000 9.9499 38.4273 3.4934 
62 4.8424 1.0000 3.0000 4.5559 4.5559 
63 0.2966 16.0000 12.0000 55,1623 3.4476 
64 0.3877 12.0000 10.3923 42.8717 3.5726 
65 0.2850 16.0000 12.0000 56.2865 3.5179 
66 0,7452 6.0000 7.3485 23.3980 3.8997 
67 0.3372 13.0000 10.8167 47.5148 3.6550 
68 4.2988 1.0000 3.0000 4.8388 4.8388 
69 0.4216 10.0000 9.4868 38. 1969 3.8197 
70 0.2953 14.0000 11.2250 52.3615 3.7401 
71 1.3518 3.0000 5. 1962 13.2271 4.4090 
72 0.6630 6.0000 7.3485 24.8234 4.1372 
73 1.9513 2.0000 4.2426 9.4012 4.7006 
lu 0.7658 5.0000 6.7082 21.4917 4.2983 
75 0.3757 10.0000 9.4868 40.4908 4.0491 
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76 0.9216 4.0000 6.0000 17.9437 4.4859 
77 0.3289 11.0000 9.9499 44.9928 4.0903 
78 0.8876 4.0000 6.0000 18.2878 4.5719 
79 0.2178 16.0000 12.0000 64.4933 4.0308 
80 0.4276 8.0000 8.4853 34.7056 4.3382 
81 0.5597 6.0000 7.3485 27.0443 4.5074 
62 1.0990 3.0000 5.1962 14.6877 4.8959 
83 1.6187 2.0000 4.2426 10.3336 5. 1668 
84 3.1788 1.0000 3.0000 5.6372 5.6372 
85 0.2081 15.0000 11.6190 64.2834 4.2856 
86 0.7665 4.0000 6.0000 19.6980 4.9245 
87 0.6022 5.0000 6.7082 24.2694 4.8539 
88 0.4930 6.0000 7.3485 28.8395 4.8066 
89 0.3632 8.0000 8.4853 37.6953 4.7119 
90 0.2854 10.0000 9.4868 46.5287 4.6529 
91 0.4006 7.0000 7.9373 34.0286 4.8612 
92 0.2296 12.0000 10.3923 55.8810 4.6567 
93 2.7077 1.0000 3.0000 6.1138 6.1138 
94 0.3801 7.0000 7.9373 34.9453 4.9922 
95 2.6151 1.0000 3.0000 6.2224 6.2224 
96 0. 1606 16.0000 12.0000 75.2350 4.7022 
97 0.2297 11.0000 9.9499 53.9564 4.9051 
98 1.2417 2.0000 4.2426 11.8168 5.9084 
99 0.3488 7.0000 7.9373 36.5007 5.2144 
100 0.2182 11.0000 9.9499 55.3723 5.0338 
101 0.5900 4.0000 6.0000 22.4861 5.6215 
102 2.3206 1.0000 3.0000 6.6102 6.6102 
103 0.1426 16.0000 12.0000 79.9024 4.9939 
10« 0.7481 3.0000 5. 1962 17.8439 5.9480 
105 0.5518 4.0000 6.0000 23.2612 5.8153 
106 0.3101 7.0000 7.9373 38.7357 5.5337 
107 2.1354 1.0000 3.0000 6.8944 6.8944 
108 0.3001 7.0000 7.9373 39.3867 5.6267 
109 0.1879 11.0000 9.9499 59.7316 5.4301 
110 0.1452 14.0000 11.2250 74.9896 5.3564 
111 0.4001 5.0000 6.7082 29.8499 5.9700 
112 0.1789 11.0000 9.9499 61.2218 5.5656 
113 0.4842 4.0000 6.0000 24.8512 6.2128 
iia 0.3177 6.0000 7.3485 36.0207 6.0035 
115 0.9379 2.0000 4.2426 13.6199 6.8099 
116 0.2637 7.0000 7.9373 42.0454 6.0065 
117 0.1398 13.0000 10.8167 74. 1927 5.7071 
118 1.7887 1.0000 3.0000 7.5410 7.5410 
119 0. 1956 9.0000 9.0000 54.0145 6,0016 
120 0.8667 2.0000 4.2426 14.1748 7.0874 
121 0.2438 7.0000 7.9373 43.7518 6.2503 
122 0.4201 4.0000 6.0000 26.7037 6.6759 
123 0.8272 2.0000 4.2426 1<*.5132 7.2566 
124 0.4073 4.0000 6.0000 27.1245 6.7811 
125 0.2292 7.0000 7.9373 45. 1417 6.4488 
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126 0.1436 11.0000 9.9499 68.«225 6.2202 
127 0.1729 9.0000 9.0000 57.5011 6.3890 
128 0.7663 2.0000 4.2426 15.0862 7.5431 
129 1.5096 1.0000 3.0000 8.2170 8.2170 
130 0.1859 8.0000 e. 4853 52.9044 6.6130 
131 0.1465 10.0000 9.4868 65.2118 6.5212 
132 0.1203 12.0000 10.3923 77.5194 6.4599 
133 0.1580 9.0000 9.0000 60. 1889 6.6877 
13U 0.2001 7,0000 7,9373 48.3499 6.9071 
135 0.2760 5.0000 6.7082 36.0159 7.2032 
136 0.1700 8.0000 8.4853 55.3493 6.9187 
137 0.1031 13.0000 10.8167 86.5519 6.6578 
138 0.0825 16.0000 12.0000 105.3780 6.5861 
139 0.0868 15.0000 11.6190 100.0795 6.6720 
1140 1.2828 1.0000 3.0000 8.9225 8.9225 m 0.1580 8.0000 8.4853 57.4299 7. 1787 
U2 1.2462 1.0000 3.0000 9.0540 9.0540 
H43 0.0945 13.0000 10.8167 90.4492 6.9576 
144 1.2109 1.0000 3.0000 9.1865 9. 1865 
U5 0.3979 3.0000 5. 1962 24.5588 8.1863 
146 0.1681 7.0000 7.9373 52.8028 7.5433 
147 0.0829 14.0000 11.2250 99.5967 7. 1141 
148 0.3814 3.0000 5.1962 25.0930 8.3643 
149 0.2256 5.0000 6.7082 39.8857 7.9771 
150 0.0856 13.0000 10.8167 95.1075 7.3160 
151 0.0686 16.0000 12.0000 115.7561 7.2348 
152 0.1545 7.0000 7.9373 55. 1047 7.8721 
153 0.0821 13.0000 10.8167 97.1407 7.4724 
154 0.1315 8.0000 8.4853 63.0241 7.8780 
155 0.0741 14.0000 11.2250 105.3869 7.5276 
156 0.0640 16.0000 12.0000 119.8814 7.4926 
157 0,0918 11.0000 9.9499 85,8229 7.8021 
158 0.0905 11.0000 9.9499 66.4180 7.8562 
159 0.0893 11.0000 9.9499 87.0152 7.9105 
160 0.2423 4.0000 6.0000 35.2760 8.8190 
161 0.0869 11.0000 9.9499 88.2160 8.0196 
162 0.2359 4.0000 6.0000 35.7612 8.9403 
163 0.1551 6.0000 7.3485 51.7659 8.6276 
164 0.0918 10.0000 9.4868 82.5855 8.2586 
165 0.0697 13.0000 10.8167 105.4965 8. 1151 
166 0.2981 3.0000 5.1962 28.4234 9.4745 
167 0.1261 7.0000 7.9373 61.0821 8.7260 
168 0.0968 9.0000 9.0000 77.1265 8.5696 
169 0.0661 13.0000 10.8167 108.3613 8.3355 
170 0.0530 16.0000 12.0000 131.8308 8.2394 
171 0.0523 16.0000 12.0000 132.7069 8.2942 
172 0.1033 8.0000 8.4853 71.2145 8.9018 
173 0.0906 9.0000 9.0000 79.7237 8,8582 
174 0.0503 16.0000 12.0000 135.3535 8.4596 
175 0.3975 2.0000 4.2426 21.0302 10.5151 
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176 0.0872 9.0000 9.0000 61.3036 9.0337 

