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Abstract

Improving the performance of most engineering systems requires the ability to model the system's behavior

with improved accuracy. lle evolution of the mechanical arm from teleoperator and crane to present day

industrial and space robots and large space manipulators is no exception. Initial simple kinematic and

dynamic models are no longer adequate to improve performance in the most critical applications. Both the

mechanical system and control system require improved models for design simulation. Proposed new control

algorithms require dynamic models for control calculation. Planning and programming activities as well as

man-in-the-loop simulation also require accurate models of the arms.

Accuracy is usually acquired at some cost. The application of mechanical arms to economically sensitive

endeavors in industry and space also gives incentive to improve the efficiency of the formulation and

simulation of dynamic models. Control algorithms and man-in-the-loop simulation require '4 eal time -

calculation of dynamic behavior. Formulation of the dynamics in an easy to understand conceptual approach

is also important if maximum use of the results is to be obtained.

The nonlinear equations of motion for flexible manipulator arms consisting of rotary joints connecting two

flexible links are developed. Kinematics of both the rotary joint motion and the link deformation are

* described by 4x4 transformation matrices. The link deflection is assumed small so that the link

transformation can be composed of summations of assumed link shapes. The resulting equations ae

presented as scalar and 4x4 matrix operations ready for pm~ramminirhe efficiency of this formulation is

compared to rigid link cases reported in the literature.

Keywonrd Robots; Distributed parameter systems; Models; Manipulation; Vibration control; Flexible

mechanisms; Mechanical arms.



1. Sketch of Prior Work
Much work has been done to formulate the dynamic equations of motion for mechanical arms with

rigid links. Work on the "inverse dynamic formulation" used in control can be found in references [221. [27h
1291. [2] and in their bibliographies. References [301.1 201, 1331. [321. [121, and their bibliographies represent
work on the dynamic formulation for simulating rigid link arms. 'llc efficiency of these formulations and
alternatives to their real time calculation is discussed in 1261, [1) and the works referenced therein.

The limitation of these works is that rigid links are assumed. With this assumption the techniques
become at some point self defeating. if their purpose is to improve performance. Maintaining rigidity of the
links inhibits improved performance but is necessary if the rigid link assumption is to be accurate.

Consideration of flexibility and control of the links in arm-type devices was reported in 1972 by
Mirro 1241. 'Ihis early work considered both the modeling and control of a single link device. x)k 171
considered the linear dynamics of spatial flexible arms represented as lumped mass and spring components
via 4x4 transformation matrices. Ibis was refined and later reportcd in [91. kxk and Whitney (31, (41 later
considered linear distributed dynamics of planar arms via transfer matrices and the limitations flexibility
imposed on control system performance [81. Maia and Whitney 123, 1[41 used a planar nonlinear model with
modal representation of the flexibility and considered modal control as a technique for overcoming the
limitations of the flexibility. Whitney, kx)k, and ILynch [341, [41 considered the design implications of
flexibility. )istributed frequency domain analysis of nonplanar arms using transfer matrix techniques [51. [61
has been used by kx)k, etal to verify the accuracy of truncated modal models of the nonlinear spatial
dynamics of flexible manipulators (the Remote Manipulator of the Space Shuttle). 'Te nonlinear modal
model appearing here was first presented by the author in 1982 101. A more classical approach to
manipulator dynamics, both rigid [181 and flexible [191, has been undertaken by Huston and his coworkers.

The work in flexible spacecraft has spawned a line of research pertaining to the interaction of articulated
structures. This work has great relevance to the manipulator modeling problem. Entrics into this literatureI are provided by the works of Likins [211 and Hughes (251. This activity produced a spatial, nonlinear, flexible
manipulator model reported by Ho etal. 114] and corresponding computer code for simulation. The
simulation required great amounts of computer time and was unsuitable for even offline simulation. Further
work for the purposes of simulating the Space Shuttle Remote Manipulator was performed by Hughes. His
linearized model is reported in 1161 and a more general model is reported in 117). h Hughes model ignores
the interaction between structural deformation and angular rate as might be appropriate for the Space Shuttle
arm. This work and associated work at SPAR Aerospace, Ltd. and the Charles Stark Draper IL.aboratory, Inc.
probably represent the most intensive work on the modeling, simulation and control of flexible arms.
Unfortunately, little of this work has been reported in the open literature. Recent examination of
experimental results from the operation of the Shuttle arm in space has confirmed the validity of these
models. More recently. Singh and Likins (281 have reported an efficient flexible arm simulation program.

