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20. (cont.) driven by direct search optimization [1].

Both methods can be prohibitively expensive even for small problems because they tend
to converge slowly and require solution of differential equations at each iteration.
We Introduce a method that avoids this requirement by simultaneously converging to the
optimum while solving the differential equations. To do this, we apply orthogonal
collocation to the system of differential equations and convert them into algebraic
ones. We then apply an optimization strategy that does not require satisfaction of
equality constraints at each iteration. Here the method is applied to a small initial
value optimal control problem, although we are by no means restricted to problems
of this type.
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Abstract

Optimal control and estimation problems are currently solved by embedding a differential equation solver

into the optimization strategy. The optimization algorithm chooses the control profile, or parameter

estimates, and requires the differential equation routine to solve the equations and evaluate the objective and

constraint functionals at each step. Two popular methods for optimal control that follow this strategy are

Control Vector Iteration (CVI) and Control Vector Parameterization (CVP). CVI requires solution of the

Euler-Lagrange equations and minimization of the Hamiltonian while CVP involves repeated differential

equation solutions driven by direct search optimization [1!

Both methods can be prohibitively expensive even for small problems ause they tend to converge slowly
and require solution of differential equations at each iteration..-.We introducey method that avoids this
requirement b)y simultaneously converging to the optimum while solving the differential equations. To do

this, ' orthogona collocation to the system of differential equations and convert them into algebraic

ones. -We then.gjllan optimization strategy that does not require satisfaction of equality constraints at ..ach

iteration. Here the method is applied to a small initial value optimal control problem, although-we-ore by no
means restricted to problems of this type.
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1. Method Development

Unlike finite difference ODE solvers. orthogonal collocation applies a polynomial approximation to the

differential equation and requires satisfaction of the equation at discrete collocation points, the zeros of

orthogonal polynomials [21. The polynomial solution is thus a continuous function of t that is often as

accurate as a finite difference solution using many more points. For example, the polynomial approximation

for initial value problems defined over a finite interval is:
N

Y. = Yo "+ aIP-..t) (I)
1=1

where
ai  - unknown coefficients

Pi-. - (i-I) order L.egendre polynomial.

Thecoefficients at in (1)can be found by substituting y,(t) into the initial value problem: ' =f(yi); y(0)=

y.and solving: A -Jf, .)=O. at discrete points Ij which arc the roots of P,(t)=O. This system can be

solved by Gaussian elimination iffliy) is linear or by Newton's method ifflty) is nonlinear. In either case,
the system of ODEs is converted into algebraic equations.

Recently, optimization techniques have been developed [3, 4] that solve algebraic equality constrained

problems without requiring satisfaction of the equations at each iteration. Among the most promising of
these is the Successive Quadratic Programming (SQP) [4] algorithm. Iosly speaking, this method linearizes

inequality and equality constraints and constructs a convex quadratic objective function from gradients of the

objective and constraint functions, The resulting quadratic program (QP) can be solved using any standard,
finitestep QP algorithm [5, 6) Solution of the QP determines the search direction while a one-dimensional
minimization along this direction locates the next point. Here, only the linearized sets of equality constraints
are solved by the QP. As SQP converges to the optimum, the solution of the linearized sets converges to the
solution of the equality constraints. If no degrees of freedom are present for optimization, the SQP algorithm

reduces to Newton's method.

Because we no longer need to solve the collocation equations at each iteration, this Simultaneous

Optimization and COLLocation (SOCOL.L) method can prove to be very powerful for optimization problems

described by differential equations.

Consider the following initial value optimization (Mayer optimal control) problem:

* -- ' .
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Min FLYQ,).um~). q. 10 (2)

h(y. q. ) 0
- g(y,u,q,f) = 0

where

u(t) - continuous control variables

y(t) - state variables

q -constant control parameters

h - algebraic equality constraints

S algebraic inequality constraints

F objective functional

tr  - fixed final time

We cm mbstitute polynomial approximations . =jyo +I aP,- for y(t) and include the coefficients a,

a decision variables in the optimization problem. However, it is difficult to provide bounds and starting

pOm ft dim coefficients because they have no physical significance, thus no apriori estimated ranges. To

.eWd th*ian equivlent formulation is found by writing the approximation as a Lagrange interpolation

y(,)O JyM() where l,(t)= t(-'j)(,- tj). (3)

ntt o = 0 andSi = 1,n are zeros of an nth order Lgendre polynomial defined from 0 co tr. Choosing y,

mNy,(tI) as decision varlablis for the optimiyation problem, it is now much easier to supply meaningful

bounds and starting points fom physical insight about the problem. Other decision variables are the constant

pamoo s q (if preseO and coeffients u, of the polynomial approximation to the control profiles. The

comu profla may be approximated by:

N'.,= _ ujr) where ri(t)= (I-1j)(Q,- 1j) (4)
I N I

S4um m~hhetoheu
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This formulation easily accomodates algebraic inequality and equality constraints, g and h. which are often
difficult to handle with control vector iteration [7].