177 0.1937 4.0000 6.0000 39.5102 9.8775 

178 0.0568 13.0000 10.8167 114.9536 6,8426 

179 0.2517 3.0000 5.1962 30.9631 10.3210 

180 0.1864 «.0000 6.0000 40.2834 10.0709 

181 0.7362 1.0000 3.0000 11.8171 11.8171 

182 0.1817 4.0000 6.0000 40.6033 10.2008 

183 0.0897 8.0000 8.4853 76.4770 9.5596 

18U 0.0709 10.0000 9.4868 94.1518 9.4152 

185 0.1167 6.0000 7.3485 59.7951 9.9659 

186 0.0532 13.0000 10.8167 120.9852 9.3066 

187 0.2276 3.0000 5.1962 32.5827 10.8609 

188 0.067U 10.0000 9.4868 96.5606 9.6561 

189 0.0476 14.0000 11.2250 131.8974 9.4212 

190 0.1316 5.0000 6.7082 52.3992 10,4798 

191 0.0406 16.0000 12.0000 150.8694 9.4293 

192 0.0642 10.0000 9.4868 99.0014 9.9001 

193 0.3170 2.0000 4.2426 23,5789 11.7895 

19'> 0.3132 2.0000 4.2426 23.7250 11.6625 

195 0.0413 15.0000 11.6190 145.7934 9.7196 

196 0.0470 13.0000 10.8167 128.7533 9,9041 

197 0.0755 8.0000 8.4853 83.4607 10.4326 

198 0.1193 5.0000 6.7082 55.0499 11.0100 

199 0.0536 11.0000 9.9499 112.6709 10.2428 

200 0.1165 5.0000 6.7082 55.7234 11.1447 

201 0.0576 10.0000 9.4868 104.6114 10.4611 

202 0.0948 6.0000 7.3485 66.4175 11.0696 

203 0.0511 11.0000 9.9499 115.4268 10.4935 

20« 0.0505 11.0000 9.9499 116.1238 10.5567 

205 0.0343 16.0000 12.0000 164.3162 10.2698 

206 0.0904 6.0000 7.3485 68.0294 11.3382 

207 0.0383 14.0000 11.2250 147.2022 10.5144 

208 0.0408 13.0000 10.8167 138.4140 10.6472 

209 0.0655 8.0000 8.4853 89.7047 11.2131 

210 0.0324 16.0000 12.0000 169.2668 10.5792 

211 0.0853 6.0000 7.3485 70.0733 11.6789 

212 0.1686 3.0000 5. 1962 37.9261 12.6420 

213 0.0333 15.0000 11.6190 162.4096 10.8273 

2ia 0.0353 14.0000 11.2250 153.3959 10.9568 

215 0.0326 15.0000 11.6190 164.3150 10.9543 

216 0.0805 6.0000 7.3485 72.1495 12.0249 

217 0.0434 11.0000 9.9499 125.3620 11.3965 

218 0.0674 7.0000 7.9373 83.8334 11.9762 

219 0.4667 1.0000 3.0000 14,8825 14.8825 

220 0.0288 16.0000 12.0000 179.4040 11,2127 

221 0.4562 1.0000 3.0000 15.0543 15.0543 

222 0.0322 14.0000 11.2250 160,64 20 11.4744 

223 0.0496 9.0000 9.0000 108,2049 12.0228 

224 0.1103 4.0000 6.0000 52.5402 13.1351 

225 0.0727 6.0000 7.3485 75.9687 12,6615 
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326 0.0HI5 11.0000 9.9499 218.2586 19.8417 
327 0.0105 15.0000 11.6190 290.7210 19.3814 
328 0,0131 12.0000 10,3923 238.3285 19.8607 
329 0.0389 4.0000 6.0000 89.0698 22.2674 
330 0.0193 8.0000 8.4853 166.6244 20.8280 
331 0.0218 7.0000 7.9373 148.4071 21.2010 
332 0.0504 3.0000 5.1962 69.8341 23.2780 
333 0.0167 9.0000 9.0000 187.8061 20. 8673 
33<4 0.0744 2.0000 4.2426 49.1140 24.5570 
335 0.0164 9.0000 9,0000 189.4807 21.0534 
336 0.0365 U.OOOO 6.0000 91.8888 22.9722 
337 0.0091 16.0000 12.0000 322.4315 20.1520 
338 0.0160 9.0000 9.0000 192.0082 21.3342 
339 0.0178 e.oooo 8.4853 173.4085 21.6761 
340 0.0101 14.0000 11. 2250 289.2186 20.6585 
3ai 0.0087 16.0000 12.0000 328.1514 20.5095 
3U2 0.0116 12.0000 10.3923 253.5781 21. 1315 
3U3 0.0275 5.0000 6.7082 115.6913 23.1383 
3Uk 0.0682 2.0000 4.2426 51.3213 25.6606 
3«J5 0.0270 5.0000 6.7082 116.7033 23.3407 
346 0.0191 7.0000 7.9373 158.5338 22.6477 
347 0.0083 16.0000 12.0000 336.8383 21.0524 
348 0.0329 4.0000 6.0000 96.8375 24.2094 
349 0.0109 12.0000 10.3923 261.4045 21.7837 
350 0.0216 6.0000 7.3485 140.4336 23.4056 
351 0.0428 3.0000 S.1962 75.8883 25.2961 
352 0.0085 15.0000 11.6190 324.4671 21.6311 
353 0.0126 10.0000 9.4868 225.4156 22.5416 
354 0.0313 4.0000 6.0000 99.3673 24.8418 
355 0.0207 6.0000 7.3485 143.4757 23.9126 
356 0.0123 10.0000 9.4868 228.3220 22.8322 
357 0.0203 6.0000 7.3485 144.7030 24.1172 
358 0.0086 14.0000 11.2250 312.5748 22.3268 
359 0.0060 15.0000 11.6190 334.2946 22.2863 
360 0.0132 9.0000 9.0000 211.1276 23.4586 
361 0.0079 15.0000 11.6190 337.1332 22.4755 
362 0.0146 8.0000 8.4853 191.4476 23.9310 
363 0.0145 8.0000 8.4853 192.2550 24.0319 
364 0.0384 3.0000 5.1962 80.1962 26.7321 
365 0.0114 10.0000 9.4868 237.1690 23.7169 
366 0.0087 13.0000 10.8167 302.1882 23.2452 
367 0.0140 8.0000 8.4853 195.5042 24,4380 
368 0.0074 15.0000 11.6190 347. 1765 23.1451 
369 0.0276 4.0000 6.0000 105.8552 26.4638 
370 0.0073 15.0000 11.6190 350.0770 23.3365 
371 0.0181 6.0000 7.3485 153.4614 25.5769 
372 0.0098 11.0000 9.9499 266.2042 24.2004 
373 0.0 153 7,0000 7.9373 177.7266 25.3895 
374 0.0177 6.0000 7.3485 155.3766 25.8961 
375 0.0131 R.OOOO 8.4853 202.0963 25.2620 
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376 0.0075 14.0000 11.2250 336.9713 24.0694 
377 0.0069 15.0000 11.6190 360.3380 24.0225 
378 0.0103 10.0000 9.4866 250.2889 25.0289 
379 0.1018 1,0000 3.0000 32. 1526 32.1526 
380 0.0084 12.0000 10.3923 297.7060 24.8088 
381 0.0072 14.0000 11.2250 343.9351 24.5668 
382 0.0083 12.0000 10.3923 300.1412 25.0118 
383 0.0197 5,0000 6.7082 136.8934 27.3787 
38U 0.0082 12.0000 10.3923 302.5878 25.2156 
385 0.0061 16.0000 12.0000 394.8866 24.6804 
386 0.0963 1.0000 3.0000 33.0801 33.0801 
387 0.0478 2.0000 4.2426 6 1.4488 30.7244 
388 0.0316 3.0000 5.1962 88.5092 29.5031 
389 0.0065 11.0000 9.9499 285.3096 25.9372 
390 0.0117 8.0000 6.4853 214.7961 26.8495 
391 0.0116 8,0000 8.4853 215.6586 26.9573 
392 0.0131 7,0000 7.9373 191.9905 27.4272 
393 0.0304 3.0000 5. 1962 90.3006 30. 1002 
39U O.0OS6 16.0000 12.0000 409.4144 25.5884 
395 0.0100 9.0000 9.0000 243.7023 27.0780 
396 0.0074 12.0000 10.3923 317.5083 26.4590 
397 0,0088 10.0000 9.4868 270. 1981 27,0198 
398 0.0097 9.0000 9.0000 246.6200 27.4022 
399 0.0217 4.0000 6.0000 119.5422 29.8855 
400 0.0108 e.oooo 8.4853 223.5112 27.9389 
401 0.0285 3.0000 5.1962 93.2100 31.0700 
l»02 0,0065 13.0000 10.8167 349.6675 26.8975 
403 0.0065 13.0000 10.8167 351.0436 27.0034 
uou 0.0167 5.0000 6.7082 148.8506 29.7701 
405 0.0064 13.0000 10.8167 353.8052 27.2158 
406 0,0206 4.0000 6.0000 122.8745 30.7186 
407 0.0068 12.0000 10.3923 331.5509 27.6292 
408 0.0135 6.0000 7.3485 178.0443 29.6741 
409 0.0804 1.0000 3.0000 36. 2354 36.2354 
410 0.0160 5.0000 6.7082 152.3736 30.4747 
411 0.0079 10.0000 9.4868 285.4337 28.5034 
412 0.0112 7.0000 7.9373 207.6954 29.6708 
413 0.0156 5.0000 6.7082 154.1530 30.8306 
414 0.0387 2.0000 4.2426 68.3488 34. 1744 
415 0.0064 12.0000 10.3923 341.9855 28.4988 
416 0.0085 9.0000 9.0000 264.5501 29.3945 
417 0.0095 8.0000 8.4853 238.7892 29.8486 
418 0.0375 2.0000 4.2426 69.4074 34.7037 
419 0.0106 7.0000 7.9373 213.3618 30.4803 
420 0.0739 1.0000 3.0000 37.8036 37.8036 
421 0.0046 16.0000 12.0000 45U.8307 28.4269 
422 0.0091 8.0000 8.4853 243.3946 30.4243 
423 0.0045 16.0000 12.0000 458.3055 28.6441 
424 0.0055 13.0000 10.8167 380.6686 29.2822 
425 0.0089 8.0000 8.4853 246. 1825 30.7728 
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1126 0.0044 16.0000 12.0000 463.5466 28.9717 
• 27 0.0702 1.0000 3.0000 38.8216 38.8216 
«28 0.0696 1,0000 3.0000 38.9684 38.9684 
*29 0.0173 4.0000 6.0000 134.1998 33.5499 
430 0.0049 14.0000 11.2250 416.5789 29.7556 
«31 0.0085 8.0000 8.4853 251.8137 31.4767 
432 0.0085 8.0000 8.4853 252.7595 31.5949 
• 33 0.0075 9.0000 9.0000 282.1588 31.3510 
43a 0.0061 11.0000 9.9499 339.6170 30.8743 
435 0.0132 5.0000 6.7082 167.5711 33.5142 
436 0.0073 9.0000 9.0000 285.3350 31.7039 
437 0.0130 5.0000 6.7082 168.8233 33.7647 
438 0.0065 10.0000 9.4868 316.1968 31.6197 
439 0.0054 12.0000 10.3923 374.4240 31.2020 
uuo 0.0046 14.0000 11.2t30 432.4043 30.8860 
441 0.0211 3.0000 5.1962 108.5672 36.1891 
4U2 0.0314 2.0000 4.2426 75.9585 37.9793 
4<43 0.0125 5.0000 6.7082 172,6129 34.5226 
444 0.0062 10.0000 9.«868 323.2835 32.3284 
4U5 0.0077 8.0000 8.4853 265.2435 33.1554 
446 0.0153 4.0000 6.0000 142.9468 35.7367 
447 0.0038 16.0000 12.0000 501.2124 31.3258 
448 0.0120 5.0000 6.7082 175.8086 35.1617 
449 0.0050 12.0000 10.3923 388.4489 32.3707 
450 0.0037 16.0000 12.0000 506.7341 31.6709 
451 0.0042 14.0000 11. 2250 450.2121 32,1580 
452 0.0053 11.0000 9.9499 362.8951 32.9905 
453 0.0097 6.0000 7.3485 210.8340 35. 1390 
454 0.0041 14.0000 11.2250 455.1421 32.5101 
455 0.0071 8.0000 8.4853 275.0872 34.3859 
456 0.0063 9.0000 9.0000 307.0439 34.1160 
457 0.0113 5.0000 6.7082 181.6476 36.3295 
458 0.0080 7.0000 7.9373 246.5741 35.2249 
459 0.0278 2.0000 4.2426 80.8092 40.4046 
460 0.0050 11.0000 9.9499 373.5322 33.9575 
461 0.0046 12.0000 10.3923 405.6792 33.8066 
462 0.0060 9.0000 9.0000 313.7392 34.8599 
463 0.0090 6.0000 7.3485 218.5636 36.4273 
464 0.0077 7.0000 7.9373 251.9348 35.9907 
465 0.0089 6.0000 7.3485 220. 1292 36.6882 
466 0.0035 15.0000 11.6190 506.0466 33.7364 
467 0.0263 2.0000 4.2426 83.1531 41.5765 
468 0.0065 8.0000 8.4853 288.2001 36.0250 
469 0.0065 8.0000 8.4853 289.2236 36.1530 
470 0.0086 6.0000 7.3485 224.0720 37.3453 
471 0.0032 16.0000 12.0000 546.3857 34.1491 
472 0.0507 1.0000 3.0000 45.7480 45.7480 
473 0.0056 9.0000 9.0000 326.2352 36.2484 
474 0.0250 2.0000 4.2426 85.2364 42.6162 
475 0.0033 15.0000 11.6190 S77.4059 34.8271 
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«»76 0.0070 7.0000 7.9373 262.8604 37.5515 
a77 0.0035 14.0000 11.2250 493.9922 35.2852 

• 78 0.0243 2.0000 4.2426 86.4406 43.2203 

U79 0.0035 14.0000 11.2250 497.4593 35.5328 

HBO 0.0060 8.0000 8.4853 300.6247 37.5781 

l»81 0.0034 14.0000 11.2250 500.9408 35,7815 

ll82 0.0032 15.0000 11.6190 535.3425 35,6895 
«83 0.0067 7.0000 7.9373 269. 3603 38.4800 

484 0.0029 16.0000 12.0000 571.8179 35,7386 

ues 0.0232 2.0000 4.2426 88.5719 44,2860 

486 0.0461 1.0000 3.0000 48.0402 48,0402 
• 87 0.0030 15.0000 11.6190 544.6977 36,3132 
488 0.0076 6.0000 7.3485 238.6094 39.7682 
489 0.0075 6.0000 7.3485 239.4329 39.9055 

490 0.0034 13.0000 10.8167 483.0563 37.1582 

491 0.0032 14.0000 11.2250 518.5639 37.0403 

492 0.0147 3.0000 5.1962 130. 1654 43.3885 

493 0.0146 3.0000 5.1962 130.6121 43.5374 

490 0.0029 15.0000 11.6190 557.9564 37.1971 

495 0.0036 12.0000 10.3923 456.9109 38.0759 

496 0.0054 8.0000 8.4853 317.6751 39.7094 
497 0.0071 6.0000 7.3485 246.0816 41.0136 
498 0.0047 9.0000 9.0000 355.7140 39.5238 

499 0.0026 16.0000 12.0000 602.0170 37.6261 
500 0.0419 1.0000 3.0000 50.3990 50.3990 

501 0.0035 12.0000 10.3923 466,3276 38.8606 
502 0.0034 12.0000 10.3923 467.9082 38.9923 
503 0.0103 4.0000 6.0000 174.6764 43.6691 
504 0,0031 13.0000 10.8167 506.6400 38,9723 
505 0.0029 14.0000 11.2250 543.8452 38.8461 
506 0.0067 6.0000 7.3485 253.6908 42,2818 
507 0.0400 1.0000 3.0000 51.6036 51,6036* 
508 0.0031 13.0000 10.8167 513,5010 39.5001 
509 0.0028 14.0000 11. 2250 551,2000 39.3714 
510 0.0098 4.0000 6.0000 178.8342 44.7085 
511 0.0028 14.0000 11.2250 554.8994 39.6357 
512 0.0129 3.0000 5.1962 139.2730 46.4243 



V. CONCLUSION:  IMPLEMENTATION OF THE GKD ALGORITHM 

WITH SAMPLING FOR A LARGE-SCALE INVENTORY SYSTEM 

1.  INTRODUCTION ' 

This chapter concludes the studies in Chapter II. Ill and IV, 

in which we examined the problem of specifying single-item service 

objectives in a multi-item inventory system subject to an overall 

service objective. A list of the notation we use may be found at 

the end of Chapter II. 

In that chapter we formulated this inventory problem as a con- 

strained nonlinear program (NLP) and developed the Generalized 

Knapsack Duality (GKD) Algorithm to solve it. This algorithm finds 

the Lagrange constraint multiplier of the NLP and from it computes 

the (s,S) policies for all items in the inventory system. In Chapter 

III we reported computational experience with several 32-item inven- 

tory systems which have a structure typical of many real-world 

inventory systems. This structure is called an 80/20 value structure, 

and is one in which twenty percent of the items represent eighty 

percent of the value of the systems, where value is taken to be hy. 

These items are the high-value items, and the other eighty percent 

are the low-value items. In order to investigate the performance of 

the GKD Algorithm, we assumed that the demand distribution is Negative 

Binomial and compared the (exact) expected holding cost of the (s,S) 
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policies produced by the GKD Algorithm with the (s,S) policies pro- 

duced by a method popular with managers, the Identical Service 

Approach  (The replenishment costs for these methods are the same, 

and represent about half of the total expected cost ). Given a tar- 

geted overall service-level a (we targeted 85%), the Identical 

Service Approach sets (s,S) policies by the Power Approximation of 

Ehrhardt (Hosier [1981]) so that every item has a service-level a. 

(The GKD Algorithm varies individual service-levels while still 

maintaining an average overall service-level a.) We showed that 

there is a significant cost savings when using the GKD Algorithm 

rather than the Identical Service Approach to manage these inventory 

systems. 

In Chapter IV we reported several sensitivity tests performed 

on the base-case and worst-case inventory systems of Chapter III. 

In particular, we performed sensitivity tests on the D^ and on the lower 

bounds for S.. We also examined several sampling schemes and sizes 

for inventory aggregation for larger (128- and 512-item) systems. 

Since most real-world inventory systems contain thousands of items, 

typically managers sample from the system and make decisions about 

policies for all items in the system based on the sample. We ex- 

amined sampling schemes (both random and nonrandom) of several sizes 

which maintained the 80/20 value structure and the overall service 

constraint weights. We summarize the conclusions and recommendations 

given in that chapter as follows: 
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1. Specify all D- using Ehrhardt's Power Method (Mosier [1981]). 

2. Specify the lower bounds on S. as D.+ru.*, where r is taken as 

large as possible while still including as feasible the targeted 

service-level and while the expected holding cost is significantly 

smaller than that of the Identical Service Approach. 

3. Sample about 32 items using a central nonrandom uniform sampling 

scheme to create the inventory subsystem for aggregation (sample 

items from a stratum containing items 1,2,...,N by taking items 

N/2M, 3N/2M, 5N/2M,...,(2M-1)N/2M, where the fractions are rounded 

to the nearest integer). Recompute the holding and replenishment 

costs to maintain the value structure of the system, and recompute 

the constraint weights to maintain the constraint-weight structure 

of the system (multiply the costs by  Z h.p ./ I  h.y. and the 
i -in ^ M in' ' 
system  sample 

constraint weights by N/M for each of the M items sampled from 1,2....N)- 

In Section 2 of this chapter we prescribe a detailed implemen- 

tation procedure of the GKD Algorithm with sampling for a large-scale 

inventory system with an overall service objective. In Section 3 we 

report the results of implementing this procedure for the 512-item 

system described in Chapter IV. Section 4 contains conclusions and 

directions for future research, and the Appendix contains a listing 

of the FORTRAN code of the GKD Algorithm and related programs. 

2.  IMPLEMENTATION PROCEDURE 

Based on the conclusions and recommendations of Chapters II, 

III. and IV, we offer the following procedure to specify (s,S) 
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policies in large-scale inventory systems. Our empirical evidence 

suggests that this procedure is a significant improvement over the 

Identical Service Approach often used by managers, capable of sub- 

stantially reducing operating costs in an inventory system with an 

overall service objective. 

The procedure is as follows: 

1. Determine the desired range of service-levels and the targeted 

service-level. This is a managerial decision, but typically the 

range is 80% to 90% with a target of 85%. 

2. Determine r as follows. For r = 0,.5,.6,.7,.8,.9 and 1, input 

the following values to the program LSMISS (see the Appendix 

to this chapter): 

TITLE = user-supplied title 

LBAL = smallest service-level to consider 

UBAL = largest service-level to consider 

INCRAL = service-level increment between LBAL and UBAL 

NSIG =8 ■ 

MAXFN =100 

NI = number of items in inventory system 

SCHEME =1 

ENTIRE =0 

STRA(l) = NI 

NUMB(l) = about 32. 

Using the output from LSMISS, graph the expected holding costs 

for the various service-levels for each value of r and for the 
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Identical Service Approach (compare Figure 34). Take as r the 

largest value of r such that LBAL is achievable and such that 

there is an acceptable cost savings below that of the Identical 

Service Approach. 
i 

NOTE 1: 

The GKD Algorithm assumes that the demand distribution is 

Logistic, an approximation to the Normal distribution (Section 

2 of Chapter II). If the actual distribution is not well- 

approximated by a Normal distribution, then the service-level 

of the (s,S) policies produced by the GKD Algorithm may be dif- 

ferent from the specified service-level. The user may there- 

fore have to try various LBAL, UBAL and INCRAL. If the service- 

level specifications are as described in Step (1) and the demand 

distribution is well-approximated by a Gamma or Negative Binomial 

distribution, our experience suggests using 

LBAL = .75 

UBAL = .85 

INCRAL = .01. 

NOTE 2: 

We recommend a sample size (NUMB(l)) of about 32 because in our 

experience larger samples do not significantly improve the 

performance of the sampling scheme. 

