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shortage costs. He shows how to easily compute policies. The computa-
tional experience demonstrates that inventory investment can be reduced
more than 20% using thfs approach. The report also suggests how to impie-
ment the algorithm in a real-life system that may contain thousands of
stocked items. Other related reports dealing with the program are given

on the following pages.
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ABSTRACT

J. CHRISTOPHER MITCHELL. Multi-Item (s,S) Inventory Systems
with a Service Objective (Under the direction of HARVEY WAGNER.)

This paper considers a multi-item (s,S) inventory system.

The model differs from standard treatments in that shortage costs

-are replaced by stockout probability constraints to be satisfied

in every period. The value of such a model is that it is often
easier to express service objectives in terms of stockout prob-
ability constraints than it is to specify shortage costs.
Specifically, system service is defined in terms of a weighted

average of single-item stockout probabilities. An optimal

policy minimizes system cost while satisfying a constraint on system

service. Using standard single-item approximations, necessary
and sufficient conditions for a policy to be optimal (for the
approximate model) are derived, and a computationally efficient
algorithm, the Generalized Knapsack Duality (GKD) Algorithm, is
developed to find such a policy. Computational experience on
inventory systems typical of many found in the real world
indicates that operating costs can be reduced significantly when
this model is used rather than the simpler uniform service model
often used by managers.

Sensitivity experience on inventory systems with a struc-

ture typical of many real-world inventory systems is reported.



Specifically, the sensitivity of the GKD Algorithm to changes in
the reorder quantities and lower bounds on feasible policies is
reported. This experience suggests that, as in the single-item
case, very accurate specifications of the reorder quantities are
unnecessary. Recommendations are made to specify the lower bounds
as high as possible while achieving significant cost savings below
that of the Identical Service Approach. This recommendation is
consistent with the objectives of many managers, and in certain
cases improves algorithm performance.

This paper also reports computational experience with sampling
schemes of various sizes for large-scale inventory aggregation.
This experience indicates that inventory systems typical of many
found in the fea] world can be well-managed based on decisions made
from a relatively small number of items from the systems. In
particular, this experience suggests that a central uniform sample
of about 32 items is sufficient to make accurate decisions for the
entire inventory system. The paper concludes with a detailed im-
plementation procedure using the GKD Algorithm with sampling to

manage a large-scale inventory system.



1T.

IT1.

IV.

CONTENTS

INTRODUCTION
1. Inventory Theory with Shortage Costs

2. Inventory Theory with Service-level Constraints
3. Multi-Item Inventory System Aggregation

HE GENERALIZED KNAPSACK DUALITY (GKD) ALGORITHM
Introduction

Analysis

CKD Algorithm

Policy Performance

GKD Algorithm Modification when Di is Small
Conclusions

mmbwm—tl—!

Notation

Frequently Used Relations
Theorems and Lemmas

Appendix
COMPUTATIONAL EXPERIENCE WITH THE GKD ALGORITH!

1. Introduction

2. Total Cost Savings

3. Single-Item Service-Levels
4., Items with Di Too Small

5. Conclusions

SENSITIVITY EXPERIENCE WITH THE GKD ALGORITHM
1. Introduction

2. Sensitivity Experience for Di
3. Sensitivity Experience for Lower Bounds on Si
4

Sensitivity Experience for Sampling Schemes
for Inventory Aggregation

5. Sensitivity Experience for the Sample Size for
Inventory Aggregation

6. Conclusions
- Appendix

10
15

18
18
21
40
46
50
52
53
55
55

56

57
57
57
62
63
65

80
80
81
85

92

g9
104
134



iv

V. CONCLUSION: TMPLEMENTATION OF THE GKD ALGORITHM

WITH SAMPLING FOR A LARGE-SCALE INVENTORY SYSTEM 146
1. Introduction 146
2. Implementation Procedure 148
3. Example 151
4, Conclusions, and Future Research Directions 152

- Appendix 158

REFERENCES ' 195



ACKNOWLEDGEMENTS

I want to thank above all my dissertation advisor, Professor
Harvey Wagner. His extensive experience and sharp insights have
been invaluable in determining both the content and direction of
this research. To Professor Wagner I also offer special thanks
for always helping me to see "the forest for the trees."

1 want to thank Professor Richard Ehrhardt for his generous
time and interest in my work, as well as his technical expertise
in inventory theory. Many of our conversations helped shape the
theoretical development of this work.

I want to thank Professor Jon Tolle for the considerable and
valuable time he invested in my work. His expertise in nonlinear
programming as well as his careful reading of earlier manuscripts
resulted in significant improvements in this work. The mathe-
matical clarity of Chapter II was greatly enhanced by his sug-
gestions.

I want to thank my typist, Miss Kristina Hanan. She has
always done a careful and excellent job, even in the most
tedious parts of the paper.

Special thanks are given to the Office of Naval Research,

who partially supported this research under Grant #N00014-78-C-C467.



I.  INTRODUCTION

This paper examines the problem of specifying single-item
service objectives in a multi-item inventory system subject to an
overall (or system-wide) service-level constraint. We develop a
computationally efficient algorithm for doing so when the numbgr of
items in the inventory system is of moderate size. We also investi-
gate methods of aggregating very large inventory system so that they
are computationally more manageable. For both of these problems
we show by extensive numerical investigations that our methods can
result in a substantial total cost savings over methods which specify
uniform service-level objectives for all items in the inventory system.

This chapter is a non-technical survey of the literature on both
exact and approximate methods for inventory management. Section 1
describes the theoretical and computational difficulties involved in
single-item inventory management as well as methods that have been
used to deal with these difficulties. Certainly a multi-item in-
ventory system will inherit these difficulties, and so we use such
single-item methods in our model when appropriate.

Section 2 discusses service-level constraints in single-item
inventory systems in the same spirit as Section 1. We also survey
the methods that have been used in multi-item inventory systems with
service-level constraints (or similar models) in order to motivate

the direction of our research.



Section 3 surveys the literature on the problem of large-scale
inventory aggregation. In particular, we discuss an empirically-
observed structure that is typical for many real-world inventory systems.

Chapter II contains the mathematical derivation of our algo-
rithm to specify single-item service objectives in multi-item inventory
systems with a system-wide service-level constraint. There are certain
properties the items in the inventory system must satisfy in order
to guarantee algorithm convergence. We illustrate algorithm performance
on some two-item inventory systems which contain only items satisfying
these properties. We also discuss our recommendations when there
are items in the inventory system that do not satisfy all these proper-
ties.

Chapter -III contains a numerical investigation of some 32-item
inventory systems (with some items that do not satisfy the above-
mentioned properties) which reflect a structure often observed in
practice. We show that there is a significant cost decrease when
using our algorithm to specify operating policies rather than using
the popular method of specifying operating policies which give
uniform service.

Chapter IV contains a numerical sensitivity investigation of
32-item and 128-item inventory systems (with the same structure
mentioned), and a numerical investigation of sampling schemes for
inventory agaregation.

Chapter V concludes this paper with a detailed implementation

procedure of the GKD Algorithm with sampling to manage a large-



scale inventory system. We illustrate this procedure with a 512-
jtem inventory system, and offer conclusions and directions for future

research.

1. INVENTORY THEORY WITH SHORTAGE COSTS

1.1 Model Formulation and Optimal Policies

We consider the periodic-review dynamic inventory model. We
give a non-technical survey of the literature on this model, Teaving
relevant mathematical descriptions for the next chapter.

At the beginning of each period n, n=1,2,..., the inventory
position (stock on hand plus stock on order) is reviewed, at which
time a positive order may be placed. An order placed in period n is
received and paid for in period n+k, where k, the leadtime, is a
fixed positive integer. There is charged a fixed ordering cost K plus
a linear ordering cost c. After the inventory position is reviewed
there is a random demand En’ where 51,52.... are independent and iden-
tically distributed with cumulative distribution function (cdf) ¢,
density ¢, mean u, and finite standard deviation o. After demand
realization, a linear holding cost h is assessed for each unit of
inventory on hand. 1f demand exceeds the inventory on hand, the excess
demand is completely backlogged, and a linear shortage cost p is
assessed for each unit of backlogged demand. Then period n+l is entered,
repeating the process. Future costs are discounted at the single-
period rate Bwith 0<B<l (B=0 corresponds to a single-period model and
g=1 corresponds to an undiscounted model), and the objective is to
minimize the total expected cost of operating the system over a

prescribed horizon.



This model can be formulated as a dynamic program. Doing so and
using induction, Scarf [1960] showed that under the assumptions of
finite horizon length T and convex differentiable expected single-

nSSn)’

n=1,...,T. This policy requires that if the inventory position at

period holding costs, there is an optimal policy of the form (s

the beginning of period n is less than Sy an order is placed to raise
it to Sn. Otherwise, no order is placed. Zabel [1962] extended this
result to the case when the single-period holding and shortage costs
are not differentiable. Earlier Karlin [1958a] showed the optimality
of (sn,Sn) policies under much stronger assumptions than Scarf; and
Veinott [1966a] and Schdl [1976] extended Scarf's result to models
with more general cost functions. If, however, holding and shortage
costs are linear, as in our model, Scarf's result is sufficient to
guarantee the optimality of (sn,Sn) po]icies.

A basic difficu]ty in implementing these policies is that they
usually vary from period to period and hence require tremendous
computational effort. The situation becomes much simpler in the
infinite horizon case. In this case, to minimize total expected cost
we must impose B<1 or else for almost any policy this cost is infinite.
One can consider an undiscounted model (B=1) if the objective criterion
is changed to the average expected cost per period. If this is the
criterion, Iglehart [1963a] and [1963b] proved that given the cost
structure we have assumed, in both the discounted and undiscounted case,
respectively, there is an optimal policy that is stationary (s,S).

Such a policy requires that when the inventory position in any period

falls below s, an order is placed to bring it up to S. Thus, there are



only two numbers to be computed. One must, of course, assume that the
true horizon length is of sufficient length to be reasonably approxim-
ated by an infinite horizon model.

The computational procedures to find exact stationary (s,S) policies
generally involve deriving a closed form expression for the expected
infinite horizon average cost per period given that the policy (s,S) is
being followed in every period, and then minimizing this cost over all
(s,S) policies. There have been several methods used to derive this
steady-state cost. Karlin [1958a] derived it using linear operator
theory and in [1958b] using renewal theory, which was simplified by
Sahin [1982]. We mention that in both references cited, Karlin also
derived a closed form expression for the optimal policy when the demand
distribution is exponential. Morse [1959] derived the expected average
cost per period using Markov processes theory, and Leneman and Beutler
[1969] used a stationary point process approach. The first general and
exact computational procedure to find an optimal stationary (s,S) policy
is found in Veinott and Wagner [1965]. Assuming that the demand distrib-
ution is discrete, they derived the steady-state cost and then minimized
it using finite difference calculus. This algorithm has been programmed
in PL-1, and the documentation can be found in Kaufman [1976]. Bell
[1970] has suggested an improvement to the Veinott-Wagner algorithm
using optimal stopping rule theory, and recently Federgruen and Zipkin
[1981] have described a completely different approach using a policy
iteration technique for Markov decision processes. A method similar to
this was suggested earlier by Johnson [1968]. 1In a somewhat different
spirit, Sivazlian [1971] uses Gaussian qu&drature methods to create

graphs to compute optimal (s,S) policies.



There are three significant difficulties involved in finding
optimal (s,S) policies. We discuss these in order to introduce the
various approximations to optimal (s,S) policies that have been
suggested in the Titerature.

First, the steady-state costs always involve the renewal function
of the demand process. If the demand distribution is discrete, Veinott
and Wagner [1965] showed that the renewal function can be evaluated
recursively, although this can be computationally expensive when S is
very large. If the demand distribution is continuous, there is no
general computationally efficient method of even approximating the
renewal function (the exception being the exponential distribution).

Second, although the steady-state cost is, in general, convex in
S, it is not even unimodal in D=S-s. Thus, local minima may not be
global minima. Veinott and Wagner [1965] dealt with this by establish-
ing bounds on the optimal (s,S) policy and examining all values of D
among these policies to find a global minimum. Recently Séhin [1982]
has shown that for a class of distributions the steady-state cost is
pseudo-convex in D and S, so local minima are global minima. It is not
clear, however, that this class contains distributions useful for inven-
tory models.

Third, exact algorithms require that the demand distribution be fully
known. Many times in practice only a couple of moments will be known,

and even these values may be statistical estimates.



1.2 Approximations to Optimal Policies

In light of the difficulties involved in finding optimal policies,
numerous approximation procedures have been suggested. We describe the
best of these.

For an undiscounted infinite horizon inventory model the ordering
cost ¢ does not appear in the cost functions. Essentially this is
because all demand must eventually be satisfied, and the cost of doing
so is undiscounted. Thus, there are three components of total expected
cost, one associated with each of the parameters K, h and p. They can
be denoted, respectively, as the expected replenishment cost, expected
holding cost and expected shortage cost. Another quantity of interest
is the service-level, the frequency of periods without any backorder
(roughly, the steady-state probability of meeting all demand in any
given period).

One of the earliest and best approximations is the Normal Approxi-
mation of Wagner [1975, pp.831-836]. It is based on asymptotic renewal
theory results of Roberts [1962], the empirically-based heuristic when
D=S-s is small discussed in Wagner et al [1965], and the assumption
that demand is well-enough approximated by a Normal distribution.

There were extensive numerical investigations of this approximation
done in MacCormick [1974], Estey and Kaufman [1975], MacCormick et al
[1977], and MacCormick [1977] in which the actual underlying demand
distribution was assumed to be Negative Binomial or Poisson, The Normal
Approximation in general performed very well even when statistical
estimates of the demand distribution mean and variance were used

(although degradation was greater in this case). The greatest degrad-



ation in performance was observed when the coefficient of variation

% was large (in which case there is a non-negligible probability of

negative demand for a Normal random variable), and when both %T and

E were large (the latter corresponds to a high service level). When

2
%T and E‘ were large, the expected shortage cost and service-level

degraded much more than the expected replenishment and holding costs.

Using the general approach of Norman and White [1968] of computing
approximately optimal policies in Markov Decision processes by replacing
the.probability distributions by their moments, Porteus [1979] developed
an algorithm to compute approximately optimal (s,S) policies. However,
the empirical examination done in Freeland and Porteus [1980] showed
that it was not much better than the Normal Approximation, and was a
1ot more work to compute.

Using regression models suggested by both asymptotic analysis and
empirical observations, Ehrhardt [1976] developed the Power Approximation.
Extensive numerical investigations were performed by Ehrhardt [1976]
(compare Ehrhardt [1978]) and Klincewicz [1976a] and [1976b]. These
investigations showed that not only are the approximations especially easy
to compute, require only the first two moments of the demand distribution
and very useful for sensitivity analysis, but they are extremely accurate
over a wide range of parameter settings. The Power Method's performance
was always superior to the performance of the Normal Approximation. The
only cases when the Power Approximation did not perform well occurred in

the expected shortage cost and service-level when statistical demand

moments were used and % was large (which implies a high service-level),
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Some technical improvements were made in the Power Approximation by
Mosier [1981], and the regression approach was used by Ehrhardt [1977]
(compare Ehrhardt [1981]) to approximate the expected costs and other
quantities of interest when the (s,S) policy is given.

There are other policies of a suboptimal form that have been
used to control inventory systems, primarily because these policies
are considerably easier to compute and analyze than are (s,S) policies.
Two of the most popular are the (t,S) and (s,Q) policies (see Hadley
and Whitin [1963, pp.235-295])). A (t,S) policy requires that every t
periods an order be placed to raise the inventory position to S. An
(s,Q) policy requires that whenever the inventory position falls below
s, an order of size Q is to be placed. Using these policies Naddor
[1975] developed rules for approximating the optimal (s,S) policy.
These approximations were numerically compared in Kastner and Ehrhardt
[1979] and in Ehrhardt and Kastner [1980].4 The Power Approximation was
always superior, although the Naddor Approximation did quite well for a
large number of parameter settings.

We conclude by summarizing how these approximately optimal policies
deal with the three difficulties described in Section 1.1. Typically,

the renewal function is approximated using standard results from asymp-
totic renewal theory. Although we did not discuss it in detail in

this section, the complicated total expected cost dependence on D is
also dealt with using asymptotic renewal theory, with an empirically-
based heuristic being implemented when D is small (in other words, the
asymptotic assumptions are unreasonable). In order to have approxi-
mations that depend upon only a few moments of the demand distribution

rather than the entire density, the form of the demand distribution is
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assumed to be given (typically Normal, Gamma, Poisson or Negative
Binomial). The Power Approximation utilized a very general distribution

form in which parameters were determined by a regression fit.

2. INVENTORY THEORY WITH SERVICE-LEVEL CONSTRAINTS

2.1 Model Formulation and Optimal Policies

A significant practical difficulty inherent in all these approxi-
mations (and exact algorithms) is the specification of shortage costs.
These penalize backorders, but it can be very difficult to measure the
cost impact of a backorder. It entails such things as "loss of goodwill"
or "customer dissatisfaction", or equally difficult quantities to
measure. One way to deal with this difficulty is to replace the short-
age cost with a service-level constraint. For example, one can require
that the frequency of backorders be no greater.thaﬁ 15%. Such measures
can often be easier to specify than shortage costs.

A question of some interest is whether or not there is an optimal
policy of the (s,S) form when a service-level constraint is used rather
than a shortage cost. In general, there is not. Using a fairly general
service-level constraint, Fromovitz [1965] showed that even in a single-
period model the optimal policy may be randomized. He does show that
if the service-level constraint is convex there is an optimal policy
that is non-randomized, but most service-level constraints considered
in the literature are not convex. Beesack [1967] has shown for the
finite-horizon model (with the constraint that the expected number of
stockouts be a most a prescribed fraction of expected demand) that
(sn,Sn) policies are still optimal. However, as most managers are un-

willing to implement a policy more complicated than an (s,S) policy,
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most of the research is aimed at finding the best (s,S) policy that

meets a given service-level,

2.2 Single-Item Models

Roberts [1962] showed that asymptotically the optimal value for
D=S-s is independen£ of the shortage cost p, so typically it is assumed
that D is given, and then approximations for s are derived such that
the resulting (s,S) policy satisfies a prescribed service-level. The
two service-levels most often considered are the one we use (freguency
of backorders) and the one Beesack considered (fraction of expected
demand met). In the spirit of Robert's work, Greenberg [1964] and
Schneider [1978] derived closed form expressions for these two service-
levels as functions of s and D. Using asymptotic renewal theory and
both a Normal and Gamma demand distribution, Schneider [1978] derived
approximations to find an approximately optimal s given D for both
service-level constraints. Only the approximation to the constraint
used by Beesack was investigated numerically. The Gamma Approximation
always performed well, and the Normal Approximation performed well as
long as the coefficient of variation was not too large. Tijms and
Groenevelt [1982] extended these results to the case when the leadtime

is a random variable.

2.3 Multi-Item Models

We now discuss the model whose study is the object of this paper.
We consider an N-item inventory system in which each item i is an
inventory model described in Section 1.1 without shortage costs

assigned. Thus, for each item i,i=1,...,N, we have a fixed leadtime
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ki’ fixed ordering cost Ki plus linear ordering cost Cio and linear
holding cost hi' The demand realized for item i in any period has
continuous cdf ¢i‘ density ;s mean Y; and finite standard deviation
o A1l demands for all items in all periods are assumed to be
independent. The criterion of optimality is the minimum expected

undiscounted cost per period over an infinite horizon, and the service-

level constraint to be satisfied in every peribd is

N
:z: wi[frequency of periods item 1 is not backordered] 2 o,
i=1 N
where N],...,NN >0and 0 < a < 1 are specified with :E: Ni=1.

i=]
A feasible policy is a pair (s,S), where s=(s]....,sN) and
S=(S],...,SN), and the stationary policy (Si’si) is followed for item
i in every period.

This model has not been examined in the literature, but several
related (but much simpler) models have. We briefly survey the results.
For a single-item inventory model with a shortage cost, if K=0

there is an optimal policy of theform (S,S), a base-stock policy (see
Veinott [1966b]). Iglehart and Jaquette [1969] showed that if the
shortage cost is replaced by a service-level constraint, a base-stock
policy is still optimal. Mitchell [1982] considered this model with

2all leadtimes ki=0 and exponential demands, and developed a computa-
tionally efficient algorithm to find the optimal base-stock policy.
Evans [1967] considered a finite-horizon base-stock model in which total
costs were minimized subject to a linear resource constraint. Using

induction on the dynamic programming formulation, he derived the
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(extremely complicated) optimal policy.

In Section 1.2 we described suboptimal policy forms which, because
of the relative ease in analyzing them, have been used in fnventory
control when Ki>0' Recall we described the (s,Q) policy (often called
a (Q,r) policy in the literature), which requires that whenever the
inventory position drops below s, an order of size Q is placed. There
are several papers that consider our multi-item model (with perhaps a
different constraint) governed by stationary (s,Q) rather than (s,S)
policies.

There are two approaches to solving such problems that have been
used, both of which are discussed in Hadley and Whitin [1963, pp.213-
219, 304-307, 323-226]. One is to treat the problem as a constrained
nonlinear program and then solve the first-order Kuhn-Tucker conditions.
The second is to formulate the model as a dynamic program (a generalized
Knapsack Problem) aﬁd then solve it stage by stage.

The method using the Kuhn-Tucker conditions is used in Winters
[1962], Parker [1964], Gerson and Brown [1970], Presutti and Trepp
[1970], Schrady and Choe [1971], and Schroeder [1974]. The method
using dynamic programming is used in Kaplan [1978].

Winters [1962] minimized total expected cost subject to a product-
ion smoothing constraint. Parker [1964] minimized total expected cost
subject to a service-level constraint, Gerson and Brown [1970] mini-
mized total expected cost subject to a service-level constraint and
s=0. Presutti and Trepp [1970] also minimized total expected cost
subject to a service-level constraint. Schrady and Choe [1971] maxi-

mized a service-level criterion subject to investment budget constraints,
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as did Schroeder [1974]. Kaplan [1972] considered a somewhat different
model, a finite-horizon model with budget constraints that penalize
dollars spent before the end of the horizon. It is a single-item

model with s=0. We note that the models in Parker [1964] and Schroeder
[1974] assume a continuous rather than periodic review of the inventory
position. Such models tend to produce policies that give rather poor

performance in a periodic-review setting (see Wagner et al [1965]).
For two reasons, all of these studies are somewhat unsatisfactory.

First, as mentioned, (s,Q) policies are not optimal. Second, in none

of them are the policies produced compared with any other method, making
it difficult to evaluate the performance of such policies in a multi-item
inventory system. In our paper we use (s,S) policies and derive an algo-
rithm, the GKD (Generalized Knapsack Duality) Algorithm to approximately
solve our model, and then compare the (s,S) policies produced with an
approach frequently used in practice by managers, the Identical Service

Approach (compare Mitchell [1982]). This approach sets shortage costs
for each item in an inventory system so that the service-level for

each item is the same, say a. Then each item is treated individually,
with policies being computed by some existing method. We will show
that using our model, which in effect varies the individual item service-
levels while still maintaining an overall service-level of a (via our
service-level constraint), total expected costs can be significantly
reduced for many multi-item inventory systems. This is the first issue
with which we deal.

The second issue involves aggregating very large inventory systems
in such a way that a representative fraction of them can be used to

determine the policies for all of them, which we discuss next.
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3. MULTI-ITEM INVENTORY SYSTEM AGGREGATION

Many real-world inventory systems contain thousands of items.
It would be cost prohibitive to try to include every one of them in
any model which is to be used to set inventory policies. Inventory
aégregation is any method of partitioning such a system into blocks,
each of which will be dealt with essentially the same. For example,
a representative item could be chosen from each block to determine
the policy that will be used for all items in the block. Thus the
problem is reduced to more manageable proportions. The question is,
of course, how to aggregate so that the resulting policies are as
close as possible (in a total expected cost sense) to policies that
would have been produced had every item in the inventory system been
included in the model.

Very little is known about this problem (see Bitran and Hax [1982],
which deals with a finite horizon, deterministic demand inventory system).
However, extensive empirical investigations of many real-world inventory
systems have suggested some remarkable similarities in the overall dis-
tribution of items in inventory systems. These results are discussed in
Brown [1959], [1963], [1967] and [1977], and Peterson and Silver [1979,
pp. 30-37, 71-80]. Ve summarize the observations in Peterson and Silver.

The annual dollar demand of an item is defined to be its annual
expected demand times its value per unit. Of course, the "value" of
an item may be difficult to determine exactly, but can often be taken
to be its ordering or holding cost. Typically, five to ten percent of
the items in an inventory system account for about fifty percent of

the total annual dollar demand of the entire inventory.



These items tend to be very important, and are denoted Type A
items. On the other hand, typically about thirty to fifty percent
of the items account for only five to ten percent of the total
annual dollar demand. These are the relatively unimportant items,
and are denoted Type C items. The rest of the items in the inventory
system, the moderately important ones, are denoted Type B items.

1f the items in such an inventory system are ordered in descend-
ing order by their annual dollar demand, and then the cumulative
percent of the items is plotted against the corresponding cumulative
percent of annual dollar demand, the graph would look something like
Exhibit 1. Notice also that about twenty percent of the items account
for about eighty percent of the total annual dollar demand. This also

is typical for many real-world inventory systems.

50

Cumulative Percent of Annual Dollar Demand

v

"y
Type A Type B Type C
Cumulative Percent of Items

Exhibit 1

16
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Empirical observations have shown that this graph can very often
be well-approximated by a tognormal cumulative distribution function.

We address the second issue of this paper, large-scale inventory
aggregation, by showing that sampling techniques which stratify on the
item types and which maintain the structure illustrated in Figure 1 can
be used to accurately predict the (s,S) policies for all the items in
the inventory system. We exploit the special structure of our inventory
problem by using the sample to estimate the Lagrange constraint multi-

plier of the inventory problem, from which we compute all (s,S) policies.



I1. THE GENERALIZED KNAPSACK DUALITY {GKD) ALGORITHM

1. INTRODUCTION

We consider a multi-item inventory system and study the problem
of specifying both system-wide and individual service objectives.

