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ABSTRACT

Exterior scattering from a three-dimensional impedance body

can be formulated in terms of various integral equations derived

from the Leontovich impedance boundary condition (IBC). The

electric and magnetic field integral equations are ill-posed

because they theoretically admit spurious solutions at the

frequencies of interior perfect conductor cavity resonances.

A combined field formulation is well-posed because it does not

allow the spurious solutions. This report outlines the

derivation of IBC integral equations and describes a procedure

for constructing moment-method solutions for bodies of

revolution. Numerical results for scattering from impedance

spheres are presented which contrast the stability and accuracy

of solutions to the ill-posed equations with those of the

well-posed equation. The results show that numerical solutions

for exterior scattering to the electric and magnetic field

integral equations can be severely contaminated by spurious

resonant solutions regardless of whether the surface impedance of

the body is lossy or lossless. Solutions to the combined field

equation are not contaminate by the spurious solutions when a

suitable choice of integral e uation weighting coefficient can be

determined. However, the dete mination of the weighting

coefficient for the general Impedance case is more difficult and

more critical than for the perfectly conducting scatterer case.
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1. INTRODUCTION

A well-known method for modeling electromagnetic

interactions with certain types of imperfectly conducting bodies

involves describing the body surface with a Leontovich impedance

boundary condition (IBC). 1"4 This approximation makes integral

equation formulations of scattering problems nearly as simple as

those for perfectly conducting bodies.5 Until the present,

solutions to IBC integral equations for exterior scattering from

generally-shaped, three-dimensional bodies have been obtained

from either the magnetic field integral equation (MFIE) 6-8 or the

electric field integral equation (EFIE).9 These two IBC

equations can be described as being mathematically ill-posed for

exterior scattering problems because at certain discrete

frequencies, the integral operators of each become singular and

the equations no longer have unique solutions.1 0 These discrete

frequencies are the interior resonances of a perfectly conducting

cavity having the same shape as the impedance target.1 0

Numerical solutions to either the MFIE or EFIE near a cavity

resonance will result in ill-conditioned matrices and scattering

results which may be contaminated by spurious solutions due to

the cavity resonances.* In contrast to the MFIE and EFIE, the

* The terminology "spurious solutions" refers to unwanted
mathematical solutions which have no physical connection with the
exterior scattering problem.



IBC combined field integral equation (CFIE) is mathematically

well-posed because it does not allow the spurious resonant

solutions.
10

This report investigates numerical solutions for scattering

from an impedance body of revolution (BOR) as determined by the

MFIE, EFIE and the CFIE. The principal objectives are to: (1)

describe the method by which moment-method solutions to the three

equations can be constructed, (2) contrast the numerical

stability and accuracy of solutions to the MFIE and the EFIE

with those of the CFIE, and (3) investigate the sensitivity of

the CFIE to parameters such as integral equation weighting

coefficient and moment-method segmentation for various types of

surface impedance (i.e. reactive, lossy, etc.). The report

begins with a brief discussion in Section 2 of the derivation of

the three equations and the well-posedness of each.* In

Section 3 it will be described how existing moment-

method numerical algorithms applicable to scattering from

perfectly conducting BORs 11-13 can easily be generalized to the

IBC case. A Fortran IV computer program which contains the

modifications discussed in Section 3 is listed in Appendix A.

Numerical results which address objectives (2) and (3) above are

* A general, theoretical treatment of the well-posedness of
IBC integral equations is given in Ref. 10. The numerical
results of this report represent the practical implementation of
one of the methods discussed in Ref. 10.
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presented in Section 4. These results are for scattering from

impedance spheres, and in all cases the moment-method solutions

were compared to an "exact" series solution.
14

Some conclusions concerning the results are presented in

Section 5. Briefly, the results demonstrate that numerical

solutions to the HFIE and EFIE for exterior scattering can be

severely contaminated by spurious solutions regardless of whether

the surface impedance is lossy or lossless. The errors in pre-

dicting scattering from bodies having non-zero surface impedances

are, in general, larger than for the perfectly conducting case.*

Also, the results demonstrate that the solution accuracy of the

CFIE as a function of integral equation weighting coefficient and

moment-method segmentation is strongly influenced by the value of

surface impedance. Criteria established for the perfect

perfect conductor case 7 ,11 may not work well when the surface

impedance is non-zero.

* A perfectly conducting surface can be considered as the
special case of an impedance surface when the surface impedance
equals zero.
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2.0 REVIEW OF THE FORMULATION AND STABILITY OF IMPEDANCE

BOUNDARY CONDITION INTEGRAL EQUATIONS

The physical scattering problem is depicted in Fig. 2.1. A

uniform plane electr(magnetic wave (ti,fi). is incident upon an

imperfectly conducting body surrounded by a closed surface S.

( ifti) are assumed known and have a monochromatic time variation

of 06t. When the incident wave interacts with the body,

volume electric current density, 3vol, is induced inside S and

radiates a scattered field (tsfs). Assuming that the radiation

conditions are met and the target is passive, the scattered

fields are unique.

In solving the problem depicted in Fig. 2.1, it is often

useful to apply the Equivalence Principle"5 which states that the

body with volume electric currents can be conceptually replaced

by a sourceless volume having electric (3) and magnetic (A)

surface current densities on S. The jump conditions which must

be satisfied on S are:
15

n x c;+ - _) - - A (2.1)

n x CR+- .) - (2.2)

* The field point dependence () of all vectors and dyadics is
suppressed in most cases throughout the text.

4
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Fig. 2.1. eweralized problem for scattering fwn a i perfectly conducting
body.
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where ( ±A)are the total electric and magnetic fields just

outside (+) or just inside (-) the surface and n is the outward

unit normal to the surface. These total fields are the sums of

incident fields due to sources at infinity and scattered fields

due to CA:

9 = gi + (2.3)

= Ai + A (2.4)

In constructing appropriate integral equations, a certain

arbitrariness exists in the choices of (3,A) and (.,f.).

Although the exterior fields must be unique, there are infinitely

many sets of equivalent currents and interior fields which will

give rise to the correct exterior fields. Thus, one can choose

( ,ft) when formulating the problem in order to obtain unique

equivalent currents. As depicted in Fig. 2.2, a convenient

choice for the interior fields is often the null field.

Assume that an imperfectly conducting body has the following

Leontovich impedance boundary condition (IBC) satisfied on its

surface 1 -:

S9+ xn = *n^ x(n +) (2.5)

where 2 is the normalized dyadic surface impedance of the body

containing information about the material properties within S and

6



Fig. 2.2. Null interior field equivalent problem.
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n is the free space wave impedance. Upon substitution of

Eqs. 2.1 and 2.2 into Eq. 2.5, the following condition relating

the tangential components of the interior fields to the

equivalent currents is obtained:

x xn+x

When choosing the null field problem depicted in Fig. 2.2, the

following two conditions must hold on the surface:

n x - 0 (2.7)

n x = 0 (2.8)

For this choice of (_,_) a simple relationship for A in terms

of 3 is obtained:

A -n n x s• (2.9)

This last relation effectively reduces the problem from two

coupled vector integral equations in two vector unknowns, ( ,A),

to one vector integral equation in one vector unknown, . Note

that each vector integral equation consists of two coupled scalar

integral equations in two scalar unknowns. Equations 2.7 and 2.8

8



each lead to a different vector integral equation for the

unique source 9. Using equations 2.3 and 2.4 and integral

representations for to and fs in terms of (3,%),15 ,16

Eqs. 2.7 and 2.8 lead to the following IBC electric field

integral equation (EFIE) and IBC magnetic field integral

equation (MFIE), respectively:

x + n x f, [jWji 3(+') ,

+ A(+') x V'# + j V .(+ Vol do (2.10)

n x - - n x f5 [-JWC A( ') *

+ 3(r+,) x VIOI.1(+)Vld'MI
1 ,O )rd (2.11)

where

and

.- Ij
*~ r1

Equations 2.10 and 2.11 are valid in the limit as S from the

inside. The terminology "EFIE" and "NFIE" in this report will

denote the generalized impedance electric and magnetic field

9



integral equations. The perfect conductor equations are the

special cases when 2s = 0.

By the choice of vanishing interior fields, two different

vector integral equations were obtained for determining a unique

source S. Although it would appear that either the EFIE or MFIE

could be solved for 3, the solution must ensure that both

equations are satisfied. This is required because Eq. 2.9 (used

in the solution for 3) is valid only if both Eqs. 2.7 and 2.8

are satisfied. Here-to-fore, it has been assumed that a solution

to either the MFIE or the EFIE will satisfy both equations.

However, that assumption is valid only away from discrete

frequencies located at the perfect conductor (p.c.) interior

cavity resonant frequencies.'" At a p.c. cavity resonant

frequency, the right hand sides of both Eqs. 2.10 and 2.11 are

singular allowing non-unique mathematical solutions to exist at

that frequency.1 0 Consequently, sets of spurious equivalent

currents which are solutions to the homogeneous perfect conductor

equations can contaminate the particular scattering solution.

Thus, Eqs. 2.10 and 2.11 are not equivalent to each other at a

p.c. cavity resonant frequency and the solution technique must

ensure that both are satisfied.

Although uniqueness problems with the EFIE and the MFIE

occur at discrete frequencies, it is still advantageous to have

an integral equation formulation which ensures a unique solution

at all frequencies. This is due to the fact that numerical

10



solutions to either ill-posed equation will be contaminated

within some bandwidth about a spurious resonance (due to the

approximation of an integral equation with a matrix equation,

numerical roundoff error, etc.). Since the perfect conductor

cavity resonances of a generally-shaped target are not known a

priori and become increasingly closely spaced with increasing

frequency, it is apparent that for large scattering targets (with

respect to a wavelength) the EFIE and the MFIE may be unreliable

at all frequencies.