Yet another branch of research that has found its way to the flexible manipulator dynamics problem is
the study of flexible mechanisms. l)ubowsky and Gardner 1131 and Winfrey 1351 provide the reader with a
bibliography on this work. Sunada and I)ubowsky 1311 have developed modeling techniques applicable to
both spatial closed loop mechanisms and open lo)p chains such as manipulator arms. 'Ihis work assumes a
known nominal motion over time about which die flexible arm equations are linearized. This falls short of a
true simulation of the flexible, nonlinear equations, but is an interesting compromise for the sake of
computational speed. This technique is oriented toward finite element analysis to obtain modal
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characteristics of the links which are then combined using a time varying compatibility matrix. It uses 4x4
matrices to represent the nominal kinematics and derivation of the compatibility matrix.

1.1. Perspective on This Work
'Ibis report stresses an cfficient, complete, and conceptually straightfi)rward modeling approach using

the 4x4 transformation matrices that are familiar to workers in the field of roboxtics. It is unique in several
respects: It uses 4x4 matrices to represent both the joint and deflection motion. "llie dcflection
transformation is represented in tenns of a summation of modal shapes. The computations resulting from the
lagrangian formulation of the dynamics are reduccd to recursivc firm similar to that which has proven so
efficient in the rigid link case. "lhe equations are free from assumptions of a nmninal motion, and do not
ignore the interaction of angular rates and deflections. "IT.cy do assume small deflections of the links which
can be described by a summation of the modal shapes and a linear model of elasticity. Only rotational joints
are allowed. The results are quite tractable for automated computer solution of arbitrary rotary jointL
Preliminary programs written to evaluate computational efficiency show that this mcthid requires about 2.7
times as many computations as the most efficient rigid formulations with the %ame number of degrees of
freedom. "Te rigid model could incorporate 21 degrees of freedom compared to 12 degrees of freednm (6 of
which are joints) for this flexible model. Ibus, 15 degrees of freedom in the rigid model could be used to
approximate the flexibility that the 6 flexible degrees of freedom of the model presented here approximate.
"be relative accuracy of the two approximations has not been determined. These issues are discussed in more
detail in the Conclusions.

2. Flexible Arm Kinematics
The previous works on rigid arm dynamics use the serial nature of manipulator arms which results in

multiplicative terms in the kinematics. 'lte modal representation of flexible structure dynamics, on the other
hand. is a parallel or additive representation of the system behavior. One of the contributions of this paper is
to resolve this difference in a concise way. As with many of the previous works on rigid dynamics, the 4x4
matrices of I)enavit and Hartenberg [111 are used. Sunada and I)ubowsky [311 used this representation for
their flexible arm simulations but did not produce a complete nonlinear dynamic simulation. Other workers
such as Hughes [171 relied on the more general formulation provided by a vector-dyadic representation.
While Silver[271, Hollerbach(11], and others have pointed out the relative inefficiency of the 4x4

.k •formulation, the conceptual framework is most advantageous when tackling the complexity of the flexible
dynamics.

Define the position of a point in Cartesian coordinates by an augmented vector:

[1 x-component y-component z.-component]T.
I)efine the coordinate system (x y zi on link i with origin Oi at the proximal end (nearest the base) oriented so
that the x axis is coincident with the neutral axis of the beam in its undeformed condition. 'lshe orientation of
the remaining axes will be done so as to allow efficient description of the joint motion. A point on the neutral

* axis at x = when the beam is undeformcd is located at 'hi(-) under a general condition of deformation, in
terms of system i.

By a homogeneous transformation of coordinates the position of a point can be described in any other
coordinate system j if the transformation matrix JW. is known. ihe form of this matrix is

I. , '



T. 3
riI I rJWi x-- Xj component of 0,(1

= componentof 0 JR]7.,component ofe 0,

where

JR. = a 3x3 matrix of direction cosines
0 = a 1x3 vector of zeros.

"IThus in tenns of the fixed inertial coordinatcs of the base the position of a point on link i is given as

hi = W ihi Wi  (2)ti
where the special case of 0Wi = Wi. It is useful to separate the transformations due to the joint from the
transformation due to the flexible link as follows

W = .F A = W A. (3)

where
A. = the joint transformation matrix for jointj
I d.i = the link transformation matrix for link j-I between joints j-lI andj

= the cumulative transformation from base coordinates t o. at the distal end of link j.