Having defined the set of decision variables x = [yi, ui. q], we write the ODE's as algebraic equalities at n
collocation points. If additional constraints g. h at other points in time tp are present these arc included in the
nonlinear program also. By substituting equations (3) and (4) into (2), the approximated problem now
becomes.

Min F(yn( ,), u,(tj),t I

L.L ri-- dy"(1) / di - fty uj i. iq)- 0 i-]n

h (p y,, (,). u,(i,), q) = 0

g (p ,(I,), u,), q) s5 0

U, :5 U1 s (5)

or equivalently:
Mi, F(x)
1XY

s.L r(x) = 0
h(x) = 0

g(x) sO

XI SXSXU

(6)

We now simply apply the SQP method to (6). At each iteration, k, SQP sets up and solves the QP:

Min V F(Ard+ jdrlakd
14

s.t. r(xt ) + V r(xk)Td = 0

h(xt) + V h(^)d= 0

S(x*) + V S(i9Tds 0

x:S xk + ds x. (7)

• . ... .*.. ** \!~*.*
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to determine the search direction. cd. for the next iterate x k+ 1.Here the Rk matrix is constructed frm

gradient information at previous iterations.

This approach yields an implicit orthogonal collocation solution U) the OI)E's, is easy to apply and

converges to the optimum superlinearly. To illustrate performance of this method, consider the following

optimal control problem [1.

A batch reactor operating over a one hour period produces two products according to the parallel reaction

mechanism: A --* B, A -- C. Both reactions are irreversible and first order in A. and have rate constants

given by:k
i = kio xp{-Ei/RT) i=1.2

(8)

where 

k10 = 106/s

k 20 = 5.10Il/s

IS = 10000 cal/gmol

E2 = 20000 cal/gmol

The objective is to find the temperature-time profile that maximizes the yield of B for operating temperatures

below 282F. Therefore, control problem is:

Max B(1.0)

s. 1 = - (k, + A

if= k1A

A(O) = AO

B(0)= 0

T s 28 2 o (9 )

Introducing the following transformations:

A B (

simplifies the optimization problem to:s , sm.. 

. .- 4*-, , 
.. .::,.,..-.. 

............



Max y2(1.0)

Y,= -(u +u/2)y,

Y, UY1

y,(O) = 1. y(O) = 0

Ou<5 (11)

Note that the control variable u(t) is the rate constant k and directly corresponds to temperature. This insight

eliminates the exponential terms and simplifies the structure of the problem.

T7he simultanious optimi7aton and collocation (SOCOIi) method was compared to thc two traditional

methods for solving optimal control problems: control vector iteration (CVI) and control vector

parameteriyation (CVP). With CVI. the Hamiltonian:

H= -X,(u + u2/2)y + A2uy (12)

is maximized with repect to u(t). Given an initially guessed control profile, the algorithm first integrates the

state equations forward in time to get x, then the adjoint equations ( a = - 8 H/a y) backward in time to

obtain ,.. The control profile, u(t). is then updated using a H/ a u. Here we apply the conjugate gradient

algorithm of Lasdon eL al. [8], with the method of Pagurek and Woodside [91 used to handle control bounds.

The CVP method was much more straightforward; the control profile was defined by feedback terms in Yl'

that is u = bo + b1 Y, + b2 y2. Optimal values for b, were found by applying the Complex method of Box

[101 to the optimization problem. Both CVI and CVP used the DGEAR subroutine [11]. a version of Gear's

method for stiff initial value problems, to solve the ODE's. For this problem the converged solution to CVI

can be made arbitrarily accurate by specifying toleranwes for the ODE solver and the optimality conditions.

(All tolerances in this study were set to 10'6.) With CVP. the final control profile is optimal only with respect
to a linear combination of basis functions and can never be better than with CVI.