NOTE 3: 

The parameters NSIG and MAXFN are used to terminate IMSL sub- 

routines in the GKD Algorithm. We have found the recommended 

values to be satisfactory in every experiment performed in this paper. 
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OUT 

Using the output from LSMISS and linear interpolation, determine X* 

for a targeted service-level. Input the following values to 

the program MISSNLSI (see the Appendix to this chapter): 

TITLE = user-supplied title 

LS = X* 

NSIG =8 

MAXFN = 100 

NI = number of items in system 

0 write output only to printer 

1 write output to both printer and an external file 

The output of MISSNLSI contains all single-item policy specifi- 

cations. 

NOTE: 

The parameter OUT allows the user to save the output of MISSNLSI 

in an external file. See the Appendix to this chapter for details. 

3. EXAMPLE 

In the previous chapter we performed Steps (1) and (2) of 

this procedure for the 512-item base-case inventory system, and 

decided to use r=.6. We now perform Step (3) for this system. We 

used the output from LSMISS for the scheme described in Step (2) of 

the procedure, which corresponds to Experiment 1 of Table 3. For 

this experiment. Figure 43 reports the values of X* for the service- 

levels near 85%, our targeted service-level. Linear interpolation 

gives X* = 4207. The output from the program MISSNLSI is sunmarized 
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in Figures 44^ 45, and 46. The operating characteristics of the 

individual items follow the same pattern noted in Chapter III. in 

that the high-value items are stocked at low service-levels and the 

low-value items are stocked at high service-levels. 

4. CONCLUSIONS, FUTURE RESEARCH DIRECTIONS 

Using the GKD Algorithm of Chapter II and the extensive com- 

putational and sensitivity experience reported in Chapters III and 

IV, we have described a detailed implementation procedure of the GKD 

Algorithm using sampling to manage a large-scale inventory system with 

an overall service objective. We have shown that for inventory 

systems with a structure typical of that found in many real-world 

inventory systems, this procedure is practical and results in a 

significant cost savings below that of the Identical Service Approach 

often used by managers. 

We recommend the following future research directions: 

1. This procedure should be tested in a statistical environment in 

which the moments of the demand distribution are estimated from 

recent demand history. In light of the results reported in 

Ehrhardt [1976], Estey and Kaufman [1975], Klincewicz [1976a], 

MacCormick [1974, 1977], and MacCormick et al. [1977], the 

performance of the procedure will probably degrade somewhat, 

and this should be investigated. Considering the cost savings, 

however, we conjecture that in a statistical environment our 

procedure will still result in significant cost savings below 

that of the Identical Service Approach. 
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2. The variable r should be included in the GKD optimization 

routine. This would improve accuracy and make an implementation 

procedure simpler 1n that Step (2) of the procedure would be 

eliminated. 

3. The GKD Algorithm assumes the demand distribution is Logistic, 

while demand distributions are typically skewed like a Gamma or 

Negative Binomial distribution. As reported in Section 3 of Chapter 

III, this can lead to significant degradation in algorithm per- 

formance (although we showed it is possible to improve such 

performance). Moreover, as discussed in Note 1 under Step (2) 

of our implementation procedure, the actual service-level of 

the policies produced by the GKD Algorithm may differ from that 

specified. We recommend that the Logistic distribution be replaced 

by a distribution which better approximates a Gamma (or Negative 

Binomial) distribution. The distribution to use is not obvious; 

an examination of the proof of Theorem 8 of Chapter II suggests 

that the distribution function must have a fairly simple form in 

order to prove algorithm convergence in the way we did (X(e) needs 

to be rational in e). We have been unable to find a distribution 

that better approximates a Gamma distribution and yet is simple 

enough to allow an extension of the proof of Theorem 8. 

4. Inventory systems with a value structure different than 80/20 

should be studied. Based on previous but unreported experiments, 

we conjecture that the algorithm performance will degrade for 

X/20 systems as X decreases. 

im^' 
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APPENDIX TO CHAPTER V 

This appendix contains a listing of the FORTRAN computer program 

for the programs LSMISS and MISSNLSI. The subroutines EXACT and POWAPP 

are the same for both of these programs, and the subroutine COMPAR • 

is slightly different for the two programs. 
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C 
C PEOGHAH L5B1SS(NL) : LABGE - SCALE 
C HULTI - ITEH (S,S) 
Q MOBHAL DEHAND DISTBIBUTIOM APP20XIBATION 
C LOyER BOONDS ON BIG S 
C 
C VBBSION DATED C7/20/83 
C 
C THE IbPOT IS 7RCH CABDS 
C 
C TITLE = OSBB - SUPPLIID TITLE (LE 36 ALPHA CdAKACTEBS} 
C NI = MOSBEB or ITEMS (MI LE 512) 
C F  = SET-DP OBDEBING COST 
C L  = LEADTIHE -» 1 
C HO = ONIT UOLDIIIG COST 
C rO = HEAN DEHAND 
C SD = DE1AND STANDARD DEVIATION 
C hT = COiSTBAINT WEIGHT 

C NSIG = BUSBEB OF SIGNIFICANT DIGITS DESIBED FBOfl THE I«SL 
C aOOTINBS ZBFENT AND ZFALSE 
C EPS = 1/(10 ♦• NSIG) 
C flAXFN = HiXIHUn NOHBEB OF ITERATI0M3 ALLOWABLE BI OSEF POP 
e THE IflSL BCUTIWES ZEBENT AND ZFALSE 
C IBB = (OUTPDT) EFEOB PAfiAHETEB FBOH IBSL ROUTINES AND EXACT 
C 
C TBE FOLLOilNG ARE INPUT TO OB COBPUTED BY GKD 
C 
C LITS » LITTLE S 
C BIGS = BIG 5 
C D = REOBDEB QUANTITY BIG S - LITTLE S 
C BSL   =   P   ♦   L   •   BD 
C =   LOWEB   BOUND   FOR   BIG   S    (HAT   BE   INCEE.ASED   BI   GKD) 
C AL   *   OVERALL   SERVICE-LEVEL    (0   <   AL  <   1) 
G 
C THIS PBOGRAH COHPUTES POLICES POR 
C il = LBAL, LESL-HNCRAL, LBAL+2»INCH AL, . . . ,OBAL 
C 
C THE   FOLLOWING   ABE   CCHFUTED   BY   EHRHARDT'S   POWEB   BETHOD 
C 
C FLITS = LITTLE S 
C PBIG5 = BIG S 
C 
C THE FOLLOWING APF CCHFUTED EXACTLY 
C 
C HfJKD = EXPECTEr HOLDING COST FOR GKD POLICIES 
C IGKD = EXPECTED TOTAL COST FOR GKD POLICIES 
C AISL  = WEIGHTEC-AVFFAGE SERVICE-LEVEL FOB GKD POLICIES 
C 
C HPOi  = EXPECTED HOLDING CCST FOB POWER POLICIES 
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C TPCi     «   EXPECTID   TOTAL  COST   FOR   POMEE   POLICIES 
C PAViL   =   MEIGHTED-ASERAGE   SEKVICE-LEVEL   POR   POHEB   POLICIES 
C 
C THE   FCLLOWIliG   PAFAHETEES   ABE   OSED   IN   THE   STBATiriED   SAHPUNG 
C SUBPODTIllES   STSABP   AVD   BHDSTS 
C 
C SCHEBI =  0  DC HCT DSE AHI SAnPLIMG SCHEBE 
C 1  DSE STB^TIFED SAHPLIKG SCHEME 
C 2  DSE BANDOH STRATIFED SANPLIHG SCHEHE 
C - 
C SA3P    = NUHBEB CF ITEHS IN THE SAHPLE                   I 
C BUSST   * NDHBEB OF STBATA TO SAHPLE FBOH                 I  ON 
C STA(I)  » LAST lim   IN STEAIA I                            I INPUT 
C NUBB{I) * lOHBEB CF ITEfiS FBOH STATA I IN TBE SAHPLE    _| 
C 
C THE FCLLOMING ?JBIABLE IS SEEDED ON INPUT IF SCHEHE = 2 
C 
C SFBD = SEED FOB FSFU LO-BANDCH NOHBEB GENEBATOR CGUD (IHSL) 
C BEQOIEE SEED IN (1,214748367a) 
C 
C ITJB(1),   ...»   ITEH(SAHP)    ARE  THE   ITEHS   IN   THE   SAHPLE         ]   ODTPOT 
C 
C ENTIBE =  0  OlbEFHISE 
C 1  EVAIUME EXPECTED COSTS,ETC., FOB ENTIBE INVENTORY 
C SYSTEH (THIS IS FOB TESTING) 
C 
Q «♦»♦«♦♦♦♦♦»♦♦»•»♦••»»•»♦♦♦••»♦♦♦•»♦♦♦♦♦**•♦**♦•♦»»♦**♦•♦♦♦♦♦♦♦»**• 
c 
C INPUT THE SYSTEH FI^BAHETEBS AS FOLLOWS: 
C 
C TITLE 
C LEAL   DBAL   INCBAL   NSIG   HAIFN   MI 
C fcT(n         D(1)         K(l)         1(1)         H0(1)         HU(1)         SD(1)         B(1) 
C WT(2)         D(2)         K(2)         1(2)         H0(2)         HD (2)        SD (2)        B (2) 
C*a»* •                            •                            •• 

€•• •                •                  •                   •                   •                • 
C«»*> •                    •                    •• 
C WT(h)          D(N)          K (N)          L(N)          HO(N)          nU(N)         SD(N)         R (N) 
C SCHLSE  ENTIBE 
C SAHP    NUHST 
C STBA(1) STfiA(2) . . . STBA(NUHST)  |  16 TO A 
C NUHB(1) iUflB(2) . . . NDHBCNUHST) _|     LINE 
C SEED   )  ONLY IF SCHEHE = 2 
C 
C TliB   INPUT   FOBHAT   IS: 
C 
C XIXXXXXIXIYXXXXXXXXXXXXXXXXXXXIX 
C X.XXXXX X.XXXXI X.XXXXX XXXXXX XXXXXX xxxxxx 
C XXI.XXXX xxx.xxxx    .    .    .    XXX.XXXX XXX.IXXI 
C xxx.xxxx XXX.IXXI    .    .     .     XXX.XXXX IXX.XXXX 
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C     •        •        •    •    •       •        • 
c •    ■ ■'  •       .•    •    •      •  .'    • 
c.        •        ...       •        • 
C XXX.ZXXX XXX.IZXX    •    .    .    IXX.XIXX XXl.XXXX 
C XX XX 
C XXXX xxxx t 
C xxxx IXXX   .   .   .   xxxx    I  SOT HEEDED IF 
C XXXX xxxx   .   .   .   xxxx    I  SCHEHE » 0 
c xxxxxxxxxx .1 
c 
C ULL   DfcTi   STABTS   IN   COLOHN   1    (EXCEPT   TITLE   STABTS   IN   COLUBK   2), 
C IKD   THBRB   IS   A   SINGLE   SPACE   BETWEEN   EACH   DATA   ENTBI 
C 

»BAD(1,3)     (TITLE(J),J=l,e) 
3   P0Pf1AT(8Aa) 

BBAD(1,5)    LBAL,OBAL,INCRAL,»JSIG,nAXFK,III 
5   rOFHAT(3(F7.5,1X),3(i6,lX)) 

EPS   =   "IO.**(-»SIG) 
C 

DO   10  I   =   1,NI 
BEAD(1.8)    WT(I),D(I),K(I),L(I).HO(I).«U(I),SD(I) ,E 
BSL(I)    =   D(I)-tE»L(I)*RU(I) 

8   FOF."lftT(8(F8.a,1X)) 
10 CONTIHUE 

C 
EEAD(1,11)    SCHEflE,ENTIBE 

11 FGMIAT (I2,1X,I2) 
IP   (SCHEflE. EC.O)    GO   TO   19 
PEAD(1,15)    SAHP,NUrtST 

C 
C        NUrST,   STPA   AND   NUrtB   MOST   BE   CHANGED   AS   FOLLOWS   FOR   INPUT   TO 
C THE   SOBSOUTINES   STSAMP   AND   feNDSTS SEE   THE   DOCUMENTATION   FOR 
C THESE   SUBROUTINES 
C 

li'JMST   =    liUnST4 1 
srFA(i)   =0 
NUMB (1)    =   0 
FEAD(1,15)     (STRA (I) ,I=2,NUMST) 
FEAD(1,15)     (NUMD(Ii ,l=2,NUaST) 
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15 70FHAT{16(ia,U) ) 

ISEBD   »=   0 
IP   (SCHEHE.EQ.2)    BEAD(1.16)   ISEED 

16 rOFMiT(llO) 
SEED   =   ISEED 

C   n^KB THE WEIGHIS MT IHtO EQUIVILEBT CONVEX HEIGHTS HT 

C 
19 sun =0. 

DO 20 I «= 1,NI 
20 SUB «= SOH-t«T(I) 

5UH = I.ODO/SOn 
DO 25 I = i,m 

25 «T{I) = SDH»kT (I) 
C 

B  «   2+(DBlL-LEAL)/INCFU. 
IP    (SCHEHE. EC.O)    GO   TO   300 

C  CRSiTE THE IHVEHTORl SUBSYSTEH flA STRATIFIED SASPLIHG AHD POT 
C  IHB S0B5YSTEK IW M, Kl, Li, . . . .BSLi 

^ IP ISCHEBE.EC.1) CALL STSAHP(MI,K.L,RO,HO,SD,D,WT.BSL,N,K1,L1, 
xr li,LHr. H01,F!U1.SD1,D1,WT1,B5L1,SANP. 

£ HUHST,STBA,liUBB,ITEn) 

^ IP    I5CHEBE.Et.2)    CALL   BMDSTS(NI,K,L.BO,HO,SD,D.fT,BSL,¥.K1,L1, 
xr    l^unr, V H01,BU1,SD1,D1,WT1,BSL1,SABP, 

e HDHST,STEA,NUBB,ITEn,SEED) 

C 
DO   200   II   =   1,B 
AL   =   LBAL+(II-1.D0}*INCBAL 
SLI   =   AL 
liOH   =   N 
DO 30 III = 1,H 

30 BSLB (III) = ESI1 (III) 

C  C01PUTE LABECA-STAR (LSI) OSING THE GKD ALGCBITHB WITH TBE 
C  INVEHTOBY SUBSYSTEB 

^     CALL GKD(FUB,11,HC1,BUI,SCI,«T1,D1,SLI,LITS,BIGS,BSLB,EPS. 