0. is fixed to the link j-] and with no deflection [ x y r. ]H is parallel to|x y Z'H with coincident with

'To incorporate the deflection of the link, the approach of modal analysis is used which is valid for small

deflection of the link.

- ih iO ) = 1 + Bij qq 41 "= Yij(m).
~0 YOjN) J

where
x. yir 7- = the x., y.. and z. displacement components of mode j of link is deflection, respectively.
?4 = the time varying amplitude of modej of link i
mi = the number of modes used to describe the deflection of link i.

le link transformation matrix must also incorporate the deflection of the link. Here the rotaions as well as
the translations of the deflection must be represented. If one consistently requires small rotations the
direction cosine matrix simplifies as noted in [91 and furthermore the small angles can be assumed to add
vectorally. Ihis is basic t) the approach used here. 'lhe link transformation matrix can then be written as

jm'

Mi

Ei ti + E a I 4 .5
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where

1 0 0 0
Hi  i  1 0 0 (6)

0 0 1 0
0 0 0 1

0 0 0 0

Mi = 0 - 0 (7)
Yi -z j0 1. a 0 x ij

Zi "yij Oxij

and where

All variables in brackets are evaluated at I.

0/' 9.. iy z = the xV, y. and zi rotation components of link i, respectively.
I d Ie cngth of link i.

To find the velocity of a point on link i, take the time derivative of the position:

h = W ihi + W)i if;'l

dt

Due to the serial nature of the kinematic chain, it is computationally efficient to relate the position of a point
and its derivatives to preccceding members in the chain. By differentiating 2 one obtains:

W JA + W ki A (9)

A * -

W W rlA +2W J1A i+W- A (10)
where

A (1)

U2
U.= a 1/aq

qj = the joint variable ofjointj.

Thus W . and .V can be computed recursively from W. its derivatives, and the partials with respect toJ J i-I

the variables of link j- I and joint j. No mixed partials are explicitly present. 'Ihis computational approach is
similar to that proposed by Hollerbach 1151 for rigid link arms. Here one additionally needs and its
derivatives. These can be computed recursively from W. 1 and its derivatives:

- -ci-'
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w.- W i. + w. Fi (14)

W.= .j. + 2W *. k .K (15)
J ii J J + i

F- 'f=i (16)
k=l

M.

E Mi Vj (17)
k=1

The last two equations illustrate how the deflection transformations enter even more simply into the
kinematics on a per variable basis than do the joint variables. "This is due to the small deflection assumption
and the form chosen for the transformation. 'lbc recursive nature of the velocity and acceleration is preserved
from the rigid case. For the simulation equations the terms involving second derivatives of the joint and
deflection variables will be separated from the above expressions and included in the inertia matrix to make
up the coeflicient matrix of the derivatives of the state variables. The "inverse dynamics" solution that
proceeds directly from the ILagrange fnnulation has little obvious utility.

3. System Kinetic Energy
In this section the expression for the system kinetic energy is developed for use in Lagrange's equations.

Fir- the kinetic energy for a differential element is written. 'l'ien. integration of this differential kinetic
energy over the link gives the link's total contribution. This produces terms that are the equivalent of die
moment of inertia matrices of rigid link arms. Summation over all the links provides the total kinetic energy.

'The kinetic energy of a point on the i-th link is

dk,= Idm'l'r{h1 1T  (18)
2

where
dm is the differential mass of the point and
Tri.I is the trace operator.

Expanding18 and using the fact that "l'r{A 8r1 = "r{B ATI> the expression for dki becomes

dki - ldm I'r{ W1 ih h1, WTI + 2 W.ih i1 WT + W i. tljT Wh } (19)
where 2

mj i f tij [x yii ij (20)
j=1

By integrating over the link one can obtain the total link kinetic energy. In this report it is assumed that the
links arc slender beams because it makes the central development clearer. Other mass distributions could be
used with a slight departure here in the development. For slender beams dm = IL dq and one can intgrate
over 1 from 0 to Ii. Only the terms in 'h. and its derivatives are functions of -9 for this link. Thus the
integration can be performed without knowledge of W and its derivative. Summing over all n links one finds

y!
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the systcm kinctic energy to be
Ii

K J dk, (21)
=1 0

n
K = *i It I Bi W"+ 2, ' WR + Wi Bli Wr } (22)

i=I

where /'
BRh = f IL i;i 'hlr dqi. (23)

2 0

By interchanging the integrauion in 23 and the summations involved in the definition of'hi in 20 one obtains
M. M.