If Eqs. 2.7 and 2.8 lead to two equations for a unique

source 3, then a linear combination will also yield a solution:

x - + 2a* n x 0 (2.12)

where 2 a is some arbitrary, generalized weighting coefficient

which could be a function of *. When substituting Eqs. 2.3 and

2.4 into 2.12, along with the appropriate integral

representations for to and As, one obtains an IBC combined field

integral equation (CFIE). It can be shown that a solution to the

CFIE will ensure that both 2.7 and 2.8 are satisfied at all

frequencies when 2 a is not reactive.1 0 Thus, the CFIE for the

impedance body case rejects spurious resonances in a similar

fashion as does the perfect conductor CFIE.1 1 ,12

11



3.0 GENERALIZATION OF PERFECT CONDUCTOR MOMENT-METPOD ALGORITHMS
TO THE IMPEDANCE BODY CASE

3.1 IBC Integral Equations in Perfect Conductor Integral
Operator Form

In Section 2, three impedance boundary condition integral

equations were derived and the well-posedness of each was briefly

discussed. The EFIE and MFIE formulations are ill-posed due to

non-uniqueness at interior resonant frequencies of the perfectly

conducting cavity. The CFIE, on the other hand, is well-posed at

all frequencies (provided Ia is non-reactive). In this

section, it will be shown how numerical solutions to each of

these equations can be constructed from moment-method matrix
I operators applicable to scattering from a perfectly conducting

body. A main computer program which accomplishes this procedure

for bodies of revolution is listed in Appendix A.

The particular perfect conductor algorithms to be

generalized are those of Mautz and Harrington. 12 ,1 3 These

moment-method programs were chosen because of their wide

availability and good documentation, and because they contain all

the required matrix operators for solving the IBC equations.

Although the programs are restricted to bodies of revolution, the

basic procedure in extending these programs to the impedance body

case would also be applicable to moment-method programs for more

generally-shaped bodies. It should be noted that the procedure

12



I

to be described in this section has already been accomplished for

the EFIE by Iskander, et. al.9*

It is appropriate to first recast the IBC integral equations

into operator notation applicable to Mautz and Harrington's

equations. Their integral equations for scattering from a

perfectly conducting body can be written as:11912

n x x n - LE() (3.1)

n x 4. LH(3 )  (3.2)

where the integral representations of the operators LE and LH

are:

() 1- n x x f. [Jwj 'v .3(r) VoJds' (3.3)

LH(-) - n x f. 3(r') x V#. do' (3.4)

Equations 3.1 and 3.2 are the perfect conductor special cases of

the IBC EFIE and MFIE equations with the EFIE put into

similar vector direction and units as that of the MFIE.

In terms of the perfect conductor operators, LE and LH,

the IBC integral equations are:

* The formulas in Ref. 9 should be used with caution. In
addition to the dyadic impedance boundary condition definition
being unclear, there appears to be a minus sign error in that
definition which is carried throughout all subsequent equations.

13
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inx f'x n - LEOJ) + ; x LH(A EFIE (35

n x A' -LH(J) + nx LAP ~ MFIE (3.6)

x + a nx x n-L(I + aLE)

H(3) E(3)

+ n x LE + a n x L CFIE (3.7)

where a is a constant coefficient in the CFIE.

3.2 Review of the Moment-Method Solution for Scattering

from a Perfectly Conducting Body

Mautz and Harrington 1 1 "13 solve Eqs. 3.1 and 3.2 for a

body of revolution (BOR) using the geometry in Fig. 3.1. The

coordinates (n,,t) represent a right-handed, orthogonal system

for describing vectors on the BOR surface. The unknown electric

surface current density, consisting of t and * components, is

expanded in terms of a Fourier series in + and in terms of

overlapping triangular expansion functions, f, in t:

i J(t,t) + J*(t,,)

14



axis of
symmetry

Body of Revolution

Fig. 3.1. Right-handed, orthogonal, curvilinear coordinate system (f, , t)
mn the surface of a body of revolution.
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where,

t N K t jn#
-I k-i ink fk(t) e

(3.8)
N KjnJO(t.0) I I nk fkt)e n

n= k-i

To determine the number and location of all fk(t), the top half

of the BOR profile is segmented into short straight line

segments. The number of expansion functions, K, is approximately

1/2 the number of straight line segments. For a visual

description of the triangle functions see Ref. 12.

Mautz and Harrington define vector testing functions, 0, as:

00) - Wt(t,*) t + WO(tO)

where
t N K

wt(t,#) = W(t,+) 1 I I fi(t) e-jm# (3.9)
mil i-i

Upon substitution of the expansion for 3 into Eqs. 3.1 and 3.2

and taking the appropriate inner products of the equations with

the testing functions, one obtains a series of independent matrix

equations corresponding to the various Fourier modes. (The

Fourier series inner product is non-zero only for m-n due to the

azimuthal symmetry of the problem.) For the nth Fourier mode:

16



[Vn ] - [Zn [in ] (3.10)

[Un] - [Yn ] [in ] (3.11)

or, expressing i-1e vector nature of the equations:

= (3.12)

[: i [(3.13)

Ufy~t y## I#

Equations 3.10 and 3.11 are the nth mode matrix representations

of Eqs. 3.1 and 3.2 respectively. The known vectors, [Vn] and

[Un], each contain 2K elements which are obtained from the

inner products of the incident fields with the testing

functions. The vector [In] contains the 2K unknown expansion

coefficients for the nth Fourier mode of 3. [Zn] and [Yn]

are 2K x 2K square matrices and can be interpreted as normalized

impedance and admittance matrices (not to be confused with

surface impedance or admittance). Explicit expressions for the

elements of [Vn], [Un], [Zn] and [Yn] are given in Ref. 12. For

17



each Fourier mode retained in the solution, equation 3.10 or 3.11

(or Mautz and Harrington's perfect conductor combined field

equation) can be solved for the [In] by using matrix inversion

or factorization. The scattered field due to the equivalent

currents of each mode can then be calculated and summed up for

the total scattering solution.

3.3 Generalizing the Moment-Method Solution to the
Impedance Body Case

For the IBC case, the appropriate integral equations are

given in operator form in Eqs. 3.5, 3.6 and 3.7. These integral

equations were derived from the impedance boundary condition of

Eq. 2.5 assuming vanishing interior fields. The derivations led

to an expression for A in terms of 3, restated here for

convenience:

n x 2s. 3 (2.9)

Assume that the normalized dyadic surface impedance is diagonal

and only a slowly varying function of t:

(r) - Z t) t^ + + (3.14)

!s will be discretized over the coordinate t but will be

assumed to be approximately constant over any particular segment.

18



In applying the moment-method for the IBC case, let A be

expanded similar to 3:

N K n
Mt(t.,) - N,(t e

n=1 k-iN~

(3.15)

#4(t.#) -N K)  X Mnk fk(t) ej
n #

n-1 k-1

Using equations 2.9 and 3.12, the elements of [Mn] can be

expressed in terms of the [In ] as:

nkt (Z#)C 1'
NkS k nk

(3.16)

M*- i (Z t it
nk s~k nk

Substitute the expansions for 3 and A, equations 3.8 and

3.15, into each IBC integral equation and take the appropriate

inner products with the testing functions. For the nth Fourier

mode, Eqs. 3.5 and 3.6 can be expressed in matrix form

respectively as:

19



1
[Vn ] - [Zn] [In] + - [NJ [Yn] [Mn] (3.17)

1

[Un] = [Yn] [In ] + I [N] [Zn ] (Mn] (3.18)

The matrix [N] represents the n x vector operation and can be

expressed as:

(N] = (3.19)

where the K x K submatrix I is the identity matrix. It is

desired to convert Eqs. 3.17 and 3.18 into the following forms

respectively:

[VnJ - [ZZn] [In] (3.20)

[Un] - [YYn ] [In ] (3.21)

where [ZZn] and [YYn] can be thought of as the generalized,

normalized impedance and admittance matrices for the IBC

equations. In each of Eqs. 3.17 and 3.18, there is a term of the

form I [N] [An] [Mn] which must be converted into the form

[Bn][In]. This is accomplished by the following steps.

Applying the n x operation:

20



Aft AO, M t

1 [N] [An ] [IN ]  1 I_ (3.22)
n n M

using Eq. 3.14:

[N] [An] [Mn] A ] (3.23)

L" n n J Lsnj

Reordering the matrix equation to obtain the electric current

expansion coefficients in their proper order:

([NJ [An] [Mn] (3.24)
1 1

L-Af n A j Ls s j

Then, under the assumption that the discretized form of 2, has

individual elements which are constant with respect to t:

1 [N] [An] [Mn ] = [Bn]l n ]

21



where the elements of [Bn ] are given by: (i-row, j-column)

(B t t . (A+f+)  (zt)
n )ij n j a

(Bntl)i -- (An5t)ij (Z)j

(3.25)

(B*)j - -(At°) (Z)j

(B#) -( tt Z*)nB ij (n ij a j

The matrix elements appropriate to each IBC equation can now be

written down by inspection (in terms of the matrices pertaining
I

to the perfect conductor equations). For the nth Fourier mode,

the matrix representations of Eqs. 3.5. 3.6 and 3.7 are:

V n z, z., I

EFIE (3.26)

u+V# z # + zz## 1++0 zU Ytt YYt.1 I t
nnn n

- j []MFIE (3.27)
L. nj L + j Ln

n n n nn

[U~+V~] -[y~t~zzz~ ~ i2] CFIE (3.28)

22



where the elements of (ZZn ] are given by: (i-row, j-column)

(ZZ tt (Ztt + (Z) (Y#)i

(ZZto) (Z,#) #(). (y*t)n ij n ij (s nij
(3.29)

nZt (Zt n fl lj( j ij S ( ) it

(ZZnO)ij = (Zn#)i + (Z:)j (Yt)ij

The matrix elements for [YYn] are the same as those for [ZZn]

but with the roles of [Zn ] and [Yn] on the right hand side of

3.19 interchanged.