Most theoretical models considered in the literature assume that hold-
ing or shortage costs are applied to any excess inventory or unsatisfied
demand, respectively. A major difficulty in applying such models in
practice is the specification of shortage costs. Freguently, the
manager sets shortage cost parameters based on an objective of satis-
fying demand with at least some minimum probability. Such an approach
may be preferred because subjective factors can more easily be expressed
as a probability of satisfying demand than as a cost for each shortage
incurred.

A significant shortcoming of this approach is that it usually
entails the setting of a probability of demand satisfaction that is
applied uniformly to all items in the system. In this paper we raise
the issue of specifying different service objectives for individual
items while still satisfying some given system-wide objective. The
value of this approach is that total system costs can be reduced below
those of the method that requires identical service for all items.

We are interested in the following multi-item inventory system.
For each item i there is a set-up ordering cost Ki’ a unit ordering
cost Ci» and a fixed leadtime k_i between placement and delivery of
orders. These costs are assessed upon order delivery. There is a unit

holding cost hi assessed at the end of each period, and the demand
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realized for for item i in any period has absolutely continuous cumula-
tive distribution function (cdf) -2 density ¢,, mean y,, and finite
standard deviation o,. A1l demands for all ftems in all periods are
mutually independent. There are N items, and the criterion of
optimality is the minimum expected undiscounted cost per period over
an infinite horizon. We do not include shortage costs to penalize
back-orders. Rather we introduce the following service-level constraint
to be satisfied in every period:

N

}E:L%[frequency of periods item i is not backordered] = «,
i=1

N
where O<gl<l, N],....NN>O and ;Z;Ni=1.

For such an inventory model, an (s,S) policy requires that whenever
the inventory position (inventory on hand plus on order) drops below
s, an order is placed bringing the inventory position up to S. An
(s,5) policy is called stationary if it is applied in every period. We
only consider stationary (s,S) policies because when shortage costs are
included in the model, there is an optimal policy which is stationary
and (s,S) (Iglehart [1963]). Any stationary (s,S) policy for our model
gives rise to a unique and well-defined specification of shortage costs.
If we denote by Pi(si’si) the frequency of periods that item i is not

backordered when following the policy (Si’si)’ then, when ¢i is contin-

uous,

P.
Pi(si'si) 3 (1)
Pith;

where P; is the shortage cost under which the policy (Si'si) is optimal
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(veinott and Wagner [1965]). We can solve this equation for P; and thus

determine the shortage costs associated with any stationary (s,S) policy.

For our model a feasible policy is a set {(s,S)} , where
s=(s],....sN) and S=(S],...,SN). For item i we follow the policy
(Si'si) in every period. We define D; by D;=S;-sj, and denote by @, *
the (ki+1)-f01d.convo1ution of 2, with itself, and by ¢i* its density.
Also let i and g.* be the mean and standard deviation of a random
variable with cdf g,*. In Mitchell [1982] we considered this problem
when K1=O for all items i, and developed a computationally efficient
algorithm for the case when all ki=0 and all demands are exponentially

distributed. We extend those results in this paper, dropping all three

of these restrictions.

Section 2 describes the formulation of our inventory problem as
a non linear program. Using the Kuhn-Tucker conditions, we prove
necessary and sufficient conditions for (possibly local) optimality.
The main results are found in Theorems 1, 2, 6, 7 and 8 (the reader
may choose to skip the proofs of these results). There is at the end
of this chapter a list of the notation, a summary of frequently used
relations, and a summary of the theorems and lemmas.

Section 3 is a description of the algorithm. It is based on
Tocal duality theory of nonlinear programming, and the proof of con-
vergence uses results from Section 2. Section 4 reports a numerical
investigation. In Section 5 we discuss our recommendations when the
sufficient conditions may not hold for some items in the inventory

system. Finally, Section 6 contains some conclusions.
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2. ANALYSIS
1f we denote by Ci(Si,Di) the expected average undiscounted cost
per period over an infinite horizon, and by Pi(si'Di) the frequency of
periods that item i is not backordered, we have the following result.
Theorem 1. For SiZDi’

7Y

D.
(i) ci(si’Di) = h'l //( -y=X) x)m( Ydxdy
]+M o

S.

+J/?Si-x)¢i*(x)dx + K

-0

D.
x . ] Jups "
(i1) Pi(s'i’Di) = m‘; ’f mj (Si'Y)mi(Y)dy +§i (S'l) zo

where Mi is the renewal function of I% and mi=M{.

Proof. See Roberts [1962], Greenberg [1964] and Ehrhardt [1981] DO.

For two reasons we restrict attention to (Si’si) policies with
5520 (equivalently, SiZDi)' First, the expressions given in Theorem 1
do not hold when si<0. One must replace with (O,Si) the limits of
integration in the first integral of Ci and the limits of integration
in Pi' Second, many managers consider policies with Si<0 to be unsat-
isfactory for practical implementation.

Thus we want to solve the following constrained nonlinear program

(NLP) to obtain an optimal policy for our inventory system:
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N
mjnimize C(S,D) =§;C1(51'Di)
‘:
N
subject to P(S,D) = Z W, [Pi(Si.Di)-a]20
i=1
52D, i=1,...N
N
where Ocacl, Wy,...,Wy>0 and ;Niﬂ.
1:

There are three serious difficulties in finding a solution. First,
the renewal function Mi generally does not have a closed-form expression,
and usually is complicated when it does. Second, the functional depend-
ence of Ci and Pi on the variable Di is complicated, as is easily seen
if one works out the partial derivatives. Third, the behavior of the

functions depends heavily on the demand distributions I%.

We deal with the first difficulty by using asymptotic approximations

for the renewal functions. In particular, Smith [1954] has shown

2
M()=i+ A Y
i) =4 o277 o(1) as y-e, (2)
i
We use the following approximations.
2
D. o}
. ]
M.(D.) 2 =Y+ —1 . 2.
it U, 2 2
i Zui
] s

it

=Py (3)
14, (D) D+(ptoi/u)ie

We approximate mi(y)=Mi'(Y) by a constant function, since Mi(y)

is asymptotically affine. One could differentiate (2) and approxi-
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mate mi(Y) by %; but we use the somewhat better approximation discussed

in Ehrhardt [1981], namely,

]'Pi
mi(Y) = 6;6;’ ye(si.Si). (4)

(This approximation approaches % as Di*w).

For the complicated functional dependence on Di’ we approximate
Di by a constant, and regard Ci and Pi as functions only of Si.
Roberts [1962] proves that in the single-item case where a shortage
cost p is specified, the optimal value D* of D is given by

D*= Qﬁg + constant + o(1)
as Koo, p+o such that g‘remains constant.

Since D* is asymptotically independent of the shortage cost

p, and hence by (1) of the service-level a, it would seem reasonable

to approximate D* by the constant géﬁ, the so called "economic order
quantity."

An extensive empirical comparison of approximately optimal
inventory policies by Wagner, et al [1965]), showed this to be a

remarkably qood approximation, even for K and p fairly small,

although it seems to give better results when‘l—z-h-'sE 2 1.54. Moreover,

the total expected cost is typically quite flat near D*, soif S* is
well-approximated, the approximation for D* does not need to be

especially accurate to have a total cost close to the cost associated

with the optimal policy.
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Actually, we use the Power Approximation discussed in Mosier
[1981] for the optimal D. He reports empirical investigations that
indicate that this approximation is superior to the economic order
quantity. As in the case of the economic order quantity, this approx-
imation tends to be poor when it is smaller than 1.5u. For the
derivation of our algorithm, we assume Di is at least M and thus

use the approximation

K.\ .506 a.*\ 2] .116
_ .494 1 1 . 5
Di = max{ M, 1.3ui (_hi) 1 +(P—i ) (5)

K.
We note that asymptotically (as E% + ) this approximation differs
i

very little from the economic order quantity.

To deal with the third difficulty, we intended to assume that
the demand distribution in Normal, since Wagner, et al [1965], Wagner
{1975, ch. 19], MacCormick [1974], Estey and Kauffman [1975], MacCormick
et al [1977], and MacCormick [1977] all suggest that a Normal distribution
gives good approximations to the optimal policies even when the true
distribution is skewed (By a good approximation we mean that the
expected total cost of the approximation policy is nearly the same as
for an optimal policy). But because the Normal cdf cannot be expressed
in a closed form, we use a logistic distribution to approximate the Normal
distribution. It is an especially simple and accurate approximation to

the Normal distribution, as discussed in Johnson and Kotz [1970, ch. 22].
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They show that if ¢* is the cdf of a Normal random

variable with mean u* and standard deviation o*, then

* 2 !
AU £ e e B (6}
where
= 15«
16V30%

This is the standard Llogistic distribution with parameters 0 and %-

We introduce the chanae of variables

e] = e-Y’i(Si-ui*) .
where (7)
| Eaaany |
'oe 3o.*
J

and reformulate the NLP using the approximations discussed. The
result is given in Theorem 2 and (17). Since the trénsformation

B = (91""’6N)
is one-to-one, infinitely differentiable,and invertible everywhere,
the problem as formulated in 6 is equivalent to the problem as
formulated in S. We note that ei>0 for any finite Si' It is clear
from the formulation of the problem that the optimal S is finite,
and so the optimal 6 is positive. Thus we do not need to add the

constraint eieo.

Theorem 2. If the approximations (2) through (6) and the change of
. variables (7) are used in the expressions for ci(si'Di) and Pi(si'Di)’
and 1f we denote by Ci(ei) and Pi(ei) the resulting approximations

(without policy-independent terms and afunction in Ci that is o (1) as
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Si*m), we have

oL
Yy

N s N0l e S 91

Y.:D.
where Gi =e ' 1V,

Proof. We suppress the subscript i.

(i) If the approximations (2) through (5) are used in the expression

for €(S,D), and C(S) denotes the resulting approximation without policy-
independent terms, then we have

D S-y

[hff (S-y-x <t>*(x)—— dxdy + h,[ (5-x)a*( x)dx]

- (policy-independent terms).

Now
D S-y

-o/'-c[ S-y-x)¢o*(x)dxdy
J/(S-y-x)¢*(x)dxdy ff(Sy x)¢*(x)dxdy, (8)

0 Sy

provided these integrals exist.

We show that they exist by evaluating them. First,

[ D o D
/Df(S-y-x)b*(x)dxdy =/(S-y)/b*(x)dx dy ://x&* x)dx |dy
0 - 0 T 0

n
A
«<
o
o
<
(]
cﬁT;_‘
*
(oW
<

H
o
w

[}

o
A
o

»

+

N O
e
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To evaluate the other integral in (8) we define

o

e(s) = - f(s-y-x>¢*(x>dxdy
0 Sy

=fJ(X*y—S)¢*(X)dxdy-
-y

(o]

It is straightforward to verify that on the domain of integration

0 < (x+y-S)e*(x) < x¢*(x).

Since u* « » and D < «, we have

fﬁx*{’*(x)ldxdy < ®,
0 -x

and so the Dominated Convergence Theorem (Hoffman [1975,p. 331])

justifies taking the derivative of ¢ under the integral. This gives

D =

:ff¢*(x)dxdy

0S5y

= -/)[1-5*(S-y)]dy

0
> -Doipyaéb{] -E*(S-y)}.

e'(S)

= -D [1-3*(5-D)].
Obviously €'(S)<0, so

0> lm e'(S) 2 lm {-0[1-T*(S-D)]} = 0O,

which implies lim £'(S) = 0. Thus we have €(S) = a+o{1) as S + «, for
some constant a.
By assumption we do not include the o(1) function in the approximate

cost function, and so we have that



C(S) = h(1-p)s+hpf (S-x)¢*(x)dx, (9)

-0

where we have dropped all policy-independent terms. Using the

approximation (6), we have that

X - ( )
*
. _ [ (s-x)ye YIXH
f(S x)¢*(x)dx /[]+e_Y(x_u*)]2 dx.
After the change of variables x=e'Y("‘“*), this
becomes A
1
(S-u*) + =logX
/ Jz dx, (10)
g (1+X)
where 8 is given by (7). Then
dX ]
= (11)
B/(HX)Z L
and
(:"i’)‘zdp 928 4 1ogs - Tog(1+6), (12)
+

and so (7), (9), (10), (11), (12) and the definition of C(8) give
h(1-p) (u* - 1—1099)
- Q?»]og + 2?-109(1+0)

c(s)

- (policy-independent terms)

ho _h
. log(1+0) ] log®

e
- B 10g [m_eg)_]

(ii) If the approximations (2) through (5) are used in the expression

for P(S,D), and P(S) denotes the resulting approximation, then we have

28
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P(S) 3[ (S-y) ‘—edy+r(5)

- _igl_/f *(S-y)dy + pm*(S). (13)
0

Using approximation (6) we have

D D
dy
* e d =
/ (S-y) Yy ,/‘]-e'Y(S'y'P*)
0 0

Making the change of variables Y = e'Y(S'y'”*), this becomes

: -y(s-u*) »

v ay1te

-y (S-u*)
Then
ay
-/1+ T =Y - Tog(1+e'), (15)
e 3

so (7), (13), (14), (15) and the definition of P(6) give

<10

+ 0
= (1-p) [] AR log (T——1 62)] + T;e-[].
Let
=v; (D -u:*)
e.u = e 1 1 1 A (]6)

SO SiZDi is equivalent to eiseiu' Then we have formulated the
following NLP, the solution to which gives an approximately optimal
policy for our multi-item inventory system via the change of vari-

ables (7):

29
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N
minimize C(6 :E: C
i=1

N
subject to P(g) Z W;[P,(6)-0a] 2 (17)
i=]
u .
eisei »i=l,...,N.

We use nonlinear programming techniques to solve (17). Specific-

ally, we derive first-order necessary conditions for optimality using
the familiar Kuhn-Tucker conditions. Although the objective function
is convex, the feasible region in general is not. Therefore the
necessary conditions may not be sufficient to gquarantee even local opti-
mality (Luenberger [1973, Sections 6.4, 10.6]). We show that for Di
sufficiently large, however, the Kuhn-Tucker conditions are sufficient
for (at least) local optimality. We also describe a computationally
efficient algorithm for finding an optimal policy when it exists, and
compare the performance of these policies with policies generated by an
existing method.

The following formulas are needed.

Lemma 3. For i=1,...,N,

h. ]+(]'p.l)e.i

(a) C.'(e,) = -
U Y] (eey)e
h. (1-9-)9-2 +26, + 1
(b) C."(0:) = —- i i
VY (l+e.)?e.2
1 1
(c) P (8,) = - [Dj05v; + (1-0)6;-1)] + [D,0,v,6, + (1- -0,)(6,-1) %,

2
ylni(uei) (1+6‘.e1.)
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Proof (a) Differentiating ci(ei) and suppressing i gives,
ey =hle _1
c'(e) = J [1+e 3 e]
- _hl1+(1-0)®
Y1 (1+e)e | .

(b) Differentiating (18) gives

ey =h[ e 3
i) = 82]

(18)

_h [(-0)%2041
Y (146)%°

(c) Differentiating Pi(ei)and supressing i gives,

O-e) |1 8
YD [1+e 3 1+68] ) (126)2 (19)

P'(e)

_ (1-9)(1-8) o
yD(1+0) (1+88) (1+e)2'

 (1-p)(8-1)(1+8) + Dey(1+6)
¥D(1+8)%(1+8)

. _[Dey + (1-0)(8-1)] + [Deys + (1-9)(8-1)]e 0
vD(1+8)2(1+68) '

Theorem 4. Suppose

P(e“) > 0. (20)

Then o*=@" is globally optimal for (17).
Proof. It is straightforward to verify (since e, is decreasing as a
function of Di) that (making use of (5))
e 2

DiZ“i implies 0 < e;< 3 - (21)

This with Lemma 3(a) implies that
' u
C; (ei) < 0 whenever 6, =06, , (22)
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and so C(®) is decreasing in each argument for gisei“. But by
hypothesis @=6" is feasible, so 8=6" is a global minimum of (17) @.

In order to investigate the case when P(Gu)<0, we make use of
the Kuhn-Tucker necessary and sufficient conditions for optimality.
To use these, however, one must verify that some constraint qualifi-
cation holds at the optimal point. We show that if P(e“)<0, then every
feasible point is a regular point, that is, the gradients of the active
constraints at the point are linearly-independent. Luenberger [1973,
223-227] shows that this constraint qualification is sufficient to
guarantee that if the Kuhn-Tucker necessary and sufficient conditions
hold at a point,then that point is an (at least local) optimum.
Lemma 5. If P(8")<0, then any 8 feasible for (17) is a regular point
of (17), that is, the gradients (at 8) of the constraints active at ©
are all linearly-independent.
Proof. Let @ be feasible for (17). Without loss of generality, suppose
that of the constraints eisei“, i=1,...,N, the first j are active and
the last N-j are inactive. Since by assumption e=6Y is not feasible, we
have N-j=1. Let T denote the matrix which has as its columns the grad-
ients (at @) of the constraints active at 6. If the constraint P(e)=0

is inactive, then

which certainly has linearly-independent columns. If the constraint

P(8)20 is active, then
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J 1
p— : '1
; 1. Oiw”(e1)
1= 0 i 22
N-3 ] .
0--.0 ! .
| Py (o)

Certainly the first j columns of T are linearly-independent. 1If the
last column were a linear combination of the first j, then (since

N-j=1) NNPN‘(eN)=O. Now it is straightforward to verify that

Dizo implies 6i>]’ (23)
so this with Lemna 3(c) and (21) implies that PN'(eN)>O.
And since W, > 0, we have a contradiction, and so the

N
columns of T are linearly-independent, which implies that 6 is a

regular point of (17) 0.

Theorem 6. Suppose P(eu)<0 and for i=1,...,N, let

I>
i
>
fn)
A
"

i = Ay(Dy U

i i 40 D;h;[2+8;-0,]
E; = E;(Dy) = D,h.[6,+(1-0,)(8,+1)]
= D3h;01-0,)8;

)
6i = G;(D;) = W;[Dseqv; + (1-¢;)(8;-1)]
)

x
n
loe]
—
j
A
H

Hi = Hi(D;) = W;[Diepv;&; + (1-¢)(8,-1)]
2.3
' (8,) = _Fi+8i°i+Eiei +Fi°i
Usy 6.0, +H.0.°
;0+H,0;

Then the first-order Kuhn-Tucker necessary condition that e* be a

minimum of (17) is the following:
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There exists a real number A*20 such that

u
* * *

2 (6,%)

(b)  P(6*)

v

2* when ei*=eiu

0.

Proof. As proved in Luenberger [1973, pp.232-234], given the
constraint qualification guaranteed in Lemma 5, a first-order
necessary condition for 6* to be a minimum of (17) is that e* be
feasible for (17), and that there exists Ax*20 and

3* = (C]*,---,:N*) > 0 such that

VL(B*,A*,3*) = 9C(e*) -2*9P(8*) - ¢*1 = 0
\*P(6*) = 0 (25)
+T(e*-0") = 0,
where 1 is the NxN identity matrix, and a superscript T denotes

transpose.

By assumption P(6") <0, and clearly

N
P(O) = E W, (1-a) > 03 (26)
i= ‘

since it cannot cost less to give a higher service-level, we can
assume that at optimality P(6*; = 0. Now Lemma 3(c), (21) and (23)
imply that for all i,

Pi‘(ei)\o whenever eisei”, (27)
and so by (22) we have that (25) is equivalent to the following

condition:

There exists A*20 such that for all i,
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C;'(0,%) . . o
(a) W;ﬁ;TTE;;T = A* when Gi < 6,i
' p (28)
Ci (ei*) u

v

* * =
2*  when ei 61

wiPi'QGi*i
(b) P(e*) = 0.

y
We note that gi* = ci'(ei*) - A*Pi'(ei*), for each i. To complete the

proof, we need only to show

C;'(8;%)

SR G
We suppress the subscript i. By Lemma 3(a) and (c),
| 2
c'(8) _ (. n\[1+(1-p)e],_ (140)°(1+86)
wr(e) - ( y)[ﬁle‘% ]( YD) [ G+ '

After factoring (1+€) out of the numerator and denominator, the

numerator becomes Dh[1+(l-p)e][1+(6+1)9+692], which, when multiplied
2. cn3 2

out, is A+BO+E@ +F@”, and the denominator is GB+HB~ . Thus we have
c.'(e.)
1 1 =>\(e)
wiPi'(eii vty (29)

as was to be shown [.

Although the first-order Kuhn-Tucker condition is necessary for
(at least local) optimality, in general it is not sufficient. In
Theorem 7 we give a condition sufficient to guarantee that the Hessian
of the Lagrangian of (17) is positive-definite, a strong second-order
sufficient condition (see Luenberger [1973, p.235]). In Theorem 8
we give conditions in terms of Di which guarantee that the hypotheses

of Theorem 7 are satisfied.

Theorem 7. Suppose P(8Y)<0 and that there exists A*>0 so that the

necessary conditions (24) hold at e*. If also Ai(ei) is decreasing
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for eiseiu, then the Hessian matrix veaL(e*,x*,c*) is positive-
definite, which implies that (24) is sufficient for (at least local)

optimality.

Proof. We first note that Lemma 3(b) and (21) imply that

c."(6,) > 0. (30)
We have
Tl (0*2*,2%) = ¥2C(0%) - A*u%P(e%)
Cy"(85%) - A*H, Py "(8;%) 0
0 Cy(ey*) - AP (o) |.

Let Qi denote the ith diagonal entry of vgeL. We show that Qi>0
for each i, as this implies that vaeL is positive-definite. If

Pi"(ei*)so, {30) implies Q;>0, since A*, W0, If Pi"(ei*)>0- (24)

implies Q;2C;"(8:*) - [x;(@;*)] W,P."(6;*), which by (29) is

Ci'(ey*)
0 2 C;"(65) - pare ey Pit(eyt)
or |
0 2 Pi (871G (85%) - €4 (8,*)Py"(85%)

' *
P.'(85%)
By (27) the denominator is negative, so we can conclude the proof

by showing that the numerator is negative. From (29) we have

Pi(0,%)C;"(8;%) - C;"(0,%)P, " (0,*)

Xi'(g,%) = — ! :
i 0,7, " (0, )17 1)

By hypothesis 0>Ai’(oi*), so the numerator of (31) is negative.

Since wi>o, we have Qi>0, as was to -be shown.
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Luenberger [1973, p.235] proves that given the constraint quali-
fications guaranteed in Lemma 5, the first-order necessary conditions
(28) are sufficient for (at least local) optimality provided
VeeL(e*,A*,g*) is positive-definite on the subspace tangent to the
constraints tight at 6*. We have shown that V%GL(G*,A*,Q*) is positive-
definite, which concludes the proof. We note that to prove this
theorem for more general functions Ci and Pi it is sufficient that Ci

be convex, and Pi and xi be decreasing 3.

) s

Theorem 8. For i=1,...,N, if D; is sufficiently large, then Ai(e1

convex and decreasing when eiseiu.

Proof. As usual we suppress i. We write A(®) in partial fraction form

making differentiation easier. We then show that for D large, the

coefficients of x(@) are such that 1'(8)<0 for e<eY, By long

division,
(BHZ—G(EH-FG)>9 -
7
_F@ . EH-FG H
Me) = g+ 0 5(G+HB)

X8+A  _ A XG-AH
For any X, o(Gie) - o + )

and so
Me) = T EEIEL R, 0 (32)
H GHE (G+H2)
Wree n = GBHZ- GZ(EH-FG) -AHS .

By (21) and (23) we have
A, B, E, F, G, H> 0, (33)
so certainly A(6)>0 whenever 8>0 (the change of variables (7) is

such that 8->0). Differentiating (32) gives
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2 (@) =k - —5-) - -2
(“ 6%/  GH(G+HO)

and

2"(@) = + 2n
G(G+HO

20

We first show that 1"(@) > 0 for D sufficiently large by showing
n > 0 for D sufficiently large (since (33) implies all other quantities
are positive). We use the following notation.

= eoqa fix)
f(x) ~g(x) if llp\: g—gv

To examine the behavior of n for large D, we examine the behavior

1.

of A, B, E, F, G and H for large D. The following are easily inferred

from their definitions:

42

bl ¢
’lDi\[ge 0 (34)
%im Do = .

o
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They imply
A ~ Dh
B ~ Dhé
E ~ 2Dh&
(35)
F ~ Dh§
G~ WS

H~ Whyt1)8 ,
and so n ~ (NS)(DhS)H (pr+
- (on) (P (py+1)787).

1252 - W262[(20h5) (W(ay+1)8) - (DhS) (H8)]

The limiting behavior of n is determined by its highest order term,
which is 064, S0
n ~ [hpy+1)2-203hey+1) + wh) D6’
= whipy) s’
4

Since w3h(w)2 >0, (34) implies lim w3h(yy)2[)5 = o, 50 1imn = & also.
Do

. D
Thus, for D sufficiently large, n > 0, and so \"(8) > 0, as was to be
shown. Hence 2(@) is convex. To show that x'(e) < 0 for @ « Y,

it is sufficient to show X'(8 ) < 0. We have

)~'(8u) = e 2 s
> GH(G+He")
F A
where £E == - .
H G(eu)Z

Since for n>0 large D, we need only show that <0 for large D to

conclude 1'(c) < 0 for 8 < 6. Relations (35) imply that

. Dhé _  _ Dh
(T A
N6~—1T——

8
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_ bh 1 8
B )

Relations (34) imply the quantity in parentheses tends to -~ as D=, and so

Vimg = im L 8 ).
i .
Do Do M T AN

Thus, & < 0 for D sufficiently large, and so the proof is complete [,
Thus, Theorems 7 and 8 imply that if Di is large enough that A

is decreasing, then the first-order conditions (24) are sufficient

for (at least local) optimality. We exploit this in our algorithm,

which is described in the next section.

3. GKD ALGORITHM

Our algorithm is based upon local duality theory of nonlinear
programming (see Luenberger [1973, pp.312-320]). Suppose x* is a local
minimum (at which the constraint qualification described in Lemma 5

holds) of the nonlinear program

minimize f(x)

(36)
subject to g(x)=0,
with associated Kuhn-Tucker constraint multiplier A*. Writing the
Lagrangian L(x,») = f(x)-ag(x), the NLP dual to (36) is defined as
maximize y(k),
A
where (37)

/

¢(A) = minimum L (x,A).
X near x*

(We mention that (36) and (37) can be written, respectively, as

min max L(x,X) and max min L(x,A), which illustrates their dual nature).
X A A X
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If L(x, *) is twice continuously-differentiable and convex at

x* (and hence convex in a neighborhood of x*), then the following can
be shown to be true:

(1) y(x) is twice continuously-differentiable and convex at i*.