G HS1G,BAXPN,LSI) 
13(11) = LSI 

C 
fcRITE(3,U0)    SCHEBE, (STRl(I) ,I = 2,N0BST) 

140   rOEBATC    RESULTS   FOB   INVENTORY   SO BSYSTEB'//'    SCHEBE      ',12// 
S •    STRATA   ',15(815/)/) 

fcRlTE(3,(n)     (NUBE (I) ,I=2,NUBST) 
m   FOR.IATC    NUBBER    •,15(815/)/) 

KHITE(3,y2)     (ITEB(I),I=1,SABP) 
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U2 rOPIATC ITEH   »,15(815/)/) 
iHlTE(3,U3) ISEED 

U3 rOPBATC SEED = •,I20/) 
C 
C  CCHPOTB THE (DMIPORfl S EBVICE-LE?EL) POHEB IPPBOXIBATION POLICIES 
C   IND CCHP^BE THEIP iSSOCliTED COSTS WITH THE COSTS iSSOCIATED HITH 
C  ThB GKD POLICIES 
c 

CILL CCBPkB(N,Kl,11,HOI,HD1,SD1,MT1,BIGS,LITS,TITLE,LSI,AL) 
IP (EMTIBE.EQ.O) GO TO 200 

C 
C      COaPOTB  THE   OPTIHAL   POLICIES   iSSOCIATED   HITH   THE   HULTIPLIER 
C     LAHBDA-STAB    (LSI) 
C 

CALL   aiGSLS(NI,L,HO,HU,SD,D,BT,BSL,LSI,EPS,NSIG,BAXFK,BIGS,LITS) 
C 

iBIT£(3,a5) 
lib   fOPMATC 1') 

iBITE(3,50)    SCHEME, {STBA (I) ,I = 2,liUnST) 
50 POEHATC    BESULIS   FOB  INVENTOBT   SISTEM'//'   SCUEHE      ',12// 

e •    STBITA   •,15(815/)/) 
iRITE(3,51)     (NUHB(l) ,I=2,NUBST) 

51 POBNATC HUHEEB •,15(815/)/) 
«RITE(3,52)  (ITEn(l) ,I=1,SAflP) 

52 POBMATC ITEH   •,15(815/)/) 
IIRITE(3,53) ISEED 

53 POBNITC SEED = •,I20/) 
C 
C  CCnPUTE THE (UNIPORfl SERVICE-LEVEL) POWEB APPBOXIH ATION POLICIES 
C  AND CCBPARE THEIB ASSOCIATED COSTS HITH THE COSTS ISSOCIATED HITH 
C  TbB BIGSLS POLICIES 
C 

CALL COHPAB (NI,K,L,HO,no,SD,iT,BIGS,LITS,TITLE,LSI,AL) 
200 CONTIMUE 

STOP 
C 

300 DO 350 II = 1,H 
AL = LBAL^ (11-1. DO) •IHCBAL 
SLI = AL 
BJfl «= HI 
DO 320 III = 1,NI 

320 BSLB (III) = BSL (III) 
C 
C  CCHPJTB LAHEEA-STAR (LSI) USING THE GKD ALGORITHM HITH THE 
C  ENTIHE IHVENTORI SYSTEB 
C 

CILL GKD(NUn,l,HC,«U,SD,HT,D,SLI,LITS,BIGS,BSLB,EPS, 
& liSIG,nAXFt>,LSI) 

C 
c 
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C  COSPOTE THE (DNIPOHH SEBVICE-LETEL) POWEB iPPBOXlHATION POLICIES 
C  UND COHPIFB THEIB iSSOCIITED COSTS WITH THE COSTS iSSOCIMED MITH 
C  TUB GKO POLICIES 
C 

CllL C0!lPiB{1II,K,I,H0,BU,SD,BT,BI6S,LITS,TITLE*LSI,iL) 
350 CONIIiUE 

STOP 
END 

C 
SOBEOOTIHE   STS^HP{NI,K,L,HO,RO,SD,D,WT,BSL,M,K1,Li,HO 1,«U1, 

S SDl,Dl,hTl,BSL1,SAflP,»UHSI,STEA,HUnE,ITEa) 
C 
C STSISP : STBiTlFIED SAMPLING 
C 
C THIS SUBROOTIHE TAKES i STBATIFIED SAHPLE PBOfl THE IN7ENTORY 
C SySTB!1 ICCOBDliG TO TH£ FOLLOWING PARAHZTEBS: 
C 
C SAHP =   NOHBEB   OF   ITEHS   IN   THE   SAHPLE 
C NnaST =   NDRBEB   OF   STBATA  +1 
C STR1{1) =   0 
C STaA(I+1)   =   LAST   ITEH   IN   STfilTA   I,   I  =   1,   2,   .    .    .   ,   NUHST-1 
C NU«IB(1) =   0 
C NU!!B(I+1) = BUHBBF OF ITEHS IN THE SAMPLE FBOn STBATA I, 
C 1 = 1, 2, ... , NUnST-1 
c 
C  FOl A GITEN STRATA WITH NN ITEMS FBOH WHICH H ABE TO BE 
C  SAHPLED, THE ITEMS NN/2H, 3NN/2H, 5Nli/2H, ...» (2H-1)KN/2M 
C  APE TAKEN, WHERE THESE FRACTIONS ABE BOUNDED-OFF TO THE NEAREST 
C  INTEGER 
C  THESE ITEMS ABE DENOTED 
C 
C  ITEH(1), ITEH(2), . , ., ITEM (B) 
C 
C  ThE CONSTRAINT WEIGHTS (HT), THE UNIT HOLDING COSTS (HO), 
C  AND THE BEPLENISBMENT SBT-OP COSTS (K) 
C  APE BECOMPUTED TC REFLECT THE IDEA OF REPLACING ITEMS NOT IN 
C  THE SAMPLE BT THOSE ITEHS NEAR THEM IN THE SAMPLE (IE, THOSE 
C  IN TdE SAME STBATA) 
C  IN PABTICULAB, THESE COSTS AF«E MULTIPLIED BY THE TOTAL 
C  VALUE OF THE STRATA (VALUE = H*HU)  DIVIDED BY THE TOTAL VALUE 
C  OF THE SAMPLE FFCM THAT STBATA 
C  ThE WEIGHT FOR EACH ITEfl IN A GIVEN STRATA IS THE SAME, BEING 
C  ThB TOTAL WEIGHT OF THE STRATA DIVIDED BY THE NUMBEB OF ITEMS 
C  SAMPLED FROM THE STRATA 
C 

REAL*8 K (512) ,L{512),HO(512) ,nU(512) ,SD(512) ,WT(512) , 
&       D(512) ,BSL (512) 

HEAL»8   K1 (512) ,L1 (512) ,H01 (512) ,MU1 (512) ,SD1 (512) r 
S HT1 (512) ,C1 (512) ,BSL1 (512) 

BEAL^S   WEIGHT,RATIO,XH,XNSTR,HALF,ZERO,HWT,HSAMWT 
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C 
c 
c 
c 

IMTBGEB   SJll1P,IiUnST,STKA(512) ,NDHB(512) ,ITEH (512) , PIBST, LAST 
IMTBGER   II.V,I,J«IJ,IJIJ,JJ,MDnST,a,STB&I,HSTB 

DiTA   HALP,lEFO/0.5D0,0.0D0/ 

I   »   SAHP 
IJ   =   0 
DO   60   I   «   2,1IDHST 
STBAI   =   STBA(I-I) 
B <= vane (I) 
XH = H 

IF H = 
STBATA 

0,   THES   lie   IIEH   IN   THE  SUNPLE   IS   TO   BE   TAKEN   FBOB  THIS 

IP   (H.EQ.O)    GO   TO   60 

■STB   =   STBA(I)-SIFAI 
XMSTB   =   NSTB 
BAIIO  =   IBSTB/in 
E'dl   =   ZEBO 
NEIGHT   =   ZEBC 
DO   20  J   =    I.NSTR 
JJ   =   STFM + J 
HHT   =   HWT4H0(JJ) *nu (JJ) 

20   MBItJHT  =   liEiGBT+iiT(JJ) 
WEIGHT = WEIGHT/HB 
BSANfcT = ZEBC 
fIBST = IJ+1 
DO ao J « 1,H 
IJ = IJ+1 
IJIJ = STBAI4 (J-HALF)*BATIO+HALP 
ITEI (IJ) = IJIJ 
Kl(IJ) = K(IJIJ) 
11(IJ) = l(IJIJ) 
hOI(IJ) = HO(IJIJ) 
BUI(IJ) = BU(IJIJ) 
SDI(IJ) = SD(IJIJ) 
DMU) = D(IJIJ) 
BSLI(IJ) = BSl(IJIJ) 
HSAHNT = HSAHWl^HOI (IJ)»nUl(IJ) 
liri(IJ) = WEIGH? 

HO CONTINUE 
LAST = FIRST-f B-1 
KUT = HWT/HSAKNT 
DO 50 J = FIBST,LAST 
HOI (J) = HW7»H01 (J) 

50 F1 (J| = HbT»Kl (J) 
60 CONTINUE 
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BBTUBN 
ENS 

C 
SOBBOUIIHE   B»IDSTS(H1,K,L,HO,HO,SD,D,BT,BSL. II,K1,L1,H01,BU1, 

S SD1,Dl,HT1,BSLl,SfcaP,IUHST,STFfc,NUMB,ITEM, 
S SEED) 

C 
C      BNDSTS   :   FiRDOn   STBI7IFIED   SAHPLING 
C 
C      THIS   SOBFODTIKE   TAKIS   A   BAMDOH   STRATIFIED  SAflPLE   FBOH   THE 
C      INTEiiTOPI   STSTEH   ACCCBDING   TO  THE   FOLLOilBG   PABABETEBS: 
C 
C     SAIP =   iOHBEF   OF   ITEMS   IN   THE   SIHPLE 
C      KUnST =   IDHBEB   CP   STBATA  -f   1 
C     STBA(1) =   0 
C STBA(Ii1) = IIST ITIB IB STRATA I^ I = 1, 2, . . . , MDHST-1 
C      NUnP(1) *   0 
C      HOHB(H-I)    =   BDHBEF   CF   ITEHS   IN   TBE   SAMPLE  FBCtt   STBATA   I, 
C I   =   1,   2,   ...    ,   NOnST-1 
C      SEBD  *=   SEED   FOB   PS EODO-BA MDOB   NOBBEB   GENEBATOfi   GGOD   (IHSL) 
C EECOIBE   SEED   IN    (1.0DO,2147483674.ODO) 
C 
C      FOB   1   GIVEN   STBATA   HITU   NN   ITEBS   FBOB   WHICH   B   ARE  TO   BE 
C      S^HPLED,   THE   ITfPS   IBE   SABPLED  filNDOBLT   ACCOBDING   TO   A   DISCPETE 
C      UNIFOPB   DISTBIBOTION 
C      THESE   ITEMS   IBE   DENOTED 
C 
C      ITBB(1),   ITEB(2),   .    .    .,   ITEM (H) 
C 
C  THE CCISTFAINT BEIGBT3 (HT), THE DNIT HOLDING COSTS (HO), 
C  AND THE BEPLEIilSHKENT SET-OP COSTS (K) 
C AhB RECOMPUTED TC BEPLECT THE IDEA OF REPLACING ITEMS NOT IN 
C Its SAMPLE BY THOSE ITEMS NEIB THEM IN THE SAMPLE (IE, THOSE 
C  IN THE SAME STBATA) 
C  IN PAPTICULAB, THESE COSTS ABE HOLTiPLIED BY THE TOTAL 
C  VALDB OF THE STRATA (VALUE = H*BtJJ DIVIDED BY THE TOTAL fALUE 
C  OF THE SAMPLE FBCM THAT STBATA 
C  THE WEIGHT FOR EACH ITEM IN A GIVEN STRATA IS THE SAME, BEING 
C  THE TOTAL HEIGHT CF THE STRATA DIVIDED BY THE NUMBER OF ITEMS 
C  Si^BPLED FBOM THE STRATA 
C 

PBAL*8 K (512) ,L(512),HO(512) ,BU (512) ,SD(512) ,MT(512) , 
S       D(512) ,ESL(512) 
PBAL»8 K1(512) ,L1(512) ,HC1(512) ,BU1 (512) ,SD1 (512) , 

S       yT1(512) ,D1 (512) ,BSL1(512) 
FBAL*8 HEIGHT,PATIO,XM,XKSTR,ZERO,HWT,HSAHWT,SEED,DSEED 

C 
INTEGER SAMP,NUMST,STRA(512) ,N0M3(512),ITEM(512),FIRST,LAST 
3NTEGEH N I , N,I ,J, IJ,IJIJ,JJ,NOMST,M,STRAI,NSTB,IhDEI,0NE, 

S        IB(1) 
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DATA 1EBO,OIE/0.000,1/ 

C 
C 
C 
c 

DSEED = SEED 
M ^  sinp 
IJ = 0 
DO 60 I « 2,iOHST 
STPAI = SIBA(I-OIIE) 
B = MOnB(I) 
IB > H 

IF   H   «= 
STBATA 

0,   THEM   MC   ItEB   IV   TflE   SAHPLE   IS   TO   BE   TAKEN   FROH   THIS 

If   (n.EQ.O)    GC  TO   60 

BSTB   =   STBA(I)-STBAI 
IISTE   =   BSTB 
FATIO  =   XHSTB/Xn 
HUT   ==   ZEBO 
WEIGHT  =   ZEBO 
DO   20  J   =   CNE.WSIE 
JJ   «   STBAIiJ 
BilT   =   H¥T-fHO{JJ) ♦I1U(JJ} 

20   IBIGHI   =   MElGUl+hT (JJ) 
WEIGHT  =   WEIGHT/XH 
BSABk'T  «   ZEBO 
PISST  =   IJ40HE 
DO   40   J   =   CNE,B 

25  CAIL   GGOD{DSEED, W3TB,0»IE,IE) 
IJIJ   =   STEAI4IB(ONE) 
DO   30   INDEX   =   CNE,IJ 
IP   (IJIJ.EC.ITin(INDEX))    GOTO   25 

30   CONTINUE 
IJ  =   IJ+OIE 
ITEH (IJ)    »   IJIJ 
Ft (IJ)   =   K(IJIJ) 
L1(IJ)    =   L(IJIJ) / 
HOl(IJ)    =   HO(IJIJ) 
IIOI(IJ)    =   HU(IJIJ) 
SD1 (IJ)    =   SD(IJIJ) 
DMIJ)    =   D(IJIJ) 
ESLI(IJ)    =   BSL(IJIJ) 
HS^PIWT   =    HS!VnWT4HCl (IJ) ♦MU1 (IJ) 
kiTI(IJ)    =   WEIGHT 

no   CONTINUE 
LAST   >=   FIBST4F-CIIE 
HHT   =   HWT/HSAflWT 
DO   50  J   *   FIfiST,LAST 
HOI (J)    =»   HHT»HC1 (J) 
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50   K1(J)   «=   HliT»Kl (J) 
60   COMTIIIDE 

BBTOFM 
EMD 

C 
SOBROOTIKE ElGSLS (N1,L,H0,HO,SD,D,BT,BSL,LSI,EPS,HSIG,HAXFN, 

( BIGS^LITS) 
C 
C      THIS   SDBFOUTINE   CCttPUTES   THE   OPTIHAL    (S,S)    POLICIES   ASSOCIATED 
C       lilTH   THE   RUHN-TOCKEF   CCHSTBAINT   BOLTIPLIEB   LinBDA-STAP    (LSI) 

C 
c 

COBHON   /PINDTS/AI,BI,EI,PI,GI,HI,LA« 
C 

FE^L*8 LnS(512).BIGS(512) 
EBAL»8 L(512) .H0(512),nU(512),SD(512),HT(512), 

5 D(512) ,ESl (512) 
BEAL«8 EPS,LSI,Ll,HOI,H0I,SDI,DI,flSI,HTI,TSI,LiB, 

e BHI,QI,GM,DEI,»I,BI,EI,FI,GI,HI,¥iEl,VAE2.ETI,TUI, 
S RSI,LPTDI,BSLI,X,TUI,LB,0B,ZEBO,X01t,HALF,CONST 

e 
INTEGER   «I,MSIG,nAXFil,BAX,ONE,CBTH 

C 
BEAL*8   LAHTH 
EITEFMAL   LABTH    . 