As in the perfect conductor case, once each matrix equation

is solved for the [In], then that Fourier mode contribution to

the scattered field can be calculated. In the IBC case, however,

both I and A contribute to the scattered field. The next section

will consider how to generalize the far field calculation

algorithms of Mautz and Harrington to include the contribution of

3.4 Generalization of Far Field Calculations

In general, the scattered electric field due to equivalent

electric and magnetic sources (1,A) on a surface can be expressed

as:
15

. -j., - V V - V x (3.30)

23



where

A-f~ s(' ds' (electric vector potential)

V =-f -[V'.3(+r')] 0 ds' (scalar potential)

= fs A~(' lb ds' (magnetic vector potential)

At a far field point, defined by the spherical coordinates

(r,e,+) and unit vectors (r,e,*)-, Eq. 3.30 can be approximated

15
as:

gs =' Es + Es

where:

S e-jkr 4* j-tj)] k-'Ee - -jki -r~j fs8 (r').041tt+); e r ds'

(3.31)

0 4ir

Mautz and Harrington define measurement matrices, (Rn], having

the elements:

R = k f dt' p'fi(t') f 2w d*'(p-q) ej[-k r-r'+n(fl-*) (.2

where P' is the cylindrical coordinate p on the surface (a

function of t') and where:

p - t or *surface coordinate

q - 0 or *spherical coordinate

24



Using 3.32 and the expansions for 2~and Athe far scattered

field components can be written as:

ae Jkr to' [ t R
-4 nIr ni iii ni ni

+ t M + R## M#] ej (3.33)-n ni ni n ni ni

E ejk T. -r Rt# It + RO#I
n i ni ni ni ni

- i n1 t R0 M I] en (3.34)

Using equation 3.16 for the elements of [Mn], one obtains:

= -J. -kr [te It + S*O I# jn

8 r ni ni ni ni ni (3.35)

ae Jkr [tf It + S*# I+ ]jn*
*rf r ni ni ni ni

25



where

S e Rte + (Zt) R#ft i si ft

SO- * - (Z#) Rto
1,1 ti 81i ni

tf- Rt - (Zt)i R~e (3.36)

Of- R*+ (Z*) Rteni ft st i t

Since the moment-method programs of Mautz and Harrington

calculate the elements of [R nJ1 the [S n elements can easily be

* calculated and the remainder of the far field calculation is

essentially the same as described in Ref. 12.

26



4.0 NUMERICAL RESULTS

4.1 Introduction and Definitions

Presented in this section are numerical solutions to the IBC

integral equations for scattering from impedance spheres. The

primary objective is to contrast the EFIE, MFIE and CFIE

formulations in terms of solution accuracy and stability. A

second objective is to determine the sensitivity of the CFIE to

parameters such as integral equation weighting coefficient (a)

and moment-method segmentation (SEG) for different types of

impedance surfaces (i.e. perfectly conducting, lossy, reactive,

etc.).

The sphere surfaces are assumed to be characterized by a

scalar, constant value of normalized surface impedance (Zs).

Specific values of Z. are chosen to represent various types of

impedance surfaces that might be encountered in scattering

problems.-, 9 For example, a pure real value of Z. could

represent the surface impedance of a Salisbury screen type of

configuration.1 7 The special case of Z8-1.0 (ideal Salisbury

screen) is of interest since the flat plate reflection

coefficient at normal incidence is zero. A pure imaginary value

of Z. could represent the surface impedance of a rough

perfectly conducting surface or a perfect conductor coated with

lossless dielectric layers. Reactive values of Zs can allow

surface wave resonances to exist where the scattering cross

27
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section might change by 20 to 30 dB for a very small change in

frequency. Bodies with finite conductivity or perfect conductors

coated with fossy layers can be represented by values of Zs

having both real and imaginary parts. For example Zs-0.1+jO.1

could represent the surface impedance of a homogeneous, lossy

conductor or a perfect conductor coated with a thin lossy

dielectric layer. Zs-1.0+jl.0 might represent a conductor

coated with a thick lossy layer.

The numerical results are presented in three parts.

Section 4.2 contains examples of scattering from a perfectly

conducting sphere (Zs=0.0) for ka values in the vicinity of the

first theoretical sphere interior resonance (ka-2.744). These

results, which are similar to those of previous

researchers 7 ,11,12, review present understanding of the

effects of spurious resonances upon the stability and accuracy of

moment-method solutions to the perfect conductor EFIE, MFIE and

CFIE formulations. Also, the results demonstrate general

properties of the convergence of moment-method solutions as a

function of body segmentation and review techniques for

determining the best choice of a in the CFIE. In Section 4.3,

examples pertaining to scattering from impedance spheres are

presented which demonstrate the influence of non-zero values of

Z. upon the convergence of solutions to the CFIE. Also, the

problem of determining the best choice of a for non-zero values
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of Z. is considered in this section. Finally, Section 4.4

contains numerical examples which directly compare the stability

and accuracy of scattering solutions of the EFIE, MFIE and the

CFIE for non-zero values of Z. at ka values near theoretical

interior sphere resonances. The examples include backscatter vs

ka near the first sphere resonance for Zs-O.1+jO.1 and

Zs.1.0, backscatter vs. Re(Z s ) or Im(Z s ) at ka=2.75 and

bistatic scattering from a sphere having Zs-1.0 at ka values

near each of the first four sphere resonances.

For purposes of definition, the term "stability" of a

moment-method solution refers to the potential for numerical

errors in the matrix equation which approximates the integral

equation. A quantitative measure of solution stability which is

used in all examples is the matrix condition number (described in

the next few paragraphs). The term "accuracy" refers to the

final solution (cross-section) accuracy. The moment-method

solution accuracy for these sphere examples is determined by

comparison with the Mie series solution (computed for each

example using an independent computer program based on Ref. 14).

As stated above, a matrix condition number is used as a

measure of the stability of the moment-method solutions.

Consider the matrix equation Ax-y where A is a square matrix and

x and y are column matrices (or vectors). When x is unknown and

y is known, the solution is obtained by calculating A-1 y. An

29



error in the calculation of y of 6y will produce an error in x of

6x. When 6y is in the direction of an elgenvector of A, it

follows from Ax-y that ax will be in the direction of the same

eigenvector. From the definition of matrix and vector norms, the

relative uncertainty in x can be related to that of y by

(assuming no uncertainty in the calculation of A or A-1):
1 8

H < cond (A) <o 6y . (4.1)HI xII- II' II

where cond(A), or condition number of A, is defined as:

cond(A) = I AII • IIA-11 (4.2)

and where 111 denotes matrix norm when applied to A and vector

norm when applied to x or y. When A is real and symmetric and

when the geometric vector norm is used (length of the vector),

cond(A) is the ratio of the maximum to the minimum eigenvalues of

A. 18  If A is near singular (i.e. minimum eigenvalue near zero)

cond(A) becomes very large. In such a case, an error 6x in the

direction of the eigenvector associated with the minimum

eigenvalue may be large and perhaps may dominate the numerical

solution for x.18 Thus, cond(A) can be interpreted as an

amplification factor for numerical errors in solving a matrix

equation. For example, a condition number of 1000 means that the

expected relative uncertainty in the solution x is 1000 times

that of y.
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To connect the above discussion with the impedance body

scattering formulations, recall that the calculation of cross

section described in Section 3 is a two-step process. First the

integral equation (EFIE, MFIE or CFIE) is approximated by a

matrix equation to obtain a discrete representation of the

equivalent currents on the body surface. Then the scattered

field due to these equivalent currents is computed by a closed

surface integration. The condition numbers of the matrix

approximation to the IBC integral equations characterize the

stability of the first half of the calculation of cross-section.

That is, the condition numbers reflect the probable errors in the

equivalent currents - not necessarily the same as the relative

errors in cross section. For the EFIE and MFIE formulations,

when at a frequency near a spurious resonance, the integral

operators are near singular and matrix approximations are

ill-conditioned. By analogy with the example of the real,

symmetric matrix, the probable errors in the equivalent currents

are the equivalent currents of the interior resonance problem.

For the results in this report, cond(A) is determined using

the infinity norm definition - which is much easier to calculate
than the geometric norm but has a more difficult geometrical

Interpretation.' s To accomplish this calculation, the matrix

decomposition and solution routines of Ref. 13 are replaced by

those of Ref. 19. Also, for all examples axial incidence to the

spheres are assumed (without loss of generality). In this case
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I
only the M-1 Fourier mode of the moment-method solution is

non-zero and solution stability is characterized by a single

condition number.

For purposes of quantifying solution accuracy in some

examples, a mean percentage error (ME) in the bistatic cross

section is defined as follows:

ME = 1 N Gcfie(On) - amiece d In. I amie(en) n

In the above equation, en is a bistatic angle and N is the

total number of bistatic angles used. For all examples, N=362

(181 E-plane and 181 H-plane angles). ocfie represents the

bistatic cross section of the CFIE equation and 0mie is the Mie

series solution. Since the above definition blows up when mie

becomes very small, for any value of a/wa 2 < 10 " , a value of

10- 5 is used. This modification is only required for the

examples of Z.-1.0 at small bistatic angles.

As an aid to interpreting the ME, Fig. 4.1 shows four

examples E-plane bistatic scattering patterns for an impedance

sphere with Zs1.0+jl.0 and ka=2.75. Different values of a

result in different degrees of solution accuracy. These bistatic

scattering patterns show that for a given ME, larger percentage

errors occur near backscattering while smaller percentage errors

occur near forward scattering.
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Fig. 4.1. Example E-plane bistatic scattering patterns
illustrating different degrees of solution accuracy and the
corresponding values of mean error (ME).
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4.2 Perfectly Conducting Sphere Examples

This section contains numerical examples applicable to

scattering from perfectly conducting spheres (Zs-0.0). The

purposes of first presenting these examples are to: (1) provide

a reference for comparing the scattering examples in which Zs

is non-zero, (2) illustrate general criteria concerning

convergence of a moment-method solution, (3) review current

understanding of the effects of spurious resonant solutions on

the EFIE and MFIE, and (4) review methods for determining a

suitable choice of integral equation weighting coefficient (a) in

the CFIE. Some of these examples have been considered in detail

by Oshiro, et. al.7 and Mautz, et. al.

Figure 4.2 illustrates the effect of increasing

moment-method segmentation (SEG) upon the accuracy and stability

of solutions to the EFIE, MFIE and CFIE (a-.2 5 ) at ka-2.50.

Plotted are the bistatic cross section mean error (ME) and

condition number (cond) vs. SEG. An alternate abscissa is

provided below the figure to indicate matrix sizes. SEG is

defined as the number of straight-line body profile segments per

wavelength. The number of expansion functions per wavelength is

approximately SEG/2. In the figure, the ordinates that increase

with increasing SEG are condition numbers and the ordinates that

decrease are mean errors. a-.25 is used for the CFIE solutions

following guidelines established in the literature
7 ,11- 13
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(an example showing how a suitable choice of a can be determined

is presented later in this section).

At this value of ka the EFIE, MFIE and CFIE behave similarly

as SEG is increased - that is the accuracy of 3ach equation

improves and the condition numbers of each equation increase. The

improvement in accuracy is due to the finer moment-method

segmentation allowing a better approximation to the equivalent

currents'while the incrPade in condition numbers is due to the

larger matrix sizes having smaller minimum eigenvalues. If the

segmentation is increased further and further, eventually a

crossover point in improvement in accuracy would be reached

beyond which the accuracy would worsen with increasing SEG.20

The accuracy of the three equations as described by the ME

is comparable at any given SEG. However, the relative

stabilities of the three equations at a given SEG are different.