(2) »* uniquely solves (37).

(3) If we denote by x(1) the (unique) value of x minimizing the right-

hand side of y(X) in (37), then x*=x()*).

Thus rather than solving (36) one could solve (37), and do this by

solving

g(x(x))=0. (38)
Generally this approach is not useful computationally because the
function x()) is often difficult to compute. This method may be quite
efficient, however, if x(A) is reasonably easy to compute and the dimensicn
of X is smaller than that of x. One problem with such structure is the

"Generalized Knapsack Problem," which is

N
minimize T(x) = _z%fi(xi)
'l:
L (39)
N
subject to g(x) =i2% gi(xi) =0,
J

Clearly (17) is a Generalized Knapsack Problem with upper-bounded variables.
These bounds do not change the essential structure of the problem or its
solution by solving its dual, and the details are left to Theorem 9.

For (39), x()) is found by solving the system of equations

VXL(X,A)=00
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where

For convenience, we assume that the items are reordered, if necessary,

so that

Mooz Ao Zi.> N (41)

Theorem 9. If either P(eY) » 0 or all Di are sufficiently large so that
the hypotheses of Theorem 8 hold, then the following algorithm
is well-defined and crnverges to a (possibly local) minimum of (17).

GKD Algorithm.

(1) 1f p(e") -~ o set i=N, and go to step (6). Otherwise set i=0.
L_,L ,_ L L
(2) Set r = e (= max{xi+],...,xN },by (41)).

(3)  Define the function P, on 3L, +) by

e
(4) If

u u
P(© 0, .....8,

Oly <o, go to step (5).

,tM(A),...,t (x)).

I N
P

Otherwise set i=i+1, go to step (2).

(5)  Solve P.(2) = 0 for aelib, ).

o aLl - X
(6) SEt eJ ej J ],...’1
tj(x*) j=.i+1,.c.’N 'Y
1
=y y.* - ¥
* - Sl = ..
sj SJ DJ

Proof. Steps (1) and (2) are certainly well-defined. By definition of
AL, x» 2L §s in the domain of ti+](x),..., gq(x), so these are all well-
defined. Hence so is P(}), and so step (3) ué well-defined. Step (4) is
well-defined, except for the possibility that i may become larger than N.
But if i=N, then we have P(® ] ,e ..,eNu) > 0, which is equivalent

to P(8") > 0. But step (1) guarantees P(6%) <0, s0 i will never exceed N.
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Step (5) requires justification. We show that Pi'(x)>0 on [AL,+m)

and 61(+m)>o. These with step (4) imply that there is a unique solution

in [AL,+w) to Pi(A)=0. We have

SO

P(A) = p(a'lu’-~-9e'u9 t.i_ﬂ()\)s---vtN (A))y

1

P.'(x) = W.P.'(6.) t.'(X), where 6, = t.(}),

L JJ 3l J J

Jj=i+l

by the chain rule. Relation (27) implies that Pj'(ej)<0, and clearly

J
If i=0, then

t;'(2)<0, so indeed P.'(x)>0. Stage i is the first time that Pi(xL)SO.

= P(0,..., 0) > 0,

by (26). And if i 21, then P, . (a") 5 0, so

Ly _ u u
O < pi—](> ) - P(e-l ’.."ei-]’ti’..',tN)
_ u u
= P(G] ,...,e_i ,ti+~l,...,tN)g
since at stage i-1, AL=AiL, and t(xiL) = eiu.
u u
Hence, 0 < P(el ""’9i ’ti+]""’tN)'

We have

By (27) P is decreasing in each argument, so Pi(m) > Pi_](k

was to be shown.

P.(«) = P(0y"he e85 sty g (=) oty ()

_ u u
= p(O] ,...,e_i ,0,--.,0)-
L) ~ 0, as

Step (6) and (7) are well-defined, so the entire algorithm is veri-

fied. If P(6")20 at step (1), then by Theorem 4, g*=gY is globally

optimal for (17)

J

If P(eu)<0 at step (1), the fact that the functions

Aj and t. are inverses with the fact that A5L=Aj(eju) imply that the



algorithm terminates with 0<8*<g” and A*x0 satisfying

"
>

(a) 2j(85%)

A5(85%)

A* o, J=idl, L L0N

(b) P(e*) = 0.

But (41) implies xj(ej*) > kL for j=1,...,1, and certainly AF 2 A%,

Moreover, since Pj*=9ju, for j=1,...,N, 6* satisfies (24). By Theorems
6, 7 and 8, these equations imply the local optimality of 6* for (17).
Recall that we reformulated the multi-item inventory problem using
the one-to-one change of variables given by (7). Our GKD Algorithm
finds an optimal &* for (17), and this gives rise to an optimal S*

via the inverse of the change of variables (17), which is
1096i’

i Y;
as given in step (6) 0.

The algorithm is computationally efficient in that it only requires
solving Si(x)=o where Ei(k) is a real-valued function of one real
variable. The computation of the functions tj(x) must, however, be
done numerically (the details are iﬁ the Appendix to this chapter).
Moreover, the hypotheses of Theorem 8 are easy to verify and guarantee

that the algorithm is well-defined and converges to a minimum of (17).
The proof of Theorem 8 shows that is sufficient to check that
Ai'(ei“) < 0 for each i. The extension of the algorithm when

xi'(ai“) > 0 is discussed in Section 5.
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In order to illustrate the performance of the (s,S) policies

generated by our algorithm, we performed the following test.

fifteen 2-item inventory systems with the parameter settings

Ky = Ky = 32
ky = ky = 0
h,

hy = .05, == = 1, 10, 25, 50, 100
1 Ry
W= 3 w2 _1,1,3
L
_o_]=0_2:9
H %

- =1
Wy =W, =5

We chose these parameter settings for three reasons

We examined

1. Most of them give rise to large D (much larger than 1.5u).

Since our approximations and theorems generally hold for large

D, it should perform well on these systems.

2. These parameters are realistic, in that they reflect costs

associated with many actual inventory systems.

3. As in Mitchell [1982], our algorithm should perform effectively

when there are both "expensive" and “inexpensive" items

in the system. This holds for those systems we considered

ge
with o large.
1

The comparison we used assumes the underlying distribution

is Megative Binomial (the discrete version of a Gamma distribution,

which is skewed for our parameter settings), specifies a service-

level o, and uses the Veinott-Magner exact algorithm (Veinott
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and Wagner [1965]) to compute optimal policies for both items in each

system using the same service-level a. We ran our algorithm using

.

Then we compared the holding plus set-up costs generated by the

Veinott-Wagner algorithm and our algorithm. The results are displayed

in Table 1.

1.

We make the following observations.

The service-level a is not the same for all runs, but varies from
.89 to .97. The average service-level for the fifteen runs is .93.
There are two reasons for this. First, for some of these items,
the policy with the smallest service-level, (0,D), has a very
high service-level, so that the system-wide service-level is high.
For other items, the smallest service-level is small. It turns
out that to specify a uniform service-level is to specify a=.97
(since one of the systems has this as the smallest service-level
for both items), which is unreasonably large. The second reason
is that the logistic approximation we use in our algorithm does
not always generate policies with service-level a when the actual
distribution is Negative Binomial. However, preliminary tests

on larger systems (32 items) seem to indicate that this problem

is less severe for larger systems.

Qur approximation for Di is almost exact for every single

item. This suggests that the asymptotic approximations we
are using should be fairly accurate. For all items Di is

sufficiently large to guarantee that the hypotheses of

Theorem 7 are satisfied, so all policies are(possibly Tocal)

minima (not saddle points).
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3. Over half the systems had an item with s < 0 for the policy
generated by the Veinott-Wagner algorithm. Our algorithm
can only consider policies with s > 0, but its policies still
compared very favorably against those generated by the Veinott-
Wagner algorithm.

4. As expected, there was a cost reduction for a]]'systems, except

the ones with identical holding costs. Moreover, the greatest

h

cost decreases were for those systems with L2 large.

M
This initial investigation demonstrates that inventory-operating
costs can be reduced significantly when a system-wide service level is

specified. rather than specifying an identical service-level for each

item.
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hy
100 40 33 31
50 26 23 25
25 9 14 19
10 ] 7 10
] 0 0 0

W —|

Table 1

Percent decrease in holding + set-up costs

Assumptions:

K]=K2=32 s k]=k2=0 . h]= 05
2 2

A .29y 3
S = S5 5 LY g =—!u=
1 ¥ 172 2 1

all demands Negative Binomial.

49
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5. GKD ALGORITHM MODIFICATION WHEN D; IS SMALL
Theorem 8 of Section 2 contains the most general condition under
which we were able to prove (see Theorem 7) that the GKD Algorithm
converges to a (possibly local) minimum of (17). This condition is
that for all items i=1,...,N the functions xi(ei) are decreasing on
(0, 91U)~ We give our recommendations when this condition may not

hold for some items in the inventory system.

Recall from the proof of Theorem 8 that Ai(ei) is convex on (0, eiu)
when ni>0 and is decreasing on (0, eiu) when both ni>0 and £i<0' More-

over, 1im n.== and lim £.=-, so X.(6.) is decreasing on (0, 6.") when
D, i D.oce | vy i

D; is sufficiently large. The GKD Algorithm (given in Theorem 9) exploits
this property by assuming the existence of the inverse function of }i’
which is denotgd by ti'

The question is what to do when Di is not large enough to guarantee
“i’o and gi<0. In either case it is impossible to guarantee that ki is
decreasing, and hence invertible, so step (3) of the GKD Algorithm
may not be well-defined. The algorithm may converge, but there is
no gquarantee that it will converge to a local minimum.

We recommend the following modifications when ni<0 or gi>0. If
gi>0 but ni>0’ then A5 is still convex but not decreasing on (0, eiu).
It is always true (and easy to verify) that A'(0)=-~, so this case is
illustrated in Figure 1.

In this case wve recommend that the domain of Ai(ei) be shortened
to (0, éiu), where aiu is the largest value of 8; for which Ai(ei) is
decreasing. This has the effect of introducing the additional constraint
L

S].zSi , where Siszi. Since the Si are lower bounded anyway by Di‘



this constraint does not change the structure of the problem at all.
In particular, the GKD Algorithm will still converge to a (possibly

local) minimum.

-

Figure 1

~

Computationaily, eiu

can be found by increasing the given lower
bound Di on Si'a unit at a time until gi“ is found. This procedure is
described in detail at the end of this section, and computational
experience on typical 32-item inventory systems is reported in the
next chapter.

Although we have in this case a recommendation that still assures
that the GKD Algorithm will converge, the case when ”i<0 poses greater
difficulty. The Ai may not be convex, in which case we have been
unable to find a modification of the problem that guarantees convergence
to a local minimum. We essentially ignore this case and use the algor-
ithm as it is (making the recommended modification when gi>0){ Our
computational exnerience reported in thé next chapter seems to indicate
that this is not a problem in many cases. Since n, is easy to compute

prior to using the GKD Algorithm, we recommend doing so in order to be

51



alerted to possible problems when ni<0'

In Yight of all this, the only recommended change involves the
computation of Giu- The GKD Algorithm is just as given in Theorem 9,
with the following step inserted between steps (1) and (2):

(1.1). For Jj=1,...,N:

set ;"=0; L

(1.1.1). set oY = e %5 (55 %),
If 2 '(aj“)<0. go to step (1.1.2).
Otherwise, set st=st+1.
Go to step (1.1.1).

(1.1.2). Next J.

6. CONCLUSIONS
We have forrulated a constrained NLP to solve an (s,S) inventory
model with a service-level constraint rather than shortage costs.
This model has the advantage that a manager can more easily specify
service objectives than shortage costs. We derived necessary and suffi-
cient conditions for an optimal (s,S) policy. Using asymptotic approxi-
mations (where D=S-s is large) and assuming Logistically distributed

demands, we derived a computationally efficient algorithm to find

approximately optimal (s,S) policies. We showed that for some inventory

systems there is a substantial cost savings when using this algorithm
instead of the Independent and Tdentical Service approach that is often
used in practice. e also gave recommendations to modify our algorithm

when D is not sufficiently large to guarantee its convergence.
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its unit holding cost h). This system is described in Figure 2,
where the items are ordered indecreasing order by hy. Essentially
the first sevén items are high-value items (have a very high annual
dollar demand), and the other twenty-five items are low-valued items.

As a basescase, we specified inventory parameters as follows. For

i=1,...,N,
Ki = 24
21
Ui = 32
k. = 4
1
a.2
.L_: 9
H
and -
“]aU5)U9’---, ‘»4'29 &
VzaU6’U]03---$ U3O =8
Hgatigaliyyoeens Ygy = 4
= 2.

Hgstgotypaeos M3p

Of course, h, is determined by k; from the value (h”)izhi“i'

We are interested primarily in the algorithm performance at a
service-level of 85%, one managers often prefer. Our criterion of
comparison is to assume that the demand distribution is Negative Bincmial
and compare the total expected cost associated with the (s,S) policies
that the GKD ATgorithm produces with the total expected cost of the
policies given by optimally setting all the (s,S) policies so that
every item has a service-level of 85%.. We call this the Identical
Service Approach, and it is an approach often used by managers.

We intended to use the Veinott-Wagner [1965] Algorithm (also Kaufman
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[1976]) to compute the optimal policies, but the amount of computation
required was impractical because the optimal policies often had Si too

large.

Instead we used the Power Approximation of Ehrhardt [1976] and
[1979] to compute approximately optimal policies. HWe chose this
approximation because extensive numerical investigations in Ehrhardt
(19767, and Klincewicz T1976a] and [1976b] showed this to be both
the most accurate and most easily computed approximately optimal
policy available. We use the version of the Power Approximation
given in Mosier [1981] because of the technical improvements made.

The Power Approximation requires the specification of shortage costs
rather than the service-level. Letting o denote the service-level speci-
fied for the inventory system (using the Identica] Service Approach), we

specified the shortage costs P; using the expression (see Ehrhardt [1977, p.8])

Py + 0.0695hi
o= -
Pith;
This expression is an empirical improvement over the well-known

relationship (see Veinott and Wagner [1965])

Because both the GKD Algorithm and the Power Approximation are
approximations, it was impossible to realize the exact service-level
specified. We therefore specified various service-levels, and inter-
polated intermediate service-levels. Since we used the Power

Approximation in the GKD Algorithm to compute the values for D, we
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only compared the expected holding costs for this algorithm and the
Power Approximation, the expected replenishment costs being identical
(Typically the expected replenishment cost accounts for about half of

the total expected cost). The result of this experiment is displayed in
Figure 3. There is a significant decrease in expected holding costs at
and near a service-level of 85%.

In order to investigate the sensitivity of expected holding cost
to the various parameters, we performed four additional experiments
in which we modified one parameter (or parameter group) at a time in
our base-case model. The same experimenta1‘dgsign was used for these
experiments as for the base=-case.

Figure 4 describes the result when the means were changed to

U]'sla'3’---aU3'| =16

hrALY AR 7
As can be seen, there was a very slight degradation in the GKD
Alaorithm performance. The cost savings are still substantial.
Figure 5 describes the result when the base-case was altered so
that

ki=8’ s Sk

Again there was only a slight degradation in cost.
Figure 6 is the base-case with

2
%

— =3, i=1,...,32.
H;

The cost degradation is greater than in previous experiments, but the

cost savings remains substantial.
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Figure 7 describes the change

UI-UZ,-.-QU]6 = ]6

t

U]7$UI8’---’U32 = 8,
The cost savings are still substantial, but not as great as in previous

experiments.

As a final experiment, we did a worst-cese type experiment, in

which all of the following changes were made:

Bpocoolg © 16

Bi72---oH3p = 8.

This experiment is described in Figure 8. The degradation is substan-
tial, but the cost savings are still large. The behavior of the GKD
Algorithm po]icies for service-levels larger than about 87%, where
the total cost is greater, seem to be caused by the error in approximat-
ing the Negative Binomial demand by a Logistic distribution (Section 2
of the previous chapter). We address this issue at the end of this
chapter.

We make the following general observations concerning the perform-
ance of the GKD Algorithm for these 32-item inventory systems.

1. The total holding cost savings are substantial at and near a service
Tevel of 85%. The algorithm is an improvement over the Identical Service

Approach often used by managers, and sighificant]y reduces the overall



cost of maintaining an inventory system subject to a service-level
constraint.

2. In most cases the policies produced by the GKD Algorithm
degrade sharply around a service-level of 86% or 87%, as is evidenced
by the sudden sharp increase of the holding cost. This suggests that
the GKD Algorithm may not produce substantial cost savings when a
high overall service-level is specified.

3. The GKD Algorithm seems to perform best when there is substan-
tial variation in demands means, when the leadtime is not too large,
and when the variance to mean is not too small. The degradation in
performance is due to the error in approximating a Negative Binomial
demand distribution by a Logistic distribution. This is especially a
problem when there are certain patterns in the demand means and large

leadtimes. This issue is discussed in detail in the next chapter.

3. SINGLE-ITEM SERVICE-LEVELS

For the six experiments described above, we also examined the
single-item service-levels of the policies produced by the GKD Algorithm.
For each inventory system we chose that experiment that had the average
service-level closest to 85% and plotted the items (in decreasing order
of their annual dollar demand, hu) against their optimal service-level.
The results are displayed in Figures 9, 10, 11, 12, 13 and 14. We make
the following observations concerning them.

1. Typically the items in the inventory system are skewed, in
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that the seven high-value items (i=1,...,7) have a service-level
considerably below B5%, and most of the twenty-five low-value items
have a service-level considerably above 85%. 1In some cases there
are 2 few items with service-levels near 85%.

2. There 1is aﬁ obvious negative correlation between the value
hi”i and the service-level for item i. This indjcates that low-value
jtems should be stocked high and high-value items should be stocked
much lower, rather than stocking all items the same.

3. There is an obvious cyclical pattern corresponding to the
cyclical pattern of the means. For the high-value items, the service-
levels are higher for those items with smaller means, and for the low-
value items, the service-levels are lower for those items with the
smaller means. This suggests that it may be possible to well-approxi-
mate the ordering of the items by their service-levels using only hipi

and My -

4. ITEMS WITH Di TOO SMALL
The discussion in Section 5 of the previous chapter indicates
that a sufficient, but not necessary, condition that the GKD Algorithm
converge to a (possibly Yocal) minimum (17) is that €i<0 and ni>0.
These are guaranteed if Di is sufficiently large. If Di is not large
enough to guarantee that £i<0, it is sufficient to in effect add the

additional constraint SizSiL in order to still guarantee that the

algorithm will converge to a local minimum. If ni>0, no
recommendation could be given to guarantee algorithm convergence to

a local minimum. In this chapter we report on those items in the six
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inventory systems examined that violate either £i<0 or ni>0.
Interestingly gnough. there is not a single item in any inventory
system with n,<0, and so the GKD Algorithm converged to a (possibly
local) minimum in every experiment. Each system contained items with
gi>o, however, necessitating adding constraints sizSiL’ as discussed

in the previous chapter. This is reported in Table 2.
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5. CONCLUSIONS

We have found that for inventory systems typical of ones found
in the real-world, there is a significant cost savings when the GKD
‘Algorithm is used rather than the Identical Service Approach often
used by managers. There are two issues that still need to be addressed.
First, the behavior observed in Figure 8 (the identical service
approach performéd better than the GKD Algorithm) needs to be better
understood. This is especially necessary in order that practical
recommendations may be given as to what types of inventory systems one
can expect substantial cost reductions when using the GKD Algorithm rather
than the identical-service approach. Moreover, insights into the behavior
observed in Figure 8 may suggest modifications to the GKD Algorithm
that would enable it to perform better in situations like those which
prevail in Figure 8. This issue is addressed in the next chapter.
Second, methods of large-scale inventory aggregation need to be
explored so that the GKD Algorithm can be used in an inventory system
with perhaps many thousands of items. Only then can the algorithm be

of practical value. This issue is also addressed in the next chapter.
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IV. SENSITIVITY EXPERIENCE WITH THE GKD ALGORITHM

1. INTRODUCTION

In Chapter I1 we considered the problem of specifying single-item
service objectives in a multi-item (s,S) inventory system subject to a
system-wide service objective. We formulated this problem as a
constrained NLP and developed the Generalized Knapsack Dua]ity (GKD)
Algorithm to solve it. In Chapter III we reported our computational
experience with several 32-item inventory systems with a structure typical
of many real-world inventory systems. In this chapter we report sensitiv-
ity experience with the base-case and worst-case inventory systems used
in Chapter III. The criterion of comparison is to compare the expected
holding cost (computed exactly) associated with the (s,S) policies
produced by the GKD Algorithm for a given system-wide service level a
with the expected holding cost of the policies given by the Identical
Service Method, in which all the (s,S) policies are set by the Power
Approximation given in Mosier [1981] so that every item has a service-
Jevel o (as discussed in Chapter III the exact algorithm of Veinott and
Wagner [1965] is computationally unwieldy for our inventory system,
and the Power Approximation is the most accurate approximation available).
In computing the expected costs we assume the underlying demand distri-
bution is Negative Binomial, and we are primarily interested in the sensi-
tivity of the GKD Algorithm at service-levels of 85%and 88%. We

are interested in 85% because this is a service-level managers often
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prefer, and we are interested in 88, because of the difficulties
reported in Chapter I1I with the worst-case inventory system at this
service-level.

In Section 2 of this chapter we report sensitivity experience
for Di=Si-si, which is a constant input parameter to the GKD Algorithm.
In Section 3 we report sensitivity experience for the lower bounds on
Si‘ which are input to the GKD Algorithm, but may be increased by the
GKD Algorithm (Chapterlé Section 5). In Section 4 we consider several
sampling schemes for large-scale inventory aggregation, where a sample
is used with the GKD Algorithm to specify (s,S) policies for every item
in the inventory system. In Section 5 we investigate the sensitivity
of these sampling schemes to the number of items in the scheme, and in
Section 6 we offer conclusions and recommendations concerning specifying
the Di’ the lower bounds on Si and the size and type of inventory scheme
to use for large-scale inventory aggregation. All figures are at the end

of the chapter.

2. SENSITIVITY EXPERIENCE FOR Di
Recall from Section 2 of ChapterlIl that Di=Si~si is approximated
by a constant (the Power Approximation of Di) vhich is input to the
GKD Algorithm. This is justified because in the single-item case the
optimal Di is asymptotically independent of the service-level. For any
given item i in the inventory system, however, the policy (Si‘si)
produced by the GKD Algorithm with associated service-level oy may not

be an optimal policy when the item i is considered as a single-item
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inventory system. And for a non-optimal policy (si.Si). Di is not
necessarily independent of the service-level @y

Thus we investigated the impact of varying the input values of
the Di' to determine if the GKD Algorithm performance degraded (or
perhaps even improved). As stated in the Introduction, we used the
32-item base-case inventory system of Chapter III. This system has the
structure that twenty percent of the items constitute eighty percent

of the total value (where value is taken to be bp) of the

inventory system. The parameters are as follows for i=1,...,N:

K, = 24

-1
Wi =33
k; = 4
Y.
__1_._=9
Y5

and
U]aUS'UQ‘---; Uzg = 16

Usz6’U]O----o U30 =8
U3:U7$U]]$---, U3] =4

U4aU8’U]2a---t U32 = 2.

The h, are determined through the value hi”i' Additional
details are given in Chapter III.

Because of the structure of the inventory system, the items 1-25 are
low-value items and items 26-32 are high-value items. Typically, as
discussed in Section 3 of Chapter III, the GKD Algorithm produces policies

so that the service-levels of the high-value items are very low and the
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service-Tevels of the Tow-value items are very high. These observations
suggest two experiments.

In the first, we increased the value of Di (given by the Power
Approximation) 25% for the low-value items and decreased the value of
Di 25% for the high-value ifems. In the second experiment, we decreased
the value of Di by 25% for the low-value items and increased it 25% for
the high-value items.

These are severe tests of robustness. In the experiments in Chapter
ITT we compared the expected holding costs of the GKD Algorithm policies
and the Power Approximation policies (which give identical service to
all items) because, since we used the Power Approximation Dj in the GKD
Algorithm, the expected replenishment costs are the same. Such is not the
case in the experiments described in this section, so we compare the total
expteced costs, namely, the expected holding plus replenishment costs.
These experiments and their outcomes are summarized in Table 3 and Figures
15, 16 and 17. In Experiment 2, for example, in which the Power
Approximation Di is increased 25% for the Tow-value items and decreased 25%
for the high-value items, the expected total cost for the GKD policies
at a service-level of 85% is approximately 198, and the expected total
costs for the Identical Service Method at that same service-level is
approximately 276. This represents a 28% decrease in expected cost when

using the GKD policies rather than the Identical Service policies.
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Table 3. Sengi;ivity Experience for Di: Comparison of GKD Algorithm
Policies with Identical Service Policies.

. % ¥incost % +incost
. Low-Value High-Value at Service- at Service- See
Experiment Items (1-25) Items (26-32) Level 85% Level 88% Figure

] No change  No change 29 26 15
2 D, + 25% D + 25% 26 22 16
3 D_i ¥ 25% D_i + 25% 28 27 17

We make the following observations and conclusions:
(1) The change in the performance of the GKD Algorithm
in Experiment 2 and 3 is slight, especially considering
the severity of the test. This suggests that not only is an
especially accurate specification of D unnecessary for a single-
item inventory system, it is also unnecessary for a multi-item
inventory system of the general structure of our base-case. Of
course, additional experiments on variations of this base-case
would help confirm or refute this conjecture.
(2) Although it may be possible to specify the Di so that greater
cost savings are realized than when using the Power Approximation
Di' we recomnend using the Power Approximation, since obvious ways

of changing Di do not improve the GKD Algorithm performance.
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3. SENSITIVITY EXPERIENCE FOR LOWER BOUNDS ON Si

Recall from Chapter 11 that we required SiZDi in the GKD Algorithm
with that lower bound on Si possibly being increased by the algorithm
to guarantee convergence to a (possibly local) minimum (see Section 5).
The main reason given to restrict attention to policies with SiZDi is
that (aside from the mathematical difficulties involved) many managers
consider policies with Si<Di (equivalently, si<0) unsatisfactory for
practical implementation. There are two reasons, however, that even
higher lower bounds on Si might be imposed.