Bli= t t aij 8i i Cikj (24)

j=! k=1
where

Cikj = # 1 (0 Xik Yik lik] [0 Xij Yij Ij] dil. (25)
2 o

Cikj has units of an inertia matrix and serves a similar function. While shown here as a 4x4 matrix it is
nonzero only in the 3x3 (lower right). It can also be shown that C. = C 1 .. By choosing the assumed mode
shapes in an appropriate manner, it is possible to reduce the number of nonzero terms in 24. This matter is
discussed in light of computational speed in the conclusions.

The other tejms in equation 22 can similarly be found:

2i= ±_J j, 'h d- (26)!20o

M. m. M.
112 = tj8 iC + fj jaik'Cikj

j=1 k=l j=1 (27)

where

Cii V _ J [( 0 01T [0 Xq Yij .ij] dl. (28)
2 o

Finally, by a simillr approach:

B3i = Lf ihi ihr d.
2 o,,: M . M .

[ dCik+C + a A k (29)
j=1 k=1 j=l

where

- I -,
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I.

Cif=.f 11 0 01T 11 -9 OO dn. (30)
20

'Ibis final term contains the rigid body inertia terms.

It should be noted that these terms are easily simplificd if one link in the system is to be considered
rigid, in which mi = 0. Should a link consist of a flexible member with rigid appendages the above derivation

is readily extended to modify the matrices Cikj, Cik' and Ci with no further modifications io the succceding
development. In fact, these matrices could be obtained by finite element analysis should the link shape be
irregular as is often the cas.. Furthermorc. the expression fir 83i contains a term of order 82 which is by
definition small and a candidate for later elimination. Finally, much of the complexity of the integration of
the modal shape producs can be done offline. once. For a given link structure.

3.1. Derivatives of Kinetic Energy
For construction of lagrange's equations one needs

aK / aq., aK / a djr. (aK/a* ), and ( aK / ajr)

Firstconsider aK / aq.. This will involve the partials of all the terms in 22, some of which arc zero. In
fact. only Wi firj <_ i :S n provides nonzero partials with respect to q. The time derivative of the partial is
then taken. In this respect the following equivalences should be noted:

a~v /a = aW1 /aqj (31)
d (2

- ( aw/a) = aw / aqj (32)
dt I

awi / asjf= aw /afjr (33)

d ( a .i ai. i I agjr (34)
dt

Also helpful in simplifying the result is that. Tr[A) = Tr{AT} for any square matrix A and that B3, is
symmetric. Considerable cancellation and combination results when the terms in Lagrange's equation
involving the kinetic energy arc combined. Thbe result of this combination is

d
- i( aK/a aq K / aqd i

2 ''r{-Li [C 1 + t a 1C k lil )Jk t 0
i~~j k=1 1=

+ k ( k + t did W + 2 A K l C ) *-T]}
k=1 1=1 k=1 11(35)
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Note above terms of the form 5 ik ad which arc second order. "lhesc can be ignored consistent with the
assumption that the deflections are small. Noting the recurrance of certain terms above, it is convenient to
definc the following:

m.

)ik - ik +- H l(ilk
1= l (36)
M.

Gi =Ci + a Cik ik+ '

k= l (37)
When these dcfinitions are substituted into equation 35 one obtains:

d ( aK/ aci)- a K / aqj =
dt

n M, M.
2 1'r + Lr).W.'++i 2
2~~ a r q [ i  t;" ii 8k Iik W;+ t 'ik I)ik *ill]}

i=j k=1 k= (38)

The partials of K, with respect to 8jr and air are considerably more complex due to the fact that K11. B .
and B3i are functions of the deflcction variables. The techniques of simplification are similar. An additional
simplification arises due to the fact that if A were any antisymmetric matrix, and if W were a matrix
compatible for multiplication, then Tr{ W A W I " 0. An antisymmetric matrix occurs from the difference
of a matrix and its transpose.

d ( aK / a"jr )-aK / aasr =
dt

n M' mM.
2 T "r{ a " [G*iT-+ ' ,Dk WF+ 2 1') +

as i t ii kiik
i=j+l jf k=l k=]

M. M.
Tr2 Dk+ tW ij Af Wj t 'jk CjkJWj}

k=1 k=] (39)

4. System Potential Energy
'lle potential energy of the system arises from two sources: elastic deformation and gravity. In both

cases they arc included by first writing the potential energy contribution of a differential element, integrating
over the length of the link, and then summing over all links.