C 
ZEBO   =0. 
OME      =   1 
XONE   =1. 
HALF  =   .5 
CONST  =   1.700U3690a 

c 
DO 60 I = OME,NI 
BOI = HO (I) 
Boi = no (I) 
LI  = L(I) 
MSI = LI*HUI 
SDI = SD(I) 
VTl   = HT (I) 
DI = D(I) 
BHI = MUI/(DI^ ((nUIi (SDI*SDI/HUI))»H.ALP)) 
QI  = XONE-FHI 
Gil = CONST/(LI»SDI) 
DEI = DEXF(GAI*DI) 
AI = DI*HOI 
V\B1 = XCHE4DEI 
BI = AI* (QHVAF1) 
El = AI* (DEI4Cl*VAal) 
FI = AI»OI»DEI 
VAHl = Dl*Fbl*GAl 
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»iF2 = QI*(DEI-XCNE) 
Gl « WTl* (V*B14VAB2) 
RI   »   ■TI*(tABl*DEl-tV»B2) 

C 
C DETEBHINE   BSL   Bl   THE   HBGEST   ¥»LOE   OP  THETA,   TO,   ilD   HENCE   THE 
C SniLLEST  TllUE   OF   BIG   S,   SO   THiT   D (LIBBD\)/D (THETi)   LE   0, 
C GDiBiMTIEIIiG   TH»T   LIBBt»(THETA)    IS   INVEBTIBLB   OM    (0,   TO) 
C IF   THE   OSEB-SDPPIIED   BSL   IS   GBEITEB   TU\N   THIS,   IT   BBCOHES  THE 
C BSL OSED 
C 

ETI = GI*(BI*HI«HI-GI*(EI*BI-PI*GI))-»I»H1»HI»HI 

C 
C IF ETA(I) IS LESS THAN 0, LASBDA (THETA) HAT HOT BE CONVEX, AND 
C TbBEE IS BO GDftBANTEE THAT THE GKD ALGOfilTHM BILL CONVEEGE TO 
C A LOCAL IINIHUH THE USEB SHODLD EXERCISE CABE 
C 

If   (ETI.LT.ZEBC)    iRITE(3,30)    I,ETI 
30     FOFSATC   ETA(«,I6,«)   =«,E20.6,»        LT   0») 

C 
CMTR   =   -1 

35     CiTB   =   CITB+CHE 
Tai   =    (DEXP(GAI*(MSI-CNTF)))/DEI 
rSI   =    (FI/HI)-(M/IGI*T01*T0I)) 
¥AE1   =   GI+R1»TDI 
LPTUI   =   KS1-(ETI/(GI»BI»VAB1»VAR1)) 
IF    (LPTDI.GE.ZERG)    GO  TO   35 

C 
BSLI   =   CNTB+CI 
I   =   BSL(I) 
BSL (I)    =   ESLI 
IF    (X.GT.BSII)    BSL(I)   «   X 
101=    (DEXP(GAI* (nSI-(BSL(I)-DI))))/DEI 

C 
LAH   «=   LSI 
flAX   =   BAXFH 
LB   =   ZEBO 
DB   =   TDI 

C 
C      IF   L4BTH(DB)    IS   GFEITEB   THAN   ZERO,   THEN   THE   FUNCTION 
C      LAifcDA(THETA)    FOR   THIS   ITEH   IS   ALWAYS   GREATER   THAN   LAWBDA-STAE, 
C      fcND   SC   BIGS   FOB   THIS   ITEH   IS   SET   AT   ITS   LOWER-BOUND   BSL 
C 

IF    (L4nTU (DB) .GT.ZEBO)    GO   TO   50 
CALL   ZBHEKT (LABTb,EPS,NSIG,LB.DB,nAX,IER) 
TSl   «=   UB 
BICS(I)    =   HSI-( (CLOGITSI) )/GAI) 

C 
C BECAUSE  OF   POUNE-OFF   ERROR,   IT   HAI   BE   THAT   BIG   S   LT   BSL. 
C        IF   SO,   SET   BIG   S   =   ESL. 
C 
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C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

IP    (BIGS{I).1T.BSL(I))    BIGS{I)   »   BSL(I) 
IITS(I)    »   B1GS{I)-D1 
GO   TO  60 

50   BIGS (I)   »   BSL(I) 
LITS(I)    «   BIGS(I)-DI 

60   CONTIMOE 
BETUEN 
EID 
FIAL   PUMCTlOli   LMIIH^S    (THETi) 

con SON   /PI>iDTS/AI,Bl,El,FI,CI,Hl,LAn 
KEXL*8   4I,Bl,EI,FI,GI,Hl,LiB,THETi 

L4BTH = lI4TiJET*»(Bl-LAB»GH-THETi*(EI-LA«*HI+TbETA»Fl)) 

BETOFN 
ESD 

SUBBOOTIiE CCBF AB(»il,K,L, HO. HO, SD,HT, BIGS,LITS,TITLE, LSI, AL) 

THIS SOBBOOTIiE DOES THE FOLLOMING: 

(1) EVALUATES EXACTLY THE HOLDING IND FEPLENISHBENT COST, AKD 
THE SER¥ICE-IEVEL FOR THE POUCIES {LITS,B1GS) UKDER THE 
ASSUHPTICN OF NEGATIVE-BINOMIAL DEHAND (IN EXACT) 

(2) COaPaTES IPPECXIHATELT OPTIHAL {S,S) POLICIES WITH DNIFOEM 

SEBVICE-IEVEIS (IN POHIPP) 

(3) EVALOATBS THE POLICIES DESCRIBED IN (2) EXACTLY AS IN (1) 

(U) PRINTS THE BESULTS OF STEPS (1) AND <3) 

BEM*3 LITS(512) ,EIGS(512) 
PEAL»B K(512) ,L(512),HG(512) ,I1U(512),SD(512),WT(512) 
EEAL*8 iL,HGFC,HP0-,TGKD,TP0H,L5I,LITSI,BIGSI 
REALMS KI,LI,ROI,BUI,SDI,SLl,HCI,BCI,AVSL,PAVSL 

IITBGEB   NI,TITLE(8i 
»»St     =0, 
HGKD   =0. 
TGKD   =»   0. 
DO  70  I   «   1,!il 
FI   =   K(I) 
LI   =   L(I) 
HOI   =   HO(I) 
noi = BO (I) 
SDI   =   SD(I) 
BIGSI   =   BIGS(I) 
LIT5I   =   LITS(I) 
CALL   KXACT(M,LI,H0I,BDI,SDI,L1TSI,BIGSI,SLI,HCI,RCI,IER) 
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70 

75 
C 
C 
c 

If (lEB.EC. 1) GO TO 300 
ATSL -   l?SL4SLl*liT(l) 
USKD * BGKD4HCI 
TGKD « TGKC-iHCliBCl 
CONTIIOE 

PIVSL = 0. 
HPOU = 0. 
TPOi = 0. 
DO 75 1 = 
KI * K (I) 
LI = LID 
HOI = HO(I) 
BOI = flUU) 

1,NI 

,LITSI,BIGSI) 
,BIGSI,SLI,HCI,B CI,IEB) 

FFIKT SUHSABI 

«BITE(3,98) (TITLE(J),J=1,8) ,LSI 
98 F0FflAT(/T2,8i«,«       LAflBDi STAH = •,F12.a,//) 

WaiTE(3,100) M, AVSL,PIVSL,HGKD,HPOh',TGKD,TPOW 
100 F0HnAT(T3,'SPECIFIED ALPHA 

5 T3,»IC1UAL   ALPHA    (GKD) 
6 T3,'ACTUAL ALPHA (POH) 
% T3,'B01DING COST (GKD) 
S T3,*aCLDING COST (POH) 
S T3,'TOTAL   COST    (GKD) 
S T3,'TOTAL   COST   (POii) 

BBT0B8 

=',T27,F11.4,//, 
= ',T27,F11.<»,//, 
=',T27,Fll.a,//, 

= ',T27,Fl1.«i,//. 
=',T27,Fl1.a,//, 

='.T27,F11.4,//, 
= ',T27,F11.<4) 

300 W8ITE(3,310) I 
310 FOBIATC BIG 5 OB D > 2000 FOB 

C       • EXACT CANNOT EVALUATE 
ITEM',16,/ 
THE (S,S) POLICY',//) 

EETOSN 
EHD 

C 
c 
c 
c 
c 

SOBaOUTINE   EXACT (K,L,H,nU,SO,LS,BS,SL,HC,FC,lEB) 

THIS   SUBROUTIBE   CUflPUlES   THE   SERVICE-LEVEL,    HOLDING   COST   AND 
PRPLFNISHHEKT   COST   EXACTLY    FOR   THE   POLICY    (LS,BS)    UNDER   THE 
ASSOrtPTION   OF   NEGATIVE   BINOMIAL   DEMAND. 
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C        K   «   SBT-DP   COST 
C        L  «=   LEIDTIHE   +1 
C H  «   OMIT   HOLDING   COST 
C        nU   >=   BEAN   DEBAND 
C        SO   »   DEHMiD   STAKLIBD   DEYI&TION 
C LS   »   LITTLB   S 
C BS   =   BIG   S 
C        SL   «   STBIDl-STITE   SEE VICE-LEVEL    (PBEQUEWCI   OP   PERIODS   TH^T 
C        NO BACKOBDEB IS PLACED) 
C   HC = EIPECTED HOLDING COST 
C   FC = EXPECTED EEPLINISHHENT COST 
C 

BE4L*8 K,I,H,nD,SD,lS,BS,SL,BC,BC,P,Q,B,BS,PROB(2000),HiLF, 
G       SB (200 0) ,H(2000) , BI ,BHO, YAB,SUfl, PEOBI , HD, ZESO, ION£, XTHO 
INTEGBB S,D,CB1,OS2,ONE,TWO,IBR 
DATA ONE,THO,2EPO,XONE,XTNO,HALF/1,2,O.DO,1.DO,2.DO,.5DO/ 

C 
C   S AND D ABE BOUNDED TO THE NEAREST INTEGER. HE USE THE REOEDEP 
C   OOANIITT D = BIG S - LITTLE S - 1 BECAUSE NE OSE THE VERSION OF 
C   AN (S,S) POLICY THAT 8EUDIBES THAT AN ORDER BE PLACED WHEN THE 
C   INVESTORI POSITION DROPS STRICTLY BELOW LITTLE S. 
C 
C   PH03{I) = PBOB(NE FV = 1-1) 
C   NB(I)   = PBOB(NB + , . . 4 NB BV = 1-1) 
C I I 
C L 
C   nil) = PBOB(RENfWAL PNC OP NB B? = 1-1) 
C 
C   lER = 0  EXACT WAS ABLE TO EVALUATE (S,S) POLICY 
C 1  OTHERWISE 
C 

IBB = 0 
S = BSiHALP 
D = (BS-LS-ONE)+HALF 
Q = HU/(SD*SD) 
P = lONE-C 
P = BU*Q/P 
BS = L*R 
VAH = Q»*B 
PR03(0NE) = VAR 
NB(ONB)    = C**RS 
BHO       ^   XCNE/(XCBE-VAB) 
I1{0NE)    = ?Afe»BHO 
UBl = S-fONE 
IP (D.GT.S)  OBI = D+ONE 
IP (UBl. GT. 2000) GO TO 100 
DO 20 I = TWO,UBl 
VAR = XONE/(I-XONE) 
PBQBI = PROB (I-ONE) •r* (B-JI-XTWOJ •VAR 
PROB(I) « PBOBI 
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»B(I)   =   MBd-CNE) •?• (BSil-XTMO) •?»« 
sun   »   ZERO 
032  =   l-OBE 
DO   10  J  »   CNE,UB2 

10     SDB   '   SDN4PBOB(I-J40NE) *B{J) 
R(I)    =    (PBOBI4SUn)*fiiiO 

20      COKTIMOE 
OBI   =   D-fONE 
IP   (0fl1.G1.2000)    GO  TO   100 
BD  =   ZERO 
DO   30   I   «   CIIE,DB1 

30     I'D   =   IIIHH(I) 
FBO   =   10»E/(lCNE4nD) 

C 
C        COr.POTE   EXPECTED   B EFLEHISHB EHT   COST 
C 

BC   =   K*BHO 
C 
C   COBPUTE EXPECTED BCLDIBG COST 
C 

IF (D.GT.S) 0E1 = S+ONE 
IP (DB1.GT.2000) GO TO 100 
HC = ZERO 
DO UO I = CNE.DBI 
0B2 = S-I4THC 
BI = H(I) 
DO <»0 J «= CBE,UB2 
HC = BC+(DB2-J) ♦NB(J)»flI 

HO     CONTIMDE 
son = 2EBC 
0B2 = SfOBE 
DO US I = CHE,DB2 

«45  SUB = SDfl+(DB2-I) •NB(I) 
HC = H»(HC+SUE)*BHO 

C 
C        COBPDTE   (STEADTt-STATE)   SEBVICE-LEVEL 
C 

SL   =   ZEBO 
DO   60   1   «:   ORE,OBI 
SUB   «=   ZEBO 
LB2   «=   S-I+TWC 
DO   50  J   »=   CliE,DB2 

50      SUB   =   Safl-tlJB(J) 
60     SL  =   SLiSUB»B (I) 

SUB   =   ZEBO 
0B1   *^   SfCNE 
IP    (UB1.GT.2000)    GO   TO   100 
DO   70   I   =   ONE.UBl 

70     SUB   «=   SUfl4KB(I) 
SL  =    (SL4SUBJ •BHO 
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PETUBN 
C 

100     lEP   =   1 
EBTUFN 

C 
C 

c 

END 

SOBROUTIME PCWAPP (K.L,H,BU,SD,ALPHA,LITS,BIGS) 

C THIS SUBRODTINE CCPPUTES LITTLE S ANE BIG S USING THE BEVISED 
C POWER APPBOXIftATlON HEIUOD (HOSIEE(1981}, TECH REPORT #18). 
C TBE SHOBTIGE COST IS COBPUTED DSIHG THE POWER APPBOXIRATIOK 
C HBTBCD (EHBUABDT(1977, PP 18, **5} , TECH BEPOET #12}. 