First, many managers prefer not only that 5120, but that 512“1* =
(ki+])yi’ so the safety stock (Si) is always at least large enough to
cover the expected leadtime demand.

Second, in Chapter I1I the Identical Service Approach performed better
than the GKD Aigorithm in the worst-case experiment at a service-level
at and near 88%.

We offer a conjecture to explain this behavior and show that by
modifying the lower bounds on Si the GKD Algorithm will in the case
just described perform considerably better than the Identical Service
Approach at both service levels 85% and 88%.

The worst-case inventory system has the same 80/20 structure
(twenty percent of the items represent eighty percent of the total system

value) with the following parameters for i=1,...,N\:

>
n

24

-l
® @
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g 2
-9
M
and
U]vUzo---i U]s =16

y7ebygeeeer b3 < 8.

There is a notable difference in the single-item service levels
determined by the GKD Algorithm at a service-level of only 85 for both
the base-case and the worst-case inventory systems, as reported in
Figures 9 and 14 of Chapter I11,respectively. For the high-value items
(items 1-7) in both cases the (s,S) policies given by the GKD Algorithm
have all the Si at their lower bounds. The service-levels associated
with the high-value items for the worst-case are considerably lower than
those for the base-case, and so the service-levels for the low-value
items for the worst-case are considerably higher than those for the
base-case. The GKD Algorithm assumes the demand distribution is Logistic,
whereas in these experiments we assume the demand distribution is Negative
Binomial. The approximation of a Negative Binomial distribution by a
Logistic distribution is poorest in the tail, which corresponds to very
high individual item service-levels. Thus we conjecture that the poor
performance of the GKD Algorithm in the worst-case is due to the poorness
of the Logistic demand approximation. We test this conjecture by
imposing higher values of the lower bounds on the Si' This forces the
high-value items to be stocked at a higher service-level, so the low-
value items are stocked at a lower service level, as in the base-case.

We note that Figures 9 and 14 indicate that the higher the demand mean,

the lower the service-level of the (s,5) policy with S at its lower bound.



perform as well at a service-level of 88% as it does at 91% with r=1.
These experiments and their outcomes for the base-case are summarized

in Table 6. The results are similar to those in Experiments 2, 3, and

4, and so we do not report the expected cost graphs.

Table 6. Sensitivity Experience for Lower Bounds on Si: Base-Case}

Comparison of GKD Algorithm Policies with Identical Service
Policies.

Minimum % ¥ incost
r, where Overall at Service-
Experiment SizDi+r“i* Service-Level Level 88
‘ 6 .8 .860 33
= 7 .9 .885 --

These experiments and their outcomes for the worst-case are
summarized in Table 7 and Figure 22. Since theresults of these experi-

ments are similar to each other we report the expected cost graph only

for Experiment 6.

90
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Table 7. Sensitivity Experience for Lower Bounds on S.: Worst-Case:

Comparison of GKD Algorithm Policies with Idéntical Service
Policies.

Minimum % + incost % + incost
r, where Overall at Service- at Service- See

Experiment Si20i+r“i* Service-Level Level 85% Level 88% Figure

6 - .8 .811 26 23 22
7 o .878 -- 20 oo

We make two additional observations:

(5) The brevious remarks for the base-case also hold for

r=.8, .9.

(6) For the worst-case system there is a dramatic improvement

in algorithm performance when r=.8. In this case there is a
substantial cost savings at both service-levels 85% and 88%.

We offer the following conclusions.

(1) The behavior at a service-level of 88%.for the worst-case
inventory system does seem to be caused (at least in part) by the
poorness of approximating a Negative Binomial distribution by a
Logistic distribution.

(2) The algorithm performs best when there is a lower bound on S
just large enough to prevent too many of the low-value items to be

stocked extremely high. We recommend that a user experiment with
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various lower bounds (in terms of the single input value r) to

find the best one.

(3) As most managers prefer as high a lower bound as possible on

S (as long as average system service is not too large), we reco-
mmend specifying r as large as possible to include the desired
targeted service-level.Our experience with both the best and worst-
case inventory systems suggests that this approach will yield a

significant cost reduction over the identical service approach.

4. SENSITIVITY EXPERIENCE FOR SAMPLING SCHEMES FOR
INVENTORY AGGREGATION

Many real-world inventory systems contain tens of thousands of
items. Although the GKD Algorithm is quite efficient, it could not
handle inventory systems of this size. This is not a problem unique to
our algorithm, and most managers deal with it using inventory aggregation.
This is any method of partitioning an inventory system into groups of
items so that every item in the group is controlled essentially the
same. A representative item is chosen from each group and used to
specify (s,S) policies for all items in its group.

Our method of aggregation exploits the special structure of our
problem (as formulated as an NLP) and of the GKD Algorithm, and certain
empirical observations in Chapter I11. Recall from Section 3 of Chapter II
that the GKD Algorithm exploits the "Knapsack" structure of the NLP by
solving its dual NLP. The dual has only one variable, A, and to find
the optimal S* of the original NLP it is sufficient to find the optimal

dual variable A*. This is reflected in the GKD Algorithm (Chapter 11
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Section 3) by solving 6(k)=0 for x*, from which S* is computed. OQur
method of aggregation is to use a subset of the inventory system to
estimate A *, and then compute S* for all the items in the inventory
system from this estimate.

The inventory system we constructed to test various aggregation
schemes is a 128-item system with the same essential structure as the
32-item base-case system described in Section 2. In particular, twenty
percent of the items (items 101-128) constitute eighty percent of the
total value of the inventory system, and the parameters are as follows,

for i=1, 2,..., 128:

Ki = 24
W, = -
i 128
ki = 4
2
.oi_z q
3
and
U]!Usro--: U]ZS = 16
U2»U6a---’ U]26 =8
U39U7’---$ U]Z? = 4
2.

u4,u8.---, U]28 &

To examine the cost savings in using the GKD Algorithm rather than
the Identical Service Method (via the Power Approximation) described in
Section 1, we ran the GKD Algorithm with the entire system. As described
in Section 1, we compared the expected holding costs with those of the

Identical Service Method, and the result is displayed in Figure 23.



divided by the total value of the sample from that strata. This was done for
both strata, so each maintained its total value, thus preserving the
80/20 structure. And to maintain the given constraint weights Ni' they
were each recomputed as the total weight of the strata divided by the
total weight of the sample from that strata.

Initially we tested three central nonrandom stratified uniform
sampling schemes. If one wants to choose M items from a stratum consist-

ing of the N items 1, 2,..., N by such a scheme, then the items

N3N SN (2M-1)N
2N 2M Mt T Zh

are taken, where the fractions %%—are rounded to the nearest integer.
For this sample, the 80/20 value structure and the constraint-weight structure

] . ! . . . W

is maintained by multiplying hi and Ki by 1Zin hi“i/ 1Zin h1p1, and v
system sample

by N/M for each item in the sample. The three schemes differed in the

number of items taken from each of the two strata. They are described
in Table 8. MNotice that Scheme 1 is a nonstratified scheme that roughly
takes every 4th item from the inventory system (since the means rereat
themselves every four items, to take every 4th item would create an
inventory system with every mean the same, which seemed objectionable).
Scheme 2 creates an inventory subsystem of half high-value and half low-
value items, and that Scheme 3 takes all the high-value items (it seems
reasonable that A* is more sensitive to them than to the very low value

items, and so this scheme seemed plausible).
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Table 8. Central Nonrandom Stratified Uniform Sampling.

Number Chosen from Number Chosen from

Scheme Low-Value (1-100) High-Value (101-128)
1 24 8
2 | 16 16
3 4 28

The experiment we performed to test these schemes is as follows:
For a variety of specified service-levels we ran the GKD Algorithm using
the inventory subsystem (determined by the sampling scheme) to compute
i*, the optimal multiplier for the subsystem. Each value of i* gives
rese to a service-level for the subsystem (q32) and for the entire
system (QIZB)’ and to the expected holding cost at these service-levels
(H32 and H128’ respectively). The criterion of comparison is how close
a32and 2108 and H32 and H]28 (for a given ;) are. A "perfect" subsystem
would give rise to_a32=a]28, H32=H]28. that is,its optimal multiplier
A*=2*  the optimal multiplier for the entire system. The service-level
graphs for the three schemes are given in Figures 24, 25 and 26, and the
expected holding cost graphs are given in Figures 27, 28 and 29.

We make the following observations concerning these sampling schemes:

(1) They are all good. Although each one gives rise to a misspeci-

fication of ay08 and H the total cost savings will still be

128’
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substantial over the ldentical Service Approach (compare Figure 23).
(2) Scheme 2 seems to be superior to Schemes 1 and 3. Scheme 1
- has a preponderance of low-value items, Scheme 3 has a preponder-
ance of high-value items, and Scheme 2 has the same number of each.
It seems that the proportion of items that are high-va]ue/]ow-va}ue
at least in part affects the performance of the scheme.
The efficiency of Scheme 2 may have something to do with the fact that
the demand means of our base-case inventory system follow the pattern
2, 4,8, 16,..., 2, 4, 8, 16. To investigate this, we used a central
random stratified Qniform sampling scheme with 16 expensive and 16 inex-
pensive items (]ike Scheme 2). In other words, we chose 16 items uniformly
randomly (using the IMSL Routine GGUD) from both the high-value and low-
value items. We performed six such tests, one with a different initial
=~ seed. The details of the subsystems chosen can be found in the Appendix

to this chapter, and the scheme itself, Scheme 4, is described in Table 9,

Table 9. Central Random Stratified Uniform Sampling

Number Chosen from Number Chosen from
Scheme Low-Value (1-100) High-Value (101-128)
4 _ 16 16

We performed the same experiment as we did for the first three

schemes, and the results of this experiment for the first seed is
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reported in Figures 30 and 31 (results for all of the seeds were similar).
We make the following observations.

(1) As for the three nonrandom schemes, the random scheme is good.

(2) The random scheme is not as good as Scheme 2, the nonrandom

scheme with the same proportion of high-value/low-value items as

this scheme. It would appear that the sequence of demand means is
important, apd that further research in stratifying not only on the
value but on the demand means could give even better sampling
schemes.

(3) The method of sampling seems relatively unimportant as long as

the 80/20 value structure of the inventory system is maintained.

We recommend, therefore, that the scheme be chosen on the basis of

its ease in implementation. Perhaps the nonrandom Scheme 1 is

easiest, as it requires only one stratum (it represents a central
sampling of every 4th item).

As a final experiment we tested whether Scheme 4 with the seed of the
first experiment was accurate when lower bounds are imposed on the Si' We
chose Scheme 4 because it gave rise to neither the best nor the worst
performance among the schemes. We chose lower bounds corresponding to
r=.75 (see Section 3) because this was_the largest value of r which allowed
an overall service-level of at least 85%. This experiment is describted
in Table 10 and the outcome is reported in Figures 32, 33, and 34, wiere
Figure 32 reports the expected cost when using all 128 items in the GKD

Algorithm.
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Table 10. Central Random Stratified Uniform Sampling:
51201+'75“1*'

Number Chosen from Number Chosen from
Scheme Low-Value (1-100) High-Value (101-128)
4 16 16

we make the following observations:

(1) There is a significant cost savings at service-levels 85%
and 88¢%.

(2) The sampling scheme is very accurate. It seems that our
previous conclusions about the accuracy of these sampling schemes

also hold true when lower bounds are imposed on the Si’

5. SENSITIVITY EXPERIENCE FOR THE SAMPLE SIZE
FOR INVENTORY AGGREGATION

In order to investigate how the reliability of inventory sampling
schemes depends on the size of the scheme, we constructed a 512-item
base-case inventory system with the 80/20 value structure described in
Section 2. Not only is this structure typical of many real-world inven-
tory systems, but if the items in the system are ordered in descending
order by their value (hipi) and the cumulative percent of the items is
plotted against the corresponding cumulative value, then the resulting
graph is frequently well-approximated by a Lognormal cumulative distribu-

tion function (Peterson and Silver [1979, pp. 30-37]). We constructed
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(Nonrandom). Uniform Sampling Scheme (compare Scheme 1 of the previous
section). The last experiment (Scheme 4) of Section 4 suggests that
the approach of using a sample to investigate the sensitivity of the
system to r is a reliable procedure. We considered r=0, .6, .7, .8,
.9, 1, with a targeted service-level of 858 (a service-level popular
with many managers), and we want to include for consideration service-
levels 83% to 88%.

This experiment and its result is reported in Table 11 and Figure
35. Since we want to include for consideration a service-level of 83
we chose r=.6. The cost savings forr=.6 at a service-level of 85% is

about 517, which is very signficant.

Table 11. 12C-Item Central Nonrandom Uniform Sample from the 512-

Item Base-Case System: Comparison of GKD Algorithm
Policies with Identical Service Policies.

Minimum % ¥ in cost
r, where Overall at Service-
SizDi+ru1* Service-Level Level 85%
0 < .8100 50
.6 .8140 51
.7 .8439 47
.8 .8719 -
.9 .895] -

1 .9163 .=
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As an additional check of the reliability of using this sampling
method to chose r, we repeated the experiment on the entire 512-item

= inventory system. The results are summarized in Table 12 and Figure 36.
The sampling method of choosing r is seen to be very reliable, as was

the case in Section 4.

Table 12. 512-Item Base-Case System: Comparison of GKD Algorithm
Policies with Identical Service Policies.

Minimum % ¥ in cost

r, where Overall at Service-

512D1+r“i* Service-Level Level 85%
0 < .8100 49
.6 .8138 50
. .7 .8441 46
.8 .8720 --
- .9 .8961 --
1 .9165 -

L There were two sampling schemes considered in Section 4 which seemed to

perform the best. The first is the recommended scheme, the Central

,' Nonrandom Uniform Sampling Scheme. The second is the Central Nonrandonm
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Stratified Uniform Sampling Scheme (compare Scheme 2) in which half the
sample is taken from the high-value items and the other half is taken

from the low-value items. Because of the 80/20 value structure of our
512-item base-case system, items 1-102 are high-value and ftems 103-512
are low-value. The sensitivity experimental design is identical to

that described in Section 4, here with r=.6. We chose sample sizes of

32, 64 and 128 for both schemes described, and the six experiments are
summarized in Table 13. For each sample size, the results of these exper-
iments were similar for both the uniform and stratified uniform schemes,
and so the comparative graphs are reported only for the Central Nonrandom

Uniform Sampling Scheme (Figures 37 through 42).

Table 13. Comparison of GKD Algorithm Policies with Identical Service
Policies.

Central Nonrandom Uniform Sampling from 512-Item Base-Case System,
Si20i+'6ui*'

Sample Figure Reporting Figure Reporting

Experiment Size Service-Levels Expected Costs
1 32 37 40
2 64 38 41
3 128 39 42

Central Nonrandom Stratified Uniform Sampling from 512-Item Base-Case
System, SizDi+.6ui*.

. Number from Number from
Experiment High-Value Items Low-Value Items
4 16 16
5 32 32

6 64 64
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We make the following observations:

(1) A1l six schemes are reliable enough for practical implement-
ation. The 128-item schemes are superior to the 64-item schemes
which are superior to the 32-item schemes.

(2) There does not seem to be any real difference between the uni-

form and stratified schemes.

(3) An examination of the experiments in Section 5. in which 32-
item samples were taken from a 128-item inventory system, indicates
that the 32-item samples are just as reliable in the 512-item system
as in the 128-item system. This is extremely significant because it
strongly suggests that 32-item schemes are sufficiently reliable for
practical implementation no matter how large the inventory system is,
as long as it has the 80/20 value structure described.

(4) We recommend using the Central Uniform Sampling Scheme with
around 32 items for any inventory system with an 80/20 value
structure. Although larger samples may be more reliable, this
scheme is reliable enough. Moreover, the computational work necess-
ary to use the GKD Algorithm on such a sample is very small, making

this scheme suitable for frequent use in a real-world setting.

6. CONCLUSIONS

In this chapter we performed sensitivity tests on the GKD Algorithm
with inventory systems with a structure typical of real-world systems,
that twenty percent of the items represent 80 percent of the value of the

system. We concluded the following:
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(1) The total cost savings are not affected very much by changes
in Di'

(2) 1Increasing the lower bounds on S; may improve the algorithm
performance, especially when the high-value items also tend to have
high expected demands. Even when increasing these lower bounds
degrades the performance, however, the cost savings are substantial.
We recommend increasing these lower bounds as high as possible
(while still maintaining a cost savings below that of the Identical
Service Method) as this appraoch is most consistent with managerial
goals.

(3) Uniform sampling with about 32 items is a reliable and computa-
tionally efficient method of inventory aggregation, giving accurate

predictions via the GKD Algorithm of overall inventory service and

expected operating costs.
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APPENDIX TO CHAPTER 1V

This appendix reports the seeds used in the IMSL Routine GGUD
to create the six random samples of Scheme 4 of Section 4, and a
listing of the 512-item inventory system of Section 5. The seed
used in the IMSL Routine GGUD to generate the by for this system is
872245376.

Table 14. Seeds for Six Tests of Central Random
Stratified Uniform Sampling Scheme 4.

Test Seed

1 96665107
227164307
929811759
2058317624
75813808

[« TR & » DR < S 7S B A

1743717576

NOTE: Experiment for Test 1 reported in Figures 29 and 30,



512-1tem Inventory System of Chapter IV

For all ditems i = 1,2,...,512:
Ki' 24
k., = 4
i
2
Si_ 9
5
i hy My o D; Ds/u;
1 1. 8145 9,0000 9.0000 17.5010 1. 9846
2 2.0363 8.,0000 8, 4853 15,7557 1.9695
3 2.7002 6.0000 7. 3485 12,1972 2.0329
4 1,2363 13.0000 10. 8167 24, 6235 1.8941
S 2.6514 6.0000 7, 3485 12.3104 2,0517
6 1.2090 13.0000 10.8167 24,9025 1.9156
7 0.9691 16.0000 12.0000 30.3035 1.8940
8 3.8186 4,0000 6.,0000 8, 7403 2. 1851
9 1.0020 15. 0000 11.6190 29.0211 1.9347
10 1. 8469 8.0000 8.4853 16. 5535 2.0692
1M 1, 1163 13. 0000 10.8167 25,9282 1.9945
12 1. €957 13.0000 10.8167 26,1746 2.0134
13 1.0747 13.0000 10. 8167 26,8318 2. 0332
14 1. 5218 9,0000 9,0000 19, 1301 2, 1256
15 0.8388 16,0000 12,0000 32.6002 2.0375
16 2.6290 5.0000 6.7082 11. 5135 2.3027
17 0.9193 14,0000 11,2250 29,4759 2. 1054
18 2.C997 6.0000 7. 3485 13.8526 2,3088
19 1. 5411 8,0000 8.48853 18. 18613 2,267
20 1.2063 10.0000 9,4868 22,4390 2.2839
21 0.9077 13.0000 10. 8167 28,7900 2. 2146
22 0.9618 12.0000 10.3923 27.0711 2.2559
23 2.2574 5., 0000 6.7082 12. 4364 2, 4873
24 2.7593 4.0000 6.0000 10,3021 2.575S
25 1. 0792 10. 0000 9.4868 23,7387 2, 3739
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26
27
28
29
30
n
32
33
34
35
36
37
38
39
Q0
41
82
43
44
45
46
47
48
49
50
51
52
53
S4
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

0,8793
0.8597
3.3623
1. 48088
0.8035
58,7132
0.7680
3. 0037
0.8811
2.8719
0.%266
0.9155
0.6715
0.8926
1.9272
0.6855
0.5269
0.4511
0.7846
1.7274
1.3523
2.2058
6, 4770
0.7925
0.6206
0. 5064
0.3718
1. 1651
1, 1410
0.3492
0.8975
0.8874
1.7507
0.,6432
0.4584
0. 4892
4, 8424
0.2966
0.3877
0. 2850
0, 7452
0. 3372
64,2988
0.4216
0.29513
1. 3518
0.6630
1.9513
0. 7658
0.3757

12,0000
12.0000
3.0000
7. 0000
12.0000
2. 0000
12.0000
3.0000
10.0000
3.0000
16.0000
9.0000
12.0000
16. 0000
4,.0000
11,0000
14,0000
16. 0000
9.0000
4.,0000
5.0000
3.0000
1. 0000
8,0000
10.0000
12.0000
16. 0000
5.0000
5.0000
16. 0000
11,0000
11. 0000
3.0000
8. 0000
11,0000
11,0000
1. 0000
16,0000
12.0000
16.0000
6., 0000
13.0000
1. 0000
10.0000
14,0000
3.0000
6.0000
2. 0000
5.0000
10,0000

10.3923
10,3923
5. 1962
7.9373
10.3923
§4.2426
10,3923
5. 1962
9.4868
5. 1962
12,0000
9.0000
10,3923
12.0000
6.0000
9.9499
11, 2250
12,0000
9.0000
6.0000
6.7082
5. 1962
3.0000
8,4853
9, 48868
10.3923
12,0000
6.7082
6.,7082
12,0000
9.9499
9.9499
5. 1962
8.4853
9.9499
9.9499
3.0000
12,0000
10.3923
12,0000
7. 3485
10.8167
3.0000
9,4868
11,2250
5. 1962
7.3485
4.2426
6.7082
9.4868

28,3268
28.6517
8. 3812
18.0101
29.6508
6.0171
30,3348
8.8310
26, 3044
9.0338
81,2601
28,7401
32.4684
82,6775
12, 3539
31,0273
39.0649
44.6212
26,7486
13.0572
16,1173
10, 3282
3.9324
25,3993
31.8075
37.8529
89,2023
17.3793
17.5642
50.7896
36,4898
36.8728
11.6048
28,2280
38,0353
38.4273
4.5559
55, 1623
§2.8717
56.2865
23,3980
47.5148
4.8388
38, 1969
52,3615
13, 2271
24,8234
9.8012
21,4917
40.4908

2.3606
2.3876
2.7804
2.5729
2.8709
3.0085
2,5279
2.94137
2.6304
3.0113
2.5788
2. 7489
2.7057
2.6673
3.0885
2.8207
2.7904
2,7888
2.9721
3. 2643
3.2235
3.8414
3.9324
3. 1749
3. 1807
3.1211
3.0751
3. 8759
3.5128
3. 1788
3.3173
33,3521
3.8683
3.5285
3.4578
3.893%
§.5559
3.4476
3.5726
3.5179
3.8997
3.6550
§4.8388
3.8197
3.7801
64,1372
48,7006
§8.2983
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76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
ARR
112
113
114
115
116
117
118
119
120
121
122
123
124
125

0.9216
0.3289
0.8876
0.2178
0.8276
0.5597
1. 0990
1.6187
3.1788
0.2081
0. 7665
0.,6022
0. 8930
0.3632
0.2854
0. 4006
0.2296
2,7077
0. 3801
2,6151
0., 1606
0.2297
1.2417
0.3488
0.2182
0.5900
2.,3206
0.1426
0.74a81
0.5518
0.3101
2, 1354
0.3001
0.1879
0. 1452
0.3001
0.1789
0.4842
0.3177
0.9379
0.2637
0. 1398
1.7887
0. 1956
0.8667
0.2438
0.4201
0.8272
0.4073
0.2292

8.0000
11.0000
4, 0000
16,0000
8.0000
6, 0000
3.0000
2.0000
1, 0000
15,0000
8, 0000
5. 0000
6, 0000
8. 0000
10,0000
7. 0000
12,0000
1, 0000
7.0000
1.0000
16. 0000
11,0000
2.0000
7, 0000
11,0000
4.0000
1.0000
16,0000
3.0000
4.0000
7.0000
1.0000
7.0000
11,0000
14,0000
5.0000
11. 0000
4,0000
6.0000
2.0000
7,0000
13.0000
1.0000
9,0000
2.0000
7.,0000
4,0000
2,0000
64,0000
7.0000

6.0000
9.9499
6.0000
12.0000
8.4853
T7.3485
5.1962
8.2626
3.0000
11. 6190
6.0000
6.7082
7. 3485
8.4853
9.4868
7.9373
10.3923
3.0000
7.9373
3.0000
12,0000
9.9499
4,26826
7.9373
9.9499
6. 0000
3.0000
12,0000
5. 1962
6.0000
7.9373
3.0000
7.9373
9. 9499
11, 2250
6, 7082
9.9499
6.0000
7. 3485
G, 2426
7.9373
10. 8167
3.0000
9.0000
8,24826
7.9373
6.0000
B.2426
6. 0000
7.9373

17.9837
88,9928
18,2878
68,6933
34. 7056
27. 0443
18,6877
10. 3336
5.6372
65,2834
19.6980
24,2694
28,8395
37.6953
46.5287
34,0286
55,8810
6. 1138
34,9453
6. 2224
75.2350
53,9564
11. 8168
36,5007
55,3723
22, 4861
6.6102
79.9028
17. 8839
23.2612
38. 7357

6, 8944
39.3867
59,7316
74.9896
29,8599
61,2218
24, 8512
36,0207
13,6199
42, 0454
74. 1927

7.5410
54, 0145
14,1748
43,7518
26.7037
14,5132
27,1245
45, 1417

4.8859
&, 0903
84,5719
8.0308
8,.3382
84,5074
8.8959
5. 1668
5.6372
8, 2856
&8.9245
4,8539
84,8066
4.7119
4.6529
84,8612
§.6567
6.,1138
§.9922
6.2224
§.7022
8,905
5.9084
S. 2144
5.0338
5.,6215
6.6102
4.,9939
5.9480
5,8153
5.5337
6.8944
5.6267
S. 4301
5.3564
5.9700
5.5656
6.2128
6.0035
6.8099
6,0065
5.,7071
7.5410
6.0016
7.0874
6. 2503
6.6759
7.2566
6.7811
6.8488
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126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
182
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

0.1436
0.1v729
0.7663
1. 5096
0.1859
0. 1465
0.1203
0.1580
0.2001
0.2760
0. 1700
0,103
0.0825
0.0868
1.2828
0.1580
1.2462
0.0945
1,2109
0.3979
0, 1681
0.0829
0.3814
0.,2256
0.0856
0.0686
0. 1545
0.0821
0.1315
0.0741
0.0640
0.0918
0.0905
0.0893
0.2423
0.0869
0.2359
0.1551
0.0918
0.0697
0.2981
0.1261
0.0968
0.0661
0.,0530
0.0523
0.1033
0.0906
0.0503
0.3975

