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(cont.) driven by direct search optimization [1].

Both methods can be prohibitively expensive even for small problems because they tend
_ to converge slowly and require solution of differential equations at each iteration.

s We introduce a method that avoids this requirement by simultaneously converging to the
optimum while solving the differential equations. To do this, we apply orthogonal
collocation to the system of differential equations and convert them into algebraic

i ones. We then apply an optimization strategy that does not require satisfaction of

- equality constraints at each iteration. Here the method is applied to a small initial

value optimal control problem, although we are by no means restricted to problems

of this type.
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Abstract

Optimal control and cstimation problems arc currently solved by embedding a differential equation solver
into the optimization strategy. The optimization algorithm chooscs the control profile, or paramcter
estimates, and requires the differential cquation routine to solve the cquations and cvaluate the objective and
_ constraint functionals at cach step. Two ;;opular mcthods for optimal control that follow this stratcgy are
Control Vector Iteration (CVI) and Control Vector Parameterization (CVP). CVI requires solution of the
Eulcr-l.agrange equations and minimization of the Hamiltonian while CVP involves repeated differential
equation solutions driven by direct scarch optimization [1)!

Both methods can be prohibitively cxpensive even for small problimzl?ﬁcoa‘yse they tend to converge slowly
and require solution of differential cquations at cach iteration. “We imroducqa method that avoids this
reqmrcment by simultancously converging to the optimum while solving the diffcrential cquations. To do
this, orthogonal collocation to the system of differential cquations and convert them into algebraic

thcxuiﬂ‘ywan optimization strategy that docs not require satisfaction of cquality constmm;s at cach

“itcration. Here the method is applied to a small initial value optimal control problem, almoughwe-&fe by no
means restricted to problems of this type.

A\

SR e e A i P e A L A e SRR A

it




1. Method Development
Unlike finite difference ODE solvers, orthogonal collocation applies a polynomial approximation to the
differential equation and requires satisfaction of the equation at discrete collocation points, the zeros of
‘ orthogonal polynomials [2]. The polynomial solution is thus a continuous function of t that is often as
accurate as a finite differcnce solution using many more points. For example, the polynomial approximation
: for initial valuc problems defined over a finite interval is:

s n

Ya = Yott Y aiPiy(0) (M
N i=1

> a, - unknown coefficients

-, P_, - (-1)order l.cgendre polynomial.

‘The cocfficients g; in (1) can be found by substituting y,(¢) into the initial value problem: S¥ =fy1); y(0)=
> Yo and solving: gxﬂ- = fypt)=0. at discrete points ¢; which arc the roots of P,(r)=0. 'This system can be

R

solved by Gaussnan climination if f{+,y) is lincar or by Newton's method if A{t,y) is nonlinear. In cither case,
the system of ODFE's is converted into algebraic equations.

Recently, optimization techniques have been developed [3, 4] that solve algebraic cquality constrained
problems without requiring satisfaction of the cquations at each itcration. Among the most promising of
these is the Successive Quadratic Pr_ogrémming (SQP) [4] algorithm. l.ooscly speaking, this method lincarizes
inequality and equality constraints and constructs a convex quadratic objcctive function from gradicnts of the
objective and constraint functions. The resulting quadratic program (QP) can be solved using any standard,
finite-sicp QP algorithm [S, 6]. Solution of the QP determines the search direction while a one-dimensional
minimization along this dircction locates the next point. Here, only the linearized sets of cquality constraints

o
2 e

W are solved by the QP. As SQP converges to the optimum, the solution of the linearized sets converges to the
solution of the equality constraints. If no degrees of frecdom are present for optimization, the SQP algorithm
reducces to Newton’s method.

3@ Because we no longer need to solve the collocation equations at cach iteration, this Simultaneous
' Optimization and COLLocation (SOCOLL.) method can prove to be very powerful for optimization problems
. described by differential equations. ]

Consider the following initial value optimization (Mayer optimal control) problem:

...................
. . -

-..’!. v ..‘- .-.‘._ ........



