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\ ABSTRACT

Exterior scattering from a three-dimensional impedance body

can be formulated in terms of various integral equations derived
from the Leontovich impedance boundary condition (IBC). The
electric and magnetic field integral equations are ill-posed
because they theoretically admit spurious solutions at the
frequencies of interior perfect conductor cavity resonances.

A combined field formulation is well-posed because it does not
allow the spurious solutions. This report outlines the
derivation of 1BC integral equations and describes a procedure
for constructing moment-method solutions for bodies of
revolution. Numerical results for scattering from impedance
spheres are presented which contrast the stability and accuracy
of solutions to the ill-posed equations with those of the
well-posed equation. The results show that numerical solutions
for exterior scattering to the electric and magnetic field
integral equations can be severely contaminated by spurious
resonant solutions regardless of whether the surface impedance of
the body is lossy or lossleSE; Solutions to the combined field

equation are not contaminated by the spurious solutions when a

suitable choice of integral eguation weighting coefficient can be
determined. However, the detemmination of the weighting
coefficient for the general impedance case is more difficult and

more critical than for the perfed;ly conducting scatterer case.
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1. INTRODUCTION

A well-known method for modeling electromagnetic

interactions with certain types of imperfectly conducting bodies

involves describing the body surface with a Leontovich impedance
boundary condition (IBC).!-* This approximation makes integral
equation formulations of scattering problems nearly as simple as
those for perfectly conducting bodies.® Until the present,
solutions to IBC integral equations for exterior scattering from
generally-shaped, three-dimensional bodies have been obtained
from either the magnetic field integral equation (MFIE)®-% or the
electric field integral equation (EFIE).? These two IBC

equations can be described as being mathematically ill-posed for

exterior scattering problems because at certain discrete
frequencies, the integral operators of each become singular and
the equations no longer have unique solutions.!? These discrete

frequencies are the interior resonances of a perfectly conducting

cavity having the same shape as the impedance target.!®
Numerical solutions to either the MFIE or EFIE near a cavity
resonance will result in ill-conditioned matrices and scattering
results which may be contaminated by spurious solutions due to

the cavity resonances.* In contrast to the MFIE and EFIE, the

* The terminolo%y "spurious solutions" refers to unwanted
mathematical solutions which have no physical connection with the
exterior scattering problem.
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IBC combined field integral equation (CFIE) is mathematically
well-posed because it does not allow the spurious resonant
solutions.}!?
This report investigates numerical solutions for scattering
from an impedance body of revolution (BOR) as determined by the
MF1E, EFIE and the CFIE. The principal objectives are to: (1) .
describe the method by which moment-method solutions to the three
equations can be constructed, (2) contrast the numerical
stability and accuracy of solutions to the MFIE and the EFIE
with those of the CFIE, and (3) investigate the sensitivity of
the CFIE to parameters such as integral equation weighting
- coefficient and moment-method segmentation for various types of
. surface impedance (i.e. reactive, lossy, etc.). The report
begins with a brief discussion in Section 2 of the derivation of
the three equations and the well-posedness of each.* In
Section 3 it will be described how existing moment-
method numerical algorithms applicable to scattering from

perfectly conducting BORs!!-13

can easily be generalized to the
IBC case. A Fortran IV computer program which contains the
modifications discussed in Section 3 is listed in Appendix A.

Numerical results which address objectives (2) and (3) above are

* A general, theoretical treatment of the well-posedness of
IBC integral equations is given in Ref. 10. The numerical
results of this report represent the practical implementation of
one of the methods discussed in Ref., 10.
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presented in Section 4. These results are for scattering from
impedance spheres, and in all cases the moment-method solutions
were compared to an "exact" series solution.!"
Some conclusions concerning the results are presented in

Section 5. Briefly, the results demonstrate that numerical

. solutions to the MFIE and EFIE for exterior scattering can be
severely contaminated by spurious solutions regardless of whether
the surface impedance is lossy or lpssless. The errors in pre-

dicting scattering from bodies having non-zero surface impedances

i are, in general, larger than for the perfectly conducting case.*

;
i
{
i
i
i

Also, the results demonstrate that the solution accuracy of the
CFIE as a function of integral equation weighting coefficient and
moment-method segmentation is strongly influenced by the value of
surface impedance. Criteria established for the perfect

perfect conductor case’:!! may not work well when the surface

impedance is non-zero.

* A perfectly conducting surface can Be considered as the
special case of an impedance surface when the surface impedance
equals zero.
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2,0 REVIEW OF THE FORMULATION AND STABILITY OF IMPEDANCE
BOUNDARY CONDITION INTEGRAL EQUATIONS

The physical scattering problem is depicted in Fig. 2.1. A
uniform plane electrcmagnetic wave ¢l aly* 153 incident upon an
imperfectly conducting body surrounded by a closed surface S.
(Ei,ﬁi) are assumed known and have a monochromatic time variation
of eJ®t, When the incident wave interacts with the body,
volume electric current density, Jyo), is induced inside S and
radiates a scattered field (£5,f%). Assuming that the radiation
conditions are met and the target is passive, the scattered
fields are unique.

In solving the problem depicted in Fig. 2.1, it is often
useful to apply the Equivalence Principle!5 which states that the
body with volume electric currents can be conceptually replaced
by a sourceless volume having electric (J) and magnetic ;)

surface current densities on S. The jump conditions which must

be satisfied on S are:!l®
n x (E+ -E)=-1 (2.1)
nx @, -f)=2 (2.2)

* The field point dependence (¥) of all vectors and dyadics is
suppressed in most cases throughout the text.
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Fig. 2.1. Generalized problem for scattering from an imperfectly conducting




where (ﬁt,ﬁ*) are the total electric and magnetic fields just
outside (+) or just inside (-) the surface and 5 is the outward
unit normal to the surface. These total fields are the sums of

incident fields due to sources at infinity and scattered fields

due to (J,M):

g, =l .8 (2.3)

4

i, = Al + a8 (2.4)

: 4

In constructing appropriate integral equations, a certain
arbitrariness exists in the choices of (J,M) and (E_,H ).
Although the exterior fields must be unique, there are infinitely
many sets of equivalent currents and interior fields which will

give rise to the correct exterior fields. Thus, one can choose

(E_,ﬁ_) when formulating the problem in order to obtain unique
equivalent currents. As depicted in Fig. 2.2, a convenient
choice for the interior fields is often the null field.

Agsume that an imperfectly conducting body has the following
Leontovich impedance boundary condition (IBC) satisfied on its

surfacel 7"

nxB xn=n2 - (xR (2.5)

where Zs is the normalized dyadic surface impedance of the body

containing information about the material properties within S and
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Fig. 2.2. Null interior field equivalent problem.
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n is the free space wave impedance. Upon substitution of
Eqs. 2.1 and 2.2 into Eq. 2.5, the following condition relating
the tangential components of the interior fields to the

equivalent currents is obtained:

E xn+M=

nnxZ «Y-nnxZ - (mxh) (2.6)

When choosing the null field problem depicted in Fig. 2.2, the

following two conditions must hold on the surface:

»

nxE =0 (2.7)

nx ﬁ_ = ( (2.8)

For this choice of (E_,ﬁ_) a simple relationship for M in terms

of } is obtained:

Bi=-nnxlg .2 (2.9)

This last relation effectively reduces the problem from two
coupled vector integral equations in two vector unknowns, (J,M),
to one vector integral equation in one vector unknown, J. Note
that each vector integral equation consists of two coupled scalar

integral equations in two scalar unknowns. Equations 2.7 and 2.8

j
i
i
i
1
!
?
y
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each lead to a different vector integral equation for the
unique source J. Using equations 2.3 and 2.4 and integral
representations for B5 and A% in terms of (J,M),15,16

Eqs. 2.7 and 2.8 lead to the following IBC electric field
integral equation (EFIE) and IBC magnetic field integral
equation (MFIE), respectively:

]

nxti--¥+€lx]8 [juuj('l’.'.')o

+AE') xv'e + ﬂ—e v'e3(E') v'e] ds' E(:gffo)
- i _ 3 _: .
nx fit = -z--nxfs [-jucﬁ(r).
+ 3@ x e - gLt AGY) Ve ds’ MPIE |
where
fi=-nnx Zs N |
and
ik |E-2'
e ol Lt
-2

Equations 2.10 and 2.11 are valid in the limit as ¥+S from the
inside. The terminology "EFIE" and "MFIE" in this report will

denote the generalized impedance electric and magnetic field




integral equations. The perfect conductor equations are the

special cases when 28 z 0.

By the choice of vanishing interior fields, two different
vector integral equations were obtained for determining a unique
source J. Although it would appear that either the EFIE or MFIE
could be solved for 3, the solution must ensure that both
equations are satisfied. This is required because Eq. 2.9 (used
in the solution for J) is valid only if both Eqs. 2.7 and 2.8
are satisfied. Here-to-fore, it has been assumed that a solution
to either the MFIE or the EFIE will satisfy both equations.
However, that assumption is valid only away from discrete

frequencies located at the perfect conductor (p.c.) interior
10

cavity resonant frequencies. At a p.c. cavity resonant
frequency, the right hand sides of both Eqs. 2.10 and 2.11 are
singular allowing non-unique mathematical solutions to exist at
that frequency.!® Consequently, sets of spurious equivalent
currents which are solutions to the homogeneous perfect conductor
equations can contaminate the particular scattering solution.
Thus, Eqs. 2.10 and 2.11 are not equivalent to each other at a
p.c. cavity resonant frequency and the solution technique must
ensure that both are satisfied.

Although uniqueness problems with the EFIE and the MFIE
occur at discrete frequencies, it is still advantageous to have

an integral equation formulation which ensures a unique solution

at all frequencies. This is due to the fact that numerical

10




solutions to either ill-posed equation will be contaminated
within some bandwidth about a spurious resonance (due to the
approximation of an integral equation with a matrix equation,
numerical roundoff error, etc.). Since the perfect conductor
cavity resonances of a generally-shaped target are not known a
priori and become increasingly closely spaced with increasing
frequency, it is apparent that for large scattering targets (with
respect to a wavelength) the EFIE and the MFIE may be unreliable
at all frequencies.

If Eqs. 2.7 and 2.8 lead to two equations for a unique

source J, then a linear combination will also yield a solution:
nxf +Z.nxf_=0 (2.12)

where Za is some arbitrary, generalized weighting coefficient
which could be a function of ¥. When substituting Eqs. 2.3 and
2.4 into 2.12, along with the appropriate integral
representations for £® and A%, one obtains an IBC combined field
integral equation (CFIE). It can be shown that a solution to the
CFIE will ensure that both 2.7 and 2.8 are satisfied at all
frequencies when 2, is not reactive.!? Thus, the CFIE for the
impedance body case rejects spurious resonances in a similar

fashion as does the perfect conductor CFIE,!!,12

11
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3.0 GENERALIZATION OF PERFECT CONDUCTOR MOMENT-METFOD ALGORITHMS
TO THE IMPEDANCE BODY CASE

3.1 1IBC Integral Equations in Perfect Conductor Integral
Operator Form

In Section 2, three impedance boundary condition integral
equations were derived and the well-posedness of each was briefly
discussed. The EFIE and MFIE formulations are ill-posed due to
non-uniqueness at interior resonant frequencies of the perfectly
conducting cavity. The CFIE, on the other hand, is well-posed at
all frequencies (provided 2, is non-reactive). In this
section, it will be shown how numerical solutions to each of
these equations can be constructed from moment-method matrix
operators applicable to scattering from a perfectly conducting
body. A main computer program which accomplishes this procedure
for bodies of revolution is listed in Appendix A.