11.0000
9,0000
2,0000
1.0000
8.0000

10,0000

12.0000
9.0000
7.0000
5.,0000
8.0000

13.0000

16. 0000

15. 0000
1.0000
8.0000
1.0000

13.0000
1.0000
3.0000
7.0000

14,0000
3.0000
5.0000

13.0000

16,0000
7.0000

13,0000
8,0000

14,0000

16.0000

11,0000

11.0000

11,0000
4,0000

11,0000
4.0000
6.0000

10,0000

13.0000
3.0000
7.0000
9.0000

13.0000

16.0000

16,0000
8,0000
9,0000

16.0000
2.0000

9.9499
9.0000
§,2826
3.0000
8. 8853
9.48868
10. 3923
9.0000
7.9373
6.7082
8. 4853
10. 8167
12.0000
11. 6190
3.0000
8., 4853
3.0000
10.8167
3.0000
5. 1962
7.9373
11,2250
5. 1962
6.7082
10.8167
12. 0000
7.9373
10, 8167
8, 4853
11, 2250
12,0000
9.9499
9.9499
9. 9499
6,0000
9.9499
6.0000
7. 3485
9.4868
10. 8167
5. 1962
7.9373
9.0000
10. 8167
12.0000
12. 0000
8. 4853
9.0000
12.0000
4.2426

68.8225
57.5011
15.0862

8.2170
52,9088
65,2118
77.5194
60, 1889
48,3499
36,0159
55. 3493
86.5519
105. 3780
100, 0795

8,9225
57,8299

9. 0540
90.8492

9. 1865
24,5588
52.8028
99,5967
25,0930
39,8857
95,1075
115.7561
55. 1047
97. 1407
63,0241
105.3869
119. 8814
85,8229
86,8180
87.0152
35,2760
88,2160
35.7612
51.7659
82,5855
105.48965
28,8234
61,0821
77. 1265
108. 3613
131.8308
132.7069
71,2185
79.7237
135. 3535
21,0302
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6.2202
6.3890
7.5431
8.2170
6.6130
6.5212
6.8599
6.6877
6.9071
7.2032
6.,9187
6,6578
6.5861
6.6720
8.9225
7.1787
9., 0540
6.9576
9. 1865
8.1863
7.5433
7.11489
8.3643
7.9771
7.3160
7.2348
7.8721
7.8780
7.5276
7.48926
7.8021
7.8562
7.9105
8.8190
8. 0196
8.9403
8.6276
8.2586
8. 1151
99,4745
8.7260
8. 5696
8.3355
8.239%
8.2942
8.9018
8.8582
8.48596
10,5151



176
m
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
1696
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

0.0872
0,1937
0.,0588
0.2517
0. 1864
0.7362
0.1817
0.0897
0.,0709
0.1167
0.0532
0.2276
0.0674
0.0476
0.1316
0.0406
0.0642
0.3170
0.3132
0,0413
0.,0470
0.0755
0.1193
0.0536
0.1165
0.0576
0.0948
0.0511
0.,0505
0.03u3
0,0904
0.0383
0. 0655
0,0324
0.0853
0.1686
0.0333
0.0353
0.0326
0.0805
0.0434
0.0674
0.4667
0.0288
0.4562
0.0322
0.0496
0., 1103
0.0727

9.0000
4.0000
13,0000
3.0000
64,0000
1.,0000
§,0000
8.0000
10,0000
6.0000
13.0000
3,0000
10,0000
14.0000
5,0000
16. 0000
10,0000
2,0000
2,0000
15.0000
13,0000
8.0000
5. 0000
11,0000
5.0000
10.0000
6.,0000
11,0000
11,0000
16.0000
6.0000
14,0000
13,0000
8.0000
16,0000
6.0000
3.0000
15,0000
18,0000
15.0000
6.0000
11,0000
7.0000
1.0000
16,0000
1. 0000
14,0000
9.0000
4. 0000
6.0000

9.0000
6. 0000
10.8167
5. 1962
6. 0000
3.0000
6.0000
8. 8853
9,4868
7. 3485
10, 8167
5. 1962
9.8868
11,2250
6.7082
12. 0000
9. 4868
4.2426
4,2826
11,6190
10. 8167
8.4853
6.7082
9.9499
6.7082
9, 4868
7. 3485
9.9499
9,9499
12,0000
7. 3485
11,2250
10. 8167
8. 4853
12,0000
7.3485
5. 1962
11,6190
11,2250
11.6190
7.3485
9.9499
7.9373
3.,0000
12.0000
3.0000
11,2250
9.0000
6.0000
7. 3485

81.3036
39.5102
114.9538
30,9631
840, 2838
1n.81M
40,8033
76. 8770
94, 1518
59,7951
120.9852
32.5827
96.5606
131. 8974
52,3992
150.8694
99.0014
23.5789
23.7250
145, 7938
128.,7533
83.8607
55, 0499
112, 6709
55.7234
104,614
66.8175
115, 4288
116. 1238
164.3162
68.029%
147, 2022
138,4160
89,7047
169, 2668
70,0733
37. 9261
162. 4096
153.3959
168, 3150
72. 1495
125. 3620
83.8334
14.8825
179, 4080
15,0543
160, 6820
108.2049
52,5402
75.9687

9.0337
9,8775
86,8426
10.3210
10.0709
11.8171
10,2008
9.5596
9.8152
9.9659
9.3066
10.8609
9.6561
9.8212
10.4798
9,48293
9,9001
11,7895
11,8625
9.7196
9.9041
10,4326
11,0100
10,2428
11, 1447
10,4611
11,0696
10.8935
10,5567
10,2698
11,3382
10.5144
10.64&72
11,2131
10.5792
11.6789
12,6420
10,8273
10.95¢€8
10.9543
12,0249
11,3965
11.9762
14,8825
11.2127
15,0543
11,8744
12,0228
13. 1351
12,6615

139



326
327
328
329
330
In
332
333
334
335
336
KR
338
339
340
341
342
343
Juy
345
3u6
347
348
349
350
3In
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

0.0145
0.0105
0.0131
0.0389
0.0193
0.0218
0.0504
0.0167
0.0744
0.0164
0.0365
0.,0091
0,0160
0.0178
0.0101
0.0087
0.0116
0.0275
0.0682
0.0270
0.0191
0.0083
0.0329
0.0109
0.0216
0.0428
0.0085
0.0126
0.0313
0.0207
0.0123
0.0203
0.0086
0.0080
0.0132
0.0079
0.0146
0. 0 145
0.,0384
0.0114
0.0087
0.0140
0.0074
0.0276
0.0073
0.0181
0.0098
0.0153
0.0177
0.0131

11,0000
15,0000
12,0000
4.0000
8. 0000
7.0000
3.0000
9.0000
2.0000
9.0000
4.0000
16.0000
9.0000
8.0000
14,0000
16,0000
12,0000
5.0000
2,0000
5.0000
7.0000
16,0000
4.0000
12.0000
6,0000
3.0000
15.0000
10.0000
4.0000
6.0000
10,0000
6. 0000
14,0000
15,0000
9.0000
15,0000
8.0000
8.0000
3.0000
10. 0000
13.0000
8.0000
15.0000
4.,0000
15,0000
6.0000
11,0000
7.0000
6.0000
8.0000

9.94899
11. 6190
10,3923
6. 0000
8. 8853
71,9373
S. 1962
9.0000
8.2426
9. 0000
6. 0000
12,0000
9.0000
8. 48853
11. 2250
12,0000
10. 3923
6.7082
4, 2426
6.7082
7.9373
12,0000
6.0000
10. 3923
7. 3485
5.1962
11.6190
9.4868
6.0000
7. 3485
9. 4868
7. 3485
11,2250
11. 6190
9.0000
11,6190
8. 4853
8.4853
S. 1962
9.4868
10. 8167
8,4853
11,6190
6,0000
11,6190
7. 3485
9.9499
7.9373
7. 3485
8. 4853

218, 2586
290.7210
238,3285
89,0698
166, 6284
148. 8071
69.8341
187. 8061
49. 1140
189,8807
91.8888
322.4315
192.0082
173.4085
289,2186
328,154
253.5781
115, 6913
51,3213
116.7033
158, 5338
336, 8383
96.837S
261, 8045
140, 8336
75.8883
324.8671
225, 4156
99,3673
143, 4757
228,3220
1464.7030
312.5748
334, 2986
211, 1276
337. 1332
191.8476
192, 2550
80. 1962
237, 1690
302, 1882
195. 5042
347.1765
105. 8552
350.0770
153. 8618
266, 2082
177.7266
155, 3766
202,0963
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19.8817
19,3814
19.8607
22.2674
20.8280
21,2010
23.2780
20. 8673
24,5570
21,0534
22,9722
20,1520
21.3342
21,6761
20.6585
20,5095
2%, 1315
23.1383
25.6606
23.35807
22,6477
21,0524
28,2092
21.78317
23,4056
25.2961
21,6311
22.53%16
24.8418
23.9126
22,8322
24,1172
22,3268
22,2863
23.4586
22.4755
23.9310
24,0319
26,7321
23.7169
23,2452
24,4380
23. 1451
26,4638
23.3385
25.5769
24,2004
25.3895
25.8961
25,2620



376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
800
801
402
403
404
405
406
407
408
409
410
411
412
413
41y
415
416
417
418
419
420
421
422
423
424
425

0.0075
0.0069
0.0103
0.1018
0.0084
0.0072
0.0083
0.0197
0.0082
0.0061
0.0963
0.0478
0.0316
0.0085
0.0117
0.0116
0.0131
0.0304
0.0056
0.0100
0.0074
0.,0088
0.0097
0.0217
0.0108
0.0285
0.0065
0.0065
0.0167
0.0064
0.0206
0.0068
0.0135
0.0804
0.0160
0.0079
0.0112
0.0156
0.0387
0.0064
0.0085
0.0095
0.0375
0.0106
0.0739
0.0046
0.0091
0.0045
0.0055
0.0089

14.0000
15.0000
10. 0000
1., 0000
12.0000
14.0000
12,0000
5.,0000
12.0000
16, 0000
1.0000
2.0000
3.0000
11.0000
8.0000
8.0000
77,0000
3,0000
16.0000
9.0000
12.0000
10.0000
9.0000
4.0000
8.0000
3.0000
13,0000
13.0000
5.0000
13,0000
§.0000
12,0000
6.0000
1.0000
5.0000
10.0000
7.0000
5.0000
2.0000
12.0000
9.0000
8.0000
2.0000
7.0000
1.0000
16.0000
8.0000
16.0000
13.0000
8,0000

11,2250
11,6190
9. 4868
3,0000
10. 3923
11, 2250
10. 3923
6.7082
10. 3923
12. 0000
3,0000
8.2026
5, 1962
9,9499
8.8853
8. 4853
7.9373
5. 1962
12,0000
9.0000
10,3923
9.4868
9.0000
6. 0000
8.4853
5. 1962
10.8167
10. 8167
6.7082
10. 8167
6.0000
10,3923
7. 3485
3.0000
6.7082
9,.4868
7.9373
6.,7082
4.2826
10, 3923
9,0000
8, 4853
4, 2426
7.9373
3.0000
12.0000
8, 4853
12,0000
10. 8167
8,4853

336.9713
360, 3380
250. 2889
32, 1526
297.7060
343.9351
300, 1412
136.8934
302.5878
394,8866
33,0801
61,8488
88,5092
285, 3096
214, 7961
215,6586
191.9905
90, 3006
809.4144
243,.,7023
317.5083
270. 1981
286.6200
119, 5422
223,5112
93. 2100
349.6675
351.0436
148, 8506
353.8052
122. 87485
331,5509
178.0483
36. 2354
152, 3736
285.48337
207, 6958
154, 1530
68,3488
341,9855
264, 5501
238.7892
69,4074
213,3618
37.8036
454.8307
243, 3946
458, 3055
380.6686
246. 1825
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28,0693
28,0225
25.0289
32,1526
24,8088
28,5668
25,0118
27,3787
25,2156
28,6804
33,0801
30.724a4
29.5031
25.9372
26,8895
26,9573
27. 4272
30. 1002
25.5884
27.0780
26. 4590
27,0198
27.8022
29. 8855
27.9389
31,0700
26,8975
27.003a
29.7701
27.2158
30,7186
27.6292
29,6741
36,2354
30.4747
28,5838
29.6708
30.8306
34, 1748
28,4988
29.3945
29.8486
38,7037
30.4803
37.8036
28, 4269
30,4243
28.6441
29.2822
30,7728



826
827
428
829
&30
831
432
833
834
435
836
837
838
439
4u0
LR
442
443
844
445
446
ay?
448
449
850
451
452
453
@54
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475

0.0084
0.0702
0.0696
0.0173
0.0049
0.0085
0.0085
0.0075
0.0061
0.0132
0.0073
0.0130
0.0065
0.0054
0.0046
0.0211
0.0314
0.0125
0.0062
0.0077
0.0153
0,0038
0.0120
0.0050
0.0037
0.0042
0.0053
0.0097
0.0041
0.0071
0.0063
0.0113
0.0080
0.0278
0.0050
0.0046
0.0060
0.0090
0.0077
0.0089
0.0035
0.0263
0.0065
0.0065
0.0086
0.0032
0.0507
0. 0056
0. 0250
0.0033

16.0000
1.0000
1. 0000
&,0000

1%.0000
8,0000
8.0000
9.0000

11,0000
5. 0000
9.0000
5.0000

10,0000

12.0000
14,0000
3.0000
2.0000
5.0000
10. 0000
8.0000
4,0000
16.0000
5.0000
12,0000
16.0000
14,0000
11.0000
6.0000

14,0000
8.0000
9.0000
5.0000
7.0000
2.0000

11,0000
12.0000
9.0000
6.0000
7.0000
6. 0000
15,0000
2.,0000
8.0000
8.0000
6.0000

16.0000
1.0000
9.0000
2.0000

15.0000

12.0000
3.0000
3.0000
6. 0000
11, 2250
8.4853
8. 4853
9.0000
9.9499
6. 7082
9.0000
6.7082
9, 4868
10. 3923
1. 2250
5. 1962
6.7082
9.4868
8. 8853
6.0000
12. 0000
6.7082
10.3923
12.0000
11. 2250
9.9499
7. 3485
11,2250
8. 4853
9. 0000
6,7082
7.9373
§4.2826
9.9499
10. 3923
9,0000
7. 3485
7.,9373
7. 3485
11.6190
4.2826
8.4853
8, 4853
7. 3485
12. 0000
3.0000
9. 0000
4.2426
11.6190

863.5466
38,8216
38,9684

134, 1998

816.5789

251,8137

252.7595

282, 1588

339,.6170

167.57T11

285, 3350

168.8233

316. 1968

374.8240

432.4043

108.5672
75.9585

172,6129
323,2835
265, 2435
142,9468
501.2128
175. 8086

388, 4489

506, 7341

850,2121

362.8951

210,8340

455, 1421

275.0872

307. 0439

181. 6476

286, 5741
80.8092

373,5322

805.6792

313,7392

218.5636

251.9348

220, 1292

506. 0466
83. 1531

288, 2001

289.,2236

224,0720

Su6, 3857
45.7480

326.2352
85. 2364

$22.4059

28.9717
38.8216
38.9684
33.5899
29.7556
31,4767
31.5989
31.3510
30,8743
33.5142
31.7039
33,7647
31.6197
31.2020
30,8860
36, 1891
37.9793
38,5226
32.3288
33,1554
35,7367
31,3258
35,1617
32.3707
31,6709
32,1580
32.9905
35.1390
32,5101
38,3859
38,1160
36,3295
35,2249
§0.8046
33,9575
33.8066
34,8599
36,4273
35.9907
36.6882
33.7364
81,5765
36,0250
36.1530
37,3453
34, 1491
45,7480
36, 2484
42,6182
34,8271
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476
477
478
479
480
481
482
883
484y
485
486
487
488
489
490
491
492
493
4914
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
51
512

0.0070
0.0035
0.0243
0.0035
0.0060
0.0034
0.0032
0.0067
0.0029
0.0232
0.0u61
0.0030
0.0076
0.0075
0.0034
0.0032
0.0147
0.01u6
0.0029
0.0036
0,0054
0.007
0. 0047
0.0026
0.0819
0.0035
0.0034
0.0103
0.0031
0.0029
0.0067
0.0400
0.0031
0.0028
0.0098
0.0028
0.0129

7.0000
14,0000
2,0000
14,0000
8.0000
14,0000
15.0000
7.0000
16,0000
2.0000
1.0000
15.0000
6,0000
6.0000
13,0000
18.0000
3.,0000
3.,0000
15.0000
12,0000
8.0000
6.0000
9,0000
16. 0000
1.0000
12,0000
12,0000
4.0000
13,0000
13,0000
6. 0000
1.0000
13,0000
14,0000
4.0000
13,0000
3.0000

7.9373
11, 2250
4,2426
11,2250
8. 4853
11,2250
11.6190
7.9373
12,0000
4.24826
3.0000
11. 6190
7. 3885
7. 3485
10. 8167
11, 2250
5. 1962
S. 1962
11,6190
10. 3923
8, 4853
7. 3485
9,.0000
12,0000
3.0000
10,3923
10. 3923
6, 0000
10,8167
11, 2250
7. 3885
3,0000
10. 8167
11, 2250
6,0000
11, 2250
Se. 1962

262.8604
893.9922
86. 84806
897.8593
300. 6247
500.9408
535. 3425
269, 3603
571.8179
88.5719
48.0402
S544.6977
238.609%
239.8&329
83,0563
518,5639
130. 1654
130. 6121
557, 9568
§56. 9109
317. 6751
246.0816
355.7140
602.0170
50. 3990
866.,3276
467.9082
174, 6764
506.,6400
583,8452
253.6908
51,6036
513.5010
551, 2000
178.83%2
554.899%
139, 2730

37.5515
35, 2852
43,2203
35.5328
37.5781
35.7815
35.6895
38,4800
35.7386
88,2860
48,0802
36,3132
39,7682
39.9055
37.1582
37,0803
83,3885
43,5374
37.1971
38.0759
39,7094
81,0136
39,5238
37.6261
50.3990
38.8606
38.9923
43,6691
38,9723
38.8461
42,2818
51,6036
39.5001
39.3714
84,7085
39.6357
46,6243
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V. CONCLUSION: IMPLEMENTATION OF THE GKD ALGORITHM

WITH SAMPLING FOR A LARGE-SCALE INVENTORY SYSTEM

1. INTRODUCTION

This chapter concludes the studies in Chapter II. III and IV,
in which we examined the problem of specifying single-item service
objectives in a multi-item inventory system subject to an overall
service objective. A list of the notation we use may be found at
the end of.Chapter 11.

In that chapter we formulated this inventory problem as a con-
strained nonlinear program (NLP) and developed the Generalized
Knapsack Dua]%ty (GKD) Algorithm to solve it. This algorithm finds
the Lagrange constraintmultiplier of the NLP and from it computes
the (s,S) policies for all items in the inventory system. In Chapter
I11 we reported computational experience with several 32-item inven-
tory systems which have a structure typical of many real-world
inventory systems. This structure is called an 80/20 value structure,
and is one in which twenty percent of the items represent eighty
percent of the value of the systems, where value is taken to be hyu.
These items are the high-value items, and the other eighty percent
are the low-value items. In order to investigate the performance of
the GKD Algorithm, we assumed that the demand distribution is Negative

Binomial and compared the (exact) expected holding cost of the (s,S)
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policies produced by the GKD Algorithm with the (s,S) policies pro-
duced by a method popular with managers, the Identical Service
Approach  (The replenishment costs for these methods are the same,
and represent about half of the total expected cost ). Given a tar-
geted overall service-level a (we targeted 85%), the Identical
Service Approach sets (s,S) policies by the Power Approximation of
Ehrhardt (Mosier [1981]) so that every item has a service-level a.
(The GKD Algorithm varies individual service-levels while still
maintaining an average overall service-level a.) We showed that
there is a significant cost savings when using the GKD Algorithm
rather than the Identical Service Approach to manage these inventory
systems.

In Chapter IV we reported several sensitivity tests performed
on the base-case and worst-case inventory systems of Chapter III.
In particular, we performed sensitivity tests on the Di and on the lower
bounds for Si' We also examined several sampling schemes and sizes
for inventory aggregation for larger (128- and 512-item) systems.
Since most real-world inventory systems contain thousands of items,
typically managers sample from the system and make decisions about
policies for all items in the system based on the sample. We ex-
amined sampling schemes (both random and nonrandom) of several sizes
which maintained the 80/20 value structure and the overall service
constraint weights. We summarize the conclusions and recommendations

given in that chapter as follows:
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1. Specify all D, using Ehrhardt's Power Method (Mosier [1981]).

2. Specify the lower bounds on Si as Di+rui*, where r is taken as
large as possible while still including as feasible the targeted
service-level and while the expected holding cost is significantly
smaller than that of the Identical Service Approach.

3. Sample about 32 items using a central nonrandom uniforn sampling
scheme to create the inventory subsystem for aggregation (sample
items from a stratum containing items 1,2,...,N by taking items
N/2M, 3N/2M, SN/2M,...,(2M-1)N/2M, where the fractions are rounded
to the nearest integer). Recompute the holding and replenishment
costs to maintain the value structure of the system, and recompute
the constraint weights to maintain the constraint-weight structure

of the system (multiply the costs by I hi”i/-z-hi“i and the

3 1in 11H1~
system sample
constraint weights by N/M for each of the M items sampled from 1,2....N).
In Section 2 of this chapter we prescribe a detailed implemen-
tation procedure of the GKD Algorithm with sampling for a large-scale
inventory system with an overall service objective. In Section 3 we
report the results of implementing this procedure for the 512-item
system described in Chapter IV. Section 4 contains conclusions and

directions for future research, and the Appendix contains a listing

of the FORTRAN code of the GKD Algorithm and related programs.

2. IMPLEMENTATION PROCEDURE
Based on the conclusions and recommendations of Chapters II,

111. and IV, we offer the following procedure to specify (s,S)



policies in large-scale inventory systems. Our empirical evidence

suggests that this procedure is a significant improvement over the

Identical Service Approach often used by managers, capable of sub-

stantially reducing operating costs in an inventory system with an

overal] service objective.
The procedure is as follows:

1. Determine the desired range of service-levels and the targeted
service-level. This is a managerial decision, but typically the
range is 80% to 90% with a target of 85%.

2. Determine r as follows. For r =0,.5,.6,.7,.8,.9 and 1, input
the following values to the program LSMISS (see the Appendix
to this chapter):

TITLE = user-supplied title
LBAL

smallest service-level to consider

UBAL = largest service-level to consider

INCRAL = service-level increment between LBAL and UBAL
NSIG = 8

MAXFN = 100

NI = number of items in inventory system

SCHEME =1

ENTIRE = O

STRA(1) = NI
NUMB(1) = about 32,

Using the output from LSMISS, graph the expected holding costs

for the various service-levels for each value of r and for the

149



150

Identical Service Approach (compare Figure 34). Take as r the
largest value of r such that LBAL is achievable and such that
there is an acceptable cost savings below that of the Identical
Service Approach.

NOTE 1:
The GKD Algorithm assumes that the demand distribution is
Logistic, an approximation to the Normal distribution (Section
2 of Chapter II). If the actual distribution is not well-
approximated by a Normal distribution, then the service-level
of the (s,S) policies produced by the GKD Algorithm may be dif-
ferent from the specified service-level. The user may there-
fore have to try various LBAL, UBAL and INCRAL. If the service-
level specffications are as described in Step (1) and the demand
distribution is well-approximated by a Gamma or Negative Binomial

distribution, our experience suggests using

LBAL = .75

UBAL = .85

INCRAL = .01.
NOTE 2:

We recommend a sample size (NUMB(1)) of about 32 because in our
experience larger samples do not significantly improve the
performance of the sampling scheme.

NOTE 3:

The parameters NSIG and MAXFN are used to terminate IMSL sub-
routines in the GKD Algorithm. We have found the recommended

values to be satisfactory in every experiment performed in this paper.
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3. Using the output from LSMISS and linear interpolation, determine A¥
for a targeted service-level. Input the following values to
the program MISSNLSI (see the Appendix to this chapter):
TITLE = user-supplied title
LS = »*
NSIG = 8
MAXFN = 100
NI = number of items in system
0 write output only to printer
ouT =
1 write output to both printer and an external file
The output of MISSNLSI contains all single-item policy specifi-
cations.
NOTE:
The parameter OUT allows the user to save the output of MISSNLSI

in an external file. See the Appendix to this chapter for details.

3. EXAMPLE

In the previous chapter we performed Steps (1) and (2) of
this procedure for the 512-item base-case inventory system, and
decided to use r=.6. We now perform Step (3) for this system. We
used the output from LSMISS for the scheme described in Step (2) of
the procedure, which corresponds to Experiment 1 of Table 3. For
this experiment, Figure 43 reports the values of X* for the service-
levels near 85%. our targeted service-level. Linear interpolation

gives A* = 4207. The output from the program MISSNLSI is summarized
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in Figures 44, 45, and 46. The operating characteristics of the
individual items follow the same pattern noted in Chapter III. in
that the high-value items are stocked at Tow service-levels and the

low-value items are stocked at high service-levels.

4. CONCLUSIONS, FUTURE RESEARCH DIRECTIONS
Using the GKD Algorithm of Chapter II and the extensive com-
putational and sensitivity experience reported in Chapters III and

IV, we have described a detailed implementation procedure of the GKD

Algorithm using sampling to manage a large-scale inventory system with

an overall service objective. We have shown that for inventory

systems with a structure typical of that found in many real-world

inventory systems, this procedure is practical and results in a

significant cost savings below that of the Identical Service Approach

often used by managers.
We recommend the following future research directions:

1. .This procedure should be tested in a statistical environment in
which the moments of the demand distribution are estimated from
recent demand history. In light of the results reported in
Ehrhardt [1976], Estey and Kaufman [1975], Klincewicz [1976a],
MacCormick [1974, 1977], and MacCormick et al. [1977], the
performance of the procedure will probably degrade somewhat,
and this should be investigated. Considering the cost savings,
however, we conjecture that in a statistical environment our
procedure will still result in significant cost savings below

that of the Identical Service Approach.
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The variable r should be included in the GKD optimization

routine. This would improve accuracy and make an implementation
procedure simpler in that Step (2) of the procedure would be
eliminated.

