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link shapes. The resulting equations ar presented as scalar and 4x4 matrix operations
ready for programming. The efficiency of this formulation is compared to rigid link
cases reported in the literature.
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Abstract

| Improving the performance of most engineering systems requires the ability to model the system’s behavior

with improved accuracy. ‘The evolution of the mechanical arm from tclcoperator and cranc to present day
industrial and space robots and large space manipulators is no exception. Initial simple kinematic and
dynamic models are no longer adequate to improve performance in the most critical applications. Both the
mechanical system and control system requirec improved models for design simulation. Proposced new control
algorithms rcquire dynamic models for control calculation. Planning and programming activities as well as
man-in-the-loop simulation also require accurate models of the arms.

Accuracy is usually acquirced at some cost. The application of mechanical arms to cconomically sensitive
endeavors in industry and space also gives incentive to improve the cfficiency of the formulation and
simulation of dynamic models. Control algorithms and man-in-the-loop simulation require “Teal time
caiculation of dynamic behavior. Formulation of the dynamics in an easy to understand conceptual approach
is also important if maximum use of the results is to be obtained.

The nonlincar equations of motion for flexible manipulator arms consisting of rotary joints connecting two
flexible links are developed. Kinematics of both the rotary joint motion and the link deformation are
described by 4x4 transformation matrices. The link deflection is assumed small so that the link
transformation can be composed of summations of assumed link shapes. The resulting equations are
presented as scalar and 4x4 matrix operations ready for pmgnmmlnﬁ'l‘he efficiency of this formulation is
compared to rigid link cascs rcported in the literature.

Keywords: Robots; Dlstnbuted parameter systems; Modcls; Manipulation; Vibration control; Flexible
mcechanisms; Mechanical arms.
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1. Sketch of Prior Work

Much work has been done to formulate the dynamic cquations of motion for mechanical arms with
rigid links. Work on the “inverse dynamic formulation” used in control can be found in references [22], [27),
[29). [2) and in their bibliographics. References [30]. [20], [33). [32].[12]), and their bibliographies represent
work on the dynamic formulation for simulating rigid link arms. The cfficiency of these formulations and
alternatives to their real time calculation is discussed in [26], [1] and the works referenced therein.

The limitation of these works is that rigid links are assumed. With this assumption the techniques
become at some point self defeating. if their purposce is to improve performance. Maintaining rigidity of the
links inhibits improved performance but is necessary if the rigid link assumption is to be accurate.

Consideration of flexibility and control of the links in arm-type devices was reported in 1972 by
Mirro [24). ‘This carly work considered both the modeling and control of a single link device.  Book {7]
considered the lincar dynamics of spatial flexible arms represented as lumped mass and spring components
via 4x4 transformation matrices. "This was refined and later reported in [9]. Book and Whitney (3], [4] later
considered finear distributed dynamics of planar arms via transfer matrices and the limitations flexibility
imposed on control system performance [8). Maizza and Whitncey [23], [4] used a planar nonlincar model with
maodal representation of the flexibility and considered modal control as a technigue for overcoming the
limitations of the flexibility.  Whitney, Book, and l.ynch [34), [4] considered the design implications of
flexibility. Distributed frequency domain analysis of nonplanar arms using transfer matrix techniques [S). [6]
has been used by Book, ctal to verify the accuracy of truncated modal modcls of the nonlincar spatial
dynamics of ficxible manipulators (the Remote Manipulator of the Space Shuttle). ‘The nonlinear modal
modcl appcaring here was first presented by the author in 1982{10]. A more classical approach to
manipulator dynamics, both rigid {18] and flexible [19], has been undertaken by Huston and his coworkers.

‘The work in flexible spacecraft has spawncd a line of rescarch pertaining to the interaction of articulated
structures. ‘This work has great relevance to the manipulator modeling problem.  Entrics into this literature
are provided by the works of Likins [21) and Hughes [25]. This activity produced a spatial, nonlinear, flexible
manipulator model reported by Ho etal. {14] and corresponding computer code for simulation. The
simulation required great amounts of computer time and was unsuitable for even off line simulation. Further
work for the purposes of simulating the Space Shuttle Remote Manipulator was performed by Hughes. His
linearized modct is reported in [16] and a more general model is reported in [17). The Hughes model ignores
the interaction between structural deformation and angular rate as might be appropriate for the Space Shuttle
arm. This work and associated work at SPAR Acrospace, Ltd. and the Charles Stark Draper Laboratory, Inc.
probably represent the most intensive work on the modeling, simulation and control of flexible arms.
Unfortunately, little of this work has been rcported in the open literature.  Rccent examination of
experimental results from the operation of the Shuttle arm in space has confirmed the validity of these
maodels. More recently, Singh and Likins {28] have reported an cfficient flexible arm simulation program.

