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ATOMIC STRUCTURE IN STRONGLY COUPLED NEON PLASMAS

I. Introduction

Since it is now possible to produce very hot plasmas at greater than

solid density in the laboratory, it is meaningful to construct theoretical

models of such systems that allow for accurate determination of the

systems' properties. For calculations of atomic properties the usual

approach is to iteratively solve a set of coupled equations statistically

describing the charge distributions and an effective electron-ion

interaction potential. Incorporating this potential, the bound and free

electron distributions are found from the Schrodinger equation. Thus,

given an ion where the bound orbits are not externally specified, the

solution of the equations directly gives orbital energy eigenvalues and

(fractional) populations. The wave functions and the effective

electrostatic potential obtained in this manner can be used to find

spontaneous decay rates and cross sections for various atomic processes

characterizing radiation, the spectrum of which can be employed to diagnose

the plasma environment.
(1 '2)

Thomas-Fermi and Hartree-Fock statistical models have been applied to

highly ionized atoms in dense plasmas(3'4) and subsequently applied to a

strongly coupled neon plasma. (2)  However, ion correlations were neglected

in these approaches. A self-consistent set of Schrodinger- Poisson

equations including ion correlations was developed by Skupsky(5 ) to study

the plasma microfield effects on a high-Z impurity ion embedded by a dense

fully ionized low-Z plasma. An improvement over this method - the quantum

mechanical treatment of the free electrons - was made by Davis and

Blaha. (6 )  In a similar manner density functional theory (DFT) has been

employed to investigate level shifts and screening effects in the impurity

problem.(7,8)

The inclusion of ion correlations in these latter models is

accomplished using a Boltzmann distribution under the assumption of nearly-

classical ion interactions. In the case of the one-component plasma

(dynamic ions in a neutralizing background charge), the assumption of a

Boltzmann-like form for the ions would be erroneous for values of the ion

coupling parameter,

r = ( ) e B
r

Manuwipt approved October 27, 1983.



greater than about three. (9 '1 0 )  Here Y is the effective ionic change, ro
is the ion sphere radius, and l 1/kBT. This discrepancy is not as

significant for a "real" two-species plasma because the mobile electron

fluid is able to provide more effective screening, but has yet to be

investigated in the two-species model for r > 2 and for ions other than

hydrogen. If one can utilize a model that is expected to provide accurate

distributions for a strongly coupled system, one can also use that model to

examine the validity of using self-consistent statistical models in the

strongly coupled regime.

Implicit in all the methods discussed here is the assumption that the

lifetime of the ionic state is long enough so that the plasma has time to

be polarized by the ion. Since the polarization (correrlation) time is of

the order of the inverse of the plasma frequency, all of the cases we are

considering can be considered long-lived (a typical state lifetime - the

most rapid destruction mechanism being collisional de-excitation-- may be

of the order of 10-14 _ 10-15 a - is about 10-17 s). Each model also

assumes that since the ion state exists through many plasma periods, the

concept of a time-averaged potential for atomic calculations is meaningful.

It should be noted that the calculations involving the self-consistent

method presented below, like those of Ref. 8, form an "average atom" ion

model, in contrast to models which detail the ionic configuration. The

eigenenergies obtained below do not represent the spectrum of an ion in a

specific configuration (i.e., hydrogenic), but represent an average over

many ions in partially ionized states.

We investigate here the energy eigenvalues, charge distributions, and

effective electron-ion potentials for strongly coupled neon plasmas using a

self-consistent DFT model similar to that described in Ref. 8. These

results are compared with those obtained from the solution of the two-

component plasma hypernetted chain (HNC) equations, which are assumed to be

valid at these densities and temperatures. The results will indicate the

inadequacy of the Debye-Huckel (DH) and ion-sphere (IS) calculations when

13 c r 1

In Sec. II we describe the atomic and plasma models we will

consider. Section III contains the results of computations employing these

models. The results are discussed in the concluding section.
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II. Models .