The GKD Algorithm assumes the demand distribution is Logistic,
whi]é demanq distributions are typically skewed 1ike a Gamma or
Negative Binomial distribution. As reported in Section 3 of Chapter
111, this cah lead to significant degradation in algorithm per-
formance (although we showed it is possible to improve such
performance). Moreover, as discussed in Note 1 under Step (2)

of our implementation procedure, the actual service-level of

the policies produced by the GKD Algorithm may differ from that
specified. We recommend that the Logistic distribution be replaced
by a distribution which better approximates a Gamma (or Negative
Binomial) distribution. The distribution to use is not obvious;
an examination of the proof of Theorem 8 of Chapter Il suggests
that the distribution function must have a fairly simple form in
order to prove algorithm convergence in the way we did (x(8) needs
to be rational in 6). We have been unable to find a distribution
that better approximates a Gamma distribution and yet is simple
enough to allow an extension of the proof of Theorem 8.

Inventory systems with a value structure different than 80/20
should be studied. Based on previous but unreported experiments,
we conjecture that the algorithm performance will degrade for

X/20 systems as X decreases.
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APPENDIX TO CHAPTER V

This appendix contains a listing of the FORTRAN computer program
for the programs LSMISS and MISSNLSI. The subroutines EXACT and POWAPP
are the same for both of these programs, and the subroutine COMPAR

is slightly different for the two programs.



nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

159

PROGRAM LSBISS(NL) : LABGE = SCALE
MULTI - ITEN (S,S)
NORMNAL DEMAND DISTRIBUTION APPROXINATION
LOWER BOUNDS ON BIG S
VERSION DATED C7,20/83
THR INPOT IS PRCH CARDS

TITLE = USEE - SUPPLIED TITLE (LE 36 ALPHA CHARACTERS)

NI = NUSBER OF ITEAS (NI LE 512)
K = SEI-UP ORDERING COST

L = LEADTIME ¢ 1

HO = OUNIT HOLDIMG CCST

PU = MEAN DEBAND

SD = DENAND STANCARD DEVIATION
wT?T = CONSTRAINT WEIGHT

NSIG = MUMBER OF SIGNIFICANT DIGITS DESIBED FROM THE INSL
ROUTINES ZBRENT AND ZFALSE

EPS = 1/(10 *# NSIG)

MAXPN = MAXINUM NUNBER OP ITERATIONS ALLOWABLE BY USER POR
THE IMSL RCUTINES ZERENT AND ZFPALSE

IRR = (OUTPUT) EREOR PARABETER FRON INSL BOUTINES AND EIACT

THE POLLOWING ARE INPUT TO OB CORPUTED BY GKD

LITS = LITTLE S
BIGS = BIG S
D = REORDER QUANIITY BIG S = LITTLE S
BSL = R * L & N0
= LOWER BOUNL FOR BIG S (MAY BE INCREASED BY GKD)
AL = OVERALL SERVICE-LEVEL (0 < AL < 1)

THIS PROGRAM COMPUTES POLICES FOR
Al = LBAL, LBAL4INCRAL, LBAL{2*INCRAL, . » . ,UBAL

THE FOLLOWING ABE CCNFUTED BY EHRHARDT'S POWER HETHOD

LITTLE S
BIG S

FLITS
PBIGS

non

THE FOLLOWING ARF CCMFUTED EXACTLY

HGKD = EXPECTEL HOLDING COST FOR GKD POLICIES

1GKD = EBXPECTED TOTAL COST FOR GKD POLICIES

AVSL = WEIGHTEL-AVERAGE SERVICE-LEVEL FOR GKD POLICIES

HPOW = EXPECTEC HOLDING CCST FOR POWER POLICIES
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TPO¥ = EIPECTED TOTAL COST FOR POWEBR POLICIES
PAVSL = WEIGHTED-AVERAGE SERVICE-LEVEL FOR POWER POLICIES

THE PCLLOWING PARAMETERS ARF USED IN THE STRATIFIED SARPLING
SUBROUTINES STSAEP AND BNDSTS

SCHERE = 0 DC RCT USE ANY SABMPLING SCHERE

1 USE STRATIFED SANPLING SCHEME

2 USE BANDOM STRATIFED SANPLING SCHEKE
SA8P = NUMBEB CF ITENS IN THE SAMPLE i
BUAST = NUBBER OF STRATA TO SARPLE PRON { ON
STA(I) = LAST ITEM IN STEAIA I | INPUT
NUNB(I) = NUNBER CF ITEMS FBOM STATA I IN TBE SAMPLE |

TFE PCLLOWING VARIABLE IS NEEDED ON INPUT IF SCHENME = 2

SEED = SEED FOBR PSPULCO-BRANDCHM NUMBER GENERATOR GGUD (INSL)
BEQUIEE SEED IN (1,2147483674)

ITEE(1), » » oo ITEN(SANP) ARE THE ITEMS IN THE SANPLE ]} OOTPUT
ENTIRE = 0 OTHERWISE

1 EVALUATE EXPECTED COSTS,ETC., POR ENTIRE INVENTORY
SYSTEN (THIS IS POB TESTING)

4208800002 SR 0S8R R PR SRRRREERRSR RIS SEEFS2ERNRENRERD

INPUT THE SYSTENM FABAMETERS AS FOLLOWS:

TITLE

LEAL UBAL  INCRAL NSIG  HMAIFN NI

BT(1) D({1) K(1) L(1) HO(Y) mMU(1) sD(1) E({1)
¥T(2) D(2) K({(2) 1(2) RO(2) MO(2) SD(2) R({2)
WT (X) D(¥) K}u) L}N) ao}n; nU (N) so}u) R (N)

SCHLAE ENTIERE

SARP BUNST _
TRA(1) STRA(2) « » » STRA(NUNST) | 16 TO A
NUNB(1) NUNB(2) « . « NOMB(NUAST) _| LINE

SEED ] ONLY IF SCHEBE = 2
THE INPOT FOBMAT IS:

XIXXXIXIXXXXXZXXXXXXXXXXXXXXXXXX

Y. XXXXX XoXXXXX X, XXXXX XXXXXX XXXXXX XXXXXX

IXK. XXXX XXX.XXXX . . o XXX, XXXX XXX, XXXX
XXX. XXXX XXX, XXXX . . . XXXo XXXX XXX, XXXX
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XX, XXXX XIIX.XIXX IXX,XXXX XXX.XXXX
IX XX

IXXX XXIXX

XXXX XXXX . o N XxIxx
IXIX XXXX . » . XXX

IXXXXXXXXX

BOT MEEDED IF
SCHEME = 0

ALL DATA STABTS IN COLUMN 1 (EXCEPT TITLE STARTS IN COLURN 2),
AND THERB IS A SINGLE SPACE BETWEEN EACH DATA ENTRY

Otll‘."'t‘.‘liiliiill.lﬂi".l'llli‘tl“-.l..l!‘l.‘.,itllil“ltill

REAL®*8 LITS (512),FIGS(512),BSL(512),D (512)

REAL®8 BSL1(512),D1(512),BSLB(512)

BEAL®S K(512),1(512),HO(512) KU (512),5D(512) ,¥T(512)
FEAL*8 K1(512),L1(512) ,HO1(512) ,AU1{512),5D1(512) ,¥T1(512)
E3AL®B AL,EPS,LBAL,UEAL,INCEAL,LS(20),L51,5LI,SUn,SEED,E

INTEGER NI, ¥,®,NSIG,MAXFN,TITLE(S),J,NUN,ITENR(512),ENTIRE
INTEGER SCHEME,SAMP,NUMST,STRA(512),NUNB (512),1SEED

READ(1,3) (TITLE(J),J=1,8)
3 PORMAT (BAY)

BEAD (1,5) LBAL,UBAL,INCRAL,NSIG,MAXFN,NI
S FORMAT (3(F7.5,1X),3(16,1X))

EPS = 10.%# (-NSIG)

po 10 I = 1,NI
BEAD(1,8) WT(I),D(I),K(I),L(X),RO(I),NU(I),SD(I),E
BSL(I) = D(I)4E*L(I)*nU(I)

8 FORMAT(8(FB.4,1X))

10 CONTINUE

FEEAD(1,11) SCHEME,ENTIRE
11 FORNAT (I12,1X,12)

1P (SCHEME,EC.0) GO TO 19

FEAD(1,15) SAMP,NUMST

NUEST, STRA AND NUMB MUST EE CHANGED AS POLLOWS FOR INPUT TO
THE SUBROUTINES STSANP AND ENDSTS---SEE THE DOCUMENTATICN FOR
THESE SUBROUTINES

BUNST = NUNST41?

STEA(Y) = 0

NUEB (1) = O

KEAD(1,15) (STRA(I),I=2,NUNST)
FEAD (1,15) (NUMB(I),I=2,NUABST)
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15 PORMAT (16 (I4,1X))

ISEED = 0

IF (SCHEME.EQ.2) BEAD(1,16) ISEED
16 FORMAT (110)

SEED = ISEED

MAKE THE WEIGH1S WT INYO EQUIVALENT CONVEX WEIGHTS WMT

19 sum = 0.
po 20 I = 1,NI

20 SUM = SUR4NT (I)
SuUR = 1,0D0/SDN
DO 25 I = 1,NI

25 WT(I) = SUB*MT(I)

M = 24(UBAL-LEAL)/INCRAL
1P (SCHEME.EC.0) GO TO 300

CREATE THE INVENTORY SUBSYSTEN VIA STRATIPIED SANPLING AKD PUT
THR SUBSYSTER IN N, Ki, L1, - » » «BSL1

IP (SCHEME.EC.1) CALL STS&HP(HI,K,L,HO,HU,SD,D,UT,BSL,N,K1,L1,

2 HO1,MU1,SD1,D1,¥T1,B5L1,SARP,
& NUNST,STRA, NUNB,ITEN)
1P (SCHEBE.E(C.2) CALL RNDSTS (NI,K,L,BO,NU,SD,D,¥T,BSL,¥,K1,L1,
3 HO1,MU1,SD1,D1,¥T1,BSL1,SARP,
& NOMST,STRA,NUNB,ITEN,SEED)

po 200 11 = 1,B
AL = LBAL4(II-1.D0)*INCRAL

SLI = AL
bo® = N
po 30 1IIXI = 1,8
30 BSLB(III) = ESLY(I1I)

CONPUTE LANBCA-STAR (LSI) USING THE GKD ALGCRITHN WITH TBE
INVESTORY SUBSYSTEN

CALL GKD(!UH,Il,HC1,HU1,SE1,HT1,D1,SLI,LITS,BIGS,BSLB,EPS,
& NS1G,XAXPN,LSI)
L3(11I) = LSI

WRITE(3,40) SCHEME, (STRA(I),I=2,NUNST)
40 FORMAT(' KESUL1S FOB INVENTORY SUBSYSTEM'//' SCHENE ',12//
& * STRATA ',15(815/)/)
WRITE(3,41) (NUME(I),1=2,NUNST)
41 FORMAT(® NUMBER *,15(8I5/)/)
MRITE(3,42) (ITEM(I),I=1,SANP)
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42 FORMAT(* ITEM  *,15(815/)/)
BRITE(3,43) ISEED
43 FORBAT(* SEED = *,120/)

CCHPU~B THE (UNIPORN SEEVICE-LEVEL) POWER APPROXIBATION POLICIES
AND CCMPARE THEIR ASSOCIATED COSTS WITH THE COSTS ASSOCIATED WITH
TEE GEKD POLICIES

CALL COMPAR(N,K1,L1,H01,801,5D1,8T%,BIGS,LITS,TITLE,LSI,AL)
1P (ENTIRE.EQ.0) GO TO 200

CONMPUTE THE OPTINAL POLICIES ASSOCIATED WITH THE MULTIPLIER
LANBDA-STAR (LSI)

CALL BIGSLS({NI,L,HO,NU,SD,D,8T,BSL,LSI,EPS,NSIG,MAXFN,BIGS,LITS)

WRBITE(3,85)
45 PORMAT(*1°)
WRITE(3,50) SCHEME, (STRA(I),I=2,NUNST)
S0 FPOBMAT(' BRESULTS FUR INVENTORY SYSTEN'//®' SCHERE *',I2//
€ * STRATA ',15(815/)/)
WRITE(3,51) (NUMB(1),I=2,NUBST)
51 PORNAT(® NUMBER *,15(815/)/)
WRITE (3,52) (ITEN(I1),1=1,SANP)
S2 PORMAT(' ITEN  *,15(8I5/)/)
WRITE(3,53) ISEED
53 FPORNAT(®* SEED = *,120/)

CCHPUTE THE (UNIPORN SERVICE-LEVEL) POWER APPROXINATION POLICIES
AND CCMPARE THEIR ASSOCIATED COSTS WITH THE COSTS ASSOCIATED WITH
THE BIGSLS POLICIES

CALL CONPAR(NI,K,L,HO,NU0,SD,¥T,BIGS,L1TS,TITLE,LSI,AL)
200 CONTINUE
STQP

300 Do 350 II = 1,M
AL = LBAL4 (11-1.D0) *INCRAL
SLI = AL
NUN = NI
DO 320 III = 1,NI

320 BSLB(IXIIXI) = BSL(III)

CCHPUTB LAMBLCA-STAERE (LSI) USING THE GKD ALGORITHN WITH THE
ENTIRE INVENTORY SYSTEN

CALL GKD(NUM,1,HC,MU,SD,®T,D,SLI,LITS,BIGS,BSLB,EPS,
[3 NSIG,MAXFb,LSI)
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COBPUTE THE (ONIPOKM SEBRVICE-LEVEL) POWER APPROXIBATION POLICIES
AND CONPARE THEIR ASSOCIATED COSTS WITH THE COSTS ASSOCIATED WITH
TER GKD POLICIES

CAMLL COMPAR(¥I,X,1,80,8U,SD,WT,BIGS,LITS,TITLE,LSI,AL)
350 CONTINUE

sSTOP

END

SUBROUTINE STSAMP(NI,X,L,HO,B0,SD,D,WT,BSL,N,KV,L1,HO1,HU1,
& SD1,DV,&T1,BSL1,SANP,NUBST,STRA,NURE, ITEH)

STSANP : STRATIFIED SAMNPLING

THIS SUBROUTINE TAKES A STRATIFIED SABPLE FROS THE INVENTORY
SYSTES ACCORDING T0 THE POLLOWING PARANETERS:

SARP = NOMBEE OF ITEMS IN THE SAMPLE

NUAST = NUBBER OF STEATA 4 1

STRA(1) = 0

STBA (I41) = LAST ITEM IN STRATA I, I =1, 2, . » - , NUNST-1
NUNB(1) = 0

NUNB (I+1) = NUMBEBK OF ITEMS IN THE SANPLE PROM STRATA I,

1 = 1' 2' L L L r i NUHST-‘

FOR A GIVEN STRATA WITH NN ITENS FROM WHICH M ARE TO BE
SANPLED, THE ITEBRS NN/2M, 3KN/28, SNN/2K, o« « « o (2HM-1)KN/2N
ARE TARKEN, WHERE THESE PRACTIONS ARE BOUNDED-OFF TO THE NEAREST
INTEGER

THBSE 1TESS AMRE DENOTED

ITEN(Y), ITEN(2), o« » o, ITEN(N)

THZ CONSTRAINT BEIGHTS (WT), THE UNIT HOLDING COSTS (HO),

AND THE BEPLENISHEMENT SET-UP COSTS (K)

ARZ RECOMPUTED TC BREFLECT THE IDEA OF REPLACING ITEMS NOT IN
TH® SANPLE BY THOSE ITESNS NEAR THEM IN THE SAMPLE (IE, THOSE
IN THE SAME STEATA)

IN PABTICOLAB, TEBESE COSTS ARE HULTIPLIED BY THE TOTAL

VALOE OP THE STRATA (VALUE = He¢MO) DIVIDED BY THE TOTAL VALUE
OF THE SANMPLE PECM THAT STERATA

TtE WEIGHT POR EACH ITEM IN A GIVEN STRATA IS TRE SAME, BEING
ThB TOTAL WEIGHT OF THE STRATA DIVIDED BY THE NUMBER OF I1TEMNS
SANPLED FPRON THE STRATA

REAL®8 K(512),L(512),H0(512) ,M0({512) ,SD(512),¥T(512),
3 D(512) ,BSL (512)

REAL®8 K1(512),L1{512),H01(512) ,MU1(512),SD1(512),

3 WT1(512),C1(512),BSL1(512)

REAL®*8 WEIGHT,RATIO,XN,XNSTR,HALP,ZERO, HWT,HSANUT
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INTBGER SAMP,NUNST,STEA(512) ,NOUMB(S512) ,ITEN(512),PIRST,LAST
INTBGER ¥1,8,1,3,13,131J,3J,NDNST,B,STRAI,NSTR

DATA HALP,ZEBRO/0.5D0,0.0D0/

B = SANP

13 = 0

DO 60 I = 2,NONST
STRAI = STRA(I-1)
B = NOMB(I)

18 = 8

IF 8 = 0, THEN NC ITENM IN THE SANPLE IS TO BE TAKEN FROM THIS
STRATA

1P (B.EQ.0) GO TO 60

‘BSTR = STBA(I)-SIRAI
XNSTB = NSTR

BATIO = XBSTRB/IN

BWT = ZERO

WEIGHT = ZEBRC

DO 20 J = 1,KRSTE

JJ = STRATI4J

B¥T = HWT4HO (JJ) *NU (JJ)

20 WEBIGHT = WEIGHT4WTI (JJ)
WEIGHT = MEIGHT/IN
BSANET = ZEBC

FIBST = 1IJ41

Do 40 J = 1,8

I3 = 1J41

IJIJ = STBAI4(J-HALEF)*BATIO4HALF
ITEN(IJ) = IJIJ

K1(IJ) = K(IJI1J)

L1(IJ) = L({IJ1J)

H31(IJ) = HO(1JIJ)
BUT(IJ) = AU (IJID)
SD1(IJ) = SD(IJ1J)

D1(IJ) = D(IJ1J)
BSL1(1J) = BSL(IJ1J)
HSANWT = HSANNI4HO1(IJ)*NU1(IJ)
¥T1(IJ) = WEIGHT
80 CONTINUE
LAST = PIRST{M-1
HUT = HWT/HSAEWT
DO 50 J = PIBST,LAST
HO1(J) = HWT*HO1(J)
50 K1{J) = HET*K1(J)
60 CONTINUE
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BETURN

END

SUBROUTINE RNDSTS (¥I,K,L,HO,M0,SD,D,¥T,BSL,¥,K1,L1,H01,00U1,
3 $D1,D1,¥T1,BSL1,SABP,BUNST,STRA,NUMB, ITEN,
(3 SEED)

BNDSTS : RABDOR STRATIFIED SABPLING

THIS SUBROUTINRE TAKES A BANDOM STRATIFIED SANPLE FROM THE
INVESTORY SYSTENM ACCCRDING TO THE FOLLOWIKG PARABETERS:

SARP = MNUBBEF OF ITEMS IN THE SANPLE

NURS?T = BUMBEBD CP STRATA 4 1

STRA (1) =0

STRA(I4+Y) = LAST ITEN IB STRATA I, I =1, 2, » » » , NONST-1
NURE(Y) =0

NOMB(I41) = NUNBEF CF ITENMS IN THBE SAMPLE FPRCM STEBATA I,

1 = ‘, 2' e o e NUHST"‘
SEED = SEED POB PSEUDO-RANDOM NOUMBER GENERATOR GGOD (IHNSL)
REQUIBRE SEED IN (1.0D0,2147483674.0D0)

FOR A GIVEN STRBRATA WITH NN ITEMS FRON WHICH B ARE TO BE
SAAPLED, THE ITEFS ARE SAMPLED BRANDOMLY ACCORDING TO A DISCRETE
UNIFORX DISTERIBUTION

THESE ITENMS ABE DENCTED

ITEB (1), ITEN(2), « « o, ITEN(N)

ThE CCESTRAINT WEIGHTS (¥T), THE ONIT HOLDING COSTS (HO),

AND THE REPLENISHBENT SET-OP COSTS (K)

AkE RECOAPUTED TC BEFLECT THE IDEA OF REPLACING ITENS NOT 1IN
1tE SABRPLE BY THOSE ITENS NEAR THEN IN THE SAMPLE (1E, THOSE
IN THE SAME STRATA)

IN PARTICULAB, THESE COSTS ABE MULTJPLIED BY THE TOTAL

VALUE OF THE STRATA (VALUE = H*BUj) DIVIDED BY THE TOTAL VALUE
OF THE SAMPLE PRCH THAT STRATA

THE WEIGHT PCR EACH ITENM IN A GIVEN STRATA IS THE SANE, BEING
TEE TOTAL WEIGHT CF THE STRATA DIVIDED BY THE NUNBER OF ITENS
SABPLED FBONM THE STRATA

REAL*3 K (512),L(512),HO (512) ,RU(512),SD(512) ,NT(512),

8 D(512) ,BSL({512)

KBAL*8 K1(512),L1(512) ,HC1(512) ,AU1(512),SD1(512),
5 WT1(512),01(512) ,BSL1(512)

FBAL®8 WEIGHT,PATIO,XN,XNSTR,ZERO, H¥T,HSANNT,SEED, DSEED

INTEGER SARP,NUNST,STRA(512) ,NUNB(512) ,ITEN(512),FIRST,LAST
INTEGER NI,¥,1,J,1J,131J0,JJ,N0NST,N,STRAI,NSTR, INDEXI,ONE,
(3 IB(1)
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1P B = 0, THEN MC ITEN IN TBE SAMPLE IS TO BE TAKEN FPROM THIS

DATA ZERO,ONE/0.0DO, 1/

DSEED = SEED

N = SARP

13 = 0

DO 60 I = 2,RUnNS51T
STFAI = STRA (I-CME)
B = NONB(I)

I8 = N

STRATA

20

25

30

4o

1P (M.EQ.0) GC TO 60

BSTR = STRA(I)~-STRAI

X8STR = MNSTR
FATIO = XINSTR/IA
H¥T = ZERQ

WBIGHT = ZEBRO

DO 20 J = CNE,NSTR

JJ = STRAI4J

HWT = BwT4HO (JJ) *BU (JJ)

¥BIGHT = WEIGHT4bMT (JJ)
WBIGAT = WEIGHT/XN
ASAAWT = ZEBO

FISST = IJ4OKE

DO 40 J = CNE,H

CALL GGUD(DSEELC,N3TR,ONE, IR)
1J1J = STEAI4IR (CNE)

DO 30 INDEX = CNE,IJ

1P (I1JIJ.EC.ITEN(INDEX)) GO TO 25
CONTINUE

1J = IJ4ONE

ITEN (IJ) = IJIJ

K1(1J) = K(IJ1J)

L1(1J) = L(1J1J)

BO1(IJ) = HO(1J1J)
MO1(1IJ) = BU(IJIJ)
SD1(1J) = SD(1J1J)

DY(LJ) = D(IJIJ)

ESL1({IJ) = BSL(1J1J)

HSAMWT = HSANRTHHCT (IJ) *MU1(1J)
§T1(1J) = WEIGHT

CONTINUE

LAST = FIBST{N-CNE-

HUT = HWT/HSANNT

DO SO J = FIBST,LAST

HO1(J) = HWT®HC1(J)

167
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50 K1(J) = HET®K1(J)
60 CONTINUE

RETURN

END

SUBROUTINE PIGSLS(N1,L,HO,nU0,SD,D,WT,BSL,LS1,EPS5,NS5IG,RAXFN,
& BIGS,LITS)

THIS SUBROUTINE CCMPUTES THE OPTIMAL (S,S) POLICIES ASSOCIATED
R1TH THE KUHN-TOCKER CCNSTEAINT MOLTIPLIER LANBDA-STAR (LSI)

COMBON /PINDTS/AI,BI,B1,FI,GI,HI,LAN

REAL*8 LI1S(512) ,BIGS(512)

BREAL*8 L (512) ,HO (512),8U (512),SD (512) ,¥T (512),

3 D(512) ,BSL(512)

REAL*8 EPS,LSI,L1,H0I,801,SDI,DI,ASI,NTI,TSI,LAN,

& BHI,QI,GAI,DEI,AI,BI,EI,FI,GI,HI,VART,VAR2,BTI,TUI,
3 Ksi,LPTUOI,BSLI,X,TUI,LB, 0B, ZERO,XONEL, HALF, CONST

INTEGER NI, NSIG,HMAXFN,BAX,ONE,CRTIR

REAL*8 LANTH
EXITERNAL LANTH

0.