Yet another branch of rescarch that has found its way to the flexible manipulator dynamics problem is
the study of flexible mechanisms. Dubowsky and Gardner [13) and Winfrey [35] provide the reader with a
bibliography on this work. Sunada and Dubowsky [31] have developed muodeling techniques applicable to
both spatial closcd loop mechanisms and open loup chains such as manipulator arms. ‘This work assumes a
known nominal motion over time about which the flexible arm equations arc lincarized. This falls short of a
true simulation of the flexible, nonlincar cquations, but is an interesting compromise for the sake of
computational spced. This technique is oriented toward finite clement analysis to obtain modal
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characteristics of the links which are then combined using a time varying compatibility matrix. It uscs 4x4
matrices to represent the nominal kinematics and derivation of the compatibility matrix.

1.1. Perspective on This Work

"This report stresses an efficient, complete, and conceptually straightforward modcling approach using
the 4x4 transformation matrices that are familiar o workers in the ficld of robotics. It is unique in scveral
respects: 1t uscs 4x4 matrices o represent both the joint and deflection motion.  The deflection
transformation is represented in terms of a summation of modal shapes. ‘The computations resulting from the
Lagrangian formulation of the dynamics are reduced to recursive form similar to that which has proven so
cfficient in the rigid link case. ‘The equations arc free from assumptions of 4 nominal motion, and do not
ignore the interaction of angular rates and deflections. They do assume small defiections of the links which
can be described by a summation of the modal shapes and a lincar model of clasticity. Only rotational joints
arc allowed. ‘The results are quite tractable for automated computer solution of arbitrary rotary joints.
Preliminary programs written to cvaluate computational cfficiency show that this method requires about 2.7
times as many computations as the most efficient rigid formulations with the same number of degrees of
freedom. ‘The rigid maodel could incorporate 21 degrees of freedom compared w 12 degrees of freedom (6 of
which are joints) for this flexible model. ‘Thus, 15 degrees of freedom in the rigid model could be used o
approximate the flexibility that the 6 flexible degrees of freedom of the model presented here approximate.
‘The relative accuracy of the two approximations has not been detcrmined. ‘These issues are discussed in more
detail in the Conclusions.

2. Flexible Arm Kinematics

‘The previous works on rigid arm dynamics use the serial nature of manipulator arms which results in
multiplicative terms in the kinematics. ‘The modal representation of flexible structure dynamics. on the other
hand. is a parallcl or additive representation of the system behavior. Onc of the contributions of this paper is
to resolve this difference in a concisc way. As with many of the previous works on rigid dynamics, the 4x4
matrices of Denavit and Hartenberg [11] arc used. Sunada and Dubowsky [31] used this representation for
their flexible arm simulations but did not produce a complete nonlincar dynamic simulation. Other workers
such as Hughes[17] relied on the more gencral formulation provided by a vector-dyadic representation.
While Silver[27], Hollerbach [15]), and others have pointed out the relative incfficiency of the 4x4
formulation, the conceptual framework is most advantagcous when tackling the complexity of the flexible
dynamics.

Define the position of a point in Cartesian coordinates by an augmented vector:

{1 x-component y-component z-componcnt]T.
Define the coordinate system {x y 2], on link i with origin O, at the proximal end (ncarest the basc) oriented so
that the x axis is coincident with the necutral axis of the beam in its undeformed condition. ‘The orientation of
the remaining axes will be done so as to alfow cfficient description of the joint motion. A point on the ncutral
axis at x=n when the beam is undeformed is located at ihi(q) under a gencral condition of deformation, in
terms of system i.

By a homogencous transformation of coordinates the position of a point can be described in any other
coordinate system j if the transformation matrix ’Wi is known. The form of this matrix is
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W, = | xcomponentofO, | 1
y; component of O, | jRi
7 component of O, |

where
IR, = a 3x3 matrix of direction cosines
0 = a 1x3 vector of zcros.
‘Thus in terms of the fixed incrtial coordinates of the base the position of a point on link i is given as

h, =W, 'n = W, 2)
where the special case of °Wi = W, Itis uscful w scparate the transformations duc t the joint from the
transformation duc to the flexible link as follows

wj = Wj_l "'j-| Aj = Wj_ll\‘i 3)
where

A, = the joint transformation matrix for joint j
k., = the link transformation matrix for link j-1 between joints j-1 and
Wj_l = the cumulative transformation from base coordinates to Oj_l at the distal end of link j.