We consider an ion of nuclear charge Z in a plasma in which the

average effective charge is Z. Z is equal to Z minus the mean number of

bound electrons per ion and is a result of the model. Density functional

theory leads to a system of equations that must be solved self-

consistently. The electrostatic potential is given by the Poisson

equation,

V~) Ze 2+ 1 for dr r 2 ( P
- 're r 2 (1)

+ f dr r (e ]. %

The plasma is assumed to be in thermal equilibrium and all electrical

charge distributions are assumed to be spherically symmetric. In Eq.

(1), 0b is the local density of bound electrons

2.P - w r2) -1 nLb P 2(r) .(2)

The bna are the state occupation numbers (I bn - Z - T.) and Pni(r)

are the radial wave functions found from solving the Schrodinger equation

where the interaction potential is V(r) from Eq. (1) with pb set equal to

zero,

d 2 (1+l)
2dr r xc(r) + Vxc + E nt Pn(r) -o , (3)

where Ent is the energy eigenvalue of state nX. Here,the exchange-

correlation potential, Vxc(r), has been calculated by Gupta and

Rajagopal(11 ) and by Dharma-wardana and Taylor.(
1 2 )

p* is the local charge density of free electrons. It is represented

by a Fermi-Dirac energy distribution beyond a spherical boundary large

3



enough so that the plasma at the boundary may be considered neutral.

Inside this sphere the free electrons may be treated quantum-mechanically

and are described by wave functions that are solutions of the time-

independent Schrodinger equation, i.e.

e - ,dr W(k) 1 1 (21+1) F2(r) (4)

where 
kr ZMO

k 2  2

W M) =- [1 + exp {(- - u) 01]-; (5)
ir

here U is the chemical potential of the free electron gas determined from

dk W(k) - Pe(-) - ne, (6)

where ne is the mean electron density. The free electron wave functions,

F are solutions of Eq. (3) with the replacement of the eigenenergy, Enl)

by the electron kinetic energy, k2. The ion charge density is assumed to

take the Boltzmann form

.n -OV(r)
P ne e (7)

Z

At r rp 1 - Pet insuring neutrality; we also have the boundary

conditions rV(r) + 0 and P n + 0 as r approaches infinity. Equations (1-4)

and (6-7) are solved self-consistently with these boundary conditions to

yield E i ,t , iand V(r).

In order to gauge the reliability of the above model in a strongly

coupled plasma we turn to a semiclassical treatment of particle

correlations that has been found to accurately reproduce molecular-dynamics

calculations in this regime. In this approach - the two-component plasma

(TCP) - the ions and electrons are treated as classical particles that

interact through effective two-body potentials which deviate from pure

Coulomb behavior at short distances such that the essential quantum

diffraction effects are simulated. A particular form has been suggested by

Deutsch( 1 3 ) and used in the computer simulations( 1 4 ). This form uses the

reduced mass de Broglie wavelength, K C, where a and 8 are species labels,

as a quantum mechanical cutoff parameter, i.e.

4
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V(r) r [1 - exp (-r/( )] (8)

is the charge of species a and 1 / 2/(2iruk T) where is theCaA(Tl a ) whr Bi the

reduced mass. This potential is finite at the origin and is expected to

give reasonable results for nondegenerate plasmas so long as

ee /r° << 1 ( ee is the smallest of the three ( ") This condition is

equivalent to r << 9 (E)2/(T eV)/2.

In order to include the plasma many-body effects, the binary inter-

actions defined in Eq. (8) are used in the hypernetted chain (HNC)

equations.(15) This is an approximate integral equation method for

calculating static correlation functions for systems of particles with long

range potentials and has proven to be accurate for strongly coupled

hydrogen plasmas. (14 )  The quantities of interest are the radial

distribution functions (rdf's), g 0 (r), which contain the static

structural information in the TCP. The HNC approximation for the rdf's is

g00(r) - exp [-V as(r) + h 0(r) - c 0(r)], (9)

where the total correlations

h a(r) - g M(r)-l (10)

are related to the direct correlations c 0 by the Ornstein-Zernicke

equations

ie .-
00(k)ic (k) + Y h CL ) (k) k) (11)

Here the Fourier transform is defined as

h (k) - 4wn f 2 sinkr h (r) (12)

Eqs. (9-12) are solved iteratively for a,B = i,e. The rdf's

generated by this procedure reduce to their Debye-Huckel (DH) forms in the

5



limit of weak coupling (r << 1), but are considerably different from the

DH approximation when r is order one or larger.