The particular perfect conductor algorithms to be
generalized are those of Mautz and Harrington.l2,13 These
moment-~-method programs were chosen because of their wide
availability and good documentation, and becauge they contain all
the required matrix operators for solving the IBC equations.
Although the programs are restricted to bodies of revolution, the
basic procedure in extending these programs to the impedance body
case would also be applicable to moment-method programs for more

generally-shaped bodies. It should be noted that the procedure

12
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to be described in this section has already been accomplished for
the EFIE by Iskander, et. al.%*

It is appropriate to first recast the IBC integral equations
into operator notation applicable to Mautz and Harrington's

equations. Their integral equations for scattering from a

. perfectly conducting body can be written as:!1,12
. % nxflxna LE(J) 3.1
nx =L@ (3.2)

where the integral representations of the operators Lg and Ly

are:
L@ =18 xnx [, o IE) o + 3= v -3E) v'elds’ (3.3)
LH(J) = % -nx Is I(r') x v'e ds' (3.4)

Equations 3.1 and 3.2 are the perfect conductor special cases of

the IBC EFIE and MFIE equations with the EFIE put into

similar vector direction and units as that of the MFIE.
In terms of the perfect conductor operators, Lg and Ly,

the IBC integral equations are:

* The formulas in Ref. 9 should be used with caution. 1In
addition to the dyadic impedance boundary condition definition
being unclear, there appears to be a minus sign error in that
definition which is carried throughout all subsequent equations.

13
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% nxtlxn= L (D) + n x Lﬂ(g) EFIE (3.5)

nxila L, (D) + n x LE(§) MFIE (3.6)
n x ﬂi + a % n x Ei xn= LH(J) + a LE(3)
+nx LE<§) +anx LH<§) CFIE (3.7)

where a is a constant coefficient in the CFIE.

3.2 Review of the Moment-Method Solution for Scattering
from a Perfectly Conducting Body
Mautz and Harrington!!"1!3 golve Eqs. 3.1 and 3.2 for a

body of revolution (BOR) using the geometry in Fig. 3.1. The

coordinates (5,;,2) represent a right-handed, orthogonal system

for describing vectors on the BOR surface. The unknown electric

surface current density, consisting of E and ; components, is
expanded in terms of a Fourier series in ¢ and in terms of

overlapping triangular expansion functions, f, in t:

J@E) = 3%, 0) £+ I%t,0) o

14




axis of
symmetry

Body of Revolution

Fig. 3.1. Right-handed, orthogonal, curvilinear coordinate system (i, §, ¢)
on the surface of a body of revolution.




where,
N K

t t jné
J (to’) - nz1 kZ] Ink fk(t) e

. ‘ (3.8)
J¥(t,¢) = 1 £ (t) eIN¢

nz1 kzl nk "k

To determine the number and location of all fi(t), the top half
of the BOR profile is segmented into short straight line
segments. The number of expansién functions, K, is approximately
1/2 the number of straight line segments. For a visual
description of the triangle functions see Ref. 12.

Mautz and Harrington define vector testing functions, W, as:

N(E) = whe,e) t + Wh(L,e) ¢
where
N

K
WECE, ) = Wh(r,e) = T £,(e) 7T (3.9)
m=1 i=1

Upon substitution of the expansion for J into Eqs. 3.1 and 3.2
and taking the appropriate inner products of the equations with
the testing functions, one obtains a series of independent matrix
equations corresponding to the various Fourier modes. (The
Fourier series inner product is non-zero only for m=n due to the

azimuthal symmetry of the problem.) For the nth Fourier mode:

16




(v,) = (2] [1,] (3.10)

(U] = (.1 [1,] (3.11)

or, expressing rte vector nature of the equations:

] [ tt te | t

Vn zn Zn In
= (3.12)

¢ ét $¢ ¢

;Vn Zn Zn | i In

] L tt té] t

Un Yn Yn In
= (3.13)

$ ¢t ¢é ¢

LUnJ LYn Yo i I

Equations 3.10 and 3.11 are the nth mode matrix representations
of Eqs. 3.1 and 3.2 respectively. The known vectors, [V,] and
{Un], each contain 2K elements which are obtained from the

inner products of the incident fields with the testing
functions. The vector [I,] contains the 2K unknown expansion
coefficients for the nth Fourier mode of 3. [Z,] and [Y,]

are 2K x 2K square matrices and can be interpreted as normalized
impedance and admittance matrices (not to be confused with
surface impedance or admittance). Explicit expressions for the

elements of [Vn], [Un]' [Zn] and [Yn] are given in Ref. 12, For

17




each Fourier mode retained in the solution, equation 3.10 or 3.11
(or Mautz and Harrington's perfect conductor combined field
equation) can be solved for the [I,] by using matrix inversion
or factorization. The scattered field due to the equivalent
currents of each mode can then be calculated and summed up for

the total scattering solution.

3.3 Generalizing the Moment-Method Solution to the
Impedance Body Case

For the IBC case, the appropriate integral equations are
given in operator form in Eqs. 3.5, 3.6 and 3.7. These integral
equations were derived from the impedance boundary condition of

Eq. 2.5 assuming vanishing interior fields. The derivations led

to an expression for M in terms of J, restated here for

convenience:

fl=-nnx2.173 (2.9)

Assume that the normalized dyadic surface impedance is diagonal

and only a slowly varying function of t:
Z,(r) = z2.(t) £t + 2.(t) ¢¢ (3.14)

2g will be discretized over the coordinate t but will be

assumed to be approximately constant over any particular segment.

18




In applying the moment-method for the IBC case, let R be

expanded similar to 3.

N K
t,, . t In¢
M(t,0) = ] £ (t) e
n=1 kzl Mnk k
(3.15)
N K
Mbe,9) = § 5 M £ (£) eIT¢
n1 Kbt ok K
Using equafions 2.9 and 3.12, the elements of [M,] can be
expressed in terms of the [I,] as:
L ¢ ¢
Mnk n (Zs)k Ink
(3.16)

L . t t
Mnk n (zs)k Ink

Substitute the expansions for J and M, equations 3.8 and
3.15, into each IBC integral equation and take the appropriate
inner products with the testing functions. For the nth Fourier
mode, Eqs. 3.5 and 3.6 can be expressed in matrix form

respectively as:

19
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(Vo) = (2, (1.0 + 3 (9] (¥ (M) (3.17)

1
[U) = [¥,] (1,0 + L (N1 12,1 ) (3.18)

The matrix [N] represents the n x vector operation and can be

expressed as:

[N] = | (3.19)
-1 0

where the K x K submatrix I is the identity matrix. It is

desired to convert Eqs. 3.17 and 3.18 into the following forms

regspectively:
[Vod = [22,] [1)] (3.20)
(Ul = [¥y ] (1] (3.21)

where [zzn] and [YYn] can be thought of as the generalized,
normalized impedance and admittance matrices for the IBC
equations. 1In each of Eqs. 3.17 and 3.18, there is a term of the
form % [N] [An] [Mn] which must be converted into the form
[Bhl[Inl. This is accomplished by the following steps.

Applying the n x operation:

20
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¢t 1 t
1 An An Mn
1
& N1 [A] M) < (3.22)
tt ,té $
-A -An Mn
using Eq. 3.14:
LN 1) 7% 1¢
1 .An An Zs In
Y (N] [An] [Mn] = (3.23)
tt ,té t .t
-A, -An Zs In

Reordering the matrix equation to obtain the electric current

expansion coefficients in their proper order:

$d _,ot t [t
An Al'l ZS In
1 -
5[N] (A M1 = (3.24)
_até tt ¢ ¢
INSI zé 1¢

Then, under the assumption that the discretized form of 2g has

individual elements which are constant with respect to t:

1
L s, ) = (8,001,)

21




where the elements of [B,] are given by: (i=row, j=column)

tt PN Y) t
BeH g = 4%y @)
te - -(ptt ¢
By = -@d, ad;

(3.25)
t - (ALY t
(B: )1j (An )ij (Zs)j

- (att ¢
BIH 5 = gDy @h)

The matrix elements appropriate to each IBC equation can now be

writt?n down by inspection (in terms of the matrices pertaining

to the perfect conductor equations). For the nth Fourier mode,

the matrix representations of Eqs. 3.5, 3.6 and 3.7 are:

po 1 F - - -
t . tt té t
Vn ZZn ZZn In
= EFIE (3.26)
L ¢t $¢ ¢
\') ZZ YAA I
L ﬂJ L n n i i nJ
€] [ oott te] [ .t
Un YYn YYD In
- MFIE (3.27)
¢ ¢t $¢ $
hUnJ L.YYn YYn o - In-
t, ot tt tt teé té t
Un+aVn YYn 'O'GZZI_l YYn +aZZn In
= CFIE (3.28)
¢ ¢ ¢t ¢t ¢ ¢ ¢
Un+aVn YYn +aZZn YYn +aZZn In

22




where the elements of [ZZ,] are given by: (i=row, j=column)

@2.5) 5 = a0y + 2Dy ()
@ziho= @i hH s - ah, o, .
n J n J 8] n ] (3.29)
@zh5yy = @5y - @y (Eh
@zd®yyy = @hhyy @by by,

The matrix elements for [YY,] are the same as those for [ZZ.,]
but with the roles of [Z,] and [Y,] on the right hand side of
3.19 interchanged.

As in the perfect conductor case, once each matrix equation
is solved for the [I,], then that Fourier mode contribution to
the scattered field can be calculated. In the IBC case, however,
both J and M contribute to the scattered field. The next section
will consider how to generalize the far field calculation
algorithms of Mautz and Harrington to include the contribution of
M.