Qj_ 1 is fixed to the link j-1 and with no deflection [ X ; z ]j-l isparallefto[x y 7.]j_ | With L coincident with
X

‘T'o incorporate the deflection of the link, the approach of modal analysis is used which is valid for small
deflection of the link.

11 5 o
= | n | +228| xom @
0 i=1 yij(")
0 7(n)
where
XYy % = the x,, y;. and 7, displaccment components of mode j of link i's deflection, respectively.

8. = the time varying amp‘iwde of mode j of link i

m, = the number of maodes used to describe the deflection of link i,
‘The link transformation matrix must also incorporate the deflection of the link. Here the rotations as well as
the translations of the deflection must be represented.  If one consistently requires small rotations the
direction cosine matrix simplifics as noted in [9] and furthermore the small angles can be assumed to add

vectorally. ‘This is basic to the approach used here. ‘The link transformation matrix can then be written as

™
F=CH+28Mm,] )
el




0 0o o0 |
H, L, 1 0 o
0 0 1 0
L0 0 o 1
[0 o0 o o0 ]
M. = X.. 0 9. 0. )]
ij ij 4j ij
Yy ozij 0 -dij
L7 -Om. 0“]. 0
and where
‘i All variables in brackets are cvaluated at |,

om., g .. 0,,i. = the x;, y,. and 7 rotation componcnts of link i, respectively.

I,'= the length of link i

To find the velocity of a point on link i, take the time derivative of the position:

gthi =h =W + W, ‘hi. (8)

Due to the serial nature of the kinematic chain, it is computationally efficient to relate the position of a point
and its derivatives to preceeding members in the chain. By differentiating 2 onc obtains:

W, = WA+ WA )
" W=W A+2 WA + W K (10)
A=, éj 1
K = U@+ UG, )

' Uj = aAj/aqj
i - A2 2
‘. U2i =9 Ajlaql
q = the joint variable of joint j.

; Thus W, and W, can be computed recursively from W._l. its derivatives, and the partials with respect to
the variables of link j-1 and joint j. No mixed partials arc explicitly present. This computational approach is
similar to that proposed by Hollerbach [15] for rigid link arms. Here onc additionally nceds Wj_l and its
derivatives. ‘Thesc can be computed recursively from Wj_l and its derivatives:

W =W E a3)
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W.=WE+WE

xj - ..j l“j * j.l"j. ” 149

W =W E +2W E+ WE (15)
"

b= 2 B, My, (16)
k=1
™

i = E N a”n

The last two cquations illustrate how the deflection transformations cnter cven more simply into the
kinematics on a per variable basis than do the joint variables. ‘This is duc to the small deflection assumption
and the form chosen for the transformation. "The recursive nature of the velocity and acceleration is prescrved
from the rigid case. For the simulation cquations the terms involving sccond derivatives of the joint and
deflection variables will be separated from the above expressions and included in the incrtia matrix to make
up the cocfticient matrix of the derivatives of the state variables, ‘The “inverse dynamics” solution that
proceeds directly from the Lagrange formulation has little obvious utility.

3. System Kinetic Energy

In this section the expression for the system kinetic encrgy is developed for use in Lagrange's cquations.
First, the kinctic encrgy for a differential cloment is written. ‘Then, integration of this differential kinetic
encrgy over the link gives the link’s total contribution. This produces terms that are the cquivalent of the
moment of incrtia matrices of rigid link arms. Summation over all the links provides the total kinetic energy.

The kinctic cnergy of a point on the i-th link is
3 o ST
dk, = LdmTr { b, B (18)
2
where

dm is the differential mass of the point and
Tr{.} is the trace operator.,

Expanding 18 and using the fact that Tr{A B'} = Tr{B AT}> the expression for dk, becomes

- . .. . . . .r . -I- . . . .-l- T s -!T 'r
dk; = Ldm Tr{ W, ‘0" W' + 2Win &' WT + w. ' BT W'} (19)
where 2
m
. , T
lhi = El Gij [ 0 Xi Yy zij] . (20)
J=

By intcgrating over the link onc can obuain the total link kinctic encrgy. In this report it is assumed that the
links arc slender beams because it makes the central development clearer. Other mass distributions could be
uscd with a slight departure here in the development. For slender beams dm = p dy and onc can integrate
over 1 from 0 tw 1. Only the terms in ihi and its derivatives arc functions of g for this link. Thus the
integration can be performed without knowledge of W, and its derivative. Summing over all n links onc finds
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the system kinctic cnergy to be

-5 I o

|— 1 0
_ T " T T
K= }: Te{ W, B, W'+ 2W, B, W + W, B, W'} 22)
i=1
where
_l_ / 'h ‘h "dy. (23)
By interchanging the integration in 23 and the summations involved in the definition of ifni in 20 onc obtains
m. m,
B, = : 2 8; 8¢ Cyy ) (24)
j=1 k=1
where
Cy; = _;_ / nlOx, vy, zik]’r [0x;y; 7] dn. (25)
0

Cy ikj has units of an incrtia matrix and scrves a similar function. While shown herc as a 4x4 matrix it is
nonzero only in the 3x3 (lower right). 1t can also be shown that C.k = (," By choosing the assumed mode
shapes in an appropriate manner, it is possible to reduce the numbcr of nomcro terms in 24. This matter is
discussed in light of computational speed in the conclusions.