C 
C K «= SET-DP COST 
C L *= LEADTIHE + 1 
G H = Uyi? HOLDING COST 
C no = BEAN DEBAND 
C SD = BEAN SIAUCARD DEVIATION 
C ALPHA = (STEADY-STATE) SEE VICE-LEVEL, THE FBEQUBNCY OF PERIODS 
C WIIbODT BACKLOGS 
C IITS = LITTLE S 
C EIGS = BIG S 

PEAL»8 P,H,K,B0,D,L,VL,SrL,Z,V,SD,LITS,BIGS,ONE, 
ft       C1,C2,C3,C4,C5,C6,C7,C8,C9,CIO,ALPHA 

DATA C1/1.3/ 
DATA C2/.U9a/ 
DATA C3/.506/ 
DATA CU/. 116/ 
DATA C5/.973/ 
DATA C6/.183/ 
DATA C7/1.063/ 
DATA C8/2.192/ 
DATA CIO/.0695/ 
DATA ONE/1./ 

V  = SD»SD 
VL = ¥»L 
SDL = DSQBT(VL) 

r= H* (ALPIIA-CIO)/(CKE-ALFHA) 
Z =   CNEi (VL/(BU*Ha) ) 
D = C1* {nU*«C2)* { (K/U) ♦♦C3) • (z»»ca) 
Z = DSyb'T (D*ii/(P*SDL)) 
C9 = (C6/Z)iC7-C8*Z 
LITS = CS»L*nU43CL*C9 
BIGS ^ LITS-JD 
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BITOFN 
EHD 

C 
SOBBOUTIKE CKD (Nl ,L,HO, ni),SD, «, DD, IL, LITS,B1GS,BSL, EP ,N5 , BX, LS) 

C 
C GKD (GENEFALIZEC KNAPSACK DUALITY) ALGOBITUH 
C 
C NOTE : THIS SUBBCUTINE CHANGES THE ¥ALDES OP THE INPUT 
C PABABE1EF BSL 
C 
C bT = WEIGHTS (BUST BE CONVEX) 
C PH = IHO 
C Gl = GABflA 
C DE = DELTA 
C A = A 
C B «= E 
C E = E 
C F = F 
C G = G 
C B = H 
C RS = BU-ST4B = I * HU 
C ET = ETA 
CFS=KSI 
C TO = THETA-UPPEP 
C LPTO ^   LAHBEA-PFini ( THETA-UPPBR ) 
C LL * LABBDA-LCWEt 
C MLL = RAI( lABfcCA-LCWEB } 
C FBLL = P( BLL ) 
C LO = LAB3DA-DPPEE 
C BLU = «AX( LABBCi-UPPEB ) 
C TS »= THBTA-STAB 
C LS = LA.1BDA-STAR 
C BSL = LOHEP BCUBD ON BIG S 
C nSL(I) = SERVICE-LEVEL FOR ITEB I 
C CONST = 15 • PI / (16 ♦ SQBT{3)) 
C NI =»^ KUBBEB OF ITEBS IN THE INVENTOBT SISTEH 
C N (AT PB0G6AB EEGINKIKG) - NI 
C N (AT PBOGPAfl TEFBINATION) = NDBBER OF ITEBS WITH BIG S GEEATEE 
C THAN BSL 
C PEKB : PERB(1), . . . , PEFB(N) ARE TiiE ITEBS WITH BIG S 
G GREATER TH^N DSL. MUFN NI IS GREATER THAN t, 
C PERfl(Nil), . . . , PERB(KI) ABE THE ITEBS HITH 
C BIG S = BSL 
c 

COrBCN /INPUT/ WT,ALPHA,EPS,NSIG,BAXFN,N 
COrBCN /LAB/ A,B,E,F,G,H 
CO.IHCli /PARABS/ T U, T S, Rd , DE, G A, D, XONE, ZE BO, PEBB.ONE 
COnBON /SUBB/ LAB,I 

PBAL*8 LITS (512) ,BIGS(512) ,BSL(512) ,W C512),DD(512) 



(512) 

lEBO « 0. 
OME  » 1 
lONE = 1. 
KILF = .5 
COKST  =   1.700<43690a 

C 
C 
C 

C 
C 
c 
c 

c 
c 
c 

ALPHA = iL 
EPS = EP 
IISIG = MS 
KkXPN = HI 
H = HI 
DO 3 I = CNE,B1 

3  «T(I) = H(I) 

WHITE (3,5) 
5 POEniT(M') 

miTHLIZE   THE   PEHflOTATlON   MATRIX   PERU 

DO   6   I   =   CNE,m 
6 PEPfl(I)    =1 

INITIALLY SET lAFIBDA-STAR = 0, SINCE THIS IS HOW TO INTERPRET 
LASEDA-STAB IP ILl POLICIES ARE SUCH THAT BIGS = BSL 

LS » lEBO 

COflPOTE   THE   CCHSTANTS 

DO   20   I   =   CME.NI 
HOI   =   HO{I) 
HOI = no (I) 
LI     «=   L(I) 
fisi = Li*noi 
ns(i)  = Bsi 
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C 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 

SDI   =   SD(I) 
iTI   =   ilT(I) 
DI   »   DD(I) 
D(I)    *   DI 
BUI   «   HDI/(DI-»{(BUl-» (SDI*SDI/IIOI))*HILF)) 
DB(I)    <   BUI 
CI     «   lOHE-BHI 
Gil   «=  COIIST/(LI*SDI) 
Gi(I) = GAI 
DEI = DEXP(G11*DI) 
DB(I) = DEI 
AI = DI»HOI 

¥4B1 » XCNE+DEI 
Bl * 4I*(CI-»VIP1) 
B(I) » BI 
El * II* (DEI4CI*V*B1) 
E(I) » El 
PI * II*QI*DEI 
F(I| * FI 
VkPl = DI*BHI*GAI 
ViF2 = QI* (DEI-XCHEJ 
GI = iTI*(VABl-fVAB2) 
G(I) 5= GI 
HI = «TI»{VAB1*DEI+VAB2) 
H(I) = HI 

DETESniNE BSL BY THE LABGEST VALOE OF ?HETA, TU, AND BENCE TflE 
SHALLEST VALOE OF BIG S, SO THAT D (LAHBDA)/D (TUETA) LE 0, 
GDIP.INTEBING THAT L AHBD A (TH ETA) IS INVEBTIBLE ON (0, TD) 
IP THE OSEB-SOPPLIED BSL IS GBEATER THAN THIS, IT BECOflES THE 
ESL OSED 

ETI = GI»(BI*HI*HI-GI* (EI»HI-Fi»GI))-Al*HI»HI»flI 

IF ETA(I) IS LESS THAN 0, LAHBDA (THETA) BAT NOT BE CONVEX, AND 
IREPE IS NO GUiBINTEE THAT THE GKD ALGOFITHH WILL CONVERGE TO 
A LOCAL flINIHOH THE USES SHOULD EXERCISE CABE 

10 
IP (ETI. LT.ZEEC) WBITE(3,10) I, ETI 
FQPHATC ETA(«,I6,«) =',E20.6,'   LT 0») 

CITE * -1 
CNTB   =   CNTB-fONE 
TUI   =    (DEXP (iJAI* (nSI-CNTE) ) )/DEI 
KSI   ^    (FI/HI)-(M/(GI*TUI»TUI)) 
VAP1   »=   G14H1*TUI 
LPIUI   =    KSI-(511/(GI*HI»VAB1*VAB1)) 
IP   (LPTOI.GE.ZEPO)    GO   TO   7 
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C 
C 
c 
c 

BSLI   »   CIITB4I5I 
X   =   BSL(I) 
BSL(I)    «   BSLI 
If   (l.CT.BSLI)    BSL(I)   «=   X 
TDl   «=    CDEXP(GA1»(BSI-(BSL{I)-D1))))/DEI 
TO (I)   «=   TOI 

LLI   '   LinBD& (TDI,I) 
LL{I)   =   LLI 

20      CONTIMUE 

COnPUTE HLL = BAX (LAHBDi-LOMEB) = BAX (LABBDA (TO)), SO ALL 
FONCTICMS LIBBtA(THETA) ARE IKVEBTIBLE ON £ BLL, IMFINITT) 

22  BLL = ZERO 
DO 30 II = 01IE,N 
I «= PEFH(II) 
LLI = LL(I) 
IP (BLL.I7.LII) HLL 

30  CONTINUE 
LLI 

C 
C 
C 
C 
C 

c 
c 
c 
c 
c 

c 
c 
c 
c 

c 
c 
c 

PHLL = P(HLL) 

P(LIKBDA)    IS   IJiCFESING  ON   [ BLL, IN FINITI)    ilTH   P(INFINITT) 
GBEATBB   THAU   0.    CHECF   IP   P (BLI)    *S   IFSS   rF^V   OB   roO>L   ?" 
0, "0 rr"^" r(^*-rr:j - "  ro* r'-rr: ^ :•■ '-" [rir ,'rr'r—r; 

ir (PMLL.Lk.^EBO) UO \u   50 

P(BLL) IS GBEATEB THAN 0. LOCATE THAT ITEB ILB = PEBM (INDEX) 
BITH THE LARGEST VMUE OF LL = LABBDA LOWER, AND SET 
BIG S = BSL, I£, SET IS(= THETA-STAB) = TU (= TH£TA-OPPEP) 

INDEX = ONE 
ILB c PEBB (INDEX) 
DO «2 I = CNE,N 
J = PEEH(I) 
IF (LL(J) .GT,IL(ILB)) INDEX « I 
ILB = PEBB(IN££I) 

U2  CONTINOE 

CBANGE N TO B - 1, AND BEBOVE ITEfl ILB FBOB THE FIRST N ENTFIES 
OF PFBB AND PUT IT IN PERB(N4l) 

h  •=   N-ONE 

IP N ^ 0. ALL ITEBS ARE SUCH THAT BIG S = BSL 

IF (N.EQ. 0) GC TO 85 
DO 1*3 I = INDIX,N 
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1*3    PEin(i)  « PEFBII4I) 
c 

PBBH (11+1)   «   ILB 
C 
C SBT   IS   »   TO   POB   ITBH   ILB 
C 

TS(1LBJ    «   TO (ILB) 
C 
C DETEBBIBE   THE   SEBVlCE-IEVEL   ULI   FOR   ITEM   ILB,   IND  BECOHPDTE  THE 
C »V1B*GE   SEBflCE-LEVEL   (iHICH   IS   IGklV   DEHOTED   4LPHX)    FOB  THE 
C OTHER   ITEBS   SO   IfliT   THE  OVBBiLL   IfEB&GE  SEBVICE-LEVEL   IS   STILL 
C THE  OBlGIiiLLI   SPECIFIED   ALPHA 
C 
C BOTE   :   BHEB   BIG   S   IS   SET  TO   BSL   FOB   THE   ITEH   ILB,   THE   ITES 
C IS   BO   LOBGER   OSED   IB   THE   COBPUTATIOB   OF   TbE  SOLUTION   LS 
C TO   P(LJlHEEi)    =   0.   BiTHER,   THIS  C0HPUT4TI0H   IS   DOME OHLI 
C FOB   THOSE   SDBBUBDS   OF   P  THAT   CORRESPOND   TO   ITEBS   BITH 
C BIG   S   GRE4TEB   THAN   BSL.    HENCE   UE   BEED   ONLY   DETEBBINE 
C THE   4VEBAGE   SERVICE-LEVEL   FOB   THESE   ITEBS   SO  THAT  THE 
C OVERILL   SEBVICE-LE¥EL  IS   THE  SPECIFIED   ALPHi 
C 

DEI = DE(ILB) 
G&I > GI(ILB) 
TSI = TS (ILB) 
BBI = BH(ILB) 
CI = lOKE-BHI 
DI ^ D(ILB) 
¥TI = BT (ILB) 
ILI « QI* (XCNE+DLOG((XOBEiTSI)/(IONE+ 

&        DEI»TSI) )/{GAI*DI))i(RHl/(XONE+TSI)) 
ALPHA « (ALPHA-HTI*ALI)/(XONE-BTI) 

C 
IP (ALPBk.LT.XONE) GO TO 22 
WRITE(3,U7) 

U7  FORBATC THE HEW iVEBAGB SERVICE-LEVEL IS NOT LESS TfilN»,//# 
S       • CBE, SO THE PBOBLEB IS INFEISIBLE*,//) 
GO TO 82 

C 
50  Viai = -PHLL 

C 
C   SINCE P(BLL) LE 0, SOLVE P(L&BBDA) = 0 FOR LABBDA = LS 
e   01 [BLL,IBPIN1TT). FIRST CHECK IF P(BLL) = 0 WITHIN EPSILON; 
C   IF BOX, DETEFBINE BLU LESS THAN INFINITY SO THAT P(BLU) IS 
C   GHEIIEH THAN OB EyUlL TO 0. THEN SOLVE P(LABBDA) = 0 FOB 
C   LABBDA = LS OB (BLL,BLD) 
•C . 

LS « BLL 
IF (VAB1.LE.EPS) GO TO 81 

c- 
BLU = HLL 



180 

DO   80   II   <  ORE,   V 
1  »=   PERB(II) 
TLI   «=   HALP*TU (I) 
BUI   "   BH (I) 
QI   «   lOliE-BHI 
Gil   <   Gl (I) 
DI     «=   D(I) 
DEI   »   DE(I) 

C 
C        riMD   LU   SOPFICEKTLY   LKBGE   SO  THAT   THE   I-TH   COBPOIEMT   OP  TFE 
C        PDNCTION   P   IS   HCN-NEGATIVE    (HERE  TEST   IS  THE   I-TH   COBPOMEfcT 
C        OP   THE   fOMCTIOM   P) ,   THEN   SET   HLU  =   l!AX (   LU   ) 
C 

60     TEST   =   ( (XCME-BHI)* (XOWE4DLOG((XONE+TLI)/(XOIJE+ 
&   DEI*TLI) }/(GAI»DI)) + (Bai/(XONE+TLI))-ALPHA) 

IF   (TEST.GT.ZEBO)    GO  TO   70 
TLI   =   HALf*TLI 
GO   TO   60 

70     LUI  »   LAnBCI(TLl,I) 
LO(I)   =LOI 
IF   (LOI.GT.BLU)    HLU   =   LDI 

80 COSTINUE 
C 
C        SOL¥B   P(LAnBD4)    =   0   FOB   LiBBDA   =   LS   IB   [BLL,HLO] 
C 

RAX   -   BAXPN 
LB   =   HLL 
OB   =   BLU 
CALL   ZBBENT    (P , EPS,NSIG,LB,DB,BAX , lER) 

C 
LS   «   OB 

81 COITIMUE 
C 
C        COMPOTE THE    (S,S)    POLICIES   FOR   THOSE   ITEMS   HITU   BIG   S   GREATER 
C        THAN   BSL 
C 

82 DO   8t» II = CKE, N 
I = PKBHCII) 
GAI = GA (I) 
T5I = TS (I) 
nSI = MS (I) 
DI =* D(I) 
BICSII) = nSI-{(DLOG(TSI) )/GAI) 

C 
C   BECAUSE OF BOUND-OFF EFPOR, IT BAY BE THAT BIG S LT BSL. 
C   IF SO, SET BIG S = ESL. 
C 

IP (BIGS (I) . LT.BSL{I))  BIGS(I) = BSL(I) 
8U  LITS(I) = BIGS(I) - DI 
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C 
c 
c 

COHPOTE THE (S,S) POLICIES FOR THOSE ITBHS ilTH BIG S EQOIL 
TO BSL 

IF (HI.EQ.H) GO TO B8 
85 B « IfONE 

DO 86 II = H,HI 
1 =» PBB« (II) 
BIGS(I) * BSL(I) 

86 LITS(I) « BIGS(I)-D(I) 

C 
C 
C 
C 
C 

88  ir\?SL = ZEBO 

COIIPOTB THE SEBVICE-LEVEL AND SHORTIGE COST FOB ILL THE ITEHS 
II THE I8VENT0EI STSTEfl, AND MTAVSL = MEIGHTED AVEB&GE 
SSBfICE-LE?EL (HCPEPULLY THIS EQUALS IPPBOX THE OBIGINAL ALPHA) 

DO 90 II = ONE,NI 
1 = PBH«{II) 
DBI = DE(I) 
GAI = GA (I) 
TSI « TS (I) 
BHI = BH(I) 
QI = lONE-BHI 
BSI = iS(I) 
DI = D(I) 
BIGSI = BIGS(I) 
THS = DEIP(-GAI* (EIGSI-nSI)) 
ALI * QI* (XCNE+DLOG{(XONE-HSI)/(10NE+ 