The TCP is a model system of point charges, ions with charge + Z and

free electrons with charge -1. Formally the HNC scheme requires the exact

Z as an input parameter; this is necessary if the ionic and electronic

distribuiton functions are to be examined. In order to find the effective

potential, however, only a rough guess of Z will suffice to determine much

of the V(r) curve.

The effective electron-ion potential and the screening function,

a-l(k), are defined via Poisson's equation, the Fourier transform of which

is given by

V(k) - _4e2Z - 4we 2Z [ii(k) - e / (13)
HNC k2c(k) ke

The static structure factors are defined by

S (k) - 6 0 + (cac 0 )1/2 h a(k) . (14)

Close to a test point ion of charge Z the free electron distribution

determines V(r) ; the ion-ion rdf is negligible out to a distance of
RNC

about one-half ro . In this region Poisson's equation is

n
V2V'(r) - 4e T E6(r) -- e hie(r)], r 4 r /2, (15)

HNC Z

where the prime on V(r) indicates the test ion has charge Z, not Z. For a
mHC

given temperature and electron density, a higher value of Z simply pulls

the electron distribution, hie(r), in tighter, an effect that essentially

compensates the Z prefactor to hie. The result is that the function in

brackets in Eq. (16) is very nearly insensitive to the mean ionic charge,

i.e.

VA(r) - 4we 2 T f(r) (16)
HNC

where' f(r) is a function nearly indv'endent - Z. This is the rationale

6
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behind the form of the potential in Eq. (13); V (r) is a screening
HNC

function dependent on density and temperature scaled by the nuclear charge

Z. We find that this form very nearly reproduces the potentials found in

the quantum-mechanical self-consistent model described earlier.

If the particle distributions are required (an accurate value of Z is

needed to obtain the actual distributions) two steps are necessary. First,

a guess of Z is made and the HNC equations solved for Sii(k) and Sie(k).

A "guess" of the potential is then found from Eq. (13). This potential can

then be used in Eq. (3) to find wave functions for all bound states. The

integrated wave functions provide a new Z, in which, when used in the HNC

code a second time, provide a new potential and the needed distributions.

Generally only the one such iteration is required.

The definition(16 ) of V(r) in Eq. (13) implies a form of the

dielectric function significantly different from that obtained using the

fluctuation-dissipation theorm (17) (FDT), although both forms reduce to DH

forms in the proper limits. For dense plasmas VHNC from Eq. (13) agrees

much more closely with results from the ion sphere model (described below)

and with Thomas-Fermi2 calculations, as well as the "potential of mean

Ze
2

force" approximation, VM(r) --- ln [gel(r)], than an effective

interaction derived from the FDT. In fact VFDT(r) shows screening that

everywhe- has a larger magnitude than VDH(r). The Debye potential itself

is known already to predict excessive screening in plasmas where the

validity of the DH approximation is questionable. A plasma in a near

metallic state (where the ion sphere model might be used) shows a form very

similar to the potential defined via Poisson's equation, which is

qualitatively and quantitatively distinct from an effective interaction

derived from the FDT.

As the plasma approaches the limit of a solid structure, the

ion-sphere (IS) approximation becomes more valid. The ion-sphere

model (5 18 ) assumes complete ion shielding within an ion-sphere radius by a

uniform cloud of electrons. Poisson's equation in this case yields

r2  1 1 2V s(r) -ze2 - (3 (17)
o r

For extreme densities, VIs should be approximately valid.

7



III. Results

We consider a strongly coupled neon gas plasma. Table I suriarizes

the conditions under which the runs were made, the value of Z being a

result of the self-consistent (SC) model. All cases have r 's in excess

of two. We note that both the HNC and SC models reduce to correct Debye-

Huckel results in the limit of weak coupling (r < 1 ).