Using the SOCO1JL method, the problem was first approximated by Lagrange interpolation polynomials

fbr n ranging from 1 to 5. Because the control profile is only specified at n collocation points, its

approximating polynomial (4) is of one order less than the polynomial for y. To provide a fair comparison

between CVI, CVP and SOCOLL, the starting points for y, and Y2 were set to values of the initial feasible

simulation at the collocation points. The three methods were compared for two initially guessed constant

profiles: u(t) = 1.0 and u(t) = 5.0. These correspond to operations at temperatures of 1960F and 282F,

respectively, for the entire reaction time.
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The results are presented in Table 1. Starting from either profile, the CVI and SOCOI. methods

converged to optimal points. The SOCOLL methods were much faster and their maxima, as n increases,

approach the optimum obtained with CVI from above. Note that the 5 point SOCOLL solution is within

0.5% of the CVI optimum, although CVI required from 2.5 to 8.7 times as much computational effort.

Surprisingly, the CVP method did not require excessive computational effort. This is due to the small

number of decision variables and the ease in solving the equations with l)GFAR. It should also be

mentioned that three additional runs of the CVP method were needed in order to establish judicious bounds

for values of b1 'lhesc are not shown in Table 1. Often, these methods can be prohibitive because direct

search methods are slow to converge, especially for large problems, and the bounds on bi cannot be specified a

priori. I'lbe CVP optimum is 0.8% lower than the CVI maximum even though CVP solved the differential

equations as CVI did. Moreover, the CVP objective can never reach the CVI optimum because the functional

choice for u(t) is incomplete. Since the SOCOLI. approximation approaches the true optimum as n increases,

its results are not as restrictive as CVP's.

Table 2 compares values of the optimal control profile for CVI, CVP and 5 point SOCOII. at the

collocation points. Here the agreement between CVI and SOCOI.L is much better than with CVI and CVP.

Figure I shows the optimal control profiles for the methods compared above. Here we observe a limitation of

SOCOLL As with other collocation methods, SOCOLL cannot approximate steep gradients well unless

higher order terms or collocation on finite elements are used. Also, constraints on the control trajectory can

easily be applied and satisfied at collocation points but may not be satisfied elsewhere (e.g., between 0.95 and

1.0). Again, collocation on finite elements embedded in SOCOLL can handle this limitation. For this

example, however, we can obtain a better solution through some. insight into the control trajectory. We note

that the value of ui is 5.0 at the last collocation point. Since the trajectory defined by the Lagrange

interpolation polynomial violates the upper bound on u, between the last collocation point and 1.0, we merely

"clip" u(t) by defining it as:

u4t)= min (5.0,u(t))

Since un 2 5.0 only after the last collocation point (0.953). the control profile can be clipped without

affecting the collocation constraints or continuity and differentiability (wrt x) of the objective function. We

applied the following clipping procedure:
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if u(0.0) > 5.0, find t Ce [0.953, 1.01 where u = 5.

Set ) = S for t e Re, 11; the variables y10) and y2(1), 1 e [l 11 are calculated by:

y(t) = yl(Q exp[- 17.5(1- )

Y2() = y 2(Q + (- 5/17.5)y(1) [ exp{ - 17.5(- Q - 1] (13)

since the differential equations are linear once u is constant. "lie clipped SOCOl.l. optimum is within 0.1%

of the CVI optimum. Agreement with CVI at collocation points is not as good as with the unclipped

SOCOLI. method, but its control trajectory is bounded between 0 and 5 and agrees reasonably well with CVI

and Ilgure 1.

These results are indicative of applications to other initial value optimal control problems. ihe accuracy of

the solution is limited only by the error introduced by the collocation procedure. Once a problem

formulation has been chosen which insures that collocation can be applied accurately, then the accuracy of

the solution to the optimal control problem is subject only to the tolerance on the optimality conditions.

The implementrtion of the SQP algorithm used here also has local superlinear and global convergence

properties. It operates in a much smaller space than the CVI algorithm and will generally be more accurate

than the CVP algorithm because it is not as limited by the basis functions for the optimal control profile.

3. Conoluslois

A simple method has been described for efficiently solving dynamic optimization problems. For a small

optimal control problem, very good approximate optima can be found with relatively little computational

efforL The fbrmulation presented above can easily be extended to handle collocation on finite elements (for

stiff symems of ODI's) as well as two point and other boundary value problems. A key point observed in the

solution of this small problem is that the system of differential equations is never solved explicitly. Instead,

the optimization algorithm converges simultaneously to solve the set of ODFs and find the optimal

trajectory. Thus, the often considerable computational effort of solving a set of ODE's at each iteration is

saved.