ZERO =
ONE = 1
XONE = 1,
HALP = .5

CONST = 1,700436904

DO 60 I = ONE,NI

HOI = HO (I)

ROI = MO (I)

LT = L{I)

nsI = LI*AUI

$DI = SD(I)

KII = WT(I)

DI = D(I)

BHI = MUI/(DI4 ((MUI4(SDI*SDI/NUI))*HALF))
QI = XONE-RHI

GAI = CONST/(LI*SDI)
DEI = DEXF(GAI®*DI)

AL = DI*HOI
VAB1 = XCNE4DEI

BI = AI*(QI{VARY)
EI = AI®(DEI4CI*VARY)
FI = AI®QI®DEI

VARl = DI*RHEI®GAIX
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VAR2 = QI®*(DEI-XCNE)
GI = WTI® (VAB14VAR2)
RI = WTI® (YABV*DEI{VAR2)

DETERNINE BSL BY THE LABGEST VALUE OF THETA, TU, ABD HENCE THE
SEALLEST VALUE OF BIG S, SO THAT D (LANBDA)/D (THRTA) LE O,
GUABANTEEING THAT LAMBLA(THETA) IS INVERTIBLE O (0, TU)

IF THE USER-SUPPLIED BSL 1S GREATER THAN THIS, 1T BECOMES THE
BSL OSED

ETI = GI® (BI*HI®HI~GI®* (EI*BI-FI*GI))-AI*ARI®HI®HI
IF ETA(I) IS LESS THAN O, LANBDA(THETA) BAY NOT BE CONVEX, AND
THEEE IS BO GUABRANTEE THAT THE GKD ALGOEITHM WILL CONVEEGE TOU
A LOCAL BRINIRUB---THE USER SHOULD EXERCISE CARE

IP (ETI.LT.ZEEBC) WRITE(3,30) I,ETI

30 FORMAT(' ETA(',I6,') =*,E20.6," LT 0Y)

CNTR = -1

35 CHMTR = CMNIB4CNE

TJUI = (DEXP(GAI* (MSI-CNTK)))/DEI
KSY = (FI/RI)~-(AL/(GI*TUI*TUI))
VAE!l = GI4HI*TUI

LPTUI = KSI-(ETI/(GI®HI®*VAR1®VAR1))
1P (LPTUI.GE.ZERO) GO TO 35

BSLI = CHNTE4CI

I = BSL(I)

BSL (I) = ESLI

IP (X.GT.BS1I) BSL(I) = X

T0I = (DEXP(GAI* (MSI-(BSL(I)-D1))))/DEI

LAN = LSI
AAX = BAXFN
LB = ZERO
U3 = TU1

IF LANTH(UB) IS GREATER THAB ZERO, THEN THE FUNCTION
LAMEDA (THETA) POR THIS ITEM IS ALWAYS GKEATER THAN LANBDA-STAR,
AND SC BIGS FOR THIS 1TEM IS SET AT ITS LOWER-BOUND BSL

1P (LANTH (UB).GT.ZEBRO) GO TO 50

CALL ZBHENT (LABTH,EPS,NSIG,LB,UB,NAX,IER)
TS1 = UB

BIGS (I) = MSI-((CLOG(TSI1))/GAI)

PECAUSE OF ROUNC-OFF ERROR, IT NAY BE THAT BIG S LT BSL.
1P SO, SET BIG S = BSL,
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1P (BIGS(I).1T.BSL(I)) BIGS(I) = BSL(I)
LITS (I) = BIGS(I)-DI

60 TO 60

BIGS (I) = BSL(I)

LITS (I) = BIGS({I)-DI

CONTINUE

BRETURN

END

REAL PUNCTION LANTH®8 (THETA)

CONNON /FINDIS/AI,BI1,E1,FI,GI,H1,LAN
KZAL*38 AI1,BI,FI,FI,GI,HI,LAR, THETA

LANTH = lI+TBETl‘(Bl*LlB’GIfTHETA‘(EI-LAH‘HI+THETA‘FI))
RETORN
END

SUBROUTINE CCHFAE(SI,K,L,HO,HU,SD,HT,BIGS,LITS,TITLB,LSI,AL)

{HIS SUBROUTINE DCES THE FOLLOWING:

(M)

(2)

(3)
(4)

EVALUATES EXACTLY THE HOLDING AND REPLENISHBENT COST, AND
THE SERVICE-LEVEL FOR THE POLICIES (LITS,BIGS) UNDER THE
ASSUAPTICN OF NEBGATIVE-BINOMIAL DEEAND (IN EXACT)

COMPUTES APPRCXINATELY OPTIMAL (S,S) POLICIES WITH UNIFORYM
SEBVICE-1EVELS (1IN POWAPP)

PVALUATES THE POLICIES DESCRIBED IN (2) EXACTLY AS IN (1)
PRINTS TRE EESULTS OFP STEPS (1) AND (3)

REAL*8 LITS (512),PIGS(512)

PEAL®B K (S12) 4L (512) ,HO (512) ,NU(512),SD(512),¥T(512)

REAL®S AL,HBGKL,HPOW,TGKD, TPOW,LSI,LITSI,BIGSI

REAL®8 KI,L1,ROI,NUI,SDI,SLI,HCI,RCI,AVSL,PAVSL

INTBGER NI,TITLE (8)

AvYSL = 0,
HGED = 0.

TGKD = 0.

po 70 I = 1,NI
KI = K(I)

LI = L(I)

HO1l HO (I)

NOI = BU(I)

SDI = SD(I)

BIGSI = BIGS(I)

LITSI = LITS (1)

CALL EXACT(KI,1I,HOI,M0I,SDI,LITSI,BIGSI,SLI,HCI,RCI,IER)
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ir (IBER.EC.V) GO TO 300

AVSL =

AVSL4SLI®NT (1)

HGKD = HGKD4HCI
TGKD = TGKL4+HCI4BCI
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70 CONTINDE
PAVSL = 0.
HPOW = O,
DO 75 I = 1,N1
KI = K(I)
LI = L({I)
HJ3I = HO(I)
R3II = RU(1)
5D1 = 5D(I)
CALL POWAPP({KI,LI,HCI,BO01,5DI,AV5L,LITSI,BIGSI)
CALL EXACT(XL1,1I,HCi,MU1,5DI,LITS51,BIGSI,SLI,HCI,BCI,IER)
1Fr (IER.EC.1) GO TO 300
PAVSL = PAVSL4SLI®WT (1)
HPOW = BPOW{HCI
TPCW = TPOW{HCI4BCI
75 CONKTINUE

FRINT SUBMNMARY

WBITE(

WRITE(

3,98)

3,100)

100 FORBAT(T3,*SPECIFIED ALPKLA

- O I - I~ B ]

BRETURY

T3,'ACTUAL ALPHA (GKD)
T3,"ACTUAL ALPHA (POW)
73,'HBOLDING COST (GKD)
T3,*HBCLDING COST (POW)
T3,%TOTAL COST (GKD)
T3,'TOTAL COST (PO#)

300 WRITE(3,310) I

310 FOERMAT(®

&

THIS SUBROUTIEE COMPUTES THE SERVICE-LEVEL,

EETURN
END

LANBDA STAR =
AL,AVSL,PAVSL,HGKD, HPOW,TGKD,TPOW

(TITLE(J),J=1,8) ,LSI
98 FIFMAT(/TZ2,8A4,°

‘LR12,4,/7/7)

=v,T727,P11.4,7/,
=v,727,P11.4,//,
=v,7T27,P11.8,//,
=0,T27,F11.4,//,
', T27,P11.4,//,
=v,T27,F11.4,//,
=v,727,F11.4)

BIG S OR D > 2000 FOR ITEN',I6,/

* EXACT CANNOT EVALUATE THE (S,S) POLICY',//)

SUOBROUTINE EXACT (K,L,H,MU,SD,LS,BS,SL,HC,RC,IER)

HOLDING COST

AND

REPLPNISHMENT COST EXACTLY FOR THE POLICY (LS,BS) UNDER THE
ASSUMPTION OF NEGATIVE BINOMIAL DEMAND,
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K = SET-0P COST
L = LEADTINE 4 1
H = ONIT HOLDING COST

BU = HEAN DEBAND

SD = DENAND STANCABD DEVIATION

LS = LITTLE S

BS = BIG S

SL = STEADY-STATE SEBRVICE-LEVEL (FPREQUENCY OF PERIODS THAT
NO BACKOBRDER 1S PLACED)

HC = EBYPECTED HCLDING COST

FC = BXPECTED BREPLENISHMENT COST

REAL*8 K,L,H,N0,SD,1S,BS,SL,HBC,RC,P,Q,R,RS,PROB(2000) ,RALF,

& ¥B (2000),8(2000) ,81,RHO,VAR,SUN,PEOBI,ND,2ERO,XONE,XTHO
INTEGER S,D,CB1,082,08E,TWO,IER

DATA ONE,T¥O,2ERO,XONE,XTWO,HALF/Y,2,0,D0,1.D00,2.D0,.5D0/

S AND D ARE ROUNDED TO THE NEAREST INTEGER. WE USE THE REORDER
QUANTITY D = B1G S - LITTLE S - 1 BECAUSE WE USE THE VERSION OF
AN (S,S) POLICY THAT RBREQUIRES THAT AN ORDER BE PLACED WHEN THE
INVENTORY POSITICN DROPS STREICTLY BELOW LITTLE S.

PROB (I)
NB (I)

PEOB(NE RV = I-1)
PEOB(NB ¢ » « « + NB RV = 1-1)
PR -l
L
PHOB (RENEWAL FNC OF NB RV = I-1)

W

n(I)

IER = 0 EXACT WAS ABLE TO EVALUATE (S,S) POLICY
OTHERWISE

-

g
to

=0
BS4+HALY
{BS-LS-ONE) +HALF
BU/ (SD*5D)
IONE-Q

BU*Q/P

BS = L*R

VAR = Q®®*R

PROB (ONE) = VAR
NB(ONE) = (%**RS

oo O Nk
[T T T TR ||

RHO ICME/ (XCHE-VAR)

M (ONE) = VAK®*BHO

UB1 = S4{ONE

IP (D.GT.S) OUBY = D{ONE

1P (UBY.GT.2000) GO TO 100

DO 20 I = TWO,UB?

VAR = IONE/(I-XONE)

PROBI = PROB(I-ONE)#pe* (R41I-XTHO) *VAR
PROB(I) = PROBI
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40

45

C

50
60

70

WB(I) = NB(I-CNKE)®*P* (RS{+I-ITNO)®VAR

suM = ZERQ

UB2 = I-OME

DO 10 J = CNE,UB2

SUS = SUN{PROB (I-J4ONE) ¢A (J)
BR(I) = (PROBI4SUM)®RHO
CONTINOE

UB1 = D4OMNE

1P (UB1.G1.2000) GO TO 100
BD = ZERO

DO 30 I = CNE,UB1

ED = RD4M (1)

FHO = XOBE/ (ICNE4AD)

COFPUTE EXPECTED REFLENISHBMENT COST

RC = K#*RHOQ

CONMPUTE EXPECTED HCLDIEBG COST

IP (D.GT.S) UE1 = S{ONE
1P (UB1.GT.2000) GO TO 100
HC = ZERO

DO 40 I = ONE,UB?1

UB2 = S-I4THC

nI = n(I)

DO 40 J = CNE,UB2

HC = HC4 (UB2-J) *NB (J) *AI
CONTINUE

SUr = ZERO

UB2 = S4ONE

DO 45 1 = ONE,UB2

SUM = SUM4 (UB2-I)¢NB(I)
HC = He (HC4SUF)*RBHO

COMPUTE (STEADY-STATE) SERVICE-LEVEL

SL = ZERO
DO 60 I = ORE,UB1
SuM = ZEBO

UB2 = S-I{4TUC

DO 50 J = CNE,UB2

SUM = SUM4{NB(J)

SL = SL4¢SUN®H (I)

SUM = ZERO

UB1 = S4CNE

1P (UB1.G1.2000) GO TO 100
DO 70 I = ONE,UB)

SUM = SUN{NB(I)

SL = (SL4SUB) *RHO

173
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RETURN

IER = 1
ERTURN

ENC

SUBROUTINE PCWAPP(K,L,H,B8U,SD,ALPHA,LITS,BIGS)

TRIS SUBROUTINE CCPPUTES LITTLE S ANLC BIG S USING THE BEVISED
PONER APPROXIMATION METHOD (MOSIER(1981), TECH REPORT #18).
~HE SHORTAGE COST IS COMPUTED USING THE POWER APPROXIBATION
METHCD (EHRHARDT (1977, PP 18, &5), TECH BEPORT #12).

K = SET-0UP COST

L = LEADTIBE 4 1

H = UNIT HOLDING COST

MU = BEAN DENAND

SD = BEAN STANCARD DEVIATION

ALPHA = (STEADY-STATE) SERVICE-LEVEL, THE FREQUENCY OF PERIODS
WITHOUT EACKLCGS

LITTLE S

BIG S

1ITS
BIGS

([

F!AL‘B-P,H,K,HU,D,L,VL,SPL,Z,V,SD,LITS,BIGS,OHE,
& c1,c2,€3,C4,C5,C6,C7,C8,C9,C10,ALPRHA

DATA C1/1.3/
DATA C2/.494/
DATA C3/.506/
DATA CU/. 116/
DATA CS/.973/
DATA C6/. 183/
DATA C7/1.063/
DATA C8/2.192/
DATA C10/.0695/
DATA ONE/V./

\) SD*SD
YL VoL
SDL = DSQRT(VL)

He (ALPHA-C10) / (CNE-ALFHA)

CNE4 (VL/ (RU*BU))

C14 (HU®*C2)* ((K/H) $%C3) * (Z4*C4)
DSQKT (D*H/ (P*SDL))

= (C6/2)4C7-C8*Z

LITS = CS*L*NU4SCL*CY

BIGS = LITS4D

AND NN
©
nonoan
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RETUEN
END

SOUBROUTINE GKD(NI1,L,HO,mnU,SD,¥,DD,AL,LITS,B1GS,BSL,EP,NS,NX,LS)
GED (GENERALIZELD KNAPSACK DUALITY) ALGORITHA

NOTE ¢ THIS SUBECUTINE CHANGES THE VALUES OF THE INPUT
PARABETEF BSL

BT = WEIGHTS (MUST BE CONVEX)
RB = RHO

Gl = GABHNA

DE = DELTA

A=A

B = B

E = E

F =F

G =6

B = H

S = BU~-STAR = 1 * NU
ET = ETA

KS = KSI

T0 = THETA-UPPER

LPTU = LANBLCA-PRINE( THETA-UPPER )

LL = LANBDA-LCWEE

MLL = MAX( LARECA-LCWER )

FBLL = P( MLL )

L0 = LANBDA-OPPEF

BMLU = XAX( LANBCA-UPPER )

TS = THETA-STAR

LS = LASBDA-STAR

BSL = LOWER BCUED CN BIG S

MSL(I) = SERVICE-LEVEL POR ITEM I

CONST = 15 ® PI , (16 * SQET(3))

NI = NUMBER OF ITERS IN THE INVENTORY SYSTEN

¥ (AT PROGBAM BEGINNIKG) = NI

M (AT PROGKAM TEFMINATION) = NUMBER OF ITENS WITH BIG S GREATER

THAN BSL

PEKS : PERM(1), » o » , PEEN(N) ARE THE ITEMS WITH BIG S
GREATER THAN BSL. WHFN NI IS GREATER TEHAN X,
PERNM(N$1), o o » , PERN(NI) ARE THE ITEAS BITH
BIG S = BSL

COXMCM /INPUT/ WT,ALPHA,EPS,NSIG,MAXFN,N

CO¥MCN /LAM/ A,B,E,F,G,H

CO*MCM /PARAMS/ TU,TS,KH,DE,GA,D,XONE,ZEBO, PERN,ONE
CONNON /SUBR/ LAM,I

REAL*8 LITS (512),BIGS(512),BSL(512),%{512),DD(512)



oo

2 EaNeNg)

N0

5

6

176

BEAL®8 L(512),K0(512),A0(512),5D(512),¥T (512) ,ALPRA

BEEAL*8 D(512) ,RH (512),GA (512) ,DE (512) ,A(512) ,B(512) ,E(512),F (512),
$ 6(512) ,B(512),T0(512) ,AS(512),LL(512),L0(512) ,85L(512),
& T5(512) ,8LL,EALL,ALU,LS,2ERO,RALY,EPS,EP,AL

REAL®*8 CONST,HOI , MUI,LI,SDI,NTI,AL1,BI,EI,NTAVSL,

& DI,RHI,Q1,GAI,DEI,AI,BI,EI,PI,GI,HI,VART,VAR2,T0I,TSI,LU,

¢ LPTUI,BS1,LAB,BIGSI,THS,TEST,SUN,I,

& LE,0B,KSI1,ETI,BSLI,TL1,LLI,L01,XONE

INTEGER MN,ORE,NI,CNTE,PEEN(512),ILBE,J,INDEX,B,I11
INTEGEE WS,NSIG,BAXEN,HAI

KEAL*3 LAREDA,P,LTEL
EITEFNAL F,LTHL

LERO = O.
ONE = 1
IONE = 1,
EALE = .S
CONST = 1.700436904
ALPHA = AL
EPS = EP
KSIG = NS
BAXEN = NX
N = NI
DO 3 I = CNE,NI
NT(I) = W(I)

WRBITE(3,5)
FORNAT(*1*)

INITIALIZE THE PERMOTATION MATRIX PERN

DO 6 I = CNE,NI
PERN(I) = 1

INITIALLY SET LAMBLCA-STAR = 0, SINCE THIS IS HOW TO INTERPRET
LASEDA-STABR IF ALL POLICIES ARE SUCH THAT BIGS = BSL

LS = LERO
COMPUTE THE CCMNSTANIS

DO 20 I = CNE,NI

HOI = KO (I)
MOI = RO (I)
LI L(I)

HSI = LIen0I
) = BsI
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Spl = SD(I)

§TI = WT(I)

DI = DD (I)

D(i) = DI

BHI = MOI/(DI4((RUI4 (SDI®SDI/RUI))*RALF))
RH(I) = BHI

QI = XORE-BHI

GAI = CONST/(LI®SDI)
GA(I) = GAI

DEI = DEXIP (GAI®DI)
DE(I) = DII

AI = DI®HOI

A(I) = AI

VAR! = XCNE4DEI

BL = AI®(CI4VAR1)
B(I) = BI

EL = AI*(DEI4CI®*VAR1)
E(I) = EI

FI = AI*QI*DEI

F(I) = FI

VAR = DI®RRI®GAI
VAR2 = QI* (DEI-XCNE)
GI = WTI®(VARI4VAR2)
G(I) = GI

HI = WTI®(VAR1*DEI{VAR2)
B(I) = HI

DETERMINE BSL BY THE LABGEST VALUE OF THETA, TU, AND HENCE THE
SBALLEST VALUE OF BIG S, SO THAT D(LANBDA)/D(THETA) LE O,
GDARANTERING THAT LAMBDA(THETA) IS INVERTIBLE ON (0, TU)

I? THE USER-SUPPLIEL BSL IS GBEATER THAN THIS, IT BECOMES THE
BSL USED

ETI = GI®(BI®*HEI*HI-GI® (EI*HI~-Fi%Gl))-Al*HI®HI®*AH]I
IF ETA(I) IS LESS THAN O, LAMBDA(THETA) HBAY NOT BE CONVEX, AND
TBREZRE IS NO GUARANTEE THRAT THE GKD ALGORITHNM WILL CONVERGE TO
A LOCAL MINIBUM---THE USER SHOULD EXERCISE CAERE

1P (ETI.L1.ZERC) WRITE(3,10) I,ETI

10 FORMAT(' ETA(*,I6,') =°,E20.6," LT 0')

CETR = -1

7 CNTB = CNTR{ONE
TUI = (DEXP (GAI* (NSI-CNTP)))/DEI
KSI = (PI/HI)-(AI/(GI*TUI®*TUI))
VARY = GI{HI*TUI
LPTIUI = KSI-(E1I/(GI®*HI®*VARI*VAR1))
1r (LPTUI.GE.ZERO) GO TO 7
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BSLI = CNTE4DI

X = BSL(I)

BSL(I) = BSLI

17 (X.GT.BSLI) BSL(I) = X

TUI = (DEXP(GAI® (NSI-(BSL(I)-DI1))))/DEI
TO(I) = TUI

LLI = LARBDA(TUI,I)
LL(I) = LLI
CONTINUE

CORMPUTE BLL = MAX (LABMBDA-LOWER) = MAX (LANBDA(TU)), SO ALL
PUNCTICNS LABBLA(THETA) ARE INVERTIBLE ON [ MLL,INFINITY)

BLL = ZEBRC

PO 30 ITI = ONE,N

I = PERN(II)

LLI = LL{I)

1P (MLL.L7.L1I) BLL = LLI
CONTINUE

PALL = P(MLL)

P(LAKBDA) IS INCRESING ON [MLL,INPINITY) WITH P (INFINITY)
GREATER THAW O. CHECK IF P(MLJ) ¥S JFSS TRAN OR POURL TN
0, ™0 SCTT" D(TXELDT] - N POT TNTN s (e o [FL,TYETE Y

IY (PHLL.LE.XERO) GUL 2u 50

P(PLL) IS GREATEB THAN O, LOCATE THAT ITEM ILB = PERM (INDEX)
WITH THE LARGEST VALUE OF LL = LAMNBDA LOWER, AND SET
BI6 S = BSL, IE, SET 1IS(= THETA-STAR) = TU(= THETA-UPPER)

INCEX = ONE

ILB = PERN (INDEX)

DO 42 X = CME,N

J = PERA(I)

IP (LL(J).GT.LL(ILB)) INDEX = I
ILB = PERE(INCEX)

CONTINUE

CHANGE N TO K - 1, AND REMOVE ITEM ILB FRON THE FIRST N ENTRIES
OP PERM AND PUT IT IN PEKN (N{1)

N = N-ONE
I? N = 0, ALL XTENS ARE SUCH THBAT BIG S = BSL

1?7 (N.EQ.0) GC TO 85
DO 43 I = INDEX,N
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43 PEEM(I) = PERE(I41)
PBEA (N41) = ILB
SEY TS = T0 POR ITEN ILB

TS(ILB) = TO(ILB)

DETERNINE THE SEBRVICE-LEVEL ALI POR ITEM ILB, AND RECOMPUTE THE
AVEEAGE SERVICE-LEVEL (WHICH IS AGAIN DEROTED ALPHA) POR THE
OTHER ITEAS SO THAT THE OVERALL AVERAGE SERVICE-LEVEL IS STILL
THEZ OBIGINALLY SEECIFIED ALPHA
NOTE : WHEN BIG S IS SET TO BSL POR THE ITEN ILB, THE ITEX
1S NO LOKGER DSED IN THE COMPUTATION OF THE SOLUTION LS
TO P(LANBLA) = 0. RATHER, THIS CONPUTATION IS DONE OKLY
POR THOSE SUMNANDS OF P THAT CORRESPOKD TO ITERS WITH
BPIG S GREATEE THAN BSL., HENCE WE BEED ONLY DETEBRBIKE
THE AVERAGE SERVICE-LEVEL POR THESE ITENS SO THAT THE
OVERALL SERVICE-LEVEL IS THE SPECIFIED ALPHA
DZI = DE (ILB)
GAI = GA(ILB)
TSI = TS (ILB)
BBI = BH(ILB)
¢l = XYONE-BRI
DI = D(ILB)

¥TI = WT (ILB)
ALI = QI® (XCNE4DL1OG((XONE4TSI)/ (XONE$

s DEI®*1S1))/ (GAI*DI) )4 (RHL/(XONE4TSI))
ALPAA = (ALPHA-WTI®ALI)/ (XONE-WTI)

IP (ALPBA.LT,XONE) GO TO 22
WRITE(3,47)
47 PFORMAT(' THE NEW AVERAGE SERVICE-LEVEL IS NOT LESS THAN',//,
& * QONE, SO TBE PROBLEM IS INFEASIBLE',//)
GO TO 82

50 VYAR1 = -PHLL

SINCE P(NLL) LE O, SOLVE P(LAMBDA) = 0 FOR LANBDA = LS

OW [BLL,INFINITY). FIRST CHECK IF P(BLL) = O WITHIN EPSILON;
1P ¥OT, DETERAINE BLU LESS THAN INFINITY SO THAT P(NLU) IS
GREATER THAN OF EQUAL TO 0. THEN SOLVE P(LANBDA) = 0 POR
LANBDA = LS OF [ NLL,NLD)

LS = BLL
Ir (VARV.LE.EPS) GO TO 81

NLU = MLL
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pO 80 II = ORE, N
I = PERN(II)

TLI = HALP*TU (I)
RHI = RH(I)

QI = XONE-RHI

GAY = Gi (I)

DI = D(I)

DE1 = DE(I)

FIND LU SUPFICENTLY LABGE SO THAT THE I-TH COMPOMENT OF THRE
POUNCTION P IS ECN-NEGATIVE (HERE TEST IS THE I-TH COBPONEMNT
OF THE PUMNCTION P), THEN SET KLU = BAX( LU )

60 TEST = ((XCNE-BHI)* (XONE4DLOG ({XONE4+TLI)/ (XONE4

6§ DEI®TLI))/(GAI*DI))+4(RHI/(TONE4TLI))-ALPHA)

IP (TEST.GT.ZEBO) GO TO 70

TLI = HALF®TLI

GO TO 60
70 LUI = LAMBLCA(TLI,I)

LU (I) =L0I

IF (LUI.GT.MLU) KLU = LUI
80 CONTINUE

SOLVE P(LARBDA) = O FCk LANMBDA = LS IN [MLL,NLU]

MAX = BAXEN

LB BLL

UB BLU

CALL 2BERENT (P,EFS,NSIG,L1B,UB,NMAX,IER)

LS = UB
81 CONTINUE

COMPUTE THE (S,S) EOLICIES FOR THOSE ITENS WITH BIG S GEEATER
THAN BSL

82 DO 84 II = CNE, N
I = PERM(II)
GAI = GA (I)

TSI = TS (I)
B3I = NS (I)
DI = D(I)

BIGS (I) = MSI~-{(DLOG(TSI))/GAI)

BECAUSE OF BOUND~-OFF ERPOR, IT MAY BE THAT BIG S LT BSL.
I?¥ SO0, SET BIG S = BSL,

I? (BIGS(I).LT.,BSL(I)) BIGS(I) = BSL(I)
84 LITS(I) = BIGS(I) - DI
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COMPUTE THE (S,S) PCLICIES FOR THOSE ITENS WITH BIG S EQUAL
T0 BSL

ir (¥I.EQ.N) GO TO B8
85 8 = N4ONE
DO 86 II = A,NI
1 = PERA(II)
BIGS (I) = BSL(I)
86 LITS(I) = BIGS(I)=D(I)

88 WTAVSL = ZERO
CO®MPUTE TH? SEBVICE-LEVEL AND SRORTAGE COST FPORB ALL THE ITEMS
IN THE ISVENTORY SYSTEH, AND WTAVSL = WEIGHTED AVERAGE
SERVICE-LEVEL (HCPEFULLY THIS EQUALS APPROX THEE ORIGINAL ALPHA)

DO 90 II = ONE,N1
1 = PBRM(II)

DBI = DE (I)
GAI = GA(I)
TSI = TS (I)
BHI = RH(I)
QI = XONE-RHI
NSI = AS(I)
DI = D(I)