For matrix sizes larger than about 10 x 10, the EFIE is

relatively ill- conditioned as compared to the MFIE and the CFIE

(a=.25). This difference in conditionality is a result of the

EFIE being a Fredholm integral equation of the Ist kind while the

MFIE and CFIE (which is heavily weighted with the MFIE in this

example) are second kind equations.2 I Briefly, as the matrix

size increases due to finer moment-method segmentation, matrix

elements obtained from integrals will decrease in magnitude since

the surface area of integration decreases. In a 1st kind
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equation (EFIE) all elements are calculated from terms involving

surface integrals, and hence their magnitudes (and the magnitude

of the minimum eigenvalue) decrease as the matrix size

increases. As the matrix size tends toward infinity, the matrix

elements of a 1st kind equation tend toward zero. In a 2nd kind

equation (MFIE) a term exists which does not involve

integration. Thus, the MFIE tends to become more diagonally

dominant as the matrix size increases - with the diagonal

elements in general tending toward non-zero values as the matrix

size increases toward infinity.
2 1

The relative values of condition number imply that the

errors in the computed equivalent currents are probably greatest

in the EFIE and least in the MFIE. In fact for some matrix

sizes, the equivalent current errors in the EFIE solutions are

probably an order of magnitude larger than those of the MFIE or

the CFIE (ai. 25 ). Yet the solution accuracy of the EFIE as

described by the ME is generally better than the MFIE at a given

SEG for ka-2.50. This apparant contradiction has been explained

by examining the fields generated by spurious equivalent

currents.11,12 Resonant cavity equivalent currents of the form

(3,0) satisfy the boundary condition nxg_-O on S for the EFIE.

Applying Eq. 2.1 (with A=0), the resonant cavity equivalent

currents satisfy nx+ =0 which implies nxA+f0 when radiation

conditions are met. Thus the spurious equivalent currents which
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enter scattering solutions to the perfect conductor EFIE have

zero exterior electromagnetic fields. If calculated exactly,

these spurious currents do not contribute to the computation of

scattered field. In contrast, resonant cavity equivalent

currents of the MFIE of the form (3,0) satisfy nx_-O - which

implies nx+- and nx+ *0. These resonant currents are

non-physical but never-the-less exist when enforcing nxA_-O.

Thus, spurious equivalent currents of the MFIE have non-zero

exterior fields and hence contribute directly to the computed

scattered field. The net result is that the final solution

accuracies of the EFIE and the MFIE are comparable even though

the computed equivalent currents of the EFIE contain much larger

errors than those of the MFIE (verified by Mautz through actual

computation of currents in the sphere examples).

Figures 4.3 a and b illustrate the relative accuracies and

stabilities respectively of solutions to the EFIE, MFIE and CFIE

(a-.25) for a range of ka values near the first theoretical

sphere resonance (ka-2.744). Plotted in Fig. 4.3a is normalized

backscatter (a/Wa 2) from a perfectly conducting sphere vs. ka

as predicted by each of the integral equations and the Mie

series. The matrix size is 26 x 26 for all points which

corresponds to a SEG of approximately 20/k. Figure 4.3a

demonstrates the regions of inaccuracy in the EFIE and MFIE and

the potential errors in magnitude in computing backscatter at
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2.744). Segmentation (SEG) is defined as the number of
straight-line body profile segments per wavelength.
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SEG-20A. Plotted in Fig. 4.3b are the condition numbers which

correspond to the data of Fig. 4.3a. These values of cond

indicate the regions of instability and the relative errors in

the equivalent currents of solutions to the three integral

equations.

Figures 4.3a and b both indicate that the EFIE and MFIE are

affected by (or predict the location of) the spurious resonance

at different ka values. By virtue of its inherent better

conditioning, the MFIE predicts the resonance closer to the

theoretical value. Figures 4.3a and b also indicate that the 1st

sphere interior resonance affects the MFIE over a broader range

of ka values than the EFIE (i.e., the MFIE has a wider bandwidth

for errors). However, the largest potential magnitude of errors

in backscatter from the sphere appears to occur for the EFIE in a

very narrow range of ka values. Throughout the region of the

interior sphere resonance, the CFIE (a-.2 5) gives accurate

scattering predictions and demonstrates no ill-conditioning from

the resonance.

Figure 4.4 shows the effect of changing matrix size on the

scattering predictions of the EFIE near the first sphere

resonance. In this figure, normalized backscatter from a

perfectly conducting sphere vs. ka is plotted using three

different matrix sizes in the EFIE solution - 6 x 6 (SEG-7/.),

12 x 12 (SEG-10/A) and 26 x 26 (SEG-20/A). The dashed ordinate

is the Mie series solution. As matrix size increases, three
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effects can be seen upon the contamination of the EFIE scattering

solutions by the spurious resonance. First, the magnitude of the

potential errors decreases as matrix size increases. Secondly,

the region of inaccuracy (bandwidth of errors) narrows as

indicated by the shape of the curves. Thirdly, the predicted

location of the resonance gets closer to the theoretical ka value

as the matrix size increases. The MFIE scattering predictions

(not shown in the figure.) are affected in a similar manner - with

the bandwidths for errors being wider than those of the EFIE at

the same matrix size and the predicted location of the resonance

being closer to the theoretical value at a given matrix size.

The problem of choosing a suitable value for the CFIE

weighting coefficient (a) has been considered by Oshiro, et.al.7

and Mautz, et.al. 1 1-13 for scattering from perfectly conducting

spheres. Using a bistatic cross section mean error (very similar

to the one used in this report), Oshiro determined the best

choice of a to be in the range of .2 - .3 for a variety of ka

values. Using the rms error in the equivalent current as the

criterion (analogous to the condition numbers of this report),

Mautz and Harrington determined the best choice of a to be

approximately .2 for ka near the 1st sphere resonance.

Figure 4.5 illustrates the above two described methods by

displaying ME and cond vs. a for 5 different ka values near the

1st sphere resonance. Matrix sizes are 26 x 26 which corresponds
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cross section (lower set of ordinates) and the associated matrix
condition numbers (upper set of ordinates) vs. CFIE weighting
coefficient (a) for different ka values around ka - 2.744. Note:
CFIE + MFIE as a 0 and CFIE + EFIE as a * infinity.
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to SEGm20/X. When a=-.01, the CFIE solution can be considered

near to the MFIE solution. When a=100.0, the CFIE solution is

near an EFIE solution. The values of ME are all < 10% -

indicating that for SEG=20/X good accuracy in the cross section

can be obtained using almost any a (for perfectly conducting

spheres). It appears that the range of .1 < a < 1.0 may be the

best range to obtain good accuracy for any ka. The values of

cond in Fig. 4.5 indicate that there exists a more narrow range

of a values for obtaining the most well-conditioned matrices and

smallest errors in the currents for all ka values of Fig. 4.5.

Clearly, .2 < a < .3 is a range which gives well-conditioned

matrices for all ka values near the 1st sphere resonance.

4.3 Influence Of Non-Zero Values Of Surface Impedance On Choice
Of Integral Equation Weighting Coefficient And Moment-Method
Segmentation For The Combined Field Integral Equation

The problems of choosing the CFIE weighting coefficient (a)

and adequate moment-method segmentation (SEG) when calculating

scattering from impedance spheres are considered in this section.

The values of normalized surface impedance used for these

numerical examples are Zs=0.1+JO.1 (representing a thin lossy

dielectric layer), Zs5 1.0+jl.0 (representing a thick lossy

layer), Zm±Jl.O (representing lossless inductive and

capacitive surfaces and Zs1.0 (representing an ideal Salisbury
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screen). Choosing the best a is considered first for 2 ka values

near the Ist sphere resonance assuming that SEG-20/ is adequate

segmentation. Using suitable choices of a for the different

impedance surfaces, the convergence of the CFIE as a function of

SEG is then examined at ka=2.75.

Figures 4.6a and b show respectively the accuracy and

stability of the CFIE scattering solutions as a function of a at

ka 2.50. ME vs. a is displayed in Fig. 4.6a and cond vs. a is

displayed in 4.6b. Matrix sizes of the data in both figures are

26 x 26 (SEG=22/x). For the values of Zs considered, the

solution accuracy as described by the ME is highly variable for a

given matrix size. The best ME that could be achieved for

Zs=±jl.O is about 7.2% - significantly worse than the perfectly

conducting case of .062% (Fig. 4.2) at the same SEG. The values

of ME in Fig. 4.6a also demonstrate that the functional

dependence of solution accuracy on a is also highly variable

depending on Z8. For example, values of ME for Zs-±Jl.0 are

relatively insensitive to a while values of ME when Zs-1.0 are

very sensitive to a. For this latter case, ME less than 10Z is

obtained only in a very narrow range of a around 1.0.

The condition numbers of Fig. 4.6b show that for a given

matrix size and ka, the dependence of cond on a and the values of

cond at a given a both appear to be dependent on Zs . Only the

case of Z8-0.1+J0.1 was similar to the perfectly conducting

case - where small a implied well-conditioned matrices (condw20)
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Fig. 4.6a. Mean error in the impedance sphere bistatic cross
section vs. CFIE weighting coefficient (a) at ka - 2.50 assuming
different values of normalized surface impedance (Z.).
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T

and large a implied ill-conditioned matrices (cond 300 - 400).

The influence of Z. on the dependence of cond with a can be

partly explained by observing that Zs plays a similar role to

that of when Zs=O (i.e., P-0). That is, the ill-conditioned

LE operator (perfect conductor EFIE) is combined with the

well-conditioned LH operator (perfect conductor MFIE) in both

the the EFIE and MFIE (see Eqs. 3.5 and 3.6). These two

equations are then combined in the CFIE. However, when Z. has

an absolute value on the order of 1.0, the mix of the two perfect

conductor operators is about the same in the CFIE regardless of

a. Thus, the value of Z. (or the type of impedance surface)

also plays a role in the variability of the condition number at a

given a.

iigures 4.7a and b display ME vs. a and cond vs. a

respectively for ka=2.75. Matrix sizes are 26 x 26 -

corresponding to SEG=20/k. At this ka, very close to the Ist

sphere resonance, the sensitivity to a of the CFIE solution

accuracy and stability is noticeably increased over that at

ka-2.50 (Figs. 4.6 a and b). Also, the best solution accuracy

that is achieved for the pure reactive surface impedance cases

(Zs=tjl.O) is noticeably worse at ka-2.75 over that at

ka-2.50. For these pure reactive cases, the best ME at SEG-20/x

is only about 10%. To obtain ME < 10%, choice of a is critical

for ZS-1.0 and Zs-±Jl.0. For Zs-.1+j.1 and 1.0+jl.O,
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the choice of a is less critical to obtain ME < 10%. However,

even in these latter two cases, the choice of a is more important

than in the perfectly conducting case (Fig. 4.5).