To conclude, we note the following points:

1. The SOCOLL strategy handles stiff ordinary differential equations without difficulty since it
yields an implicit collocation solution.

2. The solution of this method is only limited by the accuracy of the collocation procedure.
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3. The optimization procedure solves the collocation equations only once. It converges to the
optimum and the equation solutions simultaneously.

4. The optimal control problem is thus transformed to a nonlinear program. Multiple boundary
conditions and point constraints that cannot be handled easily with CVI and CVP present no
problem within this framework.

Therefore, we can expect the SOCOLL. method to be an efficient and effective tool for solving a wide

variety of dynamic optimization problcms. The results given here can be generalized to larger, more

complicated problems by applying finite element collocation.

V f- "



9

4. References

[1) Ray. W. H.. Advanced Process Control, McGraw-Hill. New York, (1981)

1 21 Flnlayson. B. A.. The Method of Weighted Residuals and
Variauwnal Principles. Academic Press, New York. (1972)

1 3] Murtfh. B. A. and M. A. Saunders. Math. Prog;. 14, p. 41, (1978)

1 4] Powelt M. J. I), Lecture Notes in Math., #631), p. 144, Springer,
Berlin. (1978)

[ SI VEO2AD. Harwell Subroutine Library. (1977)

16) Gill. P. ., W. Murray. M. A. Saunders and M. H. Wright.
SOIQPSOL FORTRAN Package for Quadratic Programming Staqford
Unierily. (1982)

1 7] Bryson, A. F and Y-C Ho. Applied Optimal Control,
Ginn/Btaisdcll. Waltham, MA, (1969)

[8] Ladon, L S. S. K. Mitter and A. D. Waren, IEEE Tran on

Automatic Control. AC-12 2, p. 132, (1967)

1 9) Psgurek, B. and C. M. Woodside, Automaica. 4. p. 337, (1968)

[101 Box. M. J, Computer J., 8, 1. p. 42, (1965)

[11] IMSL Software Library, (1982)

[12) Burka, M. K., AIChEJ., 28, 1, p. 11, (1982)



10

Figure : COMPARISON OF OVJ'IMAL.PROFILYS

WIN

Opuatiia Time (bra.



W~ uWL.707 .~ ~ ' S~ . ..-...S. - . . .-. .

Table 1: COMPARISON OF MEIHODS

Seaniq Proffie u(i) -1.

Medmod CpU Sec.* Optimum No. Iterations

I p. SOCOIJ. 0.84 0.66667 9
2 pL30C0 J. 1.44 0.59438 11
3 p SOCOLL 5.64 0.59308 30
4 pL SOCOLL 11.83 0.57858 41
5 p ' SOCOLL 17.92 0.57661 44
S p. SOCOLL 14.12 0.57263 30

(clpped)
CVI 45.12 0.57349 20"*
CYP 30.07 0.56910 377"**

Suntin Profile u(t) =5.

Method CPU Secs. Optimum No. Iterations

I p SOCOLL L38 0.66667 21
2psSOCOLL 2.41 0.59438 20
3 p1 COLL 9.69 0.59308 52
4 pL SOCOLL 14.92 0.57858 53
S p SOCOLL 26.06 0.57661 62
S p. SOCOLL 32.60 0.57275 66

(clipped)
CVI 226.35 0.57322 58"*

CVP 18.61 0.56910 213**

Execution Times, DEC-20 Computer, Carnegie-Mellon Computation Center
Number of CVI Profile Update

- Number of Objective Function Call

% %

J " " "i ' ' " '" '"1 1 ' "" ' - "' * ' '' " * * - .""" "' .o. ,m, .,, .' "_..''_ • ..,'',.•*. * t', , C . '.t'''-..".-' , , "'_, '"' .- ..". '- -"-. ,.,..



12

Table 2: OPTIMAL PROFIIF. AT COLLOCATION POINI'S

CVI S pt SOCOI.I. S pt SOCOI.I. CVP
(clipped)

0.0469 0.76702 0.76074 0.78692 0.83969
0,2305 0,87847 0,84027 0.97820 0.77699
0 1.15798 1.16616 1.04957 1.11780
0.7692 1,15941 1.66126 230851 2.27606
0.9531 5.00000 5.00000 4.99738 3.34930
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