&        DEI*1SI) )/(GAl*Dli)i{BHl/(XONE+TSI) ) 
HSl(I) = ALI 
iTAVSL = HTAVSLiALI*hT(I) 

90  COkTIMOE 

C 
c 

c 

c 

c 

c 

BETUBB 
EID 

BEIL FONCTIOli LAHEDi*8 (THETA,I) 

COSaCS /LAfl/ A,B,E,F,G,H 

BEAL*8 A (512),B(512),E(512),F(512),G1512),H (512) 
FEAL»a THETA 

INTEGEB I 

LABBDA = (A (I)-tTHETA*(B(I)+THETA» (E(I)+THETA»F (I) )) ) / 
& (llitTA* (G (1)-»1HETA*H(I) )) 
BBTUBM 
EMD 
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C 
c 

c 

c 

c 

BBAL PONCTIOll P»B (LM) 

C0B8CI /IMFOV «r.ALPHA,IPS,WSIG.BkXFU.Ii 
COHSOM /PABAHS/ TU.1S.BH,DE,GA, D. XONE, 2EBO,PEBH.OIIE 

COBBOM /SDBB/ XLI»1,I 

"It*? "512^^5^512),Gl (512) ,DE (512) ,TU (512) ,TS (512) .ZEF0.EP5 
BEAL»8 LAB.1SI,TOI.BH1,QI,LTBL,TEST.LB,UE.XLAM,X011E 

IMTBGEB 0!iE,I,lI,HAX.N,PEFn(512).HAXFII 

ZXTEBMIL LTHL 

XLAH = LAH 
P = lEBO 

C   TO EVALUATE P(LAH), EVALUATE THETA, THE SOLUTION IN [ 0, TO ] TO 
C   LTnL(THBTA) = L AHBE A (THETA) - LAH = 0 
C   PIBST CaECK IF ITBL (TU) =0 
C 

DO 20 II = CUE, B 
I = PEaH(Il) 
TUI = TO (I) 

C   SIKCE LTHL(TOI) IS LESS THAN OR EQUAL TO 0, IF IN THE COnPDTEB 
C   LTnL(TDI) IS GEEATEB THAN OB EQOAL TO 0, THIS IMPLIES THAT 
C   liDBED LTHL(TOI) = 0 
C 

TEST   =   LTHL (TUI) 
IP    (TEST.LT.ZEBO)    GO  TO   5 
TSI   =   TOI 
TS(I)   =   TSI 
GO   TO   10 

5     LB   =   ZEBO 
OB   =   TUI 
RAX   =   flAXFN 
CALL   2FALSE(LTHL,EPS,NSlG,LB,UB,TSl,nAX,lEE) 

TS(I)   =   TSI 
10     BHI   =   EH (I) 

Ql   ='   XONE-BHI 
P=   P4WT(I) •(CI*(XCNE4nL0G({X0NE + TSI)/{X0NE+ 

G   DF(l)*TSI))/(GA(I)»D(IJ))4(FHI/(X0NE-fTSl))-ALPUA) 

20      COKTINUE 
C 

BHTOBH 
END 

C 
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C 

c 

c 

c 

BBAL   PUMCTIOM   LTHL*8   (THETi) 

COnHON  /Lin/   A,B,E«F,G,B 
C0B.10II   /SDBB/   LAN,I 

BB»L*8   i(512),B(512),E(512).F(512),G(512).H(512) 
BBAL»8  TaET*,l»H 

IMTBGBR   I 

LTBL   =   ACI) + 
S TUETi* {L(I)-Lin*G(I)+THETA*(E(I)-Lin*H(I)fTHETA*P(I))) 

B STUBS 
EMD 
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C 
C FBOoB&fl   BISSMLSI   :   HOLTI  -   ITEfl    (S,S) 
C ItOBH&L   DEn&IID   DISTRIBUTION   APPfiOXinATION 
C LOUEB   B0UKD5   ON   BIG   S 
C SINGLE-ITEB   POLICY   OOTPDT 
C 
C THE INPUT IS FBOn CiBDS 
C 
C TITLE = OSER - SUPPLIED TITLE (LE 32 ALPHi CHiBlCTERS) 
C Nl « IIUBBEB OP llEBS (MI LE 512) 
C K = SET-OP OBDEBING COST                 ' 
C L = LE^DTIHE 4 1 
C HO   =«   OKIT   HOLDING   COST 
C no   =   HEiN   DEHAMD 
C SD   '   DERWD   ST&NC.ilBC   DEVIITIOM 
C HT   *   COBSTBAINT   liEIGHT 
C 
C NSIG » IIUBBEB OF SIGNIFICANT DIGITS DESIBED FBOfl THE IBSL 
C BOOTINES ZBBENT AND ZFALSE 
C EPS = 1/(10 •• NSIG) 
C HAXFN = BAIinOH NUBBER OF ITERATIONS ALLONABLE BY DSEB FOR 
C THE IBSL ROUTINES ZfcBENT AND ZFALSE 
C lER = (OUTPUT) EEI^OB PAEABETEB FFOB IBSL BOUTINES AND EXACT 
C 
C TBE FOLLOHING ABE IBPOT TO OB COBPOTED BY GKD 
C 
C LITS = LITTLE S 
C BIGS » BIG S 
C D = FEOBDEB QDANTITI BIG S - LITTLE S 
C BSL = D 4 B*L»HD 
C =   LObEB   BOUND   FOB   BIG   S    (BAT   BE   INCREASED   BY   GKD) 
C LS   »   LABBDA-STAB 
C 
C ODT = 0 OTHERWISE 
C 1 HEITE ODIPDT TO THE EITEBNAL FILE 
C FOBTBAN UNIT BUBBER 10 
C HITU THE FOLLOWING DCB SPECIFICATIONS: 
C 
C RECFH   = FE 
C LRECL   = 160 
C BLKSIZE = 1600 
C 
C THE FOLLOWING ARI CCBPUTED BY EHRHABDT'S POWER BETHOD 
C 
C PLITS = LITTLE S 
C PBIGS = BIG S 
C 
C THE FOLLOWING ARE CCBPUTED EXACTLY 
C 
C HC(I) = EXPECTEt HCIDING COST FOR GKD POLICY FOR ITEB I 
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C 
C 
c 
G 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

PC(I) = BXPECTED EEPLENISHMEHT COST POF 6KD POLICY POB ITEM I 
SL{I) = SEB¥ICE LEVEL FOB GKD POLICY POB ITEM I 
kVSL "   WEIGHTED-AVERAGE SEBVICE LEVEL POB 6K0 POLICIES 

PHC(I) ■= EXPECTEE HOLDIMC COST POB POHEB POLICY POB ITEB I 
PEC (I) = EXPECTED BEPLEMiSHHENT COST POB POiEB POLICY FOE ITEH 1 
PSL(I) « SEBVICE LEVEL POB POUEB POLICY FOB ITEH I 
PAVSL >= HEIGHlED-AVLfiAGE SEBVICE LEVEL POB POWEB POLICIES 

****************************************************************** 

IMPUT THE SYSTEH FHFAHETEBS AS POLLOiS: 

TITLE 
LS   NSIG   HAXPN KI   OUT 
HT(1)   D(1)    K(1) L(1)   H0(1)   HU(1)   SD(1)   B(1) 
UT(2)   D(2)   K(2) 1(2)   H0(2)   RU(2)   SD (2)   B(2) 

VT(N)   D(N)   K(N)   L(M)   HO(N) 

TbE INPUT POFHAT IS: 

HU(N) SD(ll)   fi(li) 

ZXXIXIXIIXXXXXIXXXXXXXXXIIXXXIXI 
XXXXIXXX.XXXIXX IXXXXX XXXXX^ XXXXXX X 
XXX. IXXX XXX. XIXX 
XXX.XXXX IXX.XXXX 

XXI.XIXX XXX.XXXX 

XXX.XXXX XXX.XXXX 
XXX.XXXX XXX.XXXX 

XXX.XXXX XXX.XXXX 

ILL DUTA STABTS IN CCLUnM 1 (EXCEPT TITLE ST\ETS IN COLDHN 2), 
AND THEBE IS A SINGLE SPACE 6ETUEEM EACU DATA ENTBY 

tt***^*****f*********** ****************************************** 

PEAL»8 LITS (512) , BIGS (SI 2) ,BSL(512) ,D (512) , PLITS (512) ,PBIGS(512) 
BE\L*i   K(512),L(512),HO(512),nU(512),SD(512) ,WT(512),B 
FBAL»a   AL,bHISS,HPOH,TniSS,TPOM,EPS 
FEAL»3   KI,Ll,HCI,nUl,SDI,SLI,HCI,BCI,*VSL,PAVSL,SDN 
PEAL*8   SL(512) ,HC (512) ,RC (512),PSL(512J ,PHC (512) ,P£iC (512) 
PEAL'S   LSI,LITSI,BIGSI,DI,TEST(512) 

IHTEGER   il 
IMTEbER   ISIG,HAXPN,ITEB,T1TLE(8) ,OUT 

BBAD(1,3)    (TITLE (J) ,J=1,8) 
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3   P0R?1AT(8I«) 
RBAD(1,5)    lSl,USIC,HAXf»l,lil,O0T 

5   P0B1XT{ri5.6,1I.3(I6,lX),Il) 
EPS   »=   10.»»(-II5IG) 

C 
DO   10   I   =    1,111 
P BAD (1,8)    WT(I),D(1),K{1) ,l(I),HO{I),B0(I),SD(I),B 
BSL(I)    =   D{I)4R»L(I)*nD{I) 

8   P0FJlAT{8(r8.<*,lX) ) 
10   COKTINUE 

C 
C        HiKB   THE   iElGHTS   HT   INTO   BQOIVALEHT   CONVEX   iEIGHTS   «T 
C 

SUK   ' 0. 
DO   15 I  =   i,m 

15 son   » SUH-»HT(I) 
SOB * i.ODO/sun 
DO 16 I = 1,NI 

16 iT(I) = SOn»HT(I) 
C 
C  COIPOTB THE OPTIPM POLICIES ISSOCIMED MITH THE HDLTIPLIER 
C  LAIBDA-STAB (LSI) 
C 

CALL BIGSLSCNI,L,HO,flU,SD,D,WT,BSL,LSI,EPS,NSIG,BAXFN,BIGS,LITS) 

C 
BHTTE(3,.**5) 

U5 POFIAT('I') 
C 
C  CCNPUTB THE (UNIFOHH SEBVICE-LEVEL) POWEB APPBUXIHATIOH POLICIES 
C  AND CC1PABE IHEIB ASSOCIATED COSTS WITH THE COSTS ASSOCIATED WITH 
C  TfcB BIGSLS POLICIES 
C 

CALL COnPAa(NI,K,L,HO,HU,SD,WT,BIGS,LITS,TITLE,LSI,DDT) 
STOP . 
EMD 

C 
SUBBOUTIHE BIGSLS (NI,L,HO,HU,SD,D,HT,BSL,LSI,EPS,MSIG,nAXFN, 

e B1GS,LITS) 
C 
C      THIS   SUBROUTINE   COMPUTES   TbE   OPTIMAL    (S,S)    POLICIES   ASSOCIATED 
C      yiTH   THE   KUHki-TOCKEE   CCNSTBAINT   MULTIPLIES   LAMBDA-STAP    (LSI) 
C 
c 

COMIOIi /F1NDTS/AI,BI,EI,FI,GI,HI,LAH 
C 

BBAL*a LITS (512) ,BIGS(512) 
BiJAL»3 L(512) ,H0 (512) ,nU (512) ,SD(512} ,UT(S12), 

& D(512) ,BSL (512) 
HEAL»8 EPS,LSI,LI,U01,nUI,SDI,Dl,HSI,WTI,TSl,LAn, 

C RHI,Q1,GAI,DEI,AI,Bl,EI,Fl,GI,HI,VAfe1,VAR2,ETI,rUI, 
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C 

c 

;       KSl,LPTDl,BSLI,X,TUI,LB,UB,ZEP0,X0NE,HiLF,COKST 
BBiL*8 HC(5U) ,RC(512) ,SL(512),PHC (512) , PBC (512) , PSL (512) 
BBAL*3 PLITS(512),PBIGS(512) 

IMTEGEP II,NSIG,BAXFN,nAX,ONE,CITB 

BBAL^a LAHTH 
EXTERNAL LASTU 

ZERO =0. 
ONE  = 1 
XONS = 1. 
HALF ^ .5 
CONST = 1.700136904 

C 
C 
c 
c 
c 
c 
c 

c 
c 
c 
c 
e 

DO 60 I = OME.NI 
HOI = HO (I) 
NJI = BD(I) 
II  = L(I) 
HSI = LI*HUI 
SDI = SD(I) 
in = a? (I) 
DI = D(l) 
PHI = HUI/(DI-K(NU14 (SDl*SDI/Hai))*HALF)) 
QI  = XOME-BHI 
GAI = CONST/(LI*SDI) 
DEI = DEXF(GAI*DI) 
AI = D1»H0I 
V^BI = XCNE+DEI 
BI = AI*(QI+VAR1) 
El = 4I» (DEI4QI*VIR1) 
FI = AI*QI»DEI 
VABI = DI*Rai*GAI 
V*B2 = Ql* (DEI-XONE) 
GI = ^TI* (ViRl-fV»B2) 
HI = WTI* (VAP1»DEI + ?AE2) 

DETEHHINE BSL BI THE LARGEST VALUE OF THETA, TU, AND HEKCE THE 
S»iALLEST VALUE OF BIG S,   SO THAT D (LAflBDA)/D (THETA) LE 0, 
GJAE^RTEEING THAT LAMBDA (THETA) IS INVERTIBLE ON (0, TU) 
IF THE DSER-SUPPLIED BSL IS GREATEB THAN THIS, IT BECOBES THE 
BSL USED 

ETI = GI*(BI*HI»HI-C1» (EI»H1-FI*GI))-AI*HI*HI»UI 

IF E:A(I) IS LESS THAN 0, LAUBDA (THETA) HAY NOT BE CONVEX, AND 
THBEB IS NO GUAFAKTEE THAT THE GRD ALGORITHM WILL CONVEBGE TO 
A LOCAL MINIHUn THE USEB SHOULD EXEBCISB CARE 

IF (ETI.LT.ZEBO) MRITE(3,30) l.ETI 



188 

30     POBniTC   ET1('.I6,»)   «=»,E20.6,»        LT   O*) 
C 

CMTa   =  -1 
35     CHIR   =   CmB+CSE 

TUI   =   (DEXP(GJII* (nSI-CITR)))/DEI 
RSI   «    (PI/HI)-(M/(CI*TD1»TUI)) 
lkB^   =   GI+HI*TUI 
IPTUI   «   KSl-(EII/(G1»HI»¥AF1»VAE1)) 
IP   (LPTUI.GE.EEFC)    GO  TO   35 

C 
BSLI   =   CNTB+DI 
X   =   BSL(I) 
BSL(I)    =   ESLl 
IP    (X.GT.BSLI)    BSL(I)   =   X 
TOI   '    (DBXP(GAI» (nSI-(BSL(I}-DI) } ) )/DEI 