The final numerical example in this section considers the

influence of non-zero surface impedance on the convergence of

impedance sphere scattering solutions of the CFIE. Plotted in

Figs. 4.8a and b respectively are ME vs. SEG and cond vs. SEG at

ka-2.75 for the different values of Z.. a is chosen to obtain

close to the best solution accuracy at a given Z8 using

Fig. 4.7a. The actual values of a used in Figs. 4.8a and b are:

Zs_ alpha

0.1+jO.I 0.6
1.0 1.0

jl.0 7.0
-j1.o 0.14
1.0+j1.0 1.25

The convergence of the CFIE as a function of moment-method

segmentation is similar to the perfect conductor case (Fig. 4.2)

in that increasing SEG generally improves solution accuracy. As

SEG increases from 5/X to 10/X there is a rapid improvement in

solution accuracy. For SEG > 20/X improvement in accuracy is

slow. Convergence of the CFIE for non-zero Zs is different

from the perfectly conducting case in that a given value of SEG

does not guarantee that solution accuracy will be comparable to
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that of the perfectly case. This fact could also have been

inferred from Figs. 4.6a and 4.7a for which all data points are

at SEG-20/x.

The convergence of the CFIE when Zs-±Jl.0 is interesting

in two respects. First, the solutions are relatively inaccurate

and the matrices are relatively ill-conditioned when Zs=±Jl.0

as compared to the other cases of Zs . Secondly, for SEG > 20/A

there is actually an increase in mean errors with increasing SEG

while for the other values of Zs there is a gradual decrease in

ME. The increase in ME with increasing SEG for the pure reactive

cases suggests that the best choice of a changes when SEG is

changed. However, this possibility was determined not to be the

reason for the convergence behavior for Zs±jl.0 exhibited in

Fig. 4.8a. The best choice of a was determined for Zs-jl.O at

SEG=32/A (matrix sizes=45 x 45) by generating a curve similar to

the one for SEGf20/k in Fig. 4.7a. The results were that the

best choice of a remained at approximately 7.0 with the lowest ME

approximately 15%. Thus, it appears that the cross-over point at

which there is no longer improvement in accuracy with increasing

matrix size occurs very early for Zs5 ±jl.0 at ka-2.75.
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4.4 Comparison Of the Electric, Magnetic and Combined Field

Integral Equations For Non-Zero Values Of Surface Impedance

Examples of scattering from impedance spheres are presented

in this section which directly compare solutions to the EFIE and

MFIE with those of the CFIE for ka values near spurious

resonances. The primary objective of this section is to

demonstrate that spurious resonant solutions can severely

contaminate the EFIE and MFIE predictions of exterior scattering

from impedance bodies while the CFIE is a formulation which

rejects the spurious solutions.

Backscattering from a sphere with with ZsO.1+jO.1 at ka

values near the first sphere resonance is considered in

Figs. 4.9a and b. Normalized backscatter vs. ka as predicted by

the EFIE, MFIE, CFIE (a-.6) and Mie series is plotted in

Fig. 4.9a and condition numbers for the integral equations vs. ka

in Fig. 4.9b. Matrix sizes of the data are 26 x 26 which

corresponds to SEG-20/A. The scale sizes of Figs. 4.9a and b are

the same as those of Figs. 4.3a and b to allow direct comparison

with the perfectly conducting case.

The presence of the non-zero surface impedance causes some

subtle changes in the accuracy and stability of the integral

equation solutions relative to the perfectly conducting case.

First, the bandwidth for errors and the magnitude of errors in

the EFIE and MFIE cross sections are larger than in the perfectly

conducting case. This is just the opposite that one would expect
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Fig. 4.9a. Normalized backscatter (a/wa2) from a iossy
impedance sphere having a normalized surface impedance of 0.1 +
J0.1 vs. normalized wavenumber (ka).

57



ZS-0. I.JO. I MATRIX SIZES- 26 26

0000

z I I

z/ I
0/

100.-

1 0
2.60 2.65 0.70 2.75 2.80 2.95 2.90

LEGEND

- CFIE(ALPHAO.-61
............. (NONE)

MFIEC

Fig. 4.9b. Matrix condition numbers (m I Fourier mode) for the
lossy impedance sphere solutions of Fig. 4.9a vs. ka.
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if one assumed that the lossy surface impedance would help

regularize the ill-posed equations. Values of condition number,

however, are not greatly different from the perfectly conducting

case except that the EFIE condition numbers are slightly lower. A

possible explanation for these changes in accuracy and stability

is offered as follows. As mentioned in the previous section, the

non-zero value of Zs adds a term (1.0/n)nxLH(A) to the

perfect conductor EFIE - changing it from a 1st kind equation to

a second kind equation. Hence, one would expect that the

conditioning of the EFIE for this case should be better than the

perfectly conducting case because of the addition of some well-

conditioned LH integral operator to the equation. However, the

non-zero Z. also changes the spurious equivalent currents from

the form (3,0) for the perfectly conducting case to the combined

source form (3,tI=-nxZs.n3).1 0 These latter currents, which are

still equivalent currents of the perfect conductor cavity

problem, always have non-zero exterior fields. Thus, the

spurious currents of the EFIE radiate an exterior field when Z.

is non-zero and the accuracy in the cross section would be

expected to be worse than in the perfect conductor EFIE case. The

increased errors in the MFIE cross sections may be due to the

combined source spurious equivalent currents producing larger

exterior fields than in the perfectly conducting MFIE case.
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Effects of a pure real surface impedance on the accuracy and

stability of the three integral equations is shown in Fig. 4.10.

Normalized backscatter (a/ra2 ) and condition number (cond) are

plotted as functions of Re(Z s ) at ka-2.75. Im(Zs)O.O and

matrix sizes of 26 x 26 are used (SEG=20/x). Since a-l.0 is the

best choice for Zsf1.0 (as determined in the previous section),

this value is used for the CFIE solution at all values of Zs in

Fig. 4.10. At this value of ka (very close to the first

theoretical sphere resonance), the EFIE and MFIE are

characterized by ill-conditioned matrices and poor accuracy in

predicting cross section. In contrast, the CFIE (al.0) is

relatively well-conditioned and predicts the cross section very

close to the Mie series at all values of Re(Zs). As in the

previous case, the lossy surface impedance did not help to

regularize the ill-posed integral equation formulations.

The case of Zs=1.0 appears to be a stressing case in the

calculation of scattering from impedance BORs since the

theoretical cross section for axial backscattering is zero.

Figures 4.11a and b consider this case for a sphere by displaying

normalized backscatter (a/ia 2 ) vs. ka and cond vs. ka

respectively. In Fig. 4.11a, there is a scale change on the

vertical axis - the upper scale for the EFIE-MFIE ordinates and

the lower scale for the CFIE (a-1.0) ordinates. Since the

backscattering predictions of the EFIE and the MFIE are
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Fig. 4.11a. Normalized backscatter vs. ka for a iossy impedance
sphere having normalized surface impedance of 1.0. Note the
scale change on the vertical axis. Also, the increased
jaggedness of the MFE ordinates near the center of the figure is
due to increased samples in that region.
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Fig. 4.llb. Matrix condition numbers (m - 1 Fourier mode) vs. ka
for the lossy impedance sphere solutions of Fig. 4.11a.
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degenerate for Zs1.0, there is a common ordinate for both

equations. In the figures, two different matrix sizes are used

which illustrate the effect of a change in moment-method

segmentation upon the influence of the spurious resonance in the

impedance sphere scattering solutions with Zs=1.0. Case 1

corresponds to matrix sizes of 26 x 26 (SEG-20/X) and Case 2

corresponds to matrix sizes of 54 x 54 (SEGm40/X).

Considering that the exact scattering solution for all ka is

zero, the EFIE-MFIE predictions are very poor for all ka values

considered in Fig. 4.11a. The cross section values indicated by

the EFIE-MFIE ordinates show only the contribution of the

spurious equivalent currents to the computed scattered field. The

CFIE (a=1.0) predictions, which appear to be computational noise,

are a much better approximation to the theoretical cross

section. The increase in matrix size upon the EFIE-MFIE

solutions has similar effects as those for the perfectly

conducting case (Fig. 4.4). Increasing the matrix size causes

the bandwidth for errors in cross section to narrow slightly, the

scattering predictions to be generally better at a given ka and

the predicted location of the resonance to be shifted closer to

the theoretical location (ka=2.744). However, increasing the

matrix size has little effect on the CFIE (a-1.0) other than an

increase in the condition numbers as shown in Fig. 4.11b. A

further improvement in the CFIE (a-1.0) cross section predictions
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would probably require increasing computational accuracy (which

is 32 bit in all numerical examples of this report).

Figures 4.12a, b and c display E-plane bistatic scattering

from an impedance sphere having Zs-1.0 at ka values near the

first, second and third perfect conductor sphere resonances

respectively. In each case, matrix size is adjusted to obtain

SEG=20/X. Bistatic scattering angles of 0 and 180 degrees

correspond to backscattering and forward scattering

respectively. The effect of the spurious solutions upon the EFIE

and MFIE appears to be similar for each of these resonances -

with the predicted location of the resonance being slightly

higher than the theoretical location in each case (the ka values

of each are very close to the peak of the resonance). In all

three cases, the EFIE and MFIE scattering predictions are very

poor for all bistatic angles except those near forward

scattering. The CFIE (a=1.0) predictions on the other hand, are

excellent for all bistatic aspect angles - the curves nearly

overlaying the Mie series solutions in all three cases. Although

ai1.0 was determined in the previous section to be the best value

only at kaf2.75, the excellent agreement of the CFIE (a=l.0)

predictions with the Mie series at the other ka values indicates

that a-1.0 may be the best value at all frequencies when the

normalized surface impedance is 1.0.
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Fig. 4.12a. Normalized E-plane bistatic scattering from a lossy
impedance sphere (Z -1.0, ka - 2.758). For the H-plane,
interchange the EFMf and MFIE predictions (the CFIE and Mie

series predictions for the H-plane are the same as those for the
E-plane when Zs - 1.0).
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Fig. 4.12b. Normalized E-plane bistatic scattering from a lossy
impedance sphere (Za 1.0, ka -3.88).
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impedance sphere (Z. 1.0, ka -4.51).
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Figures 4.13 and 4.14 consider scattering from impedance

spheres characterized by a pure reactive surface impedance.