4.1. Elastic Potential Energy
Consider a point on the i-th link undergoing small deflections. First restrict the link of the slender

beam type. 'Ibe elastic potential is accounted for to a good approximation by bending about the transverse y
and z, axes and twisting about the longitudinal xi axis. Compression is not initially included since it is
generally much smaller. Along an incremental length d- the elastic potential is
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dve 1JrI -S) + I+ G I" I

2

where

e., ay. and 8.3 arc the rotations of the neutral axis of the beam at the point -q in the xi, y., and 7i
directions. rcspcctively. Since de(cctions are small, these directions are essentially parallel or
perpendicular to the ncutral axis of the beam.

. = Young's modulus of elasticity of the material

G = Thc shear modulus of the material

I= "Me polar area moment of inertia of the link cross section about the neutral axis.

IV, I = the area moment of inciuh of the link cross section about the Yi and z, axes. respectively.

With a truncated modal approximation for the beam deformation the angles 19V O. and 819 are
represented as summations of modal cocMcients times the deflection variables. The x rotation, for example is

m.

eli 8 ik~iik(41)
k=l

where 0,A is the angle about the xi axis corresponding to the k-th mode of link i at the point . When dvd is
integrated over the link the integration can be taken inside the modal summations of equation 41 and its
corresponding y and z components. lbe following definitions then prove useful:

Kik= Kikl + KyikI + KAkl, (42)

where
I.Kzild f G Ixll XCO--l a#x d-q (43)

0 all
I.i al., all.

K.I = .( "d (45)
0 a,, all

Note that K = K il and that for certain special cases the orthorgonality of the modal functions can
eliminate many of the terms in equations 43, 44, and 45. The elastic potential for the total system, V. can then
be written as

n M. m
j 8Ve f f I8k Kil l. (46)

2 i=i k=1 1=1
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Note that the V is independent ofqi, the joint variables.

q 0. (47)aqj

For deflection variables

av M.
a 8 jKjk r (48)8j k=l

The form of equation 48 is much more general than the initial assumptions made regarding the contributions
to the elastic potential energy would allow. Compression strain energy. and link forms other than beams can
be represented in this form. llie values of the coefficients KJk can be determined analytically or numerically.
cg. by finite element methods.

4.2. Gravity Potential Energy
For a differential element on the i-th link of length d- the gravity potential is

dvi = -# g1 Wi 'hi d-j, (49)

where the gravity vector g has the form
Sr = 

1 0 g y &,L

When integrated over the length of the beam and summed over all beams, the gravity potential becomes
n

V,=. gT E Wir, (50)

where

r = M ri + ( ik lk (51)
k=1

M. = the total mass of link I
r= I r1, 0 0 1 a vector to the center of gravity

from joint i (undeformed)

II

*ik f J#10 Xik Yik "A IT d. (52)
0 

*1
Note that e. is found in the top row of Ci,. It is the distance from the undcfonned center of gravity to the
center of gravity when all 8 are .cro except 8 , which is one. Ile total distance to the center of gravity from
O (joint i) is multiplied by the mass to give r.

Upon taking the partial derivatives required by lagrange's equations we find ftr the joint variables
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. , E  , r. (53)aqj i j N

For the deflection variables, for I : j S n-I
n

av. ( Wj ejr (54)

as1r =-g ifj+l r-

For j = n

=-g Wnnr. (55)
nr

5. Lagrange's Equations in Simulation Form
At this juncture the components of the complete equations of motion in I.agrange's formulation, except

fi)r the external fircing terms. have been evaluated in equations 38. 47. and 53 for the joint equations: and in
equations 39. 48. 54 and 55 fir deflection equations. "ie external forcing terms arc the generalized forces
corresponding to the generalized coordinates: the joint and deflection variables in this case. "Ibe generalized
force corresponding to joint variable q, is the joint torque F. For the deflection variables the corresponding
generalized force will be zero if the corresponding modal deflections or rotations have no displacement at
those locations where external forces are applied. "lius it is assumed for the present development that the
modal functions are selected so that is the case. This is convenient for using the results as well. All motion at
the joint is described in terms of the joint variable." (Ibis is not true in the approach taken by Sunada and
l)ubowski [311.) lle frorm of Lagrange's equations will then be:

The Joint cauation j
d (aK/a aK/aqj +8V + "IV F

dt ) / + a + (56)

The deflection eauation j,f

r(aijr) a ll. + -zn,. + :&=0

jt (a)f
These equations are in the "inverse dynamic" form. To convert them to the simulation form one must extract
the coefficients of the second derivatives of the generaized coordinates to compose an inertia matrix for the
system. 'lhe second and first derivatives together make up the derivative of the state vector, which can be
used in one of the available integration schemes. eg. Runga-Kutta. ito solve for the state as a function of time
for given initial conditions and inputs F,.