BIGSI = BIGS(I)
THS = DEXIP(-GAI* (BIGSI-NSI))
ALY = QI* (XCNE4DLOG ((XONE4TSI)/ (XONE4

3 DEL®1SI))/(GAL*DI))+ (BHl/ (XONE4TSI))
BSL(I) = ALI
BTAVSL = WTIAVSL4ALI®wT (I)
90 COMTINUE

BETURN

PED

BEAL PONCTIOM LANBDA®8 (THETA,I)
CoAMCN /LAN/ A,B,E,F,G,H

BEAL®*8 A (512),B(512),B(512),P(512),G(512),H (512)
FEAL*8 THETA

INTEGER I

LANBDA = (A(I)4THETA®(B(I1)4THETA® (E(I)4THETA®P (I))))/
& (TUETA® (G(1)41HETA*H(I)))

RETURN

END
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c
c
BEAL PUNCTION P®8 (LAN)
C
CONNCE /INEUI/ WT,ALPHA,YPS,NSIG,HAXPN, N
CONBON /PARAMS/ TU,IS,BH,DE,GA,D,XONE,ZERO,PEBE,ONE
COBNON /SUBR/ ILAM,I
C
REAL®B WT (S12) ,ALPHA
REAL®8 D (512) ,RH (512) ,GA (512) ,DE (512) ,TU (512) ,TS(512) ,2EFU,EPS
BEAL®8 LAN,1SI,TOI,BHI,QI,LTAL,TEST,LB,UE,XLAY,XONE
C
INTBGER ONE,I,1I,MAX,N,PERN(512) ,MAXFN
c
ZXTZENAL LTAL
c
YLAN = LAR
P = LERO
c .
¢  TO EVALUATE P(LAN), EVALUATE THETA, THE SOLUTICN IN [0,TU] TO
C LTBL(THETA) = LAMBLCA(THETA) = LAN = 0
¢ PIBRST CHECK IP LIRL(TU) = 0
C
DO 20 II = CNE, N
1 = PERN(II)
TUI = TO (1)
. .
c SINCE LTHL(TUI) IS LESS THAN OR EQUAL TO 0, IF IN THE COMPUTER
C  LTAL(TUI) IS GREATER THAN OR EQUAL TO O, THIS INPLIES THAT
C IMDRED LTHL(TUI) = O
C
TBST = LTAL (TUI)
1P (TEST.LT.ZEBO) GO TO 5
T51 = TUI
TS(I) = 1SI
GO TO 10
5 LB = ZERO
UB = TUI
BRAX = MAXFN
CALL ZPALSE (LTML,EPS,NSIG,LB,UB,TSI,NAX,1ER)
Ts(I) = 1SI
10 BHI = RBH(I)
Q1L = XONE-RHI
P = P4WT(I)®(CI* (XCNE{DLOG((XONE4TSI)/ (XONE$
& DE(I)*TSI))/(GA(I)*D(I)))+ (RHI/(XONE4TS1))~ALPHA)
20 CONTINUE
C
BETORN
END
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BEAL PUNCTION LTHL®8 (THETA)

COMNON /LAR/ A,B,2,F,G,H
COBIOR /SUBR/ LAN,I

BEAL®8 A(512),B(512),E(512),P(512),G(512) ,H(512)
REAL®*8 THETA,LAN

INTBGER I

1TaL = A(I)+

THETA® (B (I)=-LAMSG (I)+THETA® (E(I)=-LAN®H (I)4THETA*F (I)))
RETURN
END
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PROGRAN BISSNLSI : BULTI - ITEN (S,S)
NORSAL DENAND DISTRIBUTION APPROXIMATION
LOWER BOUNDS ON BIG S
SINGLE-ITEN POLICY OUTPOT

THE INPUT IS FRON CARDS

TITLE = USER - SUPPLIED TITLE (LE 32 ALPHA CHAERACTERS)
NI = NUNBER OF ITEBS (NI LE 512)

K = SET-UP ORDEBING COST

L = LEADTINE ¢ 1

HO = UNIT HOLDING COST

KU = BEAN DEKAND

SD = DEMAND STANCABLC CEVIATION
BT = CONSTRAINT WEIGHT

NSIG = NUNMBER OF SIGNIFICANT DIGITS DESIRED FROM THE INSL
ROUTINES ZBEENT AND ZPALSE

EPS = 1/(10 ®¢ XSIG)

BAXFN = MAXIINUN NUNBER OP YTERATIONS ALLOWABLE BY USER POR
THE IBSL KOUTINES ZERENT AND ZFPALSE

IER = (OUTPUT) ERGOR PARARETER FROM INSL BOUTINES AND BIACT

THE POLLOWING ABE IBPOT TO OB COMPUTED BY GKD

LITS = LITTLE S
BIGS = BIG S
D = FEOBDER QUANTITY BIG S - LITTLE S
BSL = D + BR*L*NU
= LONKER BOUNC POR BIG S (MAY BE INCREASED BY GKD)
LS = LABBDA-STAR

OUT = O OTHERWISE
1 WBITE OUTIPUT TO THE EXTEENAL FILE
PORTRAN UNIT BUNBEK 10
WITH THE POLLOWING DCB SPECIFICATIONS:

RECFH = FE
LRECL = 160
BLKS1ZE = 1600

THE POLLOWING ARI CCHMPUTED BY EHRHARDT'S POWER METHOD

PLITS
PBIGS

LITTLE S
BIG S

THE POLLOWING AREF COMPUTED EXACTLY

HC(I) = EXPECTEL HCLIDING COST FOR GKD POLICY POR ITEM I
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RC(I) = BXPECTED REPLENISHMENT COST POR GKD POLICY FOR ITEM I
SL(I) = SERVICE LEVEL PFOR GKD POLICY FORBR ITEM I

AVSL = WEIGHTED-AVERAGE SERVICE LEVEL POR 6KD POLICIES

PHC(I) = EXPECTEL HOLDING COST POR POWER POLICY POR ITERN I
PRC(I) = EXPECTED BREPLENISHNENT COST POR POWER POLICY FOE 17Ea 1
PSL(I) = SERVICE LEVEL POR POWER POLICY POR ITER 1

PAVSL = WEIGHTED-AVEEBAGE SERVICE LEVEL

FOR POWEER POLICIES

XYY RS R SRR RIS AR RIS RS RSS2SR 2R R R R R R R R R R 2

INPUT THE SYSTEE FAFANETERS AS FOLLO®S:

TITLE
LS NSIG BAXFK KI  OUT

WT(1) D(1) K(V) L(V) HO(1) RU(1) SD(1) RB(1)
WT(2) D(2) K(2) 1(2) HO(2) MU(2) SD(2) R (2)
WT(N) D(N) K(N) L(N) HO(N) HMU(N) SD(N) ER(N)
THE INPUT PORMAT IS:

CIXIXIXITXEXXXXXXXXXXXXXXXXXXXXX

IXIXXXXX, XXXXXX XXXXXX XXXXXX XXXXXX X
XXX, IXXX XXX, XXXX . . : XXX, XXXX XXX.XXIX

IXXI.XXXX XIXI.XXXX

L]
. . [ ] »
XXX, XXIX XXX, XXIXX .

ALL DATA STARTS IN CCLUNN 1
AND THERE IS A SINGLE SPACE

XXX, XXXX XXX, XXXX

[ ] L ]
XX, XIXX XXIX.IXIXIX

(EXCEPT TITLE STARTS IN COLUNBN 2),
BETWEEN EACH DATA ENTRY

220800830380 ¢0 0883308088030 R3RRCRSEERR RS0 REL0PE L2002 2203%2202%2

FEAL®*8
BEAL*8
REAL®*38
FEAL®*S
REAL®*8
FEAL®S

INTEGER NI

LITS (512) ,BIGS(512),BSL(512),D(512),PLITS(512) ,PBIGS (512)
K(512),L(512) ,HO(512) , MU (512),SD(512) ,¥T(512),8
AL,HNISS,HPO¥,TNISS,TPOW,EPS
K1,LI,HCI,NU1,SDI,SLI,HCI,BCI,AVSL,PAVSL,SON
SL(512) ,HC (512) ,RC (512),
LSI,LITSI1,BIGSI,DI,TEST(512)

PSL (512) ,PHC (512) , PEC (512)

INTEGER BSIG,BAXFM,ITEN,TITLE(8) ,0UT

BEBAD(V,3) (TITLE(J),J=1,8)
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3 PORMAT(8A4)
READ(V,5) LS1,NSIG,MAXFN,N1,00T
5 PORMAT (F15.6,11,3(16,1X),11)
EPS = 10.%* (-NSIG)

po 10 I = 1,N1
READ (1,8) WT(I),D(1),K(1),L(I),HO(1),N0(I),SD(1),.R
BSL(Y) = D{I)4k*L (1)*NU (1)

8 PORMAT(8(FB8.4,1X))

10 CONTINUE

MAKB THE WEIGHTS WT INTO EQUIVALENT CONVEX WEIGHTS NT

sum = 0,
po 15 I = 1,NI

15 SOM = SUN4WET(I)

sos = 1.,0p0/5UN
DO 16 I = 1,NI

16 WI(I) = SOM®WTI(I)

COYPDIR THE OPTIPAL FOLICIES ASSOCIATED WITH THE MULTIPLIER
LAYBDA-STAR (LSI)

CALL BIGSLS (NI,L,HO,8U,SD,D,¥7T,BSL,LSI,EPS,NSIG,HAXFN,BIGS,LITS)

VRITE(3,45)
4S POENAT('1?)

CCMPUTR THE (UNIPORM SERVICE-LEVEL) POWER APPROXIBATION POLICIES
AND CCHPARBE TREIB ASSOCIATED COSTS WITH THE COSTS ASSOCIATED WITH
TEB BIGSLS POLICIES

CALL COMPAR(NI,K,L,HO,NU,SD,¥WT,BIGS,LITS,TITLE,LSI,O00T)
STOoP
END

SUBROUTINE BIGSLS(NI,L,HO,WU,SD,D,WT,BSL,LSI,EPS,NSIG,HAXFN,
(A B1GS,LITS)

THIS SUBROUTINE COMPUTES THE OPTINMAL (S,S) POLICI1ES ASSOCIATED
WITH "HE KUHN~-TOCKEE CCNSTRAINT NULTIPLIER LANBDA-STAR (LSI)

COMNNMON /PINDIS/AI,B1,EXI,FPI,GI,HI,LAH

BEAL*8 LITS (512),BIGS(512)

R2AL®*3 L(512) ,HO(512),MU(512),SD(512),¥T(512),

(A D(512),BSL (512)

BEAL®8 EPS,LSI,LI,u01,MUI,SDI,DI, MSI,WTI,TS1,LAN,
& RHI,Ql,GAI,DEI,Al,BI,EI,F1,GI,HI,VAKY,VAR2,ET]I,TUI,
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& Ksl,LpTOI,BSLI,X,TUI,LB,UB,ZERO,XONE, HALF,COKST
BRBAL*8 HC(512) ,RC(512),SL (512),PHC (512),PBC(512),PSL (512)
BEAL®*8 PLITS (512) ,PBIGS(512) ’

INTEGER BI, MNSIG,8AXFN,BAX,ONE,CBTR

BBAL®*8 LANTH
EITERNAL LABTH

2BrRO = O,
ONE = 1

XIONB = 1.
AALP = ,5

CONST = 1,700436904

DO 60 I = ONE,NI

HOI = HO (1)

NUI = KO (I)

DI =)

NSI = LI*AUI

SDI = SD(I)

iTI = @7 (1)

DI = D(I)

RHI = NUI/(DI4((MUI4(SDI*SDI/MUI))®*HALP))
QI = XONE-BHI

GAI = CONST/(LI*SDI)
DEI = DEXF(GAI®DI)

AI = DI*HOI
VAB1 = XGNE4DEI
= AI* (QI4VAR1)
EI = AI*(DEI4QI*VAR1)
= AI®QI*DEI
VAR1 = DI®RHI*GAI
VAR2 = QI* (DEI-XONE)
GI = 4TI* (VAR14VAR2)
BRI = WTI® (VARV$DEI{VAE2)

DETERMINE BSL BY THE LARGEST VALUE OF THETA, TU, AND HENCE THE
SMALLEST VALUE OF BIG S, SO THAT D (LAMBDA)/D (THETA) LE O,
GUABEAKTEEING THAT LAMBLCA(THETA) IS INVERTIBLE ON (0, TU)

IF THE USEK-SUPPLIED BSL IS GREATER THAN THIS, IT BECORES THE
BSL USED

ETI = GI¢ (BI®*HI®*HI-GI® (EI*HI-PI*GIl))-AI*HI*H1*HI
IP RTA(I) IS LESS THAN O, LAMYBDA(THETA) HMAY NOT BE CONVEX, AND
THEEE IS NO GUARANTEE THAT THE GKD ALGORITHN WILL COMNVEBGZ TO
A LOCAL NINIWNUN~~-~-THE USER SHOULD EXEBCISE CAKE

1P (ETI.LT.ZEBO) WRITE(3,30) I,ETI
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FORNAT(* ETA(',16,') =*',E20.6," LT 0°)

CNTR -1

CNIR CMTB4CKE

TUl = (DEXP (GAI®* (MSI-CNTR)))/DEI
KSI = (FI/BI)-(AI/(GI*TUI®*TUIL))
VARY = GI4HI®*TUI

LPTUI = KS1-(ETI/(GI1*HI®*VAR1I®VAEK1))
IF (LPTUI.GE.ZERC) GO TO 35

BSLI = CNTR4DI

I = BSL(I)

BSL (I) = BESLI

IP (X1.GT.BSLI) BSL({I) = X

T0YX = (DEBXP(GAI®* (MSI-{BSL(I)-DI))))/DEI

LAB = 1SI
BAI = BAXFN
LB = ZERO
UB = TUI

LAPTH(OB) 1S GEEATER THAN ZERO, THEN THE FUNCTION

LANBDA (THETA) POR THIS 1ITEN IS ALWAYS GREATER THAN LANBDA-STAR,
AND SC BIGS FOR THIS ITEN IS SET AT ITS LOWER-BOUND BSL

IP (LARTH(UB).GT.ZEEO) GO TO 50

CALL ZBRENT (LABMTH,EPS,NSIG,LB,UB,NAX,IEK)
TSI = UB

BIGS (I) = BS1-({DLOG(TSI)) /GAI)

BECAUSE OF ROUKD-OFF ERROR, IT MAY BE THAT BIG S LT BSL.
IF SO, SET BIG S = ESL.

50

60

IF (BIGS(I).11.BSL(I)) BIGS(I) = BSL(I)
LITS(I) = BIGS(I)-DI

60 TO 60

EIGS (I) = BSL({I)

LITS(I) = BIGS(I)-DI

CONTINUE

EETUEN

END

BEAL PUNCTION LANTH®8 (THETA)

COBMON /PINDI1S/A1,BI,EI,F1,GI,HI,LAN
BEAL®8 AI,BI,EIl,FI,GI,HI,LAN,THETA

LABTH = AI4THETA® (BI-LAN®GI4THETA®* (E1I-LAN®HI4THETA®FI))
RETUEN
ENT
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SUBROUTINE CCHBPAB (NI ,K,L,HO,NU,SD,¥T,BIGS,L1ITS,TITLE,LSI,0UT)

THIS SUBROUTINE LCES THE POLLOWING:

n

(2)

3)
(4)

70

EVALUATES EXACTLY THE HOLDING AND REPLENISHMENTI COST, AND
TRE SERVICE-1EVEL FOR THE POLICIES (LITS,BIGS) UNDER THE
ASSUMPTICN OF MEGATIVE-BINOBIAL DEMAND (IN EXACT)

CONPUTES APFROXINATELY OPTIMAL (S,S) POLICIES WITH UNIFOBM
SERVICE-1EVELS (1IN POWAPP)

EYALUATES THE POLICIES DESCRIBED IN (2) EXACTLY AS IN (1)
PRINTS THE RESULIS OF STEPS (1) AND (3)

BEAL®8 LITS (512) ,PIGS(512)

REAL®8 K(S12) ,L(512),B0(512) ,M0(512),SD(512) ,8T (512)

REAL®3 HGKD,BRPO¥,TGKD,TPOW,LSI,LITSI,BIGSI1

kKEAL®*8 KI1,LI,HOI NU1,SDI,SLI, HCI, RCI,AVSL,PAVSL

RTAL®8 HC(512),RC(512) ,SL(512),PLITS(512) ,PBIGS (512),
PHC (512) , PRC {512) , PSL (512)

INTEGER NI,TITLE (8),0UT

AVSL = 0.
B3KD = 0.

TGKD = 0.

PO 70 I = 1,K1
K1 = K(I)

LI = L(I)

HOI = HO(I)
BUI = AU (1)
SDI = SD(I)

BI1GSI = BIGS (I)

LITSI = LITS({I)

CALL EXACT(K1,1I,HOI,NUI,SDI,LI1TSI,BIGSI,SLI,RCI,RCI,IEE)
IF (1Ek,BC. 1) GO TO 300

AVSL = AVSL4SLI*®T (I)
BGEKD = HGKD4HCI
TGKD = TGKD4HCI4RCI
HC(I) = HCI

BC(I) = BCI

SL(I) = SLI
COMTINUE

PAVSL = 0,

HPOW = 0.

TPOW = 0.

DO 75 1 = 1,NI

KI = K(I)
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BOI = HO (1)
BUI = MU (I)
SDI = SD(I)
CALL POWAPP(KI,LI,HCI,BUI,SDI,AVSL,LITSI,BIGSI)
CALL EXACT(KI,lI,ROI,NOI,SDI,LITSI,BIGSI,SLI,BCI,BCI,IER)
IF (IER.EQ.1) GO TO 300
PAVSL = PAVSL4SLI®WT (I)
BEPO¥ = HPOW{HCI
TPOW = TPOW{HCI4RCl
PLITS(I) = LI1SI
PBIGS (I) = BIGSI
PHC (I) BCI
PRC (I) BCI
PSL(I) SLI
75 COBTINUE

c
C PRIKT SUMMARY
< 4
SRITE(3,98) (TITLE(J),J=1,8),LSI
98 FORMAT(T2,8AU," LAXBDA-STAR = ',F15.6//)
WRITE (3,100) AVSL,PAVSL,HGKD, HPOW,TGKD,TPCh
100 FOEMAT(T3,*ACTUAL ALPEA (GKD) =',T27,FP11.4,//,
T3,'ACTUAL ALPHA (POW) =',T27,FP11.4,//,
T3,*ACLDING COST {GKD) =*,T27,P11.4,//,
T3,*HCIDING COST (POW) =',T27,FP11.4,//,
T3,°TOTAL COST (GKD) =',T27,F11.4,//,
T3,'TCTAL COST (POW) =t ,T27,P11.4,////,
TU,*I',T68,°K",T12,°L41',T19,%H°,T25, 00",
T32,°SLC',T40,°GKD*,T50, POWER' ,T65, HOLD?',
T85,'REP',T99,*SER LEV!,T116, ' K*uT?,//,
T39,°LS*,T44,*BSY,T50,%LS?,T55,BS",
T62,'GKD*,T70,* POWER®, T80, 'GKD',T88, * PONER",
T98,'GKD',T105, "PONER?,//)
PO 130 I = %,NI
SUM = NISWT(I)
¥RITE(3,120) I,K(I),L(1),RO(I),B0(I),SD(I),LITS(I),BIGS(I),
PLIIS (1) ,PBIGS{I),HC(I),PHC(I),RC (I),PRC(I),
SL(I),PSL(I),SUN
WRITE(10,120) I,K(L),L{I1),HO(I),NU(I),SD(I),LITS(1),BIGS (I),
PLITS (I),PBIGS(I),HC (I),PHC (I),RC(I),PRC(I),
SL(I),PSL(I),SUH
120 PORMAT(I4,P5.0,P4,0,F9.4,P4.0,P9.4,2(F5.0,F6,0),8F9,2,
(3 2F8.4,F12.4,//)
130 CONTINUE
KETURN
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300 WRITE(3,310) I
310 FORNAT(®' B1G S OR D > 2000 FOR ITEN®,I6,/
& ¢ EXACT CANNUT EVALUATE THE (S¢S) POLICY*',//)
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BETUEN
END

SUBROUTINE PXACT (K,l,H,8U,SD,LlS,BS,SL,RC,RC,IER)

THIS SUBROUTINE COBFUTES TRE SERVICE~LEVEL, BOLDING COST AND
REPLENISHRENT CCST EXACTLY FOR THE POLICY (LS,BS) UNDEE THE
ASSUMPTION OF REGATIVE BINOMIAL DENAND,

K = SET-UP COST
L = LEADTINE ¢ 1
H = UNIT HOLDING COST

B0 = NEAN DEBANC

SD = DEMAND STANCABC DEVIATION

LS = LITTLE S

BS = BIG S

SL = STBADY-STATE SERVICE-LEVEL (FPEEQUEMCY OF PERIODS THAT
NO BACKORLCER 1S PLACED)

BC = EXPECTED HCLDING COST

KC = EXPECTED FEPLENISHNENT COST

REAL®*8 K,l,H,MU,SD,LS,BS,SL,HC,RC,P,Q,RB, RS, PROB (2000) ,HALF,

& NB (2000),%(2000),KI,RHO, VAR,SORB,PROBI, XD, ZERO, XONE, XTHO
INTEGEZR S,D,UB1, UB2,0NE,TWO,1ER

DAYA ONE,TWO,ZERO,XCMNE,XTWO,HALF/1,2,0.,D0,1.D0,2.D0,.5D0/

S AND D ABE BOUNDED TO THE NEAREST INTEGER., ¥E USE THE BEORDER
QUANTITY D = BIG S = LITTLE S = 1 BECAUSE WKE USE THE VERSION OF
AN (S,S) POLICY THAT BEQUIRES THAT AN ORDER BE PLACED WHEN THE
INVENTORY POSITICN DROPS STRICTLY BELOW LITTLE S.

PRO3(I) = PBOB(NB RV = I-1)
NB(I) = PROB(NB 4 « » « 4 NB RV = I-1)
| |
L
B (1) = PBROB(RENEWAL PNC OF NB RV = I-1)

IBE = 0 EXACT WAS ABLE TO EVALUATE (S,S) POLICY
1

OTHERWISE
I1ER = 0
S = BS+HALP
D = (BS-LS-ONE)4HALP
Q = MU/ (SD*SD)
P = XONE-C
R = RU*Q/P
BS = L*R
VAR = (Q#eR
PROB (ONE) = VAR
MB(ONE) = Q®eRS
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C

C

10

20

30

40

45

RHO = XONE/ (XONE-VAF)
8 (ONE) = VAR*BHO

UB1 = S4ONE

1P (D.GT.S) UB1 = D4ONE

1F (UB1.GT.2000) GO TO 100
DO 20 I = TWO,UB1

VAR = XOMNE/(I-XCNE)

PROBI = PROB (I-ONE)*P* (R4I-ITHO) *VAR
PROB (I) = PRCBI

NB(I) = NB(I-ONE)*P* (RS4I-XTWO) *VAR
SUN = ZERO

UB2 = I-ONE

DO 10 J = ONE,DB2

SUN = SUM4PBGB (I-J4CNE) ¢ (J)
M(I) = (PROBI{SUN)*RHO
CONTINUE

UB1 = D4ONE

IP (0B1,61.2000) GO TO 100
nd = ZERO

DO 30 I = ONE,UB1

KD = ND4M(I)

R40 = XONE/ (XCNE4MD)

COMPUTE EXPECTEL REPLENISHRENT COST
RC = K®RHO
COMPUTE EXPECTEL HCLDING COST

IP (D.GT.S) UBY = S4ONE
IF (UB1,G1.2000) GO TO 100
HC = ZERO

DO 40 I = ONE,UBI

UB2 = S-I4TNC

Kl = H(I)

DO 40 J = CNE,UB2

HC = HC4 (UB2-J) *NB(J) *MI
CONTINUE

SUNM = ZERO

UB2 = S4ONE

DO 45 I = ONE,UB2

SUM = SUN4 (UB2-I)*NB(I)
HC = H* (HC4SUN) *RHO

CONMPUTE (STEADY-STATE) SERVICE-LEVEL

SL = ZERO
DO 60 I = ONE,UB?Y
SUM = ZERO

UB2 = S~-I4TWNO
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DO 50 J = ONE,UB2
SUN = SUN4NB (J)

SL = SL4SUN®*N (I)
SUN = ZERO
0B1 = S4ONE

1P (UB1.G1.2000) GO TO 100
DO 70 I = ONE,UB?

SUM = SUN4NB(I)
SL = (SL45UR) *RHO
RETURN

IER = 1

RETUERN

END

SUBROUTINE POWAPF(K,L,H,MU,SD,ALPHA,LITS,BIGS)

THIS SUBPROOTINE COMEUTES LITTLE S AND BIG S USING THE REVISED
POWER APPROIXINATICN BMETHOD (MOSIER(1981), TECH REPORT #18).
THE SHORTAGE CCST IS COMPUTED USING THE POWER APPROXIMATION
METHOD (EHBHARDT (1977, PP 18, &5), TECH REPORT #12).

SET-UP COST
LEADTINE 4+ 1
UNIT HOLDING COST
U = HEAN DENAND
D = MEAN STANCARD DEVIATION
ALPHA = (STEADY=-STATE) SERVICE-LEVEL, THE PREQUENCY OF PERIODS
¥ITHOUT BACKLOGS
LITS = LITTLE S
= BIG S

nnn

REAL*8 P,H,K,NU,D,L,VL,SDL,2,VY,SD,LITS,BIGS,ONE,
& ci,C2,C3,C4,C5,Cc6,C7,C8,C9,C10,ALPHA

DATA Ci/1,3/
DATA C2/.494y,
DATA C3/.506/
DATA C4/.116/
DATA C5/.973/
DATA Cob/. 183/
DATA C7/1.063/
DATA C8/2.192/
DATA Ci10/.0695/
DATA ONE/1Y./

VYV = SDeSD
= V&L



SDL = DSQRT (VL)

P = He(ALPHA-C10)/ (CNE-ALPHA)

2 = OME4 (VL/ (RU*RD))

D = C18 (NU®eC2)* ((K/H)*%C3) s (Z¢3Cu)
Z = DSQRBRT (D®H/ (P*SDL))

C9 = (C6/Z)4CI-C8*2
LITS = C5¢L®804SCL*CY
BIGS = LITS4D

RETURN

END
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