Min  Fly(ip. u(tp. q. ¢

o i, u(tp. q. 4

st %-=f(y.u.q.t)
k(y.u.q.0=0

gruqg) <0

w(t) - continuous control variables
y(t) - statc variables

q - constant control parameters

h - algebraic cquality constraints
g - algebraic incquality constraints
F - objective functional

t - fixed final time

L . . N

We can substitute polynomial approximations y, = y, + { ) _ a;P;, for y(t) and include the coefficicnts a,
as decision variables in the optimization problem. However, it is difficult to provide bounds and starting
poims for these coefficients because they have no physical significance, thus no apriori estimated ranges. To
remedy this, an equivalent formulation is found by writing the approximation as a Lagrange interpolation
polynomial:

L] L]
= gmm where /()= Il:[u— yM(e=1). )
[ 4
ki

Heret = Oand t, i = 1, nare zcros of an nth order Legendre polynomial defined from 0 to ¢,. Choosing Y,
-y'(ll) as decision variables for the optimization problem, it is now much casier to supply mcaningful
bounds and starting points from physical insight about the problem. Other decision variables are the constant
parameters, q (if present) and cocfficients u, of the polynomial approximation to the control profiles. The
control profiles may be approximated by:

L] n
= };um) where Tj(1) = II(:— )/ (4=1) @
5 . =)
abhough we are not limited to this form. Ikt




This formulation casily accomodates algebraic inequality and equality constraints, g and h, which are often
difficult to handle with control vector iteration [7].

Having defined the set of decision variables x = ly;» u;, ], we write the ODE's as algebraic cqualities at n
collocation points. If additional constraints g, h at other points in time tp are present, these arc included in the
nonlinear program also. By substituting cquations (3) and (4) into (2), the approximated problem now
becomes:

. - Min  FOuUpuy(iptsq)
Dupal n\rEnSh s
st rn=dyf4y)/dt - ﬂy,-.uﬂ,-.q)= 0 i=ln

h(‘PJ’n('p)r “n('p)v 9=0

5
% 8(tp yltp). uxtp).q) < 0
B

VS ViSyy

4 ¥ Su; S u, . . )

or equivalently: i
Min F(x) ' 1
{x}

. . st r(x)=0

8(x) <0

XI SxSXg
(6)

We now simply apply the SQP method to (6). At each iteration, k, SQP sets up and solves the QP:
Min ¥ FGNTd+ dTBd '
{4

st. )+ Vr(xHTd=0
h(x%) + V a(x5Td=0
g(x)) + V g(x9HTd<0

x; Sxk+ dsx, )]
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to determine the search direction, d, for the next iterate x**!. Here the B* matrix is constructed from
gradicnt information at previous itcrations.

,?‘; This approach yields an implicit orthogonal collocation solution to the ODE's, is casy to apply and
;‘ converges to the optimum superlinearly. To illustrate performance of this method, consider the following
oy optimal control problem [1].
3 2. Example
3 A batch reactor operating over a onc hour period produces two products according to the parallel reaction
4; mechanism: A — B, A — C. Both rcactions are irreversible and first order in A, and have rate constants
7‘ given by:
o ' k= k exp{-E/RT}  i=12
¥
g; ®)
Xy where .

= 106
3;'5 kip = 10°%/s
ol - 11
3‘ kyy = 5.10'1/5

E, = 10000 cal/gmol

E, = 20000 cal/gmol :
The objective is to find the temperature-time profile that maximizes the yield of B for operating temperatures
below 282°F. Thercfore, control problem is:

Max B(1-0)
st Y=—(k+ k)4
# = klA

H A©) = 4,

)

‘5 B(0)= 0

TS282°F ©)
“ Introducing the following transformations:

| 4 _ B _ @

) =g h=g—  u=k =k (10)
5‘ simplifies the optimization problem to:
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Max yz(l.O)

n= =iy,
).'z= )
HO=1L y0)=0

O0suss a1

Note that the control variable u(t) is the rate constant k, and dircctly corresponds to temperature. ‘This insight
climinates the exponential terms and simplifies the structure of the problem.