Figure 4.13 displays normalized backscatter (a/wa 2 ) vs.

Im(Zs ) at ka-2.75 with Re(Zs)=O. Four different integral

equation solutions are compared to the Mie series: EFIE, MFIE,

CFIE (ail.0) and CFIE (variable a). The last case is presented

to demonstrate that an improvement (albeit slight) in accuracy

can be attained by varying a as Zs changes. Figure 4.14

displays condition number vs. Im(Z s ) for each of the integral

equation solutions of Fig. 4.13. Matrix sizes are 26 x 26 -

corresponding to SEG-20/x.

The accuracies of the EFIE and the MFIE in predicting

backscatter at ka-2.75 are very poor when Zs is pure

imaginary. In contrast, both CFIE solutions have good agreement

with the Mie series. The CFIE (variable a) case represents a

slight improvement over the constant a case - although there are

still large errors in cross section in the regions where cross

section changes greatly with a slight change in Im(Zs). Values

of condition number displayed in Fig. 4.14 indicate that the CFIE

solutions are generally better conditioned than the EFIE and MFIE

solutions. The stability of the integral equation solutions for

large inductive Zs appears to be strikingly different than that

for large capacitive values of Zs. That is, the impedance
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Fit. 4.13. Normalized backscatter from a reactive impedance
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part of Za - 0.0, ka - 2.75). For the CFIE (variable a) case:
-5.0 < Im (Z ) < -1.4, at - 1.0; -1.4 < Im (Z.) < -0.6, a
.12; -0 .6 < !m (Z.) < 0.6, a - 1.0; 0.6 < Im (Zs) < 1.7, -

8.0; and 1.7 < Im (Z.) < 5.0, a- 1.0.
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spheres appear to be characterized by resonances for large

inductive Zs - possibly exterior surface wave resonances. This

behavior is similar to that noted by Wait in Mie series solutions

of scattering from impedance spheres. 14
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5.0 CONCLUSIONS

This report has investigated numerical solutions to integral

equation formulations for scattering from bodies described by a

Leontovich impedance boundary condition (IBC). A method of

constructing moment-method solutions to three different IBC

integral equations was described. Two of these equations - the

*principal ones for which numerical solutions have been obtained -

are the electric and magnetic field integral equations (EFIE and

MFIE). These two equations are ill-posed because they

* theoretically allow spurious solutions at frequencies at interior

perfect conductor cavity resonances. The IBC combined field

*integral equation (CFIE) - which has received little attention in

terms of actual numerical solutions - is well-posed because it

rejects the spurious resonances. Numerical solutions to the

EFIE, MFIE and CFIE for scattering from impedance spheres were

presented in this report which considered different types of

impedance surfaces (i.e., perfectly conducting, lossy, reactive,

etc.)

The numerical results demonstrated that scattering solutions

to the EFIE and MFIE can be severely contaminated by spurious

solutions when at a frequency near an interior resonance. This

contamination occurs regardless of whether the surface impedance

is lossy or lossless and no regularization of the ill-posedness

of these equations occurs when the surface impedance is lossy. In
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contrast to the MFIE and the EFIE, solutions to the CFIE are not

affected by spurious resonant solutions when a suitable choice of

integral equation weighting coefficient (a) can be determined.

The CFIE solutions are consistently more stable and accurate than

those of the EFIE or the MFIE when at a frequency near an

interior resonance. For some values of Zs (for example

Zs=1.0) the solution accuracy of the CFIE can be much better

than that of the EFIE or MFIE even when at a frequency that

appears to be far from an interior resonance. Thus, the

numerical examples clearly demonstrated that the CFIE is in

practice (as in theory) a superior IBC integral equation

formulation to either the EFIE or the MFIE.

The numerical examples also illustrated some important

differences when the scatterer surface has a non-zero surface

impedance than when the scatterer is a perfect conductor (this

latter case being the one upon which current understanding of the

effects of spurious solutions on an integral equation formulation

is based). First, when Zs is non-zero, relative errors in the

computed EFIE and MFIE cross sections are generally larger and

the bandwidths for errors are generally wider than those for the

perfect conductor EFIE and MFIE. This appears to be due to the

fact that when Zs is non-zero, the spurious equivalent currents

take the combined source form (3,A--nx2s.n3) rather than the

form (3,0). The combined source equivalent currents (which are
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still equivalent currents of the perfect conductor interior

resonance problem) radiate an exterior electromagnetic field

which depends in magnitude upon the value of Zs. Thus, the use

of a well-posed integral equation formulation takes on greater

importance when the scatterer surface impedance is non-zero than

for the perfect conductor case. Secondly, when Z. is non-zero,

choice of moment- method segmentation (SEG) and integral equation

weighting coefficient (ai) for the CFIE appears to be more

complicated to attain a specified cross section accuracy than the

perfect conductor case. Convergence as a function of SEC appears

to be very poor for certain values of reactive surface impedance

(low loss) at certain frequencies. In particular, when the

frequency is near an exterior surface wave resonance (where there

might be a very large cross section or one that changes rapidly

with frequency), the errors may be large regardless of

segmentation. When varying a at a given SEG, the best accuracy of

the CFIE occurs at different values of a for different values of

Z.. Thus, the established perfect conductor criteria for

choosing ai is not adequate for all Zs.
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APPENDIX A

The Fortran IV computer program listed in this appendix is

essentially Mautz and Harrington' s main program 13 for the perfect

conductor case extended to the impedance boundary condition

case. Several variables (ZS, ZST, ZSP, YY, ZZ, TM, PM) and one

subroutine (MATB) were added to accomplish the required

modifications. Also, many comments were added to aid in

understanding the logic of the program and all the main

variables. Some minor changes to Mautz and Harrington's program

were that the inputs were changed to list-directed read and all

format statements for outputs were moved to the end of the

program. The output was modified to include printing of the two

components of magnetic surface current density (sampled at the

same body locations as the electric surface current density).

The listing does not include any routines from the Mautz and

Harrington program that are unchanged.

Solution is obtained for the following conditions: (1)

single excitation frequency, (2) one incident angle and one

scattering angle (not necessarily the same), and (3) one value of

normalized surface impedance on the BOR. The actual program used

for generating the results of Chapter 4 was a modification of the

one listed in this appendix which could calculate scattering at

many aspect angles, frequencies, etc. (by appropriate insertion

of loops).
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C PROGRAM IBC - THIS PFOGRAM SOLVES FOS THE ELECTROMAGNETIC
C SCATTERING FROM A BODY OF REVOLUTION HAVING A SURFACE
C CHARACTERIZED BY A LEONTOVICH IMPEDANCE BOUNDARY CONDITION
C (IBC). A MOMENT-METHOD SOLUTION IS OBTAINED FROM THE
C ELECTRIC FIELD INTEGRAL EQUATION (EFIE), THE MAGNETIC
C FIELD INTEGRAL EQUATION (MFIZ) AND THE COMBINED FIELD
C INTEGRAL EQUATION (CFIE). THE INTEANAL CODING OF THE
C PROGRAM ASSUMES A NORMALIZED, DIAGONAL, DYADIC SURFACE
C IMPEDANCE WHICH CAN HAVE ARBITRARY VARIATIONS ALONG THE
C LONGITUDINAL SURFACE COORDINATE OF THE BOR. HOWEVER, THIS
C VERSION READS IN A SCALAR, CONSTANT VALUE OF NORMALIZED
C SURFACE IMPEDANCE,.
C
C THIS PE.OGRAM IS A GENERALIZATION MAUTZ AND HARRINGTONIS
C MOMENT-METHOD PROGRAMS FOR SCATTERING FROM A PERFECTLY
C CONDUCTING (P.C.) BOR. DETAILS OF THE MOMENT-METHOD AND
C REQUIRED (BUT UNMODIFIED) SUBROUTINES ARE DOCUMENTED IN:
C
C 1. J. R. MAUTZ AND F. F. HARPINGTON, IH-FIELD, E-FIELD,
C AND COMBINED FIELD SOLUTIONS FOR BODIES OF REVOLUTION',
C TECHNICAL REPORT TR=77-2, (FEBRUARY 1977), AND
C 'COMPUTER PROGRAMS FOE H-FIELD, E-FIELD, AND COMBINED
C FIELD SOLUTIONS FOR BODIES OF REVOLUTION', TR-77-3, (MAY
C 1977), DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING,
C SYRACUSE UNIVERSITY, SYRACUSE, NY 13210
C
C THE BOF SURFACE IS DESCRIBED BY A LONGITUDINAL COORDIN&TE
C T AND AN AZIMUTHAL COORDINATE PHL THE FAR FIELD POINTS
C ARE DESCRIBED BY THETh AND PHI SPHERICAL COLEDINATES. ALL
C SURFACE VECTORS AND DYADICS USE THE BODY COORDINATE SYSTEM
C WHILE THE VARIOUS LINEAR POLARIZATIONS OF THE INCIDENT AND
C SCA.7TERED WAVES REFER TO THE SPHERICAL COORDINATE SYSTEP1.
C
C ROUTINES CALLED:
C MATB - CONSTRUCTS PAST OF THE IMPEDANCE OR ADMITTANCE
C MATRICES FOE THE IBC EQUATIONS FROM THE PERFECT
C CONDtUCTOB MATRICES.
C YZ = CALCULATES THE PERFECT CONDUCTOR IMPEDANCE AND
C ADMITTANCE MATRICES (SEE REFERENCE 1)
C PLANE - COMPUTES MEASUREMENT MATRICES FOR THE TFANSMITTER
C AND RECEIVER ANGLES (SEE REFERENCE 1)
C DECOMP- COMPUTES THE MATRIX DECOMPOSITION OF THE IMPEDANCE
C OR ADMITTANCE MATRICES (SEE REFERENCE 1)
C SOLVE - SOLVES THE LINEAR SYSTEM OF ALGEBRAIC EQUATIONS
C FOR A GIVEN SOURCE VECTOR (SEE REFERENCE 1)
C
C FILE DEFINITIONS: 5 - INPUT FILE (ALL INPUTS FREE FORMAT)
C 6 - OUTPUT FILE
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c
C INPUT VARIABLES:

C NM - TOTAL NUMBER OF FOURIER MODES (0,1,2,...,NM=1)
C NP - NUMBER OF PROFILE BODY POINTS (ODD NUMBER, 1 E. 5)
C NPHI - NUMBER OF POINTS IN GAUSSIAN QUADRATURE INTEGRATION
C BK - WAVENUMBER (UNITS CONSISTENT WITH RH AND ZH)
C TT - TRANSMITTER THETA ANGLE (DEGREES)
C (NOTE: TRANSMITTER PHI ANGLE = 0.0)
C P - BODY PHI ANGLE (DEGREES) IDENTIFYING THE PLANE IN
C WHICH THE SURFACE CURRENT DENSITIES ARE EVALUATED..
C TR - FECEIVER THETA ANGLE (DEGREES)
C PH - RECEIVER PHI ANGLE (DEGREES)
C ALP - INTEGRAL EQUAT:ON WEIGHTING COEFFICIENT
C RH - R CYLINDRICAL COORDINATE OF BODY POINTS
C ZH - Z CYLINDRICAL COORDINATE OF BODY POINTS
C X - ABSCISSAS OF GAUSSIAN QUADRATURE INTEGRATION
C A - WEIGHTS OF GAUSSIAN QUADRATURE INTEGRATIONS
C ZS - NORMALIZED SURFACE IM PEDANCE (SCALAR, CONSTANT)
C
C OTHER MAIN VARIABLES:
C N - NUMBER OF EXPANSION FUNCTIONS
C N2 - MATRIX DIMENSION
C ZST - T-T COMPONENT, NORMALIZED DYADIC SURFACE IMPEDANCE
C ZSP - PHI-PHI COMPONENT, NORM. DYADIC SURFACE IMPEDANCE
C Y - NORMALIZED ADMITTANCE MATRIX FOR THE P..C. HFlE
C Z - NORMALIZED IMPEDANCE MATRIX FOR P.C. EFIE
C YY - NORMALIZED ADMITTANCE MATRIX FOR IBC MFIE
C ZZ - NOEMALIZED IMPEDANCE MATRIX FOR !BC EFIR
C RT - HEASUREME'T MATRIX .FOR TRANSMITTER THETA ANGLE
C RR - MEASUREMENT MATRIX FOR RECEIVER THETA ANGLE
C B - SOURCE VECTOR (F.OM INCIDENT FIELDS)
C C - SOLUTION VECTOR
C KT - DENOTES TRANSMITTaER POLARIZATION (I=THETA, 2=PHI)
C KR - DENOTES RECEIVER PCLARIZATION (I=THETA, 2=PHI)
C NHEC- DENOTES TYPE EQUATION (I=MFIE, 2=EFIE, 3=CFIE)
C TJ - T-COMPONENT OF NORMALIZED ELECTRIC SURFACE CURRENT
C PJ - PHI-COMPONENT OF NOPM. ELECTRIC SURFACE CURRENT
C TM - T-COMPONENT OF NORMALIZED MAGNETIC SUFFACE CURRENT
C PM - PHI-COMPONENT OF NORM. MAGNETIC SURFACE CURRENT
C I - NORMALIZED RCS (SIGMA/LAMBDA**2)
C
C OUTPUTS:
C 1. ALL INPUT PARAMETERS
C 2. SIMPLE OUTPUT OF THE EFIE, HFIE AND CFIE MATRICES,
C AND SAMPLE OUTPUT FROM PLANE, DECOMP AND SOLVE.
C 3. FOR EACH INTEGRAL EQUATION AND EACH TRANSMITTER
C POLARIZATION, THE FOLLOWING ARE PFINTED:
C A.. TJ, PJ, TM, PM AT N DISCRETE LCCATIONS ALONG THE
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C 7 COOFDINATE (MEASURED IN THE PHI=P PLANE)
C B. NORMALIZED PCS FOR BOTH RECEIVER POLS.
C
C THE MEANING OF eNOSMALIZED' IS AS FOLLOWS. THE IMPEDANCE
C (ADMITTANCE) MATRICES AND THE SUFFACE IMPEDANCE ARE
C NORMALIZED BY DIVISICN (MULTIPLICATION) WITH THE FREE
C SPACE WAVE IMPEDANCE. THE ELECTRIC AND MAGNETIC SURFACE
C CURrEnT DENSITY COMPONENTS kR3 NORMALIZED BY DIVISION WITH
C THE WAVENUMBERo IN THE PROGRAM, FH AND ZH ARE NORMALIZED
C BY MULTIPLICATION WITH THE WAVENUMBER. THE RCS IS
C NORMALIZED BY DIVILION OF A SQUARE WAVELENGTH.
C
C THIS VERSION WAS WRITTEN BY Jo ROGERS OF THE RADAR SYSTEMS
C GROUP, MIT LINCOLN LABORATORY, LEXINGTON, MASS..02173
C NOVEMBER 1983.
C
C DISCLAIMER: THIS PROGFAM IS EXPERIMENTAL AND WAS WRITTEN TO
C ILLUSTRATE CERTAIN PROPERTIES OF IBC INTEGRLL EQUATIONS.
C NO EFFORT WAS MADE TO OPTIMIZE COMPUTER SPEED OF STORAGE.
C THE BASIC CODING CAN BE VALIDATED FOR THE P.C. CASE BY
C COMPARING TO THE SAMPLE PROBLEM OF REFERENCE 1. FOR THE
C IBC CASE, CHECKS CAN BE MADE WITH THE NUMERICAL EXAMPLES
C OF THE TECHNICAL REPORT FOR WHICH THIS LISTING IS PART OF.
C

COMPLEX U,TJ(120),PJ(120),E(12) ,SN,SNR,RT(240),Ril(240)
COMPLEX Y(1600),Z(1600),B(40),C(40),UI,CONJG
COMPLEX IM(120),PM(120),YY(1600),ZZ(1600)
COMPLEX ZS,ZST(20),ZSP(20)
DIMENSION RH(43) ,ZH (43) ,X(20) ,A(20),THT (3) ,TH (3) R2(20)
DIMENSION IPS (40)

C
READ (5,*) NM,NP,NPHI
READ (5,*) BK,TT, P, TR,PR, ALP
READ (5,*) (RH (I) ,I=l,NP)
READ(5,*) (ZH(I) ,I=I,NP)
READ(5,*) (X(K),K=I,NPHI)
READ (5,*) (A(K) ,K=1,NPHI)
READ (5,*) ZS

C
WITE (6,49) NM,NP,NPHI
WRITE(6,48) BK,TT, P,TR, PR, ALP
WSITE (6,45) (RH(I) I=I,NP)
WEITE(6,4) (ZH(I) ,I=I,NP)
WRITE(6,47) (X (K) ,K=1,NPHI)
WRITE (6,43) (A (K) ,K= ,NPHI)
WRITE (6,100) ZS

C
N2=NP-3
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N =92/2
N33.2+N
N4-932012
H6=6*1
U=(00. 1.)
PI-3.4 1592653
P11=. 0625/Pl**3
P8=PI/180.
HT A-120. 0*PI
TNT (1) =TT*P8
P=P*P8
THU (1) mTR*P8
PS=PR*P8

C
DO 101 I=1,3
ZSP(I) .ZS
ZST (I) :ZS

101 CONTINUE
Do 412 J=1,NP
rfa (J)wBK*RH (3)
za (3) BK*ZH (3)

112 CONTINUE
DO 17 3=1,N
ia2(3) =1./RH (2*3+1)

17 CONTINUE
DO 511 J=1,N6
TJ(J)aO.
P3 (J) =0.
T R (3) -0.
PU(3) =0.

511 CONTINUE
DO 55 J=1,12
B (J) M.

55 CONTINUE
WRITE(6,9)

C LOOP THIOUGH ILL FOUSIER MODES
Do 411 K1l,fB
NI-K-i
PN=NN*P
CS=COS (PU)
S 1=2. *SIX (PU) *U
P3.1N.PR
CSR=COS (P3)
SYR-2.*SIN (PH) *1;
IE(NN.Zg.9)GO TO 56
CS=2.0*CS
CSR.2. 0*CSR

56 LIN0
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C CALCULATE YY AND ZZ FOR THIS BODE
CALL YZ(NN,NP,NPHI,SHZHX,A,Y,Z)
Do 130 I1l,NI

YI (I) =Y (I)
zz (I) =z (I)

130 CONTINUE
CALL MATS (N2,ZSPZST,Z)
CALL HATz6(N2,ZSPZST.Y)
DO 131 I=1,N4

TY (I) =Y (I) +Z (I)
ZZ (I) -zz (I) +Y (I)

131 CONTINUE
C DO 58 NHEC=1,3 LOOP THROUGH THE THREE IBC lO'S

GO TO (61,62,63),NHEC
61 DO 105 JJ=1,N

I (JJ) =Y1 (JJ)
105 CONTINUE

WRITE(6,8)Y() ,Y(2)
GO TO 59

62 DO 103 JJ=1,N4
Y (JJ) =ZZ (JJ)

103 CONTINUE
WEITE (6,8)Y (1) , (2)
GO TO 59

63 WPITE (6,8) YY (1) ,YY (2) ,ZZ (1) .ZZ (2)
DO 66 J=i,N4
Y (J)YY(3) +ALP*ZZ (J)

66 CONTINUE
C CALCULATE MATRIX DECOMPOSITION

59 CALL DECOMP(N2,IPS,Y)
WRITE(6,8)Y(1), 1(2)
IF(LANLNEO)GO TO 57
LANE=I

C CALCULATE MESUREMENT MATRICES
CALL PLANE (NNN, 1,THTvRT)
CALL PLANE(NN,N,1,THR,RR)
WRITE (6,8) RT (1) ,RT(2) .RR (1) ,RR (2)

C CALCULATE SOURCE VECTOkS
57 DO 27 KT-1,2

L=2* (NHEC-1) +KT
GO TO (31,32,33,34,35,36),L

C hFIE- THETA TRANSMITTER POL
31 DO 21 Jul,U

8 (J) =-RT (J+N3)
B (J+) -RT (J+N2)

21 CONTINUE
GO TO 53
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C NFIE- PHI POL.
32 Do 22 J=I,1

B (3) =-RT (J1)
B (JN) =-IT (J)

22 CONTINUE
GO TO 53

C SPIN- THETA POL.
33 DO 23 Jul,V

B (J) =RT(.)