3.4 Generalization of Far Field Calculations

In general, the scattered electric field due to equivalent
electric and magnetic sources (J,M) on a surface can be expressed

88:15

8= ~jup K -vvVv-v9vxf (3.30)

23




where

X = fs J(z') ¢ ds' (electric vector potential)
V=1=-{ .l [v'«J(r')] ¢ ds' (scalar potential)

F = fs M(Z') o ds' (magnetic vector potential)

At a far field point, defined by the spherical coordinates
(r,0,¢) and unit vectors (;,3,;); Eq. 3.30 can be approximated

38:15

~

BS(#) = ES 0 + ES o

¢
where:
Ep = -jkn e—;? [[3(E") -8 +}‘- fE)ep] e TKET 4o
(3.31)
Ey = -jkn e;iir [J3ED s —% B(E')-0] e=JkTeT' o

Mautz and Harrington define measurement matrices, [Rp], having

the elements:

RPY = k [ dt' p'€,(t") [2" dp'(peq) eIk ToETH(eT-0) (3 37

where p' is the cylindrical coordinate p on the surface (a
function of t') and where:
p=¢tor ¢ surface coordinate

q =6 or ¢ spherical coordinate

24




Using 3.32 and the expansions for J and M, the far scattered
field components can be written as:

-jkr
8 _ i € £ Lt . 48 1¢
Eg In 5t g g Ry Tnit Rop Ing

1 oté \t 1 o646 o jne
+ n Rni Mni + n Rni Mni] e (3.33)

s _ _ e té .t o 14
E¢ in =5% g g (Ri Ini* Rui Ing
1 pte yt 1 540 o jne
n Rni Mni n Rni Mnil e (3.34)

Using equation 3.16 for the elements of [M,], one obtains:

-jkr
0 4xr ai ni "ni ni “ni (3.35)
-jkr .
L e ty .t ¢ ¢ Jné
E¢ In =75y E E [sni Ini+ Sni Ini] ¢

25
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where
te _ ote t ¢
sni Rni + (Zs)i Rni
$9 _ Rpoo _ $ té
Sni ™ Rai - (29 Ry
(3.36)
té¢ . pté _ t $0
Sni = Rai - (Zg); RLy
¢d _ pood $ to
sni Rni + (Zs)i Rni

Since the moment-method programs of Mautz and Harrington
calculate the elements of [Rn], the [Sn] elements can easily be
calculated and the remainder of the far field calculation is

essentially the same as described in Ref. 12.
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4.0 NUMERICAL RESULTS

4,1 Introduction and Definitions

Presented in this section are numerical solutions to the IBC
integral equations for scattering from impedance spheres. The
primary objective is to contrast the EFIE, MFIE and CFIE
formulations in terms of solution accuracy and stability. A
second objective is to determine the sensitivity of the CFIE to
parameters such as integral equation weighting coefficient (a)
and moment-method segmentation (SEG) for different types of
impedance surfaces (i.e. perfectly conducting, lossy, reactive,
etc.).

The sphere surfaces are assumed to be characterized by a
scalar, constant value of normalized surface impedance (Zg).
Specific values of Zg are chosen to represent various types of
impedance surfaces that might be encountered in scattering
problems.!-7,% For example, a pure real value of Zg could
represent the surface impedance of a Salisbury screen type of
configuration.!? The special case of Zg=1.0 (ideal Salisbury
screen) is of interest since the flat plate reflection
coefficient at normal incidence is zero. A pure imaginary value

of Zg could represent the surface impedance of a rough

perfectly conducting surface or a perfect conductor coated with
lossless dielectric layers. Reactive values of Zg can allow

surface wave resonances to exist where the scattering cross
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section might change by 20 to 30 dB for a very small change in
frequency. Bodies with finite conductivity or perfect conductors
coated with lossy layers can be represented by values of Zg4
having both real and imaginary parts. For example Zg=0.1+j0.1
could represent the surface impedance of a homogeneous, lossy
conductor or a perfect conductor coated with a thin lossy
dielectric layer. Zg=1.0+j1.0 might represent a conductor

coated with a thick lossy layer.

The numerical results are presented in three parts.
Section 4.2 contains examples of scattering from a perfectly
conducting sphere (Zg=0.0) for ka values in the vicinity of the
first theoretical sphere interior resonance (ka=2.744). These
results, which are similar to those of previous
researchers’»!1,12  review present understanding of the
effects of spurious resonances upon the stability and accuracy of
moment-method solutions to the perfect conductor EFIE, MFIE and
CFIE formulations. Also, the results demonstrate general
properties of the convergence of moment-method solutions as a
function of body segmentation and review techniques for
determining the best choice of a in the CFIE. In Section 4.3,
examples pertaining to scattering from impedance spheres are
presented which demonstrate the influence of non-zero values of
Zg upon the convergence of solutions to the CFIE. Also, the

problem of determining the best choice of a« for non-zero values
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of Z, is considered in this section. Finally, Section 4.4
contains numerical examples which directly compare the stability
and accuracy of scattering solutions of the EFIE, MFIE and the
CFIE for non-zero values of Zg at ka values near theoretical
interior sphere resonances. The examples include backscatter vs
ka near the first sphere resonance for Zg=0.1+j0.1 and

Z4=1.0, backscatter vs. Re(Zg) or Im(Zg) at ka=2.75 and
bistatic scattering from a sphere having Zg=1.0 at ka values
near each of the first four sphere resonances.

For purposes of definition, the term "stability" of a
moment-method solution refers to the potential for numerical
errors in the matrix equation which approximates the integral
equation. A quantitative measure of solution stability which is
used in all examples is the matrix condition number (described in
the next few paragraphs). The term "accuracy" refers to the
final solution (cross-section) accuracy. The moment-method
solution accuracy for these sphere examples is determined by
comparison with the Mie series solution (computed for each
example using an independent computer program based on Ref. 14).

As stated above, a matrix condition number is used as a
measure of the stability of the moment-method solutions.
Consider the matrix equation Ax=y where A is a square matrix and
x and y are column matrices (or vectors). When x is unknown and

y is known, the solution is obtained by calculating A-ly. An
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error in the calculation of y of 8y will produce an error in x of
§x. When 8y is in the direction of an eigenvector of A, it
follows from Ax=y that éx will be in the direction of the same
eigenvector., From the definition of matrix and vector norms, the

relative uncertainty in x can be related to that of y by

(assuming no uncertainty in the calculation of A or A"):18
ll o 'I < cond (A) 'I i " (4.1)
K. IERI

where cond(A), or condition number of A, is defined as:

cond(A) = ||A|| . ||A-1|| (4.2)

and where 'l || denotes matrix norm when applied to A and vector
norm when applied to x or y. When A is real and symmetric and
when the geometric vector norm is used (length of the vector),
cond(A) is the ratio of the maximum to the minimum eigenvalues of
A.'® If A is near singular (i.e. minimum eigenvalue near zero)
cond(A) becomes very large. In such a case, an error §x in the
direction of the eigenvector associated with the minimum
eigenvalue may be large and perhaps may dominate the numerical

18 Thus, cond(A) can be interpreted as an

.solution for x.
amplification factor for numerical errors in solving a matrix
equation. For example, a condition number of 1000 means that the

expected relative uncertainty in the solution x is 1000 times

that of y.

30




st

To connect the above discussion with the impedance body
scattering formulations, recall that the calculation of cross
section described in Section 3 is a two-step process. First the
integral equation (EFIE, MFIE or CFIE) is approximated by a
matrix equation to obtain a discrete representation of the
equivalent currents on the body surface. Then the scattered
field due to these equivalent currents is computed by a closed
surface integration. The condition numbers of the matrix
approximation to the IBC integral equations characterize the
stability of the first half of the calculation of cross-section.
That is, the condition numbers reflect the probable errors in the
equivalent currents - not necessarily the same as the relative
errors in cross section. For the EFIE and MFIE formulations,
when at a frequency near a spurious resonance, the integral
operators are near singular and matrix approximations are
ill-conditioned. By analogy with the example of the real,
symmetric matrix, the probable errors in the equivalent currents
are the equivalent currents of the interior resonance problem.

For the results in this report, cond(A) is determined using
the infinity norm definition - which is much easier to calculate
than the geometric norm but has a more difficult geometrical

18 7o accomplish this calculation, the matrix

interpretation.
decomposition and solution routines of Ref. 13 are replaced by
those of Ref. 19, Also, for all examples axial incidence to the

spheres are assumed (without loss of generality). In this case
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only the M=1 Fourier mode of the moment-method solution is
non-zero and solution stability is characterized by a single
condition number.

For purposes of quantifying solution accuracy in some
examples, a mean percentage error (ME) in the bistatic cross

section is defined as follows:

N o (8.) - o.;.(8)
1 2 l cfie''n mie‘ n I x 100%
n=1

ME =
N pie®n)

In the above equation, 8, is a bistatic angle and N is the
total number of bistatic angles used. For all examples, N=362
(181 E-plane and 181 H-plane angles). ocfje represents the
bistatic cross section of the CFIE equation and opje is the Mie
series solution. Since the above definition blows up when Smie
becomes very small, for any value of a/wa2 < 10'5, a value of
10~J is used. This modification is only required for the
examples of Zg=1.0 at small bistatic angles.

As an aid to interpreting the ME, Fig. 4.1 shows four
examples E-plane bistatic scattering patterns for an impedance
sphere with Zg=1.0+j1.0 and ka=2.75. Different values of «
result in different degrees of solution accuracy. These bistatic
scattering patterns show that for a given ME, larger percentage

errors occur near backscattering while smaller percentage errors

occur near forward scattering.
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Fig. 4.1. Example E-plane bistatic scattering patterns
11lustrating different degrees of solution accuracy and the
corresponding values of mean error (ME).
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4.2 Perfectly Conducting Sphere Examples

This section contains numerical examples applicable to
scattering from perfectly conducting spheres (Zg=0.0). The
purposes of first presenting these examples are to: (1) provide
a reference for comparing the scattering examples in which Zg
is non-zero, (2) illustrate general criteria concerning
convergence of a moment-method solution, (3) review current
understanding of the effects of spurious resonant solutions on
the EFIE and MFIE, and (4) review methods for determining a
suitable choice of integral equation weighting coefficient (a) in
the CFIE. Some of these examples have been considered in detail
by Oshiro, et. al.” and Mautz, et. al.}1-13

Figure 4.2 illustrates the effect of increasing
moment-method segmentation (SEG) upon the accuracy and stability
of solutions to the EFIE, MFIE and CFIE (a=.25) at ka=2,50.
Plotted are the bistatic cross section mean error (ME) and
condition number (cond) vs. SEG. An alternate abscissa is
provided below the figure to indicate matrix sizes. SEG is
defined as the number of straight-line body profile segments per
wavelength. The number of expansion functions per wavelength is
approximately SEG/2. In the figure, the ordinates that increase
with increasing SEG are condition numbers and the ordinates that
decrease are mean errors. a=.25 is used for the CFIE solutions

following guidelines established in the literature’,!1-13
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Fig. 4.2. Mean error in the perfectly conducting sphere bistatic
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(an example showing how a suitable choice of a can be determined
is presented later in this section).

At this value of ka the EFIE, MFIE and CFIE behave similarly
as SEG is increased - that is the accuracy of :xach equation
improves and the condition numbers of each equation increase. The
improvement in accuracy is due to the finer moment-method
segmentation allowing a better approximation to the equivalent
currents while the increzse in condition numbers is due to the
larger matrix sizes having smaller minimum eigenvalues. If the
segmentation is increased further and further, eventually a
crossover point in improvement in accuracy would be reached
beyond which the accuracy would worsen with increasing SEG.2°

The accuracy of the three equations as described by the ME
is comparable at any given SEG. However, the relative
stabilities of the three equations at a given SEG are different.
For matrix sizes larger than about 10 x 10, the EFIE is
relatively ill- conditioned as compared to the MFIE and the CFIE
(a=.25). This difference in conditionality is a result of the
EFIE being a Fredholm integral equation of the 1st kind while the
MFIE and CFIE (which is heavily weighted with the MFIE in this
example) are second kind equations.?! Briefly, as the matrix
size increases due to finer moment-method segmentation, matrix
elements obtained from integrals will decrease in magnitude since

the surface area of integration decreases. In a 1st kind
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equation (EFIE) all elements are calculated from terms involving
surface integrals, and hence their magnitudes (and the magnitude
of the minimum eigenvalue) decrease as the matrix size
increases. As the matrix size tends toward infinity, the matrix
elements of a lst kind equation tend toward zero. 1In a 2nd kind
equation (MFIE) a term exists which does not involve
integration. Thus, the MFIE tends to become more diagonally
dominant as the matrix size increases - with the diagonal
elements in general tending toward non-zero values as the matrix

size increases toward infinity.?2!