The other teyms in equation 22 can similarly be found:

By = -l-/ p 'h,h dn 26)
2 e+ 33 a8
k=1 j=1 € @
where
C = _L/ plln 00)" [0 X ¥y zij] dy. (28)

Finally, by a slmll?r approach:
i

By = -L/ u'h; 'l d
2 0

m. m m
T
By=C + 21 8, [Cy + Cl + 2 : 6,6,Cy 29)
j=

k=1 j=1




C = _1_[ n{1 900 (1 700)dn. (30)
2 0
‘This final term contains the rigid body inertia terms.

It should be noted that these terms are casily simplified if onc link in the system is to be considered
rigid. in which m, = 0. Should a link consist of a flexible member with rigid appendages the above derivation
is rcadily cxtended to madify the matrices Cik.‘ (Tik. and Ci with no further modifications to the succceding
development. In fuct. these matrices could be obtained by finite element analysis should the lmk shape be
irregular as is often the case.  Furthermore, the expression for By, contains a term of order 82 which is by
definition small and a candidate for later climination. Finally, muc.h of the complexity of the integration of
the mudad shape products can be donc offline, once. for a given link structure.

3.1. Derivatives of Kinetic Energy
For construction of | agrange’s cquations one nceds

d . d ,
9K /dq;. 9K / 28y, = —( 3K /2q;). and-&;( oK 7 25,)
First consider 9K / aq This will involve the partials of all the terms in 22. some of which are zero. In

fact, only W forjgign pmvudcs nonzero partials with rcs;;cctwq ‘The time derivative of the partial is
then taken. ln this respect the following equivalences should be noted:

W,/ 3q = dW,/ dq, K)))
d o, o
I( W, / dq; ) =aw,/ 3q, 32
( oW, 7 db,= BW,/ 35, 33
] d, .. . .
3 5 (2,708, )= oW,/ 08, G4

Also helpful in simplifying the result is that, Tr{A} = Tr{AT} for any square matrix A and that B, is
symmetric. Considerable cancellation and combination rcsults when the terms in Lagrange's cquation
involving the kinctic cnergy are combined. ‘The result of this combination is

d .
a-l(aK/aqj)-aK(aqﬁ

2 Y 'rr{aT:‘;L[[ci+ 2 8, (¢, +Cl+ 2 8,Cu )W
! i=j k=1

' : +[ % 8, (Cy + g 8,Cy )W/ +[2 : §,(Cy+ : 8,C,)1W 1}

. k=1 i=1 k=1 35)




Note above terms of the form §;, 8, which arc sccond order. ‘These can be ignored consistent with the
assumption that the deflections are small. Noting the recurrance of certain terms above, it is convenient to
define the following:

m.
D, =C + I:I 8, Ci

(36)
m,
= . T
G=C+ 2 8, (€ + G).
k=1 3n
When these definitions are substituted into equation 35 one obtains:
d .
a( 9K /3q,)-3K /3q, =
n m, m.
g AW b ) . o
2 Y |r{qu-[c;iwi + 3 B W2 3G n, W},
Ty j k=1 k=1 (8)

‘The partials of K, with respect to s.rand 8.,. are considerably more complex duc to the fact that B, B,
and Bli arc functions of the deflection variables. ‘The techniques of simplification are similar. An additional
simplification ariscs duc to the fact that if A were any antisymmetric matrix, and if W were a matrix
compatible for multiplication, then Tr{ W A w' } = 0. An antisymmectric matrix occurs from the difference
of a matrix and its transpose. .

S (ok/25,) =

n aw m. m.
N : - . T .
2 Z "'{_"‘36 [Giwi + : 8, Dy W, +2 2 8 Du Wi }+
i=j+1 if k=1 A

m. m.
r{2[ WD, +2W i 8 Curt W, : 8, Cur JW }.
k=1 k=1 (9

4. System Potential Energy

‘The potential energy of the system arises from two sources: clastic deformation and gravity. In both
cascs they arc included by first writing the potential energy contribution of a differential clement, intcgrating
over the length of the link, and then summing over all links.