5.1. Kinematics Revisited
'Ibe purpose of this section will be to extend the kinematics to scparate the second derivatives of the

joint variables and deflection variables from the expressions for W. and Wi. Other occurrences of these
derivatives are already explicit in the formulation as it exist.

First consider the product of transformatiom which make up W and two alternative ways of expressing

pn-c up tw -Waysof oxp______________
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/i = Al F1 A2 F2 ""Ah Kh ... Ai Ei
= Wh-1 Ah Wi (58)

- Wh Eh h i  (59)

Carrying through the derivatives one obtains

i *h-IUh h + h h i h) + ()
h=! k=l

-For the corresponding expression fi)r W i write

Wi A] F' A2 F2 "'" Ah W h "" Ei-I Ai

Sh-1 Ah hh (61)

- h 'h %% (62)

i= x h-, + 2 Wh Mhk I hk (63)
h=l h=1 k=I

'lic value of W., and 'vi can be calculated recursively as shown in equations 15 and 10. respectively. for W1and Wi by only eliminating terms involving q and 8 jk" lhc result is

ViWv. A+ 2 W A + W._ Ujqi (64)

W = vj Ej W (65)Vi F47W

5.2. Inertia Coefficients
*' "To obtain the inertia cotricients that multiply the second derivatives, substitute equations 63 and

j 60 into the relevant parts of the equations of motion, equations 38 and 39, respectively. Collecting the terms
and arranging them for efficient cotmlputation requires the steps outlined in this section.

5.2.1. Inertia Coefficients of Joint Variables In the Joint Equations
All occurances of q in equation 38 are in the expression for W.T  When these terms are isolated, a

double summation over the indices i and h exists. Interchange the order orthc summation as follows:
n i n nEE E • 1

l=j h=I h=I i=max(h.j)
The resulting coefficient for joint variable qh in the joint equation j is

. ..e
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2 j -h Ub *h.,) (66)

where
n

i G= IG T (67)
i = max(h. j)

Note that if one exchanges j and h and ranslposcs inside the trace operation an identical expression is
obtained. "Ihis indicates the symmetry of the inertia matrix which is used to reduce the number of
computations required. The expression for 47h can be computed recursively: this will he dcscried later to
further improve the cfflcicncy of calculation.

5.2.2. Inertia Coefficients of the Deflection Variables in the Joint Equations
"The deflection variables appear both in the expression for W.I and explicitly in equation 38. After

substituting WI' into equation 38. collect terms in S,, and exchange the order of summations as follows
n i-I n-I n

i=j h=l h=1 i=max(h+l,j)

The resulting coefficient of8hk in joint equation j is JJhk" The terms to be included depend on the relative
values of j and h. hIe following hold for I S k :S mh.
For h = nj = 1 ...n:

Jjik = 2 Tr { ( . mn Dnk W n} (68)

forh,= j...n-I,j =1 ... n-1:

J = 2Tr { ( UJ )[ iFh M'k+ JWh Dhk] W T }; (69)

forh = 1 ...j-,j = 2... n:

.J1.k = 2"r{ (Tr U )JFhTh MT W } (70)

wheref orh =1... n-,j =1...n:
n

JFh = hWT
h~ (71)
i= max(h + 1, j)

It can be shown that the inertia coefficient for the deflection variable 8hk in the joint equation j is the
same as the coefficient for the joint variable q, in the deflection equation h,k. 'Ihis further extends the
symmetry of the inertia matrix and reduces the necessary computation:

5.2.3. Inertia Coefficients of the Deflection Variables in the Deflection Equation
In a manner similar to the previous two types of coefficients, the inertia coefficients of the deflection

variables in the deflection equations arc evaluated. Symmetry of the coefficients can be shown such that the
coefficient of variable hAk in equation jf is the same as the coclfTcient of variable j,f in equation h,k.
Substituting equation 63 into equation 39. isolating the second derivatives of the deflection variables, and
interchanging the order of summations enables the inertia coefficients to be identified. Further simplification

... i

I, J. d . '
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is based on the identity that, for any three square matricies A, 11 and C

TriA BI = 'lrC A 11) = TrIB C A).