The relative values of condition number imply that the
errors in the computed equivalent currents are probably greatest
in the EFIE and least in the MFIE, 1In fact for some matrix
sizes, the equivalent current errors in the EFIE solutions are
probably an order of magnitude larger than those of the MFIE or
the CFIE (a=.25). Yet the solution accuracy of the EFIE as
described by the ME is generally better than the MFIE at a given
SEG for ka=2.50. This apparant contradiction has been explained

by examining the fields generated by spurious equivalent

currents,l1!,12

Resonant cavity equivalent currents of the form
J,0) satisfy the boundary condition ﬁxﬁ_=0 on S for the EFIE,

Applying Eq. 2.1 (with M=0), the resonant cavity equivalent ]
currents satisfy ﬁxE+=0 which implies ﬁxﬁ+=0 when radiation

conditions are met. Thus the spurious equivalent currents which
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enter scattering solutions to the perfect conductor EFIE have
zero exterior electromagnetic fields. If calculated exactly,
these spurious currents do not contribute to the computation of
scattered field. In contrast, resonant cavity equivalent
currents of the MFIE of the form (J,0) satisfy ﬁxﬂ_-o - which
implies ﬁxﬂ+-3 and ﬁxE+#0. These resonant currents are
non-physical but never-the-less exist when enforcing ﬁxﬂ_-o.
Thus, spurious equivalent currents of the MFIE have non-zero
exterior fields and hence contribute directly to the computed
scattered field. The net result is that the final solution
accuracies of the EFIE and the MFIE are comparable even though
the computed equivalent currents of the EFIE contain much larger
errors than those of the MFIE (verified by Mautz through actual
computation of currents in the sphere examples).

Figures 4.3 a and b illustrate the relative accuracies and
stabilities respectively of solutions to the EFIE, MFIE and CFIE
(a=.25) for a range of ka values near the first theoretical
sphere resonance (ka=2.744). Plotted in Fig. 4.3a is normalized
backscatter (o/%a?) from a perfectly conducting sphere vs. ka
as predicted by each of the integral equations and the Mie
series. The matrix size is 26 x 26 for all points which
corresponds to a SEG of approximately 20/A. Figure 4.3a
demonstrates the regions of inaccuracy in the EFIE and MFIE and

the potential errors in magnitude in computing backscatter at
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Fig. 4.3a. Normalized backscatter (o/%a2) from a perfectly
conducting sphere vs. normalized wavenumber (ka) for ka values
near the first theoretical sphere interior resonance (ka =
2.744). Segmentation (SEG) is defined as the number of
straight-line body profile segments per wavelength.
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SEG=20)A. Plotted in Fig. 4.3b are the condition numbers which
correspond to the data of Fig. 4.3a. These values of cond
indicate the regions of instability and the relative errors in
the equivalent currents of solutions to the three integral
equations,

Figures 4.3a and b both indicate that the EFIE and MFIE are
affected by (or predict the location of) the spurious resonance
at different ka values. By virtue of its inherent better
conditioning, the MFIE predicts the resonance closer to the
theoretical value. Figures 4.3a and b also indicate that the 1st
sphere interior resonance affects the MFIE over a broader range
of ka values than the EFIE (i.e., the MFIE has a wider bandwidth
for errors). However, the largest potential magnitude of errors
in backscatter from the sphere appears to occur for the EFIE in a
very narrow range of ka values. Throughout the region of the
interior sphere resonance, the CFIE (a=.25) gives accurate
scattering predictions and demonstrates no ill-conditioning from
the resonance.

Figure 4.4 shows the effect of changing matrix size on the
scattering predictions of the EFIE near the first sphere
resonance., In this figure, normalized backscatter from a
perfectly conducting sphere vs. ka is plotted using three
different matrix sizes in the EFIE solution - 6 x 6 (SEG~7/)),
12 x 12 (SEG~10/1) and 26 x 26 (SEG~20/)r). The dashed ordinate

is the Mie series solution. As matrix size increases, three
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effects can be seen upon the contamination of the EFIE scattering
solutions by the spurious resonance. First, the magnitude of the
potential errors decreases as matrix size increases. Secondly,
the region of inaccuracy (bandwidth of errors) narrows as
indicated by the shape of the curves. Thirdly, the predicted
location of the resonance gets closer to the theoretical ka value
as the matrix size increases. The MFIE scattering predictions
(not shown in the figure) are affected in a similar manner - with
the bandwidths for errors being wider than those of the EFIE at
the same matrix size and the predicted location of the resonance
being closer to the theoretical value at a given matrix size.

The problem of choosing a suitable value for the CFIE
weighting coefficient (a) has been considered by Oshiro, et.al.’
and Mautz, et.al.!!-!3 for gcattering from perfectly conducting
spheres. Using a bistatic cross section mean error (very similar
to the one used in this report), Oshiro determined the best
choice of a to be in the range of .2 - .3 for a variety of ka
values. Using the rms error in the equivalent current as the
criterion (analogous to the condition numbers of this report),
Mautz and Harrington determined the best choice of a to be
approximately .2 for ka near the 1st sphere resonance.

Figure 4.5 illustrates the above two described methods by
displaying ME and cond vs. a for 5 different ka values near the

1st sphere resonance. Matrix sizes are 26 x 26 which corresponds
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to SEG~20/)2. When a=,.01, the CFIE solution can be considered

near to the MFIE solution. When a=100.0, the CFIE solution is
near an EFIE solution. The values of ME are all < 10% -
indicating that for SEG=20/) good accuracy in the cross section
can be obtained using almost any a (for perfectly conducting
spheres). It appears that the range of .1 < a < 1.0 may be the
best range to obtain good accuracy for any ka. The values of
cond in Fig. 4.5 indicate that there exists a more narrow range
of a values for obtaining the most well-conditioned matrices and
smallest errors in the currents for all ka values of Fig. 4.5.
Clearly, .2 < a < .3 is a range which gives well-conditioned

matrices for all ka values near the 1st sphere resonance.

4.3 Influence Of Non-Zero Values Of Surface Impedance On Choice
Of Integral Equation Weighting Coefficient And Moment-Method
Segmentation For The Combined Field Integral Equation
The problems of choosing the CFIE weighting coefficient (a)

and adequate moment-method segmentation (SEG) when calculating

scattering from impedance spheres are considered in this section.

The values of normalized surface impedance used for these

numerical examples are Z2g=0.1+30.1 (representing a thin lossy

dielectric layer), Zg=1.0+j1.0 (representing a thick lossy

layer), Zg=tj1.0 (representing lossless inductive and

capacitive surfaces and Zg=1.0 (representing an ideal Salisbury
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screen). Choosing the best a is considered first for 2 ka values
near the 1st sphere resonance assuming that SEG=20/) is adequate
segmentation. Using suitable choices of a for the different
impedance surfaces, the convergence of the CFIE as a function of
SEG is then examined at ka=2,75.

Figures 4.6a and b show respectively the accuracy and
stability of the CFIE scattering solutions as a function of a at

ka 2.50. ME vs. a is displayed in Fig. 4.6a and cond vs. & is

-displayed in 4.6b. Matrix sizes of the data in both figures are

26 x 26 (SEG=22/1). For the values of Zg considered, the
solution accuracy as described by the ME is highly variable for a
given matrix size. The best ME that could be achieved for
Zg=tj1.0 is about 7.2% - significantly worse than the perfectly
conducting case of .062% (Fig. 4.2) at the same SEG. The values
of ME in Fig. 4.6a also demonstrate that the functional
dependence of solution accuracy on a is also highly variable
depending on Zg. For example, values of ME for Zg=:+j1.0 are
relatively insensitive to a« while values of ME when Zg=1.0 are
very sensitive to a. For this latter case, ME less than 10% is
obtained only in a very narrow range of a around 1.0.

The condition numbers of Fig. 4.6b show that for a given
matrix size and ka, the dependence of cond on a and the values of
cond at a given a both appear to be dependent on Zg. Only the
cage of Zg=0.1+j0.1 was similar to the perfectly conducting

case - where small a implied well-conditioned matrices (cond«20)
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and large a implied ill-conditioned matrices (cond 300 - 400).
The influence of Zg on the dependence of cond with a can be
partly explained by observing that Zg plays a similar role to
that of when 2g=0 (i.e., M=0). That is, the ill-conditioned
Lg operator (perfect conductor EFIE) is combined with the
well-conditioned Ly operator (perfect conductor MFIE) in both
the the EFIE and MFIE (see Eqs. 3.5 and 3.6). These two
equations are then combined in the CFIE. However, when Zg has
an absolute value on the order of 1.0, the mix of the two perfect
conductor operators is about the same in the CFIE regardless of
a. Thus, the value of Zg (or the type of impedance surface)
also plays a role in the variability of. the condition number at a
given a.

rigures 4.7a and b display ME vs. a and cond vs. a
respectively for ka=2.75. Matrix sizes are 26 x 26 -
corresponding to SEG=20/A. At this ka, very close to the 1st
sphere resonance, the sensitivity to a of the CFIE solution
accuracy and stability is noticeably increased over that at
ka=2.50 (Figs. 4.6 a and b). Also, the best solution accuracy
that is achieved for the pure reactive surface impedance cases
(Zg=2j1.0) 1is noticeably worse at ka=2.75 over that at
ka=2,50. For these pure reactive cases, the best ME at SEG=20/\
is only about 10%Z. To obtain ME < 10%, choice of a is critical
for Zg=1.0 and Zg=+j1.0. For Zg=.1+j.1 and 1.0+j1.0,
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the choice of a is less critical to obtain ME < 10%. However,
even in these latter two cases, the choice of a is more important
than in the perfectly conducting case (Fig. 4.5).

The final numerical example in this section considers the
influence of non-zero surface impedance on the convergence of
impedance sphere scattering solutions of the CFIE. Plotted in
Figs. 4.8a and b respectively are ME vs. SEG and cond vs. SEG at
ka=2.75 for the different values of Zg. a is chosen to obtain
close to the best solution accuracy at a given Zg using

Fig. 4.7a. The actual values of o used in Figs. 4.8a and b are:

2y alpha
0.1+j0.1 0.6
1.0 1.0
jr.o0 7.0
-j1.0 0.14
1.0+j1.0 1.25

The convergence of the CFIE as a function of moment-method
segmentation is similar to the perfect conductor case (Fig. 4.2)
in that increasing SEG generally improves solution accuracy. As
SEG increases from 5/A to 10/) there is a rapid improvement in
solution accuracy. For SEG > 20/2 improvement in accuracy is
slow. Convergence of the CFIE for non-zero Zg is different
from the perfectly conducting case in that a given value of SEG

does not guarantee that solution accuracy will be comparable to
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MEAN ERROR (PERCENT)
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ZS=1.0+01.0 - CFIE(ALPNA-'I.ES) — — - 28=1.0+¢91.0
Fig. 4.8a. Mean error in the impedance sphere bistatic cross
section vs. moment-method segmentation at ka = 2,75. Note: the

Zg = tj1.0 ordinates nearly overlay each other, apparently a
congsequence of a(Zg = j1.0) = 1/a{Zg = -j1.0).
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Fig. 4.8b. Matrix condition numbers (m = 1 Fourier mode) of the

impedance sphere solutions of Fig. 4.8a vs. matrix size.
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that of the perfectly case. This fact could also have been
inferred from Figs. 4.6a and 4.7a for which all data points are
at SEG=~20/A.