4.1. Elastic Potential Energy

Consider a point on the i-th link undcrgoing small deflections.  First restrict the link of the slender
beam type. ‘The clastic potential is accounted for to a good approximation by bending about the transverse y,
and 7, axcs and twisting about the longitudinal x; axis. Compression is not initially included since it is
gencerally much smaller. Along an incremental length dy the clastic potential is
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where

8,8 ..and 8 arc the rotations of the neutral axis of the beam at the point g in the x,, y, and 7,
dlrccuon\ respectively. Since deflections are small, these directions arc essentially p.nrallcl ur
perpendicular to the neutral axis of the beam.

E = Young's modulus of clasticity of the material

! G = 'I'he shear modulus of the material

. = The polar arca moment of incrtia of the link cross section about the neutral axis.

Iv. l7 = the arca moment of incitia of the link cross section about the ¥ and 7, axcs, respectively.

With a truncated modal approximation for the beam deformation the angles 0 0 and 0 are
represented as summations of modal coefficients times the deflection variables. ‘The x rumuun for cxamplc is

: 80k - “n
k=1
where @ ., is the angle about the x, axis corresponding to the k-th mode of link i at the point n. When dv , is
integrated over the link the integration can be taken inside the modal summations of equation 41 and its

corresponding y and z components. ‘The following definitions then prove uscful:

Ki = Kiw + Kyig + Kpigy+ 42)
{ where |
i
20 ,00..
K.. =/ G | () —2il —3ik 4y 43)
xikl 0 X a.’, a"
L
80 28 .
K
20 . 06
K = / . El m—m—am dy . (45)
‘. Note that K“‘I = K“k and that for certain special cascs the orthorgonality of the modal functions can
’ M climinatc many of the terms in cquations 43, 44, and 45. ‘I'he clastic potential for the total system, Ve can then
be written as

n

m. m '
y V.=%Z : 2“&8“'(&1' “6)

i=l k=1 I=1

i -
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Note that the V, is independent of q. the joint variables.

CA/PY @
8qj

For deflection variables
m,
oV
we kz'jl 8 Kyr- 48)
) =

‘The form of cquation 48 is much more gencral than the initial assumptions made regarding the contributions
to the clastic potential encrgy would allow. Compression strain energy. and link forms other than beams can
be represented in this form. ‘The values of the coefficicnts Kj“.can be determined analytically or numerically,
cg. by finite clement methods.

4.2. Gravity Potential Energy
For a differential clement on the i-th link of length dyn the gravity potential is

(‘.lv“i =-u g' W, ihi dy. (49)

where the gravity vector g has the form

8'=00g8, 3l
When integrated over the length of the beam and summed over all beams, the gravity potential becomes

n
v, =" g’ Z L A2 (50)
i=1
where
m.
= Mi r; + 2 8“ e, 1)
=1

Mi = the total mass of link i
=11 ri 0 0] avector t the center of gravity

from joint i (undeformed)
h
&= / BiOx, v, 7, 1Tdy. (52)
0

Note that e, is found in the top row of Cil' It is the distance from the undefonned center of gravity to the
center of gravity when all 8 arc zero except 8& » which is one. ‘The total distance to the center of gravity from
O, (joint i) is multiplicd by the mass to give r

Upon taking the partial derivatives required by Lagrange's cquations we find for the joint variables

=
{

|

"‘
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=-g! 2 (53)

qu
For the deflection varnablcs. for lgjgn-l
n
i Vv T ow. T
e 2 (Gt W 54
' if i=j+1 ir
Forj=n
oV |
_LBG =-g Wn L3 (55)
t nf

§. Lagrange’s Equations in Simulation Form

At this juncturc the components of the complete equations of motion in Lagrange's formulation, except
for the external forcing terms. have been evaluated in equations 38, 47, and 53 for the joint equations; and in
equations 39, 48. 54 and 55 for deflection equations. ‘The external forcing terms arc the gencralized forces
corresponding to the gencralized coordinates: the joint and deflection variables in this case. The gencralized
force corresponding to joint variable g, is the joint torque F,. For the deflection variables the corresponding
generalized force will be zero if the corresponding modat deflections of rotations have no displacement at
those locations where cxternal forces are applied. Thus it is assumed for the present development that the
modal functions are sclected so that is the case. ‘This is convenient for using the results as well. All motion at
the joint is described in terms of the joint variable.” (lhis is not true in the approach taken by Sunada and
Pubowski [31).) ‘The form of Lagrange’s cquations will then be:

The ioi jon j
. \' v
< (3K/3qj) - 9K7/aq; + aTﬁ- +—L=F.
g The deflection cquation j.f
| -’» d . v v
L — (9K/28; ) - 9K /28, + D N .
Lk de 38 38 7
( 3 These equations are in the "inverse dynamic™ form. To convert them to the simulation form onc must extract

the cocfficicnts of the second derivatives of the gencralized coordinates to compose an incrtia matrix for the
system. ‘The sccond and first derivatives together make up the derivative of the state vector, which can be
uscd in onc of the available integration schemes, ¢.g. Runga-Kutta, to solve for the state as a function of time
S T for given initial conditions and inputs F,.

s i 5.1. Kinematics Revisited

? ‘The purpose of this section will be t cxtend the kmcmaues to separate the second derivatives of the
joint variables and deflection variables from the expressions for W and W Other occurrences of these
derivatives are already explicit in the formulation as it exists. '

g ‘ First consider the product of transformations which make up Wi and two alternative ways of expressing
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. W= A E A E, A B LA
=W, AW, (58)
=W, k"W, (59)
! Carrying through the derivatives onc obtains -
~- i m
Z ( Wh—l Un " Wiah + i Wi My hwi shk) + a’vi' (60) :
h=1 k=1

For the corresponding expression for W, write

W, = A K Ay A K LB A,
= W, A, "W, . 1)
=W,k "W, (62)
1
Z‘Wh-l u,"Wg, + > 2 W, M, "W, 8 + ‘;’vi' (63)
h=1 k=1

‘The value of W ,and W ; can be calculated rccurswcly as shown in cquations 15 and 10, respectively, for W
and W by only chmmaung terms involving q and 8 ‘The result is

w. vHAj+2W/\ +W Uﬁqj (64)
/ 3w Wi 65
| y = WyE+2WE. (©65)

5.2. Inertia Coefficients

To obtain the incrtia cocfficients that multiply the second derivatives, substitute equations 63 and
60 into the relevant parts of the cquations of mation, cquations 38 and 39, respectively. Collecting the terms
and arranging them for efficicnt computation requires the steps outlined in this section.

| e . ——

5.2.1. Inertia Coemcients of Joint Variables in the Joint Equatlom
Al occurances of q; in equation 38 arc in the cxpression for W When these terms arc isolated, a
double summauon over l}lc mdnccs i and h exists. Interchange the ordcr of the summation as follows:

ET-% T

i=j h=1 i=max(h,;j)

The resulting cocfficient for joint variable g, in the joint cquation j is
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=21 W, U /F, U7 W]} (66)
where
n
F= Y WG 67
i=max(h, j)

Note that if one cxchanges j and h and transposcs inside the trace operation an identical cxpression is
obtained. This indicates the symmetry g)f the incrtia matrix which is used to reduce the number of
computations required. ‘The expression fnr’l7h can be computed recursively: this will be described later to
further improve the cfficiency of calculation.

5.2.2. Inertia Coefficients of the Deflection Variables in the Joint Equations
The deflection variables appcar both in the cxprcssum for W' and explicily in cquation 38. After
subsuluung W' mto cqu.mon 38, collect terms in 8 rand cxch.mgc the order of summations as follows

n
Z ): Z >
i=j h=1 h=1 i=max(h+1,j)

‘The resulting coefficient of ﬁhl in joint cquation j is J . ‘The terms to be included depend on the relative
valucs of j and h. 'The ﬁ)llowmg hold forl <k g m,.

Forh=n,j=1.

Yok = 2'|'r{ ( WU YW D, W) (68)
forh=j..nl.j=1..n-1

I = 2T { (W U )L ¥, ME+ W, D, Tw] }: (69)
forh=1.jlj=2..n:

oo = 2T { (W U, ) I, M WT ) (70)
whercforh=1..n1,j=1..n:

n
W= 3 WG, an
i=max(h+1,j)

It can be shown that the incrtia cocfficient for the deflection variable 8, in the joint cquation j is the
same as the cocfficient for the joint variable q. in the deflection equation hk. ‘This further extends the
symmoctry of the incrtia matrix and reduces the necessary computation:

5.2.3. Inertia Coetficients of the Deflection Variables in the Deflection Equation

In a manner similar to the previous two types of cocfficients, the inertia coefficients of the deflection
variables in the deflection cquations arc evaluated. Symmctry of the cocfficients can be shown such that the
cocflicient of variable hk in cquation j.f is the same as the cocfficient of variable j,f in cquation hk.
Substituting cquation 63 into equation 39, isolating the second derivatives of the deflection variables, and
interchanging the order of summations cnables the inertia cocfficients to be identificd. Further simplification
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is based on the identity that, for any three square matricies A, I3 and C