B (J3) -T (J3)
23 CONTINUE

GO TO 53
C FPIN - PHI POL.

34 Do 24 J1,Nl
B (J) =-IT (J+2)
B (J+N) =IT (J+N3)

24 CONTINUEGO TO 53
C CIE - THETA POL.

35 DC 25 J=1,1
B (J) -RT (JN3) +ALP*RT (J)
JB=J N
B (JN) -- RT (J+2) -ALPSRT (J1)

25 CONTINUE
GO TO 53

C CPIE - PHI POL.
36 DO 26 J=1,3

B (J) -IT (JN)-ILPIBT (J+N2)
B (J) -- RT (J) + LP*RT (J+3)

26 CONTINUE
C SOLVZ MATRIX EQUATION

53 CALL SOLVE(12,IPSY,BC)
VRITE (6,8)C (1) rC (2)

C CALCULATE NORMALIZED ELECTRIC
C SURFACE CURENT DENSITYJ1= (L-1) $9

GO TO (11,12),KT
11 DO 13 jl,

TJ (J2) =TJ (32) +C (3) *CS
P3 (J2) =PJ (J2) +C (3+1) *5s

13 CONTIIU
GO TO 11

12 DO 15 J3l,l
J2=J*Jl

82



TJ (J2) -T3 (J2) +C (3) *SN
PJ (J2) =PJ (J2) 4C (J JN) *CS

15 CONTINUE
C CALCULATE NORMALIZED RCS

14 DO 16 K=1,2
L= (KT-I)*2+KR
KB=4* (NH!C- 1) +L
U1=0.
GO TO (71,72,73,74),L

C THETA r THETA
C (TRANSBIT POL. - RECEIVE POL,)

71 DO 75 31=,N
NPJ=N J
31=U1+ (?E (J) +ZST(J)*RR (N3+J))*C (J)
UI=U1+ (R (NPJ)-ZSP(J)*BR(N2 J))*C(NPJ)

75 CONTINUE
E (KE) =E(KE) +UI*CSR
GO TO 16

C THETA-. PHI
72 DO 76 J=1,N

NPJ=N+J
UI=UI+ (RR (J+N2) -ZST (J) *SR (NPJ)) SC (J)
Cl=0i (RE (N3+J) +ZSP (J) *BE (J)) *C (NPJ)

76 CONTINUE
9 (KR) =3 (KE) +UI*SNR
GO TO 16

C PHI - THETA
73 DO 77 J=1,N

NPJ N+J
U1=UI+ (RE (J) +ZST (J) *RR (V3+J)) $C (J)
gi=OI+ (ER (NPJ)-ZSP (3) SRE (N24J))*C (NPJ)

77 CONTINUE
B (KE) =E (KE) +U1*SNI
GO TO 16

C PHI- PHI
74 DO 78 J=1,N

3PJ=v+J
Ul=U1 (R (J+N2)-ZST (J)IR (NPJ) )*C (J)
UIVzUI+ (SR (N3+J) +ZSP (J) RR (J))SC (HPJ)

78 CONTINUE
E (KE) =E (KR)+ U1*CSR

16 CONTINUE
27 CONTINUE
58 CONTINUE
4,1 CONTINUE

C WRITE OUTPUTS
DO 28 NHEC=1,3
DO 29 KT-1,2
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WPITE(6,18) NHEC,KT
IT! (6,19)

J I1N* (2*N HEC+ KT- 3)
DO 37 J=1,3
J2=J+J1
TJ (32) =TJ (J2) *R2 (3)
P3 (J2) =PJ (J2) *R2 (3)
W FITE (6, 38) TJ (J2) , P3 (32)

37 CONTINUE
UITE(6,119)
DO 137 3=1,1
32=3+31
TM (J2) =-ETA*ZSP (J) *PJ (32)
PH (J2) =BTA*ZST (J) *TJ (J2)
WRITE (6,38) TH (J2) ,PH(J2)

137 CONTINUE
DO 30 K=1,2
3 1=4*NHEC,2*KT.KR-6
SIG'3P4*E (31) *CONJG (I1(31))
URITB(6,1O) NHECKT,KI,SIG

30 CONTINUE
29 CONTINUE
28 CONTINUE

STOP
C FORMAT STATE1MENTS
C

9 FORMAT('OSAMPLB OUTPUT FROK SUBROUTINES#)
8 FORMAT(1X,4E14.7)

18 FORH&T('C0NHEC=',13,', KT'1,13)
19 FORMAT(' REAL JT IfAG JT REAL JP IMAG JPI)

119 FOBMAT(l REAL HT INAG MT REAL HP INIG HP')
38 FOFM&T(1X,4E11 .4)
10 FORMAT( NHEC1,13,l, KT'lv13,9, KSrnl,13,

1', SIGMA/ (LRMBDA) **2=', Eli. 4)
49 FORMLT(f N5 VP UPHI'/1I,213,14)
48 FORMAT (7XIBK',12!, 'TT'.13X.'P'.12X, 'TR',12X,'PR'/11,

15E 14. 7/7X, 'ALPl/1I, 114.7)
45 FORMAT(' RH/(1I,878.4))
44 FCRMAT(I ZH'/(1I,8F8.4))
47 FOIM&T(f Xv/(lXt5E14.7))
43 FORHLT(l A'/(11,5114. 7))

100 FORMT(1X.' ZS ='.,2F10.4)
END

C SUBEOUTIVE MATB - THIS ROUTINE CALCULATES THE MATRIX (B)
C VHICH IS PART OF THE NORMALIZED IMPEDANCE (ADMITTANCE)
C MATRIX OF THE IBC 2111 (HPl!) VHJN THE SURFACE IMPEDANCE
C IS NON-ZERO:
C
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C (B) (IT) - 1.0/ETA (N) (A) (H)
C
C WHERE (A) IS A P.C. ADMITTANCE (IMPEDANCE) MATRIX, (M)
C REPRESENTS THE EXPANSION COEFFICIENTS OF THE MAGNETIC
C SURFACE CURRENT DENSITY, (I) REPRESENTS T-OSE OF THE
C ELECTRIC CURRENT, (N) REPRESENTS THE CROSS PRODUCT OF THE
C OUTWkRD UNIT SURFACE NOSMAL AND ETA IS THE FREE SPACE DAVE
C IMPEDINCE.
C

SUBROUTINE MATB (N2,ZSP,ZST,X)
COMPLEX X (1),ZSP(1) ,ZST(1) ,CTEMP
N=N2/2
N2N= N2*N

C I DENOTES ROV, J DENOTES COLUMN.
C I1, 12, 13 AND I4 ARE IN THE TT,
C PT, TP AND PP SUBMATRICIS OF X
C RESPECTIVELY.

DO 10 J=1,N
I1= (J= 1) *N2+1
12=II+N
13=II+N2N
14=13+1

DO 20 I=I,N
CTEMP=X (14)
X(14) =X (I) *ZSP (J)
X (11) =CTEMP*ZST (J)
CTEHP=X (13)
X (13) =-X (12) *zsP (J)
X (12) =-CTEMP*ZST (J)11=11+1

12=12+1
13=I3+1
!4=14+1

20 CONTINUE
10 CONTINUE

RETURN
END
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GLOSSARY OF SYMBOLS
(Order of Appearance)

IBC Impedance boundary condition (Leontovich)

MFIE IBC magnetic field integral equation

EFIE IBC electric field integral equation

CFIE IBC combined field integral equation

BOR Body of revolution

2s Dyadic normalized surface impedance (double arrow
denotes dyadic)

( i, 1) Incident electromagnetic fields (arrow denotes vector)

S Closed surface of imperfectly conducting body

ej t  Sinsusoidal time dependance (phasor notation)

3vol Volume electric current density

( ,P) Scattered electromagnetic fields

CA Equivalent electric (3) and magnetic (A) surface
current densities

An Outward unit normal to surface (symbol over n denotes
unit vector)

x Vector cross product in equations

(t±,f±) Total electromagnetic fields just outside (+) or
just inside (-) equivalent current surface

r Field point vector (source point when primed)

Free space wave impedance

. Vector scalar product in equations

fs Principal value surface integration

Permeability of medium surrounding body (free space)

Free space Green's function
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GLOSSARY OF SYMBOLS (Cont'd)

Del operator (operates on source point coordinate when
primed) used for gradient (vo), divergence (V-A) or
curl (VxA)

Permittivity of medium surrounding body

rPi - 3.14159...

k Wavenumber

I I Absolute value (length)

2a Generalized integral equation weighting coefficient

LE, LH Perfect conductor integro-differential operators

a Scalar, constant integral equation weighting
coefficient

* Cylindrical surface azimuthal coordinate

t Surface coordinate along BOR generating curve

f Triangular expansion function

Moment-method testing function

[ ] Matrix

IV] Source from incident electric field vector

[ZI Normalized impedance matrix for perfect conductor EFIE
(not to be confused with surface impedance)

[I] Electric current expansion coefficients (unknown)

[U] Source from magnetic field vector

[Y] Normalized admittance matrix for perfect conductor MFIE

[N] Matri., representing n x vector operation

[M] Magnetic current expansion coefficients
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GLOSSARY OF SYMBOLS (Cont'd)

[ZZi Generalized impedance matrix for the IBC EFIE

[YY] Generalized admittance matrix for the IBC MFIE

AElectric vector potential

V Scalar potential
+

F Magnetic vector potential

(r,e,o) Right-handed spherical coordinate system

[R) Measurement matrix

p Radial cylindrical coordinate

[S] Generalized measurement matrix

SEG Moment-method segmentation (segments/wavelength)

Zs  Scalar, constant normalized surface impedance

ka Sphere wavenumber - radius product

Re( ) Real part of a complex quantity

Im( ) Imaginary part of a complex quantity

cond Approximate matrix condition number

a Differential scattering cross section

a Sphere radius

XWavelength

e Bistatic scattering angle

ME Bistatic cross section mean error (percent)
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