The simultanious optimization and collocation (SOCOL.1.) method was compared to the two traditional
methods for solving optimal control problems: control vector iteration (CVI) and control vector
parameterization (CVP). With CVI, the Hamiltonian:

H= =A(u+ &@/2)y, + Auy, (12)

is maximized with repect to u(t). Given an initially guessed control profile, the algorithm first intcgrates the
state equations forward in time to get y, then the adjoint equations (A = — 9 H/ 3 y) backward in time to
obtain ).  The control profile, u(t). is then updated using @ H/ 9 u. Here we apply the conjugate gradient
algorithm of Lasdon et. al. [8], with the method of Pagurek and Woodside [9] used to handle control bounds.
The CVP method was much more straightforward; the control profile was defined by feedback terms in Yy
thatsu = bo + l':1 y, + b2 y%. Optimal values for b; were found by applying the Complex method of Box
[10] to the optimization problem. Both CVI and CVP used the DGEAR subroutine [11], a version of Gear’s
method for stiff initial value problems, to solve the ODE's. For this problem the converged solution to CVI
can be made arbitrarily accurate by specifying tolerances for the ODE solver and the optimality conditions.
(All tolerances in this study were sct to 10’6.) With CVP, the final control profilc is optimal only with respect
to a lincar combination of basis functions and can ncver be better than with CVI.

Using the SOCOL.I. method, the problem was first approximated by I.agrange interpolation polynomials
for nranging from 1 to S. Because the control profile is only specified at n collocation points, its
approximating polynomial (4) is of onc order lcss than the polynomial for y. To provide a fair comparison
between CVI, CVP and SOCOLL, the starting points for y; and y, were sct to values of the initial feasible
simulation at the collocation points. The three methods were compared for two initially guessed constant
profiles: u(t) = 1.0 and u(t) = 5.0. These correspond to operations at temperatures of 196°F and 282°F,
respectively, for the cntire reaction time.
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The results are presented in Table 1. Starting from cither profile, the CVI and SOCOLL mecthods
converged to optimal points. The SOCOL.L. methods were much faster and their maxima, as n increases,
approach the optimum obtained with CVI] from above. Note that the § point SOCOLL solution is within
0.5% of the CVI optimum, although CVI required from 2.5 to 8.7 times as much computational effort.

Surprisingly. the CVP method did not require excessive computational effort. ‘This is duc to the small
number of decision variables and the case in solving the equations with DGEAR. It should also be
mentioned that three additional runs of the CVP method were needed in order to cstablish judicious bounds
for values of b, ‘Thesc arc not shown in Table 1. Often, these methods can be prohibitive because direct
search methods arc slow to converge, especially for large problems, and the bounds on b; cannot be specificd a
priori. ‘The CVP optimum is 0.8% lower than the CVI maximum cven though CVP solved the differential
equations as CVI did. Moreover, the CVP objective can never reach the CVI optimum because the functional
choice for u(t) is incomplete. Since the SOCOL.L. approximation approaches the truc optimum as n increases,
its results are not as restrictive as CVP's.

Table 2 comparcs values of the optimal control profile for CVI, CVP and S point SOCOLL. at the
collocation points. Here the agreement between CVI1 and SOCOLL is much better than with CVI and CVP.
Figure 1 shows the optimal control profiles for the mecthods compared above. Here we observe a limitation of
SOCOLL. As with other collocation methods, SOCOLL cannot approximate stecp gradients well unless
higher order terms or collocation on finite elements are used. Also, constraints on the control trajectory can
casily be applied and satisficd at collocation points but may not be satisfied elsewhere (e.g., between 0.95 and
1.0). Again, collocation on finite clements embedded in SOCOLL can handle this limitation. For this
example, however, we can obtain a better solution through some insight into the control trajectory. We note
that the value of ; is 5.0 at the last collocation point. Since the trajectory defined by the Lagrange
interpolation polynomial violates the upper bound on u, between the last collocation point and 1.0, we merely
“clip” u(t) by defining it as:

w(t)= min (5.0, un(l))

Since u, 2 5.0 only after the last collocation point (0.953), the control profile can be clipped without
affecting the collocation constraints or continuity and differentiability (wrt x) of the objective function. We

applicd the following clipping procedure:

b RS & & & o B X _SEER Ra._ s




if u"(l.O) 2 5.0, find L e [0.953,1.0} where u = 5.
Set (t)=$ for lc[lc. 1J; the variables y (1) and y/().1¢ [tc.l] are calculated by:
yl(t) = yl(lt) exp[—17.5(1— t‘)]

y() =y (1) +(=5/115)y,(1) [exp{=17.5(¢~ tt)} -1] (13)

since the differential equations are lincar once u is constant. ‘The clipped SOCOL.L. optimum is within 0.1%
of the CVI optimum. Agreement with CV1 at collocation points is not as good as with the unclipped
SOCOLL. method, but its control trajectory is bounded between 0 and 5 and agrees reasonably well with CVI
and Figure 1.