The convergence of the CFIE when Zg=t3j1.0 is interesting
in two respects. First, the solutions are relatively inaccurate
and the matrices are relatively ill-conditioned when Zg=+j1.0
as compared to the other cases of Zg. Secondly, for SEG > 20/a
there is actually an increase in mean errors with increasing SEG
while for the other values of Zg there is a gradual decrease in
ME. The increase in ME with increasing SEG for the pure reactive
cases suggests that the best choice of a changes when SEG is
changed. However, this possibility was determined not to be the
reason for the convergence behavior for Zg=tj1.0 exhibited in
Fig. 4.8a. The best choice of a was determined for Zg=j1.0 at
SEG=32/) (matrix sizes=45 x 45) by generating a curve similar to
the one for SEG=20/A in Fig. 4.7a. The results were that the
best choice of o remained at approximately 7.0 with the lowest ME
approximately 15%., Thus, it appears that the cross-over point at
which there is no longer improvement in accuracy with increasing

matrix size occurs very early for Zg=tj1.0 at ka=2.75.
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4.4 Comparison Of the Electric, Magnetic and Combined Field
Integral Equations For Non-Zero Values Of Surface Impedance

Examples of scattering from impedance spheres are presented
in this section which directly compare solutions to the EFIE and

MFIE with those of the CFIE for ka values near spurious

resonances. The primary objective of this section is to

demonstrate that spurious resonant solutions can severely
contaminate the EFIE and MFIE predictions of exterior scattering
from impedance bodies while the CFIE is a formulation which
rejects the spurious solutionms.

Backscattering from a sphere with with Zg=0.1+3j0.1 at ka

values near the first sphere resonance is considered in

Figs. 4.9a and b. Normalized backscatter vs. ka as predicted by
the EFIE, MFIE, CFIE (a=.6) and Mie series is plotted in

Fig. 4.9a and condition numbers for the integral equations vs. ka
in Fig. 4.9b., Matrix sizes of the data are 26 x 26 which
corresponds to SEG~20/A. The scale sizes of Figs. 4.9a and b are
the same as those of Figs. 4.3a and b to allow direct comparison
with the perfectly conducting case.

The presence of the non-zero surface impedance causes some
subtle changes in the accuracy and stability of the integral
equation solutions relative to the perfectly conducting case.
First, the bandwidth for errors and the magnitude of errors in
the EFIE and MFIE cross sections are larger than in the perfectly

conducting case. This is just the opposite that one would expect
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Fig. 4.9a. Normalized backscatter (a/xa2) from a lossy

impedance sphere having a normalized surface impedance of 0.1 +
jO.1 vs., normalized wavenumber (ka).

57




CONDI!TION NUMBER

25=0.1+00.1

MATRIX S12€5= 26 x 26

T T T 111177 1 T . 1
10000 — -:
: i
i
LI |
! Vol
TR
roy ! :
o | o
1000 p— b \ -
Iy . ]
/ v \ -
Co ]
|
AN .
/ P -
I/ ‘ \
Tt s - o ! \\ e {
""" Trme— = 7 \ TN L ee-
/ *\
4 AN
/ N
100. = ’ AN —
[ . S
s Y —
s -
I - > -
// ~
§ _ g -
- -~
- — —e
// -
o ! | . I | N T A B A
2.60 2.6% 2.70 2.7% 2.80 2.85% 2.90
KA
LEGEND
CFIE(ALPHA=D . 6)
(NONE)
EFI1E
MF1IE
Fig. 4.9b. Matrix condition numbers (m = 1 Fourier mode) for the

lossy impedance sphere solutions of Fig. 4.9a vs. ka.

ok




if one assumed that the lossy surface impedance would help

regularize the ill-posed equations. Values of condition number,
however, are not greatly different from the perfectly conducting
case except that the EFIE condition numbers are slightly lower. A
possible explanation for these changes in accuracy and stability
is offered as follows. As mentioned in the previous section, the
non-zero value of Zg adds a term (1.0/n)ﬁxLH(ﬂ) to the

perfect conductor EFIE - changing it from a 1st kind equation to
a second kind equation. Hence, one would expect that the
conditioning of the EFIE for this case should be better than the
perfectly conducting case because of the addition of some well-
conditioned Ly integral operator to the equation. However, the
non-zero Zg also changes the spurious equivalent currents from
the form (J,0) for the perfectly conducting case to the combined
source form (3,ﬂ=-ﬁx23-n3).1° These latter currents, which are
still equivalent currents of the perfect conductor cavity
problem, always have non-zero exterior fields. Thus, the
spurious currents of the EFIE radiate an exterior field when Zg
is non-zero and the accuracy in the cross section would be
expected to be worse than in the perfect conductor EFIE case. The
increased errors in the MFIE cross sections may be due to the
combined source spurious equivalent currents producing larger

exterior fields than in the perfectly conducting MFIE case.
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Effects of a pure real surface impedance on the accuracy and
stability of the three integral equations is shown in Fig. 4.10.
Normalized backscatter (o/waz) and condition number (cond) are
plotted as functions of Re(Zg) at ka=2.75. 1Im(Zg)=0.0 and
matrix sizes of 26 x 26 are used (SEG=20/1). Since a=1.0 is the
best choice for Zg=1.0 (as determined in the previous section),
this value is used for the CFIE solution at all values of Zg in
Fig. 4.10. At this value of ka (very close to the first
theoretical sphere resonance), the EFIE and MFIE are
characterized by ill-conditioned matrices and poor accuracy in
predicting cross section. In contrast, the CFIE (a=1.0) is
relatively well-conditioned and predicts the cross section very
close to the Mie series at all values of Re(2g). As in the
previous case, the lossy surface impedance did not help to
regularize the ill-posed integral equation formulations.

The case of Zg=1.0 appears to be a stressing case in the
calculation of scattering from impedance BORs since the
theoretical cross section for axial backscattering is zero.
Figures 4.11a and b consider this case for a sphere by displaying
normalized backscatter (o/waz) vs, ka and cond vs. ka
respectively. In Fig. 4.11a, there is a scale change on the
vertical axis - the upper scale for the EFIE-MFIE ordinates and
the lower scale for the CFIE (a=1.0) ordinates. Since the

backscattering predictions of the EFIE and the MFIE are
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Fig. 4.10. Normalized backscatter (lower set of ordinates) from
a fossy impedance sphere and associated matrix condition numbers
(upper set of ordinates) vs. real part of normalized surface
impedance (imaginary part of Zg = 0.0, ka = 2.75). Note: the
CFIE and Mie series ordinates nearly overlay each other.
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degenerate for Zg=1.0, there is a common ordinate for both
equations. In the figures, two different matrix sizes are used
which illustrate the effect of a change in moment-method
segmentation upon the influence of the spurious resonance in the
impedance sphere scattering solutions with Zg=1.0. Case 1
corresponds to matrix sizes of 26 x 26 (SEG~20/1) and Case 2
corresponds to matrix sizes of 54 x 54 (SEG»=40/)).

Considering that the exact scattering solution for all ka is
zero, the EFIE-MFIE predictions are very poor for all ka values
considered in Fig. 4.11a. The cross section values indicated by
the EFIE-MFIE ordinates show only the contribution of the
spurious equivalent currents to the computed scattered field. The
CFIE (a=1.0) predictions, which appear to be computational noise,
are a much better approximation to the theoretical cross
section. The increase in matrix size upon the EFIE-MFIE
solutions has similar effects as those for the perfectly
conducting case (Fig. 4.4). Increasing the matrix size causes
the bandwidth for errors in cross section to narrow slightly, the
scattering predictions to be generally better at a given ka and
the predicted location of the resonance to be shifted closer to
the theoretical location (ka=2.744). However, increasing the
matrix size has little effect on the CFIE (a=1.0) other than an
increase in the condition numbers as shown in Fig. 4.11b, A

further improvement in the CFIE (a=1.0) cross section predictions
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would probably require increasing computational accuracy (which
is 32 bit in all numerical examples of this report).

Figures 4.12a, b and c display E-plane bistatic scattering
from an impedance sphere having Zg=1.0 at ka values near the
first, second and third perfect conductor sphere resonances
respectively. In each case, matrix size is adjusted to obtain
SEG=20/x. Bistatic scattering angles of 0 and 180 degrees
correspond to backscattering and forward scattering
respectively. The effect of the spurious solutions upon the EFIE
and MFIE appears to be similar for each of these resonances -
with the predicted location of the resonance being slightly
higher than the theoretical location in each case (the ka values
of each are very close to the peak of the resonance). In all
three cases, the EFIE and MFIE scattering predictions are very
poor for all bistatic angles except those near forward
scattering. The CFIE (a=1.0) predictions on the other hand, are
excellent for all bistatic aspect angles - the curves nearly
overlaying the Mie series solutions in all three cases. Although
a=1,0 was determined in the previous section to be the best value
only at ka=2,75, the excellent agreement of the CFIE (a=1.0)
predictions with the Mie series at the other ka values indicates
that a=1.0 may be the best value at all frequencies when the

normalized surface impedance is 1.0.
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Fig. 4.12a. Normalized E-plane bistatic scattering from a lossy
impedance sphere (Zg = 1.0, ka = 2,758). For the H-plane,
interchange the EFI% and MFIE predictions (the CFLE and Mie
series predictions for the H-plane are the same as those for the
E-plane when Zg = 1.0).
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Figures 4.13 and 4.14 consider scattering from impedance
spheres characterized by a pure reactive surface impedance.
Figure 4.13 displays normalized backscatter (a/va2) vs.

Im(Zg) at ka=2.75 with Re(Zg)=0. Four different integral
equation solutions are compared to the Mie series: EFIE, MFIE,
CFIE (a=1.0) and CFIE (variable a). The last case is presented
to demonstrate that an improvement (albeit slight) in accuracy
can be attained by varying a as Zg changes. Figure 4.14
displays condition number vs. Im(Zg) for each of the integral
equation solutions of Fig. 4.13. Matrix sizes are 26 x 26 -
corresponding to SEG=20/a.