Furthermore the rtation matrices in the transformation matrices are orthogonal so that R RI = ,a 3x3
identity matrix. This coupled with the zero first row and column of Cjk results in an especially simple form
for two of the four cases. "lbc following hold for I S k < m h and I < f S i.

Forj = h = n:

'r n = 2 "rr{ Ckf } (72)

Forj - h =I ... n-I:

ljrjk = 2'r( j ,jOjM k+ Cjk.}. (73)

Forh = n:j = I ... n-1:

ljrnk = 2 Ir{ Wj MjrJW. 1)nk W' }. (74)

Forj = I ... n-l:h =j+1 ... n-l:
Ijfhk = 2Tr Mjf [Joh + M'h;+ jWh I)hk]W1} (75

(75)

Terms in the above defined forj = 1 ... n-I: h = I... n-! are:

n

J4Wh G"i ihwr  (76)
i=maxO+I, h+ 1)

5.2.4. Recursions in the Calculation of the Inertia Coefficients
Since the inertia matrix is a square matrix it requires the calculation of n2 terms where n is the total

number of variables:
n

= n=n+ mi
4 'The fact that the matrix is symmetrical reduces the number of distinct terms to nt(nt+ 1)/2. which still has a

second power dependence. "lhus while the inverse dynamics computation complexity can be made linear in
n,.simulation requires the inertia matrix with complexity dependent on n,. Since nt can be quite large for
practical arms it is important to reduce the coefficient of the squared term as much as possible. Due to their
short or even zero length. it is possible for some links to be essentially rigid. Anthropomorphic arms, for
example, have two links which are much longer than the others and tend to dominate the compliance. Many
of the terms derived above may not be needed for these links, four of the six links in the anthropomorphic
example. Any recursive scheme for calculating the terms in the equations should not require these
calculations as a means to get to needed terms.

Consider the calculation of equations 67, 71, and 76. Several recursive schemes could be arranged for
the efficient calculation of these quantities. F~quation 71 is only needed if the link corresponding to the
variable, link h, is flexible. 'lat is, if mh > 0. E.quation 76 is only needed if both the link of the variable and
the link of the equation, link j, is also flexible. Thus we propose the following recursive scheme for

! I
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calculating Ji' J~F and JO "[he following hold for I S k < mh: 1 < f:S mj
Initializaton:

F = Gn. (77)

Forj > h5 n:

ih E J A i1,.h (78)

Forj = h:

hh G h j( A )T (79)

If mh > 0 calculate:
h h + A T (80)

Ifmh > 0 and m, > 0 calculate:

Joh = Aj+ iJ' (81)

5.3. Assembly of Final Simulation Equations
Ie complete simulation equations have now been derived. It remains to assemble them in final form

and to point out some remaining recursion relations that can be used to reduce the number of calculations.
The second derivatives ofthe joint and deflection variables are desired on the "left hand side" of the equation
as unknowns and the remaining dynamic cffects and the inputs arc desired (in the "right hand side." To carry
out this process completely one would take the inverse of the inertia matrix J and premulciply the vector of
other dynamic cflects. Ibis inverse can only be evaluated numerically because of its complexity. Thus for the
present purposes the equations will be considered complete in the following form:

J a = R. (82)

where

J = Inertia matrix consisting of coefficients previously defined in the order for multiplication
appropriate for z

z = the vector of generalized coordinates

=• Iq" all 1 q2 a2 ' .2)- 82m2 ... "'" a 8hk " Bh" 8m .]'r

qh = the joint variable of the h-th joint

ahk = the deflection variable (amplitude) of the k-thmode of link h

R = vector of remaining dynamics and external fi)rcing trms
[RI Ril R12 ... Rim RZ R21 .R2m2. R ... Rin'..
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R. : dynamics from the joint equation j (equation 56) excluding second derivatives of the
generalized coordinates

Rif = dynamics from the deflection equation jf(equation 57) excluding second derivatives of the
generalized coordinates

"lMe clements of J have just been formulated and can be arranged to form the proper equations in the order

described above. 'Ibis order has been selected because it results in the symmetrical appcarance of J. "111e
elements of R have not been explicitly given with the second derivatives removed. Ibcsc arc given below
with some recursions to fciliuitc their comuputation.