C 
IAH   =   LSI 
Bkl   =   BAXPN 
LB   =   ZERO 
OB  =   TDI 

C 
C      IF   LiRTH{OD)    IS   GEEATEB   THAN   ZERO,   THEN   THE   PONCTION 
C      LAHBDl (THETA)    POB   THIS   ITEH   IS   ALhATS   GREATER   THAN   LAHBDA-STAR, 
C      AND   SO   BIGS   POB   THIS   ITEM   IS   SET   AT   ITS   LOWEB-DOUKD   BSL 
C 

IP    (LABTH (UB) .GT.ZEEO)    GO   TO   50 
CALL   ZBFENT (L AHTH, EPS, IISIG,LB,DB ,HAX, lEF) 
ISI   =   UB 
BIGS (I)    '   HSl-((DL0G(TSI))/G1I) 

C 
C   BECADSE OP BOUND-OFF EBROB, IT HAY BE THAT BIG S LT BSL. 
C   IF SO, SET BIG 5 = ESL. 
C 

IP (EIGS(I) .LT.BSL(I)) BIGS (I) = BSL(I) 
LITS(I) = BIGS(I)-DI 
GO TO 60 

50 EIG5(I) = BSL (I) 
LITS(I) = BJGS(I)-DI 

60 CONTINUE 
PETUEN 
END 
BEAL PUNCTIOK LAHTH*8 (THETA) 

C 
C0H10N   /PIND1S/A1,BI,E1,P1,GI,HI,LAN 
BEAL»8   M,BI,E1,FI,GI,HI,LAH,THETA 

C 
LABTH   =   AI4THE1A* (BI-LAn»GliTHETA*(El-LAM»hI + ThETA»PI)) 
iETUFN 
END 
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SUBBOUTIiiE   CCBP & B (KI,K,L, HO, RU,SD«W7, BIGS, L1T5, TITLE, LSI, OUT} 
C 
C      THIS   SOBBOUTIME   CCES   TBE  FOLLOUING: 
C 
C      (1)    BTXLUATBS   EXkCTLT   THE   HOLDIUG   iMD   EEPLEWISHBEMT   COST,   IND 
C THE   SEB?ICE-IEVE1   FOB   THE   POLICIES    (LITS,BIGS)   DNDEB   THE 
C ASSOnPTICN   OF   KEGATIVE-BINOBIAL   OEHAND    (IM   ElACT) 
C 
C      (2)    COMPUTES   APFPOXIHATELT   OPTIHAL    (S,S)    POLICIES   WITH   UHIFOBn 
C SERfiCE-LEVELS    (IN   POHiPP) 
C 
C      (3)    ETALUiTES   THE   POLICIES   DESCBIBED   IN    (2)    EXACTLY   AS   IN    (1) 
C 
C      (U)    PBINTS   TBE   FESULIS   OF   STEPS    (1)    AND    (3) 
C 

IEAL*8   LITS (512) ,EIGS(512) 
BEAL»8   K(512) ,L(512) ,HO(512) ,nD(512) ,SD(512) ,iT(512) 
BEAL»3   HGKD,FP0W,TGRD,TP0W,LSI,LIT5I,BIGSI 
iEAL*8   FI,LI,HOI,nUi,SDI,SLI,HCI,RCI,AVSL,PA¥SL 
iEAL*8   HC (512),PC(512) ,SL(512) ,PLITS(512) ,PBIGS(512) , 

fc PHC(512) ,PPC(512) ,PSL(512) 
C 

INTEGEE NI,TITLE (8) ,OUT 
iVSL  * 0. 
H3KD =0. 
TGKD =0. 
DO 70 I = 1,HI 
KI = K(I) 
LI = L(I) 
HJI » HO (I) 
flUI = HU (1) 
SDI « SD(I) 
BlGSl = BIGS(I) 
LIT5I = LITS(I) 
CALL EI\CT(KI,II,H0I,HUI,SDI,L1TSI,BIGSI,SLI,RCI,FCI,IEE) 
IF (lEB.EC. 1) GO TO 300 
AVSL = AVSL+SLI*WT(I) 
HGKD = HGKD-fHCI 
TGFD = TGFD4HCI+PCI 
HC(I) = UCI 
SC(I) = BCI 
SL(I) = SLI 

70  CONTINUE 
C 

PXVSL « 0. 
BPOW  =0. 
TPOW  =0. 
DO 75 I = 1,NI 
Kl = K (I) 
II = L(I) 
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BOI  «   BO (I) 
BUI  «   BU (I) 
SDI   *   SD(I) 
CklL   P0UAPP(KI,LI,bCI«BDI,SDI,AVSL,LIT5I«BICSI) 
CIML   EXACT(KI«lI,HOI,nOI«SDI«LIT5I,BIGSI«SLI«HCI,BCI,IEBj 
IF    (lEE.SQ. 1)    GO   TO   300 
fhVSL  «   P&VSL4SLI*HT(I) 
BPOb     K   BP0H4HCI 
TPOW     =   TPOH4HCI4ECi 
PLITS(I) = LI15I 
PBIGS(I) = BIGSI 
PUC(I)   « BCI 
PRC(I) BCI 
PSL(I) SLI 

c 
c 

75  COITISOE 

PRIiT SDHBABl 
c 

98 

100 

BRITE(3,98|    (TITLE (J) , J= 1 ,8) , LSI 
rOFMAT(T2,8A«l,» LAHBDA-STAP   =   SFlS.e//) 
BRITE(3,100)    IVSl,PAVSL,HGKD,HPOB,TGKD,TPCIi 
F0E.1AT(T3,« 

E T3,» 
e T3,» 
& T3,» 
& T3.« 
& T3,« 
t TU,» 
t. T32. 
t T85, 
& T39, 
& T62, 
e Tse, 
CO 130 I = 

ACTUAL ALPHA (liKD) 
ACTUAL ALPdA (POU) 
RCLDING COST (GKD) 
HOLDING COST (POH) 
TOTAL COST (GKD) 
TOTAL  COST   (POH) 

= »,T27,P11.<»,//, 
=«,T27,P11.4,//. 

= »,T27,P11,<»,//, 
= '.T27.P11.*♦,//. 

= »,T27,F11.a,//, 
=',T27,P11.a,////, 

'I',T8,«K',T12,«L+1',T19,»H»,T25,'BD', 
•SE«,TM0,»GKD»,T50,«POWEB»,Tfc5,»HOLD», 
•EEP',T99,»SER   LE¥«,T116,•N*HT«,//, 
•LS»,Ta4,«BS«,T50,«LS«,T55,»BS«, 
•GICD«,T70,»POBEB',T80,»GKD«,T88,«POliEB», 
•GRC»,T105,•POHEB',//) 
i#m 

SOB   =   liI*UT(I) 
B RITE (3, 120)    I,K(I).L(1).HO(I),BO(I),SD(I),LITS(I),BIGS(I), 

PLUS (I) ,PBIGS(I) ,HC (I) ,PHC (I) ,1C (I) ,PBC (I) , 
SL(I),PSL(I) ,SDH 
I,K(1),L(I),H0(I) .flU(I) ,SD(I),LITS{I),B1GS(I), 

PLITS{I),PBIGS(I).UC(I),PHC(I).FCII) .PRC(I), 
SL(I) ,PSL(I) ,SUfl 

120  rJPnAT(I«,f5.0,Pa.0,P9.U,P4.0,F9.4*,2(F5.0,F6.0) ,*F9.2. 
6 2F8.U,F12.<I,//) 

130   COHTINDE 
►ETUBN 

e 
& 

I 
L 
G 

BRITE(10,120) 

300 BHITE(3,310) I 
310 FOB.IATC BIG S OR D > 2000 FOR 

6       • EXACT CANNOT EVALUATE 
ITEn«,I6,/ 
THE (S,S) POLICY*,//) 
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BBTUFN 
END 

C 
SOBBOOTINE   EX ACT(K,L«H,RD,SD,LS,BS«SL«RC,BC.IEB) 

C 
C THIS   SUBROOTIif   COBFUTES   THE   SEBVICE-LEVEL,   BOLDIWC   COST   AND 
C        BEPLENISHHENT   CCST   EXACTLY   FOP   TUE   POLICY    (LS,BS)   OKDEB  THL 
C        ISSDHPTION   OF   H£G\TIV£  BIMOniAL  DEHAtlD. 
C 
C        K   «   SET-OP   COST 
C        L  «=   IBADTinE   +1 
C b   «=   ONIT   HOLDING   CCST 
C        nU  =   NE4N   DEBANE 
C        SO   =   DEMAND   STAMCABD   DEVIATION 
C        LS   =   LITTLE   S 
C        BS  =   BIG   S 
C        SL  =   STEADY-STATE   SERVICE-LEVEL    {PEEQOENCT   OF   PERIODS   THAT 
C NO   BACKCRDER   IS   PLACED) 
C        BC  =   EXPECTED   HCLDING   COST 
C        EC   =   EXPECTED   FEPLENlSflHENT   COST 
C 

BEAL*8   K,I,H,BU,SD,LS,BS,SL,HC,RC,P,C,8,ES,PROB(2000) ,HALF, 
& NB(2000) ,«(2000) ,KI,RHO,VAR,SOB,PR03I,MD,ZERO,XONZ, rrWO 

INTEGER   S,D,tBl,UB2,0NE,TH0,IER 
DATA   ONE,TiO,ZER0,XCNE,ITWO,HiLF/1,2,0.D0,1,D0,2.D0,.5D0/ 

C 
C        S   AND   D   ABE   BOUNDED  TO  THE   NEABEST   INTEGER.    kE   USE  THE   BEORDEB 
C        QUANTITlf   D  =   BIG   S   -   LITTLE   S   -   1   BECAUSE   KE   USE   THE   VERSION   OF 
C        AN    (S,S)    POLICY   THAT   BEQUIRES   THAT   AN   ORDER   BE   PLACED   WHEN   THE 
C        INVENTORY   POSITION   DROPS   STRICTLY   BELOW   LITTLE   S. 
C 
C        PR03(I)   =   PBOB(NB   BV   =   1-1) 
C        NB(I) =   PBOB(NB   4   •    •   •   i   NB   RV   =   1-1) 
C I I 
C L 
C        B(I) =   PBOB(REN£UAL  PMC   OF   MB  BV   =   1-1) 
C 
C   lEE = 0  EXACT HAS ABLE TO EVALUATE (S,S) POLICY 
C 1  OTHERWISE 
C .  . 

lER = 0 
S = BS+HALF 
D = (BS-LS-ONE)+HALP 
Q = H'J/{SD*SD) 
r = XONE-C 
B = BU*Q/P 
is = L*B 
VAR = ti*»R 
PROB (ONE) = VAR 
MB(ONE)   = Q»»RS 
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C 
C 
c 

c 
c 
c 

c 
c 
c 

BHO       s XOKE/(XOIIE-TAR) 
R(OME)    « fAB*BUO 
OBI = S+OUE 
IP (D.GT.S) OBI = D+OBE 
IP (OBI.GT.2000) CO TO 100 
DO 20 I = THO.UBl 
?4R = XOBE/d-XCNE) 
PBOBI = PfiOD(I-ONE) •?» (B + I-ITiO) ♦¥*« 
PHOB{I) = PBCBI 
nail) = IIB(I-CNE)*P*(RS+I-XTWO) •VAR 
SUN = ZEBO 
0B2 = I-ONE 
DO 10 J = 0IIE,DB2 

10  son = SOfl-fPBCB (I-J+C»(E)*fl (J) 
n{I) = (PBGBI4SUH)*BH0 

20  CONTINUE 
OBI = D+OHE 
IP (OBI.Gl.2000) GO TO 100 
no  = ZERO 
DO 30 I = CNE,DB1 

30  no = HD+H(I) 
BHO = XCNE/(XCNE4MD) 

COnPUTE EXPECTIC REPLENISHnENT COST 

BC = K*PHG 

COMPUTE EXPfCTEE HCLDIBG COST 

IP (D.GT.S) UE1 = S40NE 
IP (UB1.G1.2000) GO TO 100 
HC = ZEBO 
DO «40 I = ONE,OBI 
0B2 = S-I4TH0 
HI = fl(I) 
DO UO J = CNE,0B2 
HC = HC+(UB2-J) •NB(J)*HI 

aO  CONTINUE 
SUN = ZERO 
UB2 = SfONE 
DO U5 I = CNE,0B2 

«45  SUN = SUn-f (UB2-I) »NB(I) 
HC = U*(HC+SUH)♦RHO 

COMPUTE (STEADI-STATEJ SERVICE-LEVEL 

SL = ZERO 
DO 60 I = 0HE,DB1 
sun = ZERO 
UB2 = S-I+TWO 
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DO  50 J  «  CIIE,DB2 
50     sun   =   SUHi»B(J) 
60     SL  »   SL+SDn*B(I) 

son  =  ZBBO 
OBI   =   S+0»E 
IF    (UB1.C1. 2000)    GO  TO   100 
DO   70   I   =   0HE,UB1 

70     son   =   SUn4NB(I) 
SL  =    (SL-fSDB) •BHO , 
BBiaRN 

c 
100     lEK   =   1 

EETOFN 
■c      ■ 

EMD 
c    ■ ' 
c 

SUEHOUTINE   POiAPF (K,L,H,BU,SD,ALPHA,LITS,BIGSJ 
C 
C        THIS   SDBPODTIliE   COBPUTES   LITTLE  S    AND   BIG   S   USING   THE   REVISED 
C        POWER   APPROXIBATICN   BETHOD    (BOSIER (1981},   TECH   BEPORT   #18). 
C        THL   SHORTAGL   COST   IS   COBPUTED   OSING   THE   POWER   APPKOXIBATION 
C        BETHOD    (EHBHABDT (1977,   PP   18,   45),   TECH   REPORT   #12). 
C 
C        K  =   SET-UP   COST 
C L  «=   LEADTIBE   +1 
C H   =   UNIT   HOLDIMG   COST 
C        BO   =   BEAN   DEBAND 
C        SD  =   BEAN   STANCAED   DEVIATION 
C ALPHA  =    (STEADY-STATE)    SERVICE-LEVEL,   THE   PBE;iUENCY   OP   PERIODS 
C WITHOUT   BACKLOGS 
C IITS  =   LITTLE   S 
C BIGS  =   BIG   S 
C 

REAL*8   P,H,K,BU,D,L,?L,SDL,Z,V,SD,LITS,BIGS,ONE, 
t Cl,C2,C3,Ca,C5,C6,C7,C8,C9,CIO,ALPHA 

C 
DATA   Cl/1.3/ 
DATA C2/.a9a/ 
DATA C3/,506/ 
DATA Ca/.116/ 
DATA C5/.973/ 
DATA C6/.183/ 
DATA C7/1.063/ 
DATA C8/2. 192/ 
DATA CIO/.0695/ 
DATA ONE/1./ 

C 
V  = SD*SD 
VL = ¥*L 
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SDL  «   DSQB7(VL) 

P =   H*(lLPHI-C10)/(C»IE-lLPHi) 
Z  =   011Ei(VL/(RU»flD) ) 
D  =   Cl* (BU*»C2)* ( {K/H)*»C3)»(Z**Ca) 
Z   =   DSQBT(D*B/(P*SDL)) 
C9   =    (C6/Z)-fC7-C8»2 
LITS   •  C5»L«8D+SCL»C9 
BIGS   =  LITS4D 
BBTURN 
END 
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