The accuracies of the EFIE and the MFIE in predicting
backscatter at ka=2.75 are very poor when Zgz is pure
imaginary. In contrast, both CFIE solutions have good agreement
with the Mie series. The CFIE (variable a) case represents a
slight improvement over the constant a case - although there are
still large errors in cross section in the regions where cross
section changes greatly with a slight change in Im(Zg). Values
of condition number displayed in Fig. 4.14 indicate that the CFIE
solutions are generally better conditioned than the EFIE and MFIE
solutions. The stability of the integral equation solutions for
large inductive Zgz appears to be strikingly different than that

for large capacitive values of Zg. That is, the impedance
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spheres appear to be characterized by resonances for large
inductive Zg - possibly exterior surface wave resonances. This
behavior is similar to that noted by Wait in Mie series solutions

of scattering from impedance spheres.l“
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5.0 CONCLUSIONS

This report has investigated numerical solutions to integral
equation formulations for scattering from bodies described by a
Leontovich impedance boundary condition (IBC). A method of
constructing moment-method solutions to three different IBC
integral equations was described. Two of these equations - the
principal ones for which numerical solutions have been obtained -
are the electric and magnetic field integral equations (EFIE and
MFIE). These two equations are ill-posed because they
theoretically allow spurious solutions at frequencies at interior
perfect conductor cavity resonances. The IBC combined field
integral equation (CFIE) - which has received little attention in
terms of actual numerical solutions - is well-posed because it
rejects the spurious resonances. Numerical solutions to the
EFIE, MFIE and CFIE for scattering from impedance spheres were
presented in this report which considered different types of
impedance surfaces (i.e., perfectly conducting, lossy, reactive,
etc.)

The numerical results demonstrated that scattering solutions
to the EFIE and MFIE can be severely contaminated by spurious
solutions when at a frequency near an interior resonance. This
contamination occurs regardless of whether the surface impedance
is lossy or lossless and no regularization of the ill-posedness

of these equations occurs when the surface impedance is lossy. In
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contrast to the MFIE and the EFIE, solutions to the CFIE are not
affected by spurious resonant solutions when a suitable choice of
integral equation weighting coefficient (a) can be determined.
The CFIE solutions are consistently more stable and accurate than
those of the EFIE or the MFIE when at a frequency near an
interior resonance. For some values of Zg; (for example

Zg=1.0) the solution accuracy of the CFIE can be much better
than that of the EFIE or MFIE even when at a frequency that
appears to be far from an interior resonance. Thus, the
numerical examples clearly demonstrated that the CFIE is in
practice (as in theory) a superior IBC integral equation
formulation to either the EFIE or the MFIE.

The numerical examples also illustrated some important
differences when the scatterer surface has a non-zero surface
impedance than when the scatterer is a perfect conductor (this
latter case being the one upon which current understanding of the
effects of spurious solutions on an integral equation formulation
is based). First, when Zg is non-zero, relative errors in the
computed EFIE and MFIE cross sections are generally larger and
the bandwidths for errors are generally wider than those for the
perfect conductor EFIE and MFIE. This appears to be due to the
fact that when Zg is non-zero, the spurious equivalent currents
take the combined source form (J,M=-nx2gz.nJ) rather than the

form (3,0). The combined source equivalent currents (which are
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still equivalent currents of the perfect conductor interior
resonance problem) radiate an exterior electromagnetic field
which depends in magnitude upon the value of Zg. Thus, the use
of a well-posed integral equation formulation takes on greater
importance when the scatterer surface impedance is non-zero than
for the perfect conductor case. Secondly, when Zg is non-zero,
choice of moment-~ method segmentation (SEG) and integral equation
weighting coefficient (a) for the CFIE appears to be more
complicated to attain a specified cross section accuracy than the
perfect conductor case. Convergence as a function of SEG appears
to be very poor for certain values of reactive surface impedance
(low loss) at certain frequencies. In particular, when the
frequency is near an exterior surface wave resonance (where there
might be a very large cross section or one that changes rapidly
with frequency), the.errors may be large regardless of
segmentation. When varying a at a given SEG, the best accuracy of
the CFIE occurs at different values of o for different values of
Zg. Thus, the established perfect conductor criteria for

choosing a is not adequate for all Zg.
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APPENDIX A

The Fortran IV computer program listed in this appendix is
essentially Mautz and Harrington's main program!® for the perfect
conductor case extended to the impedance boundary condition
case. Several variables (ZS, ZST, ZSP, YY, ZZ, TM, PM) and one
subroutine (MATB) were added to accomplish the required
modifications. Also, many comments were added to aid in
understanding the logic of the program and all the main
variables. Some minor changes to Mautz and Harrington's program
were that the inputs were changed to list-directed read and all
format statements for outputs were moved to the end of the
program. The output was modified to include printing of the two
components of magnetic surface current density (sampled at the
same body locations as the electric surface current density).

The listing does not include any routines from the Mautz and
Harrington program that are unchanged.

Solution is obtained for the following conditions: (1)
single excitation frequency, (2) one incident angle and one
scattering angle (not necessarily the same), and (3) one value of
normalized surface impedance on the BOR. The actual program used
for generating the results of Chapter 4 was a modification of the
one listed in this appendix which could calculate scattering at
many aspect angles, frequencies, etc. (by appropriate insertion

of loops).
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FIELD INTEGRAL EQUATION (MF:Z2) AND THE COMBINED FIELD
INTEGRAL EQUATION (CFIBE)e THE INTEaNAL CODING OF THE
PROGEAM A3SUMES A NOKMALIZED, DIAGONAL, DYADIC SURFACE
IMPEDANCE WHICH CAN HAVE ARBITRARY VARIATIONS ALONG THE
IONGITUDINAL SURFACE COORDINATE OF THE BORe HOWEVER, THIS
VERSION READS IN A SCALAR, CONSTANT VALUE OF NORMALIZED
SURFACE IMPEDANCE.

THIS PrOGRAM IS A GENERALIZATION MAUTZ AND HARRINGTON'S
MOMENT=-METHOD PROGRAMS FOR SCATTERING FROM A PERFECTLY

CONDUCTING (P.C.) BOR. DETAILS OF THE MOMENT=METHOD AND
KEQUIRED (BUT UNMODIFIED) SUBKOUTINES ARE DOCUMENTED IN:

1« Je. EF. MAUTZ AND R. F. HARRINGTON, ‘*H=FIELD, E=FIELD,
AND COMBINED FIBLD SOLUTIONS FOR BODIES OF KEVOLUTION',
TECHNICAL REPORT TR=77=2, (FEBRUARY 1977), AND

'COMPUTER PROGRAMS FOF H-FIELD, E=FIELD, AND COMBINED
FIELD SOLUTIONS FOR BODIES OF REVOLUTION®', Tk=77=3, (MAY
1977) , DEPARTMENT OF ELECTEICAL AND COMPUTER ENGINEERING,
SYRACUSE UNIVERSITY, SYRACUSE, NY 13210

THE BOF SURFACE IS DESCRIBED BY A LONGITUDINAL COORDINATE
T AND AN AZIMUTHAL COORDINATE PHI. THE FAR FIELD POINTS
ARE DESCRIBED BY THETA AND PHI SPHERICAL COURDINATES. ALL
SURFACE VECTORS AND DYADICS USE THE BODY COOFDINATE SYSTEM
WHILE THE VARIOUS LINEAE POLARIZATIONS OF THE INCIDENT AND
SCATTERED WAVES REFER TO THE SPHERICAL COORDINATE SYSTEM.

ROUTINES CALLED:

MATB = CONSTRUCTS PAET OF THE IMPEDANCE OK ADMITTANCE
MATRICES FOR THE IBC EQUATICNS FROM THE PERFECT
CONDUCTOF MATRICES.

YZ = CALCULATES THE PEKFECT CONDUCTOR IMPEDANCE AND
ADMITTANCE MATRICES (SEE REFEFENCE 1)

PLANE = COMPJITIES MEASUREMENI MATRICES FOR THE TEANSMITTER
AND RECEIVER ANGLES (SEE REFERENCE 1)

DECOMP- COMPUTES THE MATRIX DECOMPOSITION OF THE IMPEDANCE
OR ADMITTANCE MATRICES (SEE REFERENCE 1)

SOLVE = SOLVES THE LINBAR SYSTEM OF ALGEBFAIC EQUATIONS
FOR A GIVEN SOURCE VECTOR (SEE REFBRENCE 1)

FILE DEFINITIONS: 5 = INPUT FILE (ALL INPUTS FREE FORMAT)

6 = OUTPUT FILE
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INPUT VARIABLES: ]
NM - TCTAL NUMBBR OF FOURIER MODES (0,1,2,eeq,NN=1)

NP - NUMBEE OF PROFILE BODY POINTS (ODD NUMBER, G B. 5)
NPHI = NUMBER OF POINTS IN GAUSSIAN QUADRATURE INTEGRATION
BK -~ WAVENUMBER (UNITS CONSISTENT WITH KH AND ZH)
TT = TRANSMITTEE THETA ANGLE (DEGREES)
(NOTBE: TRANSMITTER PHI ANGLE = 0.0) |
P = BODY PHI ANGLE (DBEGEKEES) IDBNTIFPYING THE PLANE IN !
WHICH THE SURFACE CURRENT DENSITIES ARE EVALUATED. g
TR = RECEIVER THETA ANGLE (DEGEEES) :
PR -~ RECEIVER PHI ANGLE (DEGRBES) ]
ALP = INTEGERAL BQUATION WEIGHTING COEFFICIENT
RH = P CYLINDRICAL COOEKDINATE OF BODY POINTS
ZH = Z CYLINDRICAL COORDINATE OF BODY POINTS
X = ABSCISSAS OF GAUSSIAN QUADRATURE INTEGRATION
A ~ WE1GHTS OF GAUSSIAN QUADFATUKRE INTEGRATIONS 4
zs « NOFMALIZED SURFACE IMPEDANCE (SCALAR, CONSTANT) ]

OTHER MAIN VARIABLES:
R -« NOUMBER OF EXPANSION FUNCTIONS

e e

N2 =~ MATRIX DIMENSIO¥
ZST =~ T=T COMPONENT, NORMALIZED DYADIC SURFACE IMPEDANCE _
ZSP ~ PHI-PHI COMPONENT, NGRM. DYADIC SURFACE IMPEDANCE r
Y - NOFMALIZED ADMITTANCEZ MATKIX FOR THE P.C. MFIE f
Z  ~ NOEMALIZED IMPEDANCE MATRIX FOR P.C. EFIE i
YY < FORMALIZED ADMITTANCE MATRIX FOR IBC MFIE )
22 =~ NOEMALIZED IMPEDANCE MATRIX POR IBC EFIE :
RT =~ MEASUREMENT MATRIX FOR TRANSMITTER THETA ANGLE
KR ~ MEASUREMENT MATRIX FOR RECEIVER THETA ANGLE ¢
B~ SOURCE VECTOR (FROM INCIDENT FIELDS) i
C = SOLUTION VECTOR f
KT < DENOTES TRANSMITYER POLAKIZATION (1=THETA, 2=PHI) §
KR ~ DBNOTES RECEIVER PCLARIZATION (1=THETA, 2=PHI) ;
NHEC ~ DENOTES TYPE EQUATION (1=MFIE, 2=EFIE, 3=CFIE) ‘
TJ =~ T=-COMPONENT OF NORMALIZED ELECTRIC SURFACE CURRENT
PJ = PHI-COMPONENT OF NOFM. BLECTRIC SUKFACE CURRENT
TM <~ T-COMPONENT OF NORMALIZED MAGNETIC SURFACE CURKENT
PN - PHI-COMPONENT OF NORM. MAGNETIC SURPACE CURRENT
B~ NORMALIZED RCS (SIGMA/LAMBDA##2)