T{ARBRC} = 1r{CA B} =1Ir{BCA}.
Furthermore the rotation matrices in the transformation matrices are orthogonal so that R, R'i" =1 a3
] identity matrix. 'This coupled with the zcro first row and column of Cjkr results in an cspecially simple form
, for two of the four cases. ‘I'he following hold for 1 <k g moandl<fg m,. ’
Forj=h=n:
! e =270 C i } 1)
Forj=h=1..n1:
— j T, ¢
Lo = 2T { Mo ML+ C, } . (73)
'l Forh =n;j=1..n"1:
. . T
Lo = 2Te{ WM W D W} (74)
Forj=1.n1l:h=j+1l..n-1:
o . T r
Lo = 2Tr{M Do+ M+ Iw,  TW)}
_ (75)
4 ‘T'erms in the above defined forj = 1...n-1; h = 1 ... n-1 are:
n
i . b T
f o= T wew 9
i=max(j+1.h+1)
5.2.4. Recursions in the Calculation of the Inertia Coefficients

Since the inertia matrix is a square matrix it requires the calculation of “12 terms where n is the total

number of variables:
‘ n
!
( n=n+ Z m;
= i=1
f ¢ The fact that the matrix is symmetrical reduces the number of distinct terms to n (n +1)/2, which still has a

second power dependence. ‘Thus while the inverse dynamics computation complexity can be made lincar in
n, simulation requires the incrtia matrix with complexity dependent on nlz. Since n, can be quite large for
; practical arms it is important to reduce the cocfficient of the squarcd term as much as pussible. Duc to their
‘ short or cven zero length. it is possible for some links to be essentially rigid. Anthropomorphic arms, for
exampie, have two links which arc much longer than the others and tend to dominate the compliance. Many
of the terms derived above may not be needed for these links, four of the six links in the anthropomorphic
example. Any recursive scheme for cakeulating the terms in the cquations should not require these
f calculations as a means to get to needed terms. )

Consider the calculation of cquations 67, 71, and 76. Scveral recursive schemes could be arranged for

, the efficient calculation of these quantitics.  Fquation 71 is only needed if the link corresponding to the
variable, link b, is flexible. ‘That is, if m, > 0. }quation 76 is only nccded if both the link of the variable and

the link of the equation, link j, is also flexible. Thus we proposc the following recursive scheme for
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A
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calculating /F, /¥, and @, . ‘The following hold for | sk smy: 1 <fgm,.

Inivalization:

"?n =G,. an
Forj>hgn:

W, =kA T, (78)
Forj=h:

=G+ "R, ( EiAis ). 9
If m,, > 0 cakulate:

¥, = IF, AL (80)

It‘mh>Oandm.>0calculate:
0 = A, Ph. (81)

j+ 1

5.3. Assembly of Final Simulation Equations

‘The complete simulation cquations have now been derived. 1t remains to assemble them in final form
and to point out somc remaining recursion relations that can be used to reduce the number of calculations.
The second derivatives of the joint and deflection variables are desired on the "left hand side” of the equation
as unknowns and the rcmaining dynamic cffects and the inputs arc desired on the “right hand side.” T'o carry
out this process completely once would take the inverse of the incrtia matrix J and premultiply the vector of
other dynamic cffects. This inverse can only be evaluated numecrically because of its complexity. ‘Thus for the
present purposes the cquations will be considered complcte in the following form:

Jz =R, (82)
where

J = Inertia matrix consisting of coefficients previously defined in the order for multiplication
appropriate for z

z = the vector of generalized coordinates r
=[q,8,8,..8 8,,..8 )
[9,8),8), ten, 92 921 O2m, =+ W O - hmh nm]
qy, = the joint variabie of the h-th joint

8, = the deflection variable (amplitude) of the k-thmode of link h

R = vector of remaining dynamics and cxternal forcing terms

=R Ry Ry Rypy Ry Ry o Ry Ry Ry Ry R

u
27 R R Roen,]

m, R
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R, = dynamics from the joint cquation j (cquation 56) excluding second derivatives of the
generalized coordinates

Rjr = dynamics from the deflection equation jf (equation 57) excluding sccond derivatives of the
generalized coordinates

The clements of J have just been formulated and can be arranged to form the proper equations in the order
described above. ‘This order has been sclected because it results in the symmetrical appearance of J. ‘The

clements of R have not been explicitly given with the second derivatives removed. “These are given below
with some recursions to facititiue their computation.