The ion charge density from the self-consistent model normalized to

the backround density, p /p(-), is equivalent to the ion-ion radial distri-

bution function, gii. Fig. 1 displays the ion distributions resulting from

SC solutions for the r - 2.2 and r - 4.9 cases. These figures are compared

with gii from the HNC approximation using the effective binary Interaction

in Eq. (8) and with the Debye form

DII.-2./X

gii (r) - exp [ -Ze 2 e- r /  ] , (18)
r

where
-D2 = 4rn e 2 (Z+l)0 (19)

DR
gii shows the tendency of the DH approximation to excessively screen

the ions in dense plasma, an effect previously seen in the OCP( 9 ,19 ) and

the TCP( 1 4 ). The HNC rdf is assumed to be the most accurate of the three

representations, because, since K i/r 1 10- 5 '  the ions are essentially

classical particles and the computer simulations have supported the use of

the HNC approximation for classical systems. In spite of the fact that i

in the SC method - Eq. (8) - cannot reproduce the oscillations around gii -

1.0 for 2 < r/a < 4 in the larger r case, the agreement between SC and HNC
0 -

even at r - 4.9 is very good. The small difference between these two forms

is not expected to alter the effective potential( 20 ); we will test the

significance of the difference below.

Fig. 2 compares the electron density profile (including both bound and

free electrons) provided by the self-consistent method around an ion with

the ion-electron radial distribution function produced by the HNC code for

r - 2.2. The profiles are very close for r/a0 > 0.25. The innermost r-

point calculated on the Fourier transform mesh in the HNC code is

8
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r/a° = 0.125. This also corresponds to the innermost r--mesh point of the
02

potential, since V(ruO)/e 2 
- Z, interpolation between r - 0 and the first

mesh point is possible for VHNC(r). Extrapolation of the HNC ge to

smaller radii, however, would not be meaningful, since e /ao = 0.12;
ieo

thus quantum mechanical details are important in this region. Forrest

Rogers has investigated this subject for hydrogen and few-times ionized

argon.( 1 6 ) Since our goal is a many-body effective potential with which to
examine average atom calculations, we find that the present model is

adequate.

The SC effective potential is a consequence of the solution of the

model. This function in the form rV(r) appears in Fig. 3 for r - 2.2 and

r - 4.9. The HNC/Poisson potential - Eq. (14) - is also presented. The

two forms are seen to be very similar in both cases indicating the apparent

validity of the quantum mechanical model even at very high densities. The

Debye potential reveals much stronger screening except for large distances

where rV(r) tends to zero for all models. ( 2 1 )  The ion-sphere

approximation is included for comparison: It agrees rather well with SC

and HNC/Poisson at short distances, but predicts even larger than Debye

screening farther as r becomes larger - a tendency very much distinct from

SC and HNC. The overall form of the IS function is very different from the

exponential behavior of the DH, SC, and HNC/Poisson functions, a result of

its constraint of fixed ionic volume.

Having now seen that the self-consistent formalism can provide

reasonable results (compared with the HNC data) for these strongly coupled

plasmas, we now look at the energy levels of the neon ions. Table II is a

compilation of negative energy eigenvalues arising from the solution of the

Schrodinger equation - Eq. (3) - within the method. All negative (bound)

energies are noted. The less deeply bound or absent DH values (resulting

from more severe screening) as well as eigenvalues found by using Vls(r)

and VHNc(r) are presented for comparison.

As a test of the significance of the difference between the two forms

of the ion distribution functions - the SC [ Eq. (7) ] and HNC [ Eq. (9)
HNC

a run of the SC model was repeated for r - 3.4 using gHN as a fixed

function instead of Eq. (7). Those figures are set in parentheses in Table

9LII. The difference 
is indeed minor and of the order of the numerical

% %



accuracy of the coded formalism.

As an example of a neon plasma at extreme conditions, we examined the

case in which n = 5.10 25cm - 3 and T - 210 eV, giving a r of 13.1. In thise

regime one expects to see considerable difference between the profiles

produced by the SC and HNC methods. In Fig. 4 the ion distributions of the

HNC, SC, and DR theories are reproduced. The HNC rdf shows that in this

case ion correlations are not Boltzmann-like. The non-negligible

oscillation about gii - 1 shows that there is now a strong indication of

ion ordering. Since the SC method utilizes Eq. (7), this effect is not

seen in those results. Quantitatively the SC and HNC rdf 's are more

dissimilar than the less coupled cases, although the DH curve is

considerably more distinct from both of these.