These results arc indicative of applications to other initial value optimal control problems. ‘The accuracy of
the solution is limited only by the crror introduced by the collocation procedure. Once a problem
formulation has been chosen which insures that collocation can be applicd accurately, then the accuracy of
the solution to the optimal control problem is subject only to the tolerance on the optimality conditions.

The implement-tion of the SQP algorithm used here also has local superlinear and global convergence
properties. It operates in a much smaller space than the CVI algorithm and will generally be more accurate
than the CVP algorithm because it is not as limited by the basis functions for the optimal control profile.

3. Conclusions

A simple method has been described for efficiently solving dynamic optimization problems. For a small
optimal control problem, very good approximate optima can be found with relatively littlc computational
effort. The formulation presented above can casily be extended to handle collocation on finite elements (for
stiff systems of OIDE’s) as well as two point and other boundary valuc problems. A kcy point observed in the
solution of this small problem is that the system of diffcrential equations is never solved cxplicitly. Instead,
the optimization algorithm converges simultancously to solve the set of ODE's and find the optimal
trajectory. Thus, the often considerable computational effort of solving a set of ODE’s at cach iteration is
saved.

To conclude, we note the following points:

1. The SOCOLL strategy handles stiff ordinary differcntial cquations without difficulty since it
yields an implicit collocation solution.

2. The solution of this method is only limited by the accuracy of the collocation procedure.
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3. The optimization proccdure solves the collocation equations only once. It converges to the
optimum and the cquation solutions simultaneously.

4. The optimal control problem is thus transformed to a nonlincar program. Multiple boundary
conditions and point constraints that cannot be handled easily with VI and CVP present no
problem within this framework.

Therefore, we can expect the SOCOLL. method to be an cfficient and effective tool for solving a wide
variety of dynamic optimization problems. ‘The results given here can be generalized to larger. more

complicated problems by applying finite element collocation.
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: Figure 1: COMPARISON OF OPTIMAL PROFILES
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Table 1: COMPARISON OF METHODS

Starting Profile u(t) = 1.
Method CpU Secs.*
1pt SOCOLL 0.84
2pt. SOCOLLL. 144
3 pt. SOCOLL 5.64
4 pt. SOCOLL 11.83
Spt. SOCOLL 17.92
S pt. SOCOLL 14.12
(clipped)

45.12
Ccvp 30.07
Starting Profile u(t) = 5.
Method CPU Secs.*
1pt. SOCOLL 138
2pt. SOCOLL 241
3pt. SOCOLL 9.69
4 pt. SOCOLL 1492
$pt. SOCOLL 26.06
Spt. SOCOLL 32.60

(clipped)

cvi 226.35
CvpP 18.61

Optimum

0.66667
0.59438
0.59308
0.57858
0.57661
0.57263

0.57349
0.56910

Optimum

0.66667
0.59438
0.59308
0.57858
0.57661
0.57275

057322
0.56910

No. Itcrations

9
11
30
4]
44
30

20.‘
377.‘.

No. ltcrations

21
20
52
53
62
66

58 [ J
213.“

* Execution Times, DEC-20 Computer, Camcgic-Meclion Computation Center
** Number of CV1 Profile Updates
#¢¢ Number of Objective Function Calls
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W

B
%
1
B J

t cvi
0.0469 0.76702
02308 0.87847
0.5000 115798
0.7692 185941
09531 500000

12

S pt SOCOL.IL

0.76074
0.84027
1.16616
1.66126
5.00000

5 pt SOCOL.L

(clipped)

0.78692
0.97820
1.04957
2.30851
4.99738

]

q'i

-------

Table 2: OPTIMAL PROFILE AT COLLOCATION POINTS

CcvpP

0.83969
0.77699
1.11780
2.27606
3.34930
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