Ry=-21r{U,Q }+g"U P +F ®83)
- 3 T« s
Ri=21r{W, uQ} +e'W, ur+F (84)
m m
e : . N r
Rnf =-2 lr{ [wvn“nf + an Z‘: ank (’nkl'] wn } i 2 6nk Knkf+ g \vn €ar (85)
=1 k=1

m.
Re=-2Te {W,MeA QL W, D +2W 1(:1 8, C,c W'}

. i
T T
- Zf S Kigrt 8 WiMA Py H 87 Wigy
k=1 (86)
where
m
Q, =G, Wy +2( i 8, D) W, @7
k=1
m
= wT & T
Q =G w;+2( i 8, Dy) W + EjAL,Q, (88)
k=1
m
Pn = Mn l'n + kﬁl .8“ clll (89)

m
P= M+ gl ey +EAL P, (90)
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6. Conclusions

‘The above modct is successful in terms of its accuracy and its speed. The two qualities are somewhat
rclated in that accuracy of the flexible representation can be improved by increasing the number of modes
uscd to represent the link deflection at the expense of calculation time. ‘The issuc is further complicated by
the choice of mode shapes, range of motion considered. and the arm configuration.  Furthermore, limited
information is available in the litcrature for comparison. A simpic comparison has been used in the past and
can be performed for calculation complexity. Hollerbach [15] compares several approaches to the inverse
dynamics problem of rigid arms by different authors. Walker [33] gives a similar count for four approaches to
the simuladon problem. Sunada [31] has given computation times for a given manipulator, trajectory, and
computer for his flexible simulation. Comparison to the calculation counts of rigid models arc given for a
rough comparison of speeds in this section. No attempt at a quantitiative comparison of the accuracy is made.

To determine the number of calculations from the cquations, a choice must be made on how some
matrix products arc implemented. Hollerbach chose to use the most straightforward implementation of the
cquations. ‘The approach here is quite different. Obvious simplifications in the multiplication of matrices
with known constant rows, the top row of a transformation matrix for cxample, arc assumed in these
computations. ‘The 4x4 matrix transformation was chosen for its conceptual convenience and the calculation
count will not be intentionally penalized for that choice.  Furthermore, certain products appear in multiple
cquations and arc assumed to be saved when needed later.  Special purpose multiply routines are used
whenever they can capitalize on the special structure of a given matrix. Finally, in the simulation form the
calculations nceded w invert the inertia matrix are not included, and no consideration is given to the
calculations of the intcgration routinc. ‘Ihe general form of the modal parameters are used however. This
results in all combinations of modes h and k in the matrix Cm to be computed and uscd and hence introduces
a squared dependence on the number of modcs on each incrtial coefficient of the deflection variables. With
these assumptions the number of calculations is approximate:

Number of multiplications:

Gn% m? + 175 nrmz + 118 nfm+ 74nnrm +

137.5n,m + 84 n2 + 86 nn, + 2790+ 126 n- 57




P

L

L P

18

Numpber of additions:

6.5 n?m2 + l9nrm2 + 1155 n%m+ 68 nn.m+

123n.m + 85n’+ 80nn. + 329n+ 111n.-91

where: n = total number of joints
n. = number of ficxible links
m = number of modes describing cach flexible link

The above approximation assumes an "average” joint complexity over two common types of rotary joints, the
same number of modes on cach flexible link, a rigid last link and a flexible first link.

If assumed mode shapes are restricted so that the shape functions in the x. y, and 7 directions are
orthogonal, only Cikk will be non-zero. ‘This is a stronger requirement than the orthogonality of the set of
complete mode shapes, but would often be realized with simple mode shapes. 1t has not been determined if
this would improve the combination of speed and accuracy.

‘This calculation count can be roughly compared to rigid link results available in the literature
mentioned above. For a 12 degree of frecedom rigid problem the inverse 3x3 transformation matrix
formulation requires 2.66 times as many multiplics as the Newton-Fuler formulation. Walker's method 3 (his
best) for simulation requircs 4.491 multiplics. For 6 joints, and two flexible links with 3 modes cach the
mcthod of this paper requires approximately 12.009 multiplics. ‘The ratio of these simulation methods is 2.67.
almost cxactly the same as for the inverse dynamic methods with the same number of degrees of freedom. A
modal representation of flexibility would be much more accurate than adding 6 imaginary joints to represent
compliance, but one could cxpect to usc 15 imaginary joints and 6 rcal joints with Walker’s method with
fewer muitiplics than with the method of this paper.

Thus it scems that in order to be competitive with possible Newton-Fuler, non-transfer matrix
approaches, the simplification of the assumed mode shapes will have to be made. 1t is not clear that the
conceptual convenience of the transformation matrix approach can be justified relative to vector dyadic
approaches of Hughes[17] and l.ikins [28). Unfortunately, computation counts are not available for that
work.
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