Fig. 4 indicates that the effects of non-Boltzmann ion correlations

are expected to be seen in the potential only at distances of r/ao greater

than one. Inside this radius the SC and HNC ion distributions are similar

enough that the potential, which here depends on the electron distribution,

is not expected to be greatly affected. The Debye potential is expected to

be overly screened again. Fig. 5 provides the calculated potentials

for r - 13.1. The ordering seen in Fig. 4 is obviously manifested as the

r-space oscillations in V(r). For purposes of atomic calculations, this

effect will have little significance as the spatial extent of the Is wave

function is limited to the volume inside r/ao - 0.15. For comparison we

have plotted the ion sphere potential (crosses), which is seen to coincide

closely with the SC and HNC effective potentials up to r/a 0.5.

IV. Discussion

Our primary goal is to investigate the applicability of a self-

consistent (SC) quantum statistical method to strongly coupled neon

plassas. As points of comparison we include potential calculations from

Debye-Ruckel (DH-correct for r << 1) and ion-sphere (IS--assumed correct

for r >> 1) approximations. The solution to the hypernetted chain (HNC)

equations incorporating a semiclassical binary pseudopotential, ( 13 ) which

has been found to be accurate in strongly coupled hydrogen plasmas, (14 ) is

the plasa model whose statistical properties the SC method must mirror in

10 q
r.
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order to be considered valid in this regime.

The SC method incorporates ion correlations via a Boltzmann factor

with the self-consistent potential in the exponent. Although this form is

approximate and cannot predict strong correlations which result in spatial

oscillations in gii, the SC ion distribution is very close to the HNC

profile for all cases considered with the exception of r = 13. The DH

profiles predict more closely packed ions due to considerably more

screening, a charateristic of DH theory outside of its range of validity
and known to be incorrect.(

9 ,1 4 )

The IS profile (not depicted on Figs. 1 and 4) is a step function at r

- ro with amplitude zero inside this radius and amplitude one beyond ro.

This extreme form is not appropriate for the lower r cases, but is nearly

correct for r - 13 (ro-O.64ao). Of course the structural oscillations are

absent in the IS model but this should not be very important for

calculations involving bound electrons.

The inner region of the effective potential is determined mainly by

the electron distribution around the ion. The HNC and SC electron

distributions are seen in Fig. 2 to be close except very near the ion where

the HNC solutions cannot be found. The ion sphere profile here possesses

no structure, simply a horizontal line at gie - 1; this difference is

crucial when developing the effective potential that is used to investigate

the atomic structure of the ion.

The effective potential is a consequence of the solution of the SC

method. The HNC interaction is derived from a screening function that is

nearly independent of the average effective charge, Z (for a given

temperature and density), scaled to the nuclear charge of the ions. The

derivation of VHNC(r) is from Poisson's equation, not the fluctuation

dissipation theorm as explained in the last section.

The SC potential is found to be very similar to VHNC(r) for the lower

r cases. The HNC potential is less screened than the SC potential in the

region r C r /2, where the electron distribution essentially determines the

form of the potential. The electron "pile-up" near the nucleus is larger

in the SC model, more effectively screening the positive charge. The SC

electron distribution and thus the effective potential in this region are

probably more accurate than the HNC results. For larger r, however, the

11
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ion distribution begins to effect the potential. The ion-ion rdf curves in

Figs. 1 and 4 show the ions generally less packed in the HNC approximation

than in the SC method, evidence of the greater "pile-up", but the structure

is not simple. The enhanced (non-Boltzmann-like) ion correlations shorten

the range of the calculated potential. The HNC potential in this region is

probably the more accurate of the two.

Fig. 5 indicates the presence of very strong enhanced correlations

effecting the potential. Using the HNC ion distributions in the SC method

in place of the Boltzmann from does not allow gji(r) to readjust to changes

in the electron distribution in each iteration (unless the HNC code is

coupled directly to the SC scheme, a procedure we have not undertaken).