OUTPUTS:

1« ALL INPUT PARAMETERS

2. SAMPLE OUTPUT OF THE EFIE, MFIE AND CFIE MATEICES,
AND SAMPLE OUTPUT FROM PLANE, DECOMP AND SOLVE,

3. FOR EACH INTEGEAL BQUATION AND EACH TRANSMITTER
POLARIZATION, THE FOLLOWING AFE PFINTED:
A, TJ, PJ, TM, PM AT N DISCRETE LCCATIONS ALONG THE

e N N e N Ne Ne K2 K Ko e Ke e e e EaRe e N Ko Ko e e Ko N Ne X e e K e N Ne N K N K Ke e KeKe Ks N2 K Re e e N Xs !
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T COOFDINATE (MEASURED IN THE PHI=P PLANE) h
B, NORMALIZED PCS FOR BOTH RECEIVER POLS. i

THE MEANING OF 'NORMALIZED' IS AS FOLLOWS. THE IMPEDANCE
(ADMITTANCE) MATRICES AND THE SURFACE IMPEDANCE ARE :
NORMALIZED BY DIVISICN (MULTIPLICATION) WITH THE FEREE
SPACE WAVE IMPEDANCE. THE ELECTRIC AND MAGNETIC SURFACE
CURRENT DENSITY COMPONENTS ARZ NORMALIZED BY DIVISION WITH
THE WAVENUMBER, IN THE PROGEAM, FH AND ZH AKE NOEMALIZED
BY MULTIPLICATION WITH THE WAVENUMBER. THE RCS IS
NORKMALIZED BY DIVI:{ION OF A SQUARE WAVELENGTH.

THIS VERSION WAS WRITTEN BY Je. ROGERS OF THE RADAR SYSTENS
GEOUP, MIT LINCOLN LABORATORY, LEXINGTON, MASS. 02173
NOVEMBEF 1983.

DISCLAIMER: THIS PROGFAM IS EXPERIMENTAL AND WAS WRITTEN TO
ILLUSTRATE CERTAIN PROPERTIES OF IBC INTEGRL&1 EQUATIONS.
NO EFFOFT WAS MADE TO COPTIMIZE COMPUTEE SPEED OR STORAGE,
THE BASIC CODING CAN BE VALIDATED FOR THE P.C. CASE BY
COMPARING TO THE SAMPLE PROBLEM OF REFERENCE 1., FOR THE
IBC CASE, CHECKS CAN BE MADE WITH THE NUMERICAL BXAMPLES
OF THE TECHNICAL REPORT FOR WHICH THIS LISTING IS PART OF.

anaocoaaacnoaaaaocaanaanann

COMPLEX U,TJ (120),PJ (120),E(12) ,SN,SNR,RT (240) ,BR (240)
COMPLEX Y (1600) ,2 (1600) , B(40) ,C (40) ,T1,CONIG

COMPLEX 1M (120) ,PM (120),YY (1600),2Z (1600)

: COMPLEX ZS,2ST(20),ZSP(20)

i DIMENSION KH(43),2H (43),X(20),A (20),THT (3) ,THE (3) ,E2(20)
: DIMENSION IPS {40)

READ (5,%) NM,NF, NPHI

READ (5,*) BK,TT, P, TR, PR, ALP
READ (5,%) (RH(I),I=1,NP)
READ (5,%*) (ZH(I) ,I=1,NP)
READ (5,%) (X(K),K=1,NPHI)
READ (5,%) (A (K) ,K=1, NPHI)
READ (5,%) ZS

WRITE (6,49) Nu,NP,NPHI
; WRITE(6,48) BK,TT,P,TE,PR,ALP
' WRITE (6,45) (kRH(I) ,I=1,NP)
P WEITE(6,44) (ZH(I) ,I=1,NP)
i WRITE(6,47) (X (K) ,K=1,NPHI)
: WRITE (6,43) (A (K) ,K=1,NPHI)
WRITE (6,100) 25

N2=NP=3
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N=N2/2

N3=N2+N
NU=H2&N2
N6=6%N

U= (0. ,1.)

PX=3, 141592653
Pli=,0625/PI%%3
P8=P1/180.
ETA=120.0%PI
THT (1) =TT*P8
pP=p®Pp8

THR(1) =TR*P8
PR=PR*P8

DO 101 I=1,N
ZSP(I) =ZS
ZST(I)=2S
101 CONTINUE
DO 42 J=1,NP
KH (J) =BK*RH (J)
ZH (J) =BK&ZH (J)
42 CONTINUE
DO 17 J=1,N
K2(J)=1. /RH (28I +1)
17 CONTINUE
Do 54 J=1,N6
TJ(J)=0.
PJ (J) =0.
TN (J)=0.
PN (J) =0.
54 CONTINUE
Do 55 J=1,12
E (J) =0.
55 CONTINOE
WRITE(6,9)

C ' LOOP THROUGH ALL FOUKIER MODES
DO 41 K=1,NHM
NN=K=1
PN=NN®P
CS=COS (PN)
SN=2,%SIN (PN) *0
PU=NN*PR
CSR=COS (PN)
SHE=2.8SIN(PN)*U
IF(NN,BQ.8)GO TO 56
Cs=2,0¢CS
CSR=2,0%CSR

56 LANE=0

L
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130

131

61

105

62
103

63

66
59

57

N

21

CALCULATE YY AND ZZ FOR THIS MODE
CALL YZ(NN,NP,NPHI,KH,ZH,X,A,Y,2)
DO 130 I=1,N4
YY (I) =Y (1)
22 (I) =2 {I)
CONTINUE
CALL MATB (N2,ZSP,ZST,Z)
CALL MATH (N2,2ZSP,2ST,Y)
DO 131 I=1,N4
YY (I) =YY (I) +2 (1)
22 (I)=2Z (I)+Y(I)
CONTINUE
100P THROUGH THE THRBE IBC BQ'S
DO 58 NHEC=1,3
GO TO (61,62,63),NHEC
DO 105 JJ=1,N4
Y (3J) =YY (JJ)

CONTINUE
WRITE(6,8)Y(1),Y(2)
GO TO 59
DO 103 JJ=1,N4
Y (3J) =22 (3J)
CONTINUE
WEITE (6,8)Y (1),Y(2)
GO TO 59
WPITE(6,8)YY (1) ,YY(2),22(1),22(2)

DO 66 J=1,N4
f (J) =YY (J) +ALP*ZZ (J)
CONTINUE
CALCULATE MATRIX DECOMPOSITION
CALL DECCMP (N2,IPS,Y)
WEITE(6,8)Y (1),Y(2)
IF (LANE NE.0) GO TO 57
LANE=1
CALCULATE MEASUREMENT MATRICES
CALL PLANE(NW,N,1,THT,RT)
CALL PLANE(NN,N,1,THE,RE)
WRITE (6,8) BT (1) ,RT(2) ,RR (1) ,BR (2)
CALCULATE SOURCE VECTOKS
DO 27 KT=1,2
L=2% (NHEC=1) +KT
GO0 TO (31,32,33,34,35,36),L
MFIE - THETA TRANSMITTER POL.

DO 21 J=1,N

B (J) ==RT (J+¥3)

B (J¢N) ==RT (J+N2)
CONTINOE

GO TO 53
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32

22

33

23

34

24

35

25
36
26

53

1

13
12

i
{
!
i
!

MFIE

PHI POL.
20 22 J=1,N

JN=J+§

B (J) ==RT (JN)

B (JN) ==KT (J)

CONTINUE

60 TO 53

EPIE

THETA POL.
DO 23 J=1,N
B (J) =K T (o)
JN=J+N
B (JN) ==RT (JN)
CONTINUE
GO TO 53
BFIE - PHI POL.
DO 24 J=1,N
B (J) ==FT (J+N2)
B (J+N) =ET (J+N3)
CONTINUE
GO TO 53
CFIE

THETA POL.
pC 25 J=1,N
B (J) ==RT (J+N3) + ALP*RT (J)
JN=J+N
B (JN) ==RT (J+N2) =ALP®RT (JN)
CONTINUE
GO TO 53
CFIE - PHI POL.

DO 26 J=1,N
IN=J+N
B (J) ==ET (JN) =AL P*RT (J+N2)
B (JN) ==ET (J) + ALPRT (J+N3)
CONTINUE

~ SOLVZ MATRIX BQUATION
CALL SOLVE(N2,IPS,Y,B,C)
WEITE (6,8)C (1),C(2) .
CALCULATE NORMALIZED ELECTEIC
SURFACE CUKKENT DENSITY
J1=(L=-1) ¢}
GG TO (11,12) KT
DO 13 J=1,¥
J2=J+J1
TJ (32) =TJ (J2) +C (J) *CS
PJ (J2) =PJ (J2) +C (J+N) #SN
CONTINUE
GO TO 14
DO 15 J=1,M
J2=JeJ1
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15
14

[A

75

72

76

73

77

74

78

16
27
58
61

TJ (J2) =TJ (J2) +C (J) SN
PJ (J2) =PJ (J2) +C (J+N) *CS
CONTINUE

CALCULATE NORMALIZED RCS

DO 16 KK=1,2
1= (KT=1) ®*2+KR
KE=4#% (NHEC=1) +1
U01=0.
60 TO (71,72,73,74),1
THETA - THETA
. (TRANSMIT POL. = KECEIVE POL.)
DO 75 J=1,N
NPJ=N+J
J1=U1+ (RR (J) +2ST (J) KE (§3+J) ) ¢C (J)
U1=01+ (RR (NPJ)=2SP (J) ¢#RR (N2+4J) ) ®C (NPJ)
CONTINUE
E (KE) =E (KE) +U1%CSR
GO TO 16

THETA - PHI
DO 76 3=1,N
NPJ=N+J
U1=01+ (RR (J+N2) -ZST (J) ®RR (NPJ) ) ¢C (J)
U1=01+ (RE (N3+J) +ZSP (J) *RE (J) ) *C (NPJ)
CONTINUE
B (KE) =E (KE) +U1%SNR
GO TO 16

PHI = THETA
DO 77 J=1,N
NPJ=N+J
U1=U1+¢ (KR (J) +2ST (J) ®*RR (N3+J)) *C (J)
U1=01+ (KR (NPJ)=2SP (J) KR (N2+J) ) #C (NPJ)
CONRTINUE
E (KE) =E (KE) +U1*SNR
60 TO 16 :

PHI = PHI
Do 78 J=1,N
NPJ=N+J
U1=01+ (KR (J#N2)=ZST (J) *KR (NPJ) ) #C (J)
U1=U1+ (ER (N3+J) +ZSP (J) #RR (J) ) $C (NPJ)
<ONTINUE
E (KE) =E (KE) + D1%CSR
CONTINUE
CONTINUE
CONTINUE
CONTINUE

WRITE OUTPUTS
DO 28 NHEC=1,3
DO 29 KT=1,2
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an