R1 =-2Tr {U, Q, + g'r UI PI + F1  (83)

Rj= -2Tr { Uj Qj} + " i U P + F (84)
m

Rnr= -2lr { [ Wv.,.,+ 2*w f . c. i - 5  K.,,+ g"W (85)
k=1 k=1

M.
Rjr -2Tr{ WjMjrj+I Qi+,[*tv Djr+ 2W, t jk aCkf Wj"}

k=1

m
j 6Kjkf+en.j MfAj.IPj +gTWejf 86

k=1 (86)

where

Q.=GnlWT+2( f 'k Dk)W. (87)
k=1

Q=GjWr+2( - A Q kk)(89)
k=1

Pn M , r+ flank (89)

k=

i 4+ J8Vk+EjA,+t Pj+ 1  (90)
k=1
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* 6. Conclusions
"lhe above model is successful in terms of its accuracy and its speed. Tbe two qualities are somewhat

related in that accuracy of the flexible representation can be improved by increasing the number of modes
used to represent the link deflection at the expense of calculation time. "lbe issue is further complicated by
the choice of mode shapes, range of motion considered, and the arm configuration. Furthermore. limited
infinatiom is available in the literature for comparison. A simple comparison has been used in the past and
can be performed for calculation complexity. Hollerbach 1151 compares several approaches to the inverse
dynamics problem of rigid arms by different authors. Walker 1331 gives a similar count for four approaches to
the simulation problem. Sunada 1311 has given computation times for a given manipulator, trajectory, and
computer f)r his flexible simulation. Comparison to the calculation counts of rigid models are given for a
rough comparison of speeds in this section. No attempt at a quantitative comparison of the accuracy is made.

To determine the number of calculations from the equations, a choice must be made on how some
matrix products are implemented. Hollerbach chose to use the most straightfi)rward implementation of the
equations. The approach here is quite different. Obvious simplifications in the multiplication of matrices
with known constant rows, the top row of a transformation matrix for example, are assumed in these
computations. Ilie 4x4 matrix transfonnation was chosen for its conceptual convenience and the calculation
count will not be intentionally penalized for that choice. Furthermore, certain products appear in multiple
equations and are assumed to be saved when needed later. Special purpose multiply routines are used
whenever they can capitalize on the special structure of a given matrix. Finally, in the simulation form the
calculations needed to invert the inertia matrix are not included, and no consideration is given to the
calculations of the integration routine. 'Me general fi)rm of the modal parameters are used however. Iis
results in all combinations of modes h and k in the matrix C ihk to be computed and used and hence introduces
a squared dependence on the number of modes on each inertial coeflIcient of the deflection variables. With
these assumptions the number of calculations is approximate:

6n2m 2 + 17.5 nm 2 + 118n2m+ 74nnfm+

137.S nrm + 84 n2 + 86 n nr + 279 n+ 126 n- 57

.... .. ..*~* -
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Number (t additions:

6.5 n2 m2  +9nM2  115.5 nm+ 68 n nm +f r r nr+6nnm

123nfm + 85n 2 + 80nnr+ 329n+ II 1 nr'91

where: n = total number of joints
nr = number of flexible links
m = number of modes describing cach flexible link

The above approximation assumes an "average" joint complexity over two common types of rotary joints, the
same number of modes on each flexible link, a rigid last link and a flexible first link.

If assumed mode shapes are restricted so that the shape functions in the x. y. and z directions are
orthogonal, only Cik will be non-zero. 'I"is is a stronger requirement than the orthogonality of the set of

complete mode shapes. but would often be realized with simple mode shapes. It has not been determined if
this would improve the combination of speed and accuracy.

"his calculation count can be roughly compared to rigid link results available in the literature
mentioned above. For a 12 degree of freedom rigid problem the inverse 3x3 transformation matrix
formulation requires 2.66 times as many multiplies as the Newton-Euler formulation. Walker's method 3 (his
best) for simulation requires 4,491 multiplies. For 6 joints, and two flexible links with 3 modes each the
method of this paper requires approximately 12,009 multiplies. 'Ihe ratio of these simulation methods is 2.67.
almost exactly the same as for the inverse dynamic methods with the same number of degrees of freedom. A
modal representation of flexibility would be much more accurate than adding 6 imaginary joints to represent
compliance, but one could expect to use 15 imaginary joints and 6 real joints with Walker's method with
fewer multiplies than with the method of this paper.

Thus it seems that in order to be competitive with possible Newton-Euler. non-transfer matrix
approaches, the simplification of the assumed mode shapes will have to be made. It is not clear that the
conceptual convenience of the transformation matrix approach can be justified relative to vector dyadic
approaches of Hughes [171 and Likins 1281. Unfortunately. computation counts are not available for that
work.
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