Only in the r - 13 case might this be important. A potential constructed

of the effective potential from the SC theory inside r 0 ro/2 and V Wc(r)

outside this point should suffice for most atomic calculations. For bound

state energies at r - 13, the differences between HNC an SC are not

important (see Table II). Calculations of continuum properties may be

effected. This problem will be investigated in the future.

The inner region is more important for obtaining information on bound

states. Here, the ion sphere approximation is hampered by the assumption

of uniform electron density with the result the VIs(r) predicts more deeply

bound states than HNC or SC (which are in turn more deeply bound than the

inappropriate DH values). This is true even at the extreme case of r -

13.1 as indicated by Table II. At the temperatures and densities for the

cases listed, the HNC and SC potentials predict the same number of bound

states with approximately the same energies. The IS approximation predicts

more deeply bound inner levels but may result in less energetically bound

outer levels (as in r - 2.2) if the wave functions extend into the region

where the range of the IS potential is foreshortened by its definition of a

fixed ionic volume. The Debye values all indicate more shallow states,

because of large screening. (If in the definition of XD in Eq. (19), Z

were used instead of Z, the result would be even more severe screening.

Setting Z - 0 in Eq. (19) i.e., using the electron Debye length, produces a

potential devoid of any ionic contributions to the correlation functions.

The result here is a potential that lies much above all of the curves; this

approximation provides too little screening.)

12
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Since the HNC/Poisson potential appears to be accurate for atomic

calculations in neon for r 4 2.2 (by Fig. 3 and Table II), this

approximation, which is very easy to generate, can be used to examine other

properties of such strongly coupled systems requiring a many-body

potential. For calculations at higher coupling and details of electron

distributions very close to the nucleus, the self-consistent method is

needed.

We have shown the self-consistent model produces reliable results for

strongly coupled plasmas compared to hypernetted chain results in neon up

to r of order five and higher if HNC ion distributions are employed. In

addition, we have shown that the HNC method of generating correlation

functions provides an effective potential that can be used in calculations

of atomic properties up to r of order two (for neon). Debye-Huckel theory

is not a meaningful approximation in strongly coupled plasmas. Nor can we

recommend the use of the ion sphere potential for any of the cases examined

here.
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Table I

I. Summary of selected neon plasma conditions described by the models.Z

is the mean charge per ion. r is the ion coupling parameter.

Electron Density Temperature Zr

(cm-3) (eV)

1024 400 8.77 2.2

2.1024 250 7.61 3.4

5.1024 250 7.85 4.9

5.1025 210 8.02 13.1
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TABLE II

Energy eigenvalues in atomic units of neon plasmas at r - 2.2, 3.4,
HNC SC

4.9, and 13.1 from self-consistent model (using g in place of p

for the parenthetical values under r -3.4), and the HNC/Poisson model,

Debye model, and ion-sphere model potentials. All bound level

energies are given.

r - 2.2 r - 3.4

SC HNC is DR SC HNC IS DR

l -42.3 -43.1 -43.8 -39.7 -34.6 (-34.6) -39.4 -41.8 -33.7

2s -6.15 -6.35 -6.45 -4.40 -2.88(-2.89) -3.77 -4.65 -1.54

2p -5.93 -6.24 -6.40 -4.00 -2.31(-2.41) -3.41 -4.55 -0.77

3. -0.64 -0.57 -0.23 -0.16

3p -0.50 -0.44 -0.12 -0.01

3d -0.22 -0.18

r - 4.9 r -13.1

Sc HNC IS DR SC BNC is DR

1. -31.4 -34.1 -39.0 -25.8 -20.0 -21.5 -27.1 -0.66

2s -1.30 -1.14 -2.40

2p -2.13
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Figure 2

Electron distribution around an ion for r = 2.2. Solid line is the

SC model; dashed is the HNC approximation. The smallest radius used

in the Fourier transform within the HNC scheme was r/ao  0.125.
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Figure 4

Ion density distribution function for the r - 13.1 case in three

approximations. The legend is the same as Fig. 1.
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Figure 5

Effective electron-ion potential for r - 13.1 neon. The legend is

identical to Fig. 3.
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