37

137

49
48

45
44
47
43
100

S

WRITE(6,18) NHEC,KT

WEITE (6,19)

J 1=N® (2¢NHEC+KT=3)

DO 37 J=1,N

J2=3+31

TJ (J2) =TJ (J2) *R2(J)

PJ (J2) =PJ (J2) *K2 (J)

WRITE (6,38) TJ (J2) ,PJ (32)
CONTINUE

WEITE (6,119)

DO 137 J=1,N

J2=3+J1

TH (J2) ==ETA®ZSP (J) *PJ (J 2)
PM (J2) =BTA®ZST (J) *TJ (J2)
WRITE (6,38) TM (J2) ,PM (J2)
CONTINUE

DO 30 Kk=1,2
J1=4« NHEC + 2#KT+KR=6
SIG=PU4*E (J1) $CONJIG (B (J1))
WEITE (6,10) NHEC,KT,KK,SIG
CONTINUE
CONTINUE
CONTINUE
STOP :
FORMAT STATEMENTS

FCEMAT (*OSAMPLE OUTPUT FROM SUBROUTINES®)

FORMAT (1X,4E14,. 7)

FORMAT ('O NHEC=',I3,', KT=',13)

FORMAT (* EKEAL JT INAG JT REAL JP INAG JPY)

FORMAT (*  REAL MT IMAG MT REAL MNP INAG MPY)
FORMAT (1X,4E11, 4)

PCRMAT (* NHEC=',I3,*, KT=',I3,', KE=',I3,

17, SIGMA/ (LAMBDA)**2=1,E11. &)

POEMAT(' NM NP NPHI'/1X,2I3,I4)

FCRMAT (7X, *BK', 12X, 'TT', 13X,*P*,12X, ' TR, 12X, 'PR* /1X,

15E14.7/7X, ALP' /1X, E14, 7)

PORMAT(* RH'/(1X,8F8.4))

FORMAT (* ZH'/(1X,8F8. 4))

FOEMAT(* X'/(1X,5E14.7))

FORMAT (* A'/(1X,5E14.7))

FOEMAT (1X,' 25 =!,2F10.4)

END

UBEOUTINE MATB - THIS ROUTINE CALCULATES THE MATRIX (B)
WHICH IS PART OF THE NOKMALIZED IMPEDANCE (ADMITTANCE)
MATRIX OF THE IBC BFIE (MFIE) WHEN THE SURPACE IMPEDANCE
IS NON-ZEBRO:
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o (B) (T) = 1.0/BTA (M) (A) (M)
c
, c WHERE (A) IS A P.C. ADMITTANCE (IMPEDANCE) MATEIX, (N)
; c REPRESENTS THE EXPANSION COEPFICIENTS OF THE MAGNETIC
: c SURFACE CURRENT DENSITY, (I) EEPRESENTS THOSE OF THE
i c ELECTRIC CUKRENT, (N) REPRESENTS THE CROSS FRODUCT OF THE
1] c OUTWARD UNIT SURFACE NOEMAL AND BTA IS THE FEEE SPACE WAVE
C INPEDANCE.
c
SUBROUTINE MATB (N2,2ZSP,2ST,X)
. COMPLEX X (1),2SP(1),2ST (1) ,CTENP
N=N2/2
N2N=N2¢N
. c 1 DENOTES EOW, J DENOTES COLUMN.
“ c I1, I2, I3 AND I4 ARE IN THE TT,
c PT, TP AND PP SUBMATRICES OF X
C RESPECTIVELY.
DO 10 J=1,N
I1= (J= 1) ®N2+1
I2=I1+}N
I3=I1+N2N
I4=I3+N
DO 20 I=1,N
CTENMP=X (I4)

X(I4)=X(I1)*ZSP(JI)
X (11) =CTEMP#*ZST (J)
CTENP=X(I3)
X(I13)==X(I2)*ZsSP (J)
X(12)==CTENP#*2ZST (J)
I1=I1+1
I2=12+1
I3=I3+1
I4=I4+1
20 CONTINUE
10 CONTINUE
RETURN
END

85




ACKNOWLEDGMENT

The author would like to acknowledge Gregory E. Heath of the
Lincoln Laboratory Radar Signature Studies Group for his help in
the integral equation formulation and for numerous helpful
suggestions concerning the numerical examples. Also, the author
greatly appreciated the excellent typing support of

Donna McTague, secretary of the Radar Signature Studies Group.

86




10.

11,

REFERENCES

M. A. Leontovich, "Appendix of Diffraction, Refraction and
Reflection of Radio Waves," (thirteen papers by V. A. Fock,
N. Logan and P. Blacksmith, eds.), U.S. Gov. Printing
Office, Washington, D.C. (1957), DDC AD-117276.

V. H. Weston, "Theory of Absorbers in Scattering"”, i:ZEE
Trans. Antennas Propag. AP-11, 578 (1963).

T.B.A. Senior, "Impedance Boundary Conditions for
Imperfectly Conducting Surfaces," Appl. Sci. Res.,
Section B, 8, 418 (1960).

J. J. Bowman, "Effects of Absorbers," in Methods of Radar
Cross Section Analysis (Academic Press, New York, 1968).

K. M. Mitzner, "An Integral Equation Approach to Scattering
From a Body of Finite Conductivity," Radio Sci 2, 1459

(1967).

F. K. Oshiro, et. al., "Calculation of Radar Cross Section,"
Part I, Vol. I, Technical Report AFAL-TR-67-308
Wright-Patterson AFB, Ohio (December 1967).

F. K. Oshiro, K. M. Mitzner, S. S. Locus, et. al.,
"Calculation of Radar Cross Section. Part I1. Analytical
Report," Technical Report AFAL-TR-70-21 Wright-Patterson
AFB, Ohio (April 1970), DDC AD-867969.

R. D. Graglia and P. L. E. Uslenghi, "Electromagnetic
Scattering by Impedance Bodies of Revolution"”, National
Radio Science Meeting, session URSI/B-6-3, paper 4,
University of Houston, Houston, Texas, 23-26 May 1983.

K. A. Iskander, L. Shafai, A. Frandsen, and J. E. Hansen,
"Application of Impedance Boundary Conditions to Numerical
Solution of Corrugated Circular Horns," I1EEE Trans.
Antennas Propag. AP-30, 366 (1982).

G. E, Heath, "Well-Posed Formulations of Impedance Boundary
Condition Integral Equations," Technical Report Lincoln
Laboratory, M.I.T. (To Be Published).

J. R. Mautz and R. F. Harringto», "H-Field, E-Field and

Combined-Field Solutions for Conducting Bodies of
Revolution," Arch. Elect. Ubertragung 32, 157 (1978).

87




Ak b b a1 o

12.

13.

14'

15.

16.

17.

18.

19.
20.

21,

REFERENCES (Cont'd)

, "H-Field, E-Field and Combined-Field Solutions
for Bodies of Revolution," Technical Report TR-77-2,
Department of Electrical and Computer Engineering, Syracuse
University, Syracuse, New York (February 1977).

, "Computer Programs for H-Field, E-Field, and
Combined Field Solutions for Bodies of Revolution,"”
Technical Report TR-77-3, Department of Electrical and
Computer Engineering, Syracuse University, Syracuse, New
York (May 1977).

J. R. Wait and C. M. Jackson, "Calculations of the Bistatic
Scattering Cross Section of a Sphere With an Impedance
Boundary Condition," Radio Sci. J. Res. NBS/USNC-URSI, 69D,
299 (1965).

R. F. Harrington, Time Harmonic Electromagnetic Fields
(McGraw-Hill, New York, 1967).

A, J. Poggio and E., K. Miller, "Inte%ral Equation Solutions
of Three-Dimensional Scattering Prob

ems," in Computer
Techniques for Electromagnetics, R. Mittra, ed. (0xford,

Pergamon Press, New York, .

G. T. Ruck, D. E. Barrick, W. D, Stuart and C. K. Krichbaum,
Radar Cross Section Handbook, Volume 2 (Plenum Press, New
York, 19/0), p 612,

R. Mittra and C. A. Klein, "Stability and Convergence of
Moment-Method Solutions,"” in Numerical and Asymptotic

Techniques in Electromagnetics, R. Mittra, ed.
(Springer-Verlag, New York, 1975), p 129.

LINPACK, User's Guide (SIAM, Philadelphia, 1979).

G. Strang, Linear Algebra and Its Applications, 2nd Ed.
(Academic Press, New York, 0). '

D. S. Jones, "Numerical Methods For Antenna Problems",
Proc. 1EE 121, 573 (1974).

88

YR R T




e

GLOSSARY OF SYMBOLS
(Order of Appearance)

Impedance boundary condition (Leontovich)
IBC magnetic field integral equation
IBC electric field integral equation
IBC combined field integral equation

Body of revolution

Dyadic normalized surface impedance (double arrow
denotes dyadic)

Incident electromagnetic fields (arrow denotes vector)
Closed surface of imperfectly conducting body
Sinsusoidal time dependance (phasor notation)

Volume electric current density

Scattered electromagnetic fields

Equivalent electric (¥) and magnetic (M) surface
current densities

Outward unit normal to surface (symbol over n denotes
unit vector)

Vector cross product in equations

Total electromagnetic fields just outside (+) or
just inside (-) equivalent current surface

Field point vector (source point when primed)

Free space wave impedance

Vector scalar product in equations

Principal value surface integration

Permeability of medium surrounding body (free space)

Free space Green's function
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(]
[v]
(2]

(1]
(U]
[Y]
[N]
[M]

GLOSSARY OF SYMBOLS (Cont'd)

Del operator (operates on source point coordinate when
primed) used for gradient (v¢), divergence (v-A) or
curl (vxA)

Permittivity of medium surrounding body

Pi = 3.14159...

Wavenumber

Absolute value (length)

Generalized integral equation weighting coefficient

Perfect conductor integro-differential operators

Scalar, constant integral equation weighting
coefficient

Cylindrical surface azimuthal coordinate

Surface coordinate along BOR generating curve

Triangular expansion function

Moment-method testing function

Matrix f
Source from incident electric field vector

Normalized impedance matrix for perfect conductor EFIE
(not to be confused with surface impedance)

Electric current expansion coefficients (unknownm)
Source from magnetic field vector

Normalized admittance matrix for perfect conductor MFIE
Matri’ representing n x vector operation

Magnetic current expansion cocfficients




[zz]
[YY]

(r,0,¢)

[R]

[s]
SEG

ka
Re( )
Im( )

cond

——— ) ” T

[ . s s b e pebgm S W ewes e e

GLOSSARY OF SYMBOLS (Cont'd)

Generalized impedance matrix for the IBC EFIE
Ceneralized admittance matrix for the IBC MFIE
Electric vector potential

Scalar potential

Magnetic vector potential

Right-handed spherical coordinate system
Measurement matrix

Radial cylindrical coordinate

Generalized measurement matrix

Moment-method segmentation (segments/wavelength)
Scalar, constant normalized surface impedance
Sphere wavenumber - radius product

Real part of a complex quantity

Imaginary part of a complex quantity
Approximate matrix condition number
Differential scattering cross section

Sphere radius

Wavelength

Bistatic scattering angle

Bistatic cross section mean error (percent)
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